mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-08-14 07:48:46 +02:00
vulkan: optimizations for deepseek prompt processing (llama/14555)
* vulkan: allow unclamped loads in coopmat2 mul_mat_id shader * vulkan: increase coopmat2 mul_mat_id tile size * vulkan: optimize mat_mul_id row_ids search to batch loads, and port to coopmat1 path * vulkan: use smaller FA row size when head size is large. applies to both scalar and CM2 paths (CM1 isn't used due to shared memory limits)
This commit is contained in:
committed by
Georgi Gerganov
parent
74f6d47904
commit
8670a3fd5d
@ -1735,7 +1735,14 @@ static FaHeadSizes fa_get_head_sizes(uint32_t hsk, uint32_t hsv) {
|
||||
// number of rows/cols for flash attention shader
|
||||
static constexpr uint32_t flash_attention_num_small_rows = 32;
|
||||
static constexpr uint32_t scalar_flash_attention_num_small_rows = 1;
|
||||
static constexpr uint32_t scalar_flash_attention_num_large_rows = 8;
|
||||
|
||||
static uint32_t get_fa_scalar_num_large_rows(uint32_t hsv) {
|
||||
if (hsv >= 512) {
|
||||
return 2;
|
||||
} else {
|
||||
return 8;
|
||||
}
|
||||
}
|
||||
|
||||
// The FA coopmat1 shader assumes 16x16x16 matrix multiply support.
|
||||
// 128 threads split into four subgroups, each subgroup does 1/4
|
||||
@ -1760,7 +1767,7 @@ static std::array<uint32_t, 2> fa_rows_cols(FaCodePath path, uint32_t hsk, uint3
|
||||
if (small_rows) {
|
||||
return {scalar_flash_attention_num_small_rows, 64};
|
||||
} else {
|
||||
return {scalar_flash_attention_num_large_rows, 32};
|
||||
return {get_fa_scalar_num_large_rows(hsv), 32};
|
||||
}
|
||||
}
|
||||
|
||||
@ -1779,7 +1786,11 @@ static std::array<uint32_t, 2> fa_rows_cols(FaCodePath path, uint32_t hsk, uint3
|
||||
|
||||
// small cols to reduce register count
|
||||
if (ggml_is_quantized(type) || hsk >= 256) {
|
||||
return {64, 32};
|
||||
if (hsk >= 512) {
|
||||
return {32, 32};
|
||||
} else {
|
||||
return {64, 32};
|
||||
}
|
||||
}
|
||||
return {64, 64};
|
||||
}
|
||||
@ -1821,7 +1832,7 @@ static bool ggml_vk_matmul_shmem_support(const vk_device& device, const std::vec
|
||||
const uint32_t warps = warptile[0] / warptile[10];
|
||||
|
||||
const uint32_t load_bufs = (warptile[1] + warptile[2]) * (warptile[3] + bank_conflict_offset) * type_size;
|
||||
const uint32_t mmid_row_ids = mul_mat_id ? 4096 * sizeof(uint32_t) : 0;
|
||||
const uint32_t mmid_row_ids = mul_mat_id ? (4096 * sizeof(uint32_t) + 4/*_ne1*/) : 0;
|
||||
const uint32_t coopmat_stage = device->coopmat_support ? warptile[7] * warptile[8] / warps * sizeof(float) : 0;
|
||||
|
||||
const uint32_t total_size = load_bufs + mmid_row_ids + coopmat_stage + lut_size;
|
||||
@ -1946,10 +1957,10 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
||||
s_mmq_wg_denoms_k = { 32, 32, 1 };
|
||||
|
||||
// spec constants and tile sizes for quant matmul_id
|
||||
l_warptile_mmqid = { 256, 128, 64, 16, 0 };
|
||||
l_warptile_mmqid = { 256, 128, 128, 16, 0 };
|
||||
m_warptile_mmqid = { 256, 128, 64, 16, 0 };
|
||||
s_warptile_mmqid = { 256, 128, 64, 16, 0 };
|
||||
l_mmqid_wg_denoms = { 128, 64, 1 };
|
||||
l_mmqid_wg_denoms = { 128, 128, 1 };
|
||||
m_mmqid_wg_denoms = { 128, 64, 1 };
|
||||
s_mmqid_wg_denoms = { 128, 64, 1 };
|
||||
|
||||
@ -6048,7 +6059,7 @@ static bool ggml_vk_flash_attn_scalar_shmem_support(const vk_device& device, con
