mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2024-11-07 16:44:13 +01:00
parallel : adding tool for parallel transformer inference
This commit is contained in:
parent
c565c569e7
commit
72e9cdd6bf
3
examples/parallel/CMakeLists.txt
Normal file
3
examples/parallel/CMakeLists.txt
Normal file
@ -0,0 +1,3 @@
|
||||
set(TARGET parallel)
|
||||
add_executable(${TARGET} parallel.cpp)
|
||||
target_link_libraries(${TARGET} PRIVATE whisper ${CMAKE_THREAD_LIBS_INIT})
|
3
examples/parallel/README.md
Normal file
3
examples/parallel/README.md
Normal file
@ -0,0 +1,3 @@
|
||||
# parallel
|
||||
|
||||
TODO
|
422
examples/parallel/parallel.cpp
Normal file
422
examples/parallel/parallel.cpp
Normal file
@ -0,0 +1,422 @@
|
||||
#include "whisper.h"
|
||||
|
||||
// third-party utilities
|
||||
// use your favorite implementations
|
||||
#define DR_WAV_IMPLEMENTATION
|
||||
#include "dr_wav.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <fstream>
|
||||
#include <cstdio>
|
||||
#include <string>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
|
||||
// Terminal color map. 10 colors grouped in ranges [0.0, 0.1, ..., 0.9]
|
||||
// Lowest is red, middle is yellow, highest is green.
|
||||
const std::vector<std::string> k_colors = {
|
||||
"\033[38;5;196m", "\033[38;5;202m", "\033[38;5;208m", "\033[38;5;214m", "\033[38;5;220m",
|
||||
"\033[38;5;226m", "\033[38;5;190m", "\033[38;5;154m", "\033[38;5;118m", "\033[38;5;82m",
|
||||
};
|
||||
|
||||
// 500 -> 00:05.000
|
||||
// 6000 -> 01:00.000
|
||||
std::string to_timestamp(int64_t t, bool comma = false) {
|
||||
int64_t msec = t * 10;
|
||||
int64_t hr = msec / (1000 * 60 * 60);
|
||||
msec = msec - hr * (1000 * 60 * 60);
|
||||
int64_t min = msec / (1000 * 60);
|
||||
msec = msec - min * (1000 * 60);
|
||||
int64_t sec = msec / 1000;
|
||||
msec = msec - sec * 1000;
|
||||
|
||||
char buf[32];
|
||||
snprintf(buf, sizeof(buf), "%02d:%02d:%02d%s%03d", (int) hr, (int) min, (int) sec, comma ? "," : ".", (int) msec);
|
||||
|
||||
return std::string(buf);
|
||||
}
|
||||
|
||||
// command-line parameters
|
||||
struct whisper_params {
|
||||
int32_t seed = -1; // RNG seed, not used currently
|
||||
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
||||
int32_t offset_t_ms = 0;
|
||||
int32_t offset_n = 0;
|
||||
|
||||
bool verbose = false;
|
||||
bool translate = false;
|
||||
bool output_txt = false;
|
||||
bool output_vtt = false;
|
||||
bool output_srt = false;
|
||||
bool print_special_tokens = false;
|
||||
bool print_colors = false;
|
||||
bool no_timestamps = false;
|
||||
|
||||
std::string language = "en";
|
||||
std::string model = "models/ggml-base.en.bin";
|
||||
|
||||
std::vector<std::string> fname_inp = {};
|
||||
};
|
||||
|
||||
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
|
||||
|
||||
bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
for (int i = 1; i < argc; i++) {
|
||||
std::string arg = argv[i];
|
||||
|
||||
if (arg[0] != '-') {
|
||||
params.fname_inp.push_back(arg);
|
||||
continue;
|
||||
}
|
||||
|
||||
if (arg == "-s" || arg == "--seed") {
|
||||
params.seed = std::stoi(argv[++i]);
|
||||
} else if (arg == "-t" || arg == "--threads") {
|
||||
params.n_threads = std::stoi(argv[++i]);
|
||||
} else if (arg == "-ot" || arg == "--offset-t") {
|
||||
params.offset_t_ms = std::stoi(argv[++i]);
|
||||
} else if (arg == "-on" || arg == "--offset-n") {
|
||||
params.offset_n = std::stoi(argv[++i]);
|
||||
} else if (arg == "-v" || arg == "--verbose") {
|
||||
params.verbose = true;
|
