mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-08-10 10:48:07 +02:00
ggml : support bcast ggml_soft_max_ext, ggml_flash_attn_ext (llama/14435)
This commit is contained in:
@ -360,13 +360,6 @@ write_basic_package_version_file(
|
||||
VERSION ${GGML_INSTALL_VERSION}
|
||||
COMPATIBILITY SameMajorVersion)
|
||||
|
||||
target_compile_definitions(ggml-base PRIVATE
|
||||
GGML_VERSION="${GGML_INSTALL_VERSION}"
|
||||
GGML_COMMIT="${GGML_BUILD_COMMIT}"
|
||||
)
|
||||
message(STATUS "ggml version: ${GGML_INSTALL_VERSION}")
|
||||
message(STATUS "ggml commit: ${GGML_BUILD_COMMIT}")
|
||||
|
||||
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/ggml-config.cmake
|
||||
${CMAKE_CURRENT_BINARY_DIR}/ggml-version.cmake
|
||||
DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/ggml)
|
||||
|
@ -646,9 +646,6 @@ extern "C" {
|
||||
|
||||
// misc
|
||||
|
||||
GGML_API const char * ggml_version(void);
|
||||
GGML_API const char * ggml_commit(void);
|
||||
|
||||
GGML_API void ggml_time_init(void); // call this once at the beginning of the program
|
||||
GGML_API int64_t ggml_time_ms(void);
|
||||
GGML_API int64_t ggml_time_us(void);
|
||||
@ -1513,8 +1510,14 @@ extern "C" {
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
// a [ne0, ne01, ne02, ne03]
|
||||
// mask [ne0, ne11, ne12, ne13] | ne11 >= ne01, F16 or F32, optional
|
||||
//
|
||||
// broadcast:
|
||||
// ne02 % ne12 == 0
|
||||
// ne03 % ne13 == 0
|
||||
//
|
||||
// fused soft_max(a*scale + mask*(ALiBi slope))
|
||||
// mask is optional
|
||||
// max_bias = 0.0f for no ALiBi
|
||||
GGML_API struct ggml_tensor * ggml_soft_max_ext(
|
||||
struct ggml_context * ctx,
|
||||
@ -1977,11 +1980,16 @@ extern "C" {
|
||||
|
||||
#define GGML_KQ_MASK_PAD 64
|
||||
|
||||
// q: [n_embd_k, n_batch, n_head, 1]
|
||||
// k: [n_embd_k, n_kv, n_head_kv, 1]
|
||||
// v: [n_embd_v, n_kv, n_head_kv, 1] !! not transposed !!
|
||||
// mask: [n_kv, n_batch_pad, 1, 1] !! n_batch_pad = GGML_PAD(n_batch, GGML_KQ_MASK_PAD) !!
|
||||
// res: [n_embd_v, n_head, n_batch, 1] !! permuted !!
|
||||
// q: [n_embd_k, n_batch, n_head, ne3]
|
||||
// k: [n_embd_k, n_kv, n_head_kv, ne3]
|
||||
// v: [n_embd_v, n_kv, n_head_kv, ne3] !! not transposed !!
|
||||
// mask: [n_kv, n_batch_pad, ne32, 1] !! n_batch_pad = GGML_PAD(n_batch, GGML_KQ_MASK_PAD) !!
|
||||
// res: [n_embd_v, n_head, n_batch, ne3] !! permuted !!
|
||||
//
|
||||
// broadcast:
|
||||
// n_head % n_head_kv == 0
|
||||
// ne3 % ne32 == 0
|
||||
//
|
||||
GGML_API struct ggml_tensor * ggml_flash_attn_ext(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * q,
|
||||
|
@ -2187,7 +2187,6 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
|
||||
case GGML_OP_SQRT:
|
||||
case GGML_OP_CLAMP:
|
||||
case GGML_OP_DIAG_MASK_INF:
|
||||
case GGML_OP_SOFT_MAX:
|
||||
case GGML_OP_SUM_ROWS:
|
||||
case GGML_OP_ARGSORT:
|
||||
case GGML_OP_ACC:
|
||||
@ -2205,6 +2204,10 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
|
||||
case GGML_OP_PAD_REFLECT_1D:
|
||||
case GGML_OP_COUNT_EQUAL:
|
||||
return true;
|
||||
case GGML_OP_SOFT_MAX:
|
||||
// TODO: support broadcast
|
||||
// ref: https://github.com/ggml-org/llama.cpp/pull/14435
|
||||
return !op->src[1] || (op->src[1]->ne[2] == 1 && op->src[1]->ne[3] == 1);
|
||||
case GGML_OP_FLASH_ATTN_EXT:{
|
||||
// derived from [ggml-cuda.cu]
|
||||
if(op->src[1]->type != GGML_TYPE_F16 || op->src[2]->type != GGML_TYPE_F16){
|
||||
@ -2227,6 +2230,8 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
|
||||
// DeepSeek MLA
|
||||
return false;
|
||||
}
|
||||
// TODO: support broadcast
|
||||
// ref: https://github.com/ggml-org/llama.cpp/pull/14435
|
||||
if (op->src[0]->ne[3] != 1) {
|
||||
return false;
|
||||
}
|
||||
|
@ -5232,14 +5232,17 @@ static void ggml_compute_forward_soft_max_f32(
|
||||
memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
|
||||
memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
|
||||
|
||||
// TODO: handle transposed/permuted matrices
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
GGML_TENSOR_UNARY_OP_LOCALS
|
||||
|
||||
//const int64_t ne11 = src1 ? src1->ne[1] : 1;
|
||||
const int64_t nb11 = src1 ? src1->nb[1] : 1;
|
||||
const int64_t nb12 = src1 ? src1->nb[2] : 1;
|
||||
const int64_t nb13 = src1 ? src1->nb[3] : 1;
|
||||
|
||||
const int64_t ne12 = src1 ? src1->ne[2] : 1;
|
||||
const int64_t ne13 = src1 ? src1->ne[3] : 1;
|
||||
|
||||
// TODO: is this supposed to be ceil instead of floor?
