whisper : token-level timestamps with DTW (#1485)

* whisper.cpp: impl dtw algo

* WIP: producing and placing DTW timestamps on tokens

* Fix compile and assertion errors. Attempt to DTW timestamp with single_segment=false.

* Fix mistake causing incorrect alignment of dtw timestamps

* implement N_TOP_MOST and CUSTOM alignment heads setting

* whisper: fix typo on alignment heads enum

* Fix issues related to changes in whisper.cpp

* Fixed excessive memory use when using DTW timestamps. Other minor fixes to DTW timestamping function

* decoder: save cross QKs only if requested

* Calling median filter with ggml_map_custom1

* Reimpl aheads n_top_most and custom. Sanity checks on chosen aheads

* Copying cross QKs from decoder backend correctly

* dtw: cleanup

* Fix incorrect n_frames passed to dtw when near end of audio

* Fix aheads_masks_init for backend != CPU

* whisper : minor style

* main : add dtw (wip)

* whisper: fix invalid memory access in aheads_masks_init

* main : add dtw (cont)

* whisper : minor

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
denersc 2024-03-20 13:25:26 -03:00 committed by GitHub
parent e7794a868f
commit 741abb162c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 652 additions and 21 deletions

View File

@ -26,17 +26,17 @@ void replace_all(std::string & s, const std::string & search, const std::string
// command-line parameters
struct whisper_params {
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
int32_t n_processors = 1;
int32_t offset_t_ms = 0;
int32_t offset_n = 0;
int32_t duration_ms = 0;
int32_t progress_step = 5;
int32_t max_context = -1;
int32_t max_len = 0;
int32_t best_of = whisper_full_default_params(WHISPER_SAMPLING_GREEDY).greedy.best_of;
int32_t beam_size = whisper_full_default_params(WHISPER_SAMPLING_BEAM_SEARCH).beam_search.beam_size;
int32_t audio_ctx = 0;
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
int32_t n_processors = 1;
int32_t offset_t_ms = 0;
int32_t offset_n = 0;
int32_t duration_ms = 0;
int32_t progress_step = 5;
int32_t max_context = -1;
int32_t max_len = 0;
int32_t best_of = whisper_full_default_params(WHISPER_SAMPLING_GREEDY).greedy.best_of;
int32_t beam_size = whisper_full_default_params(WHISPER_SAMPLING_BEAM_SEARCH).beam_search.beam_size;
int32_t audio_ctx = 0;
float word_thold = 0.01f;
float entropy_thold = 2.40f;
@ -76,6 +76,8 @@ struct whisper_params {
std::string openvino_encode_device = "CPU";
std::string dtw = "";
std::vector<std::string> fname_inp = {};
std::vector<std::string> fname_out = {};
};
@ -149,6 +151,7 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
else if (arg == "-f" || arg == "--file") { params.fname_inp.emplace_back(argv[++i]); }
else if (arg == "-oved" || arg == "--ov-e-device") { params.openvino_encode_device = argv[++i]; }
else if (arg == "-dtw" || arg == "--dtw") { params.dtw = argv[++i]; }
else if (arg == "-ls" || arg == "--log-score") { params.log_score = true; }
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
else {
@ -208,6 +211,7 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] input WAV file path\n", "");
fprintf(stderr, " -oved D, --ov-e-device DNAME [%-7s] the OpenVINO device used for encode inference\n", params.openvino_encode_device.c_str());
fprintf(stderr, " -dtw MODEL --dtw MODEL [%-7s] compute token-level timestamps\n", params.dtw.c_str());
fprintf(stderr, " -ls, --log-score [%-7s] log best decoder scores of tokens\n", params.log_score?"true":"false");
fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU\n", params.use_gpu ? "false" : "true");
fprintf(stderr, "\n");
@ -649,7 +653,8 @@ bool output_json(
times_o(token.t0, token.t1, false);
}
value_i("id", token.id, false);
value_f("p", token.p, true);
value_f("p", token.p, false);
value_f("t_dtw", token.t_dtw, true);
end_obj(j == (n - 1));
}
end_arr(!params.diarize && !params.tinydiarize);
@ -889,6 +894,28 @@ int main(int argc, char ** argv) {
struct whisper_context_params cparams = whisper_context_default_params();
cparams.use_gpu = params.use_gpu;
if (!params.dtw.empty()) {
cparams.dtw_token_timestamps = true;
cparams.dtw_aheads_preset = WHISPER_AHEADS_NONE;
if (params.dtw == "tiny") cparams.dtw_aheads_preset = WHISPER_AHEADS_TINY;
if (params.dtw == "tiny.en") cparams.dtw_aheads_preset = WHISPER_AHEADS_TINY_EN;
if (params.dtw == "base") cparams.dtw_aheads_preset = WHISPER_AHEADS_BASE;
if (params.dtw == "base.en") cparams.dtw_aheads_preset = WHISPER_AHEADS_BASE_EN;
if (params.dtw == "small") cparams.dtw_aheads_preset = WHISPER_AHEADS_SMALL;
if (params.dtw == "small.en") cparams.dtw_aheads_preset = WHISPER_AHEADS_SMALL_EN;
if (params.dtw == "medium") cparams.dtw_aheads_preset = WHISPER_AHEADS_MEDIUM;
if (params.dtw == "medium.en") cparams.dtw_aheads_preset = WHISPER_AHEADS_MEDIUM_EN;
if (params.dtw == "large.v1") cparams.dtw_aheads_preset = WHISPER_AHEADS_LARGE_V1;
if (params.dtw == "large.v2") cparams.dtw_aheads_preset = WHISPER_AHEADS_LARGE_V2;
if (params.dtw == "large.v3") cparams.dtw_aheads_preset = WHISPER_AHEADS_LARGE_V3;
if (cparams.dtw_aheads_preset == WHISPER_AHEADS_NONE) {
fprintf(stderr, "error: unknown DTW preset '%s'\n", params.dtw.c_str());
return 3;
}
}
struct whisper_context * ctx = whisper_init_from_file_with_params(params.model.c_str(), cparams);
if (ctx == nullptr) {

