opencl: add initial mxfp4 support via mv (llama/15270)

* opencl: add reference `mul_mv_mxfp4_f32`

* opencl: add reference `mul_mv_id` for mxfp4

* Q4_0 tranpose fix for Adreno

---------

Co-authored-by: shawngu-quic <shawngu@qti.qualcomm.com>
This commit is contained in:
lhez
2025-08-16 00:52:14 +08:00
committed by Georgi Gerganov
parent 1e8d692365
commit 77771b2711
5 changed files with 496 additions and 6 deletions

View File

@@ -82,7 +82,9 @@ set(GGML_OPENCL_KERNELS
mul_mv_q4_0_f32_1d_8x_flat
mul_mv_q4_0_f32_1d_16x_flat
mul_mv_q6_k
mul_mv_mxfp4_f32
mul_mv_id_q4_0_f32_8x_flat
mul_mv_id_mxfp4_f32
mul_mm_f32_f32_l4_lm
mul_mm_f16_f32_l4_lm
mul

View File

@@ -365,6 +365,7 @@ struct ggml_backend_opencl_context {
cl_program program_mul_mv_q4_0_f32_1d_8x_flat;
cl_program program_mul_mv_q4_0_f32_1d_16x_flat;
cl_program program_mul_mv_q6_K;
cl_program program_mul_mv_mxfp4_f32;
cl_program program_mul_mv_f16_f16;
cl_program program_mul_mv_f16_f32_1row;
cl_program program_mul_mv_f16_f32_l4;
@@ -398,6 +399,7 @@ struct ggml_backend_opencl_context {
cl_program program_conv_2d_f16_f32;
cl_program program_tsembd;
cl_program program_mul_mv_id_q4_0_f32_8x_flat;
cl_program program_mul_mv_id_mxfp4_f32;
cl_program program_mul_mm_f32_f32_l4_lm;
cl_program program_mul_mm_f16_f32_l4_lm;
@@ -439,6 +441,7 @@ struct ggml_backend_opencl_context {
cl_kernel kernel_convert_block_q4_0_noshuffle;
cl_kernel kernel_mul_mat_q4_0_f32_1d_8x_flat, kernel_mul_mat_q4_0_f32_1d_16x_flat;
cl_kernel kernel_mul_mv_q6_K_f32;
cl_kernel kernel_mul_mv_mxfp4_f32;
cl_kernel kernel_im2col_f32, kernel_im2col_f16;
cl_kernel kernel_argsort_f32_i32;
cl_kernel kernel_sum_rows_f32;
@@ -455,6 +458,7 @@ struct ggml_backend_opencl_context {
cl_kernel kernel_conv_2d_f16_f32;
cl_kernel kernel_timestep_embedding;
cl_kernel kernel_mul_mv_id_q4_0_f32_8x_flat;
cl_kernel kernel_mul_mv_id_mxfp4_f32;
cl_kernel kernel_mul_mm_f32_f32_l4_lm;
cl_kernel kernel_mul_mm_f16_f32_l4_lm;
@@ -577,6 +581,7 @@ struct ggml_backend_opencl_context {
cl_kernel kernel_transpose_32;
cl_kernel kernel_transpose_32_16;
cl_kernel kernel_transpose_16;
cl_kernel kernel_transpose_16_4x1;
cl_mem A_s_d_max; // max scale buffer size for transpose
cl_mem A_q_d_max; // max weight buffer size for transpose
@@ -971,6 +976,22 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
GGML_LOG_CONT(".");
}
// mul_mv_mxfp4_f32
{
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src {
#include "mul_mv_mxfp4_f32.cl.h"
};
#else
const std::string kernel_src = read_file("mul_mv_mxfp4_f32.cl");
#endif
backend_ctx->program_mul_mv_mxfp4_f32 =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_mul_mv_mxfp4_f32 = clCreateKernel(backend_ctx->program_mul_mv_mxfp4_f32, "kernel_mul_mv_mxfp4_f32", &err), err));
GGML_LOG_CONT(".");
}
// mul_mv_f16_f16
{
#ifdef GGML_OPENCL_EMBED_KERNELS
@@ -1611,6 +1632,22 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
GGML_LOG_CONT(".");
}
// mul_mv_id_mxfp4_f32
{
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src {
#include "mul_mv_id_mxfp4_f32.cl.h"
};
#else
const std::string kernel_src = read_file("mul_mv_id_mxfp4_f32.cl");
#endif
backend_ctx->program_mul_mv_id_mxfp4_f32 =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_mul_mv_id_mxfp4_f32 = clCreateKernel(backend_ctx->program_mul_mv_id_mxfp4_f32, "kernel_mul_mv_id_mxfp4_f32", &err), err));
