whisper : remove ggml_repeat for conv bias + single backend

This commit is contained in:
Georgi Gerganov
2023-11-10 15:54:43 +02:00
parent 81506268ba
commit 000b952c2d
2 changed files with 106 additions and 100 deletions

View File

@ -6725,7 +6725,6 @@ inline void ggml_cuda_op_im2col(
const int64_t OH = is_2D ? dst->ne[2] : 1;
const int64_t OW = dst->ne[1];
im2col_f32_f16_cuda(src1_dd, (half*) dst_dd,
OH, IW, IH, OW, IC, KH, KW, N,
src1->nb[is_2D ? 3 : 2] / 4, // nb is byte offset, src is type float32

View File

@ -817,22 +817,9 @@ struct whisper_context {
whisper_state * state = nullptr;
ggml_backend_t backend_cpu = nullptr;
ggml_backend_t backend_gpu = nullptr;
ggml_backend_t backend = nullptr;
std::string path_model; // populated by whisper_init_from_file_with_params()
ggml_backend_t backend_kv() const {
return backend_gpu ? backend_gpu : backend_cpu;
}
ggml_backend_t backend_conv() const {
return backend_gpu ? backend_gpu : backend_cpu;
}
ggml_backend_t backend_main() const {
return backend_gpu ? backend_gpu : backend_cpu;
}
};
struct whisper_global {
@ -1190,16 +1177,16 @@ static bool whisper_model_load(struct whisper_model_loader * loader, whisper_con
// encoder
{
model.e_pe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_state, n_audio_ctx);
model.e_pe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_state, n_audio_ctx);
model.e_conv_1_w = ggml_new_tensor_3d(ctx, vtype, 3, n_mels, n_audio_state);
model.e_conv_1_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, n_audio_state);
model.e_conv_1_w = ggml_new_tensor_3d(ctx, vtype, 3, n_mels, n_audio_state);
model.e_conv_1_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 2*n_audio_ctx, n_audio_state);
model.e_conv_2_w = ggml_new_tensor_3d(ctx, vtype, 3, n_audio_state, n_audio_state);
model.e_conv_2_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, n_audio_state);
model.e_conv_2_w = ggml_new_tensor_3d(ctx, vtype, 3, n_audio_state, n_audio_state);
model.e_conv_2_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_ctx, n_audio_state);
model.e_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
model.e_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
model.e_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
model.e_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
// map by name
model.tensors["encoder.positional_embedding"] = model.e_pe;
@ -1392,26 +1379,22 @@ static bool whisper_model_load(struct whisper_model_loader * loader, whisper_con
#endif
if (backend_gpu) {
wctx.backend_gpu = backend_gpu;
wctx.backend = backend_gpu;
} else {
wctx.backend_gpu = nullptr;
wctx.backend = ggml_backend_cpu_init();
}
// always add the CPU backend as a fallback
wctx.backend_cpu = ggml_backend_cpu_init();
}
{
size_t size_conv = 0;
size_t size_main = 0;
for (const auto & t : model.tensors) {
size_main += ggml_nbytes(t.second) + ggml_tensor_overhead();
size_main += ggml_nbytes(t.second) + ggml_tensor_overhead();
}
model.data->buffer_main = ggml_backend_alloc_buffer(wctx.backend_main(), size_main);
model.data->buffer_main = ggml_backend_alloc_buffer(wctx.backend, size_main);
WHISPER_LOG_INFO("%s: %8s buffer size = %8.2f MB\n", __func__, ggml_backend_name(wctx.backend_main()), size_main / 1024.0 / 1024.0);
WHISPER_LOG_INFO("%s: %8s buffer size = %8.2f MB\n", __func__, ggml_backend_name(wctx.backend), size_main / 1024.0 / 1024.0);
}
ggml_allocr * alloc_main = ggml_allocr_new_from_buffer(model.data->buffer_main);
@ -1419,7 +1402,7 @@ static bool whisper_model_load(struct whisper_model_loader * loader, whisper_con
// allocate tensors in the backend buffers
{
for (const auto & t : model.tensors) {
ggml_allocr_alloc(alloc_main, t.second);
ggml_allocr_alloc(alloc_main, t.second);
}
}
@ -1462,43 +1445,67 @@ static bool whisper_model_load(struct whisper_model_loader * loader, whisper_con
}
