2023-03-27 20:00:32 +02:00
# ifndef LLAMA_H
# define LLAMA_H
# include <stddef.h>
# include <stdint.h>
# include <stdbool.h>
# ifdef LLAMA_SHARED
2023-04-10 21:59:13 +02:00
# if defined(_WIN32) && !defined(__MINGW32__)
2023-03-27 20:00:32 +02:00
# ifdef LLAMA_BUILD
# define LLAMA_API __declspec(dllexport)
# else
# define LLAMA_API __declspec(dllimport)
# endif
# else
# define LLAMA_API __attribute__ ((visibility ("default")))
# endif
# else
# define LLAMA_API
# endif
2023-05-01 19:18:10 +02:00
# define LLAMA_FILE_VERSION 1
# define LLAMA_FILE_MAGIC 'ggjt'
# define LLAMA_FILE_MAGIC_UNVERSIONED 'ggml'
# define LLAMA_SESSION_MAGIC 'ggsn'
2023-05-08 19:59:21 +02:00
# define LLAMA_SESSION_VERSION 1
2023-03-27 20:00:32 +02:00
# ifdef __cplusplus
extern " C " {
# endif
//
// C interface
//
// TODO: show sample usage
//
struct llama_context ;
typedef int llama_token ;
typedef struct llama_token_data {
llama_token id ; // token id
2023-04-30 17:51:57 +02:00
float logit ; // log-odds of the token
2023-03-27 20:00:32 +02:00
float p ; // probability of the token
} llama_token_data ;
2023-04-30 17:51:57 +02:00
typedef struct llama_token_data_array {
llama_token_data * data ;
size_t size ;
bool sorted ;
} llama_token_data_array ;
2023-04-10 21:59:13 +02:00
typedef void ( * llama_progress_callback ) ( float progress , void * ctx ) ;
2023-03-27 20:00:32 +02:00
struct llama_context_params {
int n_ctx ; // text context
int n_parts ; // -1 for default
int seed ; // RNG seed, 0 for random
bool f16_kv ; // use fp16 for KV cache
bool logits_all ; // the llama_eval() call computes all logits, not just the last one
bool vocab_only ; // only load the vocabulary, no weights
2023-04-10 21:59:13 +02:00
bool use_mmap ; // use mmap if possible
2023-03-27 20:00:32 +02:00
bool use_mlock ; // force system to keep model in RAM
bool embedding ; // embedding mode only
// called with a progress value between 0 and 1, pass NULL to disable
llama_progress_callback progress_callback ;
// context pointer passed to the progress callback
void * progress_callback_user_data ;
} ;
2023-04-30 17:51:57 +02:00
// model file types
enum llama_ftype {
LLAMA_FTYPE_ALL_F32 = 0 ,
LLAMA_FTYPE_MOSTLY_F16 = 1 , // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_0 = 2 , // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_1 = 3 , // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4 , // tok_embeddings.weight and output.weight are F16
LLAMA_FTYPE_MOSTLY_Q4_2 = 5 , // except 1d tensors
// LLAMA_FTYPE_MOSTLY_Q4_3 (6) support has been removed
LLAMA_FTYPE_MOSTLY_Q8_0 = 7 , // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_0 = 8 , // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_1 = 9 , // except 1d tensors
} ;
2023-03-27 20:00:32 +02:00
LLAMA_API struct llama_context_params llama_context_default_params ( ) ;
2023-04-10 21:59:13 +02:00
LLAMA_API bool llama_mmap_supported ( ) ;
LLAMA_API bool llama_mlock_supported ( ) ;
2023-03-27 20:00:32 +02:00
// Various functions for loading a ggml llama model.
// Allocate (almost) all memory needed for the model.
// Return NULL on failure
LLAMA_API struct llama_context * llama_init_from_file (
const char * path_model ,
struct llama_context_params params ) ;
// Frees all allocated memory
LLAMA_API void llama_free ( struct llama_context * ctx ) ;
// TODO: not great API - very likely to change
// Returns 0 on success
2023-04-30 17:51:57 +02:00
// nthread - how many threads to use. If <=0, will use std::thread::hardware_concurrency(), else the number given
2023-03-27 20:00:32 +02:00
LLAMA_API int llama_model_quantize (
const char * fname_inp ,
const char * fname_out ,
2023-04-30 17:51:57 +02:00
enum llama_ftype ftype ,
int nthread ) ;
// Apply a LoRA adapter to a loaded model
// path_base_model is the path to a higher quality model to use as a base for
// the layers modified by the adapter. Can be NULL to use the current loaded model.
// The model needs to be reloaded before applying a new adapter, otherwise the adapter
// will be applied on top of the previous one
// Returns 0 on success
LLAMA_API int llama_apply_lora_from_file (
struct llama_context * ctx ,
const char * path_lora ,
const char * path_base_model ,
int n_threads ) ;
2023-04-10 21:59:13 +02:00
// Returns the number of tokens in the KV cache
LLAMA_API int llama_get_kv_cache_token_count ( struct llama_context * ctx ) ;
2023-04-30 17:51:57 +02:00
// Sets the current rng seed.
LLAMA_API void llama_set_rng_seed ( struct llama_context * ctx , int seed ) ;
2023-05-08 19:59:21 +02:00
// Returns the maximum size in bytes of the state (rng, logits, embedding
// and kv_cache) - will often be smaller after compacting tokens
2023-04-30 17:51:57 +02:00
LLAMA_API size_t llama_get_state_size ( struct llama_context * ctx ) ;
// Copies the state to the specified destination address.
// Destination needs to have allocated enough memory.
