llama: Add support for RWKV v7 architecture (llama/12412)

* ggml: Add op l2_norm

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* ggml: Add op rwkv_wkv7

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: Add support for RWKV7 and ARWKV7 models

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: fix inference with RWKV6Qwen2

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: add more (a)rwkv7 variants in size

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Apply code-format changes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* fix MUSA build

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: fix shape error with rwkv using llama-parallel

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

---------

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
This commit is contained in:
Molly Sophia 2025-03-18 07:27:50 +08:00 committed by Georgi Gerganov
parent cfc2560e41
commit 52c4c03b0a
21 changed files with 1751 additions and 85 deletions

View File

@ -454,6 +454,7 @@ extern "C" {
GGML_OP_RMS_NORM,
GGML_OP_RMS_NORM_BACK,
GGML_OP_GROUP_NORM,
GGML_OP_L2_NORM,
GGML_OP_MUL_MAT,
GGML_OP_MUL_MAT_ID,
@ -502,6 +503,7 @@ extern "C" {
GGML_OP_ADD_REL_POS,
GGML_OP_RWKV_WKV6,
GGML_OP_GATED_LINEAR_ATTN,
GGML_OP_RWKV_WKV7,
GGML_OP_UNARY,
@ -1095,6 +1097,18 @@ extern "C" {
int n_groups,
float eps);
// l2 normalize along rows
// used in rwkv v7
GGML_API struct ggml_tensor * ggml_l2_norm(
struct ggml_context * ctx,
struct ggml_tensor * a,
float eps);
GGML_API struct ggml_tensor * ggml_l2_norm_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
float eps);
// a - x
// b - dy
GGML_API struct ggml_tensor * ggml_rms_norm_back(
@ -1890,6 +1904,16 @@ extern "C" {
struct ggml_tensor * state,
float scale);
GGML_API struct ggml_tensor * ggml_rwkv_wkv7(
struct ggml_context * ctx,
struct ggml_tensor * r,
struct ggml_tensor * w,
struct ggml_tensor * k,
struct ggml_tensor * v,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * state);
// custom operators
typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);

View File

@ -8548,6 +8548,69 @@ static void ggml_compute_forward_group_norm(
}
}
// ggml_compute_forward_l2_norm
static void ggml_compute_forward_l2_norm_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(ggml_are_same_shape(src0, dst));
GGML_ASSERT(src0->nb[0] == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
GGML_TENSOR_UNARY_OP_LOCALS
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
GGML_ASSERT(eps >= 0.0f);
// TODO: optimize
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
ggml_float sum = 0.0;
for (int64_t i00 = 0; i00 < ne00; i00++) {
sum += (ggml_float)(x[i00] * x[i00]);
}
float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
memcpy(y, x, ne00 * sizeof(float));
const float scale = 1.0f/fmaxf(sqrtf(sum), eps);
ggml_vec_scale_f32(ne00, y, scale);
}
}
}
}
static void ggml_compute_forward_l2_norm(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_l2_norm_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_mul_mat
static void ggml_compute_forward_mul_mat_one_chunk(
@ -13604,6 +13667,184 @@ static void ggml_compute_forward_gla(
}
}
// ggml_compute_forward_rwkv_wkv7
static void ggml_compute_forward_rwkv_wkv7_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const int64_t T = dst->src[1]->ne[2];
const int64_t C = dst->ne[0];
const int64_t HEADS = dst->src[1]->ne[1];
const int64_t n_seqs = dst->src[6]->ne[1];
const int64_t head_size = C / HEADS;
float * dst_data = (float *) dst->data;
float * state = ((float *) dst->data) + C * T;
const int ith = params->ith;
const int nth = params->nth;
if (ith >= HEADS) {
return;
}
const int h_start = (HEADS * ith) / nth;
const int h_end = ((HEADS * (ith + 1)) / nth < HEADS) ?
(HEADS * (ith + 1)) / nth : HEADS;
float * r = (float *) dst->src[0]->data;
float * w = (float *) dst->src[1]->data;
float * k = (float *) dst->src[2]->data;
float * v = (float *) dst->src[3]->data;
float * a = (float *) dst->src[4]->data;
float * b = (float *) dst->src[5]->data;
int64_t t_stride = HEADS * head_size; // Same to C
int64_t h_stride = C / HEADS;
GGML_ASSERT(C % HEADS == 0); // C must be divisible by HEADS
int64_t h_stride_2d = head_size * head_size;
#if defined(GGML_SIMD)
for (int64_t t = 0; t < T; t++) {
int64_t t_offset = t * t_stride;
int64_t state_offset = head_size * C * (t / (T / n_seqs));
float * state_cur = state + state_offset;
float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset;
for (int64_t h = h_start; h < h_end; h++) {
int64_t h_offset = h * h_stride;
int64_t t_h_offset = t_offset + h_offset;
int64_t h_2d_offset = h * h_stride_2d;
for (int64_t ii = 0; ii < head_size; ii++) {
int64_t t_h_i_offset = t_h_offset + ii;
int64_t h_2d_i_offset = h_2d_offset + ii * h_stride;
GGML_F32_VEC v_vec = GGML_F32_VEC_SET1(v[t_h_i_offset]);
float sa = 0;
{
GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
GGML_F32_VEC ax[GGML_F32_ARR];
GGML_F32_VEC ay[GGML_F32_ARR];
for (int64_t j = 0; j < head_size; j += GGML_F32_STEP) {
for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) {
ax[kk] = GGML_F32_VEC_LOAD(&a[t_h_offset + j + kk * GGML_F32_EPR]);
ay[kk] = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_offset + j + kk * GGML_F32_EPR]);
sum[kk] = GGML_F32_VEC_FMA(sum[kk], ax[kk], ay[kk]);
}
}
GGML_F32_VEC_REDUCE(sa, sum);
}
GGML_F32_VEC sa_vec = GGML_F32_VEC_SET1(sa);
int64_t j = 0;
GGML_F32_VEC result_vec[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
for (; j < head_size; j += GGML_F32_STEP) {
for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) {
int64_t t_h_j_offset = t_h_offset + j + kk * GGML_F32_EPR;
int64_t h_2d_i_j_offset = h_2d_i_offset + j + kk * GGML_F32_EPR;
GGML_F32_VEC r_vec = GGML_F32_VEC_LOAD(&r[t_h_j_offset]);
GGML_F32_VEC w_vec = GGML_F32_VEC_LOAD(&w[t_h_j_offset]);
GGML_F32_VEC k_vec = GGML_F32_VEC_LOAD(&k[t_h_j_offset]);
GGML_F32_VEC b_vec = GGML_F32_VEC_LOAD(&b[t_h_j_offset]);
k_vec = GGML_F32_VEC_MUL(v_vec, k_vec);
GGML_F32_VEC state_vec = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_j_offset]);
// kv + s * decay + sa * b
state_vec = GGML_F32_VEC_FMA(k_vec, state_vec, w_vec);
state_vec = GGML_F32_VEC_FMA(state_vec, sa_vec, b_vec);
GGML_F32_VEC_STORE(&state_cur[h_2d_i_j_offset], state_vec);
result_vec[kk] = GGML_F32_VEC_FMA(result_vec[kk], state_vec, r_vec);
}
}
GGML_F32_VEC_REDUCE(dst_data[t_h_i_offset], result_vec);
// There shouldn't be left-overs though.
for (; j < head_size; j++) {
int64_t t_h_j_offset = t_h_offset + j;
int64_t h_2d_i_j_offset = h_2d_i_offset + j;
float r_val = r[t_h_j_offset];
float w_val = w[t_h_j_offset];
float k_val = k[t_h_j_offset];
float b_val = b[t_h_j_offset];
float kv_val = v[t_h_i_offset] * k_val;
float prev_state_val = state_prev[h_2d_i_j_offset];
state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val;
dst_data[t_h_i_offset] += state_cur[h_2d_i_j_offset] * r_val;
}
}
}
}
#else
for (int64_t t = 0; t < T; t++) {
int64_t t_offset = t * t_stride;
int64_t state_offset = head_size * C * (t / (T / n_seqs));
float * state_cur = state + state_offset;
float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset;
for (int64_t h = h_start; h < h_end; h++) {
int64_t h_offset = h * h_stride;
int64_t t_h_offset = t_offset + h_offset;
int64_t h_2d_offset = h * h_stride_2d;
for (int64_t i = 0; i < head_size; i++) {
int64_t t_h_i_offset = t_h_offset + i;
int64_t h_2d_i_offset = h_2d_offset + i * h_stride;
float v_val = v[t_h_i_offset];
float sa = 0, result = 0;
for (int64_t j = 0; j < head_size; j++) {
sa += a[t_h_offset + j] * state_prev[h_2d_i_offset + j];
}
for (int64_t j = 0; j < head_size; j++) {
int64_t t_h_j_offset = t_h_offset + j;
int64_t h_2d_i_j_offset = h_2d_i_offset + j;
float r_val = r[t_h_j_offset];
float w_val = w[t_h_j_offset];
float k_val = k[t_h_j_offset];
float b_val = b[t_h_j_offset];
float kv_val = v_val * k_val;
float prev_state_val = state_prev[h_2d_i_j_offset];
state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val;
result += state_cur[h_2d_i_j_offset] * r_val;
}
dst_data[t_h_i_offset] = result;
}
}
}
#endif
}
static void ggml_compute_forward_rwkv_wkv7(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_rwkv_wkv7_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_map_unary
static void ggml_compute_forward_map_unary_f32(
@ -14170,6 +14411,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
{
ggml_compute_forward_group_norm(params, tensor);
} break;
case GGML_OP_L2_NORM:
{
ggml_compute_forward_l2_norm(params, tensor);
} break;
case GGML_OP_MUL_MAT:
{
ggml_compute_forward_mul_mat(params, tensor);
@ -14357,6 +14602,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
{
ggml_compute_forward_gla(params, tensor);
} break;
case GGML_OP_RWKV_WKV7:
{
ggml_compute_forward_rwkv_wkv7(params, tensor);
} break;
case GGML_OP_MAP_UNARY:
{
ggml_unary_op_f32_t fun;
@ -14582,6 +14831,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
case GGML_OP_NORM:
case GGML_OP_RMS_NORM:
case GGML_OP_RMS_NORM_BACK:
case GGML_OP_L2_NORM:
case GGML_OP_GROUP_NORM:
case GGML_OP_CONCAT:
case GGML_OP_MUL_MAT:
@ -14648,14 +14898,15 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
case GGML_OP_FLASH_ATTN_BACK:
case GGML_OP_SSM_CONV:
case GGML_OP_SSM_SCAN:
case GGML_OP_RWKV_WKV6:
case GGML_OP_GATED_LINEAR_ATTN:
case GGML_OP_RWKV_WKV7:
{
n_tasks = n_threads;
} break;
case GGML_OP_WIN_PART:
case GGML_OP_WIN_UNPART:
case GGML_OP_GET_REL_POS:
case GGML_OP_RWKV_WKV6:
case GGML_OP_GATED_LINEAR_ATTN:
case GGML_OP_MAP_UNARY:
case GGML_OP_MAP_BINARY:
case GGML_OP_MAP_CUSTOM1_F32:

View File

@ -36,7 +36,7 @@
#include "ggml-cuda/tsembd.cuh"
#include "ggml-cuda/unary.cuh"
#include "ggml-cuda/upscale.cuh"
#include "ggml-cuda/wkv6.cuh"
#include "ggml-cuda/wkv.cuh"
#include "ggml-cuda/gla.cuh"
#include "ggml.h"
@ -2196,6 +2196,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_OP_GROUP_NORM:
ggml_cuda_op_group_norm(ctx, dst);
break;
case GGML_OP_L2_NORM:
ggml_cuda_op_l2_norm(ctx, dst);
break;
case GGML_OP_CONCAT:
ggml_cuda_op_concat(ctx, dst);
break;
@ -2304,6 +2307,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_OP_GATED_LINEAR_ATTN:
ggml_cuda_op_gated_linear_attn(ctx, dst);
break;
case GGML_OP_RWKV_WKV7:
ggml_cuda_op_rwkv_wkv7(ctx, dst);
break;
case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
ggml_cuda_cross_entropy_loss_back(ctx, dst);
break;
@ -3161,6 +3167,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
break;
case GGML_OP_NORM:
case GGML_OP_RMS_NORM:
case GGML_OP_L2_NORM:
return true;
case GGML_OP_RMS_NORM_BACK:
return ggml_is_contiguous(op->src[0]) && op->ne[0] % WARP_SIZE == 0;
@ -3215,6 +3222,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_OP_LEAKY_RELU:
case GGML_OP_RWKV_WKV6:
case GGML_OP_GATED_LINEAR_ATTN:
case GGML_OP_RWKV_WKV7:
return true;
case GGML_OP_FLASH_ATTN_EXT: {
#ifndef FLASH_ATTN_AVAILABLE

View File

@ -201,6 +201,85 @@ static __global__ void rms_norm_back_f32(
}
}
// template <int block_size>
// static __global__ void l2_norm_f32(const float * x, float * dst, const int ncols, const float eps) {
// const int row = blockIdx.x*blockDim.y + threadIdx.y;
// const int tid = threadIdx.x;
// float tmp = 0.0f; // partial sum for thread in warp
// for (int col = tid; col < ncols; col += block_size) {
// const float xi = x[row*ncols + col];
// tmp += xi * xi;
// }
// // sum up partial sums
// tmp = warp_reduce_sum(tmp);
// if (block_size > WARP_SIZE) {
// __shared__ float s_sum[32];
// int warp_id = threadIdx.x / WARP_SIZE;
// int lane_id = threadIdx.x % WARP_SIZE;
// if (lane_id == 0) {
// s_sum[warp_id] = tmp;
// }
// __syncthreads();
// tmp = s_sum[lane_id];
// tmp = warp_reduce_sum(tmp);
// }
// // from https://pytorch.org/docs/stable/generated/torch.nn.functional.normalize.html
// const float scale = rsqrtf(fmaxf(tmp, eps * eps));
// for (int col = tid; col < ncols; col += block_size) {
// dst[row*ncols + col] = scale * x[row*ncols + col];
// }
// }
template <int block_size>
static __global__ void l2_norm_f32(
const float * x, float * dst, const int ncols, const int64_t stride_row, const int64_t stride_channel,
const int64_t stride_sample, const float eps) {
const int nrows = gridDim.x;
const int nchannels = gridDim.y;
const int row = blockIdx.x;
const int channel = blockIdx.y;
const int sample = blockIdx.z;
const int tid = threadIdx.x;
x += sample*stride_sample + channel*stride_channel + row*stride_row;
dst += ((sample*nchannels + channel)*nrows + row)*ncols;
float tmp = 0.0f; // partial sum for thread in warp
for (int col = tid; col < ncols; col += block_size) {
const float xi = x[col];
tmp += xi * xi;
}
// sum up partial sums
tmp = warp_reduce_sum(tmp);
if constexpr (block_size > WARP_SIZE) {
static_assert(block_size == 1024, "unexpected block_size");
__shared__ float s_sum[32];
const int warp_id = threadIdx.x / WARP_SIZE;
const int lane_id = threadIdx.x % WARP_SIZE;
if (lane_id == 0) {
s_sum[warp_id] = tmp;
}
__syncthreads();
tmp = s_sum[lane_id];
tmp = warp_reduce_sum(tmp);
}
// from https://pytorch.org/docs/stable/generated/torch.nn.functional.normalize.html
const float scale = rsqrtf(fmaxf(tmp, eps * eps));
for (int col = tid; col < ncols; col += block_size) {
dst[col] = scale * x[col];
}
}
static void norm_f32_cuda(
const float * x, float * dst, const int ncols, const int nrows, const int nchannels, const int nsamples,
const int64_t stride_row, const int64_t stride_channel, const int64_t stride_sample, const float eps, cudaStream_t stream) {
@ -248,6 +327,19 @@ static void rms_norm_back_f32_cuda(const float * grad, const float * xf, float *
}
}
static void l2_norm_f32_cuda(
const float * x, float * dst, const int ncols, const int nrows, const int nchannels, const int nsamples,
const int64_t stride_row, const int64_t stride_channel, const int64_t stride_sample, const float eps, cudaStream_t stream) {
const dim3 blocks_num(nrows, nchannels, nsamples);
if (ncols < 1024) {
const dim3 block_dims(WARP_SIZE, 1, 1);
l2_norm_f32<WARP_SIZE><<<blocks_num, block_dims, 0, stream>>>(x, dst, ncols, stride_row, stride_channel, stride_sample, eps);
} else {
const dim3 block_dims(1024, 1, 1);
l2_norm_f32<1024><<<blocks_num, block_dims, 0, stream>>>(x, dst, ncols, stride_row, stride_channel, stride_sample, eps);
}
}
void ggml_cuda_op_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const float * src0_d = (const float *) src0->data;
@ -340,3 +432,27 @@ void ggml_cuda_op_rms_norm_back(ggml_backend_cuda_context & ctx, ggml_tensor * d
rms_norm_back_f32_cuda(grad_d, src0f_d, dst_d, ne00, nrows, eps, stream);
}
void ggml_cuda_op_l2_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const float * src0_d = (const float *) src0->data;
float * dst_d = (float *) dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_TENSOR_UNARY_OP_LOCALS;
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
GGML_ASSERT(eps >= 0.0f);
const size_t ts0 = ggml_type_size(src0->type);
GGML_ASSERT(nb00 == ts0);
const int64_t s01 = nb01 / ts0;
const int64_t s02 = nb02 / ts0;
const int64_t s03 = nb03 / ts0;
l2_norm_f32_cuda(src0_d, dst_d, ne00, ne01, ne02, ne03, s01, s02, s03, eps, stream);
}

View File

@ -7,3 +7,5 @@ void ggml_cuda_op_group_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst)
void ggml_cuda_op_rms_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_rms_norm_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_l2_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

199
ggml/src/ggml-cuda/wkv.cu Normal file
View File

@ -0,0 +1,199 @@
#include "common.cuh"
#include "wkv.cuh"
template <int block_size>
static __global__ void rwkv_wkv_f32(const int B, const int T, const int C, const int H, const float * k, const float * v, const float * r, const float * tf, const float * td, const float * s, float * dst) {
const int tid = threadIdx.x;
const int bid = blockIdx.x;
const int head_size = block_size;
const int batch_i = bid / H;
const int head_i = bid % H;
const int state_size = C * head_size;
const int n_seq_tokens = T / B;
float state[head_size];
__shared__ float _k[head_size], _r[head_size], _tf[head_size], _td[head_size];
#pragma unroll
for (int i = 0; i < head_size; i++) {
state[i] = s[batch_i * state_size + head_i * head_size * head_size + i * head_size + tid];
}
__syncthreads();
_tf[tid] = tf[head_i * head_size + tid];
__syncthreads();
for (int t = batch_i * n_seq_tokens * C + head_i * head_size + tid; t < (batch_i + 1) * n_seq_tokens * C + head_i * head_size + tid; t += C) {
__syncthreads();
_k[tid] = k[t];
_r[tid] = r[t];
_td[tid] = td[t];
__syncthreads();
const float _v = v[t];
float y = 0;
for (int j = 0; j < head_size; j += 4) {
const float4& k = (float4&)(_k[j]);
const float4& r = (float4&)(_r[j]);
const float4& tf = (float4&)(_tf[j]);
const float4& td = (float4&)(_td[j]);
float4& s = (float4&)(state[j]);
float4 kv;
kv.x = k.x * _v;
kv.y = k.y * _v;
kv.z = k.z * _v;
kv.w = k.w * _v;
y += r.x * (tf.x * kv.x + s.x);
y += r.y * (tf.y * kv.y + s.y);
y += r.z * (tf.z * kv.z + s.z);
y += r.w * (tf.w * kv.w + s.w);
s.x = s.x * td.x + kv.x;
s.y = s.y * td.y + kv.y;
s.z = s.z * td.z + kv.z;
s.w = s.w * td.w + kv.w;
}
dst[t] = y;
}
#pragma unroll
for (int i = 0; i < head_size; i++) {
dst[T * C + batch_i * state_size + head_i * head_size * head_size + i * head_size + tid] = state[i];
}
}
template <int block_size>
static __global__ void rwkv_wkv7_f32(const int B, const int T, const int C, const int H, const float * r, const float * w, const float * k, const float * v, const float * a, const float * b, const float * s, float * dst) {
const int tid = threadIdx.x;
const int bid = blockIdx.x;
const int head_size = block_size;
const int batch_i = bid / H;
const int head_i = bid % H;
const int state_size = C * head_size;
const int n_seq_tokens = T / B;
float state[head_size];
__shared__ float _r[head_size], _w[head_size], _k[head_size], _a[head_size], _b[head_size];
#ifndef GGML_USE_MUSA
#pragma unroll
#endif
for (int i = 0; i < head_size; i++) {
state[i] = s[batch_i * state_size + head_i * head_size * head_size + tid * head_size + i];
}
for (int t = batch_i * n_seq_tokens * C + head_i * head_size + tid; t < (batch_i + 1) * n_seq_tokens * C + head_i * head_size + tid; t += C) {
__syncthreads();
_r[tid] = r[t];
_w[tid] = w[t];
_k[tid] = k[t];
_a[tid] = a[t];
_b[tid] = b[t];
__syncthreads();
float sa = 0;
#pragma unroll
for (int j = 0; j < head_size; j += 4)
{
const float4& a = (float4&)(_a[j]);
const float4& s = (float4&)(state[j]);
sa += a.x * s.x;
sa += a.y * s.y;
sa += a.z * s.z;
sa += a.w * s.w;
}
const float _v = v[t];
float y = 0;
for (int j = 0; j < head_size; j += 4) {
const float4& r = (float4&)(_r[j]);
const float4& w = (float4&)(_w[j]);
const float4& k = (float4&)(_k[j]);
const float4& b = (float4&)(_b[j]);
float4& s = (float4&)(state[j]);
float4 kv;
kv.x = k.x * _v;
kv.y = k.y * _v;
kv.z = k.z * _v;
kv.w = k.w * _v;
s.x = s.x * w.x + kv.x + sa * b.x;
s.y = s.y * w.y + kv.y + sa * b.y;
s.z = s.z * w.z + kv.z + sa * b.z;
s.w = s.w * w.w + kv.w + sa * b.w;
y += s.x * r.x;
y += s.y * r.y;
y += s.z * r.z;
y += s.w * r.w;
}
dst[t] = y;
}
#pragma unroll
for (int i = 0; i < head_size; i++) {
dst[T * C + batch_i * state_size + head_i * head_size * head_size + tid * head_size + i] = state[i];
}
}
void ggml_cuda_op_rwkv_wkv6(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const float * k_d = (const float *)dst->src[0]->data;
const float * v_d = (const float *)dst->src[1]->data;
const float * r_d = (const float *)dst->src[2]->data;
const float * tf_d = (const float *)dst->src[3]->data;
const float * td_d = (const float *)dst->src[4]->data;
const float * s_d = (const float *)dst->src[5]->data;
const int64_t B = dst->src[5]->ne[1];
const int64_t T = dst->src[0]->ne[2];
const int64_t C = dst->ne[0];
const int64_t H = dst->src[0]->ne[1];
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(dst->src[5]->type == GGML_TYPE_F32);
GGML_ASSERT(C % H == 0);
GGML_ASSERT(C / H == CUDA_WKV_BLOCK_SIZE || C / H == CUDA_WKV_BLOCK_SIZE * 2);
if (C / H == CUDA_WKV_BLOCK_SIZE) {
rwkv_wkv_f32<CUDA_WKV_BLOCK_SIZE><<<B * H, C / H, 0, stream>>>(B, T, C, H, k_d, v_d, r_d, tf_d, td_d, s_d, dst_d);
} else {
rwkv_wkv_f32<CUDA_WKV_BLOCK_SIZE * 2><<<B * H, C / H, 0, stream>>>(B, T, C, H, k_d, v_d, r_d, tf_d, td_d, s_d, dst_d);
}
}
void ggml_cuda_op_rwkv_wkv7(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const float * r_d = (const float *)dst->src[0]->data;
const float * w_d = (const float *)dst->src[1]->data;
const float * k_d = (const float *)dst->src[2]->data;
const float * v_d = (const float *)dst->src[3]->data;
const float * a_d = (const float *)dst->src[4]->data;
const float * b_d = (const float *)dst->src[5]->data;
const float * s_d = (const float *)dst->src[6]->data;
const int64_t B = dst->src[6]->ne[1];
const int64_t T = dst->src[0]->ne[2];
const int64_t C = dst->ne[0];
const int64_t H = dst->src[0]->ne[1];
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(dst->src[6]->type == GGML_TYPE_F32);
GGML_ASSERT(C % H == 0);
GGML_ASSERT(C / H == CUDA_WKV_BLOCK_SIZE || C / H == CUDA_WKV_BLOCK_SIZE * 2);
if (C / H == CUDA_WKV_BLOCK_SIZE) {
rwkv_wkv7_f32<CUDA_WKV_BLOCK_SIZE><<<B * H, C / H, 0, stream>>>(B, T, C, H, r_d, w_d, k_d, v_d, a_d, b_d, s_d, dst_d);
} else {
rwkv_wkv7_f32<CUDA_WKV_BLOCK_SIZE * 2><<<B * H, C / H, 0, stream>>>(B, T, C, H, r_d, w_d, k_d, v_d, a_d, b_d, s_d, dst_d);
}
}