auto tensor = model.tensors[name.data()];
if (ggml_nelements(tensor) != nelements) {
WHISPER_LOG_ERROR("%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
WHISPER_LOG_ERROR("%s: shape: [%d, %d, %d], expected: [%d, %d, %d]\n",
__func__, ne[0], ne[1], ne[2], (int) tensor->ne[0], (int) tensor->ne[1], (int) tensor->ne[2]);
return false;
const bool is_conv_bias = (name == "encoder.conv1.bias" || name == "encoder.conv2.bias");
if (!is_conv_bias) {
if (ggml_nelements(tensor) != nelements) {
WHISPER_LOG_ERROR("%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
WHISPER_LOG_ERROR("%s: shape: [%d, %d, %d], expected: [%d, %d, %d]\n",
__func__, ne[0], ne[1], ne[2], (int) tensor->ne[0], (int) tensor->ne[1], (int) tensor->ne[2]);
return false;
}
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1] || tensor->ne[2] != ne[2]) {
WHISPER_LOG_ERROR("%s: tensor '%s' has wrong shape in model file: got [%d, %d, %d], expected [%d, %d, %d]\n",
__func__, name.data(), (int) tensor->ne[0], (int) tensor->ne[1], (int) tensor->ne[2], ne[0], ne[1], ne[2]);
return false;
}
const size_t bpe = ggml_type_size(ggml_type(ttype));
if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
WHISPER_LOG_ERROR("%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
__func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
return false;
}
}
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1] || tensor->ne[2] != ne[2]) {
WHISPER_LOG_ERROR("%s: tensor '%s' has wrong shape in model file: got [%d, %d, %d], expected [%d, %d, %d]\n",
__func__, name.data(), (int) tensor->ne[0], (int) tensor->ne[1], (int) tensor->ne[2], ne[0], ne[1], ne[2]);
return false;
}
const size_t bpe = ggml_type_size(ggml_type(ttype));
if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
WHISPER_LOG_ERROR("%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
__func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
return false;
}
ggml_backend * backend = wctx.backend_main();
ggml_backend_t backend = wctx.backend;
//printf("%s: [%5.5s] %s\n", __func__, ggml_backend_name(backend), name.c_str());
if (ggml_backend_is_cpu(backend)
if ((ggml_backend_is_cpu(backend)
#ifdef GGML_USE_METAL
|| ggml_backend_is_metal(backend)
#endif
) {
) && !is_conv_bias) {
// for the CPU and Metal backend, we can read directly into the tensor
loader->read(loader->context, tensor->data, ggml_nbytes(tensor));
BYTESWAP_TENSOR(tensor);
} else {
// read into a temporary buffer first, then copy to device memory
read_buf.resize(ggml_nbytes(tensor));
loader->read(loader->context, read_buf.data(), read_buf.size());
// we repeat the 2 bias tensors along dim 0:
// [1, 512] -> [3000, 512] (conv1.bias)
// [1, 512] -> [1500, 512] (conv2.bias)
if (is_conv_bias) {
loader->read(loader->context, read_buf.data(), read_buf.size() / tensor->ne[0]);
float * data_f32 = (float *) read_buf.data();
for (int64_t y = 0; y < tensor->ne[1]; ++y) {
const int64_t yy = tensor->ne[1] - y - 1;
const float val = data_f32[yy];
for (int64_t x = 0; x < tensor->ne[0]; ++x) {
data_f32[yy*tensor->ne[0] + x] = val;
}
}
} else {
loader->read(loader->context, read_buf.data(), read_buf.size());
}
ggml_backend_tensor_set(tensor, read_buf.data(), 0, ggml_nbytes(tensor));
}
@ -1579,7 +1586,7 @@ static struct ggml_cgraph * whisper_build_graph_conv(
float * dst = wstate.inp_mel.data();
memset(dst, 0, ggml_nbytes(mel));
const int i0 = std::min(mel_offset, mel_inp.n_len);
const int i0 = std::min(mel_offset, mel_inp.n_len);
const int i1 = std::min(mel_offset + 2*n_ctx, mel_inp.n_len);
for (int j = 0; j < mel_inp.n_mel; ++j) {
@ -1597,6 +1604,7 @@ static struct ggml_cgraph * whisper_build_graph_conv(
// convolution + gelu
{
cur = ggml_conv_1d_ph(ctx0, model.e_conv_1_w, mel, 1, 1);
//cur = ggml_add(ctx0, cur, model.e_conv_1_b);
cur = ggml_add(ctx0,
ggml_repeat(ctx0,
model.e_conv_1_b,