GGML_LOG_CONT(".");
}
// Adreno kernels
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
// transpose
@@ -1628,6 +1665,7 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
CL_CHECK((backend_ctx->kernel_transpose_32_16 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_32_16", &err), err));
CL_CHECK((backend_ctx->kernel_transpose_32 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_32", &err), err));
CL_CHECK((backend_ctx->kernel_transpose_16 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_16", &err), err));
CL_CHECK((backend_ctx->kernel_transpose_16_4x1 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_16_4x1", &err), err));
GGML_LOG_CONT(".");
}
@@ -2552,13 +2590,14 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
return true;
} else if (op->src[0]->type == GGML_TYPE_F32) {
return op->src[1]->type == GGML_TYPE_F32;
} else if (op->src[0]->type == GGML_TYPE_Q4_0 ||
} else if (op->src[0]->type == GGML_TYPE_Q4_0 || op->src[0]->type == GGML_TYPE_MXFP4 ||
op->src[0]->type == GGML_TYPE_Q6_K) {
return op->src[1]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
}
return false;
case GGML_OP_MUL_MAT_ID:
if (op->src[0]->type == GGML_TYPE_Q4_0) {
if (op->src[0]->type == GGML_TYPE_Q4_0 ||
op->src[0]->type == GGML_TYPE_MXFP4) {
if (op->src[1]->type == GGML_TYPE_F32) {
return ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
}
@@ -2944,7 +2983,10 @@ static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer,
// cl_mem qT_d = clCreateBuffer(context, CL_MEM_READ_WRITE, q_size_bytes, NULL, &err);
CL_CHECK(err);
// size_t d_size_bytes = M * (K / 32) / 2 * sizeof(float);
bool K_tile_trans = true;
if ((K / 32) % 4 != 0){
K_tile_trans =false;
}
size_t d_size_bytes = M * (K / 32) * 2;
region.origin = 0;
region.size = d_size_bytes;
@@ -2985,10 +3027,15 @@ static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer,
qT_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
CL_CHECK(err);
img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
memset(&img_desc_1d, 0, sizeof(img_desc_1d));
if (K_tile_trans) {
img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
img_desc_1d.image_width = M * K / 32 / 4;
} else {
img_fmt_1d = { CL_R, CL_HALF_FLOAT };
img_desc_1d.image_width = M * K / 32;
}
img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
img_desc_1d.image_width = M * K / 32 / 4;
img_desc_1d.buffer = extra->d;
d_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
CL_CHECK(err);
@@ -3024,6 +3071,10 @@ static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer,
int width_s = K / 32 / 4;
kernel = backend_ctx->kernel_transpose_16;
if (!K_tile_trans) {
kernel = backend_ctx->kernel_transpose_16_4x1;
width_s = K / 32;
}
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_d_image1D));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &dT_d_image1D));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_s));
@@ -6254,11 +6305,47 @@ static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, co
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
break;
case GGML_TYPE_MXFP4: {
kernel = backend_ctx->kernel_mul_mv_mxfp4_f32;
if (backend_ctx->gpu_family == INTEL) {
nth0 = 16;
nth1 = 2;