View File

@ -0,0 +1,7 @@
#include "common.cuh"
#define CUDA_WKV_BLOCK_SIZE 64
void ggml_cuda_op_rwkv_wkv6(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_rwkv_wkv7(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View File

@ -285,6 +285,13 @@ typedef struct {
float eps;
} ggml_metal_kargs_rms_norm;
typedef struct {
int32_t ne00;
int32_t ne00_4;
uint64_t nb01;
float eps;
} ggml_metal_kargs_l2_norm;
typedef struct {
int64_t ne00;
int64_t ne01;

View File

@ -184,10 +184,13 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS,
GGML_METAL_KERNEL_TYPE_GET_ROWS_I32,
GGML_METAL_KERNEL_TYPE_RMS_NORM,
GGML_METAL_KERNEL_TYPE_L2_NORM,
GGML_METAL_KERNEL_TYPE_GROUP_NORM,
GGML_METAL_KERNEL_TYPE_NORM,
GGML_METAL_KERNEL_TYPE_SSM_CONV_F32,
GGML_METAL_KERNEL_TYPE_SSM_SCAN_F32,
GGML_METAL_KERNEL_TYPE_RWKV_WKV6_F32,
GGML_METAL_KERNEL_TYPE_RWKV_WKV7_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_1ROW,
@ -810,10 +813,13 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS, get_rows_iq4_xs, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_I32, get_rows_i32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RMS_NORM, rms_norm, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_L2_NORM, l2_norm, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GROUP_NORM, group_norm, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_NORM, norm, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SSM_CONV_F32, ssm_conv_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SSM_SCAN_F32, ssm_scan_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RWKV_WKV6_F32, rwkv_wkv6_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RWKV_WKV7_F32, rwkv_wkv7_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32, mul_mv_f32_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_F32, mul_mv_bf16_f32, has_simdgroup_reduction && use_bfloat);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_F32_1ROW, mul_mv_bf16_f32_1row, has_simdgroup_reduction && use_bfloat);
@ -1251,6 +1257,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
case GGML_OP_GROUP_NORM:
return has_simdgroup_reduction && ggml_is_contiguous(op->src[0]);
case GGML_OP_RMS_NORM:
case GGML_OP_L2_NORM:
return has_simdgroup_reduction && (op->ne[0] % 4 == 0 && ggml_is_contiguous_1(op->src[0]));
case GGML_OP_ARGMAX:
return true;
@ -1288,6 +1295,8 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
return has_simdgroup_mm; // TODO: over-restricted for vec-kernels
case GGML_OP_SSM_CONV:
case GGML_OP_SSM_SCAN:
case GGML_OP_RWKV_WKV6:
case GGML_OP_RWKV_WKV7:
return true;
case GGML_OP_MUL_MAT:
case GGML_OP_MUL_MAT_ID:
@ -2216,6 +2225,83 @@ static void ggml_metal_encode_node(
[encoder dispatchThreadgroups:MTLSizeMake(d_inner, n_seqs, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_OP_RWKV_WKV6:
{
const int64_t B = dst->src[5]->ne[1];
const int64_t T = dst->src[0]->ne[2];
const int64_t C = dst->ne[0];
const int64_t H = dst->src[0]->ne[1];
GGML_ASSERT(dst->src[5]->type == GGML_TYPE_F32);
GGML_ASSERT(C % H == 0);
GGML_ASSERT(C / H == 64);
size_t offs_src3 = 0;
size_t offs_src4 = 0;
size_t offs_src5 = 0;
id<MTLBuffer> id_src3 = dst->src[3] ? ggml_metal_get_buffer(dst->src[3], &offs_src3) : nil;
id<MTLBuffer> id_src4 = dst->src[4] ? ggml_metal_get_buffer(dst->src[4], &offs_src4) : nil;
id<MTLBuffer> id_src5 = dst->src[5] ? ggml_metal_get_buffer(dst->src[5], &offs_src5) : nil;
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_RWKV_WKV6_F32].pipeline;
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_src2 offset:offs_src2 atIndex:2];
[encoder setBuffer:id_src3 offset:offs_src3 atIndex:3];
[encoder setBuffer:id_src4 offset:offs_src4 atIndex:4];
[encoder setBuffer:id_src5 offset:offs_src5 atIndex:5];
[encoder setBuffer:id_dst offset:offs_dst atIndex:6];
[encoder setBytes:&B length:sizeof(B) atIndex:7];
[encoder setBytes:&T length:sizeof(T) atIndex:8];
[encoder setBytes:&C length:sizeof(C) atIndex:9];
[encoder setBytes:&H length:sizeof(H) atIndex:10];
[encoder dispatchThreadgroups:MTLSizeMake(B * H, 1, 1) threadsPerThreadgroup:MTLSizeMake(C/ H, 1, 1)];
} break;
case GGML_OP_RWKV_WKV7:
{
const int64_t B = dst->src[6]->ne[1];
const int64_t T = dst->src[0]->ne[2];
const int64_t C = dst->ne[0];
const int64_t H = dst->src[0]->ne[1];
GGML_ASSERT(dst->src[6]->type == GGML_TYPE_F32);
GGML_ASSERT(C % H == 0);
GGML_ASSERT(C / H == 64);
size_t offs_src3 = 0;
size_t offs_src4 = 0;
size_t offs_src5 = 0;
size_t offs_src6 = 0;
id<MTLBuffer> id_src3 = dst->src[3] ? ggml_metal_get_buffer(dst->src[3], &offs_src3) : nil;
id<MTLBuffer> id_src4 = dst->src[4] ? ggml_metal_get_buffer(dst->src[4], &offs_src4) : nil;
id<MTLBuffer> id_src5 = dst->src[5] ? ggml_metal_get_buffer(dst->src[5], &offs_src5) : nil;
id<MTLBuffer> id_src6 = dst->src[6] ? ggml_metal_get_buffer(dst->src[6], &offs_src6) : nil;
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_RWKV_WKV7_F32].pipeline;
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_src2 offset:offs_src2 atIndex:2];
[encoder setBuffer:id_src3 offset:offs_src3 atIndex:3];
[encoder setBuffer:id_src4 offset:offs_src4 atIndex:4];
[encoder setBuffer:id_src5 offset:offs_src5 atIndex:5];
[encoder setBuffer:id_src6 offset:offs_src6 atIndex:6];
[encoder setBuffer:id_dst offset:offs_dst atIndex:7];
[encoder setBytes:&B length:sizeof(B) atIndex:8];
[encoder setBytes:&T length:sizeof(T) atIndex:9];
[encoder setBytes:&C length:sizeof(C) atIndex:10];
[encoder setBytes:&H length:sizeof(H) atIndex:11];
[encoder dispatchThreadgroups:MTLSizeMake(B * H, 1, 1) threadsPerThreadgroup:MTLSizeMake(C/ H, 1, 1)];
} break;
case GGML_OP_MUL_MAT:
{
GGML_ASSERT(ne00 == ne10);
@ -3122,6 +3208,42 @@ static void ggml_metal_encode_node(
const int64_t nrows = ggml_nrows(src0);
[encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
case GGML_OP_L2_NORM:
{
GGML_ASSERT(ne00 % 4 == 0);
GGML_ASSERT(ggml_is_contiguous_1(src0));
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_L2_NORM].pipeline;
int nth = 32; // SIMD width
while (nth < ne00/4 && nth < (int) pipeline.maxTotalThreadsPerThreadgroup) {
nth *= 2;
}
nth = MIN(nth, ne00/4);
ggml_metal_kargs_l2_norm args = {
/*.ne00 =*/ ne00,
/*.ne00_4 =*/ ne00/4,
/*.nb01 =*/ nb01,
/*.eps =*/ eps,
};
[encoder setComputePipelineState:pipeline];
[encoder setBytes:&args length:sizeof(args) atIndex:0];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
const int64_t nrows = ggml_nrows(src0);
[encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
case GGML_OP_GROUP_NORM:

View File

@ -1295,6 +1295,184 @@ kernel void kernel_ssm_scan_f32(
}
}
kernel void kernel_rwkv_wkv6_f32(
device const float * k,
device const float * v,
device const float * r,
device const float * tf,
device const float * td,
device const float * state_in,
device float * dst,
constant uint & B,
constant uint & T,
constant uint & C,
constant uint & H,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
const uint head_size = 64; // TODO: support head_size = 128
const uint batch_id = tgpig.x / H;
const uint head_id = tgpig.x % H;
const uint tid = tpitg.x;
if (batch_id >= B || head_id >= H) {
return;
}
const uint state_size = C * head_size;
const uint n_seq_tokens = T / B;
threadgroup float _k[head_size];
threadgroup float _r[head_size];
threadgroup float _tf[head_size];
threadgroup float _td[head_size];
float state[head_size];
for (uint i = 0; i < head_size; i++) {
state[i] = state_in[batch_id * state_size + head_id * head_size * head_size
+ i * head_size + tid];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
_tf[tid] = tf[head_id * head_size + tid];
threadgroup_barrier(mem_flags::mem_threadgroup);
const uint start_t = batch_id * n_seq_tokens * C + head_id * head_size + tid;
const uint end_t = (batch_id + 1) * n_seq_tokens * C + head_id * head_size + tid;
for (uint t = start_t; t < end_t; t += C) {
threadgroup_barrier(mem_flags::mem_threadgroup);
_k[tid] = k[t];
_r[tid] = r[t];
_td[tid] = td[t];
threadgroup_barrier(mem_flags::mem_threadgroup);
const float v_val = v[t];
float y = 0.0;
for (uint j = 0; j < head_size; j += 4) {
float4 k_vec = float4(_k[j], _k[j+1], _k[j+2], _k[j+3]);
float4 r_vec = float4(_r[j], _r[j+1], _r[j+2], _r[j+3]);
float4 tf_vec = float4(_tf[j], _tf[j+1], _tf[j+2], _tf[j+3]);
float4 td_vec = float4(_td[j], _td[j+1], _td[j+2], _td[j+3]);
float4 s_vec = float4(state[j], state[j+1], state[j+2], state[j+3]);
float4 kv = k_vec * v_val;
float4 temp = tf_vec * kv + s_vec;
y += dot(r_vec, temp);
s_vec = s_vec * td_vec + kv;
state[j] = s_vec[0];
state[j+1] = s_vec[1];
state[j+2] = s_vec[2];
state[j+3] = s_vec[3];
}
dst[t] = y;
}
for (uint i = 0; i < head_size; i++) {
dst[T * C + batch_id * state_size + head_id * head_size * head_size
+ i * head_size + tid] = state[i];
}
}
kernel void kernel_rwkv_wkv7_f32(
device const float * r,
device const float * w,
device const float * k,
device const float * v,
device const float * a,
device const float * b,
device const float * state_in,
device float * dst,
constant uint & B,
constant uint & T,
constant uint & C,
constant uint & H,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
const uint head_size = 64; // TODO: support head_size = 128
const uint batch_id = tgpig.x / H;
const uint head_id = tgpig.x % H;
const uint tid = tpitg.x;
if (batch_id >= B || head_id >= H) {
return;
}
const uint state_size = C * head_size;
const uint n_seq_tokens = T / B;
threadgroup float _r[head_size];
threadgroup float _w[head_size];
threadgroup float _k[head_size];
threadgroup float _a[head_size];
threadgroup float _b[head_size];
float state[head_size];
for (uint i = 0; i < head_size; i++) {
state[i] = state_in[batch_id * state_size + head_id * head_size * head_size
+ tid * head_size + i];
}
const uint start_t = batch_id * n_seq_tokens * C + head_id * head_size + tid;
const uint end_t = (batch_id + 1) * n_seq_tokens * C + head_id * head_size + tid;
for (uint t = start_t; t < end_t; t += C) {
threadgroup_barrier(mem_flags::mem_threadgroup);
_r[tid] = r[t];
_w[tid] = w[t];
_k[tid] = k[t];
_a[tid] = a[t];
_b[tid] = b[t];
threadgroup_barrier(mem_flags::mem_threadgroup);
const float v_val = v[t];
float y = 0.0, sa = 0.0;
float4 sa_vec(0.0);
for (int j = 0; j < head_size; j += 4) {
float4 a_vec = float4(_a[j], _a[j+1], _a[j+2], _a[j+3]);
float4 s_vec = float4(state[j], state[j+1], state[j+2], state[j+3]);
sa_vec += a_vec * s_vec;
}
sa = sa_vec[0] + sa_vec[1] + sa_vec[2] + sa_vec[3];
for (uint j = 0; j < head_size; j += 4) {
float4 r_vec = float4(_r[j], _r[j+1], _r[j+2], _r[j+3]);
float4 w_vec = float4(_w[j], _w[j+1], _w[j+2], _w[j+3]);
float4 k_vec = float4(_k[j], _k[j+1], _k[j+2], _k[j+3]);
float4 b_vec = float4(_b[j], _b[j+1], _b[j+2], _b[j+3]);
float4 s_vec = float4(state[j], state[j+1], state[j+2], state[j+3]);
float4 kv = k_vec * v_val;
s_vec = s_vec * w_vec + kv + sa * b_vec;
y += dot(s_vec, r_vec);
state[j] = s_vec[0];
state[j+1] = s_vec[1];
state[j+2] = s_vec[2];
state[j+3] = s_vec[3];
}
dst[t] = y;
}
for (uint i = 0; i < head_size; i++) {
dst[T * C + batch_id * state_size + head_id * head_size * head_size
+ tid * head_size + i] = state[i];
}
}
kernel void kernel_argmax(
device const void * x,
device int32_t * dst,
@ -1463,6 +1641,49 @@ kernel void kernel_rms_norm(
}
}
kernel void kernel_l2_norm(
constant ggml_metal_kargs_l2_norm & args,
device const char * src0,
device char * dst,
threadgroup float * shmem_f32 [[threadgroup(0)]],
uint tgpig[[threadgroup_position_in_grid]],
ushort tpitg[[thread_position_in_threadgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort ntg[[threads_per_threadgroup]]) {
if (sgitg == 0) {
shmem_f32[tiisg] = 0.0f;
}
device const float4 * x = (device const float4 *) (src0 + tgpig*args.nb01);
float sumf = 0.0f;
// parallel sum
for (int i00 = tpitg; i00 < args.ne00_4; i00 += ntg) {
sumf += dot(x[i00], x[i00]);
}
sumf = simd_sum(sumf);
threadgroup_barrier(mem_flags::mem_threadgroup);
if (tiisg == 0) {
shmem_f32[sgitg] = sumf;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
sumf = shmem_f32[tiisg];
sumf = simd_sum(sumf);
const float scale = 1.0f/sqrt(max(sumf, args.eps));
device float4 * y = (device float4 *) dst + tgpig*args.ne00_4;
for (int i00 = tpitg; i00 < args.ne00_4; i00 += ntg) {
y[i00] = x[i00] * scale;
}
}
kernel void kernel_group_norm(
device const float * src0,
device float * dst,

View File

@ -26,7 +26,7 @@
#include "softmax.hpp"
#include "tsembd.hpp"
#include "im2col.hpp"
#include "wkv6.hpp"
#include "wkv.hpp"
#include "outprod.hpp"
#include "element_wise.hpp"
#include "cpy.hpp"

View File

@ -2696,6 +2696,12 @@ static void ggml_sycl_rms_norm(ggml_backend_sycl_context & ctx, ggml_tensor * ds
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
static void ggml_sycl_l2_norm(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_l2_norm);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
static void ggml_sycl_group_norm(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_group_norm);
@ -3410,6 +3416,9 @@ bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct ggml_tens
case GGML_OP_RMS_NORM:
ggml_sycl_rms_norm(ctx, dst);
break;
case GGML_OP_L2_NORM:
ggml_sycl_l2_norm(ctx, dst);
break;
case GGML_OP_MUL_MAT:
if (dst->src[0]->ne[3] != dst->src[1]->ne[3]) {
return false;
@ -3487,6 +3496,9 @@ bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct ggml_tens
case GGML_OP_RWKV_WKV6:
ggml_sycl_op_rwkv_wkv6(ctx, dst);
break;
case GGML_OP_RWKV_WKV7:
ggml_sycl_op_rwkv_wkv7(ctx, dst);
break;
case GGML_OP_GATED_LINEAR_ATTN:
ggml_sycl_op_gated_linear_attn(ctx, dst);
break;
@ -4012,6 +4024,7 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
return (op->src[0]->type == GGML_TYPE_F32);
case GGML_OP_NORM:
case GGML_OP_RMS_NORM:
case GGML_OP_L2_NORM:
case GGML_OP_GROUP_NORM:
return ggml_is_contiguous(op->src[0]);
case GGML_OP_SCALE:
@ -4045,6 +4058,7 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_OP_LEAKY_RELU:
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_RWKV_WKV6:
case GGML_OP_RWKV_WKV7:
case GGML_OP_GATED_LINEAR_ATTN:
return true;
default:

View File

@ -180,6 +180,50 @@ static void rms_norm_f32(const float* x, float* dst, const int ncols, const floa
}
}
static void l2_norm_f32(const float* x, float* dst, const int ncols, const float eps,
const sycl::nd_item<3>& item_ct1, float* s_sum, int block_size) {
const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
item_ct1.get_local_id(1);
const int tid = item_ct1.get_local_id(2);
const int nthreads = item_ct1.get_local_range(2);
const int nwarps = nthreads / WARP_SIZE;
float tmp = 0.0f; // partial sum for thread in warp
for (int col = tid; col < ncols; col += block_size) {
const float xi = x[row * ncols + col];
tmp += xi * xi;
}
// sum up partial sums
tmp = warp_reduce_sum(tmp, item_ct1);
if (block_size > WARP_SIZE) {
int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
if (lane_id == 0) {
s_sum[warp_id] = tmp;
}
/*
DPCT1118:3: SYCL group functions and algorithms must be encountered in
converged control flow. You may need to adjust the code.
*/
item_ct1.barrier(sycl::access::fence_space::local_space);
size_t nreduce = nwarps / WARP_SIZE;
tmp = 0.f;
for (size_t i = 0; i < nreduce; i += 1)
{
tmp += s_sum[lane_id + i * WARP_SIZE];
}
tmp = warp_reduce_sum(tmp, item_ct1);
}
const float scale = sycl::rsqrt(sycl::max(tmp, eps * eps));
for (int col = tid; col < ncols; col += block_size) {
dst[row * ncols + col] = scale * x[row * ncols + col];
}
}
static void norm_f32_sycl(const float* x, float* dst, const int ncols,
const int nrows, const float eps,
queue_ptr stream, int device) {
@ -311,6 +355,48 @@ static void rms_norm_f32_sycl(const float* x, float* dst, const int ncols,
}
}
static void l2_norm_f32_sycl(const float* x, float* dst, const int ncols,
const int nrows, const float eps,
queue_ptr stream, int device) {
GGML_ASSERT(ncols % WARP_SIZE == 0);
// printf("%s ncols=%d, nrows=%d, WARP_SIZE=%d\n", __func__, ncols, nrows, WARP_SIZE);
if (ncols < 1024) {
const sycl::range<3> block_dims(1, 1, WARP_SIZE);
stream->submit([&](sycl::handler& cgh) {
cgh.parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
block_dims),
[=](sycl::nd_item<3> item_ct1)
[[intel::reqd_sub_group_size(WARP_SIZE)]] {
l2_norm_f32(x, dst, ncols, eps, item_ct1,
nullptr, WARP_SIZE);
});
});
}
else {
const int work_group_size = ggml_sycl_info().max_work_group_sizes[device];
assert(work_group_size % (WARP_SIZE * WARP_SIZE) == 0);
const sycl::range<3> block_dims(1, 1, work_group_size);
/*
DPCT1049:19: The work-group size passed to the SYCL kernel may exceed
the limit. To get the device limit, query
info::device::max_work_group_size. Adjust the work-group size if needed.
*/
stream->submit([&](sycl::handler& cgh) {
sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(work_group_size / WARP_SIZE),
cgh);
cgh.parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
block_dims),
[=](sycl::nd_item<3> item_ct1)
[[intel::reqd_sub_group_size(WARP_SIZE)]] {
l2_norm_f32(x, dst, ncols, eps, item_ct1,
get_pointer(s_sum_acc_ct1), work_group_size);
});
});
}
}
void ggml_sycl_op_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0, const ggml_tensor* src1,
ggml_tensor* dst, const float* src0_dd,
const float* src1_dd, float* dst_dd,
@ -376,3 +462,25 @@ void ggml_sycl_op_rms_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* sr
(void)dst;
(void)src1_dd;
}
void ggml_sycl_op_l2_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0,
const ggml_tensor* src1, ggml_tensor* dst,
const float* src0_dd, const float* src1_dd,
float* dst_dd,
const queue_ptr& main_stream) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
const int64_t ne00 = src0->ne[0];
const int64_t nrows = ggml_nrows(src0);
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
l2_norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream, ctx.device);
(void)src1;
(void)dst;
(void)src1_dd;
}

View File

@ -32,4 +32,10 @@ void ggml_sycl_op_group_norm(ggml_backend_sycl_context& ctx, const ggml_tensor*
float* dst_dd,
const queue_ptr& main_stream);
void ggml_sycl_op_l2_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0,
const ggml_tensor* src1, ggml_tensor* dst,
const float* src0_dd, const float* src1_dd,
float* dst_dd,
const queue_ptr& main_stream);
#endif // GGML_SYCL_NORM_HPP

305
ggml/src/ggml-sycl/wkv.cpp Normal file
View File

@ -0,0 +1,305 @@
#include <sycl/sycl.hpp>
#include "wkv.hpp"
constexpr int WKV_BLOCK_SIZE = 64; // Matching CUDA_WKV_BLOCK_SIZE
// Helper function for the main kernel
template <int block_size>
static void rwkv_wkv6_f32_kernel(
const int B, const int T, const int C, const int H,
const float* k, const float* v, const float* r,
const float* tf, const float* td, const float* s,
float* dst, const sycl::nd_item<3>& item_ct1, float* shared_mem) {
const int tid = item_ct1.get_local_id(2);
const int bid = item_ct1.get_group(2);
const int head_size = block_size;
const int batch_i = bid / H;
const int head_i = bid % H;
const int state_size = C * head_size;
const int n_seq_tokens = T / B;
// Set up shared memory pointers
float* _k = shared_mem;
float* _r = _k + head_size;
float* _tf = _r + head_size;
float* _td = _tf + head_size;
// Local state array
float state[block_size];
// Load initial state
#pragma unroll
for (int i = 0; i < head_size; i++) {
state[i] = s[batch_i * state_size + head_i * head_size * head_size + i * head_size + tid];
}
// Sync threads before shared memory operations
item_ct1.barrier(sycl::access::fence_space::local_space);
// Load time-mixing parameters
_tf[tid] = tf[head_i * head_size + tid];
item_ct1.barrier(sycl::access::fence_space::local_space);
// Main sequence processing loop
for (int t = batch_i * n_seq_tokens * C + head_i * head_size + tid;
t < (batch_i + 1) * n_seq_tokens * C + head_i * head_size + tid;
t += C) {
item_ct1.barrier(sycl::access::fence_space::local_space);
// Load current timestep data to shared memory
_k[tid] = k[t];
_r[tid] = r[t];
_td[tid] = td[t];
item_ct1.barrier(sycl::access::fence_space::local_space);
const float _v = v[t];
float y = 0;
// Process in chunks of 4 for better vectorization
sycl::float4 k4, r4, tf4, td4, s4;
#pragma unroll
for (int j = 0; j < head_size; j += 4) {
// Load data in vec4 chunks
k4 = sycl::float4(_k[j], _k[j+1], _k[j+2], _k[j+3]);
r4 = sycl::float4(_r[j], _r[j+1], _r[j+2], _r[j+3]);
tf4 = sycl::float4(_tf[j], _tf[j+1], _tf[j+2], _tf[j+3]);
td4 = sycl::float4(_td[j], _td[j+1], _td[j+2], _td[j+3]);
s4 = sycl::float4(state[j], state[j+1], state[j+2], state[j+3]);
// Compute key-value product
sycl::float4 kv4 = k4 * _v;
// Accumulate weighted sum
y += sycl::dot(r4, tf4 * kv4 + s4);
// Update state
s4 = s4 * td4 + kv4;
// Store updated state
state[j] = s4.x();
state[j+1] = s4.y();
state[j+2] = s4.z();
state[j+3] = s4.w();
}
dst[t] = y;
}
// Save final state
#pragma unroll
for (int i = 0; i < head_size; i++) {
dst[T * C + batch_i * state_size + head_i * head_size * head_size + i * head_size + tid] = state[i];
}
}
template <int block_size>
static void rwkv_wkv7_f32_kernel(
const int B, const int T, const int C, const int H,
const float* r, const float* w, const float* k, const float* v,
const float* a, const float* b, const float* s,
float* dst, const sycl::nd_item<3>& item_ct1, float* shared_mem) {
const int tid = item_ct1.get_local_id(2);
const int bid = item_ct1.get_group(2);
const int head_size = block_size;
const int batch_i = bid / H;
const int head_i = bid % H;
const int state_size = C * head_size;
const int n_seq_tokens = T / B;
float* _r = shared_mem;
float* _w = _r + head_size;
float* _k = _w + head_size;
float* _a = _k + head_size;
float* _b = _a + head_size;
float state[block_size];
#pragma unroll
for (int i = 0; i < head_size; i++) {
state[i] = s[batch_i * state_size + head_i * head_size * head_size + tid * head_size + i];
}
for (int t = batch_i * n_seq_tokens * C + head_i * head_size + tid;
t < (batch_i + 1) * n_seq_tokens * C + head_i * head_size + tid;
t += C) {
item_ct1.barrier(sycl::access::fence_space::local_space);
_r[tid] = r[t];
_w[tid] = w[t];
_k[tid] = k[t];
_a[tid] = a[t];
_b[tid] = b[t];
item_ct1.barrier(sycl::access::fence_space::local_space);
const float _v = v[t];
float y = 0, sa = 0;
sycl::float4 a4, s4;
#pragma unroll
for (int j = 0; j < head_size; j += 4) {
a4 = sycl::float4(_a[j], _a[j+1], _a[j+2], _a[j+3]);
s4 = sycl::float4(state[j], state[j+1], state[j+2], state[j+3]);
sa += sycl::dot(a4, s4);
}
sycl::float4 r4, w4, k4, b4;
#pragma unroll
for (int j = 0; j < head_size; j += 4) {
r4 = sycl::float4(_r[j], _r[j+1], _r[j+2], _r[j+3]);
w4 = sycl::float4(_w[j], _w[j+1], _w[j+2], _w[j+3]);
k4 = sycl::float4(_k[j], _k[j+1], _k[j+2], _k[j+3]);
b4 = sycl::float4(_b[j], _b[j+1], _b[j+2], _b[j+3]);
s4 = sycl::float4(state[j], state[j+1], state[j+2], state[j+3]);
sycl::float4 kv4 = k4 * _v;
s4 = s4 * w4 + kv4 + sa * b4;
y += sycl::dot(r4, s4);
state[j] = s4.x();
state[j+1] = s4.y();
state[j+2] = s4.z();
state[j+3] = s4.w();
}
dst[t] = y;
}
#pragma unroll
for (int i = 0; i < head_size; i++) {
dst[T * C + batch_i * state_size + head_i * head_size * head_size + tid * head_size + i] = state[i];
}
}
void ggml_sycl_op_rwkv_wkv6(ggml_backend_sycl_context& ctx, ggml_tensor* dst) {
const ggml_tensor *src0 = dst->src[0];
const ggml_tensor *src1 = dst->src[1];
const float* k_d = (const float*)dst->src[0]->data;
const float* v_d = (const float*)dst->src[1]->data;
const float* r_d = (const float*)dst->src[2]->data;
const float* tf_d = (const float*)dst->src[3]->data;
const float* td_d = (const float*)dst->src[4]->data;
const float* s_d = (const float*)dst->src[5]->data;
float* dst_d = (float*)dst->data;
const int64_t B = dst->src[5]->ne[1];
const int64_t T = dst->src[0]->ne[2];
const int64_t C = dst->ne[0];
const int64_t H = dst->src[0]->ne[1];
GGML_ASSERT(dst->src[5]->type == GGML_TYPE_F32);
GGML_ASSERT(C % H == 0);
GGML_ASSERT(C / H == WKV_BLOCK_SIZE || C / H == WKV_BLOCK_SIZE * 2); // The current sycl kernel is designed for RWKV6, HEAD_SIZE == 64
dpct::queue_ptr stream = ctx.stream();
// Calculate execution configuration
const size_t shared_mem_size = C / H * 4 * sizeof(float); // For k, r, tf, td
sycl::range<3> block_dims(1, 1, C / H);
sycl::range<3> grid_dims(1, 1, B * H);
// Submit kernel
if (C / H == WKV_BLOCK_SIZE) {
stream->submit([&](sycl::handler& cgh) {
sycl::local_accessor<float, 1> shared_mem_acc(shared_mem_size, cgh);
cgh.parallel_for(
sycl::nd_range<3>(grid_dims * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) {
rwkv_wkv6_f32_kernel<WKV_BLOCK_SIZE>(
B, T, C, H, k_d, v_d, r_d, tf_d, td_d, s_d, dst_d,
item_ct1, (float*)shared_mem_acc.get_multi_ptr<sycl::access::decorated::no>().get()
);
});
});
} else {
stream->submit([&](sycl::handler& cgh) {
sycl::local_accessor<float, 1> shared_mem_acc(shared_mem_size, cgh);
cgh.parallel_for(
sycl::nd_range<3>(grid_dims * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) {
rwkv_wkv6_f32_kernel<WKV_BLOCK_SIZE * 2>(
B, T, C, H, k_d, v_d, r_d, tf_d, td_d, s_d, dst_d,
item_ct1, (float*)shared_mem_acc.get_multi_ptr<sycl::access::decorated::no>().get()
);
});
});
}
GGML_UNUSED(src0);
GGML_UNUSED(src1);
}
void ggml_sycl_op_rwkv_wkv7(ggml_backend_sycl_context& ctx, ggml_tensor* dst) {
const ggml_tensor *src0 = dst->src[0];
const ggml_tensor *src1 = dst->src[1];
const float* r_d = (const float*)dst->src[0]->data;
const float* w_d = (const float*)dst->src[1]->data;
const float* k_d = (const float*)dst->src[2]->data;
const float* v_d = (const float*)dst->src[3]->data;
const float* a_d = (const float*)dst->src[4]->data;
const float* b_d = (const float*)dst->src[5]->data;
const float* s_d = (const float*)dst->src[6]->data;
float* dst_d = (float*)dst->data;
const int64_t B = dst->src[6]->ne[1];
const int64_t T = dst->src[0]->ne[2];
const int64_t C = dst->ne[0];
const int64_t H = dst->src[0]->ne[1];
GGML_ASSERT(dst->src[6]->type == GGML_TYPE_F32);
GGML_ASSERT(C % H == 0);
GGML_ASSERT(C / H == WKV_BLOCK_SIZE || C / H == WKV_BLOCK_SIZE * 2);
dpct::queue_ptr stream = ctx.stream();
// Calculate execution configuration
const size_t shared_mem_size = C / H * 5 * sizeof(float); // For r, w, k, a, b
sycl::range<3> block_dims(1, 1, C / H);
sycl::range<3> grid_dims(1, 1, B * H);
// Submit kernel
if (C / H == WKV_BLOCK_SIZE) {
stream->submit([&](sycl::handler& cgh) {
sycl::local_accessor<float, 1> shared_mem_acc(shared_mem_size, cgh);
cgh.parallel_for(
sycl::nd_range<3>(grid_dims * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) {
rwkv_wkv7_f32_kernel<WKV_BLOCK_SIZE>(
B, T, C, H, r_d, w_d, k_d, v_d, a_d, b_d, s_d, dst_d,
item_ct1, (float*)shared_mem_acc.get_multi_ptr<sycl::access::decorated::no>().get()
);
});
});
} else {
stream->submit([&](sycl::handler& cgh) {
sycl::local_accessor<float, 1> shared_mem_acc(shared_mem_size, cgh);
cgh.parallel_for(
sycl::nd_range<3>(grid_dims * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) {
rwkv_wkv7_f32_kernel<WKV_BLOCK_SIZE * 2>(
B, T, C, H, r_d, w_d, k_d, v_d, a_d, b_d, s_d, dst_d,
item_ct1, (float*)shared_mem_acc.get_multi_ptr<sycl::access::decorated::no>().get()
);
});
});
}
GGML_UNUSED(src0);
GGML_UNUSED(src1);
}