|
||||
// Needs to be kept up to date on shader changes
|
||||
GGML_UNUSED(hsv);
|
||||
const uint32_t wg_size = scalar_flash_attention_workgroup_size;
|
||||
const uint32_t Br = scalar_flash_attention_num_large_rows;
|
||||
const uint32_t Br = get_fa_scalar_num_large_rows(hsv);
|
||||
const uint32_t Bc = scalar_flash_attention_Bc;
|
||||
|
||||
const uint32_t tmpsh = wg_size * sizeof(float);
|
||||
@ -6173,7 +6184,7 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx
|
||||
case FA_SCALAR:
|
||||
case FA_COOPMAT1:
|
||||
// We may switch from coopmat1 to scalar, so use the scalar limit for both
|
||||
max_gqa = scalar_flash_attention_num_large_rows;
|
||||
max_gqa = get_fa_scalar_num_large_rows(HSV);
|
||||
break;
|
||||
case FA_COOPMAT2:
|
||||
max_gqa = get_fa_num_small_rows(FA_COOPMAT2);
|
||||
|
@ -18,6 +18,7 @@
|
||||
#extension GL_KHR_cooperative_matrix : enable
|
||||
#extension GL_KHR_memory_scope_semantics : enable
|
||||
#extension GL_KHR_shader_subgroup_basic : enable
|
||||
#extension GL_KHR_shader_subgroup_ballot : enable
|
||||
#endif
|
||||
|
||||
#ifdef MUL_MAT_ID
|
||||
@ -104,6 +105,10 @@ shared FLOAT_TYPE buf_b[BN * SHMEM_STRIDE];
|
||||
|
||||
#ifdef MUL_MAT_ID
|
||||
shared u16vec2 row_ids[4096];
|
||||
uint _ne1;
|
||||
#ifdef COOPMAT
|
||||
shared uint _ne1_sh;
|
||||
#endif
|
||||
#endif // MUL_MAT_ID
|
||||
|
||||
#define NUM_WARPS (BLOCK_SIZE / WARP)
|
||||
@ -172,7 +177,47 @@ void main() {
|
||||
const uint loadstride_b = gl_WorkGroupSize.x * LOAD_VEC_B / BK;
|
||||
|
||||
#ifdef MUL_MAT_ID
|
||||
uint _ne1 = 0;
|
||||
#ifdef COOPMAT
|
||||
// Spread the search across all elements in the first subgroup
|
||||
if (gl_SubgroupID == 0) {
|
||||
_ne1 = 0;
|
||||
uint num_elements = p.nei1 * p.nei0;
|
||||
|
||||
uint ids[16];
|
||||
uint iter = 0;
|
||||
|
||||
for (uint j = 0; j < num_elements; j += gl_SubgroupSize) {
|
||||
// prefetch up to 16 elements
|
||||
if (iter == 0) {
|
||||
[[unroll]] for (uint k = 0; k < 16; ++k) {
|
||||
uint i = j + gl_SubgroupInvocationID + k*gl_SubgroupSize;
|
||||
bool in_range = i < num_elements;
|
||||
uint ii1 = i / p.nei0;
|
||||
uint ii0 = i % p.nei0;
|
||||
ids[k] = in_range ? data_ids[ii1*p.nbi1 + ii0] : 0;
|
||||
}
|
||||
}
|
||||
uint i = j + gl_SubgroupInvocationID;
|
||||
bool in_range = i < num_elements;
|
||||
uint ii1 = i / p.nei0;
|
||||
uint ii0 = i % p.nei0;
|
||||
uint id = ids[iter++];
|
||||
uvec4 ballot = subgroupBallot(in_range && id == expert_idx);
|
||||
uint idx = subgroupBallotExclusiveBitCount(ballot);
|
||||
if (in_range && id == expert_idx) {
|
||||
row_ids[_ne1 + idx] = u16vec2(ii0, ii1);
|
||||
}
|
||||
_ne1 += subgroupBallotBitCount(ballot);
|
||||
iter &= 15;
|
||||
}
|
||||
_ne1_sh = _ne1;
|
||||
}
|
||||
|
||||
barrier();
|
||||
|
||||
_ne1 = _ne1_sh;
|
||||
#else
|
||||
_ne1 = 0;
|
||||
for (uint ii1 = 0; ii1 < p.nei1; ii1++) {
|
||||
for (uint ii0 = 0; ii0 < p.nei0; ii0++) {
|
||||
if (data_ids[ii1*p.nbi1 + ii0] == expert_idx) {
|
||||
@ -183,6 +228,7 @@ void main() {
|
||||
}
|
||||
|
||||
barrier();
|
||||
#endif
|
||||
|
||||
// Workgroup has no work
|
||||
if (ic * BN >= _ne1) return;
|
||||
|
@ -162,17 +162,32 @@ void main() {
|
||||
_ne1 = 0;
|
||||
uint num_elements = p.nei1 * p.nei0;
|
||||
|
||||