ndst = nth1*2;
} else if (backend_ctx->gpu_family == ADRENO) {
nth0 = 64;
nth1 = 2;
ndst = nth1*2;
} else {
GGML_ASSERT(false && "TODO: Unknown GPU");
}
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb11));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb12));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb13));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne0));
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne1));
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &r2));
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r3));
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(float)*nth0,nullptr));
break;
}
default:
GGML_ASSERT(false && "not implemented");
}
if (src0t == GGML_TYPE_Q4_0 ||
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_MXFP4 ||
src0t == GGML_TYPE_Q4_1 ||
src0t == GGML_TYPE_Q8_0 ||
src0t == GGML_TYPE_Q2_K) {
@@ -6307,10 +6394,12 @@ static void ggml_cl_mul_mat_id(ggml_backend_t backend, const ggml_tensor * src0,
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
ggml_tensor_extra_cl * extra2 = (ggml_tensor_extra_cl *)src2->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
cl_ulong offset0 = extra0->offset + src0->view_offs;
cl_ulong offset1 = extra1->offset + src1->view_offs;
cl_ulong offset2 = extra2->offset + src2->view_offs;
cl_ulong offsetd = extrad->offset + dst->view_offs;
@@ -6325,7 +6414,9 @@ static void ggml_cl_mul_mat_id(ggml_backend_t backend, const ggml_tensor * src0,
const int ne03 = src0->ne[3];
const cl_ulong nb00 = src0->nb[0];
const cl_ulong nb01 = src0->nb[1];
const cl_ulong nb02 = src0->nb[2];
const cl_ulong nb03 = src0->nb[3];
const int ne10 = src1->ne[0];
const int ne11 = src1->ne[1];
@@ -6334,6 +6425,7 @@ static void ggml_cl_mul_mat_id(ggml_backend_t backend, const ggml_tensor * src0,
const cl_ulong nb11 = src1->nb[1];
const cl_ulong nb12 = src1->nb[2];
const cl_ulong nb13 = src1->nb[3];
const int ne20 = src2->ne[0];
const int ne21 = src2->ne[1];
@@ -6401,6 +6493,49 @@ static void ggml_cl_mul_mat_id(ggml_backend_t backend, const ggml_tensor * src0,
break;
}
case GGML_TYPE_MXFP4: {
kernel = backend_ctx->kernel_mul_mv_id_mxfp4_f32;
if (backend_ctx->gpu_family == INTEL) {
sgs = 16;
nsg = 2;
ndst = 2;
} else if (backend_ctx->gpu_family == ADRENO) {
sgs = 64;
nsg = 2;
ndst = 2;
} else {
GGML_ASSERT(false && "TODO: Unknown GPU");
}
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb02));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb03));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne11));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne12));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb11));
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb12));
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb13));
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne20));
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne21));
CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb21));
CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0));
CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1));
CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
CL_CHECK(clSetKernelArg(kernel, 24, sizeof(float)*sgs,nullptr));
break;
}
default:
GGML_ASSERT(false && "not implemented");;
}