||||
} else if (arg == "--translate") {
|
||||
params.translate = true;
|
||||
} else if (arg == "-l" || arg == "--language") {
|
||||
params.language = argv[++i];
|
||||
if (whisper_lang_id(params.language.c_str()) == -1) {
|
||||
fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str());
|
||||
whisper_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
} else if (arg == "-otxt" || arg == "--output-txt") {
|
||||
params.output_txt = true;
|
||||
} else if (arg == "-ovtt" || arg == "--output-vtt") {
|
||||
params.output_vtt = true;
|
||||
} else if (arg == "-osrt" || arg == "--output-srt") {
|
||||
params.output_srt = true;
|
||||
} else if (arg == "-ps" || arg == "--print_special") {
|
||||
params.print_special_tokens = true;
|
||||
} else if (arg == "-pc" || arg == "--print_colors") {
|
||||
params.print_colors = true;
|
||||
} else if (arg == "-nt" || arg == "--no_timestamps") {
|
||||
params.no_timestamps = true;
|
||||
} else if (arg == "-m" || arg == "--model") {
|
||||
params.model = argv[++i];
|
||||
} else if (arg == "-f" || arg == "--file") {
|
||||
params.fname_inp.push_back(argv[++i]);
|
||||
} else if (arg == "-h" || arg == "--help") {
|
||||
whisper_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
} else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
whisper_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void whisper_print_usage(int argc, char ** argv, const whisper_params & params) {
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "usage: %s [options] file0.wav file1.wav ...\n", argv[0]);
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "options:\n");
|
||||
fprintf(stderr, " -h, --help show this help message and exit\n");
|
||||
fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n");
|
||||
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
|
||||
fprintf(stderr, " -ot N, --offset-t N time offset in milliseconds (default: %d)\n", params.offset_t_ms);
|
||||
fprintf(stderr, " -on N, --offset-n N segment index offset (default: %d)\n", params.offset_n);
|
||||
fprintf(stderr, " -v, --verbose verbose output\n");
|
||||
fprintf(stderr, " --translate translate from source language to english\n");
|
||||
fprintf(stderr, " -otxt, --output-txt output result in a text file\n");
|
||||
fprintf(stderr, " -ovtt, --output-vtt output result in a vtt file\n");
|
||||
fprintf(stderr, " -osrt, --output-srt output result in a srt file\n");
|
||||
fprintf(stderr, " -ps, --print_special print special tokens\n");
|
||||
fprintf(stderr, " -pc, --print_colors print colors\n");
|
||||
fprintf(stderr, " -nt, --no_timestamps do not print timestamps\n");
|
||||
fprintf(stderr, " -l LANG, --language LANG spoken language (default: %s)\n", params.language.c_str());
|
||||
fprintf(stderr, " -m FNAME, --model FNAME model path (default: %s)\n", params.model.c_str());
|
||||
fprintf(stderr, " -f FNAME, --file FNAME input WAV file path\n");
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
void whisper_print_segment_callback(struct whisper_context * ctx, void * user_data) {
|
||||
const whisper_params & params = *(whisper_params *) user_data;
|
||||
|
||||
const int n_segments = whisper_full_n_segments(ctx);
|
||||
|
||||
// print the last segment
|
||||
const int i = n_segments - 1;
|
||||
if (i == 0) {
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
if (params.no_timestamps) {
|
||||
if (params.print_colors) {
|
||||
for (int j = 0; j < whisper_full_n_tokens(ctx, i); ++j) {
|
||||
if (params.print_special_tokens == false) {
|
||||
