ZFS, encryption (keys, keystore, LUKS), bootFS, ephemeral root (tmpfs, ZFS, F2FS, ...), testing in qemu, options & debugging, ... and many small things
14 KiB
/*
Boot Key Store
This module does two related things:
- it provides the specification for encryption keys to be generated during system installation, which are then (automatically) used by the setup scripts for various pieces of file system encryption,
- and it configures a
keystore
LUKS device to be opened (according to the keys specified for it) in the initramfs boot stage to use those keys to unlock other encrypted file systems.
Keys can always be specified, and the installer may decide to use the setup script functions populating the keystore or not.
The default functions in lib/setup-scripts
do populating the keystore, and then use the keys according to the description below.
What keys are used for is derived from the attribute name in the .keys
specification, which (plus a .key
suffix) also becomes their storage path in the keystore:
- Keys in
luks/
are used for LUKS devices, where the second path label is both the target device name and source device GPT partition label, and the third and final label is the LUKS key slot (0
is required to be specified,1
to7
are optional). - Keys in
zfs/
are used for ZFS datasets, where the further path is that of the dataset. Datasets implicitly inherit their parent's encryption by default. An empty key (created by methodunencrypted
) explicitly disables encryption on a dataset. Other keys are by default used withkeyformat=hex
and must thus be exactly 64 (lowercase) hex digits. - Keys in
home/
are used as composites for home directory encryption, where the second and only other path label us the user name. TODO: this is not completely implemented yet.
The attribute value in the .keys
keys specification dictates how the key is acquired, primarily initially during installation, but (depending on the keys usage) also during boot unlocking, etc.
The format of the key specification is method[=args]
, where method
is the suffix of a bash function call add-key-<method>
(the default functions are in add-key.sh
, but others could be added to the installer), and args
is the second argument to the respective function (often a :
separated list of arguments, but some methods don't need any arguments at all).
Most key generation methods only make sense in some key usage contexts. A random
key is impossible to provide to unlock the keystore (which it is stored in), but is well suited to unlock other devices (if the keystore has backups (TODO!)); conversely a USB-partition can be used to headlessly unlock the keystore, but would be redundant for any further devices, as it would also be copied in the keystore.
If the module is enable
d, a partition and LUKS device keystore-...
gets configured and the contents of the installation time keystore is copied to it (in its entirety, including intermediate or derived keys and those unlocking the keystore itself (TODO: this could be optimized)).
This LUKS device is then configured to be unlocked (using any ot the key methods specified for it) before anything else during boot, and closed before leaving the initramfs phase.
Any number of other devices may thus specify paths in the keystore as keylocation to be unlocked during boot without needing to prompt for further secrets, and without exposing the keys to the running system.
Implementation
#*/# end of MarkDown, beginning of NixOS module:
dirname: inputs: { config, pkgs, lib, ... }: let inherit (inputs.self) lib; in let
prefix = inputs.config.prefix;
cfg = config.${prefix}.fs.keystore;
hash = builtins.substring 0 8 (builtins.hashString "sha256" config.networking.hostName);
keystore = "/run/keystore-${hash}";
keystoreKeys = lib.attrValues (lib.filterAttrs (n: v: lib.wip.startsWith "luks/keystore-${hash}/" n) cfg.keys);
in let module = {
options.${prefix} = { fs.keystore = {
enable = lib.mkEnableOption "the use of a keystore partition to unlock various things during early boot";
enableLuksGeneration = (lib.mkEnableOption "the generation of a LUKS mapper configuration for each »luks/*/0« entry in ».keys«") // { default = true; example = false; };
keys = lib.mkOption { description = "Keys declared to be generated during installation and then exist in the keystore for unlocking disks and such. See »${dirname}/keystore.nix.md« for much more information."; type = lib.types.attrsOf (lib.types.either (lib.types.nullOr lib.types.str) (lib.types.attrsOf lib.types.str)); default = { }; apply = keys: (
lib.wip.mapMergeUnique (usage: methods: if methods == null then { } else if builtins.isString methods then { "${usage}" = methods; } else lib.wip.mapMerge (slot: method: if method == null then { } else { "${usage}/${slot}" = method; }) methods) keys
); };
unlockMethods = {
trivialHostname = lib.mkOption { description = "For headless auto boot, use »hostname« (in a file w/o newline) as trivial password/key for the keystore."; type = lib.types.bool; default = lib.elem "hostname" keystoreKeys; };
usbPartition = lib.mkOption { type = lib.types.bool; default = (lib.elem "usb-part" keystoreKeys); };
pinThroughYubikey = lib.mkOption { type = lib.types.bool; default = (lib.any (type: lib.wip.matches "^yubikey-pin=.*$" type) keystoreKeys); };
};
}; };
config = let
in lib.mkIf cfg.enable (lib.mkMerge [ ({
assertions = [ {
assertion = cfg.keys?"luks/keystore-${hash}/0";
message = ''At least one key (»0«) for »luks/keystore-${hash}« must be specified!'';
} ];
boot.initrd.luks.devices = lib.mkIf cfg.enableLuksGeneration (lib.wip.mapMerge (key: let
label = builtins.substring 5 ((builtins.stringLength key) - 7) key;
in { ${label} = {
device = lib.mkDefault "/dev/disk/by-partlabel/${label}";
keyFile = lib.mkIf (label != "keystore-${hash}") (lib.mkDefault "/run/keystore-${hash}/luks/${label}/0.key");
allowDiscards = lib.mkDefault true; # If attackers can observe trimmed blocks, then they can probably do much worse ...
