tests : add a new benchmark test for long-form audio (#3185)

* tests : add a new benchmark test for long-form audio

Based on "Earnings-21" corpus by Del Rio et al.

    Earnings-21: A Practical Benchmark for ASR in the Wild (2021)
    https://arxiv.org/abs/2104.11348

This dataset contains 39 hours of long-form speech, sourced from public
earning calls. Each recording contains roughly 50 minutes of English
dialogues between multiple speakers (2-20 persons).

This benchmark suite should allow us to evaluate the performance of
whisper.cpp on long-form audio data.

Signed-off-by: Fujimoto Seiji <fujimoto@ceptord.net>

* tests : apply PR feedback to 'earnings21/README.md'

Based on feedback from Daniel Bevenius.

 - Simplify how to download & prepare a Silero VAD model.
 - Fix typo: inferece -> inference

Signed-off-by: Fujimoto Seiji <fujimoto@ceptord.net>

* tests : avoid crashing on non-UTF-8 characters

Based on feedback from Daniel Bevenius.

Add 'errors' parameter to open() in order to avoid unhandled
exception on invalid UTF-8 bytes.

Signed-off-by: Fujimoto Seiji <fujimoto@ceptord.net>

* tests : try to interpret the hypothesis as Windows-1252

Based on the discussion in PR#3185.

Evidently Whisper.cpp can represent a quotation mark as '0x93', which
implifies Windows-1252 (Microsoft's ASCII excention), and cannot be
decoded by UTF-8.

Add an explicit decoding loop to address the issue.

Signed-off-by: Fujimoto Seiji <fujimoto@ceptord.net>

---------

Signed-off-by: Fujimoto Seiji <fujimoto@ceptord.net>
This commit is contained in:
Fujimoto Seiji 2025-05-28 14:08:44 +09:00 committed by GitHub
parent 0ed00d9d30
commit b9d27b1358
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
11 changed files with 2639 additions and 0 deletions

6
tests/earnings21/.gitignore vendored Normal file
View File

@ -0,0 +1,6 @@
__pycache__
*.tar.gz
*.txt
eval.conf
venv
speech-datasets

16
tests/earnings21/Makefile Normal file
View File

@ -0,0 +1,16 @@
GIT_URL = https://github.com/revdotcom/speech-datasets
all: eval
eval:
$(MAKE) -f eval.mk
clean:
$(MAKE) -f eval.mk clean
get-audio:
git clone --depth 1 --filter=blob:none --sparse $(GIT_URL)
git -C speech-datasets sparse-checkout init --cone
git -C speech-datasets sparse-checkout set earnings21
.PHONY: all eval clean get-audio

View File

@ -0,0 +1,87 @@
# whisper.cpp/tests/earnings21
[Earnings-21](https://arxiv.org/abs/2104.11348) is a real-world benchmark
dataset that contains 39-hours of long-form English speech, sourced from
public earning calls.
This directory contains a set of scripts to evaluate the performance of
whisper.cpp on Earnings-21 corpus.
## Quick Start
1. (Pre-requirement) Compile `whisper-cli` and prepare the Whisper
model in `ggml` format.
```
$ # Execute the commands below in the project root dir.
$ cmake -B build
$ cmake --build build --config Release
$ ./models/download-ggml-model.sh tiny
```
Consult [whisper.cpp/README.md](../../README.md) for more details.
2. Download the audio files.
```
$ make get-audio
```
3. Set up the environment to compute WER score.
```
$ pip install -r requirements.txt
```
For example, if you use `virtualenv`, you can set up it as follows:
```
$ python3 -m venv venv
$ . venv/bin/activate
$ pip install -r requirements.txt
```
4. Run the benchmark test.
```
$ make
```
## How-to guides
### How to change the inference parameters
Create `eval.conf` and override variables.
```
WHISPER_MODEL = large-v3-turbo
WHISPER_FLAGS = --no-prints --threads 8 --language en --output-txt
```
Check out `eval.mk` for more details.
### How to perform the benchmark test on a 10-hour subset
Earnings-21 provides a small but representative subset (approximately
10-hour audio data) to evaluate ASR systems quickly.
To switch to the subset, create `eval.conf` and add the following line:
```
EARNINGS21_EVAL10 = yes
```
### How to run the benchmark test using VAD
First, you need to download a VAD model:
```
$ # Execute the commands below in the project root dir.
$ ./models/download-vad-model.sh silero-v5.1.2
```
Create `eval.conf` with the following content:
```
WHISPER_FLAGS = --no-prints --language en --output-txt --vad --vad-model ../../models/ggml-silero-v5.1.2.bin
```