|
||||
// https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
|
||||
@ -5249,68 +5252,66 @@ static void ggml_compute_forward_soft_max_f32(
|
||||
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
||||
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
||||
|
||||
const int nc = src0->ne[0];
|
||||
const int nr = ggml_nrows(src0);
|
||||
|
||||
// rows per thread
|
||||
const int dr = (nr + nth - 1)/nth;
|
||||
|
||||
// row range for this thread
|
||||
const int ir0 = dr*ith;
|
||||
const int ir1 = MIN(ir0 + dr, nr);
|
||||
|
||||
float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
|
||||
float * wp = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
|
||||
|
||||
const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
|
||||
|
||||
for (int i1 = ir0; i1 < ir1; i1++) {
|
||||
// ALiBi
|
||||
const uint32_t h = (i1/ne01)%ne02; // head
|
||||
const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
|
||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
|
||||
const int64_t i11 = i01;
|
||||
const int64_t i12 = i02%ne12;
|
||||
const int64_t i13 = i03%ne13;
|
||||
|
||||
float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
|
||||
float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
|
||||
// ALiBi
|
||||
const uint32_t h = i02; // head
|
||||
const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
|
||||
|
||||
// broadcast the mask across rows
|
||||
ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
|
||||
float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
|
||||
float * sp = (float *)((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
|
||||
float * dp = (float *)((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
|
||||
|
||||
ggml_vec_cpy_f32 (nc, wp, sp);
|
||||
ggml_vec_scale_f32(nc, wp, scale);
|
||||
if (mp_f32) {
|
||||
if (use_f16) {
|
||||
for (int i = 0; i < nc; ++i) {
|
||||
wp[i] += slope*GGML_CPU_FP16_TO_FP32(mp_f16[i]);
|
||||
// broadcast the mask across rows
|
||||
ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13) : NULL;
|
||||
float * mp_f32 = src1 ? (float *)((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13) : NULL;
|
||||
|
||||
ggml_vec_cpy_f32 (ne00, wp, sp);
|
||||
ggml_vec_scale_f32(ne00, wp, scale);
|
||||
if (mp_f32) {
|
||||
if (use_f16) {
|
||||
for (int i = 0; i < ne00; ++i) {
|
||||
wp[i] += slope*GGML_CPU_FP16_TO_FP32(mp_f16[i]);
|
||||
}
|
||||
} else {
|
||||
for (int i = 0; i < ne00; ++i) {
|
||||
wp[i] += slope*mp_f32[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (int i = 0; i < nc; ++i) {
|
||||
wp[i] += slope*mp_f32[i];
|
||||
|
||||
#ifndef NDEBUG
|
||||
for (int i = 0; i < ne00; ++i) {
|
||||
//printf("p[%d] = %f\n", i, p[i]);
|
||||
assert(!isnan(wp[i]));
|
||||
}
|
||||
#endif
|
||||
|
||||
float max = -INFINITY;
|
||||
ggml_vec_max_f32(ne00, &max, wp);
|
||||
|
||||
ggml_float sum = ggml_vec_soft_max_f32(ne00, dp, wp, max);
|
||||
assert(sum > 0.0);
|
||||
|
||||
sum = 1.0/sum;
|
||||
ggml_vec_scale_f32(ne00, dp, sum);
|
||||
|
||||
#ifndef NDEBUG
|
||||
for (int i = 0; i < ne00; ++i) {
|
||||
assert(!isnan(dp[i]));
|
||||
assert(!isinf(dp[i]));
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
#ifndef NDEBUG
|
||||
for (int i = 0; i < nc; ++i) {
|
||||
//printf("p[%d] = %f\n", i, p[i]);
|
||||
assert(!isnan(wp[i]));
|
||||
}
|
||||
#endif
|
||||
|
||||
float max = -INFINITY;
|
||||
ggml_vec_max_f32(nc, &max, wp);
|
||||
|
||||
ggml_float sum = ggml_vec_soft_max_f32(nc, dp, wp, max);
|
||||
assert(sum > 0.0);
|
||||
|
||||
sum = 1.0/sum;
|
||||
ggml_vec_scale_f32(nc, dp, sum);
|
||||
|
||||
#ifndef NDEBUG
|
||||
for (int i = 0; i < nc; ++i) {
|
||||
assert(!isnan(dp[i]));
|
||||
assert(!isinf(dp[i]));
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
@ -7766,7 +7767,7 @@ static void ggml_compute_forward_flash_attn_ext_f16(
|
||||
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
||||
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
||||
|
||||
ggml_type const k_vec_dot_type = ggml_get_type_traits_cpu(k->type)->vec_dot_type;
|
||||
ggml_type const k_vec_dot_type = ggml_get_type_traits_cpu(k->type)->vec_dot_type;
|
||||
ggml_from_float_t const q_to_vec_dot = ggml_get_type_traits_cpu(k_vec_dot_type)->from_float;
|
||||
ggml_vec_dot_t const kq_vec_dot = ggml_get_type_traits_cpu(k->type)->vec_dot;
|
||||
ggml_to_float_t const v_to_float = ggml_get_type_traits(v->type)->to_float;
|
||||
@ -7798,7 +7799,7 @@ static void ggml_compute_forward_flash_attn_ext_f16(
|
||||
memset(VKQ32, 0, DV*sizeof(float));
|
||||
}
|
||||
|
||||
const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
|
||||
const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1] + (iq3%mask->ne[2])*mask->nb[2]) : NULL;
|
||||
|
||||
// k indices
|
||||
const int ik3 = iq3 / rk3;
|
||||
|
@ -3327,8 +3327,15 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
||||
case GGML_OP_CONT:
|
||||
return op->src[0]->type != GGML_TYPE_BF16;
|
||||
case GGML_OP_DIAG_MASK_INF:
|
||||