View File

@@ -0,0 +1,189 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#ifdef cl_intel_subgroups
#pragma OPENCL EXTENSION cl_intel_subgroups : enable
#else
#pragma OPENCL EXTENSION cl_khr_subgroups : enable
#endif
#ifdef cl_intel_required_subgroup_size
#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
#define INTEL_GPU 1
#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
#elif defined(cl_qcom_reqd_sub_group_size)
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
#define ADRENO_GPU 1
#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
#endif
#define QK_MXFP4 32
typedef struct {
uchar e; // E8M0
uchar qs[QK_MXFP4/2];
} block_mxfp4;
constant static float kvalues_mxfp4_f[16] = {
0, .5f, 1.f, 1.5f, 2.f, 3.f, 4.f, 6.f, -0, -.5f, -1.f, -1.5f, -2.f, -3.f, -4.f, -6.f
};
static inline float e8m0_to_fp32(uchar x) {
int bits;
if (x == 0) {
bits = 0x00400000;
} else {
bits = (uint) x << 23;
}
return as_float(bits);
}
#ifdef INTEL_GPU
#define N_R0_MXFP4 2 // number of rows each subgroup works on
#define N_SG_MXFP4 2 // number of subgroups in a work group
#define N_SIMDWIDTH 16 // subgroup size
#elif defined (ADRENO_GPU)
#define N_R0_MXFP4 2
#define N_SG_MXFP4 2
#define N_SIMDWIDTH 64
#endif
inline void mul_mv_mxfp4_f32(
global char * src0,
global char * src1,
global char * dst,
int ne00,
ulong nb01,
ulong nb02,
ulong nb03,
int ne12,
ulong nb11,
ulong nb12,
ulong nb13,
int ne0,
int ne1,
int r2,
int r3,
local char * shmem
) {
local float * shmem_f32 = (local float *) shmem;
int nb = ne00/QK_MXFP4;
int r0 = get_group_id(0);
int r1 = get_group_id(1);
int im = 0;
int first_row = (r0 * N_SG_MXFP4 + get_sub_group_id()) * N_R0_MXFP4;
uint i12 = im%ne12;
uint i13 = im/ne12;
ulong offset_src0 = first_row*nb01 + (i12/r2)*nb02 + (i13/r3)*nb03;
ulong offset_src1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13;
global block_mxfp4 * x = (global block_mxfp4 *) (src0 + offset_src0);
global float * y = (global float *) (src1 + offset_src1);
const short ix = get_sub_group_local_id()/2; // 0...15
const short it = get_sub_group_local_id()%2; // 0 or 1
shmem_f32[get_sub_group_local_id()] = kvalues_mxfp4_f[get_sub_group_local_id()%16];
barrier(CLK_LOCAL_MEM_FENCE);
float4 yl[4];
float sumf[N_R0_MXFP4] = {0.f};
global float * yb = y + ix * QK_MXFP4 + it * 8;
for (int ib = ix; ib < nb; ib += N_SIMDWIDTH/2) {