View File

@ -351,6 +351,35 @@ static const std::map<std::string, std::pair<int, std::string>> g_lang = {
{ "yue", { 99, "cantonese", } },
};
// [EXPERIMENTAL] Token-level timestamps with DTW
static const whisper_ahead g_aheads_tiny_en[] = { {1, 0}, {2, 0}, {2, 5}, {3, 0}, {3, 1}, {3, 2}, {3, 3}, {3, 4} };
static const whisper_ahead g_aheads_tiny[] = { {2, 2}, {3, 0}, {3, 2}, {3, 3}, {3, 4}, {3, 5} };
static const whisper_ahead g_aheads_base_en[] = { {3, 3}, {4, 7}, {5, 1}, {5, 5}, {5, 7} };
static const whisper_ahead g_aheads_base[] = { {3, 1}, {4, 2}, {4, 3}, {4, 7}, {5, 1}, {5, 2}, {5, 4}, {5, 6} };
static const whisper_ahead g_aheads_small_en[] = { {6, 6}, {7, 0}, {7, 3}, {7, 8}, {8, 2}, {8, 5}, {8, 7}, {9, 0}, {9, 4}, {9, 8}, {9, 10}, {10, 0}, {10, 1}, {10, 2}, {10, 3}, {10, 6}, {10, 11}, {11, 2}, {11, 4} };
static const whisper_ahead g_aheads_small[] = { {5, 3}, {5, 9}, {8, 0}, {8, 4}, {8, 7}, {8, 8}, {9, 0}, {9, 7}, {9, 9}, {10, 5} };
static const whisper_ahead g_aheads_medium_en[] = { {11, 4}, {14, 1}, {14, 12}, {14, 14}, {15, 4}, {16, 0}, {16, 4}, {16, 9}, {17, 12}, {17, 14}, {18, 7}, {18, 10}, {18, 15}, {20, 0}, {20, 3}, {20, 9}, {20, 14}, {21, 12} };
static const whisper_ahead g_aheads_medium[] = { {13, 15}, {15, 4}, {15, 15}, {16, 1}, {20, 0}, {23, 4} };
static const whisper_ahead g_aheads_large_v1[] = { {9, 19}, {11, 2}, {11, 4}, {11, 17}, {22, 7}, {22, 11}, {22, 17}, {23, 2}, {23, 15} };
static const whisper_ahead g_aheads_large_v2[] = { {10, 12}, {13, 17}, {16, 11}, {16, 12}, {16, 13}, {17, 15}, {17, 16}, {18, 4}, {18, 11}, {18, 19}, {19, 11}, {21, 2}, {21, 3}, {22, 3}, {22, 9}, {22, 12}, {23, 5}, {23, 7}, {23, 13}, {25, 5}, {26, 1}, {26, 12}, {27, 15} };
static const whisper_ahead g_aheads_large_v3[] = { {7, 0}, {10, 17}, {12, 18}, {13, 12}, {16, 1}, {17, 14}, {19, 11}, {21, 4}, {24, 1}, {25, 6} };
static const std::map<whisper_alignment_heads_preset, whisper_aheads> g_aheads {
{ WHISPER_AHEADS_TINY_EN, { 8, g_aheads_tiny_en } },
{ WHISPER_AHEADS_TINY, { 6, g_aheads_tiny } },
{ WHISPER_AHEADS_BASE_EN, { 5, g_aheads_base_en } },
{ WHISPER_AHEADS_BASE, { 8, g_aheads_base } },
{ WHISPER_AHEADS_SMALL_EN, { 19, g_aheads_small_en } },
{ WHISPER_AHEADS_SMALL, { 10, g_aheads_small } },
{ WHISPER_AHEADS_MEDIUM_EN, { 18, g_aheads_medium_en } },
{ WHISPER_AHEADS_MEDIUM, { 6, g_aheads_medium } },
{ WHISPER_AHEADS_LARGE_V1, { 9, g_aheads_large_v1 } },
{ WHISPER_AHEADS_LARGE_V2, { 23, g_aheads_large_v2 } },
{ WHISPER_AHEADS_LARGE_V3, { 10, g_aheads_large_v3 } },
};
static std::vector<uint32_t> get_alignment_heads_by_layer(const whisper_context_params & cparams, int il, int32_t n_text_layer, int32_t n_head);
struct whisper_mel {
int n_len;
int n_len_org;
@ -750,6 +779,13 @@ struct whisper_decoder {
mutable std::mt19937 rng; // used for sampling at t > 0.0
};
// [EXPERIMENTAL] Token-level timestamps with DTW
struct whisper_aheads_masks {
std::vector<struct ggml_tensor *> m; // One mask per text layer.
struct ggml_context * ctx = nullptr;
ggml_backend_buffer_t buffer = nullptr;
};
struct whisper_state {
int64_t t_sample_us = 0;
int64_t t_encode_us = 0;
@ -823,6 +859,11 @@ struct whisper_state {
std::vector<float> energy; // PCM signal energy
// [EXPERIMENTAL] Token-level timestamps with DTW
whisper_aheads_masks aheads_masks;
ggml_tensor * aheads_cross_QKs = nullptr;
std::vector<float> aheads_cross_QKs_data;
// [EXPERIMENTAL] speed-up techniques
int32_t exp_n_audio_ctx = 0; // 0 - use default
};
@ -1027,6 +1068,132 @@ static void whisper_kv_cache_seq_cp(
}
}
// [EXPERIMENTAL] Token-level timestamps with DTW
static bool aheads_masks_init(
const whisper_context_params & cparams,
const whisper_hparams & hparams,
struct whisper_aheads_masks & aheads_masks,
ggml_backend_t backend) {
const int32_t n_text_layer = hparams.n_text_layer;
const int32_t n_head = hparams.n_text_head;
// Sanity checks
if (cparams.dtw_aheads_preset == WHISPER_AHEADS_NONE) {
WHISPER_LOG_ERROR("%s: dtw_aheads_preset should be != DTW_AHEADS_NONE\n", __func__);
return false;
} else if (cparams.dtw_aheads_preset == WHISPER_AHEADS_N_TOP_MOST) {
if (cparams.dtw_n_top > n_text_layer || cparams.dtw_n_top <= 0) {
WHISPER_LOG_ERROR("%s: dtw_n_top must be between %d and %d for this model.", __func__, 1, n_text_layer);
return false;
}
} else {
const auto aheads = cparams.dtw_aheads_preset == WHISPER_AHEADS_CUSTOM ? cparams.dtw_aheads : g_aheads.at(cparams.dtw_aheads_preset);
