mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2024-11-07 08:34:37 +01:00
whisper : use flash attention (#2152)
* whisper : use flash attention in the encoder * whisper : add kv_pad * whisper : remove extra backend instance (huh?) * whisper : use FA for cross-attention * whisper : use FA for self-attention * whisper : simplify encoder FA * whisper : add flash_attn runtime parameter * scripts : add bench log * scripts : add M1 Pro bench log
This commit is contained in:
parent
9d5771ae43
commit
7094ea5e75
@ -12,7 +12,8 @@ struct whisper_params {
|
||||
|
||||
std::string model = "models/ggml-base.en.bin";
|
||||
|
||||
bool use_gpu = true;
|
||||
bool use_gpu = true;
|
||||
bool flash_attn = false;
|
||||
};
|
||||
|
||||
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
|
||||
@ -25,10 +26,11 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
whisper_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
|
||||
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
|
||||
else if (arg == "-w" || arg == "--what") { params.what = atoi(argv[++i]); }
|
||||
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
|
||||
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
|
||||
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
|
||||
else if (arg == "-w" || arg == "--what") { params.what = atoi(argv[++i]); }
|
||||
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
|
||||
else if (arg == "-fa" || arg == "--flash-attn") { params.flash_attn = true; }
|
||||
else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
whisper_print_usage(argc, argv, params);
|
||||
@ -49,6 +51,7 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
|
||||
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
|
||||
fprintf(stderr, " -w N, --what N [%-7d] what to benchmark:\n", params.what);
|
||||
fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU\n", params.use_gpu ? "false" : "true");
|
||||
fprintf(stderr, " -fa, --flash-attn [%-7s] enable flash attention\n", params.flash_attn ? "true" : "false");
|
||||
fprintf(stderr, " %-7s 0 - whisper\n", "");
|
||||
fprintf(stderr, " %-7s 1 - memcpy\n", "");
|
||||
fprintf(stderr, " %-7s 2 - ggml_mul_mat\n", "");
|
||||
@ -59,7 +62,9 @@ int whisper_bench_full(const whisper_params & params) {
|
||||
// whisper init
|
||||
|
||||
struct whisper_context_params cparams = whisper_context_default_params();
|
||||
cparams.use_gpu = params.use_gpu;
|
||||
|
||||
cparams.use_gpu = params.use_gpu;
|
||||
cparams.flash_attn = params.flash_attn;
|
||||
|
||||
struct whisper_context * ctx = whisper_init_from_file_with_params(params.model.c_str(), cparams);
|
||||
|
||||
|
@ -44,6 +44,7 @@ struct whisper_params {
|
||||
bool print_energy = false;
|
||||
bool no_timestamps = true;
|
||||
bool use_gpu = true;
|
||||
bool flash_attn = false;
|
||||
|
||||
std::string language = "en";
|
||||
std::string model = "models/ggml-base.en.bin";
|
||||
@ -80,6 +81,7 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
|
||||
else if (arg == "-pe" || arg == "--print-energy") { params.print_energy = true; }
|
||||
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
|
||||
else if (arg == "-fa" || arg == "--flash-attn") { params.flash_attn = true; }
|
||||
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
|
||||
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
|
||||
else if (arg == "-f" || arg == "--file") { params.fname_out = argv[++i]; }
|
||||
@ -118,6 +120,7 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
|
||||
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
|
||||
fprintf(stderr, " -pe, --print-energy [%-7s] print sound energy (for debugging)\n", params.print_energy ? "true" : "false");
|
||||
fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU\n", params.use_gpu ? "false" : "true");
|
||||
fprintf(stderr, " -fa, --flash-attn [%-7s] flash attention\n", params.flash_attn ? "true" : "false");
|
||||
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str());
|
||||
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
|
||||
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] text output file name\n", params.fname_out.c_str());
|
||||
@ -696,7 +699,9 @@ int main(int argc, char ** argv) {
|
||||
// whisper init
|
||||
|
||||
struct whisper_context_params cparams = whisper_context_default_params();
|
||||
cparams.use_gpu = params.use_gpu;
|
||||
|
||||
cparams.use_gpu = params.use_gpu;
|
||||
cparams.flash_attn = params.flash_attn;
|
||||
|
||||
struct whisper_context * ctx = whisper_init_from_file_with_params(params.model.c_str(), cparams);
|
||||
|
||||
|
@ -31,6 +31,7 @@ struct whisper_params {
|
||||
bool print_special = false;
|
||||
bool print_energy = false;
|
||||
bool use_gpu = true;
|
||||
bool flash_attn = false;
|
||||
|
||||
std::string language = "en";
|
||||
std::string model = "models/ggml-base.en.bin";
|
||||
@ -74,6 +75,7 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
|
||||
else if (arg == "-pe" || arg == "--print-energy") { params.print_energy = true; }
|
||||
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
|
||||
else if (arg == "-fa" || arg == "--flash-attn") { params.flash_attn = true; }
|
||||
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
|
||||
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
|
||||
else {
|
||||
@ -105,6 +107,7 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
|
||||
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
|
||||
fprintf(stderr, " -pe, --print-energy [%-7s] print sound energy (for debugging)\n", params.print_energy ? "true" : "false");
|
||||
fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU\n", params.use_gpu ? "false" : "true");
|
||||
fprintf(stderr, " -fa, --flash-attn [%-7s] flash attention\n", params.flash_attn ? "true" : "false");
|
||||
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str());
|
||||
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
|
||||
fprintf(stderr, "\n");
|
||||
@ -436,7 +439,10 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// whisper init
|
||||
struct whisper_context_params cparams = whisper_context_default_params();
|
||||
cparams.use_gpu = params.use_gpu;
|
||||
|
||||
cparams.use_gpu = params.use_gpu;
|
||||
cparams.flash_attn = params.flash_attn;
|
||||
|
||||
struct whisper_context * ctx = whisper_init_from_file_with_params(params.model.c_str(), cparams);
|
||||
// init audio
|
||||
|
||||
|
@ -70,6 +70,7 @@ struct whisper_params {
|
||||
bool no_timestamps = false;
|
||||
bool log_score = false;
|
||||
bool use_gpu = true;
|
||||
bool flash_attn = false;
|
||||
|
||||
std::string language = "en";
|
||||
std::string prompt;
|
||||
@ -168,7 +169,8 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
else if (arg == "-dtw" || arg == "--dtw") { params.dtw = argv[++i]; }
|
||||
else if (arg == "-ls" || arg == "--log-score") { params.log_score = true; }
|
||||
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
|
||||
else if ( arg == "--suppress-regex") { params.suppress_regex = argv[++i]; }
|
||||
else if (arg == "-fa" || arg == "--flash-attn") { params.flash_attn = true; }
|
||||
else if ( arg == "--suppress-regex") { params.suppress_regex = argv[++i]; }
|
||||
else if ( arg == "--grammar") { params.grammar = argv[++i]; }
|
||||
else if ( arg == "--grammar-rule") { params.grammar_rule = argv[++i]; }
|
||||
else if ( arg == "--grammar-penalty") { params.grammar_penalty = std::stof(argv[++i]); }
|
||||
@ -234,6 +236,7 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
|
||||
fprintf(stderr, " -dtw MODEL --dtw MODEL [%-7s] compute token-level timestamps\n", params.dtw.c_str());
|
||||
fprintf(stderr, " -ls, --log-score [%-7s] log best decoder scores of tokens\n", params.log_score?"true":"false");
|
||||
fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU\n", params.use_gpu ? "false" : "true");
|
||||
fprintf(stderr, " -fa, --flash-attn [%-7s] flash attention\n", params.flash_attn ? "true" : "false");
|
||||