case GGML_OP_SOFT_MAX:
|
||||
return true;
|
||||
case GGML_OP_SOFT_MAX:
|
||||
// TODO: support batching
|
||||
if (op->src[0]->ne[3] != 1) {
|
||||
return false;
|
||||
}
|
||||
// TODO: support broadcast
|
||||
// ref: https://github.com/ggml-org/llama.cpp/pull/14435
|
||||
return !op->src[1] || (op->src[1]->ne[2] == 1 && op->src[1]->ne[3] == 1);
|
||||
case GGML_OP_SOFT_MAX_BACK: {
|
||||
float max_bias = 0.0f;
|
||||
memcpy(&max_bias, (const float *) op->op_params + 1, sizeof(float));
|
||||
@ -3375,6 +3382,8 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
||||
if (op->src[0]->ne[0] == 192) {
|
||||
return false;
|
||||
}
|
||||
// TODO: support broadcast
|
||||
// ref: https://github.com/ggml-org/llama.cpp/pull/14435
|
||||
if (op->src[0]->ne[3] != 1) {
|
||||
return false;
|
||||
}
|
||||
|
@ -229,7 +229,9 @@ typedef struct {
|
||||
uint64_t nb21;
|
||||
uint64_t nb22;
|
||||
uint64_t nb23;
|
||||
int32_t ne32;
|
||||
uint64_t nb31;
|
||||
uint64_t nb32;
|
||||
int32_t ne1;
|
||||
int32_t ne2;
|
||||
float scale;
|
||||
@ -461,9 +463,21 @@ typedef struct {
|
||||
} ggml_metal_kargs_sum_rows;
|
||||
|
||||
typedef struct {
|
||||
int64_t ne00;
|
||||
int64_t ne01;
|
||||
int64_t ne02;
|
||||
int32_t ne00;
|
||||
int32_t ne01;
|
||||
int32_t ne02;
|
||||
uint64_t nb01;
|
||||
uint64_t nb02;
|
||||
uint64_t nb03;
|
||||
int32_t ne11;
|
||||
int32_t ne12;
|
||||
int32_t ne13;
|
||||
uint64_t nb11;
|
||||
uint64_t nb12;
|
||||
uint64_t nb13;
|
||||
uint64_t nb1;
|
||||
uint64_t nb2;
|
||||
uint64_t nb3;
|
||||
float scale;
|
||||
float max_bias;
|
||||
float m0;
|
||||
|
@ -1725,7 +1725,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
|
||||
case GGML_OP_MEAN:
|
||||
case GGML_OP_SOFT_MAX:
|
||||
case GGML_OP_GROUP_NORM:
|
||||
return has_simdgroup_reduction && ggml_is_contiguous(op->src[0]);
|
||||
return has_simdgroup_reduction && ggml_is_contiguous_rows(op->src[0]);
|
||||
case GGML_OP_RMS_NORM:
|
||||
case GGML_OP_L2_NORM:
|
||||
return has_simdgroup_reduction && (op->ne[0] % 4 == 0 && ggml_is_contiguous_1(op->src[0]));
|
||||
@ -2644,10 +2644,7 @@ static bool ggml_metal_encode_node(
|
||||
memcpy(&scale, ((const int32_t *) dst->op_params) + 0, sizeof(scale));
|
||||
memcpy(&max_bias, ((const int32_t *) dst->op_params) + 1, sizeof(max_bias));
|
||||
|
||||
const int64_t nrows_x = ggml_nrows(src0);
|
||||
const int64_t nrows_y = src0->ne[1];
|
||||
|
||||
const uint32_t n_head = nrows_x/nrows_y;
|
||||
const uint32_t n_head = src0->ne[2];
|
||||
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
|
||||
|
||||
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
||||
@ -2707,6 +2704,18 @@ static bool ggml_metal_encode_node(
|
||||
/*.ne00 =*/ ne00,
|
||||
/*.ne01 =*/ ne01,
|
||||
/*.ne02 =*/ ne02,
|
||||
/*.nb01 =*/ nb01,
|
||||
/*.nb02 =*/ nb02,
|
||||
/*.nb03 =*/ nb03,
|
||||
/*.ne11 =*/ ne11,
|
||||
/*.ne12 =*/ ne12,
|
||||
/*.ne13 =*/ ne13,
|
||||
/*.nb11 =*/ nb11,
|
||||
/*.nb12 =*/ nb12,
|
||||
/*.nb13 =*/ nb13,
|
||||
/*.nb1 =*/ nb1,
|
||||
/*.nb2 =*/ nb2,
|
||||
/*.nb3 =*/ nb3,
|
||||
/*.scale =*/ scale,
|
||||
/*.max_bias =*/ max_bias,
|
||||
/*.m0 =*/ m0,
|
||||
@ -2726,7 +2735,7 @@ static bool ggml_metal_encode_node(
|
||||
|
||||
[encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01*ne02*ne03, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
||||
} break;
|
||||
case GGML_OP_DIAG_MASK_INF:
|
||||
{
|
||||
@ -4979,7 +4988,9 @@ static bool ggml_metal_encode_node(
|
||||
/*.nb21 =*/ nb21,
|
||||
/*.nb22 =*/ nb22,
|
||||
/*.nb23 =*/ nb23,
|
||||
/*.ne32 =*/ ne32,
|
||||
/*.nb31 =*/ nb31,
|
||||
/*.nb32 =*/ nb32,
|
||||
/*.ne1 =*/ ne1,
|
||||
/*.ne2 =*/ ne2,
|
||||
/*.scale =*/ scale,
|
||||
|
@ -1320,24 +1320,28 @@ kernel void kernel_soft_max(
|
||||
device char * dst,
|
||||
constant ggml_metal_kargs_soft_max & args,
|
||||
threadgroup float * buf [[threadgroup(0)]],
|
||||
uint tgpig[[threadgroup_position_in_grid]],
|
||||
uint tpitg[[thread_position_in_threadgroup]],
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint3 tpitg[[thread_position_in_threadgroup]],
|
||||
uint sgitg[[simdgroup_index_in_threadgroup]],
|
||||
uint tiisg[[thread_index_in_simdgroup]],
|
||||
uint ntg[[threads_per_threadgroup]]) {
|
||||
const int64_t i03 = (tgpig) / (args.ne02*args.ne01);
|
||||
const int64_t i02 = (tgpig - i03*args.ne02*args.ne01) / args.ne01;
|
||||
const int64_t i01 = (tgpig - i03*args.ne02*args.ne01 - i02*args.ne01);
|
||||
uint3 tptg[[threads_per_threadgroup]]) {
|
||||
const int32_t i03 = tgpig.z;
|
||||
const int32_t i02 = tgpig.y;
|
||||
const int32_t i01 = tgpig.x;
|
||||
|
||||
device const float * psrc0 = (device const float *) src0 + (i03*args.ne02*args.ne01*args.ne00 + i02*args.ne01*args.ne00 + i01*args.ne00);
|
||||
device const T * pmask = src1 != src0 ? (device const T *) src1 + i01*args.ne00 : nullptr;
|
||||
device float * pdst = (device float *) dst + (i03*args.ne02*args.ne01*args.ne00 + i02*args.ne01*args.ne00 + i01*args.ne00);
|
||||