@ -1606,6 +1614,7 @@ static struct ggml_cgraph * whisper_build_graph_conv(
cur = ggml_gelu(ctx0, cur);
cur = ggml_conv_1d_ph(ctx0, model.e_conv_2_w, cur, 2, 1);
//cur = ggml_add(ctx0, cur, model.e_conv_2_b);
cur = ggml_add(ctx0,
ggml_repeat(ctx0,
model.e_conv_2_b,
@ -1669,6 +1678,14 @@ static struct ggml_cgraph * whisper_build_graph_encoder(
ggml_allocr * alloc = wstate.alloc_encode.alloc;
//struct ggml_tensor * cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_ctx, n_state);
//ggml_allocr_alloc(alloc, cur);
//if (!ggml_allocr_is_measure(alloc)) {
// ggml_backend_tensor_copy(wstate.embd_conv, cur);
//}
struct ggml_tensor * cur = ggml_view_tensor(ctx0, wstate.embd_conv);
struct ggml_tensor * KQscale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
ggml_allocr_alloc(alloc, KQscale);
@ -1677,13 +1694,6 @@ static struct ggml_cgraph * whisper_build_graph_encoder(
ggml_backend_tensor_set(KQscale, &val, 0, sizeof(float));
}
struct ggml_tensor * cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_ctx, n_state);
ggml_allocr_alloc(alloc, cur);
if (!ggml_allocr_is_measure(alloc)) {
ggml_backend_tensor_copy(wstate.embd_conv, cur);
}
// ===================================================================
// NOTE: experimenting with partial evaluation of the encoder (ignore)
//static int iter = -1;
@ -1923,12 +1933,13 @@ static struct ggml_cgraph * whisper_build_graph_cross(
ggml_allocr * alloc = wstate.alloc_cross.alloc;
struct ggml_tensor * cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_state, n_ctx);
ggml_allocr_alloc(alloc, cur);
//struct ggml_tensor * cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_state, n_ctx);
//ggml_allocr_alloc(alloc, cur);
if (!ggml_allocr_is_measure(alloc)) {
ggml_backend_tensor_copy(wstate.embd_enc, cur);
}
//if (!ggml_allocr_is_measure(alloc)) {
// ggml_backend_tensor_copy(wstate.embd_enc, cur);
//}
struct ggml_tensor * cur = ggml_view_tensor(ctx0, wstate.embd_enc);
struct ggml_tensor * Kscale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
ggml_allocr_alloc(alloc, Kscale);
@ -2006,15 +2017,15 @@ static bool whisper_encode_internal(
ggml_allocr_alloc_graph(alloc, gf);
if (!whisper_encode_external(wstate)) {
if (ggml_backend_is_cpu(wctx.backend_conv())) {
ggml_backend_cpu_set_n_threads(wctx.backend_conv(), n_threads);
if (ggml_backend_is_cpu(wctx.backend)) {
ggml_backend_cpu_set_n_threads(wctx.backend, n_threads);
}
#ifdef GGML_USE_METAL
if (ggml_backend_is_metal(wctx.backend_conv())) {
ggml_backend_metal_set_n_cb(wctx.backend_conv(), n_threads);
if (ggml_backend_is_metal(wctx.backend)) {
ggml_backend_metal_set_n_cb(wctx.backend, n_threads);
}
#endif
ggml_backend_graph_compute(wctx.backend_conv(), gf);
ggml_backend_graph_compute(wctx.backend, gf);
}
}
@ -2028,15 +2039,15 @@ static bool whisper_encode_internal(
ggml_allocr_alloc_graph(alloc, gf);
if (ggml_backend_is_cpu(wctx.backend_main())) {
ggml_backend_cpu_set_n_threads(wctx.backend_main(), n_threads);
if (ggml_backend_is_cpu(wctx.backend)) {
ggml_backend_cpu_set_n_threads(wctx.backend, n_threads);
}
#ifdef GGML_USE_METAL
if (ggml_backend_is_metal(wctx.backend_main())) {
ggml_backend_metal_set_n_cb(wctx.backend_main(), n_threads);
if (ggml_backend_is_metal(wctx.backend)) {
ggml_backend_metal_set_n_cb(wctx.backend, n_threads);
}
#endif
ggml_backend_graph_compute(wctx.backend_main(), gf);
ggml_backend_graph_compute(wctx.backend, gf);
}
// cross
@ -2049,15 +2060,15 @@ static bool whisper_encode_internal(
ggml_allocr_alloc_graph(alloc, gf);
if (ggml_backend_is_cpu(wctx.backend_main())) {
ggml_backend_cpu_set_n_threads(wctx.backend_main(), n_threads);
if (ggml_backend_is_cpu(wctx.backend)) {
ggml_backend_cpu_set_n_threads(wctx.backend, n_threads);
}
#ifdef GGML_USE_METAL
if (ggml_backend_is_metal(wctx.backend_main())) {
ggml_backend_metal_set_n_cb(wctx.backend_main(), n_threads);