fprintf(stderr, " --suppress-regex REGEX [%-7s] regular expression matching tokens to suppress\n", params.suppress_regex.c_str());
|
||||
fprintf(stderr, " --grammar GRAMMAR [%-7s] GBNF grammar to guide decoding\n", params.grammar.c_str());
|
||||
fprintf(stderr, " --grammar-rule RULE [%-7s] top-level GBNF grammar rule name\n", params.grammar_rule.c_str());
|
||||
@ -977,7 +980,9 @@ int main(int argc, char ** argv) {
|
||||
// whisper init
|
||||
|
||||
struct whisper_context_params cparams = whisper_context_default_params();
|
||||
cparams.use_gpu = params.use_gpu;
|
||||
|
||||
cparams.use_gpu = params.use_gpu;
|
||||
cparams.flash_attn = params.flash_attn;
|
||||
|
||||
if (!params.dtw.empty()) {
|
||||
cparams.dtw_token_timestamps = true;
|
||||
|
@ -75,6 +75,7 @@ struct whisper_params {
|
||||
bool print_progress = false;
|
||||
bool no_timestamps = false;
|
||||
bool use_gpu = true;
|
||||
bool flash_attn = false;
|
||||
|
||||
std::string language = "en";
|
||||
std::string prompt = "";
|
||||
@ -178,6 +179,7 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params, serve
|
||||
else if (arg == "-oved" || arg == "--ov-e-device") { params.openvino_encode_device = argv[++i]; }
|
||||
else if (arg == "-dtw" || arg == "--dtw") { params.dtw = argv[++i]; }
|
||||
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
|
||||
else if (arg == "-fa" || arg == "--flash-attn") { params.flash_attn = true; }
|
||||
// server params
|
||||
else if ( arg == "--port") { sparams.port = std::stoi(argv[++i]); }
|
||||
else if ( arg == "--host") { sparams.hostname = argv[++i]; }
|
||||
@ -502,7 +504,10 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
// whisper init
|
||||
struct whisper_context_params cparams = whisper_context_default_params();
|
||||
cparams.use_gpu = params.use_gpu;
|
||||
|
||||
cparams.use_gpu = params.use_gpu;
|
||||
cparams.flash_attn = params.flash_attn;
|
||||
|
||||
if (!params.dtw.empty()) {
|
||||
cparams.dtw_token_timestamps = true;
|
||||
cparams.dtw_aheads_preset = WHISPER_AHEADS_NONE;
|
||||
|
@ -36,6 +36,7 @@ struct whisper_params {
|
||||
bool tinydiarize = false;
|
||||
bool save_audio = false; // save audio to wav file
|
||||
bool use_gpu = true;
|
||||
bool flash_attn = false;
|
||||
|
||||
std::string language = "en";
|
||||
std::string model = "models/ggml-base.en.bin";
|
||||
@ -72,6 +73,7 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
else if (arg == "-tdrz" || arg == "--tinydiarize") { params.tinydiarize = true; }
|
||||
else if (arg == "-sa" || arg == "--save-audio") { params.save_audio = true; }
|
||||
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
|
||||
else if (arg == "-fa" || arg == "--flash-attn") { params.flash_attn = true; }
|
||||
|
||||
else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
@ -109,6 +111,7 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
|
||||
fprintf(stderr, " -tdrz, --tinydiarize [%-7s] enable tinydiarize (requires a tdrz model)\n", params.tinydiarize ? "true" : "false");
|
||||
fprintf(stderr, " -sa, --save-audio [%-7s] save the recorded audio to a file\n", params.save_audio ? "true" : "false");
|
||||
fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU inference\n", params.use_gpu ? "false" : "true");
|
||||
fprintf(stderr, " -fa, --flash-attn [%-7s] flash attention during inference\n", params.flash_attn ? "true" : "false");
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
@ -153,7 +156,9 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
struct whisper_context_params cparams = whisper_context_default_params();
|
||||
cparams.use_gpu = params.use_gpu;
|
||||
|
||||
cparams.use_gpu = params.use_gpu;
|
||||
cparams.flash_attn = params.flash_attn;
|
||||
|
||||
struct whisper_context * ctx = whisper_init_from_file_with_params(params.model.c_str(), cparams);
|
||||
|
||||
|
@ -66,6 +66,7 @@ struct whisper_params {
|
||||
bool no_timestamps = true;
|
||||
bool verbose_prompt = false;
|
||||
bool use_gpu = true;
|
||||
bool flash_attn = false;
|
||||
|
||||
std::string person = "Georgi";
|
||||
std::string bot_name = "LLaMA";
|
||||
@ -105,6 +106,7 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
else if (arg == "-pe" || arg == "--print-energy") { params.print_energy = true; }
|
||||
else if (arg == "-vp" || arg == "--verbose-prompt") { params.verbose_prompt = true; }
|
||||
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
|
||||
else if (arg == "-fa" || arg == "--flash-attn") { params.flash_attn = true; }
|
||||
else if (arg == "-p" || arg == "--person") { params.person = argv[++i]; }
|
||||
else if (arg == "-bn" || arg == "--bot-name") { params.bot_name = argv[++i]; }
|
||||
else if (arg == "--session") { params.path_session = argv[++i]; }
|
||||
@ -123,7 +125,6 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
}
|
||||
}
|
||||
else if (arg == "-f" || arg == "--file") { params.fname_out = argv[++i]; }
|
||||
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
|
||||
else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
whisper_print_usage(argc, argv, params);
|
||||
@ -154,6 +155,7 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
|
||||
fprintf(stderr, " -pe, --print-energy [%-7s] print sound energy (for debugging)\n", params.print_energy ? "true" : "false");
|
||||
fprintf(stderr, " -vp, --verbose-prompt [%-7s] print prompt at start\n", params.verbose_prompt ? "true" : "false");
|
||||
fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU\n", params.use_gpu ? "false" : "true");
|
||||
fprintf(stderr, " -fa, --flash-attn [%-7s] flash attention\n", params.flash_attn ? "true" : "false");
|
||||
fprintf(stderr, " -p NAME, --person NAME [%-7s] person name (for prompt selection)\n", params.person.c_str());
|
||||
fprintf(stderr, " -bn NAME, --bot-name NAME [%-7s] bot name (to display)\n", params.bot_name.c_str());
|
||||
fprintf(stderr, " -w TEXT, --wake-command T [%-7s] wake-up command to listen for\n", params.wake_cmd.c_str());
|
||||
@ -285,7 +287,9 @@ int main(int argc, char ** argv) {
|
||||
// whisper init
|
||||
|
||||
struct whisper_context_params cparams = whisper_context_default_params();
|
||||
cparams.use_gpu = params.use_gpu;
|
||||
|
||||
cparams.use_gpu = params.use_gpu;
|
||||
cparams.flash_attn = params.flash_attn;
|
||||
|
||||
struct whisper_context * ctx_wsp = whisper_init_from_file_with_params(params.model_wsp.c_str(), cparams);
|
||||
if (!ctx_wsp) {
|
||||
@ -316,6 +320,7 @@ int main(int argc, char ** argv) {
|
||||
lcparams.n_ctx = 2048;
|
||||
lcparams.seed = 1;
|
||||
lcparams.n_threads = params.n_threads;
|
||||
lcparams.flash_attn = params.flash_attn;
|
||||
|
||||
struct llama_context * ctx_llama = llama_new_context_with_model(model_llama, lcparams);
|
||||
|
||||
|
@ -32,6 +32,7 @@ struct whisper_params {
|
||||
bool print_energy = false;
|
||||
bool no_timestamps = true;
|
||||
bool use_gpu = true;
|
||||
bool flash_attn = false;
|
||||
|
||||
std::string person = "Santa";
|
||||
std::string language = "en";
|
||||
@ -64,6 +65,7 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
|
||||
else if (arg == "-pe" || arg == "--print-energy") { params.print_energy = true; }
|
||||
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
|
||||
else if (arg == "-fa" || arg == "--flash-attn") { params.flash_attn = true; }
|
||||
else if (arg == "-p" || arg == "--person") { params.person = argv[++i]; }
|
||||
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
|
||||
else if (arg == "-mw" || arg == "--model-whisper") { params.model_wsp = argv[++i]; }
|
||||
@ -99,6 +101,7 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
|
||||
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
|
||||
fprintf(stderr, " -pe, --print-energy [%-7s] print sound energy (for debugging)\n", params.print_energy ? "true" : "false");
|
||||
fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU\n", params.use_gpu ? "false" : "true");
|
||||
fprintf(stderr, " -fa, --flash-attn [%-7s] flash attention\n", params.flash_attn ? "true" : "false");
|
||||
