mirror of
https://github.com/jzillmann/pdf-to-markdown.git
synced 2025-01-23 22:18:59 +01:00
547 lines
30 KiB
JSON
547 lines
30 KiB
JSON
{
|
||
"pages": 221,
|
||
"items": 51186,
|
||
"groupedItems": 8248,
|
||
"changes": 81,
|
||
"schema": [
|
||
{
|
||
"name": "line"
|
||
},
|
||
{
|
||
"name": "types",
|
||
"annotation": "ADDED"
|
||
},
|
||
{
|
||
"name": "x"
|
||
},
|
||
{
|
||
"name": "y"
|
||
},
|
||
{
|
||
"name": "width"
|
||
},
|
||
{
|
||
"name": "height"
|
||
},
|
||
{
|
||
"name": "str"
|
||
},
|
||
{
|
||
"name": "fontName"
|
||
},
|
||
{
|
||
"name": "dir"
|
||
}
|
||
],
|
||
"globals": {
|
||
"maxHeight": 24.7871,
|
||
"mostUsedHeight": 11.9551,
|
||
"minX": 52.262,
|
||
"maxX": 571.0594300000001,
|
||
"minY": 76.19790000000002,
|
||
"maxY": 738.022,
|
||
"pageMapping": {
|
||
"pageFactor": 1,
|
||
"detectedOnPage": true
|
||
},
|
||
"toc": {
|
||
"pages": [
|
||
1,
|
||
2,
|
||
3
|
||
],
|
||
"entries": [
|
||
{
|
||
"level": 0,
|
||
"text": "1. Shortest paths and trees",
|
||
"verified": true,
|
||
"linkedPage": 5
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "1.1. Shortest paths with nonnegative lengths",
|
||
"verified": true,
|
||
"linkedPage": 5
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "1.2. Speeding up Dijkstra’s algorithm with heaps",
|
||
"verified": true,
|
||
"linkedPage": 9
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "1.3. Shortest paths with arbitrary lengths",
|
||
"verified": true,
|
||
"linkedPage": 12
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "1.4. Minimum spanning trees",
|
||
"verified": true,
|
||
"linkedPage": 19
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "2. Polytopes, polyhedra, Farkas’ lemma, and linear programming",
|
||
"verified": true,
|
||
"linkedPage": 23
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "2.1. Convex sets",
|
||
"verified": true,
|
||
"linkedPage": 23
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "2.2. Polytopes and polyhedra",
|
||
"verified": true,
|
||
"linkedPage": 25
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "2.3. Farkas’ lemma",
|
||
"verified": true,
|
||
"linkedPage": 30
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "2.4. Linear programming",
|
||
"verified": true,
|
||
"linkedPage": 33
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "3. Matchings and covers in bipartite graphs",
|
||
"verified": true,
|
||
"linkedPage": 39
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "3.1. Matchings, covers, and Gallai’s theorem",
|
||
"verified": true,
|
||
"linkedPage": 39
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "3.2. M -augmenting paths",
|
||
"verified": true,
|
||
"linkedPage": 40
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "3.3. K ̋onig’s theorems",
|
||
"verified": true,
|
||
"linkedPage": 41
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "3.4. Cardinality bipartite matching algorithm",
|
||
"verified": true,
|
||
"linkedPage": 45
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "3.5. Weighted bipartite matching",
|
||
"verified": true,
|
||
"linkedPage": 47
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "3.6. The matching polytope",
|
||
"verified": true,
|
||
"linkedPage": 50
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "4. Menger’s theorem, flows, and circulations",
|
||
"verified": true,
|
||
"linkedPage": 54
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "4.1. Menger’s theorem",
|
||
"verified": true,
|
||
"linkedPage": 54
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "4.2. Flows in networks",
|
||
"verified": true,
|
||
"linkedPage": 58
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "4.3. Finding a maximum flow",
|
||
"verified": true,
|
||
"linkedPage": 60
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "4.4. Speeding up the maximum flow algorithm",
|
||
"verified": true,
|
||
"linkedPage": 65
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "4.5. Circulations",
|
||
"verified": true,
|
||
"linkedPage": 68
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "4.6. Minimum-cost flows",
|
||
"verified": true,
|
||
"linkedPage": 70
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "5. Nonbipartite matching",