if (cparams.dtw_aheads_preset == WHISPER_AHEADS_CUSTOM) {
if (aheads.n_heads == 0) {
WHISPER_LOG_ERROR("%s: dtw_aheads.n_heads should be > 0", __func__);
return false;
}
if (aheads.heads == NULL) {
WHISPER_LOG_ERROR("%s: dtw_aheads.heads unset", __func__);
return false;
}
}
for (size_t i = 0; i < aheads.n_heads; ++i) {
if (aheads.heads[i].n_text_layer >= n_text_layer) {
WHISPER_LOG_ERROR("%s: tried to set alignment head on text layer %d, but model only has %d text layers", __func__, aheads.heads[i].n_text_layer + 1, n_text_layer);
return false;
}
if (aheads.heads[i].n_text_layer < 0) {
WHISPER_LOG_ERROR("%s: tried to set alignment head on text layer < 0", __func__);
return false;
}
if (aheads.heads[i].n_head >= n_head) {
WHISPER_LOG_ERROR("%s: tried to set alignment head on head %d, but model only has %d heads", __func__, aheads.heads[i].n_head + 1, n_head);
return false;
}
if (aheads.heads[i].n_head < 0) {
WHISPER_LOG_ERROR("%s: tried to set alignment head on head < 0", __func__);
return false;
}
}
}
struct ggml_init_params params = {
/*.mem_size =*/ (size_t) static_cast<size_t>(n_text_layer)*ggml_tensor_overhead(),
/*.mem_buffer =*/ nullptr,
/*.no_alloc =*/ true,
};
aheads_masks.ctx = ggml_init(params);
if (!aheads_masks.ctx) {
WHISPER_LOG_ERROR("%s: failed to allocate memory for the aheads_masks context\n", __func__);
return false;
}
for (int64_t il = 0; il < n_text_layer; ++il) {
auto aheads = get_alignment_heads_by_layer(cparams, il, n_text_layer, n_head);
if (!aheads.empty()) {
aheads_masks.m.push_back(ggml_new_tensor_2d(aheads_masks.ctx, GGML_TYPE_F32, n_head, aheads.size()));
} else {
aheads_masks.m.push_back(nullptr);
}
}
aheads_masks.buffer = ggml_backend_alloc_ctx_tensors(aheads_masks.ctx, backend);
if (!aheads_masks.buffer) {
WHISPER_LOG_ERROR("%s: failed to allocate memory for aheads_masks\n", __func__);
return false;
}
// Set data on mask tensors
// Since this must be backend agnostic, we get tensor data with
// ggml_backend_tensor_get, copy our desired values and send it back
// to backend with ggml_backend_tensor_set
std::vector<float> mask_data;
for (int64_t il = 0; il < n_text_layer; ++il) {
if (aheads_masks.m[il] != nullptr) {
auto aheads = get_alignment_heads_by_layer(cparams, il, n_text_layer, n_head);
size_t data_size = aheads_masks.m[il]->ne[0] * aheads_masks.m[il]->ne[1] * sizeof(float);
mask_data.resize(data_size);
ggml_backend_tensor_get(aheads_masks.m[il], mask_data.data(), 0, data_size);
memset(mask_data.data(), 0, data_size);
for (size_t ih = 0; ih < aheads.size(); ++ih) {
size_t pos = (aheads[ih] + (ih * aheads_masks.m[il]->ne[0] * aheads[ih]));
float v = 1.0f;
memcpy(mask_data.data() + pos, &v, sizeof(float));
}
ggml_backend_tensor_set(aheads_masks.m[il], mask_data.data(), 0, data_size);
}
}
if (aheads_masks.m.empty()) {
WHISPER_LOG_ERROR("%s: \n", __func__);
return false;
}
return true;
}
static void aheads_masks_free(struct whisper_aheads_masks & aheads_masks) {
ggml_free(aheads_masks.ctx);
ggml_backend_buffer_free(aheads_masks.buffer);
aheads_masks.ctx = nullptr;
}
static size_t aheads_masks_nbytes(struct whisper_aheads_masks & aheads_masks) {
size_t size = 0;
for (size_t i = 0; i < aheads_masks.m.size(); ++i) {
if (aheads_masks.m[i] != nullptr)
size += ggml_nbytes(aheads_masks.m[i]);
}
return size;
}
static ggml_backend_t whisper_backend_init(const whisper_context_params & params) {
ggml_backend_t backend_gpu = NULL;
@ -2105,6 +2272,7 @@ static struct ggml_cgraph * whisper_build_graph_decoder(
whisper_context & wctx,
whisper_state & wstate,
const whisper_batch & batch,
bool save_alignment_heads_QKs,
bool worst_case) {
const auto & model = wctx.model;
const auto & hparams = model.hparams;
@ -2158,6 +2326,9 @@ static struct ggml_cgraph * whisper_build_graph_decoder(
struct ggml_tensor * inpL = cur;
// [EXPERIMENTAL] Token-level timestamps with DTW
struct ggml_tensor * aheads_cross_QKs = nullptr;
for (int il = 0; il < n_layer; ++il) {
const auto & layer = model.layers_decoder[il];
@ -2337,6 +2508,24 @@ static struct ggml_cgraph * whisper_build_graph_decoder(
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ);
// [EXPERIMENTAL] Token-level timestamps with DTW
if (wctx.params.dtw_token_timestamps) {
if (wstate.aheads_masks.m[il] != nullptr) {
struct ggml_tensor * aheads_KQs = ggml_reshape_2d(ctx0, KQ_soft_max, KQ_soft_max->ne[0] * KQ_soft_max->ne[1], KQ_soft_max->ne[2]);
