[Context on
Discord](https://discord.com/channels/601130461678272522/855947301380947968/1219425984990806207)
# Description
- Rename `CustomValue::value_string()` to `type_name()` to reflect its
usage better.
- Change print behavior to always call `to_base_value()` first, to give
the custom value better control over the output.
- Change `describe --detailed` to show the type name as the subtype,
rather than trying to describe the base value.
- Change custom `Type` to use `type_name()` rather than `typetag_name()`
to make things like `PluginCustomValue` more transparent
One question: should `describe --detailed` still include a description
of the base value somewhere? I'm torn on it, it seems possibly useful
for some things (maybe sqlite databases?), but having `describe -d` not
include the custom type name anywhere felt weird. Another option would
be to add another method to `CustomValue` for info to be displayed in
`describe`, so that it can be more type-specific?
# User-Facing Changes
Everything above has implications for printing and `describe` on custom
values
# Tests + Formatting
- 🟢 `toolkit fmt`
- 🟢 `toolkit clippy`
- 🟢 `toolkit test`
- 🟢 `toolkit test stdlib`
# Description
@ayax79 says that the dataframe commands all have dataframe custom
values in their examples, and they're used for tests.
Rather than send the custom values to the engine, if they're in
examples, this change just renders them using `to_base_value()` first.
That way we avoid potentially having to hold onto custom values in
`plugins.nu` that might not be valid indefinitely - as will be the case
for dataframes in particular - but we still avoid forcing plugin writers
to not use custom values in their examples.
# User-Facing Changes
- Custom values usable in plugin examples
# Tests + Formatting
- 🟢 `toolkit fmt`
- 🟢 `toolkit clippy`
- 🟢 `toolkit test`
- 🟢 `toolkit test stdlib`
# After Submitting
# Description
We do a lot of visiting contained values in the serialization / validity
functions within `PluginCustomValue` utils. This adds
`Value::recurse_mut()` which wraps up most of that logic into something
that can be reused.
# Description
Adds support for the following operations on plugin custom values, in
addition to `to_base_value` which was already present:
- `follow_path_int()`
- `follow_path_string()`
- `partial_cmp()`
- `operation()`
- `Drop` (notification, if opted into with
`CustomValue::notify_plugin_on_drop`)
There are additionally customizable methods within the `Plugin` and
`StreamingPlugin` traits for implementing these functions in a way that
requires access to the plugin state, as a registered handle model such
as might be used in a dataframes plugin would.
`Value::append` was also changed to handle custom values correctly.
# User-Facing Changes
- Signature of `CustomValue::follow_path_string` and
`CustomValue::follow_path_int` changed to give access to the span of the
custom value itself, useful for some errors.
- Plugins using custom values have to be recompiled because the engine
will try to do custom value operations that aren't supported
- Plugins can do more things 🎉
# Tests + Formatting
Tests were added for all of the new custom values functionality.
- 🟢 `toolkit fmt`
- 🟢 `toolkit clippy`
- 🟢 `toolkit test`
- 🟢 `toolkit test stdlib`
# After Submitting
- [ ] Document protocol reference `CustomValueOp` variants:
- [ ] `FollowPathInt`
- [ ] `FollowPathString`
- [ ] `PartialCmp`
- [ ] `Operation`
- [ ] `Dropped`
- [ ] Document `notify_on_drop` optional field in `PluginCustomValue`
# Description
This PR uses the new plugin protocol to intelligently keep plugin
processes running in the background for further plugin calls.
Running plugins can be seen by running the new `plugin list` command,
and stopped by running the new `plugin stop` command.
This is an enhancement for the performance of plugins, as starting new
plugin processes has overhead, especially for plugins in languages that
take a significant amount of time on startup. It also enables plugins
that have persistent state between commands, making the migration of
features like dataframes and `stor` to plugins possible.
Plugins are automatically stopped by the new plugin garbage collector,
configurable with `$env.config.plugin_gc`:
```nushell
$env.config.plugin_gc = {
# Configuration for plugin garbage collection
default: {
enabled: true # true to enable stopping of inactive plugins
stop_after: 10sec # how long to wait after a plugin is inactive to stop it
}
plugins: {
# alternate configuration for specific plugins, by name, for example:
#
# gstat: {
# enabled: false
# }
}
}
```
If garbage collection is enabled, plugins will be stopped after
`stop_after` passes after they were last active. Plugins are counted as
inactive if they have no running plugin calls. Reading the stream from
the response of a plugin call is still considered to be activity, but if
a plugin holds on to a stream but the call ends without an active
streaming response, it is not counted as active even if it is reading
it. Plugins can explicitly disable the GC as appropriate with
`engine.set_gc_disabled(true)`.