View File

@ -0,0 +1,10 @@
#ifndef GGML_SYCL_WKV_HPP
#define GGML_SYCL_WKV_HPP
#include "common.hpp"
void ggml_sycl_op_rwkv_wkv6(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_op_rwkv_wkv7(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
#endif // GGML_SYCL_WKV_HPP

View File

@ -304,6 +304,7 @@ struct vk_device_struct {
vk_pipeline pipeline_group_norm_f32;
vk_pipeline pipeline_rms_norm_f32;
vk_pipeline pipeline_rms_norm_back_f32;
vk_pipeline pipeline_l2_norm_f32;
vk_pipeline pipeline_gelu_f32;
vk_pipeline pipeline_gelu_quick_f32;
vk_pipeline pipeline_silu_f32;
@ -328,6 +329,7 @@ struct vk_device_struct {
vk_pipeline pipeline_timestep_embedding_f32;
vk_pipeline pipeline_pool2d_f32;
vk_pipeline pipeline_rwkv_wkv6_f32;
vk_pipeline pipeline_rwkv_wkv7_f32;
vk_pipeline pipeline_opt_step_adamw_f32;
// [2][2][2] is for {f16acc,f32acc}x{large,small_rows}x{unaligned, aligned}
@ -629,6 +631,13 @@ struct vk_op_rwkv_wkv6_push_constants {
uint32_t H;
};
struct vk_op_rwkv_wkv7_push_constants {
uint32_t B;
uint32_t T;
uint32_t C;
uint32_t H;
};
// Allow pre-recording command buffers
struct vk_staging_memcpy {
vk_staging_memcpy(void * _dst, const void * _src, size_t _n) : dst(_dst), src(_src), n(_n) {}
@ -2263,6 +2272,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_group_norm_f32, "group_norm_f32", group_norm_f32_len, group_norm_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rms_norm_f32, "rms_norm_f32", rms_norm_f32_len, rms_norm_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rms_norm_back_f32, "rms_norm_back_f32", rms_norm_back_f32_len, rms_norm_back_f32_data, "main", 3, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_l2_norm_f32, "l2_norm_f32", l2_norm_f32_len, l2_norm_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_f32, "cpy_f32_f32", cpy_f32_f32_len, cpy_f32_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_f16, "cpy_f32_f16", cpy_f32_f16_len, cpy_f32_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
@ -2374,6 +2384,8 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_rwkv_wkv6_f32, "rwkv_wkv6_f32", rwkv_wkv6_f32_len, rwkv_wkv6_f32_data, "main", 7, sizeof(vk_op_rwkv_wkv6_push_constants), {1, 1, 1}, {device->subgroup_size}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rwkv_wkv7_f32, "rwkv_wkv7_f32", rwkv_wkv7_f32_len, rwkv_wkv7_f32_data, "main", 8, sizeof(vk_op_rwkv_wkv7_push_constants), {1, 1, 1}, {device->subgroup_size}, 1);
ggml_vk_create_pipeline(device, device->pipeline_opt_step_adamw_f32, "opt_step_adamw_f32", opt_step_adamw_f32_len, opt_step_adamw_f32_data, "main", 5, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
for (auto &c : compiles) {
@ -5473,6 +5485,11 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
return ctx->device->pipeline_rms_norm_back_f32;
}
return nullptr;
case GGML_OP_L2_NORM:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_l2_norm_f32;
}
return nullptr;
case GGML_OP_UNARY:
switch (ggml_get_unary_op(dst)) {
case GGML_UNARY_OP_SILU:
@ -5612,6 +5629,11 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
return ctx->device->pipeline_rwkv_wkv6_f32;
}
return nullptr;
case GGML_OP_RWKV_WKV7:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_rwkv_wkv7_f32;
}
return nullptr;
case GGML_OP_OPT_STEP_ADAMW:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_opt_step_adamw_f32;
@ -5859,6 +5881,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
case GGML_OP_NORM:
case GGML_OP_RMS_NORM:
case GGML_OP_RMS_NORM_BACK:
case GGML_OP_L2_NORM:
case GGML_OP_SOFT_MAX:
case GGML_OP_SOFT_MAX_BACK:
case GGML_OP_SUM_ROWS:
@ -6108,23 +6131,17 @@ static void ggml_vk_div(ggml_backend_vk_context * ctx, vk_context& subctx, const
}, dryrun);
}
static void ggml_vk_op_f32_rwkv6(ggml_backend_vk_context * ctx, vk_context& subctx, ggml_tensor * dst, const vk_op_rwkv_wkv6_push_constants&& pc, bool dryrun = false) {
const ggml_tensor * k = dst->src[0];
const ggml_tensor * v = dst->src[1];
const ggml_tensor * r = dst->src[2];
const ggml_tensor * tf = dst->src[3];
const ggml_tensor * td = dst->src[4];
const ggml_tensor * state = dst->src[5];
static void ggml_vk_op_f32_wkv(ggml_backend_vk_context * ctx, vk_context& subctx, ggml_tensor * dst, const vk_op_rwkv_wkv6_push_constants&& pc, int version, bool dryrun = false) {
GGML_ASSERT(version == 6 || version == 7);
int num_srcs = version == 6 ? 6 : 7;
for (int i = 0; i < num_srcs; i++) {
GGML_ASSERT(!ggml_is_quantized(dst->src[i]->type));
}
GGML_ASSERT(!ggml_is_quantized(k->type));
GGML_ASSERT(!ggml_is_quantized(v->type));
GGML_ASSERT(!ggml_is_quantized(r->type));
GGML_ASSERT(!ggml_is_quantized(tf->type));
GGML_ASSERT(!ggml_is_quantized(td->type));
GGML_ASSERT(!ggml_is_quantized(state->type));
GGML_ASSERT(dst->buffer != nullptr);
vk_pipeline pipeline = ggml_vk_op_get_pipeline(ctx, k, v, r, dst, GGML_OP_RWKV_WKV6);
vk_pipeline pipeline = ggml_vk_op_get_pipeline(ctx, dst->src[0], dst->src[1], dst->src[2], dst, dst->op);
GGML_ASSERT(pipeline != nullptr);
if (dryrun) {
@ -6133,89 +6150,73 @@ static void ggml_vk_op_f32_rwkv6(ggml_backend_vk_context * ctx, vk_context& subc
}
ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
ggml_backend_vk_buffer_context * k_buf_ctx = (ggml_backend_vk_buffer_context *)k->buffer->context;
ggml_backend_vk_buffer_context * v_buf_ctx = (ggml_backend_vk_buffer_context *)v->buffer->context;
ggml_backend_vk_buffer_context * r_buf_ctx = (ggml_backend_vk_buffer_context *)r->buffer->context;
ggml_backend_vk_buffer_context * tf_buf_ctx = (ggml_backend_vk_buffer_context *)tf->buffer->context;
ggml_backend_vk_buffer_context * td_buf_ctx = (ggml_backend_vk_buffer_context *)td->buffer->context;
ggml_backend_vk_buffer_context * state_buf_ctx = (ggml_backend_vk_buffer_context *)state->buffer->context;
ggml_backend_vk_buffer_context * src_buf_ctxs[7] = { nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr };
for (int i = 0; i < num_srcs; i++) {
src_buf_ctxs[i] = (ggml_backend_vk_buffer_context *)dst->src[i]->buffer->context;
}
ggml_vk_sync_buffers(subctx);
vk_buffer d_D = nullptr, d_K = nullptr, d_V = nullptr, d_R = nullptr, d_TF = nullptr, d_TD = nullptr, d_State = nullptr;
size_t k_offset = 0, v_offset = 0, r_offset = 0, tf_offset = 0, td_offset = 0, state_offset = 0, dst_offset = 0;
bool K_uma = false, V_uma = false, R_uma = false, TF_uma = false, TD_uma = false, STATE_uma = false, DST_uma = false;
vk_buffer d_D = nullptr, d_srcs[7] = { nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr };
size_t dst_offset = 0, src_offsets[7] = { 0, 0, 0, 0, 0, 0, 0 };
bool dst_uma = false, srcs_uma[7] = { false, false, false, false, false, false, false };
if (ctx->device->uma) {
ggml_vk_host_get(ctx->device, k->data, d_K, k_offset);
ggml_vk_host_get(ctx->device, v->data, d_V, v_offset);
ggml_vk_host_get(ctx->device, r->data, d_R, r_offset);
ggml_vk_host_get(ctx->device, tf->data, d_TF, tf_offset);
ggml_vk_host_get(ctx->device, td->data, d_TD, td_offset);
ggml_vk_host_get(ctx->device, state->data, d_State, state_offset);
for (int i = 0; i < num_srcs; i++) {
ggml_vk_host_get(ctx->device, dst->src[i]->data, d_srcs[i], src_offsets[i]);
srcs_uma[i] = d_srcs[i] != nullptr;
}
ggml_vk_host_get(ctx->device, dst->data, d_D, dst_offset);
K_uma = d_K != nullptr;
V_uma = d_V != nullptr;
R_uma = d_R != nullptr;
TF_uma = d_TF != nullptr;
TD_uma = d_TD != nullptr;
STATE_uma = d_State != nullptr;
DST_uma = d_D != nullptr;
dst_uma = d_D != nullptr;
}
if (!K_uma) {
d_K = k_buf_ctx->dev_buffer;
k_offset = vk_tensor_offset(k) + k->view_offs;
uint64_t src_sizes[7] = { 0, 0, 0, 0, 0, 0, 0 };
for (int i = 0; i < num_srcs; i++) {
src_sizes[i] = ggml_nbytes(dst->src[i]);
if (!srcs_uma[i]) {
d_srcs[i] = src_buf_ctxs[i]->dev_buffer;