58
tests/earnings21/eval.mk Normal file
View File

@ -0,0 +1,58 @@
PYTHON = python
WHISPER_PREFIX = ../../
WHISPER_MODEL = tiny
WHISPER_CLI = $(WHISPER_PREFIX)build/bin/whisper-cli
WHISPER_FLAGS = --no-prints --language en --output-txt
# You can create eval.conf to override the WHISPER_* variables
# defined above.
-include eval.conf
# Add `EARNINGS21_EVAL10 = yes` to eval.conf to switch to a
# 10-hour subset. See "speech-datasets/earnings21/README.md" for
# more details about this subset.
ifdef EARNINGS21_EVAL10
METADATA_CSV = speech-datasets/earnings21/eval10-file-metadata.csv
AUDIO_SRCS = speech-datasets/earnings21/media/4320211.mp3 \
speech-datasets/earnings21/media/4341191.mp3 \
speech-datasets/earnings21/media/4346818.mp3 \
speech-datasets/earnings21/media/4359971.mp3 \
speech-datasets/earnings21/media/4365024.mp3 \
speech-datasets/earnings21/media/4366522.mp3 \
speech-datasets/earnings21/media/4366893.mp3 \
speech-datasets/earnings21/media/4367535.mp3 \
speech-datasets/earnings21/media/4383161.mp3 \
speech-datasets/earnings21/media/4384964.mp3 \
speech-datasets/earnings21/media/4387332.mp3
else
METADATA_CSV = speech-datasets/earnings21/earnings21-file-metadata.csv
AUDIO_SRCS = $(sort $(wildcard speech-datasets/earnings21/media/*.mp3))
endif
TRANS_TXTS = $(addsuffix .txt, $(AUDIO_SRCS))
# We output the evaluation result to this file.
DONE = $(WHISPER_MODEL).txt
all: $(DONE)
$(DONE): $(TRANS_TXTS)
$(PYTHON) eval.py $(METADATA_CSV) > $@.tmp
mv $@.tmp $@
# Note: This task writes to a temporary file first to
# create the target file atomically.
%.mp3.txt: %.mp3
$(WHISPER_CLI) $(WHISPER_FLAGS) --model $(WHISPER_PREFIX)models/ggml-$(WHISPER_MODEL).bin --file $^ --output-file $^.tmp
mv $^.tmp.txt $^.txt
archive:
tar -czf $(WHISPER_MODEL).tar.gz --exclude="*.mp3" speech-datasets/earnings21/media $(DONE)
clean:
@rm -f $(TRANS_TXTS)
@rm -f $(DONE)
.PHONY: all archive clean