The `version` command now lists plugin names rather than plugin
commands. The list of plugin commands is accessible via `plugin list`.
Recommend doing this together with #12029, because it will likely force
plugin developers to do the right thing with mutability and lead to less
unexpected behavior when running plugins nested / in parallel.
# User-Facing Changes
- new command: `plugin list`
- new command: `plugin stop`
- changed command: `version` (now lists plugin names, rather than
commands)
- new config: `$env.config.plugin_gc`
- Plugins will keep running and be reused, at least for the configured
GC period
- Plugins that used mutable state in weird ways like `inc` did might
misbehave until fixed
- Plugins can disable GC if they need to
- Had to change plugin signature to accept `&EngineInterface` so that
the GC disable feature works. #12029 does this anyway, and I'm expecting
(resolvable) conflicts with that
# Tests + Formatting
- 🟢 `toolkit fmt`
- 🟢 `toolkit clippy`
- 🟢 `toolkit test`
- 🟢 `toolkit test stdlib`
Because there is some specific OS behavior required for plugins to not
respond to Ctrl-C directly, I've developed against and tested on both
Linux and Windows to ensure that works properly.
# After Submitting
I think this probably needs to be in the book somewhere
# Description
This allows plugins to make calls back to the engine to get config,
evaluate closures, and do other things that must be done within the
engine process.
Engine calls can both produce and consume streams as necessary. Closures
passed to plugins can both accept stream input and produce stream output
sent back to the plugin.
Engine calls referring to a plugin call's context can be processed as
long either the response hasn't been received, or the response created
streams that haven't ended yet.
This is a breaking API change for plugins. There are some pretty major
changes to the interface that plugins must implement, including:
1. Plugins now run with `&self` and must be `Sync`. Executing multiple
plugin calls in parallel is supported, and there's a chance that a
closure passed to a plugin could invoke the same plugin. Supporting
state across plugin invocations is left up to the plugin author to do in
whichever way they feel best, but the plugin object itself is still
shared. Even though the engine doesn't run multiple plugin calls through
the same process yet, I still considered it important to break the API
in this way at this stage. We might want to consider an optional
threadpool feature for performance.
2. Plugins take a reference to `EngineInterface`, which can be cloned.
This interface allows plugins to make calls back to the engine,
including for getting config and running closures.
3. Plugins no longer take the `config` parameter. This can be accessed
from the interface via the `.get_plugin_config()` engine call.
# User-Facing Changes
<!-- List of all changes that impact the user experience here. This
helps us keep track of breaking changes. -->
Not only does this have plugin protocol changes, it will require plugins
to make some code changes before they will work again. But on the plus
side, the engine call feature is extensible, and we can add more things
to it as needed.
Plugin maintainers will have to change the trait signature at the very
least. If they were using `config`, they will have to call
`engine.get_plugin_config()` instead.
If they were using the mutable reference to the plugin, they will have
to come up with some strategy to work around it (for example, for `Inc`
I just cloned it). This shouldn't be such a big deal at the moment as
it's not like plugins have ever run as daemons with persistent state in
the past, and they don't in this PR either. But I thought it was
important to make the change before we support plugins as daemons, as an
exclusive mutable reference is not compatible with parallel plugin
calls.
I suggest this gets merged sometime *after* the current pending release,
so that we have some time to adjust to the previous plugin protocol
changes that don't require code changes before making ones that do.
# Tests + Formatting
- 🟢 `toolkit fmt`
- 🟢 `toolkit clippy`
- 🟢 `toolkit test`
- 🟢 `toolkit test stdlib`
# After Submitting
I will document the additional protocol features (`EngineCall`,
`EngineCallResponse`), and constraints on plugin call processing if
engine calls are used - basically, to be aware that an engine call could
result in a nested plugin call, so the plugin should be able to handle
that.
# Description
Replace `.to_string()` used in `GenericError` with `.into()` as
`.into()` seems more popular
Replace `Vec::new()` used in `GenericError` with `vec![]` as `vec![]`
seems more popular
(There are so, so many)
Elide the reference for `Copy` type (`usize`)
Use the canonical deref where possible.
* `&Box` -> `&`
* `&String` -> `&str`
* `&PathBuf` -> `&Path`
Skips the ctrl-C handler for now.
# Description
As part of the refactor to split spans off of Value, this moves to using
helper functions to create values, and using `.span()` instead of
matching span out of Value directly.