fprintf(stderr, " -p NAME, --person NAME [%-7s] person name (for prompt selection)\n", params.person.c_str());
|
||||
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str());
|
||||
fprintf(stderr, " -mw FILE, --model-whisper [%-7s] whisper model file\n", params.model_wsp.c_str());
|
||||
@ -188,7 +191,9 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// whisper init
|
||||
struct whisper_context_params cparams = whisper_context_default_params();
|
||||
cparams.use_gpu = params.use_gpu;
|
||||
|
||||
cparams.use_gpu = params.use_gpu;
|
||||
cparams.flash_attn = params.flash_attn;
|
||||
|
||||
struct whisper_context * ctx_wsp = whisper_init_from_file_with_params(params.model_wsp.c_str(), cparams);
|
||||
|
||||
|
@ -32,6 +32,7 @@ struct whisper_params {
|
||||
bool print_energy = false;
|
||||
bool no_timestamps = true;
|
||||
bool use_gpu = true;
|
||||
bool flash_attn = false;
|
||||
|
||||
std::string language = "en";
|
||||
std::string model = "models/ggml-base.en.bin";
|
||||
@ -61,6 +62,7 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
|
||||
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
|
||||
fprintf(stderr, " -pe, --print-energy [%-7s] print sound energy (for debugging)\n", params.print_energy ? "true" : "false");
|
||||
fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU\n", params.use_gpu ? "false" : "true");
|
||||
fprintf(stderr, " -fa, --flash-attn [%-7s] flash attention during decoding\n", params.flash_attn ? "true" : "false");
|
||||
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str());
|
||||
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
|
||||
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] text output file name\n", params.fname_out.c_str());
|
||||
@ -92,6 +94,7 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
|
||||
else if (arg == "-pe" || arg == "--print-energy") { params.print_energy = true; }
|
||||
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
|
||||
else if (arg == "-fa" || arg == "--flash-attn") { params.flash_attn = true; }
|
||||
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
|
||||
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
|
||||
else if (arg == "-f" || arg == "--file") { params.fname_out = argv[++i]; }
|
||||
@ -183,7 +186,9 @@ int main(int argc, char ** argv) {
|
||||
// whisper init
|
||||
|
||||
struct whisper_context_params cparams = whisper_context_default_params();
|
||||
cparams.use_gpu = params.use_gpu;
|
||||
|
||||
cparams.use_gpu = params.use_gpu;
|
||||
cparams.flash_attn = params.flash_attn;
|
||||
|
||||
struct whisper_context * ctx = whisper_init_from_file_with_params(params.model.c_str(), cparams);
|
||||
if (!ctx) {
|
||||
|
298
scripts/bench-all-gg.txt
Normal file
298
scripts/bench-all-gg.txt
Normal file
@ -0,0 +1,298 @@
|
||||
## M1 Pro
|
||||
|
||||
make -j && ./scripts/bench-all.sh 8
|
||||
|
||||
Running memcpy benchmark
|
||||
|
||||
memcpy: 39.10 GB/s (heat-up)
|
||||
memcpy: 44.75 GB/s ( 1 thread)
|
||||
memcpy: 44.78 GB/s ( 1 thread)
|
||||
memcpy: 44.97 GB/s ( 2 thread)
|
||||
memcpy: 48.04 GB/s ( 3 thread)
|
||||
memcpy: 50.55 GB/s ( 4 thread)
|
||||
memcpy: 55.20 GB/s ( 5 thread)
|
||||
memcpy: 65.60 GB/s ( 6 thread)
|
||||
memcpy: 70.64 GB/s ( 7 thread)
|
||||
memcpy: 73.34 GB/s ( 8 thread)
|
||||
sum: -5120002535.000000
|
||||
|
||||
|
||||
make -j && ./scripts/bench-all.sh 1 0 0
|
||||
|
||||
Running ggml_mul_mat benchmark with 1 threads
|
||||
|
||||
64 x 64: Q4_0 237.1 GFLOPS (128 runs) | Q4_1 168.6 GFLOPS (128 runs)
|
||||
64 x 64: Q5_0 136.4 GFLOPS (128 runs) | Q5_1 135.6 GFLOPS (128 runs) | Q8_0 243.1 GFLOPS (128 runs)
|
||||
64 x 64: F16 140.4 GFLOPS (128 runs) | F32 316.6 GFLOPS (128 runs)
|
||||
128 x 128: Q4_0 496.6 GFLOPS (128 runs) | Q4_1 348.6 GFLOPS (128 runs)
|
||||
128 x 128: Q5_0 273.2 GFLOPS (128 runs) | Q5_1 274.1 GFLOPS (128 runs) | Q8_0 505.1 GFLOPS (128 runs)
|
||||
128 x 128: F16 300.4 GFLOPS (128 runs) | F32 653.9 GFLOPS (128 runs)
|
||||
256 x 256: Q4_0 791.7 GFLOPS (128 runs) | Q4_1 615.3 GFLOPS (128 runs)
|
||||
256 x 256: Q5_0 651.0 GFLOPS (128 runs) | Q5_1 674.7 GFLOPS (128 runs) | Q8_0 803.1 GFLOPS (128 runs)
|
||||
256 x 256: F16 869.6 GFLOPS (128 runs) | F32 957.2 GFLOPS (128 runs)
|
||||
512 x 512: Q4_0 973.3 GFLOPS (128 runs) | Q4_1 897.9 GFLOPS (128 runs)
|
||||
512 x 512: Q5_0 1078.8 GFLOPS (128 runs) | Q5_1 998.4 GFLOPS (128 runs) | Q8_0 752.4 GFLOPS (128 runs)
|
||||
512 x 512: F16 892.5 GFLOPS (128 runs) | F32 1399.6 GFLOPS (128 runs)
|
||||
1024 x 1024: Q4_0 1402.7 GFLOPS (128 runs) | Q4_1 1218.5 GFLOPS (128 runs)
|
||||
1024 x 1024: Q5_0 1444.8 GFLOPS (128 runs) | Q5_1 1444.7 GFLOPS (128 runs) | Q8_0 1395.7 GFLOPS (128 runs)
|
||||
1024 x 1024: F16 1524.1 GFLOPS (128 runs) | F32 1726.6 GFLOPS (128 runs)
|
||||
2048 x 2048: Q4_0 1479.4 GFLOPS ( 87 runs) | Q4_1 1378.5 GFLOPS ( 81 runs)
|
||||
2048 x 2048: Q5_0 1454.6 GFLOPS ( 85 runs) | Q5_1 1462.9 GFLOPS ( 86 runs) | Q8_0 1483.2 GFLOPS ( 87 runs)
|
||||
2048 x 2048: F16 1488.0 GFLOPS ( 87 runs) | F32 1538.2 GFLOPS ( 90 runs)
|
||||
4096 x 4096: Q4_0 1509.7 GFLOPS ( 11 runs) | Q4_1 1433.0 GFLOPS ( 11 runs)
|
||||
4096 x 4096: Q5_0 1422.4 GFLOPS ( 11 runs) | Q5_1 1437.0 GFLOPS ( 11 runs) | Q8_0 1523.0 GFLOPS ( 12 runs)
|
||||
4096 x 4096: F16 1551.3 GFLOPS ( 12 runs) | F32 1451.0 GFLOPS ( 11 runs)
|
||||
|
||||
| CPU | Config | Model | Th | FA | Enc. | Dec. | Bch5 | PP | Commit |
|
||||
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
|
||||
| M1 Pro | METAL | tiny | 1 | 0 | 39.21 | 1.74 | 0.61 | 0.04 | 22c96b4 |
|
||||
| M1 Pro | METAL | base | 1 | 0 | 70.76 | 2.60 | 0.93 | 0.06 | 22c96b4 |
|
||||
| M1 Pro | METAL | small | 1 | 0 | 217.28 | 6.42 | 2.14 | 0.17 | 22c96b4 |
|
||||
| M1 Pro | METAL | medium | 1 | 0 | 596.74 | 14.43 | 4.75 | 0.45 | 22c96b4 |
|
||||
|
||||
|
||||
make -j && ./scripts/bench-all.sh 1 1 1
|
||||
|
||||
| CPU | Config | Model | Th | FA | Enc. | Dec. | Bch5 | PP | Commit |
|
||||
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
|
||||
| M1 Pro | METAL | tiny | 1 | 1 | 30.77 | 1.59 | 0.54 | 0.03 | 22c96b4 |
|
||||
| M1 Pro | METAL | base | 1 | 1 | 60.42 | 2.29 | 0.81 | 0.05 | 22c96b4 |
|
||||
| M1 Pro | METAL | small | 1 | 1 | 183.82 | 5.12 | 1.81 | 0.14 | 22c96b4 |
|
||||
| M1 Pro | METAL | medium | 1 | 1 | 517.92 | 11.60 | 4.01 | 0.38 | 22c96b4 |
|
||||
|
||||
|
||||
## M2 Ultra
|
||||
|
||||
make -j && ./scripts/bench-all.sh 8
|
||||
|
||||
Running memcpy benchmark
|
||||
|
||||
memcpy: 46.58 GB/s (heat-up)
|
||||
memcpy: 54.16 GB/s ( 1 thread)
|
||||
memcpy: 54.23 GB/s ( 1 thread)
|
||||
memcpy: 99.63 GB/s ( 2 thread)
|
||||
memcpy: 140.59 GB/s ( 3 thread)
|
||||
memcpy: 176.52 GB/s ( 4 thread)
|
||||
memcpy: 158.90 GB/s ( 5 thread)
|
||||
memcpy: 163.00 GB/s ( 6 thread)
|
||||
memcpy: 189.69 GB/s ( 7 thread)
|
||||
memcpy: 197.15 GB/s ( 8 thread)
|
||||
sum: -5120002007.000000
|
||||
|
||||
|
||||
make -j && ./scripts/bench-all.sh 1
|
||||
|
||||
Running ggml_mul_mat benchmark with 1 threads
|
||||
|
||||
64 x 64: Q4_0 245.8 GFLOPS (128 runs) | Q4_1 168.6 GFLOPS (128 runs)
|
||||
64 x 64: Q5_0 115.7 GFLOPS (128 runs) | Q5_1 125.9 GFLOPS (128 runs) | Q8_0 215.8 GFLOPS (128 runs)
|
||||
64 x 64: F16 139.5 GFLOPS (128 runs) | F32 337.2 GFLOPS (128 runs)
|
||||
128 x 128: Q4_0 494.8 GFLOPS (128 runs) | Q4_1 350.4 GFLOPS (128 runs)
|
||||
128 x 128: Q5_0 257.1 GFLOPS (128 runs) | Q5_1 261.4 GFLOPS (128 runs) | Q8_0 509.4 GFLOPS (128 runs)
|
||||
128 x 128: F16 302.3 GFLOPS (128 runs) | F32 672.8 GFLOPS (128 runs)
|
||||
256 x 256: Q4_0 795.7 GFLOPS (128 runs) | Q4_1 663.7 GFLOPS (128 runs)
|
||||
256 x 256: Q5_0 737.8 GFLOPS (128 runs) | Q5_1 757.6 GFLOPS (128 runs) | Q8_0 827.7 GFLOPS (128 runs)
|
||||
256 x 256: F16 872.6 GFLOPS (128 runs) | F32 956.3 GFLOPS (128 runs)
|
||||
512 x 512: Q4_0 1188.0 GFLOPS (128 runs) | Q4_1 1085.0 GFLOPS (128 runs)
|
||||
512 x 512: Q5_0 1421.1 GFLOPS (128 runs) | Q5_1 1454.9 GFLOPS (128 runs) | Q8_0 1191.4 GFLOPS (128 runs)
|
||||
