mirror of
https://github.com/nushell/nushell.git
synced 2025-04-15 16:58:19 +02:00
# Description There are times where explicitly specifying a schema for a dataframe is needed such as: - Opening CSV and JSON lines files and needing provide more information to polars to keep it from failing or in a desire to override default type conversion - When converting a nushell value to a dataframe and wanting to override the default conversion behaviors. This pull requests provides: - A flag to allow specifying a schema when using dfr into-df - A flag to allow specifying a schema when using dfr open that works for CSV and JSON types - A new command `dfr schema` which displays schema information and will allow display support schema dtypes Schema is specified creating a record that has the key value and the dtype. Examples usages: ``` {a:1, b:{a:2}} | dfr into-df -s {a: u8, b: {a: i32}} | dfr schema {a: 1, b: {a: [1 2 3]}, c: [a b c]} | dfr into-df -s {a: u8, b: {a: list<u64>}, c: list<str>} | dfr schema dfr open -s {pid: i32, ppid: i32, name: str, status: str, cpu: f64, mem: i64, virtual: i64} /tmp/ps.jsonl | dfr schema ``` Supported dtypes: null bool u8 u16 u32 u64 i8 i16 i32 i64 f32 f64 str binary date datetime[time_unit: (ms, us, ns) timezone (optional)] duration[time_unit: (ms, us, ns)] time object unknown list[dtype] structs are also supported but are specified via another record: {a: u8, b: {d: str}} Another feature with the dfr schema command is that it returns the data back in a format that can be passed to provide a valid schema that can be passed in as schema argument: <img width="638" alt="Screenshot 2024-01-29 at 10 23 58" src="https://github.com/nushell/nushell/assets/56345/b49c3bff-5cda-4c86-975a-dfd91d991373"> --------- Co-authored-by: Jack Wright <jack.wright@disqo.com>
193 lines
5.9 KiB
Rust
193 lines
5.9 KiB
Rust
use super::super::values::{Column, NuDataFrame};
|
|
|
|
use nu_engine::CallExt;
|
|
use nu_protocol::{
|
|
ast::Call,
|
|
engine::{Command, EngineState, Stack},
|
|
Category, Example, PipelineData, ShellError, Signature, Span, Spanned, SyntaxShape, Type,
|
|
Value,
|
|
};
|
|
use polars::prelude::{DataType, Duration, IntoSeries, RollingOptionsImpl, SeriesOpsTime};
|
|
|
|
enum RollType {
|
|
Min,
|
|
Max,
|
|
Sum,
|
|
Mean,
|
|
}
|
|
|
|
impl RollType {
|
|
fn from_str(roll_type: &str, span: Span) -> Result<Self, ShellError> {
|
|
match roll_type {
|
|
"min" => Ok(Self::Min),
|
|
"max" => Ok(Self::Max),
|
|
"sum" => Ok(Self::Sum),
|
|
"mean" => Ok(Self::Mean),
|
|
_ => Err(ShellError::GenericError {
|
|
error: "Wrong operation".into(),
|
|
msg: "Operation not valid for cumulative".into(),
|
|
span: Some(span),
|
|
help: Some("Allowed values: min, max, sum, mean".into()),
|
|
inner: vec![],
|
|
}),
|
|
}
|
|
}
|
|
|
|
fn to_str(&self) -> &'static str {
|
|
match self {
|
|
RollType::Min => "rolling_min",
|
|
RollType::Max => "rolling_max",
|
|
RollType::Sum => "rolling_sum",
|
|
RollType::Mean => "rolling_mean",
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Clone)]
|
|
pub struct Rolling;
|
|
|
|
impl Command for Rolling {
|
|
fn name(&self) -> &str {
|
|
"dfr rolling"
|
|
}
|
|
|
|
fn usage(&self) -> &str {
|
|
"Rolling calculation for a series."