Hoping to get a few more helping hands to finish this, as there are a
lot of commands to update :)
# User-Facing Changes
<!-- List of all changes that impact the user experience here. This
helps us keep track of breaking changes. -->
# Tests + Formatting
<!--
Don't forget to add tests that cover your changes.
Make sure you've run and fixed any issues with these commands:
- `cargo fmt --all -- --check` to check standard code formatting (`cargo
fmt --all` applies these changes)
- `cargo clippy --workspace -- -D warnings -D clippy::unwrap_used` to
check that you're using the standard code style
- `cargo test --workspace` to check that all tests pass (on Windows make
sure to [enable developer
mode](https://learn.microsoft.com/en-us/windows/apps/get-started/developer-mode-features-and-debugging))
- `cargo run -- -c "use std testing; testing run-tests --path
crates/nu-std"` to run the tests for the standard library
> **Note**
> from `nushell` you can also use the `toolkit` as follows
> ```bash
> use toolkit.nu # or use an `env_change` hook to activate it
automatically
> toolkit check pr
> ```
-->
# After Submitting
<!-- If your PR had any user-facing changes, update [the
documentation](https://github.com/nushell/nushell.github.io) after the
PR is merged, if necessary. This will help us keep the docs up to date.
-->
---------
Co-authored-by: Darren Schroeder <343840+fdncred@users.noreply.github.com>
Co-authored-by: WindSoilder <windsoilder@outlook.com>
# Description
Lint: `clippy::uninlined_format_args`
More readable in most situations.
(May be slightly confusing for modifier format strings
https://doc.rust-lang.org/std/fmt/index.html#formatting-parameters)
Alternative to #7865
# User-Facing Changes
None intended
# Tests + Formatting
(Ran `cargo +stable clippy --fix --workspace -- -A clippy::all -D
clippy::uninlined_format_args` to achieve this. Depends on Rust `1.67`)
* Skeleton implementation
Lots and lots of TODOs
* Bootstrap simple CustomValue plugin support test
* Create nu_plugin_custom_value
* Skeleton for nu_plugin_custom_values
* Return a custom value from plugin
* Encode CustomValues from plugin calls as PluginResponse::PluginData
* Add new PluginCall variant CollapseCustomValue
* Handle CollapseCustomValue plugin calls
* Add CallInput::Data variant to CallInfo inputs
* Handle CallInfo with CallInput::Data plugin calls
* Send CallInput::Data if Value is PluginCustomValue from plugin calls
* Remove unnecessary boxing of plugins CallInfo
* Add fields needed to collapse PluginCustomValue to it
* Document PluginCustomValue and its purpose
* Impl collapsing using plugin calls in PluginCustomValue::to_base_value
* Implement proper typetag based deserialization for CoolCustomValue
* Test demonstrating that passing back a custom value to plugin works
* Added a failing test for describing plugin CustomValues
* Support describe for PluginCustomValues
- Add name to PluginResponse::PluginData
- Also turn it into a struct for clarity
- Add name to PluginCustomValue
- Return name field from PluginCustomValue
* Demonstrate that plugins can create and handle multiple CustomValues
* Add bincode to nu-plugin dependencies
This is for demonstration purposes, any schemaless binary seralization
format will work. I picked bincode since it's the most popular for Rust
but there are defintely better options out there for this usecase
* serde_json::Value -> Vec<u8>
* Update capnp schema for new CallInfo.input field
* Move call_input capnp serialization and deserialization into new file
* Deserialize Value's span from Value itself instead of passing call.head
I am not sure if this was correct and I am breaking it or if it was a
bug, I don't fully understand how nu creates and uses Spans. What should
reuse spans and what should recreate new ones?
But yeah it felt weird that the Value's Span was being ignored since in
the json serializer just uses the Value's Span
* Add call_info value round trip test
* Add capnp CallInput::Data serialization and deserialization support
* Add CallInfo::CollapseCustomValue to capnp schema
* Add capnp PluginCall::CollapseCustomValue serialization and deserialization support
* Add PluginResponse::PluginData to capnp schema
* Add capnp PluginResponse::PluginData serialization and deserialization support
* Switch plugins::custom_values tests to capnp
Both json and capnp would work now! Sadly I can't choose both at the
same time :(
* Add missing JsonSerializer round trip tests
* Handle plugin returning PluginData as a response to CollapseCustomValue
* Refactor plugin calling into a reusable function
Many less levels of indentation now!
* Export PluginData from nu_plugin
So plugins can create their very own serve_plugin with whatever
CustomValue behavior they may desire
* Error if CustomValue cannot be handled by Plugin