21 KiB
使用 Flakes 来管理你的 NixOS
启用 NixOS 的 Flakes 支持
与 NixOS 当前默认的配置方式相比,Flakes 提供了更好的可复现性,同时它清晰的包结构定义原生支 持了以其他 Git 仓库为依赖,便于代码分享,因此本书更建议使用 Flakes 来管理系统配置。
目前 Flakes 作为一个实验特性,仍未被默认启用,我们需要手动修改
/etc/nixos/configuration.nix
文件,启用 Flakes 特性以及配套的船新 nix 命令行工具:
{ config, pkgs, ... }:
{
imports =
[ # Include the results of the hardware scan.
./hardware-configuration.nix
];
# ......
# 启用 Flakes 特性以及配套的船新 nix 命令行工具
nix.settings.experimental-features = [ "nix-command" "flakes" ];
environment.systemPackages = with pkgs; [
# Flakes 通过 git 命令拉取其依赖项,所以必须先安装好 git
git
vim
wget
curl
];
# 将默认编辑器设置为 vim
environment.variables.EDITOR = "vim";
# ......
}
然后运行 sudo nixos-rebuild switch
应用修改后,即可使用 Flakes 特性来管理系统配置。
nix 的新命令行工具还提供了一些方便的功能,比如说你现在可以使用 nix repl
命令打开一个 nix
交互环境,有兴趣的话,可以使用它复习测试一遍前面学过的所有 Nix 语法。
将系统配置切换到 flake.nix
在启用了 Flakes 特性后,sudo nixos-rebuild switch
命令会优先读取 /etc/nixos/flake.nix
文件,如果找不到再尝试使用 /etc/nixos/configuration.nix
。
可以首先使用官方提供的模板来学习 flake 的编写,先查下有哪些模板:
nix flake show templates
其中有个 templates#full
模板展示了所有可能的用法,可以看看它的内容:
nix flake init -t templates#full
cat flake.nix
我们参照该模板创建文件 /etc/nixos/flake.nix
并编写好配置内容,后续系统的所有修改都将全部
由 Nix Flakes 接管,示例内容如下:
{
description = "A simple NixOS flake";
inputs = {
# NixOS 官方软件源,这里使用 nixos-23.11 分支
nixpkgs.url = "github:NixOS/nixpkgs/nixos-23.11";
};
outputs = { self, nixpkgs, ... }@inputs: {
# 因此请将下面的 my-nixos 替换成你的主机名称
nixosConfigurations.my-nixos = nixpkgs.lib.nixosSystem {
system = "x86_64-linux";
modules = [
# 这里导入之前我们使用的 configuration.nix,
# 这样旧的配置文件仍然能生效
./configuration.nix
];
};
};
}
这里我们定义了一个名为 my-nixos
的系统,它的配置文件为 /etc/nixos/
文件夹下的
./configuration.nix
,也就是说我们仍然沿用了旧的配置。
现在执行 sudo nixos-rebuild switch
应用配置,系统应该没有任何变化,因为我们仅仅是切换到
了 Nix Flakes,配置内容与之前还是一致的。
切换完毕后,我们就可以通过 Flakes 特性来管理系统了。
目前我们的 flake 包含这几个文件:
/etc/nixos/flake.nix
: flake 的入口文件,执行sudo nixos-rebuild switch
时会识别并部 署它。/etc/nixos/flake.lock
: 自动生成的版本锁文件,它记录了整个 flake 所有输入的数据源、hash 值、版本号,确保系统可复现。/etc/nixos/configuration.nix
: 这是我们之前的配置文件,在flake.nix
中被作为模块导 入,目前所有系统配置都写在此文件中。/etc/nixos/hardware-configuration.nix
: 这是系统硬件配置文件,由 NixOS 生成,描述了系统 的硬件信息
到这里为止, /etc/nixos/flake.nix