|
||
"verified": true,
|
||
"linkedPage": 78
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "5.1. Tutte’s 1-factor theorem and the Tutte-Berge formula",
|
||
"verified": true,
|
||
"linkedPage": 78
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "5.2. Cardinality matching algorithm",
|
||
"verified": true,
|
||
"linkedPage": 81
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "5.3. Weighted matching algorithm",
|
||
"verified": true,
|
||
"linkedPage": 85
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "5.4. The matching polytope",
|
||
"verified": true,
|
||
"linkedPage": 91
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "5.5. The Cunningham-Marsh formula",
|
||
"verified": true,
|
||
"linkedPage": 94
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "6. Problems, algorithms, and running time",
|
||
"verified": true,
|
||
"linkedPage": 97
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "6.1. Introduction",
|
||
"verified": true,
|
||
"linkedPage": 97
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "6.2. Words",
|
||
"verified": true,
|
||
"linkedPage": 98
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "6.3. Problems",
|
||
"verified": true,
|
||
"linkedPage": 100
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "6.4. Algorithms and running time",
|
||
"verified": true,
|
||
"linkedPage": 100
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "6.5. The class NP",
|
||
"verified": true,
|
||
"linkedPage": 101
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "6.6. The class co-NP",
|
||
"verified": true,
|
||
"linkedPage": 102
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "6.7. NP-completeness",
|
||
"verified": true,
|
||
"linkedPage": 103
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "6.8. NP-completeness of the satisfiability problem",
|
||
"verified": true,
|
||
"linkedPage": 103
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "6.9. NP-completeness of some other problems",
|
||
"verified": true,
|
||
"linkedPage": 106
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "6.10. Turing machines",
|
||
"verified": true,
|
||
"linkedPage": 108
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "7. Cliques, stable sets, and colourings",
|
||
"verified": true,
|
||
"linkedPage": 111
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "7.1. Introduction",
|
||
"verified": true,
|
||
"linkedPage": 111
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "7.2. Edge-colourings of bipartite graphs",
|
||
"verified": true,
|
||
"linkedPage": 115
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "7.3. Partially ordered sets",
|
||
"verified": true,
|
||
"linkedPage": 121
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "7.4. Perfect graphs",
|
||
"verified": true,
|
||
"linkedPage": 125
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "7.5. Chordal graphs",
|
||
"verified": true,
|
||
"linkedPage": 128
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "8. Integer linear programming and totally unimodular matrices",
|
||
"verified": true,
|
||
"linkedPage": 132
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "8.1. Integer linear programming",
|
||
"verified": true,
|
||
"linkedPage": 132
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "8.2. Totally unimodular matrices",
|
||
"verified": true,
|
||
"linkedPage": 134
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "8.3. Totally unimodular matrices from bipartite graphs",
|
||
"verified": true,
|
||
"linkedPage": 139
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "8.4. Totally unimodular matrices from directed graphs",
|
||
"verified": true,
|
||
"linkedPage": 143
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "9. Multicommodity flows and disjoint paths",
|
||
"verified": true,
|
||
"linkedPage": 148
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "9.1. Introduction",
|
||
"verified": true,
|
||
"linkedPage": 148
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "9.2. Two commodities",
|
||
"verified": true,
|
||
"linkedPage": 153
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "9.3. Disjoint paths in acyclic directed graphs",
|
||