const int32_t i13 = i03%args.ne13;
|
||||
const int32_t i12 = i02%args.ne12;
|
||||
const int32_t i11 = i01;
|
||||
|
||||
device const float * psrc0 = (device const float *) (src0 + i01*args.nb01 + i02*args.nb02 + i03*args.nb03);
|
||||
device const T * pmask = src1 != src0 ? (device const T * ) (src1 + i11*args.nb11 + i12*args.nb12 + i13*args.nb13) : nullptr;
|
||||
device float * pdst = (device float *) (dst + i01*args.nb1 + i02*args.nb2 + i03*args.nb3);
|
||||
|
||||
float slope = 1.0f;
|
||||
|
||||
// ALiBi
|
||||
if (args.max_bias > 0.0f) {
|
||||
const int64_t h = i02;
|
||||
const int32_t h = i02;
|
||||
|
||||
const float base = h < args.n_head_log2 ? args.m0 : args.m1;
|
||||
const int exp = h < args.n_head_log2 ? h + 1 : 2*(h - args.n_head_log2) + 1;
|
||||
@ -1348,13 +1352,13 @@ kernel void kernel_soft_max(
|
||||
// parallel max
|
||||
float lmax = -INFINITY;
|
||||
|
||||
for (int i00 = tpitg; i00 < args.ne00; i00 += ntg) {
|
||||
for (int i00 = tpitg.x; i00 < args.ne00; i00 += tptg.x) {
|
||||
lmax = MAX(lmax, psrc0[i00]*args.scale + (pmask ? slope*pmask[i00] : 0.0f));
|
||||
}
|
||||
|
||||
// find the max value in the block
|
||||
float max_val = simd_max(lmax);
|
||||
if (ntg > N_SIMDWIDTH) {
|
||||
if (tptg.x > N_SIMDWIDTH) {
|
||||
if (sgitg == 0) {
|
||||
buf[tiisg] = -INFINITY;
|
||||
}
|
||||
@ -1373,7 +1377,7 @@ kernel void kernel_soft_max(
|
||||
|
||||
// parallel sum
|
||||
float lsum = 0.0f;
|
||||
for (int i00 = tpitg; i00 < args.ne00; i00 += ntg) {
|
||||
for (int i00 = tpitg.x; i00 < args.ne00; i00 += tptg.x) {
|
||||
const float exp_psrc0 = exp((psrc0[i00]*args.scale + (pmask ? slope*pmask[i00] : 0.0f)) - max_val);
|
||||
lsum += exp_psrc0;
|
||||
pdst[i00] = exp_psrc0;
|
||||
@ -1385,7 +1389,7 @@ kernel void kernel_soft_max(
|
||||
|
||||
float sum = simd_sum(lsum);
|
||||
|
||||
if (ntg > N_SIMDWIDTH) {
|
||||
if (tptg.x > N_SIMDWIDTH) {
|
||||
if (sgitg == 0) {
|
||||
buf[tiisg] = 0.0f;
|
||||
}
|
||||
@ -1404,7 +1408,7 @@ kernel void kernel_soft_max(
|
||||
|
||||
const float inv_sum = 1.0f/sum;
|
||||
|
||||
for (int i00 = tpitg; i00 < args.ne00; i00 += ntg) {
|
||||
for (int i00 = tpitg.x; i00 < args.ne00; i00 += tptg.x) {
|
||||
pdst[i00] *= inv_sum;
|
||||
}
|
||||
}
|
||||
@ -1416,23 +1420,27 @@ kernel void kernel_soft_max_4(
|
||||
device char * dst,
|
||||
constant ggml_metal_kargs_soft_max & args,
|
||||
threadgroup float * buf [[threadgroup(0)]],
|
||||
uint tgpig[[threadgroup_position_in_grid]],
|
||||
uint tpitg[[thread_position_in_threadgroup]],
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint3 tpitg[[thread_position_in_threadgroup]],
|
||||
uint sgitg[[simdgroup_index_in_threadgroup]],
|
||||
uint tiisg[[thread_index_in_simdgroup]],
|
||||
uint ntg[[threads_per_threadgroup]]) {
|
||||
const int64_t i03 = (tgpig) / (args.ne02*args.ne01);
|
||||
const int64_t i02 = (tgpig - i03*args.ne02*args.ne01) / args.ne01;
|
||||
const int64_t i01 = (tgpig - i03*args.ne02*args.ne01 - i02*args.ne01);
|
||||
uint3 tptg[[threads_per_threadgroup]]) {
|
||||
const int32_t i03 = tgpig.z;
|
||||
const int32_t i02 = tgpig.y;
|
||||
const int32_t i01 = tgpig.x;
|
||||
|
||||
device const float4 * psrc4 = (device const float4 *) src0 + (i03*args.ne02*args.ne01*args.ne00 + i02*args.ne01*args.ne00 + i01*args.ne00)/4;
|
||||
device const T * pmask = src1 != src0 ? (device const T *) src1 + i01*args.ne00/4 : nullptr;
|
||||
device float4 * pdst4 = (device float4 *) dst + (i03*args.ne02*args.ne01*args.ne00 + i02*args.ne01*args.ne00 + i01*args.ne00)/4;
|
||||
const int32_t i13 = i03%args.ne13;
|
||||
const int32_t i12 = i02%args.ne12;
|
||||
const int32_t i11 = i01;
|
||||
|
||||
device const float4 * psrc4 = (device const float4 *) (src0 + i01*args.nb01 + i02*args.nb02 + i03*args.nb03);
|
||||
device const T * pmask = src1 != src0 ? (device const T * ) (src1 + i11*args.nb11 + i12*args.nb12 + i13*args.nb13) : nullptr;
|
||||
device float4 * pdst4 = (device float4 *) (dst + i01*args.nb1 + i02*args.nb2 + i03*args.nb3);
|
||||
|
||||
float slope = 1.0f;
|
||||
|
||||
if (args.max_bias > 0.0f) {
|
||||
const int64_t h = i02;
|
||||
const int32_t h = i02;
|
||||
|
||||
const float base = h < args.n_head_log2 ? args.m0 : args.m1;
|
||||
const int exp = h < args.n_head_log2 ? h + 1 : 2*(h - args.n_head_log2) + 1;
|
||||
@ -1443,14 +1451,14 @@ kernel void kernel_soft_max_4(
|
||||
// parallel max
|
||||
float4 lmax4 = -INFINITY;
|
||||
|
||||
for (int i00 = tpitg; i00 < args.ne00/4; i00 += ntg) {
|
||||
for (int i00 = tpitg.x; i00 < args.ne00/4; i00 += tptg.x) {
|
||||
lmax4 = fmax(lmax4, psrc4[i00]*args.scale + (float4)((pmask ? slope*pmask[i00] : 0.0f)));
|
||||
}
|
||||
|
||||
const float lmax = MAX(MAX(lmax4[0], lmax4[1]), MAX(lmax4[2], lmax4[3]));
|
||||
|
||||
float max_val = simd_max(lmax);
|
||||
if (ntg > N_SIMDWIDTH) {
|
||||
if (tptg.x > N_SIMDWIDTH) {
|
||||
if (sgitg == 0) {
|
||||
buf[tiisg] = -INFINITY;
|
||||
}
|
||||
@ -1469,7 +1477,7 @@ kernel void kernel_soft_max_4(
|