68
tests/earnings21/eval.py Normal file
View File

@ -0,0 +1,68 @@
import os
import sys
import glob
import jiwer
from normalizers import EnglishTextNormalizer
def decode_hypothesis(b):
try:
# Depending on platforms, Whisper can emit a left double quotation
# mark (0x93), which is Microsoft's extension to ASCII. See #3185
# for the background.
return b.decode('windows-1252')
except UnicodeDecodeError:
return b.decode('utf-8', errors='ignore')
def get_reference():
ref = {}
for path in glob.glob("speech-datasets/earnings21/transcripts/nlp_references/*.nlp"):
code = os.path.basename(path).replace(".nlp", "")
buf = []
with open(path) as fp:
fp.readline()
for line in fp:
token = line.split("|", maxsplit=1)[0]
buf.append(token)
ref[code] = " ".join(buf)
return ref
def get_hypothesis():
hyp = {}
for path in glob.glob("speech-datasets/earnings21/media/*.mp3.txt"):
with open(path, 'rb') as fp:
text = decode_hypothesis(fp.read()).strip()
code = os.path.basename(path).replace(".mp3.txt", "")
hyp[code] = text
return hyp
def get_codes(metadata_csv):
codes = []
with open(metadata_csv) as fp:
fp.readline()
for line in fp:
codes.append(line.split(",")[0])
return sorted(codes)
def main():
if len(sys.argv) < 2:
print("Usage: %s METADATA_CSV" % sys.argv[0], file=sys.stderr)
return 1
metadata_csv = sys.argv[1]
normalizer = EnglishTextNormalizer()
ref_orig = get_reference()
hyp_orig = get_hypothesis()
ref_clean = []
hyp_clean = []
for code in get_codes(metadata_csv):
ref_clean.append(normalizer(ref_orig[code]))
hyp_clean.append(normalizer(hyp_orig[code]))
wer = jiwer.wer(ref_clean, hyp_clean)
print(f"WER: {wer * 100:.2f}%")
if __name__ == "__main__":
main()

View File

@ -0,0 +1,25 @@
Code in this directory is adapted from OpenAI Whisper project
(https://github.com/openai/whisper) and carries the following
copyright and license.
MIT License
Copyright (c) 2022 OpenAI
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -0,0 +1,2 @@
from .basic import BasicTextNormalizer as BasicTextNormalizer
from .english import EnglishTextNormalizer as EnglishTextNormalizer

View File

@ -0,0 +1,80 @@
import re
import unicodedata
import regex
# non-ASCII letters that are not separated by "NFKD" normalization
ADDITIONAL_DIACRITICS = {
"œ": "oe",
"Œ": "OE",
"ø": "o",
"Ø": "O",
"æ": "ae",
"Æ": "AE",
"ß": "ss",
"": "SS",
"đ": "d",
"Đ": "D",
"ð": "d",
"Ð": "D",
"þ": "th",
"Þ": "th",
"ł": "l",
"Ł": "L",
}
def remove_symbols_and_diacritics(s: str, keep=""):
"""
Replace any other markers, symbols, and punctuations with a space,
and drop any diacritics (category 'Mn' and some manual mappings)
"""
return "".join(
(
c
if c in keep
else (
ADDITIONAL_DIACRITICS[c]
if c in ADDITIONAL_DIACRITICS
else (
""
if unicodedata.category(c) == "Mn"
else " " if unicodedata.category(c)[0] in "MSP" else c
)
)
)
for c in unicodedata.normalize("NFKD", s)
)
def remove_symbols(s: str):
"""
Replace any other markers, symbols, punctuations with a space, keeping diacritics
"""
return "".join(
" " if unicodedata.category(c)[0] in "MSP" else c
for c in unicodedata.normalize("NFKC", s)
)
class BasicTextNormalizer:
def __init__(self, remove_diacritics: bool = False, split_letters: bool = False):
self.clean = (
remove_symbols_and_diacritics if remove_diacritics else remove_symbols
)
self.split_letters = split_letters
def __call__(self, s: str):
s = s.lower()
s = re.sub(r"[<\[][^>\]]*[>\]]", "", s) # remove words between brackets
s = re.sub(r"\(([^)]+?)\)", "", s) # remove words between parenthesis
s = self.clean(s).lower()
if self.split_letters:
s = " ".join(regex.findall(r"\X", s, regex.U))
s = re.sub(
r"\s+", " ", s
) # replace any successive whitespace characters with a space
return s