"verified": true,
|
||
"linkedPage": 157
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "9.4. Vertex-disjoint paths in planar graphs",
|
||
"verified": true,
|
||
"linkedPage": 159
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "9.5. Edge-disjoint paths in planar graphs",
|
||
"verified": true,
|
||
"linkedPage": 165
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "9.6. A column generation technique for multicom- modity flows",
|
||
"verified": true,
|
||
"linkedPage": 168
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "10. Matroids",
|
||
"verified": true,
|
||
"linkedPage": 173
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "10.1. Matroids and the greedy algorithm",
|
||
"verified": true,
|
||
"linkedPage": 173
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "10.2. Equivalent axioms for matroids",
|
||
"verified": true,
|
||
"linkedPage": 176
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "10.3. Examples of matroids",
|
||
"verified": true,
|
||
"linkedPage": 180
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "10.4. Two technical lemmas",
|
||
"verified": true,
|
||
"linkedPage": 183
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "10.5. Matroid intersection",
|
||
"verified": true,
|
||
"linkedPage": 184
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "10.6. Weighted matroid intersection",
|
||
"verified": true,
|
||
"linkedPage": 190
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "10.7. Matroids and polyhedra",
|
||
"verified": true,
|
||
"linkedPage": 194
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "References",
|
||
"verified": true,
|
||
"linkedPage": 199
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "Name index",
|
||
"verified": true,
|
||
"linkedPage": 210
|
||
},
|
||
{
|
||
"level": 0,
|
||
"text": "Subject index",
|
||
"verified": true,
|
||
"linkedPage": 212
|
||
}
|
||
]
|
||
}
|
||
}
|
||
}
|
||
{"page":1,"change":"ContentChange","str":"1. Shortest paths and trees 5","dir":"ltr","width":"186.01","height":"11.96","transform":["11.96","0.00","0.00","11.96","84.95","665.68"],"fontName":"KXBFBK+CMBX12","x":84.9512,"y":665.6799,"line":1,"types":["TOC"]}
|
||
{"page":1,"change":"ContentChange","str":"1.1. Shortest paths with nonnegative lengths 5","dir":"ltr","width":"235.58","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","641.77"],"fontName":"LNAVFB+CMR10","x":104.193,"y":641.7669999999999,"line":2,"types":["TOC"]}
|
||
{"page":1,"change":"ContentChange","str":"1.2. Speeding up Dijkstra’s algorithm with heaps 9","dir":"ltr","width":"256.37","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","625.65"],"fontName":"LNAVFB+CMR10","x":104.193,"y":625.6478999999999,"line":3,"types":["TOC"]}
|
||
{"page":1,"change":"ContentChange","str":"1.3. Shortest paths with arbitrary lengths 12","dir":"ltr","width":"226.89","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","609.53"],"fontName":"LNAVFB+CMR10","x":104.193,"y":609.5287999999999,"line":4,"types":["TOC"]}
|
||
{"page":1,"change":"ContentChange","str":"1.4. Minimum spanning trees 19","dir":"ltr","width":"167.04","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","593.41"],"fontName":"LNAVFB+CMR10","x":104.193,"y":593.4096999999999,"line":5,"types":["TOC"]}
|
||
{"page":1,"change":"ContentChange","str":"2. Polytopes, polyhedra, Farkas’ lemma, and linear program ming 23","line":6,"x":84.9512,"y":558.6514999999999,"width":"416.16","height":"11.96","fontName":["KXBFBK+CMBX12"],"dir":["ltr"],"types":["TOC"]}
|
||
{"page":1,"change":"ContentChange","str":"2.1. Convex sets 23","dir":"ltr","width":"105.19","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","534.74"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":534.7385999999999,"line":7,"types":["TOC"]}
|
||
{"page":1,"change":"ContentChange","str":"2.2. Polytopes and polyhedra 25","dir":"ltr","width":"167.44","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","518.62"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":518.6194999999999,"line":8,"types":["TOC"]}
|
||
{"page":1,"change":"ContentChange","str":"2.3. Farkas’ lemma 30","dir":"ltr","width":"117.74","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","502.50"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":502.5003999999999,"line":9,"types":["TOC"]}