const whisper_token id = whisper_full_get_token_id(ctx, i, j);
|
||||
if (id >= whisper_token_eot(ctx)) {
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
const char * text = whisper_full_get_token_text(ctx, i, j);
|
||||
const float p = whisper_full_get_token_p (ctx, i, j);
|
||||
|
||||
const int col = std::max(0, std::min((int) k_colors.size(), (int) (std::pow(p, 3)*float(k_colors.size()))));
|
||||
|
||||
printf("%s%s%s", k_colors[col].c_str(), text, "\033[0m");
|
||||
}
|
||||
} else {
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
printf("%s", text);
|
||||
}
|
||||
fflush(stdout);
|
||||
} else {
|
||||
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
|
||||
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
|
||||
|
||||
if (params.print_colors) {
|
||||
printf("[%s --> %s] ", to_timestamp(t0).c_str(), to_timestamp(t1).c_str());
|
||||
for (int j = 0; j < whisper_full_n_tokens(ctx, i); ++j) {
|
||||
if (params.print_special_tokens == false) {
|
||||
const whisper_token id = whisper_full_get_token_id(ctx, i, j);
|
||||
if (id >= whisper_token_eot(ctx)) {
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
const char * text = whisper_full_get_token_text(ctx, i, j);
|
||||
const float p = whisper_full_get_token_p (ctx, i, j);
|
||||
|
||||
const int col = std::max(0, std::min((int) k_colors.size(), (int) (std::pow(p, 3)*float(k_colors.size()))));
|
||||
|
||||
printf("%s%s%s", k_colors[col].c_str(), text, "\033[0m");
|
||||
}
|
||||
printf("\n");
|
||||
} else {
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
|
||||
printf("[%s --> %s] %s\n", to_timestamp(t0).c_str(), to_timestamp(t1).c_str(), text);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bool output_txt(struct whisper_context * ctx, const char * fname) {
|
||||
std::ofstream fout(fname);
|
||||
if (!fout.is_open()) {
|
||||
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname);
|
||||
return false;
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
|
||||
|
||||
const int n_segments = whisper_full_n_segments(ctx);
|
||||
for (int i = 0; i < n_segments; ++i) {
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
fout << text;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool output_vtt(struct whisper_context * ctx, const char * fname) {
|
||||
std::ofstream fout(fname);
|
||||
if (!fout.is_open()) {
|
||||
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname);
|
||||
return 9;
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
|
||||
|
||||
fout << "WEBVTT\n\n";
|
||||
|
||||
const int n_segments = whisper_full_n_segments(ctx);
|
||||
for (int i = 0; i < n_segments; ++i) {
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
|
||||
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
|
||||
|
||||
fout << to_timestamp(t0) << " --> " << to_timestamp(t1) << "\n";
|
||||
fout << text << "\n\n";
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool output_srt(struct whisper_context * ctx, const char * fname, const whisper_params & params) {
|
||||
std::ofstream fout(fname);
|
||||
if (!fout.is_open()) {
|
||||
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname);
|
||||
return false;
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
|
||||
|
||||
const int n_segments = whisper_full_n_segments(ctx);
|
||||
for (int i = 0; i < n_segments; ++i) {
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
|
||||
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
|
||||
|
||||
fout << i + 1 + params.offset_n << "\n";
|
||||