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,550 @@
import json
import os
import re
from fractions import Fraction
from typing import Iterator, List, Match, Optional, Union
from more_itertools import windowed
from .basic import remove_symbols_and_diacritics
class EnglishNumberNormalizer:
"""
Convert any spelled-out numbers into arabic numbers, while handling:
- remove any commas
- keep the suffixes such as: `1960s`, `274th`, `32nd`, etc.
- spell out currency symbols after the number. e.g. `$20 million` -> `20000000 dollars`
- spell out `one` and `ones`
- interpret successive single-digit numbers as nominal: `one oh one` -> `101`
"""
def __init__(self):
super().__init__()
self.zeros = {"o", "oh", "zero"}
self.ones = {
name: i
for i, name in enumerate(
[
"one",
"two",
"three",
"four",
"five",
"six",
"seven",
"eight",
"nine",
"ten",
"eleven",
"twelve",
"thirteen",
"fourteen",
"fifteen",
"sixteen",
"seventeen",
"eighteen",
"nineteen",
],
start=1,
)
}
self.ones_plural = {
"sixes" if name == "six" else name + "s": (value, "s")
for name, value in self.ones.items()
}
self.ones_ordinal = {
"zeroth": (0, "th"),
"first": (1, "st"),
"second": (2, "nd"),
"third": (3, "rd"),
"fifth": (5, "th"),
"twelfth": (12, "th"),
**{
name + ("h" if name.endswith("t") else "th"): (value, "th")
for name, value in self.ones.items()
if value > 3 and value != 5 and value != 12
},
}
self.ones_suffixed = {**self.ones_plural, **self.ones_ordinal}
self.tens = {
"twenty": 20,
"thirty": 30,
"forty": 40,
"fifty": 50,
"sixty": 60,
"seventy": 70,
"eighty": 80,
"ninety": 90,
}
self.tens_plural = {
name.replace("y", "ies"): (value, "s") for name, value in self.tens.items()
}
self.tens_ordinal = {
name.replace("y", "ieth"): (value, "th")
for name, value in self.tens.items()
}
self.tens_suffixed = {**self.tens_plural, **self.tens_ordinal}
self.multipliers = {
"hundred": 100,
"thousand": 1_000,
"million": 1_000_000,
"billion": 1_000_000_000,
"trillion": 1_000_000_000_000,
"quadrillion": 1_000_000_000_000_000,
"quintillion": 1_000_000_000_000_000_000,
"sextillion": 1_000_000_000_000_000_000_000,
"septillion": 1_000_000_000_000_000_000_000_000,
"octillion": 1_000_000_000_000_000_000_000_000_000,
"nonillion": 1_000_000_000_000_000_000_000_000_000_000,
"decillion": 1_000_000_000_000_000_000_000_000_000_000_000,
}
self.multipliers_plural = {
name + "s": (value, "s") for name, value in self.multipliers.items()
}
self.multipliers_ordinal = {
name + "th": (value, "th") for name, value in self.multipliers.items()
}
self.multipliers_suffixed = {
**self.multipliers_plural,
**self.multipliers_ordinal,
}
self.decimals = {*self.ones, *self.tens, *self.zeros}
self.preceding_prefixers = {
"minus": "-",
"negative": "-",
"plus": "+",
"positive": "+",
}
self.following_prefixers = {
"pound": "£",
"pounds": "£",
"euro": "",
"euros": "",
"dollar": "$",
"dollars": "$",
"cent": "¢",
"cents": "¢",
}
self.prefixes = set(
list(self.preceding_prefixers.values())
+ list(self.following_prefixers.values())
)
self.suffixers = {
"per": {"cent": "%"},
"percent": "%",
}
self.specials = {"and", "double", "triple", "point"}
self.words = set(
[
key
for mapping in [
self.zeros,
self.ones,
self.ones_suffixed,
self.tens,
self.tens_suffixed,
self.multipliers,
self.multipliers_suffixed,
self.preceding_prefixers,
self.following_prefixers,
self.suffixers,
self.specials,
]
for key in mapping
]
)
self.literal_words = {"one", "ones"}
def process_words(self, words: List[str]) -> Iterator[str]:
prefix: Optional[str] = None