仅仅是 /etc/nixos/configuration.nix
的一个 thin
wrapper,它自身并没有提供任何新的功能,也没有引入任何破坏性的变更。在本书后面的内容中,我
们会逐渐看到这样一个 wrapper 带来了哪些好处。
注意:本书描述的配置管理方式并非「Everything in a single file」,更推荐将配置内容分门 别类地存放到不同的 nix 文件中,然后在
flake.nix
的modules
参数列表中引入这些配置 文件,并通过 Git 管理它们。这样做的好处是,可以更好地组织配置文件,提高配置的可维护性。 后面的 模块化 NixOS 配置 一节将会详细介绍如何模块化 你的 NixOS 配置,其他实用技巧 - 使用 Git 管理 NixOS 配置 将会 介绍几种使用 Git 管理 NixOS 配置的最佳实践。
flake.nix
配置详解
上面我们创建了一个 flake.nix
文件并通过它来管理系统配置,但你对它的结构还是一头雾水,下
面我们来详细解释一下这个文件的内容。
1. flake inputs
首先看看其中的 inputs
属性,它是一个 attribute set,其中定义了这个 flake 的所有依赖项,
这些依赖项会在被拉取后,作为参数传递给 outputs
函数:
{
inputs = {
# NixOS 官方软件源,这里使用 nixos-23.11 分支
nixpkgs.url = "github:NixOS/nixpkgs/nixos-23.11";
};
outputs = { self, nixpkgs, ... }@inputs: {
# 省略掉前面的配置......
};
}
inputs
中的每一项依赖有许多类型与定义方式,可以是另一个 flake,也可以是一个普通的 Git 仓
库,又或者一个本地路径。
Flakes 的其他玩法 - Flake 的 inputs 中详细介绍了常见
的依赖项类型与定义方式。
这里我们只定义了 nixpkgs
这一个依赖项,使用的是 flake 中最常见的引用方式,即
github:owner/name/reference
,这里的 reference
可以是分支名、commit-id 或 tag。
nixpkgs
在 inputs
中被定义后,就可以在后面的 outputs
函数的参数中使用此依赖项中的内
容了,我们的示例中正是这么干的。
2. flake outputs
再来看看 outputs
,它是一个以 inputs
中的依赖项为参数的函数,函数的返回值是一个
attribute set,这个返回的 attribute set 即为该 flake 的构建结果:
{
description = "A simple NixOS flake";
inputs = {
# NixOS 官方软件源,这里使用 nixos-23.11 分支
nixpkgs.url = "github:NixOS/nixpkgs/nixos-23.11";
};
# 这里的 `self` 是个特殊参数,它指向 `outputs` 函数返回的 attribute set 自身,即自引用
outputs = { self, nixpkgs, ... }@inputs: {
# hostname 为 my-nixos 的主机会使用这个配置
nixosConfigurations.my-nixos = nixpkgs.lib.nixosSystem {
system = "x86_64-linux";
modules = [
./configuration.nix
];
};
};
}
flake 有很多的用途,也可以有很多不同类型的
outputs,Flake 的 outputs 一节有更详细的介绍。这里
我们只用到了 nixosConfigurations
这一类型的 outputs,它用于配置 NixOS 系统。
在我们运行 sudo nixos-rebuild switch
命令时,它会从 /etc/nixos/flake.nix
的 outputs
函数返回值中查找 nixosConfigurations.my-nixos
(其中的 my-nixos
将会是你当前系统的
hostname)这一属性,并使用其中的定义来配置你的 NixOS 系统。
实际我们也可以自定义 flake 的位置与 NixOS 配置的名称,而不是使用默认值。只需要在
nixos-rebuild
命令后面添加 --flake
参数即可,一个例子:
sudo nixos-rebuild switch --flake /path/to/your/flake#your-hostname
上述命令中的 --flake /path/to/your/flake#your-hostname
参数简要说明如下:
/path/to/your/flake
为目标 flake 的位置,默认会使用/etc/nixos/