aheads_KQs = ggml_transpose(ctx0, aheads_KQs);
aheads_KQs = ggml_cont(ctx0, aheads_KQs);
aheads_KQs = ggml_mul_mat(ctx0, wstate.aheads_masks.m[il], aheads_KQs);
aheads_KQs = ggml_transpose(ctx0, aheads_KQs);
aheads_KQs = ggml_cont(ctx0, aheads_KQs);
aheads_KQs = ggml_reshape_3d(ctx0, aheads_KQs, KQ_soft_max->ne[0], KQ_soft_max->ne[1], wstate.aheads_masks.m[il]->ne[1]);
if (aheads_cross_QKs == NULL) {
aheads_cross_QKs = aheads_KQs;
} else {
aheads_cross_QKs = ggml_concat(ctx0, aheads_cross_QKs, aheads_KQs);
}
}
}
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
@ -2422,6 +2611,16 @@ static struct ggml_cgraph * whisper_build_graph_decoder(
struct ggml_tensor * logits = ggml_mul_mat(ctx0, model.d_te, cur);
// [EXPERIMENTAL] Token-level timestamps with DTW
if (wctx.params.dtw_token_timestamps && aheads_cross_QKs != nullptr) {
aheads_cross_QKs = ggml_transpose(ctx0, aheads_cross_QKs);
aheads_cross_QKs = ggml_cont(ctx0, aheads_cross_QKs);
if (save_alignment_heads_QKs) {
ggml_build_forward_expand(gf, aheads_cross_QKs);
wstate.aheads_cross_QKs = aheads_cross_QKs;
}
}
ggml_build_forward_expand(gf, logits);
ggml_free(ctx0);
@ -2444,6 +2643,7 @@ static bool whisper_decode_internal(
whisper_state & wstate,
const whisper_batch & batch,
const int n_threads,
bool save_alignment_heads_QKs,
ggml_abort_callback abort_callback,
void * abort_callback_data) {
const int64_t t_start_us = ggml_time_us();
@ -2475,7 +2675,7 @@ static bool whisper_decode_internal(
{
auto & alloc = wstate.alloc_decode.alloc;
ggml_cgraph * gf = whisper_build_graph_decoder(wctx, wstate, batch, false);
ggml_cgraph * gf = whisper_build_graph_decoder(wctx, wstate, batch, save_alignment_heads_QKs, false);
if (!ggml_gallocr_alloc_graph(alloc, gf)) {
// should never happen as we pre-allocate the memory
@ -3003,6 +3203,17 @@ struct whisper_state * whisper_init_state(whisper_context * ctx) {
WHISPER_LOG_INFO("%s: kv cross size = %7.2f MB\n", __func__, memory_size / 1e6);
}
// [EXPERIMENTAL] Token-level timestamps with DTW
if (ctx->params.dtw_token_timestamps) {
if (!aheads_masks_init(ctx->params, ctx->model.hparams, state->aheads_masks, ctx->backend)) {
WHISPER_LOG_ERROR("%s: aheads_masks_init() failed for alignment heads masks\n", __func__);
whisper_free_state(state);
return nullptr;
}
const size_t memory_size = aheads_masks_nbytes(state->aheads_masks);
WHISPER_LOG_INFO("%s: alignment heads masks size = %ld B\n", __func__, memory_size);
}
#ifdef WHISPER_USE_COREML
const auto path_coreml = whisper_get_coreml_path_encoder(ctx->path_model);
@ -3095,7 +3306,7 @@ struct whisper_state * whisper_init_state(whisper_context * ctx) {
whisper_batch_prep_legacy(state->batch, nullptr, n_tokens, n_past, 0);
return whisper_build_graph_decoder(*ctx, *state, state->batch, true);
return whisper_build_graph_decoder(*ctx, *state, state->batch, ctx->params.dtw_token_timestamps, true);
});
if (!ok) {
@ -3161,8 +3372,17 @@ int whisper_ctx_init_openvino_encoder(
struct whisper_context_params whisper_context_default_params() {
struct whisper_context_params result = {
/*.use_gpu =*/ true,
/*.gpu_device =*/ 0,
/*.use_gpu =*/ true,
/*.gpu_device =*/ 0,
/*.dtw_token_timestamps =*/ false,
/*.dtw_aheads_preset =*/ WHISPER_AHEADS_NONE,
/*.dtw_n_top =*/ -1,
/*.dtw_aheads =*/ {
/*.n_heads =*/ 0,
/*.heads =*/ NULL,
},
/*.dtw_mem_size =*/ 1024*1024*128,
};
return result;
}
@ -3357,6 +3577,9 @@ void whisper_free_state(struct whisper_state * state) {
ggml_backend_free(state->backend);
// [EXPERIMENTAL] Token-level timestamps with DTW
aheads_masks_free(state->aheads_masks);
delete state;
}
}
@ -3476,7 +3699,7 @@ int whisper_decode_with_state(struct whisper_context * ctx, struct whisper_state
whisper_kv_cache_seq_rm(state->kv_self, 0, n_past, -1);
if (!whisper_decode_internal(*ctx, *state, state->batch, n_threads, nullptr, nullptr)) {
if (!whisper_decode_internal(*ctx, *state, state->batch, n_threads, false, nullptr, nullptr)) {
WHISPER_LOG_ERROR("%s: failed to eval\n", __func__);
return 1;
}
@ -4411,6 +4634,17 @@ static inline bool should_split_on_word(const char * txt, bool split_on_word) {
return txt[0] == ' ';
}
static void whisper_exp_compute_token_level_timestamps_dtw(
struct whisper_context * ctx,
struct whisper_state * state,
struct whisper_full_params params,
int i_segment,
size_t n_segments,
int seek,
int n_frames,
int medfilt_width,
int n_threads);
// wrap the last segment to max_len characters