fout << to_timestamp(t0, true) << " --> " << to_timestamp(t1, true) << "\n";
|
||||
fout << text << "\n\n";
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
whisper_params params;
|
||||
|
||||
if (whisper_params_parse(argc, argv, params) == false) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (params.seed < 0) {
|
||||
params.seed = time(NULL);
|
||||
}
|
||||
|
||||
if (params.fname_inp.empty()) {
|
||||
fprintf(stderr, "error: no input files specified\n");
|
||||
whisper_print_usage(argc, argv, params);
|
||||
return 2;
|
||||
}
|
||||
|
||||
// whisper init
|
||||
|
||||
struct whisper_context * ctx = whisper_init(params.model.c_str());
|
||||
|
||||
if (ctx == nullptr) {
|
||||
fprintf(stderr, "error: failed to initialize whisper context\n");
|
||||
return 3;
|
||||
}
|
||||
|
||||
for (int f = 0; f < (int) params.fname_inp.size(); ++f) {
|
||||
const auto fname_inp = params.fname_inp[f];
|
||||
|
||||
// WAV input
|
||||
std::vector<float> pcmf32;
|
||||
{
|
||||
drwav wav;
|
||||
if (!drwav_init_file(&wav, fname_inp.c_str(), NULL)) {
|
||||
fprintf(stderr, "%s: failed to open WAV file '%s' - check your input\n", argv[0], fname_inp.c_str());
|
||||
whisper_print_usage(argc, argv, {});
|
||||
return 4;
|
||||
}
|
||||
|
||||
if (wav.channels != 1 && wav.channels != 2) {
|
||||
fprintf(stderr, "%s: WAV file '%s' must be mono or stereo\n", argv[0], fname_inp.c_str());
|
||||
return 5;
|
||||
}
|
||||
|
||||
if (wav.sampleRate != WHISPER_SAMPLE_RATE) {
|
||||
fprintf(stderr, "%s: WAV file '%s' must be 16 kHz\n", argv[0], fname_inp.c_str());
|
||||
return 6;
|
||||
}
|
||||
|
||||
if (wav.bitsPerSample != 16) {
|
||||
fprintf(stderr, "%s: WAV file '%s' must be 16-bit\n", argv[0], fname_inp.c_str());
|
||||
return 7;
|
||||
}
|
||||
|
||||
int n = wav.totalPCMFrameCount;
|
||||
|
||||
std::vector<int16_t> pcm16;
|
||||
pcm16.resize(n*wav.channels);
|
||||
drwav_read_pcm_frames_s16(&wav, n, pcm16.data());
|
||||
drwav_uninit(&wav);
|
||||
|
||||
// convert to mono, float
|
||||
pcmf32.resize(n);
|
||||
if (wav.channels == 1) {
|
||||
for (int i = 0; i < n; i++) {
|
||||
pcmf32[i] = float(pcm16[i])/32768.0f;
|
||||
}
|
||||
} else {
|
||||
for (int i = 0; i < n; i++) {
|
||||
pcmf32[i] = float(pcm16[2*i] + pcm16[2*i + 1])/65536.0f;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// print system information
|
||||
{
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n", params.n_threads, std::thread::hardware_concurrency(), whisper_print_system_info());
|
||||
}
|
||||
|
||||
// print some info about the processing
|
||||
{
|
||||
fprintf(stderr, "\n");
|
||||
if (!whisper_is_multilingual(ctx)) {
|
||||
if (params.language != "en" || params.translate) {
|
||||
params.language = "en";
|
||||
params.translate = false;
|
||||
fprintf(stderr, "%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__);
|
||||
}
|
||||
}
|
||||
fprintf(stderr, "%s: processing '%s' (%d samples, %.1f sec), %d threads, lang = %s, task = %s, timestamps = %d ...\n",
|
||||
__func__, fname_inp.c_str(), int(pcmf32.size()), float(pcmf32.size())/WHISPER_SAMPLE_RATE, params.n_threads,
|
||||
params.language.c_str(),
|
||||
params.translate ? "translate" : "transcribe",
|
||||
params.no_timestamps ? 0 : 1);
|
||||
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
|
||||
// run the inference
|
||||
{
|
||||
whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
|
||||
|
||||
wparams.print_realtime = false;
|
||||
wparams.print_progress = false;
|
||||
wparams.print_timestamps = !params.no_timestamps;
|
||||
