whisper : load the model into multiple buffers of max size 1GB (#1763)

This commit is contained in:
Georgi Gerganov 2024-01-13 17:47:40 +02:00 committed by GitHub
parent 40ae0962f4
commit 519f8e8684
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -701,7 +701,7 @@ struct whisper_model {
struct ggml_context * ctx;
// the model backend data is read-only and can be shared between processors
struct ggml_backend_buffer * buffer;
std::vector<struct ggml_backend_buffer *> buffers;
// tensors
int n_loaded;
@ -1514,24 +1514,64 @@ static bool whisper_model_load(struct whisper_model_loader * loader, whisper_con
wctx.backend = whisper_backend_init(wctx.params);
// some devices have a limit on the maximum size of single memory buffer
// for example, iPhones are limited to 1GB per buffer
// to workaround this, we will allocate multiple buffers of smaller size and will split the tensors with the
// model weights between them
//
// the map_t2b maps tensor names to buffer indices
// as we iterate over the tensors, we will allocate new buffers when the current one is full
//
// finally, we create a separate allocator for each buffer and use it to allocate the tensors
// we keep the allocators alive until all the tensors are loaded
GGML_ASSERT(model.buffers.empty());
std::map<std::string, int> map_t2b;
{
size_t size_main = 0;
size_t size_cur = 0;
static const size_t GB = 1024ull*1024ull*1024ull;
for (const auto & t : model.tensors) {
size_main += ggml_nbytes(t.second) + ggml_tensor_overhead();
const size_t cur = ggml_nbytes(t.second) + ggml_tensor_overhead();
// adding the tensor to the current buffer will exceed the limit, so we need to allocate a new buffer
if (size_cur + cur > GB) {
GGML_ASSERT(size_cur > 0 && "A tensor is too large to fit in a single buffer");
model.buffers.emplace_back(ggml_backend_alloc_buffer(wctx.backend, size_cur));
size_cur = cur;
}
map_t2b[t.first] = model.buffers.size();
size_cur += cur;
size_main += cur;
}
model.buffer = ggml_backend_alloc_buffer(wctx.backend, size_main);
// allocate the last buffer if needed
if (size_cur > 0) {
model.buffers.emplace_back(ggml_backend_alloc_buffer(wctx.backend, size_cur));
}
WHISPER_LOG_INFO("%s: %8s buffer size = %8.2f MB\n", __func__, ggml_backend_name(wctx.backend), size_main / 1e6);
GGML_ASSERT(model.buffers.size() > 0);
WHISPER_LOG_INFO("%s: %8s total size = %8.2f MB (%d buffers)\n", __func__, ggml_backend_name(wctx.backend), size_main / 1e6, (int) model.buffers.size());
}
ggml_allocr * alloc = ggml_allocr_new_from_buffer(model.buffer);
std::vector<ggml_allocr *> allocs(model.buffers.size());
for (size_t i = 0; i < allocs.size(); ++i) {
allocs[i] = ggml_allocr_new_from_buffer(model.buffers[i]);
}
// allocate tensors in the backend buffers
{
for (const auto & t : model.tensors) {
ggml_allocr_alloc(alloc, t.second);
ggml_allocr_alloc(allocs[map_t2b[t.first]], t.second);
}
}
@ -1632,7 +1672,9 @@ static bool whisper_model_load(struct whisper_model_loader * loader, whisper_con
}
}
ggml_allocr_free(alloc);
for (auto & alloc : allocs) {
ggml_allocr_free(alloc);
}
wctx.t_load_us = ggml_time_us() - t_start_us;
@ -3376,8 +3418,10 @@ void whisper_free(struct whisper_context * ctx) {
ggml_free(ctx->model.ctx);
}
if (ctx->model.buffer) {
ggml_backend_buffer_free(ctx->model.buffer);
for (auto & buffer : ctx->model.buffers) {
if (buffer) {
ggml_backend_buffer_free(buffer);
}
}
whisper_free_state(ctx->state);