SYCL: Add non contiguous support in RMS_NORM and NORM kernels (llama/13611)

* SYCL: Add non contiguous input support to norm kernel

* refactor and add RMS_NORM non contiguous input support

ggml-ci

* restore subgroup reduction for multi-subgroup thread blocks in norm kernels

* Swap grid dims of nsamples and nrows

ggml-ci

* Revert "Swap grid dims of nsamples and nrows"

This reverts commit 43be2d657fec7f7fba54e2cd154106bc0fc45adf.

* restore not required changes
ggml-ci

* address review comments: change it to more like SYCL

* Use a common function to calculate offset

* remove wrap around logic for handling broadcasts

* remove static from calculate_offset fn and use ceil_div
This commit is contained in:
Akarshan Biswas 2025-05-26 21:10:36 +05:30 committed by Georgi Gerganov
parent 25e27904ca
commit 195fde8804
3 changed files with 109 additions and 67 deletions

View File

@ -13,6 +13,7 @@
#ifndef GGML_SYCL_COMMON_HPP
#define GGML_SYCL_COMMON_HPP
#include <cstddef>
#include <fstream>
#include <iostream>
#include <string>
@ -481,6 +482,19 @@ static __dpct_inline__ float warp_reduce_max(float x,
return x;
}
/* Helper for Computing the linear offset of a ggml_tensor given
per-dimension sizes, strides, and indices */
template<int N>
__dpct_inline__ size_t calculate_offset(const std::array<int, N> & strides, const std::array<int, N> & indices) {
size_t offset = 0;
#pragma unroll
for (int i = 0; i < N; i++) {
auto index_i = indices[i];
offset += strides[i] * index_i;
}
return offset;
}
// Helper for vec loading aligned data
template <typename Tp, int n>
inline sycl::vec<Tp, n> vec_aligned_load(const Tp* aligned_ptr) {

View File

@ -4241,6 +4241,7 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
#endif
case GGML_OP_NORM:
case GGML_OP_RMS_NORM:
return true;
case GGML_OP_L2_NORM:
case GGML_OP_GROUP_NORM:
return ggml_is_contiguous(op->src[0]);

