mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-04-02 12:08:00 +02:00
rpc : send hash when tensor data is above some fixed threshold (llama/12496)
* rpc : send hash when tensor data is above some fixed threshold ref #10095 * rpc : put cache under $HOME/.cache/llama.cpp * try to fix win32 build * another try to fix win32 build * remove llama as dependency
This commit is contained in:
parent
263a5888d3
commit
7b8090810e
@ -17,7 +17,9 @@ GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const c
|
||||
|
||||
GGML_BACKEND_API void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total);
|
||||
|
||||
GGML_BACKEND_API void ggml_backend_rpc_start_server(ggml_backend_t backend, const char * endpoint, size_t free_mem, size_t total_mem);
|
||||
GGML_BACKEND_API void ggml_backend_rpc_start_server(ggml_backend_t backend, const char * endpoint,
|
||||
const char * cache_dir,
|
||||
size_t free_mem, size_t total_mem);
|
||||
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_rpc_reg(void);
|
||||
|
||||
|
@ -26,6 +26,10 @@
|
||||
# include <unistd.h>
|
||||
#endif
|
||||
#include <cstring>
|
||||
#include <fstream>
|
||||
#include <filesystem>
|
||||
|
||||
namespace fs = std::filesystem;
|
||||
|
||||
#ifdef _WIN32
|
||||
typedef SOCKET sockfd_t;
|
||||
@ -80,6 +84,7 @@ enum rpc_cmd {
|
||||
RPC_CMD_FREE_BUFFER,
|
||||
RPC_CMD_BUFFER_CLEAR,
|
||||
RPC_CMD_SET_TENSOR,
|
||||
RPC_CMD_SET_TENSOR_HASH,
|
||||
RPC_CMD_GET_TENSOR,
|
||||
RPC_CMD_COPY_TENSOR,
|
||||
RPC_CMD_GRAPH_COMPUTE,
|
||||
@ -89,6 +94,9 @@ enum rpc_cmd {
|
||||
RPC_CMD_COUNT,
|
||||
};
|
||||
|
||||
// Try RPC_CMD_SET_TENSOR_HASH first when data size is larger than this threshold
|
||||
const size_t HASH_THRESHOLD = 10 * 1024 * 1024;
|
||||
|
||||
struct rpc_msg_get_alloc_size_req {
|
||||
rpc_tensor tensor;
|
||||
};
|
||||
@ -135,6 +143,10 @@ struct rpc_msg_buffer_clear_req {
|
||||
uint8_t value;
|
||||
};
|
||||
|
||||
struct rpc_msg_set_tensor_hash_rsp {
|
||||
uint8_t result;
|
||||
};
|
||||
|
||||
struct rpc_msg_get_tensor_req {
|
||||
rpc_tensor tensor;
|
||||
uint64_t offset;
|
||||
@ -187,6 +199,18 @@ struct ggml_backend_rpc_buffer_context {
|
||||
|
||||
// RPC helper functions
|
||||
|
||||
// Computes FNV-1a hash of the data
|
||||
static uint64_t fnv_hash(const uint8_t * data, size_t len) {
|
||||
const uint64_t fnv_prime = 0x100000001b3ULL;
|
||||
uint64_t hash = 0xcbf29ce484222325ULL;
|
||||
|
||||
for (size_t i = 0; i < len; ++i) {
|
||||
hash ^= data[i];
|
||||
hash *= fnv_prime;
|
||||
}
|
||||
return hash;
|
||||
}
|
||||
|
||||
static std::shared_ptr<socket_t> make_socket(sockfd_t fd) {
|
||||
#ifdef _WIN32
|
||||
if (fd == INVALID_SOCKET) {
|
||||
@ -483,10 +507,26 @@ static enum ggml_status ggml_backend_rpc_buffer_init_tensor(ggml_backend_buffer_
|
||||
|
||||
static void ggml_backend_rpc_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
|
||||
// input serialization format: | rpc_tensor | offset (8 bytes) | data (size bytes) |