src_offsets[i] = vk_tensor_offset(dst->src[i]) + dst->src[i]->view_offs;
}
}
if (!V_uma) {
d_V = v_buf_ctx->dev_buffer;
v_offset = vk_tensor_offset(v) + v->view_offs;
}
if (!R_uma) {
d_R = r_buf_ctx->dev_buffer;
r_offset = vk_tensor_offset(r) + r->view_offs;
}
if (!TF_uma) {
d_TF = tf_buf_ctx->dev_buffer;
tf_offset = vk_tensor_offset(tf) + tf->view_offs;
}
if (!TD_uma) {
d_TD = td_buf_ctx->dev_buffer;
td_offset = vk_tensor_offset(td) + td->view_offs;
}
if (!STATE_uma) {
d_State = state_buf_ctx->dev_buffer;
state_offset = vk_tensor_offset(state) + state->view_offs;
}
if (!DST_uma) {
const uint64_t dst_size = ggml_nbytes(dst);
if (!dst_uma) {
d_D = dst_buf_ctx->dev_buffer;
dst_offset = vk_tensor_offset(dst) + dst->view_offs;
}
const uint64_t k_size = ggml_nbytes(k);
const uint64_t v_size = ggml_nbytes(v);
const uint64_t r_size = ggml_nbytes(r);
const uint64_t tf_size = ggml_nbytes(tf);
const uint64_t td_size = ggml_nbytes(td);
const uint64_t state_size = ggml_nbytes(state);
const uint64_t dst_size = ggml_nbytes(dst);
std::array<uint32_t, 3> elements = {
(uint32_t)(pc.B * pc.H),
1,
1
};
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, {
vk_subbuffer{ d_K, k_offset, k_size },
vk_subbuffer{ d_V, v_offset, v_size },
vk_subbuffer{ d_R, r_offset, r_size },
vk_subbuffer{ d_TF, tf_offset, tf_size },
vk_subbuffer{ d_TD, td_offset, td_size },
vk_subbuffer{ d_State, state_offset, state_size },
vk_subbuffer{ d_D, dst_offset, dst_size }
}, sizeof(vk_op_rwkv_wkv6_push_constants), &pc, elements);
if (version == 6) {
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, {
vk_subbuffer{ d_srcs[0], src_offsets[0], src_sizes[0] },
vk_subbuffer{ d_srcs[1], src_offsets[1], src_sizes[1] },
vk_subbuffer{ d_srcs[2], src_offsets[2], src_sizes[2] },
vk_subbuffer{ d_srcs[3], src_offsets[3], src_sizes[3] },
vk_subbuffer{ d_srcs[4], src_offsets[4], src_sizes[4] },
vk_subbuffer{ d_srcs[5], src_offsets[5], src_sizes[5] },
vk_subbuffer{ d_D, dst_offset, dst_size }
}, sizeof(vk_op_rwkv_wkv6_push_constants), &pc, elements);
} else if (version == 7) {
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, {
vk_subbuffer{ d_srcs[0], src_offsets[0], src_sizes[0] },
vk_subbuffer{ d_srcs[1], src_offsets[1], src_sizes[1] },
vk_subbuffer{ d_srcs[2], src_offsets[2], src_sizes[2] },
vk_subbuffer{ d_srcs[3], src_offsets[3], src_sizes[3] },
vk_subbuffer{ d_srcs[4], src_offsets[4], src_sizes[4] },
vk_subbuffer{ d_srcs[5], src_offsets[5], src_sizes[5] },
vk_subbuffer{ d_srcs[6], src_offsets[6], src_sizes[6] },
vk_subbuffer{ d_D, dst_offset, dst_size }
}, sizeof(vk_op_rwkv_wkv7_push_constants), &pc, elements);
} else {
// shouldn't happen
GGML_ASSERT(false);
}
}
static void ggml_vk_rwkv_wkv6(ggml_backend_vk_context * ctx, vk_context& subctx, ggml_tensor * dst, bool dryrun = false) {
@ -6224,7 +6225,7 @@ static void ggml_vk_rwkv_wkv6(ggml_backend_vk_context * ctx, vk_context& subctx,
const size_t n_heads = dst->src[0]->ne[1];
const size_t n_seqs = dst->src[5]->ne[1];
ggml_vk_op_f32_rwkv6(
ggml_vk_op_f32_wkv(
ctx, subctx, dst,
{
(uint32_t)n_seqs,
@ -6232,6 +6233,26 @@ static void ggml_vk_rwkv_wkv6(ggml_backend_vk_context * ctx, vk_context& subctx,
(uint32_t)n_embed,
(uint32_t)n_heads,
},
6,
dryrun
);
}
static void ggml_vk_rwkv_wkv7(ggml_backend_vk_context * ctx, vk_context& subctx, ggml_tensor * dst, bool dryrun = false) {
const size_t seq_length = dst->src[0]->ne[2];
const size_t n_embed = dst->ne[0];
const size_t n_heads = dst->src[0]->ne[1];
const size_t n_seqs = dst->src[6]->ne[1];
ggml_vk_op_f32_wkv(
ctx, subctx, dst,
{
(uint32_t)n_seqs,
(uint32_t)seq_length,
(uint32_t)n_embed,
(uint32_t)n_heads,
},
7,
dryrun
);
}
@ -6533,6 +6554,11 @@ static void ggml_vk_rms_norm_back(ggml_backend_vk_context * ctx, vk_context& sub
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_RMS_NORM_BACK, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f }, dryrun);
}
static void ggml_vk_l2_norm(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
float * op_params = (float *)dst->op_params;
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_L2_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f }, dryrun);
}
static void ggml_vk_unary(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_UNARY, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f }, dryrun);
}
@ -7528,6 +7554,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
case GGML_OP_GROUP_NORM:
case GGML_OP_RMS_NORM:
case GGML_OP_RMS_NORM_BACK:
case GGML_OP_L2_NORM:
case GGML_OP_DIAG_MASK_INF:
case GGML_OP_SOFT_MAX:
case GGML_OP_SOFT_MAX_BACK:
@ -7544,6 +7571,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_POOL_2D:
case GGML_OP_RWKV_WKV6:
case GGML_OP_RWKV_WKV7:
case GGML_OP_LEAKY_RELU:
case GGML_OP_FLASH_ATTN_EXT:
case GGML_OP_OPT_STEP_ADAMW:
@ -7590,6 +7618,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
case GGML_OP_GROUP_NORM:
case GGML_OP_RMS_NORM:
case GGML_OP_RMS_NORM_BACK:
case GGML_OP_L2_NORM:
case GGML_OP_UNARY:
case GGML_OP_DIAG_MASK_INF:
case GGML_OP_SOFT_MAX:
@ -7707,6 +7736,10 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
case GGML_OP_RMS_NORM_BACK:
ggml_vk_rms_norm_back(ctx, compute_ctx, src0, src1, node, dryrun);
break;
case GGML_OP_L2_NORM:
ggml_vk_l2_norm(ctx, compute_ctx, src0, node, dryrun);
break;
case GGML_OP_UNARY:
switch (ggml_get_unary_op(node)) {
@ -7797,6 +7830,11 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
break;
case GGML_OP_RWKV_WKV7:
ggml_vk_rwkv_wkv7(ctx, compute_ctx, node, dryrun);
break;
case GGML_OP_OPT_STEP_ADAMW:
ggml_vk_opt_step_adamw(ctx, compute_ctx, node, dryrun);
@ -7870,6 +7908,7 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor *
case GGML_OP_GROUP_NORM:
case GGML_OP_RMS_NORM:
case GGML_OP_RMS_NORM_BACK:
case GGML_OP_L2_NORM:
case GGML_OP_DIAG_MASK_INF:
case GGML_OP_SOFT_MAX:
case GGML_OP_SOFT_MAX_BACK:
@ -7889,6 +7928,7 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor *
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_POOL_2D:
case GGML_OP_RWKV_WKV6:
case GGML_OP_RWKV_WKV7:
case GGML_OP_LEAKY_RELU:
case GGML_OP_REPEAT:
case GGML_OP_REPEAT_BACK:
@ -8806,6 +8846,7 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
case GGML_OP_NORM:
case GGML_OP_GROUP_NORM:
case GGML_OP_RMS_NORM:
case GGML_OP_L2_NORM:
return ggml_is_contiguous(op->src[0]);
case GGML_OP_ADD:
case GGML_OP_SUB:
@ -8835,6 +8876,7 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_POOL_2D:
case GGML_OP_RWKV_WKV6:
case GGML_OP_RWKV_WKV7:
case GGML_OP_LEAKY_RELU:
case GGML_OP_OPT_STEP_ADAMW:
return true;
@ -9219,6 +9261,9 @@ static void ggml_vk_check_results_0(ggml_tensor * tensor) {
tensor_clone = ggml_rms_norm_back(ggml_ctx, src_clone[0], src_clone[1], eps);
} else if (tensor->op == GGML_OP_SILU_BACK) {
tensor_clone = ggml_silu_back(ggml_ctx, src_clone[0], src_clone[1]);
} else if (tensor->op == GGML_OP_L2_NORM) {
const float eps = ((float *) tensor->op_params)[0];
tensor_clone = ggml_l2_norm(ggml_ctx, src_clone[0], eps);
} else if (tensor->op == GGML_OP_SOFT_MAX) {
if (src1 != nullptr) {
tensor_clone = ggml_soft_max_ext(ggml_ctx, src_clone[0], src_clone[1], ((float *)tensor->op_params)[0], ((float *)tensor->op_params)[1]);
@ -9338,6 +9383,9 @@ static void ggml_vk_check_results_0(ggml_tensor * tensor) {
} else if (tensor->op == GGML_OP_RWKV_WKV6) {
tensor_clone = ggml_rwkv_wkv6(ggml_ctx, src_clone[0], src_clone[1],
src_clone[2], src_clone[3], src_clone[4], src_clone[5]);
} else if (tensor->op == GGML_OP_RWKV_WKV7) {
tensor_clone = ggml_rwkv_wkv7(ggml_ctx, src_clone[0], src_clone[1], src_clone[2], src_clone[3],
src_clone[4], src_clone[5], src_clone[6]);
} else if (tensor->op == GGML_OP_OPT_STEP_ADAMW) {
src_clone[0]->flags = src0->flags;
tensor_clone = ggml_opt_step_adamw(ggml_ctx, src_clone[0], src_clone[1],