// Returns the number of bytes copied
LLAMA_API size_t llama_copy_state_data ( struct llama_context * ctx , uint8_t * dest ) ;
// Set the state reading from the specified address
// Returns the number of bytes read
LLAMA_API size_t llama_set_state_data ( struct llama_context * ctx , const uint8_t * src ) ;
// Save/load session file
2023-05-01 19:18:10 +02:00
LLAMA_API bool llama_load_session_file ( struct llama_context * ctx , const char * path_session , llama_token * tokens_out , size_t n_token_capacity , size_t * n_token_count_out ) ;
LLAMA_API bool llama_save_session_file ( struct llama_context * ctx , const char * path_session , const llama_token * tokens , size_t n_token_count ) ;
2023-03-27 20:00:32 +02:00
// Run the llama inference to obtain the logits and probabilities for the next token.
// tokens + n_tokens is the provided batch of new tokens to process
// n_past is the number of tokens to use from previous eval calls
// Returns 0 on success
LLAMA_API int llama_eval (
struct llama_context * ctx ,
const llama_token * tokens ,
int n_tokens ,
int n_past ,
int n_threads ) ;
// Convert the provided text into tokens.
// The tokens pointer must be large enough to hold the resulting tokens.
// Returns the number of tokens on success, no more than n_max_tokens
// Returns a negative number on failure - the number of tokens that would have been returned
// TODO: not sure if correct
LLAMA_API int llama_tokenize (
struct llama_context * ctx ,
const char * text ,
llama_token * tokens ,
int n_max_tokens ,
bool add_bos ) ;
LLAMA_API int llama_n_vocab ( struct llama_context * ctx ) ;
LLAMA_API int llama_n_ctx ( struct llama_context * ctx ) ;
LLAMA_API int llama_n_embd ( struct llama_context * ctx ) ;
// Token logits obtained from the last call to llama_eval()
// The logits for the last token are stored in the last row
// Can be mutated in order to change the probabilities of the next token
// Rows: n_tokens
// Cols: n_vocab
LLAMA_API float * llama_get_logits ( struct llama_context * ctx ) ;
// Get the embeddings for the input
// shape: [n_embd] (1-dimensional)
LLAMA_API float * llama_get_embeddings ( struct llama_context * ctx ) ;
// Token Id -> String. Uses the vocabulary in the provided context
LLAMA_API const char * llama_token_to_str ( struct llama_context * ctx , llama_token token ) ;
// Special tokens
LLAMA_API llama_token llama_token_bos ( ) ;
LLAMA_API llama_token llama_token_eos ( ) ;
2023-04-30 17:51:57 +02:00
LLAMA_API llama_token llama_token_nl ( ) ;
// Sampling functions
2023-03-27 20:00:32 +02:00
2023-04-30 17:51:57 +02:00
/// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
LLAMA_API void llama_sample_repetition_penalty ( struct llama_context * ctx , llama_token_data_array * candidates , llama_token * last_tokens , size_t last_tokens_size , float penalty ) ;
/// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
LLAMA_API void llama_sample_frequency_and_presence_penalties ( struct llama_context * ctx , llama_token_data_array * candidates , llama_token * last_tokens , size_t last_tokens_size , float alpha_frequency , float alpha_presence ) ;
/// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
LLAMA_API void llama_sample_softmax ( struct llama_context * ctx , llama_token_data_array * candidates ) ;
/// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
LLAMA_API void llama_sample_top_k ( struct llama_context * ctx , llama_token_data_array * candidates , int k , size_t min_keep = 1 ) ;
/// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
LLAMA_API void llama_sample_top_p ( struct llama_context * ctx , llama_token_data_array * candidates , float p , size_t min_keep = 1 ) ;
/// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
LLAMA_API void llama_sample_tail_free ( struct llama_context * ctx , llama_token_data_array * candidates , float z , size_t min_keep = 1 ) ;
/// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
LLAMA_API void llama_sample_typical ( struct llama_context * ctx , llama_token_data_array * candidates , float p , size_t min_keep = 1 ) ;
LLAMA_API void llama_sample_temperature ( struct llama_context * ctx , llama_token_data_array * candidates , float temp ) ;
/// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
/// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
LLAMA_API llama_token llama_sample_token_mirostat ( struct llama_context * ctx , llama_token_data_array * candidates , float tau , float eta , int m , float * mu ) ;
/// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
LLAMA_API llama_token llama_sample_token_mirostat_v2 ( struct llama_context * ctx , llama_token_data_array * candidates , float tau , float eta , float * mu ) ;
/// @details Selects the token with the highest probability.
LLAMA_API llama_token llama_sample_token_greedy ( struct llama_context * ctx , llama_token_data_array * candidates ) ;
/// @details Randomly selects a token from the candidates based on their probabilities.
LLAMA_API llama_token llama_sample_token ( struct llama_context * ctx , llama_token_data_array * candidates ) ;
2023-03-27 20:00:32 +02:00
// Performance information
LLAMA_API void llama_print_timings ( struct llama_context * ctx ) ;
LLAMA_API void llama_reset_timings ( struct llama_context * ctx ) ;
// Print system information
LLAMA_API const char * llama_print_system_info ( void ) ;
# ifdef __cplusplus
}
# endif
2023-04-30 17:51:57 +02:00
// Internal API to be implemented by llama.cpp and used by tests/benchmarks only
# ifdef LLAMA_API_INTERNAL
# include <vector>
# include <string>
struct ggml_tensor ;
std : : vector < std : : pair < std : : string , struct ggml_tensor * > > & llama_internal_get_tensor_map ( struct llama_context * ctx ) ;
# endif
2023-04-10 21:59:13 +02:00
# endif // LLAMA_H