}; }) (lib.wip.filterMatching ''^luks/.*/0$'' (lib.attrNames cfg.keys)));
${prefix}.fs.keystore.keys."luks/keystore-${hash}/0" = lib.mkOptionDefault "hostname";
}) ({
boot.initrd.supportedFilesystems = [ "vfat" ];
#boot.supportedFilesystems = [ "vfat" ]; # TODO: this should not be necessary
boot.initrd.luks.devices."keystore-${hash}" = {
device = "/dev/disk/by-partlabel/keystore-${hash}";
postOpenCommands = ''
echo "Mounting ${keystore}"
mkdir -p ${keystore}
mount -o nodev,umask=0277,ro /dev/mapper/keystore-${hash} ${keystore}
'';
preLVM = true; # ensure the keystore is opened early (»preLVM« also seems to be pre zpool import, and it is the only option that affects the opening order)
keyFile = lib.mkMerge [
(lib.mkIf cfg.unlockMethods.trivialHostname "${pkgs.writeText "hostname" config.networking.hostName}")
(lib.mkIf cfg.unlockMethods.usbPartition "/dev/disk/by-partlabel/bootkey-${hash}")
];
fallbackToPassword = true; # (might as well)
preOpenCommands = lib.mkIf cfg.unlockMethods.pinThroughYubikey verbose.doOpenWithYubikey;
};
# Create and populate keystore during installation:
fileSystems.${keystore} = { fsType = "vfat"; device = "/dev/mapper/keystore-${hash}"; options = [ "ro" "noatime" "umask=0277" "noauto" ]; formatOptions = ""; };
${prefix} = {
fs.disks.partitions."keystore-${hash}" = { type = "8309"; order = 1375; disk = "primary"; size = "32M"; };
fs.disks.postFormatCommands = ''
( : 'Copy the live keystore to its primary persistent location:'
tmp=$(mktemp -d) ; mount "/dev/mapper/keystore-${hash}" $tmp ; trap "umount $tmp ; rmdir $tmp" EXIT
${pkgs.rsync}/bin/rsync -a ${keystore}/ $tmp/
)
'';
};
boot.initrd.postMountCommands = ''
${if (lib.any (lib.wip.matches "^home/.*$") (lib.attrNames cfg.keys)) then ''
echo "Transferring home key composites"
# needs to be available later to unlock the home on demand
mkdir -p /run/keys/home-composite/ ; chmod 551 /run/keys/home-composite/ ; cp -a ${keystore}/home/*.key /run/keys/home-composite/
for name in "$(ls /run/keys/home-composite/)" ; do chown "''${name:0:(-4)}": /run/keys/home-composite/"$name" ; done
'' else ""}
echo "Closing ${keystore}"
umount ${keystore} ; rmdir ${keystore}
cryptsetup close /dev/mapper/keystore-${hash}
'';
boot.initrd.luks.yubikeySupport = lib.mkIf cfg.unlockMethods.pinThroughYubikey true;
boot.initrd.extraUtilsCommands = lib.mkIf cfg.unlockMethods.pinThroughYubikey (lib.mkAfter ''
copy_bin_and_libs ${verbose.askPassWithYubikey}/bin/cryptsetup-askpass
sed -i "s|/bin/sh|$out/bin/sh|" "$out/bin/cryptsetup-askpass"
'');
}) ]);
}; verbose = rec {
tryYubikey = ''tryYubikey () { # 1: key
local key="$1" ; local slot
if [ "$(ykinfo -q -2 2>/dev/null)" = '1' ] ; then slot=2 ;
elif [ "$(ykinfo -q -1 2>/dev/null)" = '1' ] ; then slot=1 ; fi
if [ "$slot" ] ; then
echo >&2 ; echo "Using slot $slot of detected Yubikey ..." >&2
key="$(ykchalresp -$slot "$key" 2>/dev/null || true)"