512 x 512: F16 1577.4 GFLOPS (128 runs) | F32 1982.0 GFLOPS (128 runs)
|
||||
1024 x 1024: Q4_0 2342.6 GFLOPS (128 runs) | Q4_1 1955.8 GFLOPS (128 runs)
|
||||
1024 x 1024: Q5_0 2306.7 GFLOPS (128 runs) | Q5_1 2217.0 GFLOPS (128 runs) | Q8_0 2230.7 GFLOPS (128 runs)
|
||||
1024 x 1024: F16 2593.8 GFLOPS (128 runs) | F32 3269.0 GFLOPS (128 runs)
|
||||
2048 x 2048: Q4_0 3735.7 GFLOPS (128 runs) | Q4_1 3205.3 GFLOPS (128 runs)
|
||||
2048 x 2048: Q5_0 3584.5 GFLOPS (128 runs) | Q5_1 3621.7 GFLOPS (128 runs) | Q8_0 3622.3 GFLOPS (128 runs)
|
||||
2048 x 2048: F16 3763.6 GFLOPS (128 runs) | F32 4153.3 GFLOPS (128 runs)
|
||||
4096 x 4096: Q4_0 3891.1 GFLOPS ( 29 runs) | Q4_1 3554.0 GFLOPS ( 26 runs)
|
||||
4096 x 4096: Q5_0 3753.1 GFLOPS ( 28 runs) | Q5_1 3750.1 GFLOPS ( 28 runs) | Q8_0 3768.5 GFLOPS ( 28 runs)
|
||||
4096 x 4096: F16 3864.2 GFLOPS ( 29 runs) | F32 3970.5 GFLOPS ( 29 runs)
|
||||
|
||||
|
||||
make -j && ./scripts/bench-all.sh 1 1 0
|
||||
|
||||
| CPU | Config | Model | Th | FA | Enc. | Dec. | Bch5 | PP | Commit |
|
||||
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
|
||||
| M2 ULTRA | METAL | tiny | 1 | 0 | 12.32 | 1.35 | 0.49 | 0.01 | 22c96b4 |
|
||||
| M2 ULTRA | METAL | tiny-q5_0 | 1 | 0 | 11.65 | 1.30 | 0.51 | 0.01 | 22c96b4 |
|
||||
| M2 ULTRA | METAL | tiny-q5_1 | 1 | 0 | 12.08 | 1.30 | 0.51 | 0.01 | 22c96b4 |
|
||||
| M2 ULTRA | METAL | base | 1 | 0 | 17.58 | 1.90 | 0.76 | 0.02 | 22c96b4 |
|
||||
| M2 ULTRA | METAL | base-q5_0 | 1 | 0 | 18.89 | 1.86 | 0.79 | 0.02 | 22c96b4 |
|
||||
| M2 ULTRA | METAL | base-q5_1 | 1 | 0 | 20.69 | 1.88 | 0.79 | 0.02 | 22c96b4 |
|
||||
| M2 ULTRA | METAL | small | 1 | 0 | 49.32 | 3.85 | 1.71 | 0.05 | 22c96b4 |
|
||||
| M2 ULTRA | METAL | small-q5_0 | 1 | 0 | 54.91 | 3.81 | 1.82 | 0.06 | 22c96b4 |
|
||||
| M2 ULTRA | METAL | small-q5_1 | 1 | 0 | 54.92 | 3.81 | 1.79 | 0.06 | 22c96b4 |
|
||||
| M2 ULTRA | METAL | medium | 1 | 0 | 134.34 | 8.04 | 3.82 | 0.13 | 22c96b4 |
|
||||
| M2 ULTRA | METAL | medium-q5_0 | 1 | 0 | 151.68 | 7.59 | 4.07 | 0.14 | 22c96b4 |
|
||||
| M2 ULTRA | METAL | medium-q5_1 | 1 | 0 | 151.58 | 7.67 | 4.07 | 0.14 | 22c96b4 |
|
||||
| M2 ULTRA | METAL | medium-dis | 1 | 0 | 120.82 | 1.07 | 0.41 | 0.02 | 22c96b4 |
|
||||
| M2 ULTRA | METAL | large-v2 | 1 | 0 | 235.63 | 12.27 | 5.85 | 0.22 | 22c96b4 |
|
||||
| M2 ULTRA | METAL | large-v2-q5_0 | 1 | 0 | 273.38 | 11.17 | 6.40 | 0.26 | 22c96b4 |
|
||||
| M2 ULTRA | METAL | large-v2-q5_1 | 1 | 0 | 272.44 | 11.32 | 6.29 | 0.26 | 22c96b4 |
|
||||
| M2 ULTRA | METAL | large-v2-dis | 1 | 0 | 212.51 | 1.20 | 0.47 | 0.02 | 22c96b4 |
|
||||
|
||||
|
||||
make -j && ./scripts/bench-all.sh 1 1 1
|
||||
|
||||
| CPU | Config | Model | Th | FA | Enc. | Dec. | Bch5 | PP | Commit |
|
||||
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
|
||||
| M2 ULTRA | METAL | tiny | 1 | 1 | 9.07 | 1.33 | 0.45 | 0.01 | 22c96b4 |
|
||||
| M2 ULTRA | METAL | tiny-q5_0 | 1 | 1 | 9.74 | 1.33 | 0.47 | 0.01 | 22c96b4 |
|
||||
| M2 ULTRA | METAL | tiny-q5_1 | 1 | 1 | 8.93 | 1.31 | 0.46 | 0.01 | 22c96b4 |
|
||||
| M2 ULTRA | METAL | base | 1 | 1 | 15.75 | 1.87 | 0.71 | 0.02 | 22c96b4 |
|
||||
| M2 ULTRA | METAL | base-q5_0 | 1 | 1 | 17.04 | 1.83 | 0.74 | 0.02 | 22c96b4 |
|
||||
| M2 ULTRA | METAL | base-q5_1 | 1 | 1 | 17.17 | 1.83 | 0.74 | 0.02 | 22c96b4 |
|
||||
| M2 ULTRA | METAL | small | 1 | 1 | 42.33 | 3.64 | 1.60 | 0.05 | 22c96b4 |
|
||||
| M2 ULTRA | METAL | small-q5_0 | 1 | 1 | 47.61 | 3.63 | 1.70 | 0.05 | 22c96b4 |
|
||||
| M2 ULTRA | METAL | small-q5_1 | 1 | 1 | 47.70 | 3.66 | 1.68 | 0.05 | 22c96b4 |
|
||||
| M2 ULTRA | METAL | medium | 1 | 1 | 114.42 | 7.53 | 3.55 | 0.11 | 22c96b4 |
|
||||
| M2 ULTRA | METAL | medium-q5_0 | 1 | 1 | 132.63 | 7.02 | 3.77 | 0.13 | 22c96b4 |
|
||||
| M2 ULTRA | METAL | medium-q5_1 | 1 | 1 | 132.28 | 7.10 | 3.76 | 0.13 | 22c96b4 |
|
||||
| M2 ULTRA | METAL | medium-dis | 1 | 1 | 102.34 | 1.01 | 0.42 | 0.01 | 22c96b4 |
|
||||
| M2 ULTRA | METAL | large-v2 | 1 | 1 | 203.01 | 11.03 | 5.45 | 0.20 | 22c96b4 |
|
||||
| M2 ULTRA | METAL | large-v2-q5_0 | 1 | 1 | 240.05 | 10.18 | 5.98 | 0.23 | 22c96b4 |
|
||||
| M2 ULTRA | METAL | large-v2-q5_1 | 1 | 1 | 239.22 | 10.23 | 5.87 | 0.23 | 22c96b4 |
|
||||
| M2 ULTRA | METAL | large-v2-dis | 1 | 1 | 181.14 | 1.14 | 0.48 | 0.02 | 22c96b4 |
|
||||
|
||||
|
||||
|
||||
## Ryzen 9 5950X + RTX 2060
|
||||
|
||||
make -j && ./scripts/bench-all.sh 8 0 0
|
||||
|
||||
Running memcpy benchmark
|
||||
|
||||
memcpy: 12.36 GB/s (heat-up)
|
||||
memcpy: 12.33 GB/s ( 1 thread)
|
||||
memcpy: 12.38 GB/s ( 1 thread)
|
||||
memcpy: 14.48 GB/s ( 2 thread)
|
||||
memcpy: 15.00 GB/s ( 3 thread)
|
||||
memcpy: 14.77 GB/s ( 4 thread)
|
||||
memcpy: 14.60 GB/s ( 5 thread)
|
||||
memcpy: 14.57 GB/s ( 6 thread)
|
||||
memcpy: 14.34 GB/s ( 7 thread)
|
||||
memcpy: 14.40 GB/s ( 8 thread)
|
||||
sum: -5119998076.000000
|
||||
|
||||
Running ggml_mul_mat benchmark with 8 threads
|
||||
|
||||
64 x 64: Q4_0 3.1 GFLOPS (128 runs) | Q4_1 3.1 GFLOPS (128 runs)
|
||||
64 x 64: Q5_0 3.0 GFLOPS (128 runs) | Q5_1 2.9 GFLOPS (128 runs) | Q8_0 3.1 GFLOPS (128 runs)
|
||||
64 x 64: F16 3.0 GFLOPS (128 runs) | F32 3.0 GFLOPS (128 runs)
|
||||
128 x 128: Q4_0 21.1 GFLOPS (128 runs) | Q4_1 20.3 GFLOPS (128 runs)
|
||||
128 x 128: Q5_0 20.6 GFLOPS (128 runs) | Q5_1 20.4 GFLOPS (128 runs) | Q8_0 22.1 GFLOPS (128 runs)
|
||||
128 x 128: F16 21.7 GFLOPS (128 runs) | F32 21.7 GFLOPS (128 runs)
|
||||
256 x 256: Q4_0 105.7 GFLOPS (128 runs) | Q4_1 94.4 GFLOPS (128 runs)
|
||||
256 x 256: Q5_0 94.8 GFLOPS (128 runs) | Q5_1 87.5 GFLOPS (128 runs) | Q8_0 107.2 GFLOPS (128 runs)
|
||||
256 x 256: F16 95.1 GFLOPS (128 runs) | F32 94.3 GFLOPS (128 runs)
|
||||
512 x 512: Q4_0 214.7 GFLOPS (128 runs) | Q4_1 189.8 GFLOPS (128 runs)
|
||||
512 x 512: Q5_0 187.7 GFLOPS (128 runs) | Q5_1 176.2 GFLOPS (128 runs) | Q8_0 252.2 GFLOPS (128 runs)
|
||||
512 x 512: F16 220.8 GFLOPS (128 runs) | F32 218.3 GFLOPS (128 runs)
|
||||
1024 x 1024: Q4_0 333.7 GFLOPS (128 runs) | Q4_1 305.8 GFLOPS (128 runs)
|
||||
1024 x 1024: Q5_0 283.2 GFLOPS (128 runs) | Q5_1 268.2 GFLOPS (125 runs) | Q8_0 394.1 GFLOPS (128 runs)
|
||||
1024 x 1024: F16 355.0 GFLOPS (128 runs) | F32 313.0 GFLOPS (128 runs)
|
||||
2048 x 2048: Q4_0 395.0 GFLOPS ( 23 runs) | Q4_1 380.6 GFLOPS ( 23 runs)
|
||||
2048 x 2048: Q5_0 336.6 GFLOPS ( 20 runs) | Q5_1 318.4 GFLOPS ( 19 runs) | Q8_0 482.6 GFLOPS ( 29 runs)
|
||||
2048 x 2048: F16 424.5 GFLOPS ( 25 runs) | F32 337.7 GFLOPS ( 20 runs)
|
||||
4096 x 4096: Q4_0 412.8 GFLOPS ( 4 runs) | Q4_1 405.1 GFLOPS ( 3 runs)
|
||||
4096 x 4096: Q5_0 346.0 GFLOPS ( 3 runs) | Q5_1 334.6 GFLOPS ( 3 runs) | Q8_0 502.6 GFLOPS ( 4 runs)
|
||||
4096 x 4096: F16 412.5 GFLOPS ( 4 runs) | F32 274.0 GFLOPS ( 3 runs)
|
||||
|
||||
| CPU | Config | Model | Th | FA | Enc. | Dec. | Bch5 | PP | Commit |
|
||||
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
|
||||
| Ryzen 9 5950X | AVX2 | tiny | 8 | 0 | 195.29 | 1.57 | 0.51 | 0.26 | 22c96b4 |
|
||||
| Ryzen 9 5950X | AVX2 | tiny-q5_0 | 8 | 0 | 213.33 | 1.10 | 0.50 | 0.30 | 22c96b4 |
|
||||
| Ryzen 9 5950X | AVX2 | tiny-q5_1 | 8 | 0 | 219.38 | 1.18 | 0.53 | 0.32 | 22c96b4 |
|
||||
| Ryzen 9 5950X | AVX2 | base | 8 | 0 | 424.85 | 3.71 | 1.03 | 0.46 | 22c96b4 |
|
||||
| Ryzen 9 5950X | AVX2 | base-q5_0 | 8 | 0 | 473.61 | 1.81 | 0.82 | 0.52 | 22c96b4 |
|
||||
| Ryzen 9 5950X | AVX2 | base-q5_1 | 8 | 0 | 484.14 | 1.92 | 0.85 | 0.56 | 22c96b4 |
|
||||
| Ryzen 9 5950X | AVX2 | small | 8 | 0 | 1458.32 | 12.66 | 3.09 | 1.26 | 22c96b4 |
|
||||
| Ryzen 9 5950X | AVX2 | small-q5_0 | 8 | 0 | 1673.22 | 6.42 | 2.18 | 1.45 | 22c96b4 |
|
||||
| Ryzen 9 5950X | AVX2 | small-q5_1 | 8 | 0 | 1724.78 | 6.72 | 2.32 | 1.52 | 22c96b4 |
|
||||
| Ryzen 9 5950X | AVX2 | medium | 8 | 0 | 4333.87 | 36.80 | 8.56 | 3.37 | 22c96b4 |
|
||||
| Ryzen 9 5950X | AVX2 | medium-q5_0 | 8 | 0 | 5194.09 | 19.21 | 5.71 | 3.97 | 22c96b4 |
|
||||
| Ryzen 9 5950X | AVX2 | medium-q5_1 | 8 | 0 | 5450.39 | 20.01 | 5.99 | 4.17 | 22c96b4 |
|