|
||||
rpc_tensor rpc_tensor = serialize_tensor(tensor);
|
||||
if (size > HASH_THRESHOLD) {
|
||||
// input serialization format: | rpc_tensor | offset (8 bytes) | hash (8 bytes)
|
||||
size_t input_size = sizeof(rpc_tensor) + sizeof(uint64_t) + sizeof(uint64_t);
|
||||
std::vector<uint8_t> input(input_size, 0);
|
||||
uint64_t hash = fnv_hash((const uint8_t*)data, size);
|
||||
memcpy(input.data(), &rpc_tensor, sizeof(rpc_tensor));
|
||||
memcpy(input.data() + sizeof(rpc_tensor), &offset, sizeof(offset));
|
||||
memcpy(input.data() + sizeof(rpc_tensor) + sizeof(offset), &hash, sizeof(hash));
|
||||
rpc_msg_set_tensor_hash_rsp response;
|
||||
bool status = send_rpc_cmd(ctx->sock, RPC_CMD_SET_TENSOR_HASH, input.data(), input.size(), &response, sizeof(response));
|
||||
GGML_ASSERT(status);
|
||||
if (response.result) {
|
||||
// the server has the same data, no need to send it
|
||||
return;
|
||||
}
|
||||
}
|
||||
// input serialization format: | rpc_tensor | offset (8 bytes) | data (size bytes)
|
||||
size_t input_size = sizeof(rpc_tensor) + sizeof(uint64_t) + size;
|
||||
std::vector<uint8_t> input(input_size, 0);
|
||||
rpc_tensor rpc_tensor = serialize_tensor(tensor);
|
||||
memcpy(input.data(), &rpc_tensor, sizeof(rpc_tensor));
|
||||
memcpy(input.data() + sizeof(rpc_tensor), &offset, sizeof(offset));
|
||||
memcpy(input.data() + sizeof(rpc_tensor) + sizeof(offset), data, size);
|
||||
@ -772,7 +812,9 @@ void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, si
|
||||
|
||||
class rpc_server {
|
||||
public:
|
||||
rpc_server(ggml_backend_t backend) : backend(backend) {}
|
||||
rpc_server(ggml_backend_t backend, const char * cache_dir)
|
||||
: backend(backend), cache_dir(cache_dir) {
|
||||
}
|
||||
~rpc_server();
|
||||
|
||||
void alloc_buffer(const rpc_msg_alloc_buffer_req & request, rpc_msg_alloc_buffer_rsp & response);
|
||||
@ -782,6 +824,7 @@ public:
|
||||
bool free_buffer(const rpc_msg_free_buffer_req & request);
|
||||
bool buffer_clear(const rpc_msg_buffer_clear_req & request);
|
||||
bool set_tensor(const std::vector<uint8_t> & input);
|
||||
bool set_tensor_hash(const std::vector<uint8_t> & input, rpc_msg_set_tensor_hash_rsp & response);
|
||||
bool get_tensor(const rpc_msg_get_tensor_req & request, std::vector<uint8_t> & response);
|
||||
bool copy_tensor(const rpc_msg_copy_tensor_req & request, rpc_msg_copy_tensor_rsp & response);
|
||||
bool graph_compute(const std::vector<uint8_t> & input, rpc_msg_graph_compute_rsp & response);
|
||||
@ -789,6 +832,7 @@ public:
|
||||
bool get_alloc_size(const rpc_msg_get_alloc_size_req & request, rpc_msg_get_alloc_size_rsp & response);
|
||||
|
||||
private:
|
||||
bool get_cached_file(uint64_t hash, std::vector<uint8_t> & data);
|
||||
ggml_tensor * deserialize_tensor(struct ggml_context * ctx, const rpc_tensor * tensor);
|
||||
ggml_tensor * create_node(uint64_t id,
|
||||
struct ggml_context * ctx,
|
||||
@ -797,6 +841,7 @@ private:
|
||||
|
||||
|
||||
ggml_backend_t backend;
|
||||
const char * cache_dir;
|
||||
std::unordered_set<ggml_backend_buffer_t> buffers;
|
||||
};
|
||||
|
||||
@ -960,11 +1005,85 @@ bool rpc_server::set_tensor(const std::vector<uint8_t> & input) {
|
||||
}
|
||||
|
||||
const void * data = input.data() + sizeof(rpc_tensor) + sizeof(offset);
|
||||
if (cache_dir && size > HASH_THRESHOLD) {
|
||||
uint64_t hash = fnv_hash((const uint8_t*)data, size);
|
||||
char hash_str[17];
|
||||
snprintf(hash_str, sizeof(hash_str), "%016" PRIx64, hash);
|
||||
// save to cache_dir/hash_str
|
||||
fs::path cache_file = fs::path(cache_dir) / hash_str;
|
||||
std::ofstream ofs(cache_file, std::ios::binary);
|
||||
ofs.write((const char *)data, size);
|
||||
printf("[%s] saved to '%s'\n", __func__, cache_file.c_str());
|
||||
}
|
||||
ggml_backend_tensor_set(tensor, data, offset, size);
|
||||
ggml_free(ctx);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool rpc_server::get_cached_file(uint64_t hash, std::vector<uint8_t> & data) {
|
||||
if (!cache_dir) {
|
||||
return false;
|
||||
}
|
||||
char hash_str[17];
|
||||
snprintf(hash_str, sizeof(hash_str), "%016" PRIx64, hash);
|
||||
fs::path cache_file = fs::path(cache_dir) / hash_str;
|
||||
if (!fs::exists(cache_file)) {
|
||||
return false;
|
||||
}
|
||||
std::ifstream ifs(cache_file, std::ios::binary);
|
||||
ifs.seekg(0, std::ios::end);
|
||||
size_t size = ifs.tellg();
|
||||
ifs.seekg(0, std::ios::beg);
|
||||
data.resize(size);
|
||||
ifs.read((char *)data.data(), size);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool rpc_server::set_tensor_hash(const std::vector<uint8_t> & input, rpc_msg_set_tensor_hash_rsp & response)
|
||||
{
|
||||
// serialization format: | rpc_tensor | offset (8 bytes) | hash (8 bytes) |
|
||||
if (input.size() != sizeof(rpc_tensor) + 16) {
|
||||
return false;
|
||||
}
|
||||
const rpc_tensor * in_tensor = (const rpc_tensor *)input.data();
|
||||
uint64_t offset;
|
||||
memcpy(&offset, input.data() + sizeof(rpc_tensor), sizeof(offset));
|
||||
const uint64_t * hash = (const uint64_t *)(input.data() + sizeof(rpc_tensor) + sizeof(offset));
|
||||
std::vector<uint8_t> cached_file;
|
||||
if (!get_cached_file(*hash, cached_file)) {
|
||||
response.result = 0;
|
||||
return true;
|
||||
}
|
||||
size_t size = cached_file.size();
|
||||
struct ggml_init_params params {
|
||||
/*.mem_size =*/ ggml_tensor_overhead(),
|
||||
/*.mem_buffer =*/ NULL,
|
||||
/*.no_alloc =*/ true,
|
||||
};
|
||||
struct ggml_context * ctx = ggml_init(params);
|
||||
ggml_tensor * tensor = deserialize_tensor(ctx, in_tensor);
|
||||
if (tensor == nullptr) {
|
||||
GGML_LOG_ERROR("[%s] error deserializing tensor\n", __func__);
|
||||
ggml_free(ctx);
|
||||
return false;
|
||||
}
|
||||
GGML_PRINT_DEBUG("[%s] buffer: %p, data: %p, offset: %" PRIu64 ", size: %zu, hash: %" PRIx64 "\n", __func__, (void*)tensor->buffer, tensor->data, offset, size, *hash);
|