value: Optional[Union[str, int]] = None
skip = False
def to_fraction(s: str):
try:
return Fraction(s)
except ValueError:
return None
def output(result: Union[str, int]):
nonlocal prefix, value
result = str(result)
if prefix is not None:
result = prefix + result
value = None
prefix = None
return result
if len(words) == 0:
return
for prev, current, next in windowed([None] + words + [None], 3):
if skip:
skip = False
continue
next_is_numeric = next is not None and re.match(r"^\d+(\.\d+)?$", next)
has_prefix = current[0] in self.prefixes
current_without_prefix = current[1:] if has_prefix else current
if re.match(r"^\d+(\.\d+)?$", current_without_prefix):
# arabic numbers (potentially with signs and fractions)
f = to_fraction(current_without_prefix)
assert f is not None
if value is not None:
if isinstance(value, str) and value.endswith("."):
# concatenate decimals / ip address components
value = str(value) + str(current)
continue
else:
yield output(value)
prefix = current[0] if has_prefix else prefix
if f.denominator == 1:
value = f.numerator # store integers as int
else:
value = current_without_prefix
elif current not in self.words:
# non-numeric words
if value is not None:
yield output(value)
yield output(current)
elif current in self.zeros:
value = str(value or "") + "0"
elif current in self.ones:
ones = self.ones[current]
if value is None:
value = ones
elif isinstance(value, str) or prev in self.ones:
if (
prev in self.tens and ones < 10
): # replace the last zero with the digit
assert value[-1] == "0"
value = value[:-1] + str(ones)
else:
value = str(value) + str(ones)
elif ones < 10:
if value % 10 == 0:
value += ones
else:
value = str(value) + str(ones)
else: # eleven to nineteen
if value % 100 == 0:
value += ones
else:
value = str(value) + str(ones)
elif current in self.ones_suffixed:
# ordinal or cardinal; yield the number right away
ones, suffix = self.ones_suffixed[current]
if value is None:
yield output(str(ones) + suffix)
elif isinstance(value, str) or prev in self.ones:
if prev in self.tens and ones < 10:
assert value[-1] == "0"
yield output(value[:-1] + str(ones) + suffix)
else:
yield output(str(value) + str(ones) + suffix)
elif ones < 10:
if value % 10 == 0:
yield output(str(value + ones) + suffix)
else:
yield output(str(value) + str(ones) + suffix)
else: # eleven to nineteen
if value % 100 == 0:
yield output(str(value + ones) + suffix)
else:
yield output(str(value) + str(ones) + suffix)
value = None
elif current in self.tens:
tens = self.tens[current]
if value is None:
value = tens
elif isinstance(value, str):
value = str(value) + str(tens)
else:
if value % 100 == 0:
value += tens
else:
value = str(value) + str(tens)
elif current in self.tens_suffixed:
# ordinal or cardinal; yield the number right away
tens, suffix = self.tens_suffixed[current]
if value is None:
yield output(str(tens) + suffix)
elif isinstance(value, str):
yield output(str(value) + str(tens) + suffix)
else:
if value % 100 == 0:
yield output(str(value + tens) + suffix)
else:
yield output(str(value) + str(tens) + suffix)
elif current in self.multipliers:
multiplier = self.multipliers[current]
if value is None:
value = multiplier
elif isinstance(value, str) or value == 0:
f = to_fraction(value)
p = f * multiplier if f is not None else None
if f is not None and p.denominator == 1:
value = p.numerator
else:
yield output(value)
value = multiplier
else:
before = value // 1000 * 1000
residual = value % 1000
value = before + residual * multiplier