||||
| Ryzen 9 5950X | AVX2 | medium-dis | 8 | 0 | 3995.19 | 5.08 | 1.21 | 0.55 | 22c96b4 |
|
||||
| Ryzen 9 5950X | AVX2 | large-v2 | 8 | 0 | 8056.16 | 69.74 | 16.11 | 6.13 | 22c96b4 |
|
||||
| Ryzen 9 5950X | AVX2 | large-v2-q5_0 | 8 | 0 | 9799.58 | 35.16 | 10.49 | 7.28 | 22c96b4 |
|
||||
| Ryzen 9 5950X | AVX2 | large-v2-q5_1 | 8 | 0 | ms | 36.74 | 11.02 | 7.65 | 22c96b4 |
|
||||
| Ryzen 9 5950X | AVX2 | large-v2-dis | 8 | 0 | 7490.03 | 7.40 | 1.70 | 0.72 | 22c96b4 |
|
||||
|
||||
|
||||
WHISPER_CUDA=1 make -j && ./scripts/bench-all.sh 8 1 0
|
||||
|
||||
| GPU | Config | Model | Th | FA | Enc. | Dec. | Bch5 | PP | Commit |
|
||||
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
|
||||
| RTX 2060 | AVX2 CUDA | tiny | 8 | 0 | 12.54 | 0.93 | 0.29 | 0.02 | 22c96b4 |
|
||||
| RTX 2060 | AVX2 CUDA | tiny-q5_0 | 8 | 0 | 12.73 | 0.98 | 0.24 | 0.02 | 22c96b4 |
|
||||
| RTX 2060 | AVX2 CUDA | tiny-q5_1 | 8 | 0 | 12.72 | 0.99 | 0.24 | 0.02 | 22c96b4 |
|
||||
| RTX 2060 | AVX2 CUDA | base | 8 | 0 | 24.14 | 1.28 | 0.41 | 0.03 | 22c96b4 |
|
||||
| RTX 2060 | AVX2 CUDA | base-q5_0 | 8 | 0 | 24.58 | 1.38 | 0.35 | 0.03 | 22c96b4 |
|
||||
| RTX 2060 | AVX2 CUDA | base-q5_1 | 8 | 0 | 24.58 | 1.37 | 0.35 | 0.03 | 22c96b4 |
|
||||
| RTX 2060 | AVX2 CUDA | small | 8 | 0 | 74.70 | 2.91 | 0.84 | 0.07 | 22c96b4 |
|
||||
| RTX 2060 | AVX2 CUDA | small-q5_0 | 8 | 0 | 76.12 | 2.84 | 0.77 | 0.08 | 22c96b4 |
|
||||
| RTX 2060 | AVX2 CUDA | small-q5_1 | 8 | 0 | 76.14 | 2.84 | 0.76 | 0.08 | 22c96b4 |
|
||||
| RTX 2060 | AVX2 CUDA | medium | 8 | 0 | 200.69 | 6.46 | 1.83 | 0.17 | 22c96b4 |
|
||||
| RTX 2060 | AVX2 CUDA | medium-q5_0 | 8 | 0 | 204.80 | 5.90 | 1.65 | 0.19 | 22c96b4 |
|
||||
| RTX 2060 | AVX2 CUDA | medium-q5_1 | 8 | 0 | 205.61 | 5.85 | 1.61 | 0.19 | 22c96b4 |
|
||||
| RTX 2060 | AVX2 CUDA | medium-dis | 8 | 0 | 186.17 | 0.86 | 0.24 | 0.02 | 22c96b4 |
|
||||
| RTX 2060 | AVX2 CUDA | large-v2 | 8 | 0 | 347.22 | 10.36 | 2.82 | 0.29 | 22c96b4 |
|
||||
| RTX 2060 | AVX2 CUDA | large-v2-q5_0 | 8 | 0 | 357.06 | 8.81 | 2.58 | 0.34 | 22c96b4 |
|
||||
| RTX 2060 | AVX2 CUDA | large-v2-q5_1 | 8 | 0 | 356.97 | 8.62 | 2.49 | 0.33 | 22c96b4 |
|
||||
| RTX 2060 | AVX2 CUDA | large-v2-dis | 8 | 0 | 318.05 | 1.03 | 0.34 | 0.04 | 22c96b4 |
|
||||
|
||||
|
||||
WHISPER_CUDA=1 make -j && ./scripts/bench-all.sh 8 1 1
|
||||
|
||||
| GPU | Config | Model | Th | FA | Enc. | Dec. | Bch5 | PP | Commit |
|
||||
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
|
||||
| RTX 2060 | AVX2 CUDA | tiny | 8 | 1 | 7.21 | 0.76 | 0.29 | 0.02 | 22c96b4 |
|
||||
| RTX 2060 | AVX2 CUDA | tiny-q5_0 | 8 | 1 | 7.42 | 0.82 | 0.18 | 0.02 | 22c96b4 |
|
||||
| RTX 2060 | AVX2 CUDA | tiny-q5_1 | 8 | 1 | 7.38 | 0.82 | 0.18 | 0.02 | 22c96b4 |
|
||||
| RTX 2060 | AVX2 CUDA | base | 8 | 1 | 13.49 | 1.04 | 0.36 | 0.02 | 22c96b4 |
|
||||
| RTX 2060 | AVX2 CUDA | base-q5_0 | 8 | 1 | 13.94 | 1.13 | 0.26 | 0.03 | 22c96b4 |
|
||||
| RTX 2060 | AVX2 CUDA | base-q5_1 | 8 | 1 | 13.94 | 1.14 | 0.26 | 0.03 | 22c96b4 |
|
||||
| RTX 2060 | AVX2 CUDA | small | 8 | 1 | 42.81 | 2.33 | 0.69 | 0.05 | 22c96b4 |
|
||||
| RTX 2060 | AVX2 CUDA | small-q5_0 | 8 | 1 | 44.43 | 2.25 | 0.59 | 0.06 | 22c96b4 |
|
||||
| RTX 2060 | AVX2 CUDA | small-q5_1 | 8 | 1 | 44.11 | 2.24 | 0.58 | 0.06 | 22c96b4 |
|
||||
| RTX 2060 | AVX2 CUDA | medium | 8 | 1 | 115.47 | 5.17 | 1.45 | 0.11 | 22c96b4 |
|
||||
| RTX 2060 | AVX2 CUDA | medium-q5_0 | 8 | 1 | 120.37 | 4.63 | 1.25 | 0.13 | 22c96b4 |
|
||||
| RTX 2060 | AVX2 CUDA | medium-q5_1 | 8 | 1 | 120.28 | 4.55 | 1.21 | 0.13 | 22c96b4 |
|
||||
| RTX 2060 | AVX2 CUDA | medium-dis | 8 | 1 | 101.69 | 0.75 | 0.20 | 0.02 | 22c96b4 |
|
||||
| RTX 2060 | AVX2 CUDA | large-v2 | 8 | 1 | 205.67 | 8.49 | 2.19 | 0.18 | 22c96b4 |
|
||||
| RTX 2060 | AVX2 CUDA | large-v2-q5_0 | 8 | 1 | 214.07 | 6.88 | 1.94 | 0.22 | 22c96b4 |
|
||||
| RTX 2060 | AVX2 CUDA | large-v2-q5_1 | 8 | 1 | 213.98 | 6.70 | 1.86 | 0.22 | 22c96b4 |
|
||||
| RTX 2060 | AVX2 CUDA | large-v2-dis | 8 | 1 | 176.71 | 0.91 | 0.31 | 0.03 | 22c96b4 |
|
||||
|
||||
|
||||
|
||||
|
||||
# V100
|
||||
|
||||
WHISPER_CUDA=1 make -j && ./scripts/bench-all.sh 8 1 0
|
||||
|
||||
| GPU | Config | Model | Th | FA | Enc. | Dec. | Bch5 | PP | Commit |
|
||||
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
|
||||
| V100 | AVX2 CUDA | tiny | 1 | 0 | 6.21 | 1.11 | 0.30 | 0.02 | 22c96b4 |
|
||||
| V100 | AVX2 CUDA | tiny-q5_1 | 1 | 0 | 5.97 | 1.10 | 0.26 | 0.02 | 22c96b4 |
|
||||
| V100 | AVX2 CUDA | base | 1 | 0 | 10.95 | 1.47 | 0.42 | 0.03 | 22c96b4 |
|
||||
| V100 | AVX2 CUDA | base-q5_1 | 1 | 0 | 11.13 | 1.53 | 0.36 | 0.03 | 22c96b4 |
|
||||
| V100 | AVX2 CUDA | small | 1 | 0 | 31.57 | 2.96 | 0.84 | 0.05 | 22c96b4 |
|
||||
| V100 | AVX2 CUDA | small-q5_1 | 1 | 0 | 32.19 | 3.14 | 0.75 | 0.05 | 22c96b4 |
|
||||
| V100 | AVX2 CUDA | medium | 1 | 0 | 85.88 | 6.49 | 1.80 | 0.10 | 22c96b4 |
|
||||
| V100 | AVX2 CUDA | medium-q5_0 | 1 | 0 | 87.53 | 5.82 | 1.37 | 0.10 | 22c96b4 |
|
||||
| V100 | AVX2 CUDA | large-v2 | 1 | 0 | 142.23 | 8.92 | 2.62 | 0.15 | 22c96b4 |
|
||||
|
||||
|
||||
WHISPER_CUDA=1 make -j && ./scripts/bench-all.sh 8 1 1
|
||||
|
||||
| GPU | Config | Model | Th | FA | Enc. | Dec. | Bch5 | PP | Commit |
|
||||
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
|
||||
| V100 | AVX2 CUDA | tiny | 1 | 1 | 3.96 | 0.82 | 0.24 | 0.02 | 22c96b4 |
|
||||
| V100 | AVX2 CUDA | tiny-q5_1 | 1 | 1 | 4.05 | 0.85 | 0.18 | 0.02 | 22c96b4 |
|
||||
| V100 | AVX2 CUDA | base | 1 | 1 | 7.21 | 1.16 | 0.36 | 0.02 | 22c96b4 |
|
||||
| V100 | AVX2 CUDA | base-q5_1 | 1 | 1 | 7.39 | 1.21 | 0.26 | 0.02 | 22c96b4 |
|
||||
| V100 | AVX2 CUDA | small | 1 | 1 | 19.81 | 2.41 | 0.71 | 0.04 | 22c96b4 |
|
||||
| V100 | AVX2 CUDA | small-q5_1 | 1 | 1 | 20.50 | 2.31 | 0.51 | 0.04 | 22c96b4 |
|
||||
| V100 | AVX2 CUDA | medium | 1 | 1 | 56.02 | 4.89 | 1.44 | 0.07 | 22c96b4 |
|
||||
| V100 | AVX2 CUDA | medium-q5_0 | 1 | 1 | 57.85 | 4.73 | 1.09 | 0.08 | 22c96b4 |
|
||||
| V100 | AVX2 CUDA | large-v2 | 1 | 1 | 92.73 | 7.18 | 2.14 | 0.10 | 22c96b4 |
|
||||
|
@ -2,7 +2,7 @@
|
||||
|
||||
# Helper script to run the bench tool on all models and print the results in share-able format
|
||||
|
||||
printf "Usage: ./bench.sh [n_threads] [encoder-only]\n"
|
||||
printf "Usage: ./bench.sh [n_threads] [encoder-only] [flash-attn]\n"
|
||||
|
||||
if [ -z "$1" ]; then
|
||||
n_threads=4
|
||||
@ -11,12 +11,19 @@ else
|
||||
fi
|
||||
|
||||
encoder_only=0
|
||||
if [ -z "$2" ]; then
|
||||
if [ -z "$2" ] || [ "$2" -eq 0 ]; then
|
||||
encoder_only=0
|
||||
else
|
||||
encoder_only=$2
|
||||
fi
|
||||
|
||||
fattn=""
|
||||
if [ -z "$3" ] || [ "$3" -eq 0 ]; then
|
||||
fattn=""
|
||||
else
|
||||
fattn="-fa"
|
||||
fi
|
||||
|
||||
models=( \
|
||||
"tiny" "tiny-q4_0" "tiny-q4_1" "tiny-q5_0" "tiny-q5_1" "tiny-q8_0" \
|
||||
"base" "base-q4_0" "base-q4_1" "base-q5_0" "base-q5_1" "base-q8_0" \
|
||||
@ -44,13 +51,19 @@ if [ "$encoder_only" -eq 0 ]; then
|
||||
printf "\n"
|
||||
fi
|
||||
|
||||
printf "| %6s | %6s | %16s | %13s | %3s | %7s | %7s | %7s | %7s | %7s |\n" "CPU" "OS" "Config" "Model" "Th" "Enc." "Dec." "Bch5" "PP" "Commit"
|
||||
printf "| %6s | %6s | %16s | %13s | %3s | %7s | %7s | %7s | %7s | %7s |\n" "---" "---" "---" "---" "---" "---" "---" "---" "---" "---"
|
||||
if [ "$fattn" == "-fa" ]; then
|
||||
fattn_i=1
|
||||
else
|
||||
fattn_i=0
|
||||
fi
|
||||
|
||||
printf "| %6s | %6s | %16s | %13s | %3s | %3s | %7s | %7s | %7s | %7s | %7s |\n" "CPU" "OS" "Config" "Model" "Th" "FA" "Enc." "Dec." "Bch5" "PP" "Commit"
|
||||
printf "| %6s | %6s | %16s | %13s | %3s | %3s | %7s | %7s | %7s | %7s | %7s |\n" "---" "---" "---" "---" "---" "---" "---" "---" "---" "---" "---"
|
||||
|
||||
for model in "${models[@]}"; do
|
||||
# actual run
|
||||
# store stderr output in a variable in order to parse it later
|
||||
output=$(./bench -m ./models/ggml-$model.bin -t $n_threads 2>&1)
|
||||
output=$(./bench -m ./models/ggml-$model.bin -t $n_threads $fattn 2>&1)
|
||||
ret=$?