if [ "$key" ] ; then echo "Got response from Yubikey" >&2 ; fi
fi
printf '%s' "$key"
}'';
# The next tree strings are copied from https://github.com/NixOS/nixpkgs/blob/1c9b2f18ced655b19bf01ad7d5ef9497d48a32cf/nixos/modules/system/boot/luksroot.nix
# The only modification is the addition and invocation of »tryYubikey«
commonFunctions = ''
die() {
echo "$@" >&2
exit 1
}
dev_exist() {
local target="$1"
if [ -e $target ]; then
return 0
else
local uuid=$(echo -n $target | sed -e 's,UUID=\(.*\),\1,g')
blkid --uuid $uuid >/dev/null
return $?
fi
}
wait_target() {
local name="$1"
local target="$2"
local secs="''${3:-10}"
local desc="''${4:-$name $target to appear}"
if ! dev_exist $target; then
echo -n "Waiting $secs seconds for $desc..."
local success=false;
for try in $(seq $secs); do
echo -n "."
sleep 1
if dev_exist $target; then
success=true
break
fi
done
if [ $success == true ]; then
echo " - success";
return 0
else
echo " - failure";
return 1
fi
fi
return 0
}
'';
doOpenWithYubikey = (let
inherit (lib) optionalString;
inherit (config.boot.initrd) luks;
inherit (config.boot.initrd.luks.devices."keystore-${hash}") name device header keyFile keyFileSize keyFileOffset allowDiscards yubikey gpgCard fido2 fallbackToPassword;
cs-open = "cryptsetup luksOpen ${device} ${name} ${optionalString allowDiscards "--allow-discards"} ${optionalString (header != null) "--header=${header}"}";
in ''
${tryYubikey}
do_open_passphrase() {
local passphrase
while true; do
echo -n "Passphrase for ${device}: "
passphrase=
while true; do
if [ -e /crypt-ramfs/passphrase ]; then
echo "reused"
passphrase=$(cat /crypt-ramfs/passphrase)
break
else
# ask cryptsetup-askpass
echo -n "${device}" > /crypt-ramfs/device
# and try reading it from /dev/console with a timeout
IFS= read -t 1 -r passphrase
if [ -n "$passphrase" ]; then
passphrase="$(tryYubikey "$passphrase")"
${if luks.reusePassphrases then ''
# remember it for the next device
echo -n "$passphrase" > /crypt-ramfs/passphrase
'' else ''
# Don't save it to ramfs. We are very paranoid
''}
echo
break
fi
fi
done
echo -n "Verifying passphrase for ${device}..."
echo -n "$passphrase" | ${cs-open} --key-file=-
if [ $? == 0 ]; then
echo " - success"
${if luks.reusePassphrases then ''
# we don't rm here because we might reuse it for the next device
'' else ''
rm -f /crypt-ramfs/passphrase
''}
break
else
echo " - failure"
# ask for a different one
rm -f /crypt-ramfs/passphrase
fi
done
}
'');
askPassWithYubikey = pkgs.writeScriptBin "cryptsetup-askpass" ''
#!/bin/sh
${commonFunctions}
${tryYubikey}
while true; do
wait_target "luks" /crypt-ramfs/device 10 "LUKS to request a passphrase" || die "Passphrase is not requested now"
device=$(cat /crypt-ramfs/device)
echo -n "Passphrase for $device: "
IFS= read -rs passphrase
echo
rm /crypt-ramfs/device
echo -n "$(tryYubikey "$passphrase")" > /crypt-ramfs/passphrase
done
'';
}; in module