elif current in self.multipliers_suffixed:
multiplier, suffix = self.multipliers_suffixed[current]
if value is None:
yield output(str(multiplier) + suffix)
elif isinstance(value, str):
f = to_fraction(value)
p = f * multiplier if f is not None else None
if f is not None and p.denominator == 1:
yield output(str(p.numerator) + suffix)
else:
yield output(value)
yield output(str(multiplier) + suffix)
else: # int
before = value // 1000 * 1000
residual = value % 1000
value = before + residual * multiplier
yield output(str(value) + suffix)
value = None
elif current in self.preceding_prefixers:
# apply prefix (positive, minus, etc.) if it precedes a number
if value is not None:
yield output(value)
if next in self.words or next_is_numeric:
prefix = self.preceding_prefixers[current]
else:
yield output(current)
elif current in self.following_prefixers:
# apply prefix (dollars, cents, etc.) only after a number
if value is not None:
prefix = self.following_prefixers[current]
yield output(value)
else:
yield output(current)
elif current in self.suffixers:
# apply suffix symbols (percent -> '%')
if value is not None:
suffix = self.suffixers[current]
if isinstance(suffix, dict):
if next in suffix:
yield output(str(value) + suffix[next])
skip = True
else:
yield output(value)
yield output(current)
else:
yield output(str(value) + suffix)
else:
yield output(current)
elif current in self.specials:
if next not in self.words and not next_is_numeric:
# apply special handling only if the next word can be numeric
if value is not None:
yield output(value)
yield output(current)
elif current == "and":
# ignore "and" after hundreds, thousands, etc.
if prev not in self.multipliers:
if value is not None:
yield output(value)
yield output(current)
elif current == "double" or current == "triple":
if next in self.ones or next in self.zeros:
repeats = 2 if current == "double" else 3
ones = self.ones.get(next, 0)
value = str(value or "") + str(ones) * repeats
skip = True
else:
if value is not None:
yield output(value)
yield output(current)
elif current == "point":
if next in self.decimals or next_is_numeric:
value = str(value or "") + "."
else:
# should all have been covered at this point
raise ValueError(f"Unexpected token: {current}")
else:
# all should have been covered at this point
raise ValueError(f"Unexpected token: {current}")
if value is not None:
yield output(value)
def preprocess(self, s: str):
# replace "<number> and a half" with "<number> point five"
results = []
segments = re.split(r"\band\s+a\s+half\b", s)
for i, segment in enumerate(segments):
if len(segment.strip()) == 0:
continue
if i == len(segments) - 1:
results.append(segment)
else:
results.append(segment)
last_word = segment.rsplit(maxsplit=2)[-1]
if last_word in self.decimals or last_word in self.multipliers:
results.append("point five")
else:
results.append("and a half")
s = " ".join(results)
# put a space at number/letter boundary
s = re.sub(r"([a-z])([0-9])", r"\1 \2", s)
s = re.sub(r"([0-9])([a-z])", r"\1 \2", s)
# but remove spaces which could be a suffix
s = re.sub(r"([0-9])\s+(st|nd|rd|th|s)\b", r"\1\2", s)
return s
def postprocess(self, s: str):
def combine_cents(m: Match):
try:
currency = m.group(1)
integer = m.group(2)
cents = int(m.group(3))
return f"{currency}{integer}.{cents:02d}"
except ValueError:
return m.string
def extract_cents(m: Match):
try:
return f"¢{int(m.group(1))}"
except ValueError:
return m.string
# apply currency postprocessing; "$2 and ¢7" -> "$2.07"
s = re.sub(r"([€£$])([0-9]+) (?:and )?¢([0-9]{1,2})\b", combine_cents, s)