|
||
{"page":1,"change":"ContentChange","str":"2.4. Linear programming 33","dir":"ltr","width":"146.53","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","486.38"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":486.3812999999999,"line":10,"types":["TOC"]}
|
||
{"page":1,"change":"ContentChange","str":"3. Matchings and covers in bipartite graphs 39","dir":"ltr","width":"290.40","height":"11.96","transform":["11.96","0.00","0.00","11.96","84.95","451.62"],"fontName":"KXBFBK+CMBX12","x":84.95140000000005,"y":451.6234999999999,"line":11,"types":["TOC"]}
|
||
{"page":1,"change":"ContentChange","str":"3.1. Matchings, covers, and Gallai’s theorem 39","dir":"ltr","width":"239.63","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","427.72"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":427.71919999999994,"line":12,"types":["TOC"]}
|
||
{"page":1,"change":"ContentChange","str":"3.2. M -augmenting paths 40","line":13,"x":104.19320000000005,"y":411.60009999999994,"width":"142.29","height":"10.91","fontName":["LNAVFB+CMR10","LSUYZV+CMMI10"],"dir":["ltr"],"types":["TOC"]}
|
||
{"page":1,"change":"ContentChange","str":"3.3. K ̋onig’s theorems 41","dir":"ltr","width":"131.28","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","395.47"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":395.4719999999999,"line":14,"types":["TOC"]}
|
||
{"page":1,"change":"ContentChange","str":"3.4. Cardinality bipartite matching algorithm 45","dir":"ltr","width":"244.86","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","379.35"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":379.3528999999999,"line":15,"types":["TOC"]}
|
||
{"page":1,"change":"ContentChange","str":"3.5. Weighted bipartite matching 47","dir":"ltr","width":"185.71","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","363.23"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":363.2337999999999,"line":16,"types":["TOC"]}
|
||
{"page":1,"change":"ContentChange","str":"3.6. The matching polytope 50","dir":"ltr","width":"160.23","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","347.11"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":347.1146999999999,"line":17,"types":["TOC"]}
|
||
{"page":1,"change":"ContentChange","str":"4. Menger’s theorem, flows, and circulations 54","dir":"ltr","width":"293.70","height":"11.96","transform":["11.96","0.00","0.00","11.96","84.95","312.36"],"fontName":"KXBFBK+CMBX12","x":84.95140000000005,"y":312.3568999999999,"line":18,"types":["TOC"]}
|
||
{"page":1,"change":"ContentChange","str":"4.1. Menger’s theorem 54","dir":"ltr","width":"133.98","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","288.45"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":288.4525999999999,"line":19,"types":["TOC"]}
|
||
{"page":1,"change":"ContentChange","str":"4.2. Flows in networks 58","dir":"ltr","width":"134.77","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","272.33"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":272.3334999999999,"line":20,"types":["TOC"]}
|
||
{"page":1,"change":"ContentChange","str":"4.3. Finding a maximum flow 60","dir":"ltr","width":"168.26","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","256.21"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":256.2143999999999,"line":21,"types":["TOC"]}
|
||
{"page":1,"change":"ContentChange","str":"4.4. Speeding up the maximum flow algorithm 65","dir":"ltr","width":"249.35","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","240.10"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":240.0952999999999,"line":22,"types":["TOC"]}
|
||
{"page":1,"change":"ContentChange","str":"4.5. Circulations 68","dir":"ltr","width":"106.37","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","223.98"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":223.9761999999999,"line":23,"types":["TOC"]}
|
||
{"page":1,"change":"ContentChange","str":"4.6. Minimum-cost flows 70","dir":"ltr","width":"144.29","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","207.86"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":207.8570999999999,"line":24,"types":["TOC"]}