global float4 * y4 = (global float4 *)yb;
yl[0] = y4[0];
yl[1] = y4[4];
yl[2] = y4[1];
yl[3] = y4[5];
for (short row = 0; row < N_R0_MXFP4; row++) {
global block_mxfp4 * xb = x + row*nb + ib;
global uchar * q2 = (global uchar *)(xb->qs + 8*it);
float4 acc1 = yl[0]*(float4)(shmem_f32[q2[0] & 0x0F], shmem_f32[q2[1] & 0x0F], shmem_f32[q2[2] & 0x0F], shmem_f32[q2[3] & 0x0F]);
float4 acc2 = yl[1]*(float4)(shmem_f32[q2[0] >> 4 ], shmem_f32[q2[1] >> 4 ], shmem_f32[q2[2] >> 4 ], shmem_f32[q2[3] >> 4 ]);
float4 acc3 = yl[2]*(float4)(shmem_f32[q2[4] & 0x0F], shmem_f32[q2[5] & 0x0F], shmem_f32[q2[6] & 0x0F], shmem_f32[q2[7] & 0x0F]);
float4 acc4 = yl[3]*(float4)(shmem_f32[q2[4] >> 4 ], shmem_f32[q2[5] >> 4 ], shmem_f32[q2[6] >> 4 ], shmem_f32[q2[7] >> 4 ]);
acc1 = (acc1 + acc3) + (acc2 + acc4);
sumf[row] += e8m0_to_fp32(xb->e) * ((acc1.s0 + acc1.s1) + (acc1.s2 + acc1.s3));
}
yb += (N_SIMDWIDTH/2) * QK_MXFP4;
}
global float * dst_f32 = (global float *) dst + (ulong)im*ne0*ne1 + (ulong)r1*ne0;
for (int row = 0; row < N_R0_MXFP4 && first_row + row < ne0; ++row) {
float sum_all = sub_group_reduce_add(sumf[row]);
if (get_sub_group_local_id() == 0) {
dst_f32[first_row + row] = sum_all;
}
}
}
#ifdef INTEL_GPU
REQD_SUBGROUP_SIZE_16
#elif defined (ADRENO_GPU)
REQD_SUBGROUP_SIZE_64
#endif
kernel void kernel_mul_mv_id_mxfp4_f32(
global char * src0,
ulong offset0,
global char * src1,
ulong offset1,
global char * src2,
ulong offset2,
global char * dst,
ulong offsetd,
int ne00,
ulong nb01,
ulong nb02,
ulong nb03,
int ne11,
int ne12,
ulong nb11,
ulong nb12,
ulong nb13,
int ne20,
int ne21,
ulong nb21,
int ne0,
int ne1,
int r2,
int r3,
local char * shmem
) {
src0 = (global char *)((global char *)src0 + offset0);
src1 = (global char *)((global char *)src1 + offset1);
src2 = (global char *)((global char *)src2 + offset2);
dst = (global char *)((global char *)dst + offsetd);
const int iid1 = get_group_id(2)/ne20;
const int idx = get_group_id(2)%ne20;
int i02 = ((global int *) (src2 + iid1*nb21))[idx];
int i11 = idx % ne11;
int i12 = iid1;
int i1 = idx;
int i2 = i12;
global char * src0_cur = src0 + i02*nb02;
global char * src1_cur = src1 + i11*nb11 + i12*nb12;
global char * dst_cur = dst + (i1*ne0 + i2*ne1*ne0)*sizeof(float);
mul_mv_mxfp4_f32(src0_cur, src1_cur, dst_cur,
ne00, nb01, nb02, nb03, ne12, nb11, nb12, nb13, ne0, ne1, r2, r3, shmem);
}

