* start moving to bun * changing more stuff * more * and yet more * tests passing * seems stable now * more big changes * small fix * little fixes
8.0 KiB
Simple and performant SQL database client
Main features are:
- Works with PostgreSQL, MySQL, SQLite.
- Selecting into a map, struct, slice of maps/structs/vars.
- Bulk inserts.
- Bulk updates using common table expressions.
- Bulk deletes.
- Fixtures.
- Migrations.
- Soft deletes.
Resources:
github.com/frederikhors/orm-benchmark results
4000 times - Insert
raw_stmt: 0.38s 94280 ns/op 718 B/op 14 allocs/op
raw: 0.39s 96719 ns/op 718 B/op 13 allocs/op
beego_orm: 0.48s 118994 ns/op 2411 B/op 56 allocs/op
bun: 0.57s 142285 ns/op 918 B/op 12 allocs/op
pg: 0.58s 145496 ns/op 1235 B/op 12 allocs/op
gorm: 0.70s 175294 ns/op 6665 B/op 88 allocs/op
xorm: 0.76s 189533 ns/op 3032 B/op 94 allocs/op
4000 times - MultiInsert 100 row
raw: 4.59s 1147385 ns/op 135155 B/op 916 allocs/op
raw_stmt: 4.59s 1148137 ns/op 131076 B/op 916 allocs/op
beego_orm: 5.50s 1375637 ns/op 179962 B/op 2747 allocs/op
bun: 6.18s 1544648 ns/op 4265 B/op 214 allocs/op
pg: 7.01s 1753495 ns/op 5039 B/op 114 allocs/op
gorm: 9.52s 2379219 ns/op 293956 B/op 3729 allocs/op
xorm: 11.66s 2915478 ns/op 286140 B/op 7422 allocs/op
4000 times - Update
raw_stmt: 0.26s 65781 ns/op 773 B/op 14 allocs/op
raw: 0.31s 77209 ns/op 757 B/op 13 allocs/op
beego_orm: 0.43s 107064 ns/op 1802 B/op 47 allocs/op
bun: 0.56s 139839 ns/op 589 B/op 4 allocs/op
pg: 0.60s 149608 ns/op 896 B/op 11 allocs/op
gorm: 0.74s 185970 ns/op 6604 B/op 81 allocs/op
xorm: 0.81s 203240 ns/op 2994 B/op 119 allocs/op
4000 times - Read
raw: 0.33s 81671 ns/op 2081 B/op 49 allocs/op
raw_stmt: 0.34s 85847 ns/op 2112 B/op 50 allocs/op
beego_orm: 0.38s 94777 ns/op 2106 B/op 75 allocs/op
pg: 0.42s 106148 ns/op 1526 B/op 22 allocs/op
bun: 0.43s 106904 ns/op 1319 B/op 18 allocs/op
gorm: 0.65s 162221 ns/op 5240 B/op 108 allocs/op
xorm: 1.13s 281738 ns/op 8326 B/op 237 allocs/op
4000 times - MultiRead limit 100
raw: 1.52s 380351 ns/op 38356 B/op 1037 allocs/op
raw_stmt: 1.54s 385541 ns/op 38388 B/op 1038 allocs/op
pg: 1.86s 465468 ns/op 24045 B/op 631 allocs/op
bun: 2.58s 645354 ns/op 30009 B/op 1122 allocs/op
beego_orm: 2.93s 732028 ns/op 55280 B/op 3077 allocs/op
gorm: 4.97s 1241831 ns/op 71628 B/op 3877 allocs/op
xorm: doesn't work
Installation
go get github.com/uptrace/bun
You also need to install a database/sql driver and the corresponding Bun dialect.
Quickstart
First you need to create a sql.DB
. Here we are using the
sqliteshim driver which choses
between modernc.org/sqlite and
mattn/go-sqlite3 depending on your platform.
import "github.com/uptrace/bun/driver/sqliteshim"
sqldb, err := sql.Open(sqliteshim.ShimName, "file::memory:?cache=shared")
if err != nil {
panic(err)
}
And then create a bun.DB
on top of it using the corresponding SQLite dialect:
import (
"github.com/uptrace/bun"
"github.com/uptrace/bun/dialect/sqlitedialect"
)
db := bun.NewDB(sqldb, sqlitedialect.New())
Now you are ready to issue some queries:
type User struct {
ID int64
Name string
}
user := new(User)
err := db.NewSelect().
Model(user).
Where("name != ?", "").
OrderExpr("id ASC").
Limit(1).
Scan(ctx)
The code above is equivalent to:
query := "SELECT id, name FROM users AS user WHERE name != '' ORDER BY id ASC LIMIT 1"
rows, err := sqldb.QueryContext(ctx, query)
if err != nil {
panic(err)
}
if !rows.Next() {
panic(sql.ErrNoRows)
}
user := new(User)
if err := db.ScanRow(ctx, rows, user); err != nil {
panic(err)
}
if err := rows.Err(); err != nil {
panic(err)
}
Basic example
To provide initial data for our example, we will use Bun fixtures:
import "github.com/uptrace/bun/dbfixture"
// Register models for the fixture.
db.RegisterModel((*User)(nil), (*Story)(nil))
// WithRecreateTables tells Bun to drop existing tables and create new ones.
fixture := dbfixture.New(db, dbfixture.WithRecreateTables())
// Load fixture.yaml which contains data for User and Story models.
if err := fixture.Load(ctx, os.DirFS("."), "fixture.yaml"); err != nil {
panic(err)
}
The fixture.yaml
looks like this:
- model: User
rows:
- _id: admin
name: admin
emails: ['admin1@admin', 'admin2@admin']
- _id: root
name: root
emails: ['root1@root', 'root2@root']
- model: Story
rows:
- title: Cool story
author_id: '{{ $.User.admin.ID }}'
To select all users:
users := make([]User, 0)
if err := db.NewSelect().Model(&users).OrderExpr("id ASC").Scan(ctx); err != nil {
panic(err)
}
To select a single user by id:
user1 := new(User)
if err := db.NewSelect().Model(user1).Where("id = ?", 1).Scan(ctx); err != nil {
panic(err)
}
To select a story and the associated author in a single query:
story := new(Story)
if err := db.NewSelect().
Model(story).
Relation("Author").
Limit(1).
Scan(ctx); err != nil {
panic(err)
}
To select a user into a map:
m := make(map[string]interface{})
if err := db.NewSelect().
Model((*User)(nil)).
Limit(1).
Scan(ctx, &m); err != nil {
panic(err)
}
To select all users scanning each column into a separate slice:
var ids []int64
var names []string
if err := db.NewSelect().
ColumnExpr("id, name").
Model((*User)(nil)).
OrderExpr("id ASC").
Scan(ctx, &ids, &names); err != nil {
panic(err)
}
For more details, please consult docs and check examples.
Contributors
Thanks to all the people who already contributed!