||||
|
||||
// parallel sum
|
||||
float4 lsum4 = 0.0f;
|
||||
for (int i00 = tpitg; i00 < args.ne00/4; i00 += ntg) {
|
||||
for (int i00 = tpitg.x; i00 < args.ne00/4; i00 += tptg.x) {
|
||||
const float4 exp_psrc4 = exp((psrc4[i00]*args.scale + (float4)((pmask ? slope*pmask[i00] : 0.0f))) - max_val);
|
||||
lsum4 += exp_psrc4;
|
||||
pdst4[i00] = exp_psrc4;
|
||||
@ -1483,7 +1491,7 @@ kernel void kernel_soft_max_4(
|
||||
|
||||
float sum = simd_sum(lsum);
|
||||
|
||||
if (ntg > N_SIMDWIDTH) {
|
||||
if (tptg.x > N_SIMDWIDTH) {
|
||||
if (sgitg == 0) {
|
||||
buf[tiisg] = 0.0f;
|
||||
}
|
||||
@ -1502,7 +1510,7 @@ kernel void kernel_soft_max_4(
|
||||
|
||||
const float inv_sum = 1.0f/sum;
|
||||
|
||||
for (int i00 = tpitg; i00 < args.ne00/4; i00 += ntg) {
|
||||
for (int i00 = tpitg.x; i00 < args.ne00/4; i00 += tptg.x) {
|
||||
pdst4[i00] *= inv_sum;
|
||||
}
|
||||
}
|
||||
@ -3776,7 +3784,7 @@ kernel void kernel_flash_attn_ext(
|
||||
// load the mask in shared memory
|
||||
#pragma unroll(Q)
|
||||
for (short j = 0; j < Q; ++j) {
|
||||
device const half * pm = (device const half *) ((device const char *) mask + (iq1 + j)*args.nb31);
|
||||
device const half * pm = (device const half *) ((device const char *) mask + (iq1 + j)*args.nb31 + (iq3%args.ne32)*args.nb32);
|
||||
|
||||
const float m = pm[ic + tiisg];
|
||||
|
||||
@ -4262,7 +4270,7 @@ kernel void kernel_flash_attn_ext_vec(
|
||||
const bool has_mask = mask != q;
|
||||
|
||||
// pointer to the mask
|
||||
device const half * pm = (device const half *) (mask + iq1*args.nb31);
|
||||
device const half * pm = (device const half *) (mask + iq1*args.nb31 + (iq3%args.ne32)*args.nb32);
|
||||
|
||||
float slope = 1.0f;
|
||||
|
||||
|
@ -4395,9 +4395,15 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
|
||||
return true;
|
||||
case GGML_OP_CONT:
|
||||
return op->src[0]->type != GGML_TYPE_BF16;
|
||||
case GGML_OP_DIAG_MASK_INF:
|
||||
case GGML_OP_SOFT_MAX:
|
||||
return true;
|
||||
// TODO: support batching
|
||||
if (op->src[0]->ne[3] != 1) {
|
||||
return false;
|
||||
}
|
||||
// TODO: support broadcast
|
||||
// ref: https://github.com/ggml-org/llama.cpp/pull/14435
|
||||
return !op->src[1] || (op->src[1]->ne[2] == 1 && op->src[1]->ne[3] == 1);
|
||||
case GGML_OP_DIAG_MASK_INF:
|
||||
case GGML_OP_ROPE:
|
||||
case GGML_OP_IM2COL:
|
||||
return true;
|
||||
|
@ -410,14 +410,13 @@ struct vk_device_struct {
|
||||
vk_pipeline pipeline_div_norepeat[2][2][2];
|
||||
|
||||
vk_pipeline pipeline_concat_f32, pipeline_concat_f16, pipeline_concat_i32;
|
||||
vk_pipeline pipeline_upscale_nearest_f32, pipeline_upscale_bilinear_f32, pipeline_upscale_bilinear_ac_f32;
|
||||
vk_pipeline pipeline_upscale_f32;
|
||||
vk_pipeline pipeline_scale_f32;
|
||||
vk_pipeline pipeline_sqr_f32;
|
||||
vk_pipeline pipeline_sin_f32;
|
||||
vk_pipeline pipeline_cos_f32;
|
||||
vk_pipeline pipeline_clamp_f32;
|
||||
vk_pipeline pipeline_pad_f32;
|
||||
vk_pipeline pipeline_roll_f32;
|
||||
vk_pipeline pipeline_repeat_f32, pipeline_repeat_back_f32;
|
||||
vk_pipeline pipeline_cpy_f32_f32, pipeline_cpy_f32_f16, pipeline_cpy_f16_f16, pipeline_cpy_f16_f32, pipeline_cpy_f32_bf16;
|
||||
vk_pipeline pipeline_contig_cpy_f32_f32, pipeline_contig_cpy_f32_f16, pipeline_contig_cpy_f16_f16, pipeline_contig_cpy_f16_f32, pipeline_contig_cpy_f32_bf16;
|
||||
@ -689,37 +688,6 @@ struct vk_op_unary_push_constants {
|
||||
};
|
||||
static_assert(sizeof(vk_op_unary_push_constants) <= 128, "sizeof(vk_op_unary_push_constants) must be <= 128");
|
||||
|
||||
static vk_op_unary_push_constants vk_op_unary_push_constants_init(const ggml_tensor * src0, const ggml_tensor * dst, int64_t ne = 0) {
|
||||
GGML_ASSERT(ne != 0 || (ggml_nelements(src0) == ggml_nelements(dst)));
|
||||
ne = ne != 0 ? ne : ggml_nelements(dst);
|
||||
GGML_ASSERT(ne <= (int64_t)std::numeric_limits<uint32_t>::max());
|
||||
|
||||
vk_op_unary_push_constants p{};
|
||||
p.ne = (uint32_t)ne;
|
||||
|
||||
size_t src0_tsize = ggml_type_size(src0->type);
|
||||
p.ne00 = (uint32_t)src0->ne[0];
|
||||
p.ne01 = (uint32_t)src0->ne[1];
|
||||
p.ne02 = (uint32_t)src0->ne[2];
|
||||
p.ne03 = (uint32_t)src0->ne[3];
|
||||
p.nb00 = (uint32_t)(src0->nb[0] / src0_tsize);
|
||||
p.nb01 = (uint32_t)(src0->nb[1] / src0_tsize);
|
||||
p.nb02 = (uint32_t)(src0->nb[2] / src0_tsize);
|
||||
p.nb03 = (uint32_t)(src0->nb[3] / src0_tsize);
|
||||
|
||||
size_t dst_tsize = ggml_type_size(dst->type);
|
||||
p.ne10 = (uint32_t)dst->ne[0];
|
||||
p.ne11 = (uint32_t)dst->ne[1];
|
||||
p.ne12 = (uint32_t)dst->ne[2];
|
||||
p.ne13 = (uint32_t)dst->ne[3];
|
||||
p.nb10 = (uint32_t)(dst->nb[0] / dst_tsize);
|
||||
p.nb11 = (uint32_t)(dst->nb[1] / dst_tsize);
|
||||
p.nb12 = (uint32_t)(dst->nb[2] / dst_tsize);
|
||||
p.nb13 = (uint32_t)(dst->nb[3] / dst_tsize);
|
||||
|
||||
return p; // fastdiv values and offsets are initialized later in ggml_vk_op
|
||||
}
|
||||
|
||||
// See https://gmplib.org/~tege/divcnst-pldi94.pdf figure 4.1.