||||
|
||||
// sanitize tensor->data
|
||||
{
|
||||
const size_t p0 = (size_t) ggml_backend_buffer_get_base(tensor->buffer);
|
||||
const size_t p1 = p0 + ggml_backend_buffer_get_size(tensor->buffer);
|
||||
|
||||
if (in_tensor->data + offset < p0 || in_tensor->data + offset >= p1 || size > (p1 - in_tensor->data - offset)) {
|
||||
GGML_ABORT("[%s] tensor->data out of bounds\n", __func__);
|
||||
}
|
||||
}
|
||||
ggml_backend_tensor_set(tensor, cached_file.data(), offset, size);
|
||||
response.result = 1;
|
||||
ggml_free(ctx);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool rpc_server::init_tensor(const rpc_msg_init_tensor_req & request) {
|
||||
struct ggml_init_params params {
|
||||
/*.mem_size =*/ ggml_tensor_overhead(),
|
||||
@ -1148,8 +1267,9 @@ rpc_server::~rpc_server() {
|
||||
}
|
||||
}
|
||||
|
||||
static void rpc_serve_client(ggml_backend_t backend, sockfd_t sockfd, size_t free_mem, size_t total_mem) {
|
||||
rpc_server server(backend);
|
||||
static void rpc_serve_client(ggml_backend_t backend, const char * cache_dir,
|
||||
sockfd_t sockfd, size_t free_mem, size_t total_mem) {
|
||||
rpc_server server(backend, cache_dir);
|
||||
while (true) {
|
||||
uint8_t cmd;
|
||||
if (!recv_data(sockfd, &cmd, 1)) {
|
||||
@ -1260,6 +1380,20 @@ static void rpc_serve_client(ggml_backend_t backend, sockfd_t sockfd, size_t fre
|
||||
}
|
||||
break;
|
||||
}
|
||||
case RPC_CMD_SET_TENSOR_HASH: {
|
||||
std::vector<uint8_t> input;
|
||||
if (!recv_msg(sockfd, input)) {
|
||||
return;
|
||||
}
|
||||
rpc_msg_set_tensor_hash_rsp response;
|
||||
if (!server.set_tensor_hash(input, response)) {
|
||||
return;
|
||||
}
|
||||
if (!send_msg(sockfd, &response, sizeof(response))) {
|
||||
return;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case RPC_CMD_INIT_TENSOR: {
|
||||
rpc_msg_init_tensor_req request;
|
||||
if (!recv_msg(sockfd, &request,sizeof(request))) {
|
||||
@ -1335,7 +1469,9 @@ static void rpc_serve_client(ggml_backend_t backend, sockfd_t sockfd, size_t fre
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_backend_rpc_start_server(ggml_backend_t backend, const char * endpoint, size_t free_mem, size_t total_mem) {
|
||||
void ggml_backend_rpc_start_server(ggml_backend_t backend, const char * endpoint,
|
||||
const char * cache_dir,
|
||||
size_t free_mem, size_t total_mem) {
|
||||
std::string host;
|
||||
int port;
|
||||
if (!parse_endpoint(endpoint, host, port)) {
|
||||
@ -1364,7 +1500,7 @@ void ggml_backend_rpc_start_server(ggml_backend_t backend, const char * endpoint
|
||||
}
|
||||
printf("Accepted client connection, free_mem=%zu, total_mem=%zu\n", free_mem, total_mem);
|
||||
fflush(stdout);
|
||||
rpc_serve_client(backend, client_socket->fd, free_mem, total_mem);
|
||||
rpc_serve_client(backend, cache_dir, client_socket->fd, free_mem, total_mem);
|
||||
printf("Client connection closed\n");
|
||||
fflush(stdout);
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user