mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-01-28 00:39:04 +01:00
cann : add Ascend NPU support (#2336)
* enable Ascend NPU in src/whisper.cpp * sync test-backend-ops with llama.cpp
This commit is contained in:
parent
4b7de08bfd
commit
81c999fe0a
@ -32,7 +32,7 @@ DOXYFILE_ENCODING = UTF-8
|
||||
# title of most generated pages and in a few other places.
|
||||
# The default value is: My Project.
|
||||
|
||||
PROJECT_NAME = "llama.cpp"
|
||||
PROJECT_NAME = "whisper.cpp"
|
||||
|
||||
# The PROJECT_NUMBER tag can be used to enter a project or revision number. This
|
||||
# could be handy for archiving the generated documentation or if some version
|
||||
@ -44,7 +44,7 @@ PROJECT_NUMBER =
|
||||
# for a project that appears at the top of each page and should give viewer a
|
||||
# quick idea about the purpose of the project. Keep the description short.
|
||||
|
||||
PROJECT_BRIEF = "llama inference engine"
|
||||
PROJECT_BRIEF = "Port of OpenAI's Whisper model in C/C++"
|
||||
|
||||
# With the PROJECT_LOGO tag one can specify a logo or an icon that is included
|
||||
# in the documentation. The maximum height of the logo should not exceed 55
|
||||
|
@ -29,6 +29,10 @@
|
||||
#include "openvino/whisper-openvino-encoder.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_CANN
|
||||
#include "ggml-cann.h"
|
||||
#endif
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-alloc.h"
|
||||
#include "ggml-backend.h"
|
||||
@ -1283,6 +1287,16 @@ static ggml_backend_t whisper_backend_init_gpu(const whisper_context_params & pa
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_CANN
|
||||
if (params.use_gpu) {
|
||||
WHISPER_LOG_INFO("%s: using CANN backend\n", __func__);
|
||||
result = ggml_backend_cann_init(params.gpu_device);
|
||||
if (!result) {
|
||||
WHISPER_LOG_ERROR("%s: ggml_backend_cann_init() failed\n", __func__);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
@ -1335,6 +1349,10 @@ static ggml_backend_buffer_type_t whisper_default_buffer_type(const whisper_cont
|
||||
result || (result = ggml_backend_vk_buffer_type(params.gpu_device));
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_CANN
|
||||
result || (result == ggml_backend_cann_buffer_type(params.gpu_device));
|
||||
#endif
|
||||
|
||||
result || (result = ggml_backend_cpu_buffer_type());
|
||||
|
||||
return result;
|
||||
@ -4337,8 +4355,8 @@ const char * whisper_print_system_info(void) {
|
||||
s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
|
||||
s += "CUDA = " + std::to_string(ggml_cpu_has_cuda()) + " | ";
|
||||
s += "COREML = " + std::to_string(whisper_has_coreml()) + " | ";
|
||||
s += "OPENVINO = " + std::to_string(whisper_has_openvino()) ;
|
||||
|
||||
s += "OPENVINO = " + std::to_string(whisper_has_openvino()) + " | ";
|
||||
s += "CANN = " + std::to_string(ggml_cpu_has_cann()) ;
|
||||
return s.c_str();
|
||||
}
|
||||
|
||||
|
@ -1,7 +1,6 @@
|
||||
#include <ggml.h>
|
||||
#include <ggml-alloc.h>
|
||||
#include <ggml-backend.h>
|
||||
#include <ggml-backend-impl.h>
|
||||
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
@ -80,14 +79,22 @@ static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float m
|
||||
im = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
ggml_quantize_chunk(tensor->type, data.data(), dataq.data(), 0, size/tensor->ne[0], tensor->ne[0], im);
|
||||
GGML_ASSERT(ggml_validate_row_data(tensor->type, dataq.data(), dataq.size()));
|
||||
// TODO: other cases
|
||||
//#pragma omp parallel for
|
||||
//for (int i = 0; i < tensor->ne[1]; i++) {
|
||||
// ggml_quantize_chunk(tensor->type, data.data(), dataq.data(),
|
||||
// i * tensor->ne[0], 1, tensor->ne[0], im);
|
||||
//}
|
||||
|
||||
ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
|
||||
} else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) {
|
||||
// This is going to create some weird integers though.