|
||
{"page":1,"change":"ContentChange","str":"5. Nonbipartite matching 78","dir":"ltr","width":"182.27","height":"11.96","transform":["11.96","0.00","0.00","11.96","84.95","173.09"],"fontName":"KXBFBK+CMBX12","x":84.95140000000005,"y":173.0902999999999,"line":25,"types":["TOC"]}
|
||
{"page":1,"change":"ContentChange","str":"5.1. Tutte’s 1-factor theorem and the Tutte-Berge formula 7 8","line":26,"x":104.19320000000005,"y":149.1859999999999,"width":"306.01","height":"10.91","fontName":["LNAVFB+CMR10"],"dir":["ltr"],"types":["TOC"]}
|
||
{"page":1,"change":"ContentChange","str":"5.2. Cardinality matching algorithm 81","dir":"ltr","width":"199.98","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","133.07"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":133.0672999999999,"line":27,"types":["TOC"]}
|
||
{"page":1,"change":"ContentChange","str":"5.3. Weighted matching algorithm 85","dir":"ltr","width":"190.56","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","116.95"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":116.9481999999999,"line":28,"types":["TOC"]}
|
||
{"page":1,"change":"ContentChange","str":"5.4. The matching polytope 91","dir":"ltr","width":"160.23","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","100.83"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":100.8290999999999,"line":29,"types":["TOC"]}
|
||
{"page":2,"change":"ContentChange","str":"5.5. The Cunningham-Marsh formula 94","dir":"ltr","width":"206.10","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","701.16"],"fontName":"LNAVFB+CMR10","x":132.543,"y":701.158,"line":0,"types":["TOC"]}
|
||
{"page":2,"change":"ContentChange","str":"6. Problems, algorithms, and running time 97","dir":"ltr","width":"284.88","height":"11.96","transform":["11.96","0.00","0.00","11.96","113.30","667.09"],"fontName":"KXBFBK+CMBX12","x":113.30120000000001,"y":667.0928,"line":1,"types":["TOC"]}
|
||
{"page":2,"change":"ContentChange","str":"6.1. Introduction 97","dir":"ltr","width":"108.43","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","643.64"],"fontName":"LNAVFB+CMR10","x":132.543,"y":643.6389,"line":2,"types":["TOC"]}
|
||
{"page":2,"change":"ContentChange","str":"6.2. Words 98","dir":"ltr","width":"79.10","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","627.63"],"fontName":"LNAVFB+CMR10","x":132.543,"y":627.628,"line":3,"types":["TOC"]}
|
||
{"page":2,"change":"ContentChange","str":"6.3. Problems 100","dir":"ltr","width":"98.64","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","611.62"],"fontName":"LNAVFB+CMR10","x":132.543,"y":611.6171,"line":4,"types":["TOC"]}
|
||
{"page":2,"change":"ContentChange","str":"6.4. Algorithms and running time 100","dir":"ltr","width":"193.98","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","595.61"],"fontName":"LNAVFB+CMR10","x":132.543,"y":595.6148000000001,"line":5,"types":["TOC"]}
|
||
{"page":2,"change":"ContentChange","str":"6.5. The class NP 101","dir":"ltr","width":"117.77","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","579.60"],"fontName":"LNAVFB+CMR10","x":132.543,"y":579.6039000000001,"line":6,"types":["TOC"]}
|
||
{"page":2,"change":"ContentChange","str":"6.6. The class co-NP 102","dir":"ltr","width":"131.71","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","563.59"],"fontName":"LNAVFB+CMR10","x":132.543,"y":563.5930000000001,"line":7,"types":["TOC"]}
|
||
{"page":2,"change":"ContentChange","str":"6.7. NP-completeness 103","dir":"ltr","width":"135.34","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","547.58"],"fontName":"LNAVFB+CMR10","x":132.543,"y":547.5821000000001,"line":8,"types":["TOC"]}
|
||
{"page":2,"change":"ContentChange","str":"6.8. NP-completeness of the satisfiability problem 103","dir":"ltr","width":"270.34","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","531.58"],"fontName":"LNAVFB+CMR10","x":132.543,"y":531.5801000000001,"line":9,"types":["TOC"]}
|
||
{"page":2,"change":"ContentChange","str":"6.9. NP-completeness of some other problems 106","dir":"ltr","width":"250.37","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","515.57"],"fontName":"LNAVFB+CMR10","x":132.543,"y":515.5692000000001,"line":10,"types":["TOC"]}