这个路径。#
是一个分隔符,其后的your-hostname
则是 NixOS 配置的名称。nixos-rebuild
默认会 以你当前系统的 hostname 为配置名称进行查找。
你甚至能直接引用一个远程的 GitHub 仓库作为你的 flake 来源,示例如下:
sudo nixos-rebuild switch --flake github:owner/repo#your-hostname
3. nixpkgs.lib.nixosSystem
函数的简单介绍
一个 Flake 可以依赖其他 Flakes,从而使用它们提供的功能。
默认情况下,一个 flake 会在其每个依赖项(即 inputs
中的每一项)的根目录下寻找
flake.nix
文件并懒惰求值(lazy evaluation)它们的 outputs
函数,接着将这些函数返回
的 attribute sets 作为参数传递给它自身的 outputs
函数,这样我们就能在当前 flake 中使用它
所依赖的其他 flakes 提供的功能了。
更精确地说,对每个依赖项的 outputs
函数的求值都是懒惰(lazy)的,也就是说,一个 flake 的
outputs
函数只有在被真正使用到的时候才会被求值,这样就能避免不必要的计算,从而提高效率。
上面的描述可能有点绕,我们还是结合本节中使用的 flake.nix
示例来看看这个过程。我们的
flake.nix
声明了 inputs.nixpkgs
这个依赖项,因此 nixpkgs/flake.nix 会在我们执行
sudo nixos-rebuild switch
这个命令时被求值。从 Nixpkgs 仓库的源码中能看到它的 flake
outputs 定义中有返回 lib
这个属性,我们的例子中就使用了 lib
属性中的 nixosSystem
这
个函数来配置我们的 NixOS 系统:
{
inputs = {
# NixOS 官方软件源,这里使用 nixos-23.11 分支
nixpkgs.url = "github:NixOS/nixpkgs/nixos-23.11";
};
outputs = { self, nixpkgs, ... }@inputs: {
nixosConfigurations.my-nixos = nixpkgs.lib.nixosSystem {
system = "x86_64-linux";
modules = [
./configuration.nix
];
};
};
}
nixpkgs.lib.nixosSystem
后面跟的 attribute set 就是该函数的参数,我们这里只设置了两个参
数:
system
: 这个很好懂,就是系统架构参数。modules
: 此函数是一个 modules 的列表,NixOS 的实际系统配置都定义在这些 modules 中。
/etc/nixos/configuration.nix
这个配置文件本身就是一个 Nixpkgs Module,因此可以直接将其添
加到 modules
列表中使用。
新手阶段了解这些就足够了,探究 nixpkgs.lib.nixosSystem
函数的具体实现需要对 Nixpkgs 的模
块系统有一定的了解。读者可以在学习了
模块化 NixOS 配置 一节后,再回过头来从
nixpkgs/flake.nix 中找到 nixpkgs.lib.nixosSystem
的定义,跟踪它的源码,研究其实现方
式。
Nixpkgs Module 结构的简单介绍
在后面的 模块化 NixOS 配置 一节中会详细介绍这套模块 系统的工作方式,这里只介绍些基础知识。
为什么 /etc/nixos/configuration.nix
这个配置文件会符合 Nixpkgs Module 定义,从而能直接在
flake.nix
中引用它呢?可能会有读者觉得这有点出乎意料。
这实际是因为 Nixpkgs 中包含了大量 NixOS 的实现源码,这些源码大都使用 Nix 语言编写。为了编 写维护如此多的 Nix 代码,并且使用户能灵活地自定义其 NixOS 系统的各项功能,就必须要有一套 Nix 代码的模块化系统。
这套 Nix 代码的模块系统的实现也同样在 Nixpkgs 仓库中,它主要被用于 NixOS 系统配置的模块 化,但也有其他的应用,比如 nix-darwin 跟 home-manager 都大量使用了这套模块系统。
既然 NixOS 是基于这套模块系统构建的,那它的配置文件(包括 /etc/nixos/configuration.nix
)
是一个Nixpkgs Module,也就显得非常自然了。
在学习后面的内容之前,我们需要先简单了解下这套模块系统的工作方式。
一个简化的 Nixpkgs Module 结构如下:
{lib, config, options, pkgs, ...}:
{
# 导入其他 Modules
imports = [
# ......
# ./xxx.nix
];
for.bar.enable = true;
# other options declarations
# ...
}
可以看到它的定义实际是一个 Nix 函数,该函数有 5 个由模块系统自动生成、自动注入、无需额外 声明的参数:
lib
: nixpkgs 自带的函数库,提供了许多操作 Nix 表达式的实用函数config
: 包含了当前环境中所有 option 的值,在后面学习模块系统时会大量使用它options
: 当前环境中所有 Modules 中定义的所有 options 的集合pkgs
: 一个包含所有 nixpkgs 包的集合,它也提供了许多相关的工具函数- 入门阶段可以认为它的默认值为
nixpkgs.legacyPackages."${system}"
,可通过nixpkgs.pkgs
这个 option 来自定义pkgs
的值
- 入门阶段可以认为它的默认值为
modulesPath
: 一个只在 NixOS 中可用的参数,是一个 Path,指向 nixpkgs/nixos/modules- 它在 nixpkgs/nixos/lib/eval-config-minimal.nix#L43 中被定义
- 通常被用于导入一些额外的 NixOS 模块,NixOS 自动生成的
hardware-configuration.nix
中 基本都能看到它
传递非默认参数到模块系统中
而如果你需要将其他非默认参数传递到子模块,就需要使用一些特殊手段手动指定这些非默认参数。
Nixpkgs 的模块系统提供了两种方式来传递非默认参数:
nixpkgs.lib.nixosSystem
函数的specialArgs
参数- 在任一 Module 中使用
_module.args
这个 option 来传递参数
这两个参数的官方文档藏得很深,而且语焉不详、晦涩难懂。读者感兴趣的话我把链接放在这里:
specialArgs
: NixOS Manual 跟 Nixpkgs Manual 中分别有与它有关的只言片语- Nixpkgs Manual: Module System - Nixpkgs
- NixOS Manual: nixpkgs/nixos-23.11/nixos/doc/manual/development/option-types.section.md#L237-L244
_module.args
:- NixOS Manual: Appendix A. Configuration Options
- Source Code: nixpkgs/nixos-23.11/lib/modules.nix - _module.args
总之,specialArgs
与 _module.args
需要的值都是一个 attribute set,它们的功能也相同,都
是将其 attribute set 中的所有参数传递到所有子模块中。这两者的区别在于:
- 在任何 Module 中都能使用
_module.args
这个 option,通过它互相传递参数,这要比只能在nixpkgs.lib.nixosSystem
函数中使用的specialArgs
更灵活。 _module.args
是在 Module 中声明使用的,因此必须在所有 Modules 都已经被求值后,才能使 用它。这导致如果你在imports = [ ... ];
中使用_module.args
传递的参数,会报错infinite recursion
,这种场景下你必须改用specialArgs
才行。
NixOS 社区比较推荐优先使用 _module.args
这个 options,仅在无法使用 _module.args
时才改
用 specialArgs
。
假设你想将某个依赖项传递到子模块中使用,可以使用 specialArgs
参数将 inputs
传递到所有
子模块中:
{
inputs = {
nixpkgs.url = "github:NixOS/nixpkgs/nixos-23.11";
another-input.url = "github:username/repo-name/branch-name";
};
outputs = inputs@{ self, nixpkgs, another-input, ... }: {
nixosConfigurations.my-nixos = nixpkgs.lib.nixosSystem {
system = "x86_64-linux";
# 将所有 inputs 参数设为所有子模块的特殊参数,
# 这样就能直接在子模块中使用 inputs 中的所有依赖项了
specialArgs = { inherit inputs;};
modules = [
./configuration.nix
];
};
};
}
或者使用 _module.args
这个 option 也能达成同样的效果:
{
inputs = {
nixpkgs.url = "github:NixOS/nixpkgs/nixos-23.11";
another-input.url = "github:username/repo-name/branch-name";
};
outputs = inputs@{ self, nixpkgs, another-input, ... }: {
nixosConfigurations.my-nixos = nixpkgs.lib.nixosSystem {
system = "x86_64-linux";
modules = [
./configuration.nix
{
# 将所有 inputs 参数设为所有子模块的特殊参数,
# 这样就能直接在子模块中使用 inputs 中的所有依赖项了
_module.args = { inherit inputs; };
}
];
};
};
}
选择上述两种方式之一修改你的配置,然后在 /etc/nixos/configuration.nix
中就可以使用
inputs
这个参数了,模块系统会自动匹配到 specialArgs
中定义的 inputs
,并将其注入到所
有需要该参数的子模块中:
# Nix 会通过名称匹配,
# 自动将 specialArgs/_module.args 中的 inputs 注入到此函数的第三个参数
{ config, pkgs, inputs, ... }:
# 然后我们就能在这下面使用 inputs 这个参数了
{
# ......
}
下一节将演示如何使用 specialArgs
/_module.args
来从其他 flake 来源安装系统软件。
从其他 flake 来源安装系统软件
管系统最常见的需求就是装软件,我们在上一节已经见识过如何通过 environment.systemPackages
来安装 pkgs
中的包,这些包都来自官方的 nixpkgs 仓库。
现在我们学习下如何安装其他 flake 来源的软件包,这比直接从 nixpkgs 安装要灵活很多,最主要的 用途是安装 Nixpkgs 中还未添加或未更新的某软件的最新版本。
以 helix 编辑器为例,这里演示下如何直接编译安装 helix 的 master 分支。
首先在 flake.nix
中添加 helix 这个 inputs 数据源:
{
inputs = {
nixpkgs.url = "github:NixOS/nixpkgs/nixos-23.11";
# helix editor, use the master branch
helix.url = "github:helix-editor/helix/master";
};
outputs = inputs@{ self, nixpkgs, ... }: {
nixosConfigurations.my-nixos = nixpkgs.lib.nixosSystem {
system = "x86_64-linux";
specialArgs = { inherit inputs;};
modules = [
./configuration.nix
# 如下 Module 与前面的 `specialArgs` 参数功能完全一致
# 选择其中一种即可
# { _module.args = { inherit inputs; };}
];
};
};
}
接下来在 configuration.nix
中就能引用这个 flake input 数据源了:
{ config, pkgs, inputs, ... }:
{
# 省略无关配置......
environment.systemPackages = with pkgs; [
git
vim
wget
curl
# 这里从 helix 这个 inputs 数据源安装了 helix 程序
inputs.helix.packages."${pkgs.system}".helix
];
# 省略其他配置......
}
改好后再 sudo nixos-rebuild switch
部署,就能安装好 Helix 程序了。这次部署用时会比以往长
挺多,因为 Nix 会从源码编译整个 Helix 程序。
部署完毕后,可直接在终端使用 hx
命令测试验证。
另外,如果你只是想尝试一下 Helix 的最新版本,再决定要不要真正地将它安装到系统里,有更简单 的办法,一行命令就行(但如前所述,源码编译会很费时间):
nix run github:helix-editor/helix/master
我们会在后面的 新一代 Nix 命令行工具的使用 中详
细介绍 nix run
的用法。
使用其他 Flakes 包提供的功能
其实这才是 Flakes 最主要的功能,一个 Flake 可以依赖其他 Flakes,从而使用它们提供的功能——就 如同我们在写 TypeScript/Go/Rust 等程序时使用其他 Library 提供的功能一样。
上面使用 Helix 的官方 Flake 中提供的最新版本就是一个例子,其他更多的用例会在后面提到,这里 引用几个后面会讲的例子:
- Getting Started with Home Manager: 这里引入了社区的 Home-Manager 作为依赖项,从而能直接使用该 Flake 提供的功能。
- Downgrading or Upgrading Packages: 这里引入了不同 版本的 Nixpkgs 作为依赖项,从而能很灵活地选用不同版本的 Nixpkgs 中的包。