wparams.print_special_tokens = params.print_special_tokens;
|
||||
wparams.translate = params.translate;
|
||||
wparams.language = params.language.c_str();
|
||||
wparams.n_threads = params.n_threads;
|
||||
wparams.offset_ms = params.offset_t_ms;
|
||||
|
||||
// this callback is called on each new segment
|
||||
if (!wparams.print_realtime) {
|
||||
wparams.new_segment_callback = whisper_print_segment_callback;
|
||||
wparams.new_segment_callback_user_data = ¶ms;
|
||||
}
|
||||
|
||||
if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) {
|
||||
fprintf(stderr, "%s: failed to process audio\n", argv[0]);
|
||||
return 8;
|
||||
}
|
||||
|
||||
printf("\n");
|
||||
|
||||
// output to text file
|
||||
if (params.output_txt) {
|
||||
const auto fname_txt = fname_inp + ".txt";
|
||||
output_txt(ctx, fname_txt.c_str());
|
||||
}
|
||||
|
||||
// output to VTT file
|
||||
if (params.output_vtt) {
|
||||
const auto fname_vtt = fname_inp + ".vtt";
|
||||
output_vtt(ctx, fname_vtt.c_str());
|
||||
}
|
||||
|
||||
// output to SRT file
|
||||
if (params.output_srt) {
|
||||
const auto fname_srt = fname_inp + ".srt";
|
||||
output_srt(ctx, fname_srt.c_str(), params);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
whisper_print_timings(ctx);
|
||||
whisper_free(ctx);
|
||||
|
||||
return 0;
|
||||
}
|
91
whisper.cpp
91
whisper.cpp
@ -413,7 +413,6 @@ struct whisper_context {
|
||||
std::vector<float> probs;
|
||||
std::vector<float> logits;
|
||||
|
||||
std::vector<whisper_token_data> tokens_cur;
|
||||
std::vector<whisper_segment> result_all;
|
||||
|
||||
std::vector<whisper_token> prompt_past;
|
||||
@ -430,7 +429,7 @@ struct whisper_context {
|
||||
//
|
||||
// see the convert-pt-to-ggml.py script for details
|
||||
//
|
||||
bool whisper_model_load(const std::string & fname, whisper_context & wctx) {
|
||||
bool whisper_model_load(const std::string & fname, const int n_processors, whisper_context & wctx) {
|
||||
fprintf(stderr, "%s: loading model from '%s'\n", __func__, fname.c_str());
|
||||
|
||||
auto & model = wctx.model;
|
||||
@ -700,11 +699,11 @@ bool whisper_model_load(const std::string & fname, whisper_context & wctx) {
|
||||
ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_1_b
|
||||
}
|
||||
|
||||
ctx_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_k
|
||||
ctx_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_v
|
||||
ctx_size += n_processors*n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_k
|
||||
ctx_size += n_processors*n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_v
|
||||
|
||||
ctx_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_k
|
||||
ctx_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_v
|
||||
ctx_size += n_processors*n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_k
|
||||
ctx_size += n_processors*n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_v
|
||||
|
||||
ctx_size += (15 + 15*n_audio_layer + 24*n_text_layer)*256; // object overhead
|
||||
|
||||
@ -934,7 +933,7 @@ bool whisper_model_load(const std::string & fname, whisper_context & wctx) {
|
||||
// key/value memory for the self-attention layer
|
||||
{
|
||||
const int n_mem = n_text_layer*n_text_ctx;
|
||||
const int n_elements = n_text_state*n_mem;
|
||||
const int n_elements = n_text_state*n_mem*n_processors;
|
||||
|
||||
model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
|
||||
model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
|
||||
@ -945,7 +944,7 @@ bool whisper_model_load(const std::string & fname, whisper_context & wctx) {
