mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-08-23 22:36:25 +02:00
vulkan: Optimize argsort (llama/15354)
- Launch an appropriate number of invocations (next larger power of two). 32 invocations is common and the barrier is much cheaper there. - Specialize for "needs bounds checking" vs not. - Make the code less branchy and [[unroll]] the loops. In the final code, I see no branches inside the main loop (only predicated stores) when needs_bounds_check is false. - Always sort ascending, then apply the ascending vs descending option when doing the final stores to memory. - Copy the values into shared memory, makes them slightly cheaper to access.
This commit is contained in:
committed by
Georgi Gerganov
parent
c44d449635
commit
0a8285186a
@@ -345,6 +345,9 @@ enum vk_conv_shapes {
|
||||
CONV_SHAPE_COUNT,
|
||||
};
|
||||
|
||||
static constexpr uint32_t num_argsort_pipelines = 11;
|
||||
static constexpr uint32_t max_argsort_cols = 1 << (num_argsort_pipelines-1);
|
||||
|
||||
struct vk_device_struct {
|
||||
std::recursive_mutex mutex;
|
||||
|
||||
@@ -505,7 +508,7 @@ struct vk_device_struct {
|
||||
vk_pipeline pipeline_rope_neox_f32, pipeline_rope_neox_f16;
|
||||
vk_pipeline pipeline_rope_multi_f32, pipeline_rope_multi_f16;
|
||||
vk_pipeline pipeline_rope_vision_f32, pipeline_rope_vision_f16;
|
||||
vk_pipeline pipeline_argsort_f32;
|
||||
vk_pipeline pipeline_argsort_f32[num_argsort_pipelines];
|
||||
vk_pipeline pipeline_sum_rows_f32;
|
||||
vk_pipeline pipeline_argmax_f32;
|
||||
vk_pipeline pipeline_count_equal_i32;
|
||||
@@ -870,7 +873,6 @@ struct vk_op_soft_max_push_constants {
|
||||
|
||||
struct vk_op_argsort_push_constants {
|
||||
uint32_t ncols;
|
||||
uint32_t ncols_pad;
|
||||
int32_t order;
|
||||
};
|
||||
|
||||
@@ -3099,7 +3101,9 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
||||
ggml_vk_create_pipeline(device, device->pipeline_rope_vision_f16, "rope_vision_f16", rope_vision_f16_len, rope_vision_f16_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
|
||||
}
|
||||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_argsort_f32, "argsort_f32", argsort_f32_len, argsort_f32_data, "main", 2, sizeof(vk_op_argsort_push_constants), {1024, 1, 1}, {}, 1);
|
||||
for (uint32_t i = 0; i < num_argsort_pipelines; ++i) {
|
||||
ggml_vk_create_pipeline(device, device->pipeline_argsort_f32[i], "argsort_f32_"+std::to_string(i), argsort_f32_len, argsort_f32_data, "main", 2, sizeof(vk_op_argsort_push_constants), {1u<<i, 1, 1}, {1u<<i, i}, 1, true);
|
||||
}
|
||||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_argmax_f32, "argmax_f32", argmax_f32_len, argmax_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, { device->subgroup_size }, 1);
|
||||
|
||||
@@ -7160,7 +7164,8 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
|
||||
}
|
||||
case GGML_OP_ARGSORT:
|
||||
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_I32) {
|
||||
return ctx->device->pipeline_argsort_f32;
|
||||
uint32_t idx = (uint32_t)ceilf(log2f(float(dst->ne[0])));
|
||||
return ctx->device->pipeline_argsort_f32[idx];
|
||||
}
|
||||
return nullptr;
|
||||
case GGML_OP_SUM:
|
||||
@@ -8485,16 +8490,8 @@ static void ggml_vk_argsort(ggml_backend_vk_context * ctx, vk_context& subctx, c
|
||||
|
||||
uint32_t ncols = src0->ne[0];
|
||||
|
||||
uint32_t ncols_pad = 1;
|
||||
while (ncols_pad < ncols) {
|
||||
ncols_pad *= 2;
|
||||
}
|
||||
|
||||
GGML_ASSERT(ncols_pad <= 1024);
|
||||
|
||||
ggml_vk_op_f32<vk_op_argsort_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_ARGSORT, {
|
||||
ncols,
|
||||
ncols_pad,
|
||||
op_params[0],
|
||||
}, dryrun);
|
||||
}
|
||||
@@ -11367,6 +11364,8 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
|
||||
case GGML_OP_OPT_STEP_ADAMW:
|
||||
case GGML_OP_OPT_STEP_SGD:
|
||||
return op->src[0]->type == GGML_TYPE_F32;
|
||||
case GGML_OP_ARGSORT:
|
||||
return op->ne[0] <= max_argsort_cols;