|
||||
|
||||
# parse the output:
|
||||
@ -95,6 +108,6 @@ for model in "${models[@]}"; do
|
||||
commit=$(git rev-parse --short HEAD)
|
||||
|
||||
if [ $ret -eq 0 ]; then
|
||||
printf "| <todo> | <todo> | %16s | %13s | %3s | %7s | %7s | %7s | %7s | %7s |\n" "$config" "$model" "$n_threads" "$encode_time" "$decode_time" "$batchd_time" "$prompt_time" "$commit"
|
||||
printf "| <todo> | <todo> | %16s | %13s | %3s | %3s | %7s | %7s | %7s | %7s | %7s |\n" "$config" "$model" "$n_threads" "$fattn_i" "$encode_time" "$decode_time" "$batchd_time" "$prompt_time" "$commit"
|
||||
fi
|
||||
done
|
||||
|
427
whisper.cpp
427
whisper.cpp
@ -809,14 +809,15 @@ struct whisper_state {
|
||||
// shared between all decoders
|
||||
whisper_kv_cache kv_cross;
|
||||
|
||||
// padded buffer for flash-attention
|
||||
whisper_kv_cache kv_pad;
|
||||
|
||||
whisper_mel mel;
|
||||
|
||||
whisper_batch batch;
|
||||
|
||||
whisper_decoder decoders[WHISPER_MAX_DECODERS];
|
||||
|
||||
ggml_backend_t backend = nullptr;
|
||||
|
||||
// ggml-alloc:
|
||||
// - stores meta info about the intermediate tensors into the `meta` buffers
|
||||
// - stores the actual tensor data into the `data` buffers
|
||||
@ -902,14 +903,12 @@ static void read_safe(whisper_model_loader * loader, T & dest) {
|
||||
}
|
||||
|
||||
static bool kv_cache_init(
|
||||
const struct whisper_hparams & hparams,
|
||||
struct whisper_kv_cache & cache,
|
||||
ggml_backend_t backend,
|
||||
ggml_type wtype,
|
||||
int64_t n_text_state,
|
||||
int64_t n_text_layer,
|
||||
int n_ctx) {
|
||||
const int64_t n_text_state = hparams.n_text_state;
|
||||
const int64_t n_text_layer = hparams.n_text_layer;
|
||||
|
||||
const int64_t n_mem = n_text_layer*n_ctx;
|
||||
const int64_t n_elements = n_text_state*n_mem;
|
||||
|
||||
@ -941,6 +940,8 @@ static bool kv_cache_init(
|
||||
return false;
|
||||
}
|
||||
|
||||
ggml_backend_buffer_clear(cache.buffer, 0);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -1068,6 +1069,26 @@ static void whisper_kv_cache_seq_cp(
|
||||
}
|
||||
}
|
||||
|
||||
static uint32_t whisper_kv_cache_get_padding(const struct whisper_context & wctx) {
|
||||
if (!wctx.params.flash_attn) {
|
||||
return 1u;
|
||||
}
|
||||
|
||||
#ifdef GGML_USE_METAL
|
||||
if (ggml_backend_is_metal(wctx.backend)) {
|
||||
return 32u;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_CUDA
|
||||
if (ggml_backend_is_cuda(wctx.backend)) {
|
||||
return 256u;
|
||||
}
|
||||
#endif
|
||||
|
||||
return 1u;
|
||||
}
|
||||
|
||||
// [EXPERIMENTAL] Token-level timestamps with DTW
|
||||
static bool aheads_masks_init(
|
||||
const whisper_context_params & cparams,
|
||||
@ -1872,6 +1893,14 @@ static struct ggml_cgraph * whisper_build_graph_encoder(
|
||||
const int n_head = hparams.n_audio_head;
|
||||
const int n_layer = hparams.n_audio_layer;
|
||||
|
||||
const int n_state_head = n_state/n_head;
|
||||
|
||||
auto & kv_pad = wstate.kv_pad;
|
||||
|
||||
WHISPER_ASSERT(!!kv_pad.ctx);
|
||||
|
||||
const int n_ctx_pad = GGML_PAD(n_ctx, 256);
|
||||
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size =*/ wstate.alloc_encode.meta.size(),
|
||||
/*.mem_buffer =*/ wstate.alloc_encode.meta.data(),
|
||||
@ -1884,7 +1913,7 @@ static struct ggml_cgraph * whisper_build_graph_encoder(
|
||||
|
||||
struct ggml_tensor * cur = ggml_view_tensor(ctx0, wstate.embd_conv);
|
||||
|
||||
const float KQscale = 1.0f/sqrtf(float(n_state)/n_head);
|
||||
const float KQscale = 1.0f/sqrtf(float(n_state_head));
|
||||
|
||||
// ===================================================================
|
||||
// NOTE: experimenting with partial evaluation of the encoder (ignore)
|
||||
@ -1934,14 +1963,14 @@ static struct ggml_cgraph * whisper_build_graph_encoder(
|
||||
|
||||
Qcur = ggml_add(ctx0, Qcur, layer.attn_q_b);
|
||||
|
||||
//Qcur = ggml_scale(ctx0, Qcur, pow(float(n_state)/n_head, -0.25));
|
||||
//Qcur = ggml_scale(ctx0, Qcur, pow(float(n_state_head), -0.25));
|
||||
|
||||
// note: no bias for Key
|
||||
struct ggml_tensor * Kcur = ggml_mul_mat(ctx0,
|
||||
layer.attn_k_w,
|
||||
cur);
|
||||
|
||||
//Kcur = ggml_scale(ctx0, Kcur, pow(float(n_state)/n_head, -0.25));
|
||||
//Kcur = ggml_scale(ctx0, Kcur, pow(float(n_state_head), -0.25));
|
||||
|
||||
struct ggml_tensor * Vcur = ggml_mul_mat(ctx0,
|
||||
layer.attn_v_w,
|
||||
@ -1955,38 +1984,61 @@ static struct ggml_cgraph * whisper_build_graph_encoder(
|
||||
ggml_permute(ctx0,
|
||||
ggml_cpy(ctx0,
|
||||
Qcur,
|
||||
ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_state/n_head, n_head, n_ctx)),
|
||||
ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_state_head, n_head, n_ctx)),
|
||||
0, 2, 1, 3);
|
||||
|
||||
struct ggml_tensor * K =
|
||||
ggml_permute(ctx0,
|
||||
ggml_cpy(ctx0,
|
||||
Kcur,
|
||||
ggml_new_tensor_3d(ctx0, wctx.itype, n_state/n_head, n_head, n_ctx)),
|
||||
0, 2, 1, 3);
|
||||
if (wctx.params.flash_attn) {
|
||||
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, ggml_view_1d(ctx0, kv_pad.k, n_ctx*n_state, 0)));
|
||||
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, ggml_view_1d(ctx0, kv_pad.v, n_ctx*n_state, 0)));
|
||||
|
||||
// K * Q
|
||||
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
|
||||
struct ggml_tensor * K =
|
||||
ggml_view_3d(ctx0, kv_pad.k,
|
||||
n_state_head, n_ctx_pad, n_head,
|
||||
ggml_element_size(kv_pad.k)*n_state,
|
||||
ggml_element_size(kv_pad.k)*n_state_head,
|
||||
0);
|
||||
|
||||
struct ggml_tensor * KQ_soft_max = ggml_soft_max_ext(ctx0, KQ, nullptr, KQscale, 0.0f);
|
||||
struct ggml_tensor * V =
|
||||
ggml_view_3d(ctx0, kv_pad.v,
|
||||
n_state_head, n_ctx_pad, n_head,
|
||||
ggml_element_size(kv_pad.v)*n_state,
|
||||
ggml_element_size(kv_pad.v)*n_state_head,
|
||||
0);
|
||||
|
||||
struct ggml_tensor * V =
|
||||
ggml_cpy(ctx0,
|
||||
ggml_permute(ctx0,
|
||||
ggml_reshape_3d(ctx0,
|
||||
Vcur,
|
||||
n_state/n_head, n_head, n_ctx),
|
||||
1, 2, 0, 3),
|
||||
ggml_new_tensor_3d(ctx0, wctx.itype, n_ctx, n_state/n_head, n_head)
|
||||
);
|
||||
cur = ggml_flash_attn_ext(ctx0, Q, K, V, nullptr, KQscale, 0.0f);
|
||||
|
||||
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
|
||||
cur = ggml_reshape_2d(ctx0, cur, n_state, n_ctx);
|
||||
} else {
|
||||
struct ggml_tensor * K =
|
||||
ggml_permute(ctx0,
|
||||
ggml_cpy(ctx0,
|
||||
Kcur,
|
||||
ggml_new_tensor_3d(ctx0, wctx.itype, n_state_head, n_head, n_ctx)),
|
||||
0, 2, 1, 3);
|
||||
|
||||
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
|
||||
// K * Q
|
||||
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
|
||||
|
||||
cur = ggml_cpy(ctx0,
|
||||
KQV_merged,
|
||||
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_state, n_ctx));
|
||||
struct ggml_tensor * KQ_soft_max = ggml_soft_max_ext(ctx0, KQ, nullptr, KQscale, 0.0f);
|
||||
|
||||
struct ggml_tensor * V =
|
||||
ggml_cpy(ctx0,
|
||||
ggml_permute(ctx0,
|
||||
ggml_reshape_3d(ctx0,
|
||||
Vcur,
|
||||
n_state_head, n_head, n_ctx),
|
||||
1, 2, 0, 3),
|
||||
ggml_new_tensor_3d(ctx0, wctx.itype, n_ctx, n_state_head, n_head)
|
||||
);
|
||||
|
||||
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
|
||||
|
||||
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
|
||||
|
||||
cur = ggml_cpy(ctx0,
|
||||
KQV_merged,
|
||||
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_state, n_ctx));
|
||||
}
|
||||
}
|
||||
|
||||
// projection
|
||||
@ -2085,6 +2137,10 @@ static struct ggml_cgraph * whisper_build_graph_cross(
|
||||
const int n_state = hparams.n_audio_state;
|
||||
const int n_head = hparams.n_audio_head;
|
||||
|
||||
const int n_state_head = n_state/n_head;
|
||||
|
||||
const int n_ctx_pad = GGML_PAD(n_ctx, 256);
|
||||
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size =*/ wstate.alloc_cross.meta.size(),
|
||||
/*.mem_buffer =*/ wstate.alloc_cross.meta.data(),
|
||||
@ -2097,18 +2153,18 @@ static struct ggml_cgraph * whisper_build_graph_cross(
|
||||
|
||||
struct ggml_tensor * cur = ggml_view_tensor(ctx0, wstate.embd_enc);
|
||||
|
||||
const float Kscale = pow(float(n_state) / n_head, -0.25);
|
||||
const float Kscale = pow(float(n_state_head), -0.25);
|
||||
|
||||
for (int il = 0; il < model.hparams.n_text_layer; ++il) {
|
||||
auto & layer = model.layers_decoder[il];
|
||||
|
||||
struct ggml_tensor* Kcross = ggml_mul_mat(ctx0,
|
||||
struct ggml_tensor * Kcross = ggml_mul_mat(ctx0,
|
||||
layer.cross_attn_k_w,
|
||||
cur);
|
||||
|
||||
Kcross = ggml_scale(ctx0, Kcross, Kscale);
|
||||
|
||||
struct ggml_tensor* Vcross = ggml_mul_mat(ctx0,
|
||||
struct ggml_tensor * Vcross = ggml_mul_mat(ctx0,
|
||||
layer.cross_attn_v_w,
|
||||
cur);
|
||||
|
||||
@ -2116,15 +2172,25 @@ static struct ggml_cgraph * whisper_build_graph_cross(
|
||||
Vcross,
|
||||
layer.cross_attn_v_b);
|
||||
|
||||
Vcross = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcross, n_state, n_ctx));
|
||||
struct ggml_tensor * k;
|
||||
struct ggml_tensor * v;
|
||||
|
||||
struct ggml_tensor * k = ggml_view_1d(ctx0, wstate.kv_cross.k,
|
||||
n_state*n_ctx,
|
||||
(ggml_element_size(wstate.kv_cross.k)*n_state)*(il*n_ctx));
|
||||
if (wctx.params.flash_attn) {
|
||||
k = ggml_view_1d(ctx0, wstate.kv_cross.k, n_state*n_ctx,
|
||||
(ggml_element_size(wstate.kv_cross.k)*n_state)*(il*n_ctx_pad));
|
||||
|
||||
struct ggml_tensor * v = ggml_view_2d(ctx0, wstate.kv_cross.v, n_ctx, n_state,
|
||||
( n_ctx)*ggml_element_size(wstate.kv_cross.v),
|
||||
(il*n_ctx)*ggml_element_size(wstate.kv_cross.v)*n_state);
|
||||
v = ggml_view_1d(ctx0, wstate.kv_cross.v, n_state*n_ctx,
|
||||
(ggml_element_size(wstate.kv_cross.v)*n_state)*(il*n_ctx_pad));
|
||||
} else {
|
||||
Vcross = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcross, n_state, n_ctx));
|
||||
|
||||
k = ggml_view_1d(ctx0, wstate.kv_cross.k, n_state*n_ctx,
|