|
||||
ggml_backend_tensor_set(tensor, data.data(), 0, ggml_nbytes(tensor));
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
}
|
||||
|
||||
@ -125,7 +132,7 @@ static std::vector<float> tensor_to_float(const ggml_tensor * t) {
|
||||
tt.to_float(&buf[i], vq.data(), bs);
|
||||
tv.insert(tv.end(), vq.begin(), vq.end());
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -760,7 +767,7 @@ struct test_dup : public test_case {
|
||||
}
|
||||
|
||||
test_dup(ggml_type type = GGML_TYPE_F32,
|
||||
std::array<int64_t, 4> ne = {10, 10, 10, 1},
|
||||
std::array<int64_t, 4> ne = {10, 10, 20, 1},
|
||||
std::array<int64_t, 4> permute = {0, 0, 0, 0})
|
||||
: type(type), ne(ne), permute(permute),
|
||||
_use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
|
||||
@ -780,9 +787,11 @@ struct test_cpy : public test_case {
|
||||
const ggml_type type_src;
|
||||
const ggml_type type_dst;
|
||||
const std::array<int64_t, 4> ne;
|
||||
const std::array<int64_t, 4> permute;
|
||||
bool _src_use_permute;
|
||||
|
||||
std::string vars() override {
|
||||
return VARS_TO_STR3(type_src, type_dst, ne);
|
||||
return VARS_TO_STR4(type_src, type_dst, ne, permute);
|
||||
}
|
||||
|
||||
double max_nmse_err() override {
|
||||
@ -794,12 +803,17 @@ struct test_cpy : public test_case {
|
||||
}
|
||||
|
||||
test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
|
||||
std::array<int64_t, 4> ne = {10, 10, 10, 1})
|
||||
: type_src(type_src), type_dst(type_dst), ne(ne) {}
|
||||
std::array<int64_t, 4> ne = {10, 10, 10, 1},
|
||||
std::array<int64_t, 4> permute = {0, 0, 0, 0})
|
||||
: type_src(type_src), type_dst(type_dst), ne(ne), permute(permute),
|
||||
_src_use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
|
||||
|
||||
ggml_tensor * build_graph(ggml_context * ctx) override {
|
||||
ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
|
||||
ggml_tensor * dst = ggml_new_tensor(ctx, type_dst, 4, ne.data());
|
||||
if (_src_use_permute) {
|
||||
src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
|
||||
}
|
||||
ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, src->ne);
|
||||
ggml_tensor * out = ggml_cpy(ctx, src, dst);
|
||||
return out;
|
||||
}
|
||||
@ -1175,6 +1189,7 @@ struct test_soft_max : public test_case {
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// GGML_OP_ROPE
|
||||
struct test_rope : public test_case {
|
||||
const ggml_type type;
|
||||
@ -1267,6 +1282,32 @@ struct test_pool2d : public test_case {
|
||||
}
|
||||
};
|
||||
|
||||
// GGML_OP_CONV_TRANSPOSE_1D
|
||||
struct test_conv_transpose_1d : public test_case {
|
||||
const std::array<int64_t, 4> ne_input;
|
||||
const std::array<int64_t, 4> ne_kernel;
|
||||
|
||||
const int s0; // stride
|
||||
const int p0; // padding
|
||||
const int d0; // dilation
|
||||
|
||||
std::string vars() override {
|
||||
return VARS_TO_STR5(ne_input, ne_kernel, s0, p0, d0);
|
||||
}
|
||||
|
||||
test_conv_transpose_1d(std::array<int64_t, 4> ne_input = {197, 32, 1, 1}, // [input_width, input_height, input_channels, 1]
|
||||
std::array<int64_t, 4> ne_kernel = {16, 32, 32, 1}, // [kernel_width, kernel_height, input_channels, 1]
|
||||
int s0 = 1, int p0 = 0, int d0 = 1)
|
||||
: ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), p0(p0), d0(d0) {}
|
||||
|
||||
ggml_tensor * build_graph(ggml_context * ctx) override {
|
||||
ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
|
||||
ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
|
||||
ggml_tensor * out = ggml_conv_transpose_1d(ctx, kernel, input, s0, p0, d0);
|
||||
return out;
|
||||
}
|
||||
};
|
||||
|
||||
// GGML_OP_IM2COL
|
||||
struct test_im2col : public test_case {
|
||||
const ggml_type type_input;
|
||||
@ -1280,7 +1321,7 @@ struct test_im2col : public test_case {
|
||||
// padding
|
||||
const int p0;
|
||||
const int p1;
|
||||
// dilatation
|
||||
// dilation
|
||||
const int d0;
|
||||
const int d1;
|
||||
// mode
|
||||
@ -1393,7 +1434,7 @@ struct test_argsort : public test_case {
|
||||
ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
|
||||
}
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -1470,6 +1511,7 @@ struct test_group_norm : public test_case {
|
||||
const ggml_type type;
|
||||
const std::array<int64_t, 4> ne;
|
||||
const int32_t num_groups;
|
||||
const float eps;
|
||||
|
||||
std::string vars() override {
|
||||
return VARS_TO_STR3(type, ne, num_groups);
|
||||
@ -1477,12 +1519,13 @@ struct test_group_norm : public test_case {
|
||||
|
||||
test_group_norm(ggml_type type = GGML_TYPE_F32,
|
||||
std::array<int64_t, 4> ne = {64, 64, 320, 1},
|
||||
int32_t num_groups = 32)
|
||||
: type(type), ne(ne), num_groups(num_groups) {}
|
||||
int32_t num_groups = 32,
|
||||
float eps = 1e-6f)
|
||||
: type(type), ne(ne), num_groups(num_groups), eps(eps) {}
|
||||
|
||||
ggml_tensor * build_graph(ggml_context * ctx) override {
|
||||
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
||||
ggml_tensor * out = ggml_group_norm(ctx, a, num_groups);
|
||||
ggml_tensor * out = ggml_group_norm(ctx, a, num_groups, eps);
|
||||
return out;
|
||||
}
|
||||
};
|
||||
@ -2053,6 +2096,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
||||
GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
|
||||
GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
|
||||
GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
|
||||
GGML_TYPE_BF16,
|
||||
};
|
||||
|
||||
// unary ops
|
||||
@ -2097,6 +2141,19 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
||||
|
||||
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
|
||||
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
|
||||
// test cases for 1D im2col
|
||||
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
|
||||
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
|
||||
|
||||
test_cases.emplace_back(new test_conv_transpose_1d());
|
||||
test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 3, 0, 1));
|
||||
test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 2, 0, 1));
|
||||
test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 1, 0, 1));
|
||||
test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 2, 0, 1));
|
||||
test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 1, 0, 1));
|
||||
test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,1,2,1}, 1, 0, 1));
|
||||
test_cases.emplace_back(new test_conv_transpose_1d({2,1,1,1}, {3,1,1,1}, 1, 0, 1));
|
||||
|
||||
|
||||
test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 1, 1}));
|
||||
test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {2, 1, 1, 1}));
|
||||
@ -2110,12 +2167,22 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
||||
test_cases.emplace_back(new test_dup(GGML_TYPE_F16));
|
||||
test_cases.emplace_back(new test_dup(GGML_TYPE_I32));
|
||||
test_cases.emplace_back(new test_dup(GGML_TYPE_I16));
|
||||
test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {0, 2, 1, 3}));
|
||||
test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {0, 2, 1, 3})); // dup by rows
|
||||
test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {1, 0, 2, 3}));
|
||||
test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {1, 0, 2, 3})); // dup dst not-contiguous
|
||||
test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3}));
|
||||
test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3}));
|
||||
|
||||
for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
|
||||
for (ggml_type type_dst : all_types) {
|
||||
test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
|
||||
test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
|
||||
}
|
||||
}
|
||||
for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
|
||||
for (ggml_type type_dst : {GGML_TYPE_F16, GGML_TYPE_F32}) {
|
||||
test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {1, 0, 2, 3})); // cpy not-contiguous
|
||||
}
|
||||
}
|
||||
|
||||
@ -2165,6 +2232,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
||||
test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 10, 10, 10}, eps));
|
||||
}
|
||||
|
||||
#if 1
|
||||
for (ggml_type type_a : base_types) {
|
||||
for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
|
||||
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, { 1, 1}, {1, 1}));
|
||||
@ -2184,10 +2252,31 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
||||
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {2, 2}));
|
||||
}
|
||||
}
|
||||
#else
|
||||
// m = a rows
|
||||
// n = b rows
|
||||
// k = cols
|
||||
std::uniform_int_distribution<> dist_m(1, 128);
|
||||
std::uniform_int_distribution<> dist_n(16, 128);
|
||||
std::uniform_int_distribution<> dist_k(1, 16);
|
||||
for (int i = 0; i < 1000; i++) {
|
||||
for (ggml_type type_a : all_types) {
|
||||
for (ggml_type type_b : {GGML_TYPE_F32}) {
|
||||
int m = dist_m(rng);
|
||||
int n = dist_n(rng);
|
||||
int k = dist_k(rng) * ggml_blck_size(type_a);
|
||||
test_cases.emplace_back(new test_mul_mat(type_a, type_b, m, n, k, { 1, 1}, {1, 1}));
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
for (ggml_type type_a : other_types) {
|
||||
for (ggml_type type_b : {GGML_TYPE_F32}) {
|
||||
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, { 1, 1}, {1, 1}));
|
||||
if (ggml_blck_size(type_a) != 256) {
|
||||
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, ggml_blck_size(type_a), {1, 1}, {1, 1}));
|
||||
}
|
||||
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1}));
|
||||
}
|
||||
}
|
||||
|
||||
@ -2247,7 +2336,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
||||
for (int n = 0; n < 10; ++n) {
|
||||
int64_t ne0 = dist_ne0(rng);
|
||||
int64_t ne1 = dist_ne1(rng);
|
||||
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, n/2 == 0, 0.1f, ne0 < 1000 ? 4.0f : 0.0f));
|
||||
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, GGML_TYPE_F32, {ne0, ne1, 1, 1}, n/2 == 0, 0.1f, ne0 < 1000 ? 4.0f : 0.0f));
|
||||
}
|
||||
|
||||
exponent <<= 1;
|
||||
@ -2266,7 +2355,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, 0.1f, 0.0f));
|
||||
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, 0.1f, 0.0f));
|
||||
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, 0.1f, 0.0f));
|
||||
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, 0.1f, 8.0f));
|
||||
@ -2380,7 +2469,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
||||
return true;
|
||||
}
|
||||
|
||||
GGML_ASSERT(false);
|
||||
GGML_ABORT("fatal error");
|
||||
return false;
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user