View File

@ -0,0 +1,41 @@
#version 450
#include "generic_head.comp"
#include "types.comp"
#extension GL_EXT_control_flow_attributes : enable
#define BLOCK_SIZE 512
layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
layout (binding = 1) writeonly buffer D {D_TYPE data_d[];};
shared FLOAT_TYPE sum[BLOCK_SIZE];
void main() {
const uint row = gl_WorkGroupID.z * 262144 + gl_WorkGroupID.y * 512 + gl_WorkGroupID.x;
const uint tid = gl_LocalInvocationID.x;
sum[tid] = FLOAT_TYPE(0.0f); // partial sum for thread in warp
[[unroll]] for (uint col = tid; col < p.KX; col += BLOCK_SIZE) {
const FLOAT_TYPE xi = FLOAT_TYPE(data_a[row*p.KX + col]);
sum[tid] += xi * xi;
}
// sum up partial sums and write back result
barrier();
[[unroll]] for (int s = BLOCK_SIZE / 2; s > 0; s >>= 1) {
if (tid < s) {
sum[tid] += sum[tid + s];
}
barrier();
}
const FLOAT_TYPE scale = inversesqrt(max(sum[0], FLOAT_TYPE(p.param1)));
[[unroll]] for (uint col = tid; col < p.KX; col += BLOCK_SIZE) {
data_d[row*p.KX + col] = D_TYPE(scale * FLOAT_TYPE(data_a[row*p.KX + col]));
}
}

View File

@ -434,6 +434,7 @@ void process_shaders() {
string_to_spv("group_norm_f32", "group_norm.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float"}}));
string_to_spv("rms_norm_f32", "rms_norm.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float"}}));
string_to_spv("rms_norm_back_f32", "rms_norm_back.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}}));
string_to_spv("l2_norm_f32", "l2_norm.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float"}}));
string_to_spv("cpy_f32_f32", "copy.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("cpy_f32_f16", "copy.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float16_t"}});
@ -528,6 +529,8 @@ void process_shaders() {
string_to_spv("rwkv_wkv6_f32", "wkv6.comp", merge_maps(base_dict, {{"A_TYPE", "float"}}));
string_to_spv("rwkv_wkv7_f32", "wkv7.comp", merge_maps(base_dict, {{"A_TYPE", "float"}}));
string_to_spv("opt_step_adamw_f32", "opt_step_adamw.comp", merge_maps(base_dict, {{"A_TYPE", "float"}}));
for (auto &c : compiles) {

View File

@ -0,0 +1,91 @@
#version 450
#extension GL_EXT_control_flow_attributes : require
#define BLOCK_SIZE 64
layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in;
layout(push_constant) uniform Parameters {
uint B;
uint T;
uint C;
uint H;
};
layout(binding = 0) readonly buffer RBuf { A_TYPE r[]; };
layout(binding = 1) readonly buffer WBuf { A_TYPE w[]; };
layout(binding = 2) readonly buffer KBuf { A_TYPE k[]; };
layout(binding = 3) readonly buffer VBuf { A_TYPE v[]; };
layout(binding = 4) readonly buffer ABuf { A_TYPE a[]; };
layout(binding = 5) readonly buffer BBuf { A_TYPE b[]; };
layout(binding = 6) readonly buffer StateBuf { A_TYPE state_in[]; };
layout(binding = 7) buffer DstBuf { A_TYPE dst[]; };
shared A_TYPE _r[BLOCK_SIZE], _w[BLOCK_SIZE], _k[BLOCK_SIZE], _a[BLOCK_SIZE], _b[BLOCK_SIZE];
void main() {
const uint head_size = BLOCK_SIZE;
const uint batch_id = gl_WorkGroupID.x / H;
const uint head_id = gl_WorkGroupID.x % H;
const uint tid = gl_LocalInvocationID.x;
const uint state_size = C * head_size;
const uint n_seq_tokens = T / B;
if (batch_id >= B || head_id >= H) {
return;
}
A_TYPE state[BLOCK_SIZE];
[[unroll]] for (uint i = 0; i < head_size; i++) {
state[i] = state_in[batch_id * state_size + head_id * head_size * head_size
+ tid * head_size + i];
}
const uint start_t = batch_id * n_seq_tokens * C + head_id * head_size + tid;
const uint end_t = (batch_id + 1) * n_seq_tokens * C + head_id * head_size + tid;
for (uint t = start_t; t < end_t; t += C) {
barrier();
_r[tid] = r[t];
_w[tid] = w[t];
_k[tid] = k[t];
_a[tid] = a[t];
_b[tid] = b[t];
barrier();
A_TYPE sa = 0.0;
[[unroll]] for (uint j = 0; j < head_size; j += 4) {
vec4 s_vec = vec4(state[j], state[j+1], state[j+2], state[j+3]);
vec4 a_vec = vec4(_a[j], _a[j+1], _a[j+2], _a[j+3]);
sa += dot(s_vec, a_vec);
}
const A_TYPE v_val = v[t];
A_TYPE y = 0.0;
[[unroll]] for (uint j = 0; j < head_size; j += 4) {
vec4 r_vec = vec4(_r[j], _r[j+1], _r[j+2], _r[j+3]);
vec4 w_vec = vec4(_w[j], _w[j+1], _w[j+2], _w[j+3]);
vec4 k_vec = vec4(_k[j], _k[j+1], _k[j+2], _k[j+3]);
vec4 b_vec = vec4(_b[j], _b[j+1], _b[j+2], _b[j+3]);
vec4 s_vec = vec4(state[j], state[j+1], state[j+2], state[j+3]);
vec4 kv = k_vec * v_val;
s_vec = s_vec * w_vec + kv + sa * b_vec;
y += dot(r_vec, s_vec);
state[j] = s_vec.x;
state[j+1] = s_vec.y;
state[j+2] = s_vec.z;
state[j+3] = s_vec.w;
}
dst[t] = y;
}
[[unroll]] for (uint i = 0; i < head_size; i++) {
dst[T * C + batch_id * state_size + head_id * head_size * head_size
+ tid * head_size + i] = state[i];
}
}

View File

@ -929,6 +929,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"RMS_NORM",
"RMS_NORM_BACK",
"GROUP_NORM",
"L2_NORM",
"MUL_MAT",
"MUL_MAT_ID",
@ -977,6 +978,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"ADD_REL_POS",
"RWKV_WKV6",
"GATED_LINEAR_ATTN",
"RWKV_WKV7",
"UNARY",
@ -996,7 +998,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"OPT_STEP_ADAMW",
};
static_assert(GGML_OP_COUNT == 83, "GGML_OP_COUNT != 83");
static_assert(GGML_OP_COUNT == 85, "GGML_OP_COUNT != 85");
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"none",
@ -1026,6 +1028,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"rms_norm(x)",
"rms_norm_back(x)",
"group_norm(x)",
"l2_norm(x)",
"X*Y",
"X[i]*Y",
@ -1074,6 +1077,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"add_rel_pos(x)",
"rwkv_wkv6(k, v, r, tf, td, s)",
"gated_linear_attn(k, v, q, gate, s)",
"rwkv_wkv7(r, w, k, v, a, b, s)",
"unary(x)",
@ -1093,7 +1097,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"adamw(x)",
};
static_assert(GGML_OP_COUNT == 83, "GGML_OP_COUNT != 83");
static_assert(GGML_OP_COUNT == 85, "GGML_OP_COUNT != 85");
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
@ -2686,6 +2690,37 @@ struct ggml_tensor * ggml_group_norm_inplace(
return ggml_group_norm_impl(ctx, a, n_groups, eps, true);
}
// ggml_l2_norm
static struct ggml_tensor * ggml_l2_norm_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
float eps,
bool inplace) {
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
ggml_set_op_params_f32(result, 0, eps);
result->op = GGML_OP_L2_NORM;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_l2_norm(
struct ggml_context * ctx,
struct ggml_tensor * a,
float eps) {
return ggml_l2_norm_impl(ctx, a, eps, false);
}
struct ggml_tensor * ggml_l2_norm_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
float eps) {
return ggml_l2_norm_impl(ctx, a, eps, true);
}
// ggml_mul_mat
static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
@ -4720,6 +4755,54 @@ struct ggml_tensor * ggml_gated_linear_attn(
return result;
}
// ggml_rwkv_wkv7
struct ggml_tensor * ggml_rwkv_wkv7(
struct ggml_context * ctx,
struct ggml_tensor * r,
struct ggml_tensor * w,
struct ggml_tensor * k,
struct ggml_tensor * v,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * state) {
GGML_ASSERT(ggml_is_contiguous(r));
GGML_ASSERT(ggml_is_contiguous(w));
GGML_ASSERT(ggml_is_contiguous(k));
GGML_ASSERT(ggml_is_contiguous(v));
GGML_ASSERT(ggml_is_contiguous(a));
GGML_ASSERT(ggml_is_contiguous(b));
GGML_ASSERT(ggml_is_contiguous(state));
const int64_t S = k->ne[0];
const int64_t H = k->ne[1];
const int64_t n_tokens = k->ne[2];
const int64_t n_seqs = state->ne[1];
{
GGML_ASSERT(w->ne[0] == S && w->ne[1] == H && w->ne[2] == n_tokens);
GGML_ASSERT(k->ne[0] == S && k->ne[1] == H && k->ne[2] == n_tokens);
GGML_ASSERT(v->ne[0] == S && v->ne[1] == H && v->ne[2] == n_tokens);
GGML_ASSERT(a->ne[0] == S && a->ne[1] == H && a->ne[2] == n_tokens);
GGML_ASSERT(b->ne[0] == S && b->ne[1] == H && b->ne[2] == n_tokens);
GGML_ASSERT(ggml_nelements(state) == S * S * H * n_seqs);
}
// concat output and new_state
const int64_t ne[4] = { S * H, n_tokens + S * n_seqs, 1, 1 };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
result->op = GGML_OP_RWKV_WKV7;
result->src[0] = r;
result->src[1] = w;
result->src[2] = k;
result->src[3] = v;
result->src[4] = a;
result->src[5] = b;
result->src[6] = state;
return result;
}
// ggml_unary
static struct ggml_tensor * ggml_unary_impl(