View File

@@ -0,0 +1,144 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#ifdef cl_intel_subgroups
#pragma OPENCL EXTENSION cl_intel_subgroups : enable
#else
#pragma OPENCL EXTENSION cl_khr_subgroups : enable
#endif
#ifdef cl_intel_required_subgroup_size
#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
#define INTEL_GPU 1
#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
#elif defined(cl_qcom_reqd_sub_group_size)
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
#define ADRENO_GPU 1
#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
#endif
#define QK_MXFP4 32
typedef struct {
uchar e; // E8M0
uchar qs[QK_MXFP4/2];
} block_mxfp4;
constant static float kvalues_mxfp4_f[16] = {
0, .5f, 1.f, 1.5f, 2.f, 3.f, 4.f, 6.f, -0, -.5f, -1.f, -1.5f, -2.f, -3.f, -4.f, -6.f
};
static inline float e8m0_to_fp32(uchar x) {
int bits;
if (x == 0) {
bits = 0x00400000;
} else {
bits = (uint) x << 23;
}
return as_float(bits);
}
#ifdef INTEL_GPU
#define N_R0_MXFP4 2 // number of rows each subgroup works on
#define N_SG_MXFP4 2 // number of subgroups in a work group
#define N_SIMDWIDTH 16 // subgroup size
#elif defined (ADRENO_GPU)
#define N_R0_MXFP4 2
#define N_SG_MXFP4 2
#define N_SIMDWIDTH 64
#endif
#ifdef INTEL_GPU
REQD_SUBGROUP_SIZE_16
#elif defined (ADRENO_GPU)
REQD_SUBGROUP_SIZE_64
#endif
kernel void kernel_mul_mv_mxfp4_f32(
global char * src0,
ulong offset0,
global char * src1,
ulong offset1,
global char * dst,
ulong offsetd,
int ne00,
ulong nb01,
ulong nb02,
ulong nb03,
int ne12,
ulong nb11,
ulong nb12,
ulong nb13,
int ne0,
int ne1,
int r2,
int r3,
local char * shmem
) {
src0 = (global char*)((global char*)src0 + offset0);
src1 = (global char*)((global char*)src1 + offset1);
dst = (global char*)((global char*)dst + offsetd);
local float * shmem_f32 = (local float *) shmem;
int nb = ne00/QK_MXFP4;
int r0 = get_group_id(0);
int r1 = get_group_id(1);
int im = get_group_id(2);
int first_row = (r0 * N_SG_MXFP4 + get_sub_group_id()) * N_R0_MXFP4;
uint i12 = im%ne12;
uint i13 = im/ne12;
ulong offset_src0 = first_row*nb01 + (i12/r2)*nb02 + (i13/r3)*nb03;
ulong offset_src1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13;
global block_mxfp4 * x = (global block_mxfp4 *) (src0 + offset_src0);
global float * y = (global float *) (src1 + offset_src1);
const short ix = get_sub_group_local_id()/2; // 0...15
const short it = get_sub_group_local_id()%2; // 0 or 1
shmem_f32[get_sub_group_local_id()] = kvalues_mxfp4_f[get_sub_group_local_id()%16];
barrier(CLK_LOCAL_MEM_FENCE);
float4 yl[4];
float sumf[N_R0_MXFP4] = {0.f};
global float * yb = y + ix * QK_MXFP4 + it * 8;
for (int ib = ix; ib < nb; ib += N_SIMDWIDTH/2) {
global float4 * y4 = (global float4 *)yb;
yl[0] = y4[0];
yl[1] = y4[4];
yl[2] = y4[1];
yl[3] = y4[5];
for (short row = 0; row < N_R0_MXFP4; row++) {
global block_mxfp4 * xb = x + row*nb + ib;
global uchar * q2 = (global uchar *)(xb->qs + 8*it);
float4 acc1 = yl[0]*(float4)(shmem_f32[q2[0] & 0x0F], shmem_f32[q2[1] & 0x0F], shmem_f32[q2[2] & 0x0F], shmem_f32[q2[3] & 0x0F]);
float4 acc2 = yl[1]*(float4)(shmem_f32[q2[0] >> 4 ], shmem_f32[q2[1] >> 4 ], shmem_f32[q2[2] >> 4 ], shmem_f32[q2[3] >> 4 ]);
float4 acc3 = yl[2]*(float4)(shmem_f32[q2[4] & 0x0F], shmem_f32[q2[5] & 0x0F], shmem_f32[q2[6] & 0x0F], shmem_f32[q2[7] & 0x0F]);
float4 acc4 = yl[3]*(float4)(shmem_f32[q2[4] >> 4 ], shmem_f32[q2[5] >> 4 ], shmem_f32[q2[6] >> 4 ], shmem_f32[q2[7] >> 4 ]);
acc1 = (acc1 + acc3) + (acc2 + acc4);
sumf[row] += e8m0_to_fp32(xb->e) * ((acc1.s0 + acc1.s1) + (acc1.s2 + acc1.s3));
}
yb += (N_SIMDWIDTH/2) * QK_MXFP4;
}
global float * dst_f32 = (global float *) dst + (ulong)im*ne0*ne1 + (ulong)r1*ne0;
for (int row = 0; row < N_R0_MXFP4 && first_row + row < ne0; ++row) {
float sum_all = sub_group_reduce_add(sumf[row]);
if (get_sub_group_local_id() == 0) {
dst_f32[first_row + row] = sum_all;
}
}
}

View File

@@ -24,6 +24,26 @@ kernel void kernel_transpose_16(
write_imageh(output, (i_2+3)*rows+j, (half4)(temp0.s3, temp1.s3, temp2.s3, temp3.s3));
}
// Padded kernel for irregular shape
kernel void kernel_transpose_16_4x1(
__read_only image1d_buffer_t input,
__write_only image1d_buffer_t output,
const uint rows,
const uint cols
) {
const int i = get_global_id(0);
const int j = get_global_id(1);
const int j_2 = j << 2;
half temp0 = read_imageh(input, (j_2 + 0) * cols + i).x;
half temp1 = read_imageh(input, (j_2 + 1) * cols + i).x;
half temp2 = read_imageh(input, (j_2 + 2) * cols + i).x;
half temp3 = read_imageh(input, (j_2 + 3) * cols + i).x;
write_imageh(output, i * rows + j, (half4)(temp0, temp1, temp2, temp3));
}
// 32-bit transpose, loading/storing a 4x4 tile of elements
kernel void kernel_transpose_32(
__read_only image1d_buffer_t input,