if (ggml_backend_is_metal(wctx.backend)) {
ggml_backend_metal_set_n_cb(wctx.backend, n_threads);
}
#endif
ggml_backend_graph_compute(wctx.backend_main(), gf);
ggml_backend_graph_compute(wctx.backend, gf);
}
wstate.t_encode_us += ggml_time_us() - t_start_us;
@ -2448,15 +2459,15 @@ static bool whisper_decode_internal(
logits = gf->nodes[gf->n_nodes - 1];
if (ggml_backend_is_cpu(wctx.backend_main())) {
ggml_backend_cpu_set_n_threads(wctx.backend_main(), n_threads);
if (ggml_backend_is_cpu(wctx.backend)) {
ggml_backend_cpu_set_n_threads(wctx.backend, n_threads);
}
#ifdef GGML_USE_METAL
if (ggml_backend_is_metal(wctx.backend_main())) {
ggml_backend_metal_set_n_cb(wctx.backend_main(), n_threads);
if (ggml_backend_is_metal(wctx.backend)) {
ggml_backend_metal_set_n_cb(wctx.backend, n_threads);
}
#endif
ggml_backend_graph_compute(wctx.backend_main(), gf);
ggml_backend_graph_compute(wctx.backend, gf);
}
// extract logits for all N tokens
@ -2899,7 +2910,7 @@ struct whisper_state * whisper_init_state(whisper_context * ctx) {
whisper_state * state = new whisper_state;
if (!kv_cache_init(ctx->model.hparams, state->decoders[0].kv_self, ctx->backend_kv(), ctx->itype, ctx->model.hparams.n_text_ctx)) {
if (!kv_cache_init(ctx->model.hparams, state->decoders[0].kv_self, ctx->backend, ctx->itype, ctx->model.hparams.n_text_ctx)) {
WHISPER_LOG_ERROR("%s: kv_cache_init() failed for self-attention cache\n", __func__);
delete state;
return nullptr;
@ -2910,7 +2921,7 @@ struct whisper_state * whisper_init_state(whisper_context * ctx) {
WHISPER_LOG_INFO("%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
}
if (!kv_cache_init(ctx->model.hparams, state->kv_cross, ctx->backend_kv(), ctx->itype, ctx->model.hparams.n_audio_ctx)) {
if (!kv_cache_init(ctx->model.hparams, state->kv_cross, ctx->backend, ctx->itype, ctx->model.hparams.n_audio_ctx)) {
WHISPER_LOG_ERROR("%s: kv_cache_init() failed for cross-attention cache\n", __func__);
delete state;
return nullptr;
@ -2952,7 +2963,7 @@ struct whisper_state * whisper_init_state(whisper_context * ctx) {
// conv allocator
{
whisper_allocr_graph_init(state->alloc_conv, ctx->backend_conv(),
whisper_allocr_graph_init(state->alloc_conv, ctx->backend,
[&]() {
return whisper_build_graph_conv(*ctx, *state, 0);
});
@ -2962,7 +2973,7 @@ struct whisper_state * whisper_init_state(whisper_context * ctx) {
// encoder allocator
if (!whisper_encode_external(*state)) {
whisper_allocr_graph_init(state->alloc_encode, ctx->backend_main(),
whisper_allocr_graph_init(state->alloc_encode, ctx->backend,
[&]() {
return whisper_build_graph_encoder(*ctx, *state);
});
@ -2972,7 +2983,7 @@ struct whisper_state * whisper_init_state(whisper_context * ctx) {
// cross allocator
{
whisper_allocr_graph_init(state->alloc_cross, ctx->backend_main(),
whisper_allocr_graph_init(state->alloc_cross, ctx->backend,
[&]() {
return whisper_build_graph_cross(*ctx, *state);
});
@ -2982,7 +2993,7 @@ struct whisper_state * whisper_init_state(whisper_context * ctx) {
// decoder allocator
{
whisper_allocr_graph_init(state->alloc_decode, ctx->backend_main(),
whisper_allocr_graph_init(state->alloc_decode, ctx->backend,
[&]() {
const auto & hparams = ctx->model.hparams;
@ -3264,11 +3275,7 @@ void whisper_free(struct whisper_context * ctx) {
whisper_free_state(ctx->state);
ggml_backend_free(ctx->backend_cpu);
if (ctx->backend_gpu) {
ggml_backend_free(ctx->backend_gpu);
}
ggml_backend_free(ctx->backend);
delete ctx;
}
@ -4566,7 +4573,7 @@ int whisper_full_with_state(
if (decoder.kv_self.ctx == nullptr) {
decoder.kv_self = state->decoders[0].kv_self;
if (!kv_cache_reinit(decoder.kv_self, ctx->backend_kv())) {
if (!kv_cache_reinit(decoder.kv_self, ctx->backend)) {
WHISPER_LOG_ERROR("%s: kv_cache_reinit() failed for self-attention, decoder %d\n", __func__, j);
return -4;
}