View File

@ -1,40 +1,50 @@
#include "norm.hpp"
#include "ggml-sycl/common.hpp"
#include "ggml-sycl/presets.hpp"
static void norm_f32(const float* x, float* dst, const int ncols, const float eps,
const sycl::nd_item<3>& item_ct1, sycl::float2* s_sum, int block_size) {
const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
item_ct1.get_local_id(1);
const int tid = item_ct1.get_local_id(2);
static void norm_f32(const float* x, float* dst, const int ncols, const int64_t stride_row, const int64_t stride_channel,
const int64_t stride_sample, const float eps, const sycl::nd_item<3>& item_ct1, sycl::float2* s_sum, int block_size) {
const int nrows = item_ct1.get_group_range(2);
const int nchannels = item_ct1.get_group_range(1);
const int nthreads = item_ct1.get_local_range(2);
const int sample = item_ct1.get_group(0);
const int channel = item_ct1.get_group(1);
const int row = item_ct1.get_group(2);
const int tid = item_ct1.get_local_id(2);
const int nwarps = nthreads / WARP_SIZE;
const auto strided_offset = calculate_offset<3>({stride_sample, stride_channel, stride_row}, {sample, channel, row});
const auto packed_offset = calculate_offset<3>({nchannels * nrows * ncols, nrows * ncols, ncols}, {sample, channel, row});
x += strided_offset;
dst += packed_offset;
sycl::float2 mean_var = sycl::float2(0.f, 0.f);
for (int col = tid; col < ncols; col += block_size) {
const float xi = x[row * ncols + col];
const float xi = x[col];
mean_var.x() += xi;
mean_var.y() += xi * xi;
}
// sum up partial sums
mean_var = warp_reduce_sum(mean_var, item_ct1);
if (block_size > WARP_SIZE) {
int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
if (lane_id == 0) {
s_sum[warp_id] = mean_var;
if (block_size > WARP_SIZE) {
const auto sub_group = item_ct1.get_sub_group();
const auto sg_id = sub_group.get_group_linear_id();
const auto wi_in_sg = sub_group.get_local_linear_id();
if (wi_in_sg == 0) {
s_sum[sg_id] = mean_var;
}
/*
DPCT1118:0: SYCL group functions and algorithms must be encountered in
converged control flow. You may need to adjust the code.
*/
item_ct1.barrier(sycl::access::fence_space::local_space);
mean_var = 0.f;
size_t nreduce = nwarps / WARP_SIZE;
const size_t nreduce = ceil_div(nwarps, WARP_SIZE);
for (size_t i = 0; i < nreduce; i += 1)
{
mean_var += s_sum[lane_id + i * WARP_SIZE];
mean_var += s_sum[wi_in_sg + i * WARP_SIZE];
}
mean_var = warp_reduce_sum(mean_var, item_ct1);
}
@ -44,7 +54,7 @@ static void norm_f32(const float* x, float* dst, const int ncols, const float ep
const float inv_std = sycl::rsqrt(var + eps);
for (int col = tid; col < ncols; col += block_size) {
dst[row * ncols + col] = (x[row * ncols + col] - mean) * inv_std;
dst[col] = (x[col] - mean) * inv_std;
}
}
@ -135,39 +145,51 @@ static void group_norm_f32(const float* x, float* dst, const int group_size, con
}
}
static void rms_norm_f32(const float* x, float* dst, const int ncols, const float eps,
const sycl::nd_item<3>& item_ct1, float* s_sum, int block_size) {
const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
item_ct1.get_local_id(1);
const int tid = item_ct1.get_local_id(2);
static void rms_norm_f32(const float* x, float* dst, const int ncols, const int64_t stride_row, const int64_t stride_channel,
const int64_t stride_sample, const float eps, const sycl::nd_item<3>& item_ct1, float* s_sum, int block_size) {
const int nrows = item_ct1.get_group_range(2);
const int nchannels = item_ct1.get_group_range(1);
const int sample = item_ct1.get_group(0);
const int channel = item_ct1.get_group(1);
const int row = item_ct1.get_group(2);
const int nthreads = item_ct1.get_local_range(2);
const int tid = item_ct1.get_local_id(2);
const int nwarps = nthreads / WARP_SIZE;
const auto strided_offset = calculate_offset<3>({stride_sample, stride_channel, stride_row}, {sample, channel, row});
const auto packed_offset = calculate_offset<3>({nchannels * nrows * ncols, nrows * ncols, ncols}, {sample, channel, row});
x += strided_offset;
dst += packed_offset;
float tmp = 0.0f; // partial sum for thread in warp
for (int col = tid; col < ncols; col += block_size) {
const float xi = x[row * ncols + col];
const float xi = x[col];
tmp += xi * xi;
}
// sum up partial sums
tmp = warp_reduce_sum(tmp, item_ct1);
if (block_size > WARP_SIZE) {
int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
if (lane_id == 0) {
s_sum[warp_id] = tmp;
const auto sub_group = item_ct1.get_sub_group();
const auto sg_id = sub_group.get_group_linear_id();
const auto wi_in_sg = sub_group.get_local_linear_id();
if (wi_in_sg == 0) {
s_sum[sg_id] = tmp;
}
/*
DPCT1118:3: SYCL group functions and algorithms must be encountered in
converged control flow. You may need to adjust the code.
*/
item_ct1.barrier(sycl::access::fence_space::local_space);
size_t nreduce = nwarps / WARP_SIZE;
const size_t nreduce = ceil_div(nwarps, WARP_SIZE);
tmp = 0.f;
for (size_t i = 0; i < nreduce; i += 1)
{
tmp += s_sum[lane_id + i * WARP_SIZE];
tmp += s_sum[wi_in_sg + i * WARP_SIZE];
}
tmp = warp_reduce_sum(tmp, item_ct1);
}
@ -176,7 +198,7 @@ static void rms_norm_f32(const float* x, float* dst, const int ncols, const floa
const float scale = sycl::rsqrt(mean + eps);
for (int col = tid; col < ncols; col += block_size) {
dst[row * ncols + col] = scale * x[row * ncols + col];
dst[col] = scale * x[col];
}
}
@ -224,20 +246,20 @@ static void l2_norm_f32(const float* x, float* dst, const int ncols, const float