||||
(ggml_element_size(wstate.kv_cross.k)*n_state)*(il*n_ctx));
|
||||
|
||||
v = ggml_view_2d(ctx0, wstate.kv_cross.v, n_ctx, n_state,
|
||||
( n_ctx)*ggml_element_size(wstate.kv_cross.v),
|
||||
(il*n_ctx)*ggml_element_size(wstate.kv_cross.v)*n_state);
|
||||
}
|
||||
|
||||
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcross, k));
|
||||
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcross, v));
|
||||
@ -2195,7 +2261,7 @@ static bool whisper_encode_internal(
|
||||
}
|
||||
|
||||
if (!whisper_encode_external(wstate)) {
|
||||
if (!ggml_graph_compute_helper(wstate.backend, gf, n_threads)) {
|
||||
if (!ggml_graph_compute_helper(wctx.backend, gf, n_threads)) {
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
@ -2218,7 +2284,7 @@ static bool whisper_encode_internal(
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!ggml_graph_compute_helper(wstate.backend, gf, n_threads)) {
|
||||
if (!ggml_graph_compute_helper(wctx.backend, gf, n_threads)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
@ -2234,7 +2300,7 @@ static bool whisper_encode_internal(
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!ggml_graph_compute_helper(wstate.backend, gf, n_threads)) {
|
||||
if (!ggml_graph_compute_helper(wctx.backend, gf, n_threads)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
@ -2263,11 +2329,15 @@ static struct ggml_cgraph * whisper_build_graph_decoder(
|
||||
const int n_head = hparams.n_text_head;
|
||||
const int n_layer = hparams.n_text_layer;
|
||||
|
||||
const int n_state_head = n_state/n_head;
|
||||
|
||||
const int n_tokens = batch.n_tokens;
|
||||
const int n_audio_ctx = wstate.exp_n_audio_ctx > 0 ? wstate.exp_n_audio_ctx : hparams.n_audio_ctx;
|
||||
|
||||
const int32_t n_kv = worst_case ? n_ctx : kv_self.n;
|
||||
const int32_t kv_head = worst_case ? n_ctx - n_tokens : kv_self.head;
|
||||
const int n_audio_ctx_pad = GGML_PAD(n_audio_ctx, 256);
|
||||
|
||||
const int32_t n_kv = worst_case ? n_ctx : kv_self.n;
|
||||
const int32_t kv_head = worst_case ? n_ctx - n_tokens : kv_self.head;
|
||||
|
||||
//WHISPER_LOG_DEBUG("%s: n_past = %d, n_tokens = %d, n_audio_ctx = %d, n_ctx = %d\n", __func__, n_past, n_tokens, n_audio_ctx, n_ctx);
|
||||
|
||||
@ -2289,12 +2359,14 @@ static struct ggml_cgraph * whisper_build_graph_decoder(
|
||||
ggml_set_name(position, "position");
|
||||
ggml_set_input(position);
|
||||
|
||||
const float KQscale = pow(float(n_state)/n_head, -0.25);
|
||||
const float KQscale = pow(float(n_state_head), -0.25);
|
||||
|
||||
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
|
||||
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), 1);
|
||||
ggml_set_name(KQ_mask, "KQ_mask");
|
||||
ggml_set_input(KQ_mask);
|
||||
|
||||
struct ggml_tensor * KQ_mask_f16 = ggml_cast(ctx0, KQ_mask, GGML_TYPE_F16);
|
||||
|
||||
// token encoding + position encoding
|
||||
struct ggml_tensor * cur =
|
||||
ggml_add(ctx0,
|
||||
@ -2350,12 +2422,25 @@ static struct ggml_cgraph * whisper_build_graph_decoder(
|
||||
Vcur,
|
||||
layer.attn_v_b);
|
||||
|
||||
Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_state, n_tokens));
|
||||
struct ggml_tensor * k;
|
||||
struct ggml_tensor * v;
|
||||
|
||||
struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_state, (ggml_element_size(kv_self.k)*n_state)*(il*n_ctx + kv_head));
|
||||
struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_state,
|
||||
( n_ctx)*ggml_element_size(kv_self.v),
|
||||
(il*n_ctx)*ggml_element_size(kv_self.v)*n_state + kv_head*ggml_element_size(kv_self.v));
|
||||
if (wctx.params.flash_attn) {
|
||||
k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_state,
|
||||
(ggml_element_size(kv_self.k)*n_state)*(il*n_ctx + kv_head));
|
||||
|
||||
v = ggml_view_1d(ctx0, kv_self.v, n_tokens*n_state,
|
||||
(ggml_element_size(kv_self.v)*n_state)*(il*n_ctx + kv_head));
|
||||
} else {
|
||||
Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_state, n_tokens));
|
||||
|
||||
k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_state,
|
||||
(ggml_element_size(kv_self.k)*n_state)*(il*n_ctx + kv_head));
|
||||
|
||||
v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_state,
|
||||
( n_ctx)*ggml_element_size(kv_self.v),
|
||||
(il*n_ctx)*ggml_element_size(kv_self.v)*n_state + kv_head*ggml_element_size(kv_self.v));
|
||||
}
|
||||
|
||||
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
|
||||
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
|
||||
@ -2365,35 +2450,48 @@ static struct ggml_cgraph * whisper_build_graph_decoder(
|
||||
|
||||
struct ggml_tensor * Q =
|
||||
ggml_permute(ctx0,
|
||||
ggml_reshape_3d(ctx0, Qcur, n_state/n_head, n_head, n_tokens),
|
||||
ggml_reshape_3d(ctx0, Qcur, n_state_head, n_head, n_tokens),
|
||||
0, 2, 1, 3);
|
||||
|
||||
struct ggml_tensor * K =
|
||||
ggml_view_3d(ctx0, kv_self.k,
|
||||
n_state/n_head, n_kv, n_head,
|
||||
n_state_head, n_kv, n_head,
|
||||
ggml_element_size(kv_self.k)*n_state,
|
||||
ggml_element_size(kv_self.k)*n_state/n_head,
|
||||
ggml_element_size(kv_self.k)*n_state_head,
|
||||
ggml_element_size(kv_self.k)*n_state*n_ctx*il);
|
||||
|
||||
// K * Q
|
||||
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
|
||||
if (wctx.params.flash_attn) {
|
||||
struct ggml_tensor * V =
|
||||
ggml_view_3d(ctx0, kv_self.v,
|
||||
n_state_head, n_kv, n_head,
|
||||
ggml_element_size(kv_self.v)*n_state,
|
||||
ggml_element_size(kv_self.v)*n_state_head,
|
||||
ggml_element_size(kv_self.v)*n_state*n_ctx*il);
|
||||
|
||||
struct ggml_tensor * KQ_soft_max = ggml_soft_max_ext(ctx0, KQ, KQ_mask, 1.0f, 0.0f);
|
||||
cur = ggml_flash_attn_ext(ctx0, Q, K, V, KQ_mask_f16, 1.0f, 0.0f);
|
||||
|
||||
struct ggml_tensor * V =
|
||||
ggml_view_3d(ctx0, kv_self.v,
|
||||
n_kv, n_state/n_head, n_head,
|
||||
n_ctx*ggml_element_size(kv_self.v),
|
||||
n_ctx*ggml_element_size(kv_self.v)*n_state/n_head,
|
||||
n_ctx*ggml_element_size(kv_self.v)*n_state*il);
|
||||
cur = ggml_reshape_2d(ctx0, cur, n_state, n_tokens);
|
||||
} else {
|
||||
// K * Q
|
||||
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
|
||||
|
||||
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
|
||||
struct ggml_tensor * KQ_soft_max = ggml_soft_max_ext(ctx0, KQ, KQ_mask, 1.0f, 0.0f);
|
||||
|
||||
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
|
||||
struct ggml_tensor * V =
|
||||
ggml_view_3d(ctx0, kv_self.v,
|
||||
n_kv, n_state_head, n_head,
|
||||
n_ctx*ggml_element_size(kv_self.v),
|
||||
n_ctx*ggml_element_size(kv_self.v)*n_state_head,
|
||||
n_ctx*ggml_element_size(kv_self.v)*n_state*il);
|
||||
|
||||
cur = ggml_cpy(ctx0,
|
||||
KQV_merged,
|
||||
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_state, n_tokens));
|
||||
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
|
||||
|
||||
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
|
||||
|
||||
cur = ggml_cpy(ctx0,
|
||||
KQV_merged,
|
||||
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_state, n_tokens));
|
||||
}
|
||||
}
|
||||
|
||||
// projection
|
||||
@ -2432,80 +2530,77 @@ static struct ggml_cgraph * whisper_build_graph_decoder(
|
||||
Qcur,
|
||||
layer.cross_attn_q_b);
|
||||
|
||||
Qcur = ggml_scale(ctx0, Qcur, KQscale);
|
||||
|
||||
// Kcross is already scaled
|
||||
struct ggml_tensor * Kcross =
|
||||
ggml_view_3d(ctx0, wstate.kv_cross.k,
|
||||
n_state/n_head, n_audio_ctx, n_head,
|
||||
ggml_element_size(wstate.kv_cross.k)*n_state,
|
||||
ggml_element_size(wstate.kv_cross.k)*n_state/n_head,
|
||||
ggml_element_size(wstate.kv_cross.k)*n_state*n_audio_ctx*il);
|
||||
|
||||
//struct ggml_tensor * Vcross =
|
||||
// ggml_reshape_3d(ctx0,
|
||||
// ggml_view_1d(ctx0, wstate.kv_cross.v, n_audio_ctx*n_state, il*n_audio_ctx*ggml_element_size(wstate.kv_cross.v)*n_state),
|
||||
// n_state/n_head, n_head, n_audio_ctx);
|
||||
|
||||
//struct ggml_tensor * V_trans =
|
||||
// ggml_cpy(ctx0,
|
||||
// ggml_permute(ctx0, Vcross, 1, 2, 0, 3),
|
||||
// ggml_new_tensor_3d(ctx0, Vcross->type, n_audio_ctx, n_state/n_head, n_head));
|
||||
|
||||
struct ggml_tensor * V =
|
||||
ggml_view_3d(ctx0, wstate.kv_cross.v,
|
||||
n_audio_ctx, n_state/n_head, n_head,
|
||||
n_audio_ctx*ggml_element_size(wstate.kv_cross.v),
|
||||
n_audio_ctx*ggml_element_size(wstate.kv_cross.v)*n_state/n_head,
|
||||
n_audio_ctx*ggml_element_size(wstate.kv_cross.v)*n_state*il);
|
||||
|
||||
// ------
|
||||
|
||||
struct ggml_tensor * Q =
|
||||
ggml_permute(ctx0,
|
||||
ggml_reshape_3d(ctx0, Qcur, n_state/n_head, n_head, n_tokens),
|
||||
ggml_reshape_3d(ctx0, Qcur, n_state_head, n_head, n_tokens),
|
||||
0, 2, 1, 3);
|
||||
|
||||
// K * Q
|
||||
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, Kcross, Q);
|
||||
if (wctx.params.flash_attn) {
|
||||
struct ggml_tensor * Kcross =
|
||||
ggml_view_3d(ctx0, wstate.kv_cross.k,
|
||||
n_state_head, n_audio_ctx_pad, n_head,
|
||||
ggml_element_size(wstate.kv_cross.k)*n_state,
|
||||
ggml_element_size(wstate.kv_cross.k)*n_state_head,
|
||||
ggml_element_size(wstate.kv_cross.k)*n_state*n_audio_ctx_pad*il);
|
||||
|
||||
//struct ggml_tensor * KQ_scaled =
|
||||
// ggml_scale(ctx0,
|
||||
// KQ,
|
||||
// ggml_new_f32(ctx0, 1.0f/sqrt(float(n_state)/n_head))
|
||||
// );
|
||||
struct ggml_tensor * Vcross =
|
||||
ggml_view_3d(ctx0, wstate.kv_cross.v,
|
||||
n_state_head, n_audio_ctx_pad, n_head,
|
||||
ggml_element_size(wstate.kv_cross.v)*n_state,
|
||||
ggml_element_size(wstate.kv_cross.v)*n_state_head,
|
||||
ggml_element_size(wstate.kv_cross.v)*n_state*n_audio_ctx_pad*il);
|
||||
|
||||
// no masking for cross-attention
|
||||
//struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);
|
||||
cur = ggml_flash_attn_ext(ctx0, Q, Kcross, Vcross, nullptr, KQscale, 0.0f);
|
||||
|
||||
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ);
|
||||