|
||
{"page":2,"change":"ContentChange","str":"6.10. Turing machines 108","dir":"ltr","width":"138.49","height":"10.91","transform":["10.91","0.00","0.00","10.91","127.09","499.56"],"fontName":"LNAVFB+CMR10","x":127.08909000000001,"y":499.55830000000014,"line":11,"types":["TOC"]}
|
||
{"page":2,"change":"ContentChange","str":"7. Cliques, stable sets, and colourings 111","dir":"ltr","width":"260.98","height":"11.96","transform":["11.96","0.00","0.00","11.96","113.30","465.49"],"fontName":"KXBFBK+CMBX12","x":113.30119000000002,"y":465.49310000000014,"line":12,"types":["TOC"]}
|
||
{"page":2,"change":"ContentChange","str":"7.1. Introduction 111","dir":"ltr","width":"113.89","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","442.04"],"fontName":"LNAVFB+CMR10","x":132.54299000000003,"y":442.03920000000016,"line":13,"types":["TOC"]}
|
||
{"page":2,"change":"ContentChange","str":"7.2. Edge-colourings of bipartite graphs 115","dir":"ltr","width":"222.10","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","426.04"],"fontName":"LNAVFB+CMR10","x":132.54299000000003,"y":426.03720000000015,"line":14,"types":["TOC"]}
|
||
{"page":2,"change":"ContentChange","str":"7.3. Partially ordered sets 121","dir":"ltr","width":"156.34","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","410.03"],"fontName":"LNAVFB+CMR10","x":132.54299000000003,"y":410.02630000000016,"line":15,"types":["TOC"]}
|
||
{"page":2,"change":"ContentChange","str":"7.4. Perfect graphs 125","dir":"ltr","width":"122.91","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","394.02"],"fontName":"LNAVFB+CMR10","x":132.54299000000003,"y":394.01540000000017,"line":16,"types":["TOC"]}
|
||
{"page":2,"change":"ContentChange","str":"7.5. Chordal graphs 128","dir":"ltr","width":"127.61","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","378.00"],"fontName":"LNAVFB+CMR10","x":132.54299000000003,"y":378.0045000000002,"line":17,"types":["TOC"]}
|
||
{"page":2,"change":"ContentChange","str":"8. Integer linear programming and totally unimodular matri ces 132","line":18,"x":113.30119000000003,"y":343.9397000000002,"width":"412.86","height":"11.96","fontName":["KXBFBK+CMBX12"],"dir":["ltr"],"types":["TOC"]}
|
||
{"page":2,"change":"ContentChange","str":"8.1. Integer linear programming 132","dir":"ltr","width":"185.19","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","320.49"],"fontName":"LNAVFB+CMR10","x":132.54319000000004,"y":320.4858000000002,"line":19,"types":["TOC"]}
|
||
{"page":2,"change":"ContentChange","str":"8.2. Totally unimodular matrices 134","dir":"ltr","width":"190.34","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","304.48"],"fontName":"LNAVFB+CMR10","x":132.54319000000004,"y":304.4838000000002,"line":20,"types":["TOC"]}
|
||
{"page":2,"change":"ContentChange","str":"8.3. Totally unimodular matrices from bipartite graphs 139","dir":"ltr","width":"296.25","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","288.47"],"fontName":"LNAVFB+CMR10","x":132.54319000000004,"y":288.4725000000002,"line":21,"types":["TOC"]}
|
||
{"page":2,"change":"ContentChange","str":"8.4. Totally unimodular matrices from directed graphs 143","dir":"ltr","width":"293.22","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","272.46"],"fontName":"LNAVFB+CMR10","x":132.54319000000004,"y":272.4612000000002,"line":22,"types":["TOC"]}
|
||
{"page":2,"change":"ContentChange","str":"9. Multicommodity flows and disjoint paths 148","dir":"ltr","width":"297.13","height":"11.96","transform":["11.96","0.00","0.00","11.96","113.30","238.40"],"fontName":"KXBFBK+CMBX12","x":113.30139000000004,"y":238.3964000000002,"line":23,"types":["TOC"]}
|
||
{"page":2,"change":"ContentChange","str":"9.1. Introduction 148","dir":"ltr","width":"113.89","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","214.94"],"fontName":"LNAVFB+CMR10","x":132.54319000000004,"y":214.9425000000002,"line":24,"types":["TOC"]}
|
||
{"page":2,"change":"ContentChange","str":"9.2. Two commodities 153","dir":"ltr","width":"138.47","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","198.93"],"fontName":"LNAVFB+CMR10","x":132.54319000000004,"y":198.9312000000002,"line":25,"types":["TOC"]}