|
||||
case GGML_OP_UPSCALE:
|
||||
case GGML_OP_ACC:
|
||||
case GGML_OP_CONCAT:
|
||||
@@ -11376,7 +11375,6 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
|
||||
case GGML_OP_DIAG_MASK_INF:
|
||||
case GGML_OP_SOFT_MAX:
|
||||
case GGML_OP_SOFT_MAX_BACK:
|
||||
case GGML_OP_ARGSORT:
|
||||
case GGML_OP_SUM:
|
||||
case GGML_OP_SUM_ROWS:
|
||||
case GGML_OP_ARGMAX:
|
||||
|
@@ -1,22 +1,24 @@
|
||||
#version 450
|
||||
#extension GL_EXT_control_flow_attributes : enable
|
||||
|
||||
#include "types.comp"
|
||||
|
||||
#define BLOCK_SIZE 1024
|
||||
layout(constant_id = 0) const int BLOCK_SIZE = 1024;
|
||||
layout(constant_id = 1) const int BLOCK_SIZE_LOG2 = 10;
|
||||
#define ASC 0
|
||||
|
||||
layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in;
|
||||
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
|
||||
layout (binding = 1) buffer D {int data_d[];};
|
||||
|
||||
layout (push_constant) uniform parameter {
|
||||
uint ncols;
|
||||
uint ncols_pad;
|
||||
uint order;
|
||||
} p;
|
||||
|
||||
shared int dst_row[BLOCK_SIZE];
|
||||
shared A_TYPE a_sh[BLOCK_SIZE];
|
||||
|
||||
void swap(uint idx0, uint idx1) {
|
||||
int tmp = dst_row[idx0];
|
||||
@@ -24,7 +26,7 @@ void swap(uint idx0, uint idx1) {
|
||||
dst_row[idx1] = tmp;
|
||||
}
|
||||
|
||||
void main() {
|
||||
void argsort(bool needs_bounds_check) {
|
||||
// bitonic sort
|
||||
const int col = int(gl_LocalInvocationID.x);
|
||||
const uint row = gl_WorkGroupID.y;
|
||||
@@ -32,38 +34,46 @@ void main() {
|
||||
const uint row_offset = row * p.ncols;
|
||||
|
||||
// initialize indices
|
||||
if (col < p.ncols_pad) {
|
||||
dst_row[col] = col;
|
||||
}
|
||||
dst_row[col] = col;
|
||||
a_sh[col] = data_a[row_offset + col];
|
||||
barrier();
|
||||
|
||||
for (uint k = 2; k <= p.ncols_pad; k *= 2) {
|
||||
for (uint j = k / 2; j > 0; j /= 2) {
|
||||
const uint ixj = col ^ j;
|
||||
if (col < p.ncols_pad && ixj > col) {
|
||||
if ((col & k) == 0) {
|
||||
if (dst_row[col] >= p.ncols ||
|
||||
(dst_row[ixj] < p.ncols && (p.order == ASC ?
|
||||
data_a[row_offset + dst_row[col]] > data_a[row_offset + dst_row[ixj]] :
|
||||
data_a[row_offset + dst_row[col]] < data_a[row_offset + dst_row[ixj]]))
|
||||
) {
|
||||
swap(col, ixj);
|
||||
}
|
||||
} else {
|
||||
if (dst_row[ixj] >= p.ncols ||
|
||||
(dst_row[col] < p.ncols && (p.order == ASC ?
|
||||
data_a[row_offset + dst_row[col]] < data_a[row_offset + dst_row[ixj]] :
|
||||
data_a[row_offset + dst_row[col]] > data_a[row_offset + dst_row[ixj]]))
|
||||
) {
|
||||
swap(col, ixj);
|
||||
}
|
||||
}
|
||||
uint num_outer_loop_iters = BLOCK_SIZE_LOG2;
|
||||
[[unroll]] for (uint k = 2, outer_idx = 0; outer_idx < num_outer_loop_iters; k *= 2, outer_idx++) {
|
||||
uint num_inner_loop_iters = outer_idx + 1;
|
||||
[[unroll]] for (uint j = k / 2, inner_idx = 0; inner_idx < num_inner_loop_iters; j /= 2, inner_idx++) {
|
||||
const int ixj = int(col ^ j);
|
||||
|
||||
int idx_0 = (col & k) == 0 ? col : ixj;
|
||||
int idx_1 = (col & k) == 0 ? ixj : col;
|
||||
|
||||
int sh_idx_0 = dst_row[idx_0];
|
||||
int sh_idx_1 = dst_row[idx_1];
|
||||
bool idx_0_oob = needs_bounds_check ? sh_idx_0 >= p.ncols : false;
|
||||
bool idx_1_oob = needs_bounds_check ? sh_idx_1 >= p.ncols : false;
|
||||
|
||||
if ((idx_0_oob ||
|
||||
(!idx_1_oob && a_sh[sh_idx_0] > a_sh[sh_idx_1])) && (ixj > col)) {
|
||||
swap(idx_0, idx_1);
|
||||
}
|
||||
|
||||
barrier();
|
||||
}
|
||||
}
|
||||
|
||||
if (col < p.ncols) {
|
||||
data_d[row_offset + col] = dst_row[col];
|
||||
if (p.order == ASC) {
|
||||
data_d[row_offset + col] = dst_row[col];
|
||||
} else {
|
||||
data_d[row_offset + p.ncols - col - 1] = dst_row[col];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void main() {
|
||||
if (p.ncols == BLOCK_SIZE) {
|
||||
argsort(false);
|
||||
} else {
|
||||
argsort(true);
|
||||
}
|
||||
}
|
||||
|
Reference in New Issue
Block a user