cur = ggml_reshape_2d(ctx0, cur, n_state, n_tokens);
|
||||
} else {
|
||||
struct ggml_tensor * Kcross =
|
||||
ggml_view_3d(ctx0, wstate.kv_cross.k,
|
||||
n_state_head, n_audio_ctx, n_head,
|
||||
ggml_element_size(wstate.kv_cross.k)*n_state,
|
||||
ggml_element_size(wstate.kv_cross.k)*n_state_head,
|
||||
ggml_element_size(wstate.kv_cross.k)*n_state*n_audio_ctx*il);
|
||||
|
||||
// [EXPERIMENTAL] Token-level timestamps with DTW
|
||||
if (wctx.params.dtw_token_timestamps) {
|
||||
if (wstate.aheads_masks.m[il] != nullptr) {
|
||||
struct ggml_tensor * aheads_KQs = ggml_reshape_2d(ctx0, KQ_soft_max, KQ_soft_max->ne[0] * KQ_soft_max->ne[1], KQ_soft_max->ne[2]);
|
||||
aheads_KQs = ggml_transpose(ctx0, aheads_KQs);
|
||||
aheads_KQs = ggml_cont(ctx0, aheads_KQs);
|
||||
aheads_KQs = ggml_mul_mat(ctx0, wstate.aheads_masks.m[il], aheads_KQs);
|
||||
aheads_KQs = ggml_transpose(ctx0, aheads_KQs);
|
||||
aheads_KQs = ggml_cont(ctx0, aheads_KQs);
|
||||
aheads_KQs = ggml_reshape_3d(ctx0, aheads_KQs, KQ_soft_max->ne[0], KQ_soft_max->ne[1], wstate.aheads_masks.m[il]->ne[1]);
|
||||
if (aheads_cross_QKs == NULL) {
|
||||
aheads_cross_QKs = aheads_KQs;
|
||||
} else {
|
||||
aheads_cross_QKs = ggml_concat(ctx0, aheads_cross_QKs, aheads_KQs);
|
||||
struct ggml_tensor * Vcross =
|
||||
ggml_view_3d(ctx0, wstate.kv_cross.v,
|
||||
n_audio_ctx, n_state_head, n_head,
|
||||
n_audio_ctx*ggml_element_size(wstate.kv_cross.v),
|
||||
n_audio_ctx*ggml_element_size(wstate.kv_cross.v)*n_state_head,
|
||||
n_audio_ctx*ggml_element_size(wstate.kv_cross.v)*n_state*il);
|
||||
|
||||
// ------
|
||||
|
||||
// K * Q
|
||||
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, Kcross, Q);
|
||||
|
||||
struct ggml_tensor * KQ_soft_max = ggml_soft_max_ext(ctx0, KQ, nullptr, KQscale, 0.0f);
|
||||
|
||||
// [EXPERIMENTAL] Token-level timestamps with DTW
|
||||
if (wctx.params.dtw_token_timestamps) {
|
||||
if (wstate.aheads_masks.m[il] != nullptr) {
|
||||
struct ggml_tensor * aheads_KQs = ggml_reshape_2d(ctx0, KQ_soft_max, KQ_soft_max->ne[0] * KQ_soft_max->ne[1], KQ_soft_max->ne[2]);
|
||||
aheads_KQs = ggml_transpose(ctx0, aheads_KQs);
|
||||
aheads_KQs = ggml_cont(ctx0, aheads_KQs);
|
||||
aheads_KQs = ggml_mul_mat(ctx0, wstate.aheads_masks.m[il], aheads_KQs);
|
||||
aheads_KQs = ggml_transpose(ctx0, aheads_KQs);
|
||||
aheads_KQs = ggml_cont(ctx0, aheads_KQs);
|
||||
aheads_KQs = ggml_reshape_3d(ctx0, aheads_KQs, KQ_soft_max->ne[0], KQ_soft_max->ne[1], wstate.aheads_masks.m[il]->ne[1]);
|
||||
if (aheads_cross_QKs == NULL) {
|
||||
aheads_cross_QKs = aheads_KQs;
|
||||
} else {
|
||||
aheads_cross_QKs = ggml_concat(ctx0, aheads_cross_QKs, aheads_KQs);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, Vcross, KQ_soft_max);
|
||||
|
||||
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
|
||||
|
||||
cur = ggml_cpy(ctx0,
|
||||
KQV_merged,
|
||||
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_state, n_tokens));
|
||||
}
|
||||
|
||||
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
|
||||
|
||||
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
|
||||
|
||||
// cur = KQV_merged.contiguous().view(n_state, n_tokens)
|
||||
cur = ggml_cpy(ctx0,
|
||||
KQV_merged,
|
||||
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_state, n_tokens));
|
||||
}
|
||||
|
||||
// projection
|
||||
@ -2638,7 +2733,9 @@ static bool whisper_decode_internal(
|
||||
return false;
|
||||
}
|
||||
|
||||
kv_self.n = whisper_kv_cache_cell_max(kv_self);
|
||||
const uint32_t pad = whisper_kv_cache_get_padding(wctx);
|
||||
kv_self.n = std::min(kv_self.size, std::max(pad, GGML_PAD(whisper_kv_cache_cell_max(kv_self), pad)));
|
||||
|
||||
//kv_self.n = std::min((int32_t) hparams.n_text_ctx, std::max(32, whisper_kv_cache_cell_max(kv_self)));
|
||||
//printf("n_tokens = %5d, kv_self.head = %5d, kv_self.n = %5d, seq_id = %5d\n", batch.n_tokens, kv_self.head, kv_self.n, batch.seq_id[0][0]);
|
||||
}
|
||||
@ -2672,9 +2769,10 @@ static bool whisper_decode_internal(
|
||||
struct ggml_tensor * KQ_mask = ggml_graph_get_tensor(gf, "KQ_mask");
|
||||
|
||||
auto & kv_self = wstate.kv_self;
|
||||
const int32_t n_kv = kv_self.n;
|
||||
|
||||
wstate.inp_mask.resize(n_kv*n_tokens);
|
||||
const int32_t n_kv = kv_self.n;
|
||||
|
||||
wstate.inp_mask.resize(ggml_nelements(KQ_mask));
|
||||
|
||||
float * data = wstate.inp_mask.data();
|
||||
memset(data, 0, ggml_nbytes(KQ_mask));
|
||||
@ -2690,6 +2788,12 @@ static bool whisper_decode_internal(
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
|
||||
for (int j = 0; j < n_kv; ++j) {
|
||||
data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ggml_backend_tensor_set(KQ_mask, wstate.inp_mask.data(), 0, ggml_nelements(KQ_mask)*sizeof(float));
|
||||
@ -2697,7 +2801,7 @@ static bool whisper_decode_internal(
|
||||
|
||||
logits = gf->nodes[gf->n_nodes - 1];
|
||||
|
||||
if (!ggml_graph_compute_helper(wstate.backend, gf, n_threads)) {
|
||||
if (!ggml_graph_compute_helper(wctx.backend, gf, n_threads)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
@ -3144,18 +3248,14 @@ struct whisper_state * whisper_init_state(whisper_context * ctx) {
|
||||
|
||||
whisper_state * state = new whisper_state;
|
||||
|
||||
state->backend = whisper_backend_init(ctx->params);
|
||||
if (!state->backend) {
|
||||
WHISPER_LOG_ERROR("%s: whisper_backend_init() failed\n", __func__);
|
||||
whisper_free_state(state);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// at this point, we don't know yet how many decoders will be used, so we overallocate 3x ctx
|
||||
// in theory, there can be a case where this is not enough, but in practice it should always be enough
|
||||
const int factor = 3;
|
||||
|
||||
if (!kv_cache_init(ctx->model.hparams, state->kv_self, ctx->backend, ctx->itype, factor*ctx->model.hparams.n_text_ctx)) {
|
||||
if (!kv_cache_init(state->kv_self, ctx->backend, ctx->itype,
|
||||
ctx->model.hparams.n_text_state,
|
||||
ctx->model.hparams.n_text_layer,
|
||||
GGML_PAD(ctx->model.hparams.n_text_ctx, 256)*factor)) {
|
||||
WHISPER_LOG_ERROR("%s: kv_cache_init() failed for self-attention cache\n", __func__);
|
||||
whisper_free_state(state);
|
||||
return nullptr;
|
||||
@ -3166,7 +3266,10 @@ struct whisper_state * whisper_init_state(whisper_context * ctx) {
|
||||
WHISPER_LOG_INFO("%s: kv self size = %7.2f MB\n", __func__, memory_size / 1e6);
|
||||
}
|
||||
|
||||
if (!kv_cache_init(ctx->model.hparams, state->kv_cross, ctx->backend, ctx->itype, ctx->model.hparams.n_audio_ctx)) {
|
||||
if (!kv_cache_init(state->kv_cross, ctx->backend, ctx->itype,
|
||||
ctx->model.hparams.n_text_state,
|
||||
ctx->model.hparams.n_text_layer,
|
||||
GGML_PAD(ctx->model.hparams.n_audio_ctx, 256))) {
|
||||
WHISPER_LOG_ERROR("%s: kv_cache_init() failed for cross-attention cache\n", __func__);
|
||||
whisper_free_state(state);
|
||||
return nullptr;
|
||||
@ -3177,6 +3280,20 @@ struct whisper_state * whisper_init_state(whisper_context * ctx) {
|
||||
WHISPER_LOG_INFO("%s: kv cross size = %7.2f MB\n", __func__, memory_size / 1e6);
|
||||
}
|
||||
|
||||
if (!kv_cache_init(state->kv_pad, ctx->backend, ctx->itype,
|
||||
ctx->model.hparams.n_audio_state,
|
||||
1,
|
||||
GGML_PAD(ctx->model.hparams.n_audio_ctx, 256))) {
|
||||
WHISPER_LOG_ERROR("%s: kv_cache_init() failed for self-attention cache\n", __func__);
|
||||
whisper_free_state(state);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
{
|
||||
const size_t memory_size = ggml_nbytes(state->kv_pad.k) + ggml_nbytes(state->kv_pad.v);
|
||||
WHISPER_LOG_INFO("%s: kv pad size = %7.2f MB\n", __func__, memory_size / 1e6);
|
||||
}
|
||||
|
||||
// [EXPERIMENTAL] Token-level timestamps with DTW
|
||||
if (ctx->params.dtw_token_timestamps) {
|
||||
if (!aheads_masks_init(ctx->params, ctx->model.hparams, state->aheads_masks, ctx->backend)) {
|
||||
@ -3347,6 +3464,7 @@ int whisper_ctx_init_openvino_encoder(
|
||||
struct whisper_context_params whisper_context_default_params() {
|
||||
struct whisper_context_params result = {
|
||||
/*.use_gpu =*/ true,
|
||||
/*.flash_attn =*/ false,
|
||||
/*.gpu_device =*/ 0,
|
||||
|
||||
/*.dtw_token_timestamps =*/ false,
|
||||
@ -3445,6 +3563,16 @@ struct whisper_context * whisper_init_from_buffer_with_params_no_state(void * bu
|
||||
struct whisper_context * whisper_init_with_params_no_state(struct whisper_model_loader * loader, struct whisper_context_params params) {
|
||||
ggml_time_init();
|
||||
|
||||
if (params.flash_attn && params.dtw_token_timestamps) {
|
||||
WHISPER_LOG_WARN("%s: dtw_token_timestamps is not supported with flash_attn - disabling\n", __func__);
|
||||
params.dtw_token_timestamps = false;
|
||||
}
|
||||
|
||||
WHISPER_LOG_INFO("%s: use gpu = %d\n", __func__, params.use_gpu);
|
||||
WHISPER_LOG_INFO("%s: flash attn = %d\n", __func__, params.flash_attn);
|
||||
WHISPER_LOG_INFO("%s: gpu_device = %d\n", __func__, params.gpu_device);
|
||||
WHISPER_LOG_INFO("%s: dtw = %d\n", __func__, params.dtw_token_timestamps);
|
||||
|
||||
whisper_context * ctx = new whisper_context;
|
||||
ctx->params = params;
|
||||
|
||||
@ -3533,6 +3661,7 @@ void whisper_free_state(struct whisper_state * state) {
|
||||
if (state) {
|
||||
kv_cache_free(state->kv_self);
|
||||
kv_cache_free(state->kv_cross);
|
||||
kv_cache_free(state->kv_pad);
|
||||
|
||||
#ifdef WHISPER_USE_COREML
|
||||
if (state->ctx_coreml != nullptr) {
|
||||
@ -3555,8 +3684,6 @@ void whisper_free_state(struct whisper_state * state) {
|
||||
ggml_gallocr_free(state->alloc_cross.alloc);
|
||||
ggml_gallocr_free(state->alloc_decode.alloc);
|
||||
|
||||
ggml_backend_free(state->backend);
|
||||
|
||||
// [EXPERIMENTAL] Token-level timestamps with DTW
|
||||
aheads_masks_free(state->aheads_masks);
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user