// returns the number of new segments
static int whisper_wrap_segment(struct whisper_context & ctx, struct whisper_state & state, int max_len, bool split_on_word) {
@ -4779,7 +5013,7 @@ static whisper_token_data whisper_sample_token(
const whisper_decoder & decoder,
bool best) {
whisper_token_data result = {
0, 0, 0.0f, 0.0f, 0.0f, 0.0f, -1, -1, 0.0f,
0, 0, 0.0f, 0.0f, 0.0f, 0.0f, -1, -1, -1, 0.0f,
};
const auto & vocab = ctx.vocab;
@ -4897,7 +5131,7 @@ static std::vector<whisper_token_data> whisper_sample_token_topk(
const auto id = dist(decoder.rng);
//printf("XXX %d %d %f %f %f %f\n", id, tid, probs[id], logprobs[id], pt, ptsum);
result.push_back({ id, tid, probs[id], logprobs[id], pt, ptsum, -1, -1, 0.0f, });
result.push_back({ id, tid, probs[id], logprobs[id], pt, ptsum, -1, -1, -1, 0.0f, });
if (result[i].id >= vocab.token_beg) {
result[i].tid = result[i].id;
@ -5259,7 +5493,7 @@ int whisper_full_with_state(
whisper_batch_prep_legacy(state->batch, prompt.data(), prompt.size(), 0, 0);
if (!whisper_decode_internal(*ctx, *state, state->batch, params.n_threads, params.abort_callback, params.abort_callback_user_data)) {
if (!whisper_decode_internal(*ctx, *state, state->batch, params.n_threads, false, params.abort_callback, params.abort_callback_user_data)) {
WHISPER_LOG_ERROR("%s: failed to decode\n", __func__);
return -7;
}
@ -5559,7 +5793,7 @@ int whisper_full_with_state(
assert(batch.n_tokens > 0);
if (!whisper_decode_internal(*ctx, *state, state->batch, params.n_threads, params.abort_callback, params.abort_callback_user_data)) {
if (!whisper_decode_internal(*ctx, *state, state->batch, params.n_threads, false, params.abort_callback, params.abort_callback_user_data)) {
WHISPER_LOG_ERROR("%s: failed to decode\n", __func__);
return -8;
}
@ -5682,6 +5916,9 @@ int whisper_full_with_state(
const auto & tokens_cur = best_decoder.sequence.tokens;
// [EXPERIMENTAL] Token-level timestamps with DTW
const auto n_segments_before = state->result_all.size();
//WHISPER_LOG_DEBUG("prompt_init.size() = %d, prompt.size() = %d, result_len = %d, seek_delta = %d\n", prompt_init.size(), prompt.size(), result_len, seek_delta);
// update prompt_past
@ -5799,6 +6036,17 @@ int whisper_full_with_state(
}
}
// FIXME: will timestamp offsets be correct?
// [EXPERIMENTAL] Token-level timestamps with DTW
{
const auto n_segments = state->result_all.size() - n_segments_before;
if (ctx->params.dtw_token_timestamps && n_segments) {
const int n_frames = std::min(std::min(WHISPER_CHUNK_SIZE * 100, seek_delta), seek_end - seek);
whisper_exp_compute_token_level_timestamps_dtw(
ctx, state, params, result_all.size() - n_segments, n_segments, seek, n_frames, 7, params.n_threads);
}
}
// update audio window
seek += seek_delta;
@ -6601,6 +6849,321 @@ static void whisper_exp_compute_token_level_timestamps(
//}
}
//
// token level timestamps - dtw version
//
// n_text_layer -> total text layers on model
// n_head -> total heads per text layer on model
static std::vector<uint32_t> get_alignment_heads_by_layer(const whisper_context_params & cparams, int il, int n_text_layer, int n_head) {
std::vector<uint32_t> ret;
if (cparams.dtw_aheads_preset == WHISPER_AHEADS_NONE) {
return ret;
} else if (cparams.dtw_aheads_preset == WHISPER_AHEADS_N_TOP_MOST) {
if (il >= n_text_layer - cparams.dtw_n_top) {
for (int32_t i = 0; i < n_head; ++i) {
ret.push_back(i);
}
}
} else {
const auto aheads = cparams.dtw_aheads_preset == WHISPER_AHEADS_CUSTOM ? cparams.dtw_aheads : g_aheads.at(cparams.dtw_aheads_preset);
for (size_t i = 0; i < aheads.n_heads; ++i) {
if (aheads.heads[i].n_text_layer == il) {
ret.push_back(aheads.heads[i].n_head);
}
}
}
return ret;
}
// dtw + backtrace to return found path
// based on
// https://github.com/openai/whisper/blob/main/whisper/timing.py#L83
static ggml_tensor * dtw_and_backtrace(ggml_context * ctx, ggml_tensor * x) {
WHISPER_ASSERT(ggml_n_dims(x) == 2);
int64_t N = x->ne[0];
int64_t M = x->ne[1];
struct ggml_tensor * cost = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, N + 1, M + 1);
struct ggml_tensor * trace = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, N + 1, M + 1);
cost = ggml_set_f32(cost, INFINITY);
trace = ggml_set_f32(trace, -1);
ggml_set_f32_nd(cost, 0, 0, 0, 0, 0.0);
// dtw
// supposedly can be optmized by computing diagonals in parallel ?
// Not sure it is worth it since x will be GENERATED_TOKENS*1500 size at most.