|
|
}
|
|
|
|
fn signature(&self) -> Signature {
|
|
Signature::build(self.name())
|
|
.required("type", SyntaxShape::String, "rolling operation")
|
|
.required("window", SyntaxShape::Int, "Window size for rolling")
|
|
.input_output_type(
|
|
Type::Custom("dataframe".into()),
|
|
Type::Custom("dataframe".into()),
|
|
)
|
|
.category(Category::Custom("dataframe".into()))
|
|
}
|
|
|
|
fn examples(&self) -> Vec<Example> {
|
|
vec![
|
|
Example {
|
|
description: "Rolling sum for a series",
|
|
example: "[1 2 3 4 5] | dfr into-df | dfr rolling sum 2 | dfr drop-nulls",
|
|
result: Some(
|
|
NuDataFrame::try_from_columns(
|
|
vec![Column::new(
|
|
"0_rolling_sum".to_string(),
|
|
vec![
|
|
Value::test_int(3),
|
|
Value::test_int(5),
|
|
Value::test_int(7),
|
|
Value::test_int(9),
|
|
],
|
|
)],
|
|
None,
|
|
)
|
|
.expect("simple df for test should not fail")
|
|
.into_value(Span::test_data()),
|
|
),
|
|
},
|
|
Example {
|
|
description: "Rolling max for a series",
|
|
example: "[1 2 3 4 5] | dfr into-df | dfr rolling max 2 | dfr drop-nulls",
|
|
result: Some(
|
|
NuDataFrame::try_from_columns(
|
|
vec![Column::new(
|
|
"0_rolling_max".to_string(),
|
|
vec![
|
|
Value::test_int(2),
|
|
Value::test_int(3),
|
|
Value::test_int(4),
|
|
Value::test_int(5),
|
|
],
|
|
)],
|
|
None,
|
|
)
|
|
.expect("simple df for test should not fail")
|
|
.into_value(Span::test_data()),
|
|
),
|
|
},
|
|
]
|
|
}
|
|
|
|
fn run(
|
|
&self,
|
|
engine_state: &EngineState,
|
|
stack: &mut Stack,
|
|
call: &Call,
|
|
input: PipelineData,
|
|
) -> Result<PipelineData, ShellError> {
|
|
command(engine_state, stack, call, input)
|
|
}
|
|
}
|
|
|
|
fn command(
|
|
engine_state: &EngineState,
|
|
stack: &mut Stack,
|
|
call: &Call,
|
|
input: PipelineData,
|
|
) -> Result<PipelineData, ShellError> {
|
|
let roll_type: Spanned<String> = call.req(engine_state, stack, 0)?;
|
|
let window_size: i64 = call.req(engine_state, stack, 1)?;
|
|
|
|
let df = NuDataFrame::try_from_pipeline(input, call.head)?;
|
|
let series = df.as_series(call.head)?;
|
|
|
|
if let DataType::Object(..) = series.dtype() {
|
|
return Err(ShellError::GenericError {
|
|
error: "Found object series".into(),
|
|
msg: "Series of type object cannot be used for rolling operation".into(),
|
|
span: Some(call.head),
|
|
help: None,
|
|
inner: vec![],
|
|
});
|
|
}
|
|
|
|
let roll_type = RollType::from_str(&roll_type.item, roll_type.span)?;
|
|
|
|
let rolling_opts = RollingOptionsImpl {
|
|
window_size: Duration::new(window_size),
|
|
min_periods: window_size as usize,
|
|
weights: None,
|
|
center: false,
|
|
by: None,
|
|
closed_window: None,
|
|
tu: None,
|
|
tz: None,
|
|
fn_params: None,
|
|
};
|
|
let res = match roll_type {
|
|
RollType::Max => series.rolling_max(rolling_opts),
|
|
RollType::Min => series.rolling_min(rolling_opts),
|
|
RollType::Sum => series.rolling_sum(rolling_opts),
|
|
RollType::Mean => series.rolling_mean(rolling_opts),
|
|
};
|
|
|
|
let mut res = res.map_err(|e| ShellError::GenericError {
|
|
error: "Error calculating rolling values".into(),
|
|
msg: e.to_string(),
|
|
span: Some(call.head),
|
|
help: None,
|
|
inner: vec![],
|
|
})?;
|
|
|
|
let name = format!("{}_{}", series.name(), roll_type.to_str());
|
|
res.rename(&name);
|
|
|
|
NuDataFrame::try_from_series(vec![res.into_series()], call.head)
|
|
.map(|df| PipelineData::Value(NuDataFrame::into_value(df, call.head), None))
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod test {
|
|
use super::super::super::eager::DropNulls;
|
|
use super::super::super::test_dataframe::test_dataframe;
|
|
use super::*;
|
|
|
|
#[test]
|
|
fn test_examples() {
|
|
test_dataframe(vec![Box::new(Rolling {}), Box::new(DropNulls {})])
|
|
}
|
|
}
|