for (uint i = gl_SubgroupInvocationID; subgroupAny(i < num_elements); i += gl_SubgroupSize) {
|
||||
uint ids[16];
|
||||
uint iter = 0;
|
||||
|
||||
for (uint j = 0; j < num_elements; j += gl_SubgroupSize) {
|
||||
// prefetch up to 16 elements
|
||||
if (iter == 0) {
|
||||
[[unroll]] for (uint k = 0; k < 16; ++k) {
|
||||
uint i = j + gl_SubgroupInvocationID + k*gl_SubgroupSize;
|
||||
bool in_range = i < num_elements;
|
||||
uint ii1 = i / p.nei0;
|
||||
uint ii0 = i % p.nei0;
|
||||
ids[k] = in_range ? data_ids[ii1*p.nbi1 + ii0] : 0;
|
||||
}
|
||||
}
|
||||
uint i = j + gl_SubgroupInvocationID;
|
||||
bool in_range = i < num_elements;
|
||||
uint ii0 = i % p.nei0;
|
||||
uint ii1 = i / p.nei0;
|
||||
uint id = in_range ? data_ids[ii1*p.nbi1 + ii0] : 0;
|
||||
uint ii0 = i % p.nei0;
|
||||
uint id = ids[iter++];
|
||||
uvec4 ballot = subgroupBallot(in_range && id == expert_idx);
|
||||
uint idx = subgroupBallotExclusiveBitCount(ballot);
|
||||
if (in_range && id == expert_idx) {
|
||||
row_ids[_ne1 + idx] = u16vec4(ii0 % p.ne11, ii1, ii0, 0);
|
||||
}
|
||||
_ne1 += subgroupBallotBitCount(ballot);
|
||||
iter &= 15;
|
||||
}
|
||||
_ne1_sh = _ne1;
|
||||
}
|
||||
@ -414,17 +429,31 @@ void main() {
|
||||
fetch_scales(ir * BM, pos_a, stride_a, block_k + BK, tid, false);
|
||||
}
|
||||
|
||||
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
|
||||
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BK, BN, gl_MatrixUseB> mat_b;
|
||||
if ((ir + 1) * BM <= p.M && block_k + BK <= end_k) {
|
||||
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
|
||||
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BK, BN, gl_MatrixUseB> mat_b;
|
||||
|
||||
coopMatLoadTensorNV(mat_a, data_a, pos_a, sliceTensorLayoutNV(tensorLayoutAClamp, ir * BM, BM, block_k, BK) DECODEFUNCA);
|
||||
coopMatLoadTensorNV(mat_a, data_a, pos_a, sliceTensorLayoutNV(tensorLayoutA, ir * BM, BM, block_k, BK) DECODEFUNCA);
|
||||
#ifdef MUL_MAT_ID
|
||||
coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutB, ic * BN, BN, block_k, BK), tensorViewTranspose, decodeFuncB);
|
||||
coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutB, ic * BN, BN, block_k, BK), tensorViewTranspose, decodeFuncB);
|
||||
#else
|
||||
coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutBClamp, ic * BN, BN, block_k, BK), tensorViewTranspose);
|
||||
coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutBClamp, ic * BN, BN, block_k, BK), tensorViewTranspose);
|
||||
#endif
|
||||
|
||||
sum = coopMatMulAdd(mat_a, mat_b, sum);
|
||||
sum = coopMatMulAdd(mat_a, mat_b, sum);
|
||||
} else {
|
||||
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
|
||||
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BK, BN, gl_MatrixUseB> mat_b;
|
||||
|
||||
coopMatLoadTensorNV(mat_a, data_a, pos_a, sliceTensorLayoutNV(tensorLayoutAClamp, ir * BM, BM, block_k, BK) DECODEFUNCA);
|
||||
#ifdef MUL_MAT_ID
|
||||
coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutB, ic * BN, BN, block_k, BK), tensorViewTranspose, decodeFuncB);
|
||||
#else
|
||||
coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutBClamp, ic * BN, BN, block_k, BK), tensorViewTranspose);
|
||||
#endif
|
||||
|
||||
sum = coopMatMulAdd(mat_a, mat_b, sum);
|
||||
}
|
||||
}
|
||||
|
||||
// Convert from ACC_TYPE to D_TYPE
|
||||
|
Reference in New Issue
Block a user