for (int64_t j = 1; j < M + 1; ++j) {
for (int64_t i = 1; i < N + 1; ++i) {
float c0 = ggml_get_f32_nd(cost, i - 1, j - 1, 0, 0);
float c1 = ggml_get_f32_nd(cost, i - 1, j, 0, 0);
float c2 = ggml_get_f32_nd(cost, i, j - 1, 0, 0);
float c;
int32_t t;
if (c0 < c1 && c0 < c2) {
c = c0;
t = 0;
} else if (c1 < c0 && c1 < c2) {
c = c1;
t = 1;
} else {
c = c2;
t = 2;
}
c = ggml_get_f32_nd(x, i - 1, j - 1, 0, 0) + c;
ggml_set_f32_nd(cost, i, j, 0, 0, c);
ggml_set_i32_nd(trace, i, j, 0, 0, t);
}
}
// Backtrace
const int64_t BT_MAX_ROWS = N + M - 1;
struct ggml_tensor * bt = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, BT_MAX_ROWS, 2);
// trace[0, :] = 2;
for (int64_t i = 0; i < M + 1; ++i)
ggml_set_i32_nd(trace, 0, i, 0, 0, 2);
//trace[:, 0] = 1;
for (int64_t i = 0; i < N + 1; ++i)
ggml_set_i32_nd(trace, i, 0, 0, 0, 1);
int bt_row_idx = BT_MAX_ROWS - 1;
int64_t i = N;
int64_t j = M;
while (i > 0 || j > 0) {
ggml_set_i32_nd(bt, bt_row_idx, 0, 0, 0, i - 1);
ggml_set_i32_nd(bt, bt_row_idx, 1, 0, 0, j - 1);
--bt_row_idx;
int32_t t = ggml_get_i32_nd(trace, i, j, 0, 0);
if (t == 0) {
--i;
--j;
} else if (t == 1) {
--i;
} else if (t == 2) {
--j;
} else {
WHISPER_ASSERT(0);
}
}
// FIXME: manual clip/transpose might not be the most efficient way? (e.g. use ggml funcs)
// Clip + transpose
// This might not be entirely necessary for our case, but leaving it for now so output matrix
// is identical to dtw on openAI timing.py
const int64_t result_n_cols = BT_MAX_ROWS-bt_row_idx-1;
ggml_tensor * r = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, 2, result_n_cols);
for (int64_t i = 0; i < 2; ++i) {
for (int64_t j = 0; j < result_n_cols; ++j) {
int32_t v = ggml_get_i32_nd(bt, j+bt_row_idx+1, i, 0, 0);
ggml_set_i32_nd(r, i, j, 0, 0, v);
}
}
return r;
}
struct median_filter_user_data {
int filter_width;
};
static void median_filter(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata) {
int filter_width = ((median_filter_user_data *) userdata)->filter_width;
WHISPER_ASSERT(nth == 1);
WHISPER_ASSERT(ith == 0);
WHISPER_ASSERT(filter_width < a->ne[2]);
WHISPER_ASSERT(filter_width % 2);
WHISPER_ASSERT(ggml_n_dims(a) == 3);
WHISPER_ASSERT(a->type == GGML_TYPE_F32);
std::vector<float> filter;
filter.reserve(filter_width);
for (int64_t i = 0; i < a->ne[0]; ++i) {
for (int64_t j = 0; j < a->ne[1]; ++j) {
for (int64_t k = 0; k < a->ne[2]; ++k) {
for (int64_t off = -filter_width/2; off <= filter_width/2; ++off) {
// "reflect" padding
int64_t idx = k + off;
if (idx < 0) {
idx = -idx;
} else if (idx >= a->ne[2]) {
idx = 2*(a->ne[2] - 1) - idx;
}
filter.push_back(ggml_get_f32_nd(a, i, j, idx, 0));
}
std::sort(filter.begin(), filter.end());
const float v = filter[filter.size()/2];
ggml_set_f32_nd(dst, i, j, k, 0, v);
filter.clear();
}
}
}
}
static void whisper_exp_compute_token_level_timestamps_dtw(
struct whisper_context * ctx,
struct whisper_state * state,
struct whisper_full_params params,
int i_segment,
size_t n_segments,
int seek,
int n_frames,
int medfilt_width,
int n_threads)
{
const int n_audio_ctx = state->exp_n_audio_ctx > 0 ? state->exp_n_audio_ctx : ctx->model.hparams.n_audio_ctx;
WHISPER_ASSERT(medfilt_width % 2);
WHISPER_ASSERT(n_frames <= n_audio_ctx * 2);
WHISPER_ASSERT(ctx->params.dtw_aheads_preset != WHISPER_AHEADS_NONE);
// FIXME: Allocating mem everytime we call this func
// Our ggml buffer should be pre-allocated somewhere during init and reused
// when we call this function
struct ggml_init_params gparams = {
/*.mem_size =*/ ctx->params.dtw_mem_size,
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ false,
};
struct ggml_context * gctx = ggml_init(gparams);
// Build token sequence that will be passed to decoder
// sot + [lang] + text result + eot
std::vector<whisper_token> tokens = { whisper_token_sot(ctx), };
if (whisper_is_multilingual(ctx)) {
const int lang_id = whisper_lang_id(params.language);
state->lang_id = lang_id;
tokens.push_back(whisper_token_lang(ctx, lang_id));
}
const size_t sot_sequence_length = tokens.size();
tokens.push_back(whisper_token_not(ctx));
for (size_t i = i_segment; i < i_segment + n_segments; ++i) {
auto & segment = state->result_all[i];
for (auto &t: segment.tokens) {
// Only text tokens
if (t.id < whisper_token_eot(ctx)) {
tokens.push_back(t.id);
}
}
}
tokens.push_back(whisper_token_eot(ctx));
// Get result tokens, pass then along to decoder to get cross attention QKs
