vulkan: coopmat2 mul_mat optimizations (llama/14934)

- Increase tile size for k-quants, to match non-k-quants
- Choose more carefully between large and medium tiles, considering how it
  interacts with split_k
- Allow larger/non-power of two split_k, and make the splits a multiple of 256
- Use split_k==3 to when >1/2 and <=2/3 of the SMs would hae been used
This commit is contained in:
Jeff Bolz
2025-08-02 04:21:37 -05:00
committed by Georgi Gerganov
parent 97341224b2
commit b374fd6172

View File

@@ -2106,12 +2106,12 @@ static void ggml_vk_load_shaders(vk_device& device) {
s_mmq_wg_denoms = { 32, 64, 1 };
// spec constants and tile sizes for quant matmul (Qi_K)
l_warptile_mmq_k = { 256, 64, 128, 64, 1 };
m_warptile_mmq_k = { 256, 32, 64, 64, 0 };
s_warptile_mmq_k = { 256, 32, 32, 128, 0 };
l_mmq_wg_denoms_k = { 64, 128, 1 };
m_mmq_wg_denoms_k = { 32, 64, 1 };
s_mmq_wg_denoms_k = { 32, 32, 1 };
l_warptile_mmq_k = { 256, 128, 256, 64, 1 };
m_warptile_mmq_k = { 256, 128, 128, 64, 1 };
s_warptile_mmq_k = { 256, 32, 64, 128, 0 };
l_mmq_wg_denoms_k = { 128, 256, 1 };
m_mmq_wg_denoms_k = { 128, 128, 1 };
s_mmq_wg_denoms_k = { 32, 64, 1 };
// spec constants and tile sizes for quant matmul_id
l_warptile_mmqid = { 256, 128, 128, 16, 0 };
@@ -5022,26 +5022,37 @@ static void ggml_vk_buffer_memset(vk_buffer& dst, size_t offset, uint32_t c, siz
ggml_vk_queue_command_pools_cleanup(dst->device);
}
static uint32_t ggml_vk_guess_split_k(ggml_backend_vk_context * ctx, int m, int n, int k, const vk_pipeline& pipeline) {
static uint32_t ggml_vk_guess_split_k(ggml_backend_vk_context * ctx, uint32_t m, uint32_t n, uint32_t k, const vk_pipeline& pipeline) {
VK_LOG_DEBUG("ggml_vk_guess_split_k(" << m << ", " << n << ", " << k << ")");
uint32_t split_k = 1;
if (ctx->device->shader_core_count != 0 && m >= (int)pipeline->wg_denoms[0] && n >= (int)pipeline->wg_denoms[1]) {
if (ctx->device->shader_core_count != 0 && m >= pipeline->wg_denoms[0] && n >= pipeline->wg_denoms[1]) {
// If k is 'large' and the SMs will fill less than halfway, use split_k.
uint32_t m_tiles = CEIL_DIV(m, pipeline->wg_denoms[0]);
uint32_t n_tiles = CEIL_DIV(n, pipeline->wg_denoms[1]);
if (k >= 2048 && m_tiles * n_tiles < ctx->device->shader_core_count / 2) {
split_k = ctx->device->shader_core_count / (m_tiles * n_tiles);
// Clamp to 2 or 4
split_k = std::min(split_k, 4u);
if (split_k == 3) {
split_k = 2;
if (k >= 2048) {
if (m_tiles * n_tiles <= ctx->device->shader_core_count / 2) {
split_k = ctx->device->shader_core_count / (m_tiles * n_tiles);
} else if (m_tiles * n_tiles <= ctx->device->shader_core_count * 2 / 3) {
split_k = 3;
}
if (ctx->device->coopmat2) {
// coopmat2 shader expects splits to be aligned to 256
while (split_k > 1 && ((k / split_k) % 256) != 0) {
split_k /= 2;
// Cap the split at 8x. Unless k is huge this is a lot of overhead.
split_k = std::min(split_k, 8u);
// ggml_vk_matmul will align the splits to be a multiple of 256.
// If this rounded up size would cause the last split to be empty,
// then reduce the split count.
while (true) {
if (split_k == 1) {
break;
}
uint32_t k_split = CEIL_DIV(k, split_k);
k_split = ROUNDUP_POW2(k_split, 256);
if (k_split * (split_k - 1) < k) {
break;
}
split_k--;
}
}
}
@@ -5053,9 +5064,22 @@ static vk_pipeline ggml_vk_guess_matmul_pipeline(ggml_backend_vk_context * ctx,
VK_LOG_DEBUG("ggml_vk_guess_matmul_pipeline(" << m << ", " << n << ", " << aligned << ", " << ggml_type_name(src0_type) << ", " << ggml_type_name(src1_type) << ")");
if (ctx->device->coopmat2) {
const uint32_t shader_core_count = ctx->device->shader_core_count;
const uint32_t tiles_l = CEIL_DIV(m, mmp->a_l->wg_denoms[0]) * CEIL_DIV(n, mmp->a_l->wg_denoms[1]);
const uint32_t tiles_m = CEIL_DIV(m, mmp->a_m->wg_denoms[0]) * CEIL_DIV(n, mmp->a_m->wg_denoms[1]);
// Use large shader when the N dimension is greater than the medium shader's tile size
uint32_t crossover_large = mmp->m->wg_denoms[1];
if ((ctx->device->mul_mat_l[src0_type] && (n > crossover_large)) || (!ctx->device->mul_mat_m[src0_type] && !ctx->device->mul_mat_s[src0_type])) {
// Prefer large over medium if either:
// - medium or large tiles would overfill the GPU
// - large tiles with a split_k==3 fits in the GPU and medium tiles with split_k==2 does not
// (medium with split_k==2 is probably better if it fits - more workgroups running and less split_k overhead)
bool prefer_large = tiles_m > shader_core_count || tiles_l > shader_core_count ||
// split_k==3 with large tiles likely better than medium tiles with no split_k.
(tiles_l <= shader_core_count / 3 && tiles_m > shader_core_count / 2);
if ((ctx->device->mul_mat_l[src0_type] && (n > crossover_large && prefer_large)) || (!ctx->device->mul_mat_m[src0_type] && !ctx->device->mul_mat_s[src0_type])) {
return aligned ? mmp->a_l : mmp->l;
}
// Use medium shader when the N dimension is greater than the small shader's tile size
@@ -5099,7 +5123,11 @@ static void ggml_vk_matmul(
GGML_ASSERT(batch_stride_d == m * n);
const vk_mat_mat_push_constants pc1 = { m, n, k, stride_a, stride_b, stride_d, batch_stride_a, batch_stride_b, batch_stride_d, CEIL_DIV(k, split_k), ne02, ne12, broadcast2, broadcast3, padded_n };
// Round the split size up to a multiple of 256 (k-quant alignment)
uint32_t k_split = CEIL_DIV(k, split_k);
k_split = ROUNDUP_POW2(k_split, 256);
const vk_mat_mat_push_constants pc1 = { m, n, k, stride_a, stride_b, stride_d, batch_stride_a, batch_stride_b, batch_stride_d, k_split, ne02, ne12, broadcast2, broadcast3, padded_n };
// Make sure enough workgroups get assigned for split k to work
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { a, b, split_k_buffer }, pc1, { (CEIL_DIV(m, pipeline->wg_denoms[0]) * pipeline->wg_denoms[0]) * split_k, n, batch });
ggml_vk_sync_buffers(subctx);