|
||
{"page":2,"change":"ContentChange","str":"9.3. Disjoint paths in acyclic directed graphs 157","dir":"ltr","width":"246.67","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","182.93"],"fontName":"LNAVFB+CMR10","x":132.54319000000004,"y":182.92920000000018,"line":26,"types":["TOC"]}
|
||
{"page":2,"change":"ContentChange","str":"9.4. Vertex-disjoint paths in planar graphs 159","dir":"ltr","width":"235.94","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","166.92"],"fontName":"LNAVFB+CMR10","x":132.54319000000004,"y":166.9183000000002,"line":27,"types":["TOC"]}
|
||
{"page":2,"change":"ContentChange","str":"9.5. Edge-disjoint paths in planar graphs 165","dir":"ltr","width":"228.49","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","150.91"],"fontName":"LNAVFB+CMR10","x":132.54319000000004,"y":150.9074000000002,"line":28,"types":["TOC"]}
|
||
{"page":2,"change":"ContentChange","str":"9.6. A column generation technique for multicommodity flows 168","line":29,"x":132.54319000000004,"y":134.8965000000002,"width":"313.53","height":"10.91","fontName":["LNAVFB+CMR10"],"dir":["ltr"],"types":["TOC"]}
|
||
{"page":2,"change":"ContentChange","str":"10. Matroids 173","dir":"ltr","width":"115.13","height":"11.96","transform":["11.96","0.00","0.00","11.96","106.57","100.83"],"fontName":"KXBFBK+CMBX12","x":106.57019000000003,"y":100.8313000000002,"line":30,"types":["TOC"]}
|
||
{"page":3,"change":"ContentChange","str":"10.1. Matroids and the greedy algorithm 173","dir":"ltr","width":"227.04","height":"10.91","transform":["10.91","0.00","0.00","10.91","98.74","701.16"],"fontName":"LNAVFB+CMR10","x":98.7391,"y":701.158,"line":0,"types":["TOC"]}
|
||
{"page":3,"change":"ContentChange","str":"10.2. Equivalent axioms for matroids 176","dir":"ltr","width":"209.34","height":"10.91","transform":["10.91","0.00","0.00","10.91","98.74","685.12"],"fontName":"LNAVFB+CMR10","x":98.7391,"y":685.1197,"line":1,"types":["TOC"]}
|
||
{"page":3,"change":"ContentChange","str":"10.3. Examples of matroids 180","dir":"ltr","width":"163.56","height":"10.91","transform":["10.91","0.00","0.00","10.91","98.74","669.08"],"fontName":"LNAVFB+CMR10","x":98.7391,"y":669.0813999999999,"line":2,"types":["TOC"]}
|
||
{"page":3,"change":"ContentChange","str":"10.4. Two technical lemmas 183","dir":"ltr","width":"165.74","height":"10.91","transform":["10.91","0.00","0.00","10.91","98.74","653.03"],"fontName":"LNAVFB+CMR10","x":98.7391,"y":653.0344999999999,"line":3,"types":["TOC"]}
|
||
{"page":3,"change":"ContentChange","str":"10.5. Matroid intersection 184","dir":"ltr","width":"156.71","height":"10.91","transform":["10.91","0.00","0.00","10.91","98.74","637.00"],"fontName":"LNAVFB+CMR10","x":98.7391,"y":636.9961999999998,"line":4,"types":["TOC"]}
|
||
{"page":3,"change":"ContentChange","str":"10.6. Weighted matroid intersection 190","dir":"ltr","width":"203.98","height":"10.91","transform":["10.91","0.00","0.00","10.91","98.74","620.96"],"fontName":"LNAVFB+CMR10","x":98.7391,"y":620.9578999999998,"line":5,"types":["TOC"]}
|
||
{"page":3,"change":"ContentChange","str":"10.7. Matroids and polyhedra 194","dir":"ltr","width":"174.58","height":"10.91","transform":["10.91","0.00","0.00","10.91","98.74","604.92"],"fontName":"LNAVFB+CMR10","x":98.7391,"y":604.9195999999997,"line":6,"types":["TOC"]}
|
||
{"page":3,"change":"ContentChange","str":"References 199","dir":"ltr","width":"101.76","height":"11.96","transform":["11.96","0.00","0.00","11.96","101.27","569.86"],"fontName":"KXBFBK+CMBX12","x":101.26800999999999,"y":569.8554999999997,"line":7,"types":["TOC"]}
|
||
{"page":3,"change":"ContentChange","str":"Name index 210","dir":"ltr","width":"109.62","height":"11.96","transform":["11.96","0.00","0.00","11.96","101.27","539.78"],"fontName":"KXBFBK+CMBX12","x":101.26800999999999,"y":539.7773999999997,"line":8,"types":["TOC"]}
|
||
{"page":3,"change":"ContentChange","str":"Subject index 212","dir":"ltr","width":"119.83","height":"11.96","transform":["11.96","0.00","0.00","11.96","101.27","509.70"],"fontName":"KXBFBK+CMBX12","x":101.26800999999999,"y":509.6992999999997,"line":9,"types":["TOC"]} |