|
||||
const int n_audio_ctx = hparams.n_audio_ctx;
|
||||
|
||||
const int n_mem = n_text_layer*n_audio_ctx;
|
||||
const int n_elements = n_text_state*n_mem;
|
||||
const int n_elements = n_text_state*n_mem*n_processors;
|
||||
|
||||
model.memory_cross_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
|
||||
model.memory_cross_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
|
||||
@ -955,7 +954,7 @@ bool whisper_model_load(const std::string & fname, whisper_context & wctx) {
|
||||
ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v) +
|
||||
ggml_nbytes(model.memory_cross_k) + ggml_nbytes(model.memory_cross_v);
|
||||
|
||||
fprintf(stderr, "%s: memory size = %8.2f MB \n", __func__, memory_size/1024.0/1024.0);
|
||||
fprintf(stderr, "%s: memory size = %8.2f MB (%d processors)\n", __func__, memory_size/1024.0/1024.0, n_processors);
|
||||
}
|
||||
|
||||
// load weights
|
||||
@ -1046,7 +1045,8 @@ bool whisper_model_load(const std::string & fname, whisper_context & wctx) {
|
||||
bool whisper_encode(
|
||||
whisper_context & wctx,
|
||||
const int n_threads,
|
||||
const int mel_offset) {
|
||||
const int mel_offset,
|
||||
const int processor_id) {
|
||||
const auto & model = wctx.model;
|
||||
const auto & mel_inp = wctx.mel;
|
||||
const auto & hparams = model.hparams;
|
||||
@ -1400,8 +1400,11 @@ bool whisper_encode(
|
||||
Vcross),
|
||||
Vcross);
|
||||
|
||||
struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_cross_k, n_state*n_ctx, (ggml_element_size(model.memory_cross_k)*n_state)*(il*n_ctx));
|
||||
struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_cross_v, n_state*n_ctx, (ggml_element_size(model.memory_cross_v)*n_state)*(il*n_ctx));
|
||||
const size_t offset_k = processor_id*(ggml_element_size(model.memory_cross_k)*n_state)*(model.hparams.n_text_layer*n_ctx);
|
||||
const size_t offset_v = processor_id*(ggml_element_size(model.memory_cross_v)*n_state)*(model.hparams.n_text_layer*n_ctx);
|
||||
|
||||
struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_cross_k, n_state*n_ctx, offset_k + (ggml_element_size(model.memory_cross_k)*n_state)*(il*n_ctx));
|
||||
struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_cross_v, n_state*n_ctx, offset_v + (ggml_element_size(model.memory_cross_v)*n_state)*(il*n_ctx));
|
||||
|
||||
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcross, k));
|
||||
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcross, v));
|
||||
@ -1434,7 +1437,8 @@ bool whisper_decode(
|
||||
const int n_threads,
|
||||
const whisper_token * tokens,
|
||||
const int n_tokens,
|
||||
const int n_past) {
|
||||
const int n_past,
|
||||
const int processor_id) {
|
||||
const auto & model = wctx.model;
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
@ -1529,10 +1533,13 @@ bool whisper_decode(
|
||||
Vcur),
|
||||
Vcur);
|
||||
|
||||
const size_t offset_k = processor_id*(ggml_element_size(model.memory_k)*n_state)*(n_layer*n_ctx);
|
||||
const size_t offset_v = processor_id*(ggml_element_size(model.memory_v)*n_state)*(n_layer*n_ctx);
|
||||
|
||||
// store key and value to memory
|
||||
{
|
||||
struct ggml_tensor * k = ggml_view_1d(ctxL, model.memory_k, N*n_state, (ggml_element_size(model.memory_k)*n_state)*(il*n_ctx + n_past));
|
||||
struct ggml_tensor * v = ggml_view_1d(ctxL, model.memory_v, N*n_state, (ggml_element_size(model.memory_v)*n_state)*(il*n_ctx + n_past));
|
||||
struct ggml_tensor * k = ggml_view_1d(ctxL, model.memory_k, N*n_state, offset_k + (ggml_element_size(model.memory_k)*n_state)*(il*n_ctx + n_past));