|
||||
// Precompute mp (m' in the paper) and L such that division
|
||||
// can be computed using a multiply (high 32b of 64b result)
|
||||
@ -881,7 +849,6 @@ struct vk_op_conv2d_dw_push_constants {
|
||||
|
||||
struct vk_op_upscale_push_constants {
|
||||
uint32_t ne; uint32_t a_offset; uint32_t d_offset;
|
||||
uint32_t ne00; uint32_t ne01;
|
||||
uint32_t nb00; uint32_t nb01; uint32_t nb02; uint32_t nb03;
|
||||
uint32_t ne10; uint32_t ne11; uint32_t ne12; uint32_t ne13;
|
||||
float sf0; float sf1; float sf2; float sf3;
|
||||
@ -2775,9 +2742,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
||||
ggml_vk_create_pipeline(device, device->pipeline_concat_f16, "concat_f16", concat_f16_len, concat_f16_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_concat_i32, "concat_i32", concat_i32_len, concat_i32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
|
||||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_upscale_nearest_f32, "upscale_f32", upscale_f32_len, upscale_f32_data, "main", 2, sizeof(vk_op_upscale_push_constants), {512, 1, 1}, {GGML_SCALE_MODE_NEAREST}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_upscale_bilinear_f32, "upscale_f32", upscale_f32_len, upscale_f32_data, "main", 2, sizeof(vk_op_upscale_push_constants), {512, 1, 1}, {GGML_SCALE_MODE_BILINEAR}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_upscale_bilinear_ac_f32, "upscale_f32", upscale_f32_len, upscale_f32_data, "main", 2, sizeof(vk_op_upscale_push_constants), {512, 1, 1}, {GGML_SCALE_MODE_BILINEAR | GGML_SCALE_FLAG_ALIGN_CORNERS}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_upscale_f32, "upscale_f32", upscale_f32_len, upscale_f32_data, "main", 2, sizeof(vk_op_upscale_push_constants), {512, 1, 1}, {}, 1);
|
||||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_scale_f32, "scale_f32", scale_f32_len, scale_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
|
||||
|
||||
@ -2789,8 +2754,6 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
||||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_pad_f32, "pad_f32", pad_f32_len, pad_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
|
||||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_roll_f32, "roll_f32", roll_f32_len, roll_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
|
||||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_repeat_f32, "repeat_f32", repeat_f32_len, repeat_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_repeat_back_f32, "repeat_back_f32", repeat_back_f32_len, repeat_back_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
|
||||
|
||||
@ -6453,16 +6416,8 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
|
||||
}
|
||||
return nullptr;
|
||||
case GGML_OP_UPSCALE:
|
||||
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||
int mode = ggml_get_op_params_i32(dst, 0);
|
||||
switch (mode) {
|
||||
case GGML_SCALE_MODE_NEAREST:
|
||||
return ctx->device->pipeline_upscale_nearest_f32;
|
||||
case GGML_SCALE_MODE_BILINEAR:
|
||||
return ctx->device->pipeline_upscale_bilinear_f32;
|
||||
case GGML_SCALE_MODE_BILINEAR | GGML_SCALE_FLAG_ALIGN_CORNERS:
|
||||
return ctx->device->pipeline_upscale_bilinear_ac_f32;
|
||||
}
|
||||
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32 && dst->op_params[0] == GGML_SCALE_MODE_NEAREST) {
|
||||
return ctx->device->pipeline_upscale_f32;
|
||||
}
|
||||
return nullptr;
|
||||
case GGML_OP_SCALE:
|
||||
@ -6495,11 +6450,6 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
|
||||
return ctx->device->pipeline_pad_f32;
|
||||
}
|
||||
return nullptr;
|
||||
case GGML_OP_ROLL:
|
||||
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||
return ctx->device->pipeline_roll_f32;
|
||||
}
|
||||
return nullptr;
|
||||
case GGML_OP_REPEAT:
|
||||
if (ggml_type_size(src0->type) == sizeof(float) && ggml_type_size(dst->type) == sizeof(float)) {
|
||||
return ctx->device->pipeline_repeat_f32;
|
||||
@ -7042,7 +6992,6 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
|
||||
case GGML_OP_COS:
|
||||
case GGML_OP_CLAMP:
|
||||
case GGML_OP_PAD:
|
||||
case GGML_OP_ROLL:
|
||||
case GGML_OP_REPEAT:
|
||||
case GGML_OP_REPEAT_BACK:
|
||||
case GGML_OP_CPY:
|
||||
@ -7479,21 +7428,14 @@ static void ggml_vk_concat(ggml_backend_vk_context * ctx, vk_context& subctx, co
|
||||
|
||||
static void ggml_vk_upscale(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
|
||||
const uint32_t src0_type_size = ggml_type_size(src0->type);
|
||||
const uint32_t mode = (uint32_t)ggml_get_op_params_i32(dst, 0);
|
||||
|
||||
float sf0 = (float)dst->ne[0] / src0->ne[0];
|
||||
float sf1 = (float)dst->ne[1] / src0->ne[1];
|
||||
float sf2 = (float)dst->ne[2] / src0->ne[2];
|
||||
float sf3 = (float)dst->ne[3] / src0->ne[3];
|
||||
|
||||
if (mode & GGML_SCALE_FLAG_ALIGN_CORNERS) {
|
||||
sf0 = (float)(dst->ne[0] - 1) / (src0->ne[0] - 1);
|
||||
sf1 = (float)(dst->ne[1] - 1) / (src0->ne[1] - 1);
|
||||
}
|
||||
const float sf0 = (float)dst->ne[0] / src0->ne[0];
|
||||
const float sf1 = (float)dst->ne[1] / src0->ne[1];
|
||||
const float sf2 = (float)dst->ne[2] / src0->ne[2];
|
||||
const float sf3 = (float)dst->ne[3] / src0->ne[3];
|
||||
|
||||
ggml_vk_op_f32<vk_op_upscale_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_UPSCALE, {
|
||||
(uint32_t)ggml_nelements(dst), 0, 0,
|
||||
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1],
|
||||
(uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
||||
(uint32_t)dst->ne[0], (uint32_t)dst->ne[1], (uint32_t)dst->ne[2],(uint32_t)dst->ne[3],
|
||||
sf0, sf1, sf2, sf3,
|
||||
@ -7501,60 +7443,117 @@ static void ggml_vk_upscale(ggml_backend_vk_context * ctx, vk_context& subctx, c
|
||||
}
|
||||
|
||||
static void ggml_vk_scale(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
|
||||
vk_op_unary_push_constants p = vk_op_unary_push_constants_init(src0, dst);
|
||||
p.param1 = ggml_get_op_params_f32(dst, 0);
|
||||
float * op_params = (float *)dst->op_params;
|
||||
const uint32_t src0_type_size = ggml_type_size(src0->type);
|
||||
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
||||
|
||||
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SCALE, std::move(p), dryrun);
|
||||
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SCALE, {
|
||||
(uint32_t)ggml_nelements(src0),
|
||||
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
||||
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
|
||||
0,
|
||||
op_params[0], 0.0f,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
}, dryrun);
|
||||
}
|
||||
|
||||
static void ggml_vk_sqr(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
|
||||
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SQR, vk_op_unary_push_constants_init(src0, dst), dryrun);
|
||||
const uint32_t src0_type_size = ggml_type_size(src0->type);
|
||||
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
||||
|
||||
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SQR, {
|
||||