}
}
static void norm_f32_sycl(const float* x, float* dst, const int ncols,
const int nrows, const float eps,
queue_ptr stream, int device) {
static void norm_f32_sycl(const float * x, float * dst, const int ncols, const int nrows, const int nchannels, const int nsamples,
const int64_t stride_row, const int64_t stride_channel, const int64_t stride_sample,
const float eps, queue_ptr stream, int device) {
const sycl::range<3> global_dims(nsamples, nchannels, nrows);
GGML_ASSERT(ncols % WARP_SIZE == 0);
if (ncols < 1024) {
const sycl::range<3> block_dims(1, 1, WARP_SIZE);
stream->submit([&](sycl::handler& cgh) {
cgh.parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
block_dims),
sycl::nd_range<3>(global_dims * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
[[sycl::reqd_sub_group_size(WARP_SIZE)]] {
norm_f32(x, dst, ncols, eps, item_ct1,
nullptr, WARP_SIZE);
norm_f32(x, dst, ncols, stride_row, stride_channel, stride_sample, eps, item_ct1, nullptr, WARP_SIZE);
});
});
}
@ -252,15 +274,12 @@ static void norm_f32_sycl(const float* x, float* dst, const int ncols,
*/
stream->submit([&](sycl::handler& cgh) {
sycl::local_accessor<sycl::float2, 1> s_sum_acc_ct1(
sycl::range<1>(work_group_size / WARP_SIZE), cgh);
sycl::range<1>(work_group_size / WARP_SIZE), cgh);
cgh.parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
block_dims),
sycl::nd_range<3>(global_dims * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
[[sycl::reqd_sub_group_size(WARP_SIZE)]] {
norm_f32(x, dst, ncols, eps, item_ct1,
get_pointer(s_sum_acc_ct1), work_group_size);
norm_f32(x, dst, ncols, stride_row, stride_channel, stride_sample, eps, item_ct1, get_pointer(s_sum_acc_ct1), work_group_size);
});
});
}
@ -313,21 +332,20 @@ static void group_norm_f32_sycl(const float* x, float* dst,
}
}
static void rms_norm_f32_sycl(const float* x, float* dst, const int ncols,
const int nrows, const float eps,
queue_ptr stream, int device) {
static void rms_norm_f32_sycl(const float* x, float* dst, const int ncols, const int nrows, const int nchannels, const int nsamples,
const int64_t stride_row, const int64_t stride_channel, const int64_t stride_sample, const float eps, queue_ptr stream, int device) {
GGML_ASSERT(ncols % WARP_SIZE == 0);
// printf("%s ncols=%d, nrows=%d, WARP_SIZE=%d\n", __func__, ncols, nrows, WARP_SIZE);
const sycl::range<3> global_dims(nsamples, nchannels, nrows);
if (ncols < 1024) {
const sycl::range<3> block_dims(1, 1, WARP_SIZE);
stream->submit([&](sycl::handler& cgh) {
cgh.parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
block_dims),
sycl::nd_range<3>(global_dims * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
[[sycl::reqd_sub_group_size(WARP_SIZE)]] {
rms_norm_f32(x, dst, ncols, eps, item_ct1,
nullptr, WARP_SIZE);
rms_norm_f32(x, dst, ncols, stride_row, stride_channel, stride_sample, eps, item_ct1, nullptr, WARP_SIZE);
});
});
}
@ -344,12 +362,10 @@ static void rms_norm_f32_sycl(const float* x, float* dst, const int ncols,
sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(work_group_size / WARP_SIZE),
cgh);
cgh.parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
block_dims),
sycl::nd_range<3>(global_dims * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
[[sycl::reqd_sub_group_size(WARP_SIZE)]] {
rms_norm_f32(x, dst, ncols, eps, item_ct1,
get_pointer(s_sum_acc_ct1), work_group_size);
rms_norm_f32(x, dst, ncols, stride_row, stride_channel, stride_sample, eps, item_ct1, get_pointer(s_sum_acc_ct1), work_group_size);
});
});
}
@ -398,12 +414,12 @@ static void l2_norm_f32_sycl(const float* x, float* dst, const int ncols,
}
void ggml_sycl_op_norm(ggml_backend_sycl_context& ctx, ggml_tensor* dst) {
const ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
const int64_t ne00 = dst->src[0]->ne[0];
const int64_t nrows = ggml_nrows(dst->src[0]);
GGML_TENSOR_UNARY_OP_LOCALS
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
@ -411,8 +427,14 @@ void ggml_sycl_op_norm(ggml_backend_sycl_context& ctx, ggml_tensor* dst) {
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
GGML_ASSERT(eps >= 0.0f);
const size_t ts0 = ggml_type_size(src0->type);
GGML_ASSERT(nb00 == ts0);
const int64_t s01 = nb01 / ts0;
const int64_t s02 = nb02 / ts0;
const int64_t s03 = nb03 / ts0;
norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream, ctx.device);
norm_f32_sycl(src0_dd, dst_dd, ne00, ne01, ne02, ne03, s01, s02, s03, eps, main_stream, ctx.device);
}
void ggml_sycl_op_group_norm(ggml_backend_sycl_context& ctx, ggml_tensor* dst) {
@ -436,11 +458,10 @@ void ggml_sycl_op_group_norm(ggml_backend_sycl_context& ctx, ggml_tensor* dst) {
void ggml_sycl_op_rms_norm(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
const int64_t ne00 = dst->src[0]->ne[0];
const int64_t nrows = ggml_nrows(dst->src[0]);
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
@ -450,7 +471,13 @@ void ggml_sycl_op_rms_norm(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
rms_norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream, ctx.device);
GGML_TENSOR_UNARY_OP_LOCALS
const size_t ts0 = ggml_type_size(src0->type);
GGML_ASSERT(nb00 == ts0);
const int64_t s01 = nb01 / ts0;
const int64_t s02 = nb02 / ts0;
const int64_t s03 = nb03 / ts0;
rms_norm_f32_sycl(src0_dd, dst_dd, ne00, ne01, ne02, ne03, s01, s02, s03, eps, main_stream, ctx.device);
}
void ggml_sycl_op_l2_norm(ggml_backend_sycl_context& ctx, ggml_tensor* dst) {