|
||||
struct ggml_tensor * v = ggml_view_1d(ctxL, model.memory_v, N*n_state, offset_v + (ggml_element_size(model.memory_v)*n_state)*(il*n_ctx + n_past));
|
||||
|
||||
ggml_build_forward_expand(&gf, ggml_cpy(ctxL, Kcur, k));
|
||||
ggml_build_forward_expand(&gf, ggml_cpy(ctxL, Vcur, v));
|
||||
@ -1550,7 +1557,7 @@ bool whisper_decode(
|
||||
struct ggml_tensor * K =
|
||||
ggml_permute(ctxL,
|
||||
ggml_reshape_3d(ctxL,
|
||||
ggml_view_1d(ctxL, model.memory_k, (n_past + N)*n_state, il*n_ctx*ggml_element_size(model.memory_k)*n_state),
|
||||
ggml_view_1d(ctxL, model.memory_k, (n_past + N)*n_state, offset_k + il*n_ctx*ggml_element_size(model.memory_k)*n_state),
|
||||
n_state/n_head, n_head, n_past + N),
|
||||
0, 2, 1, 3);
|
||||
|
||||
@ -1570,7 +1577,7 @@ bool whisper_decode(
|
||||
struct ggml_tensor * V_trans =
|
||||
ggml_permute(ctxL,
|
||||
ggml_reshape_3d(ctxL,
|
||||
ggml_view_1d(ctxL, model.memory_v, (n_past + N)*n_state, il*n_ctx*ggml_element_size(model.memory_v)*n_state),
|
||||
ggml_view_1d(ctxL, model.memory_v, (n_past + N)*n_state, offset_v + il*n_ctx*ggml_element_size(model.memory_v)*n_state),
|
||||
n_state/n_head, n_head, n_past + N),
|
||||
1, 2, 0, 3);
|
||||
|
||||
@ -1622,15 +1629,18 @@ bool whisper_decode(
|
||||
|
||||
Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
|
||||
|
||||
const size_t offset_k = processor_id*(ggml_element_size(model.memory_cross_k)*n_state)*(n_layer*M);
|
||||
const size_t offset_v = processor_id*(ggml_element_size(model.memory_cross_v)*n_state)*(n_layer*M);
|
||||
|
||||
// Kcross is already scaled
|
||||
struct ggml_tensor * Kcross =
|
||||
ggml_reshape_3d(ctxL,
|
||||
ggml_view_1d(ctxL, model.memory_cross_k, M*n_state, il*M*ggml_element_size(model.memory_cross_k)*n_state),
|
||||
ggml_view_1d(ctxL, model.memory_cross_k, M*n_state, offset_k + il*M*ggml_element_size(model.memory_cross_k)*n_state),
|
||||
n_state/n_head, n_head, M);
|
||||
|
||||
struct ggml_tensor * Vcross =
|
||||
ggml_reshape_3d(ctxL,
|
||||
ggml_view_1d(ctxL, model.memory_cross_v, M*n_state, il*M*ggml_element_size(model.memory_cross_v)*n_state),
|
||||
ggml_view_1d(ctxL, model.memory_cross_v, M*n_state, offset_v + il*M*ggml_element_size(model.memory_cross_v)*n_state),
|
||||
n_state/n_head, n_head, M);
|
||||
|
||||
// ------
|
||||
@ -2116,7 +2126,26 @@ struct whisper_context * whisper_init(const char * path_model) {
|
||||
|
||||
ctx->t_start_us = t_start_us;
|
||||
|
||||
if (!whisper_model_load(path_model, *ctx)) {
|
||||
if (!whisper_model_load(path_model, 1, *ctx)) {
|
||||
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, path_model);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
ctx->t_load_us = ggml_time_us() - t_start_us;
|
||||
|
||||
return ctx;
|
||||
}
|
||||
|
||||
struct whisper_context * whisper_init_parallel(const char * path_model, int n_processors) {
|
||||
ggml_time_init();
|
||||
|
||||
whisper_context * ctx = new whisper_context;
|
||||
|
||||
const int64_t t_start_us = ggml_time_us();
|
||||
|
||||
ctx->t_start_us = t_start_us;
|
||||
|
||||
if (!whisper_model_load(path_model, n_processors, *ctx)) {
|
||||
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, path_model);
|
||||
return NULL;
|
||||
}
|
||||
@ -2167,7 +2196,7 @@ int whisper_set_mel(
|
||||
int whisper_encode(struct whisper_context * ctx, int offset, int n_threads) {
|
||||
const int64_t t_start_us = ggml_time_us();
|
||||
|
||||
if (!whisper_encode(*ctx, n_threads, offset)) {
|
||||