// used in timestamping
// Decoder already returns only alignment head QKs, already concatenated in
// one tensor.
whisper_kv_cache_clear(state->kv_self);
whisper_batch_prep_legacy(state->batch, tokens.data(), tokens.size(), 0, 0);
whisper_kv_cache_seq_rm(state->kv_self, 0, 0, -1);
if (!whisper_decode_internal(*ctx, *state, state->batch, n_threads, true, nullptr, nullptr)) {
WHISPER_LOG_INFO("DECODER FAILED\n");
WHISPER_ASSERT(0);
}
WHISPER_ASSERT(state->aheads_cross_QKs != nullptr);
const auto n_audio_tokens = n_frames/2;
WHISPER_ASSERT(state->aheads_cross_QKs != NULL);
WHISPER_ASSERT(n_audio_tokens <= state->aheads_cross_QKs->ne[1]);
const auto n_tokens = state->aheads_cross_QKs->ne[0];
const auto n_heads = state->aheads_cross_QKs->ne[2];
// Copy data from decoder buffer to a local CPU tensor, discarding unused audio
// tokens (i.e. discarding rows at the end of tensor)
// IN: Tensor with N_TOKENS*audio_ctx*N_ALIGNMENT_HEADS dims
// OUT: Tensor with N_TOKENS*N_AUDIO_TOKENS*N_ALIGNMENT_HEADS dims
WHISPER_ASSERT(state->aheads_cross_QKs->type == GGML_TYPE_F32);
WHISPER_ASSERT(ggml_is_contiguous(state->aheads_cross_QKs));
ggml_tensor * w = ggml_new_tensor_3d(gctx, GGML_TYPE_F32, n_tokens, n_audio_tokens, n_heads);
auto & data = state->aheads_cross_QKs_data;
data.resize(n_tokens * n_audio_ctx * n_heads);
ggml_backend_tensor_get(state->aheads_cross_QKs, data.data(), 0, sizeof(float) * n_tokens * n_audio_ctx * n_heads);
for (int k = 0; k < n_heads; ++k) {
for (int j = 0; j < n_audio_tokens; ++j) {
memcpy(
(char *) w->data + j * w->nb[1] + k * w->nb[2],
data.data() + j * n_tokens + k * n_tokens * n_audio_ctx,
n_tokens * sizeof(float)
);
}
}
// Normalize - in original OpenAI code, this is done over dim=-2. In this case,
// we already permuted N_TOKENS dimension to columns on last loop, becase ggml_norm
// operates over columns. Afterwards, permute to a shape that facilitates mean
// operation (after median filter)
// IN: Tensor with N_TOKENS*N_AUDIO_TOKENS*N_ALIGNMENT_HEADS dims
// OUT: Tensor with N_ALIGNMENT_HEADS*N_TOKENS*N_AUDIO_TOKENS dims
w = ggml_norm(gctx, w, 1e-9);
w = ggml_permute(gctx, ggml_permute(gctx, w, 2, 1, 0 ,3), 0, 2, 1, 3);
// Pass median filter - this is done over AUDIO_TOKENS dimension.
// IN: Tensor with N_ALIGNMENT_HEADS*N_TOKENS*N_AUDIO_TOKENS dims
// OUT: Same dims
median_filter_user_data mf_user_data = {medfilt_width};
w = ggml_map_custom1(gctx, w, median_filter, 1, &mf_user_data);
// Take mean over columns, scale by -1, reshape to 2D tensor, remove SOT sequence and EOT
// IN: Tensor with N_ALIGNMENT_HEADS*N_TOKENS*N_AUDIO_TOKENS dims
// OUT: Tensor with N_TOKENS*N_AUDIO_TOKENS dims
w = ggml_mean(gctx, w);
w = ggml_scale(gctx, w, -1.0);
w = ggml_reshape_2d(gctx, w, w->ne[1], w->ne[2]);
// Remove SOT sequence and EOT
// Out dimension is (N_TOKENS-sot_sequence_length-1)*N_AUDIO_TOKENS
w = ggml_view_2d(gctx, w, w->ne[0] - sot_sequence_length - 1, w->ne[1], w->nb[1], sot_sequence_length * w->nb[0]);
// Compute
struct ggml_cgraph * gf = ggml_new_graph(gctx);
ggml_build_forward_expand(gf, w);
ggml_graph_compute_with_ctx(gctx, gf, n_threads);
ggml_tensor * alignment = dtw_and_backtrace(gctx, w);
// Place timestamps on segments
int32_t last_v = 0;
auto seg_i = state->result_all.begin() + i_segment;
auto tok_i = seg_i->tokens.begin();
for (int i = 0; i < alignment->ne[1]; ++i) {
int32_t v = ggml_get_i32_nd(alignment, 0, i, 0, 0);
if (v != last_v) {
int32_t time_index = ggml_get_i32_nd(alignment, 1, i, 0, 0);
int64_t timestamp = (time_index * 2) + seek; // Each index on DTW result = 20mS audio
last_v = v;
// Skip non-text tokens
while (!(tok_i->id < whisper_token_eot(ctx))) {
++tok_i;
if (tok_i == seg_i->tokens.end()) {
++seg_i;
tok_i = seg_i->tokens.begin();
}
}
tok_i->t_dtw = timestamp;
++tok_i;
if (tok_i == seg_i->tokens.end()) {
++seg_i;
tok_i = seg_i->tokens.begin();
}
}
}
// Print DTW timestamps
/*for (size_t i = i_segment; i < i_segment + n_segments; ++i) {
auto & segment = state->result_all[i];
for (auto &t: segment.tokens) {
const char * tok = whisper_token_to_str(ctx, t.id);
fprintf(stderr, "|%s|(%.2f) ", tok, (float)t.t_dtw/100);
}
fprintf(stderr, "\n");
}*/
ggml_free(gctx);
}
void whisper_log_set(ggml_log_callback log_callback, void * user_data) {
g_state.log_callback = log_callback ? log_callback : whisper_log_callback_default;
g_state.log_callback_user_data = user_data;