(uint32_t)ggml_nelements(src0),
|
||||
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
||||
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
|
||||
0,
|
||||
0.0f, 0.0f,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
}, dryrun);
|
||||
}
|
||||
|
||||
static void ggml_vk_sin(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
|
||||
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SIN, vk_op_unary_push_constants_init(src0, dst), dryrun);
|
||||
const uint32_t src0_type_size = ggml_type_size(src0->type);
|
||||
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
||||
|
||||
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SIN, {
|
||||
(uint32_t)ggml_nelements(src0),
|
||||
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
||||
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
|
||||
0,
|
||||
0.0f, 0.0f,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
}, dryrun);
|
||||
}
|
||||
|
||||
static void ggml_vk_cos(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
|
||||
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_COS, vk_op_unary_push_constants_init(src0, dst), dryrun);
|
||||
const uint32_t src0_type_size = ggml_type_size(src0->type);
|
||||
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
||||
|
||||
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_COS, {
|
||||
(uint32_t)ggml_nelements(src0),
|
||||
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
||||
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
|
||||
0,
|
||||
0.0f, 0.0f,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
}, dryrun);
|
||||
}
|
||||
|
||||
static void ggml_vk_clamp(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
|
||||
vk_op_unary_push_constants p = vk_op_unary_push_constants_init(src0, dst);
|
||||
p.param1 = ggml_get_op_params_f32(dst, 0);
|
||||
p.param2 = ggml_get_op_params_f32(dst, 1);
|
||||
float * op_params = (float *)dst->op_params;
|
||||
const uint32_t src0_type_size = ggml_type_size(src0->type);
|
||||
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
||||
|
||||
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_CLAMP, std::move(p), dryrun);
|
||||
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_CLAMP, {
|
||||
(uint32_t)ggml_nelements(src0),
|
||||
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
||||
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
|
||||
0,
|
||||
op_params[0], op_params[1],
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
}, dryrun);
|
||||
}
|
||||
|
||||
static void ggml_vk_pad(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
|
||||
vk_op_unary_push_constants p = vk_op_unary_push_constants_init(src0, dst, ggml_nelements(dst));
|
||||
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_PAD, std::move(p), dryrun);
|
||||
}
|
||||
const uint32_t src0_type_size = ggml_type_size(src0->type);
|
||||
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
||||
|
||||
static void ggml_vk_roll(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
|
||||
const int32_t s0 = ggml_get_op_params_i32(dst, 0);
|
||||
const int32_t s1 = ggml_get_op_params_i32(dst, 1);
|
||||
const int32_t s2 = ggml_get_op_params_i32(dst, 2);
|
||||
const int32_t s3 = ggml_get_op_params_i32(dst, 3);
|
||||
const uint32_t s01_packed = ((s0 + 0x8000) << 16) | (s1 + 0x8000);
|
||||
const uint32_t s23_packed = ((s2 + 0x8000) << 16) | (s3 + 0x8000);
|
||||
|
||||
vk_op_unary_push_constants p = vk_op_unary_push_constants_init(src0, dst);
|
||||
memcpy(&p.param1, &s01_packed, sizeof(float));
|
||||
memcpy(&p.param2, &s23_packed, sizeof(float));
|
||||
|
||||
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_ROLL, std::move(p), dryrun);
|
||||
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_PAD, {
|
||||
(uint32_t)ggml_nelements(dst),
|
||||
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
||||
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
|
||||
0,
|
||||
0.0f, 0.0f,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
}, dryrun);
|
||||
}
|
||||
|
||||
static void ggml_vk_repeat(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
|
||||
vk_op_unary_push_constants p = vk_op_unary_push_constants_init(src0, dst, ggml_nelements(dst));
|
||||
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_REPEAT, std::move(p), dryrun);
|
||||
const uint32_t src0_type_size = ggml_type_size(src0->type);
|
||||
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
||||
|
||||
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_REPEAT, {
|
||||
(uint32_t)ggml_nelements(dst),
|
||||
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
||||
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
|
||||
0,
|
||||
0.0f, 0.0f,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
}, dryrun);
|
||||
}
|
||||
|
||||
static void ggml_vk_repeat_back(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
|
||||
vk_op_unary_push_constants p = vk_op_unary_push_constants_init(src0, dst, ggml_nelements(dst));
|
||||
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_REPEAT_BACK, std::move(p), dryrun);
|
||||
const uint32_t src0_type_size = ggml_type_size(src0->type);
|
||||
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
||||
|
||||
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_REPEAT_BACK, {
|
||||
(uint32_t)ggml_nelements(dst),
|
||||
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
||||
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
|
||||
0,
|
||||
0.0f, 0.0f,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
}, dryrun);
|
||||
}
|
||||
|
||||
static void ggml_vk_cpy(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
|
||||
@ -7572,8 +7571,14 @@ static void ggml_vk_cpy(ggml_backend_vk_context * ctx, vk_context& subctx, const
|
||||
}
|
||||
}
|
||||
|
||||
vk_op_unary_push_constants p = vk_op_unary_push_constants_init(src0, dst, ne);
|
||||
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_CPY, std::move(p), dryrun);
|
||||
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_CPY, {
|
||||
ne,
|
||||
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
||||
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
|
||||
0,
|
||||
0.0f, 0.0f,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
}, dryrun);
|
||||
}
|
||||
|
||||
static void ggml_vk_silu_back(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
|
||||
@ -8885,7 +8890,6 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
|
||||
case GGML_OP_COS:
|
||||
case GGML_OP_CLAMP:
|
||||
case GGML_OP_PAD:
|
||||
case GGML_OP_ROLL:
|
||||
case GGML_OP_CPY:
|
||||
case GGML_OP_CONT:
|
||||
case GGML_OP_DUP:
|
||||
@ -9055,10 +9059,6 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
|
||||
case GGML_OP_PAD:
|
||||
ggml_vk_pad(ctx, compute_ctx, src0, node, dryrun);
|
||||
|
||||
break;
|
||||
case GGML_OP_ROLL:
|
||||
ggml_vk_roll(ctx, compute_ctx, src0, node, dryrun);
|
||||
|
||||
break;
|
||||
case GGML_OP_CPY:
|
||||
case GGML_OP_CONT:
|
||||