if (!whisper_encode(*ctx, n_threads, offset, 0)) {
|
||||
fprintf(stderr, "%s: failed to eval\n", __func__);
|
||||
return -1;
|
||||
}
|
||||
@ -2180,7 +2209,7 @@ int whisper_encode(struct whisper_context * ctx, int offset, int n_threads) {
|
||||
int whisper_decode(struct whisper_context * ctx, const whisper_token * tokens, int n_tokens, int n_past, int n_threads) {
|
||||
const int64_t t_start_us = ggml_time_us();
|
||||
|
||||
if (!whisper_decode(*ctx, n_threads, tokens, n_tokens, n_past)) {
|
||||
if (!whisper_decode(*ctx, n_threads, tokens, n_tokens, n_past, 0)) {
|
||||
fprintf(stderr, "%s: failed to eval\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
@ -2302,6 +2331,7 @@ struct whisper_full_params whisper_full_default_params(enum whisper_sampling_str
|
||||
|
||||
/*.n_threads =*/ std::min(4, (int32_t) std::thread::hardware_concurrency()),
|
||||
/*.offset_ms =*/ 0,
|
||||
/*.n_processors =*/ 1,
|
||||
|
||||
/*.translate =*/ false,
|
||||
/*.no_context =*/ false,
|
||||
@ -2333,6 +2363,7 @@ struct whisper_full_params whisper_full_default_params(enum whisper_sampling_str
|
||||
|
||||
/*.n_threads =*/ std::min(4, (int32_t) std::thread::hardware_concurrency()),
|
||||
/*.offset_ms =*/ 0,
|
||||
/*.n_processors =*/ 1,
|
||||
|
||||
/*.translate =*/ false,
|
||||
/*.no_context =*/ false,
|
||||
@ -2369,7 +2400,6 @@ int whisper_full(
|
||||
int n_samples) {
|
||||
// clear old results
|
||||
auto & result_all = ctx->result_all;
|
||||
auto & tokens_cur = ctx->tokens_cur;
|
||||
|
||||
result_all.clear();
|
||||
|
||||
@ -2379,10 +2409,12 @@ int whisper_full(
|
||||
return -1;
|
||||
}
|
||||
|
||||
const int seek_start = params.offset_ms/10;
|
||||
|
||||
// if length of spectrogram is less than 1s (100 samples), then return
|
||||
// basically don't process anything that is less than 1s
|
||||
// see issue #39: https://github.com/ggerganov/whisper.cpp/issues/39
|
||||
if (whisper_n_len(ctx) < 100) {
|
||||
if (whisper_n_len(ctx) < 100 + seek_start) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -2406,8 +2438,14 @@ int whisper_full(
|
||||
int progress_prev = 0;
|
||||
int progress_step = 5;
|
||||
|
||||
std::vector<whisper_token_data> tokens_cur;
|
||||
tokens_cur.reserve(whisper_n_text_ctx(ctx));
|
||||
|
||||
std::vector<whisper_token> prompt;
|
||||
prompt.reserve(whisper_n_text_ctx(ctx));
|
||||
|
||||
// main loop
|
||||
int seek = params.offset_ms/10;
|
||||
int seek = seek_start;
|
||||
while (true) {
|
||||
int progress_cur = (100*seek)/whisper_n_len(ctx);
|
||||
while (progress_cur >= progress_prev + progress_step) {
|
||||
@ -2427,9 +2465,8 @@ int whisper_full(
|
||||
return 7;
|
||||
}
|
||||
|
||||
std::vector<whisper_token> prompt;
|
||||
|
||||
int n_past = 0;
|
||||
prompt.clear();
|
||||
|
||||
// if we have already generated some text, use it as a prompt to condition the next generation
|
||||
if (prompt_past.size() > 0) {
|
||||
|
@ -72,6 +72,8 @@ extern "C" {
|
||||
// Returns NULL on failure.
|
||||
WHISPER_API struct whisper_context * whisper_init(const char * path_model);
|
||||
|
||||
WHISPER_API struct whisper_context * whisper_init_parallel(const char * path_model, int n_processors);
|
||||
|
||||
// Frees all memory allocated by the model.
|
||||
WHISPER_API void whisper_free(struct whisper_context * ctx);
|
||||
|
||||
@ -170,6 +172,7 @@ extern "C" {
|
||||
|
||||
int n_threads;
|
||||
int offset_ms;
|
||||
int n_processors;
|
||||
|
||||
bool translate;
|
||||
bool no_context;
|
||||
|
Loading…
Reference in New Issue
Block a user