s = re.sub(r"[€£$]0.([0-9]{1,2})\b", extract_cents, s)
# write "one(s)" instead of "1(s)", just for the readability
s = re.sub(r"\b1(s?)\b", r"one\1", s)
return s
def __call__(self, s: str):
s = self.preprocess(s)
s = " ".join(word for word in self.process_words(s.split()) if word is not None)
s = self.postprocess(s)
return s
class EnglishSpellingNormalizer:
"""
Applies British-American spelling mappings as listed in [1].
[1] https://www.tysto.com/uk-us-spelling-list.html
"""
def __init__(self):
mapping_path = os.path.join(os.path.dirname(__file__), "english.json")
self.mapping = json.load(open(mapping_path))
def __call__(self, s: str):
return " ".join(self.mapping.get(word, word) for word in s.split())
class EnglishTextNormalizer:
def __init__(self):
self.ignore_patterns = r"\b(hmm|mm|mhm|mmm|uh|um)\b"
self.replacers = {
# common contractions
r"\bwon't\b": "will not",
r"\bcan't\b": "can not",
r"\blet's\b": "let us",
r"\bain't\b": "aint",
r"\by'all\b": "you all",
r"\bwanna\b": "want to",
r"\bgotta\b": "got to",
r"\bgonna\b": "going to",
r"\bi'ma\b": "i am going to",
r"\bimma\b": "i am going to",
r"\bwoulda\b": "would have",
r"\bcoulda\b": "could have",
r"\bshoulda\b": "should have",
r"\bma'am\b": "madam",
# contractions in titles/prefixes
r"\bmr\b": "mister ",
r"\bmrs\b": "missus ",
r"\bst\b": "saint ",
r"\bdr\b": "doctor ",
r"\bprof\b": "professor ",
r"\bcapt\b": "captain ",
r"\bgov\b": "governor ",
r"\bald\b": "alderman ",
r"\bgen\b": "general ",
r"\bsen\b": "senator ",
r"\brep\b": "representative ",
r"\bpres\b": "president ",
r"\brev\b": "reverend ",
r"\bhon\b": "honorable ",
r"\basst\b": "assistant ",
r"\bassoc\b": "associate ",
r"\blt\b": "lieutenant ",
r"\bcol\b": "colonel ",
r"\bjr\b": "junior ",
r"\bsr\b": "senior ",
r"\besq\b": "esquire ",
# prefect tenses, ideally it should be any past participles, but it's harder..
r"'d been\b": " had been",
r"'s been\b": " has been",
r"'d gone\b": " had gone",
r"'s gone\b": " has gone",
r"'d done\b": " had done", # "'s done" is ambiguous
r"'s got\b": " has got",
# general contractions
r"n't\b": " not",
r"'re\b": " are",
r"'s\b": " is",
r"'d\b": " would",
r"'ll\b": " will",
r"'t\b": " not",
r"'ve\b": " have",
r"'m\b": " am",
}
self.standardize_numbers = EnglishNumberNormalizer()
self.standardize_spellings = EnglishSpellingNormalizer()
def __call__(self, s: str):
s = s.lower()
s = re.sub(r"[<\[][^>\]]*[>\]]", "", s) # remove words between brackets
s = re.sub(r"\(([^)]+?)\)", "", s) # remove words between parenthesis
s = re.sub(self.ignore_patterns, "", s)
s = re.sub(r"\s+'", "'", s) # when there's a space before an apostrophe
for pattern, replacement in self.replacers.items():
s = re.sub(pattern, replacement, s)
s = re.sub(r"(\d),(\d)", r"\1\2", s) # remove commas between digits
s = re.sub(r"\.([^0-9]|$)", r" \1", s) # remove periods not followed by numbers
s = remove_symbols_and_diacritics(s, keep=".%$¢€£") # keep numeric symbols
s = self.standardize_numbers(s)
s = self.standardize_spellings(s)
# now remove prefix/suffix symbols that are not preceded/followed by numbers
s = re.sub(r"[.$¢€£]([^0-9])", r" \1", s)
s = re.sub(r"([^0-9])%", r"\1 ", s)
s = re.sub(r"\s+", " ", s) # replace any successive whitespaces with a space
return s

View File

@ -0,0 +1,6 @@
# This is the minimal set of dependencies we need to compute
# WER score. Read Section 3.2. of the original paper
# (https://arxiv.org/abs/2212.04356) for more contexts.
jiwer
regex
more-itertools