View File

@ -84,9 +84,45 @@ extern "C" {
typedef int32_t whisper_token;
typedef int32_t whisper_seq_id;
enum whisper_alignment_heads_preset {
WHISPER_AHEADS_NONE,
WHISPER_AHEADS_N_TOP_MOST, // All heads from the N-top-most text-layers
WHISPER_AHEADS_CUSTOM,
WHISPER_AHEADS_TINY_EN,
WHISPER_AHEADS_TINY,
WHISPER_AHEADS_BASE_EN,
WHISPER_AHEADS_BASE,
WHISPER_AHEADS_SMALL_EN,
WHISPER_AHEADS_SMALL,
WHISPER_AHEADS_MEDIUM_EN,
WHISPER_AHEADS_MEDIUM,
WHISPER_AHEADS_LARGE_V1,
WHISPER_AHEADS_LARGE_V2,
WHISPER_AHEADS_LARGE_V3,
};
typedef struct whisper_ahead {
int n_text_layer;
int n_head;
} whisper_ahead;
typedef struct whisper_aheads {
size_t n_heads;
const whisper_ahead * heads;
} whisper_aheads;
struct whisper_context_params {
bool use_gpu;
int gpu_device; // CUDA device
// [EXPERIMENTAL] Token-level timestamps with DTW
bool dtw_token_timestamps;
enum whisper_alignment_heads_preset dtw_aheads_preset;
int dtw_n_top;
struct whisper_aheads dtw_aheads;
size_t dtw_mem_size; // TODO: remove
};
typedef struct whisper_token_data {
@ -103,6 +139,11 @@ extern "C" {
int64_t t0; // start time of the token
int64_t t1; // end time of the token
// [EXPERIMENTAL] Token-level timestamps with DTW
// do not use if you haven't computed token-level timestamps with dtw
// Roughly corresponds to the moment in audio in which the token was output
int64_t t_dtw;
float vlen; // voice length of the token
} whisper_token_data;