@ -9276,7 +9276,6 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor *
|
||||
case GGML_OP_COS:
|
||||
case GGML_OP_CLAMP:
|
||||
case GGML_OP_PAD:
|
||||
case GGML_OP_ROLL:
|
||||
case GGML_OP_CPY:
|
||||
case GGML_OP_CONT:
|
||||
case GGML_OP_DUP:
|
||||
@ -10249,6 +10248,11 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
|
||||
if (op->src[3] && op->src[3]->type != GGML_TYPE_F16) {
|
||||
return false;
|
||||
}
|
||||
// TODO: support broadcast
|
||||
// ref: https://github.com/ggml-org/llama.cpp/pull/14435
|
||||
if (op->src[0]->ne[3] != 1) {
|
||||
return false;
|
||||
}
|
||||
// It's straightforward to support different K/V dequant, but would
|
||||
// significantly increase the number of pipelines
|
||||
if (op->src[1]->type != op->src[2]->type) {
|
||||
@ -10401,13 +10405,21 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
|
||||
case GGML_OP_CLAMP:
|
||||
return op->src[0]->type == GGML_TYPE_F32;
|
||||
case GGML_OP_UPSCALE:
|
||||
return op->op_params[0] == GGML_SCALE_MODE_NEAREST;
|
||||
case GGML_OP_ACC:
|
||||
case GGML_OP_CONCAT:
|
||||
case GGML_OP_SCALE:
|
||||
case GGML_OP_PAD:
|
||||
case GGML_OP_ROLL:
|
||||
case GGML_OP_DIAG_MASK_INF:
|
||||
return true;
|
||||
case GGML_OP_SOFT_MAX:
|
||||
// TODO: support batching
|
||||
if (op->src[0]->ne[3] != 1) {
|
||||
return false;
|
||||
}
|
||||
// TODO: support broadcast
|
||||
// ref: https://github.com/ggml-org/llama.cpp/pull/14435
|
||||
return !op->src[1] || (op->src[1]->ne[2] == 1 && op->src[1]->ne[3] == 1);
|
||||
case GGML_OP_SOFT_MAX_BACK:
|
||||
case GGML_OP_ARGSORT:
|
||||
case GGML_OP_SUM:
|
||||
|
@ -3,7 +3,6 @@
|
||||
layout (push_constant) uniform parameter
|
||||
{
|
||||
uint ne; uint a_offset; uint d_offset;
|
||||
uint ne00; uint ne01;
|
||||
uint nb00; uint nb01; uint nb02; uint nb03;
|
||||
uint ne10; uint ne11; uint ne12; uint ne13;
|
||||
float sf0; float sf1; float sf2; float sf3;
|
||||
@ -16,61 +15,6 @@ layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
|
||||
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
|
||||
layout (binding = 1) writeonly buffer D {D_TYPE data_d[];};
|
||||
|
||||
// from ggml.h: enum ggml_scale_mode, enum ggml_scale_flag
|
||||
#define NEAREST 0
|
||||
#define BILINEAR 1
|
||||
#define ALIGN_CORNERS (1 << 8)
|
||||
|
||||
layout (constant_id = 0) const uint scale_mode = 0;
|
||||
|
||||
float fetch_nearest(uint i10, uint i11, uint i12, uint i13) {
|
||||
const uint i00 = uint(i10 / p.sf0);
|
||||
const uint i01 = uint(i11 / p.sf1);
|
||||
const uint i02 = uint(i12 / p.sf2);
|
||||
const uint i03 = uint(i13 / p.sf3);
|
||||
|
||||
return data_a[p.a_offset + i03 * p.nb03 + i02 * p.nb02 + i01 * p.nb01 + i00 * p.nb00];
|
||||
}
|
||||
|
||||
float fetch_bilinear(ivec2 c0, ivec2 c1, vec2 d, uint i12, uint i13) {
|
||||
const uint i02 = uint(i12 / p.sf2);
|
||||
const uint i03 = uint(i13 / p.sf3);
|
||||
const uint base = p.a_offset + i03 * p.nb03 + i02 * p.nb02;
|
||||
|
||||
const float v00 = data_a[base + c0.y * p.nb01 + c0.x * p.nb00];
|
||||
const float v01 = data_a[base + c0.y * p.nb01 + c1.x * p.nb00];
|
||||
const float v10 = data_a[base + c1.y * p.nb01 + c0.x * p.nb00];
|
||||
const float v11 = data_a[base + c1.y * p.nb01 + c1.x * p.nb00];
|
||||
|
||||
return
|
||||
v00 * (1.0-d.x) * (1.0-d.y) +
|
||||
v01 * d.x * (1.0-d.y) +
|
||||
v10 * (1.0-d.x) * d.y +
|
||||
v11 * d.x * d.y;
|
||||
}
|
||||
|
||||
float interpolate_bilinear(uint i10, uint i11, uint i12, uint i13) {
|
||||
const ivec2 ne0 = ivec2(p.ne00, p.ne01);
|
||||
|
||||
const vec2 c = (vec2(i10, i11) + 0.5) / vec2(p.sf0, p.sf1) - 0.5;
|
||||
const vec2 c0f = floor(c);
|
||||
const vec2 d = c - c0f;
|
||||
const ivec2 c0 = max(ivec2(c0f), 0);
|
||||
const ivec2 c1 = min(ivec2(c0f + 1), ne0 - 1);
|
||||
|
||||
return fetch_bilinear(c0, c1, d, i12, i13);
|
||||
}
|
||||
|
||||
float interpolate_bilinear_align_corners(uint i10, uint i11, uint i12, uint i13) {
|
||||
const vec2 c = vec2(i10, i11) / vec2(p.sf0, p.sf1);
|
||||
const vec2 c0f = floor(c);
|
||||
const vec2 d = c - c0f;
|
||||
const ivec2 c0 = ivec2(c0f);
|
||||
const ivec2 c1 = c0 + 1;
|
||||
|
||||
return fetch_bilinear(c0, c1, d, i12, i13);
|
||||
}
|
||||
|
||||
void main() {
|
||||
const uint idx = gl_GlobalInvocationID.z * 262144 + gl_GlobalInvocationID.y * 512 + gl_GlobalInvocationID.x;
|
||||
|
||||
@ -83,18 +27,10 @@ void main() {
|
||||
const uint i12 = (idx / (p.ne10 * p.ne11)) % p.ne12;
|
||||
const uint i13 = (idx / (p.ne10 * p.ne11 * p.ne12)) % p.ne13;
|
||||
|
||||
float result;
|
||||
switch (scale_mode) {
|
||||
case NEAREST:
|
||||
result = fetch_nearest(i10, i11, i12, i13);
|
||||
break;
|
||||
case BILINEAR:
|
||||
result = interpolate_bilinear(i10, i11, i12, i13);
|
||||
break;
|
||||
case BILINEAR | ALIGN_CORNERS:
|
||||
result = interpolate_bilinear_align_corners(i10, i11, i12, i13);
|
||||
break;
|
||||
}
|
||||
const uint i00 = uint(i10 / p.sf0);
|
||||
const uint i01 = uint(i11 / p.sf1);
|
||||
const uint i02 = uint(i12 / p.sf2);
|
||||
const uint i03 = uint(i13 / p.sf3);
|
||||
|
||||
data_d[p.d_offset + idx] = D_TYPE(result);
|
||||
data_d[p.d_offset + idx] = D_TYPE(data_a[p.a_offset + i03 * p.nb03 + i02 * p.nb02 + i01 * p.nb01 + i00 * p.nb00]);
|
||||
}
|
||||
|
@ -644,8 +644,6 @@ void process_shaders() {
|
||||
string_to_spv("conv2d_dw_whcn_f32", "conv2d_dw.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"WHCN", "1"}}));
|
||||
string_to_spv("conv2d_dw_cwhn_f32", "conv2d_dw.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"CWHN", "1"}}));
|
||||
|
||||
string_to_spv("roll_f32", "roll.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float"}}));
|
||||
|
||||
for (auto &c : compiles) {
|
||||
c.wait();
|
||||
}
|
||||
|
@ -473,14 +473,6 @@ bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
|
||||
return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
|
||||
}
|
||||
|
||||
const char * ggml_version(void) {
|
||||
return GGML_VERSION;
|
||||
}
|
||||
|
||||
const char * ggml_commit(void) {
|
||||
return GGML_COMMIT;
|
||||
}
|
||||
|
||||
//
|
||||
// timing
|
||||
//
|
||||
@ -3674,9 +3666,11 @@ static struct ggml_tensor * ggml_soft_max_impl(
|
||||
if (mask) {
|
||||
GGML_ASSERT(mask->type == GGML_TYPE_F16 || mask->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(ggml_is_contiguous(mask));
|
||||
GGML_ASSERT(ggml_is_matrix(mask));
|
||||
GGML_ASSERT(ggml_is_3d(mask));
|
||||
GGML_ASSERT(mask->ne[0] == a->ne[0]);
|
||||
GGML_ASSERT(mask->ne[1] >= a->ne[1]);
|
||||
GGML_ASSERT(a->ne[2]%mask->ne[2] == 0);
|
||||
GGML_ASSERT(a->ne[3]%mask->ne[3] == 0);
|
||||
}
|
||||
|
||||
if (max_bias > 0.0f) {
|
||||
@ -4697,13 +4691,17 @@ struct ggml_tensor * ggml_flash_attn_ext(
|
||||
GGML_ASSERT(ggml_can_mul_mat(k, q));
|
||||
// TODO: check if vT can be multiplied by (k*qT)
|
||||
|
||||
GGML_ASSERT(q->ne[3] == k->ne[3]);
|
||||
GGML_ASSERT(q->ne[3] == v->ne[3]);
|
||||
|
||||
if (mask) {
|
||||
GGML_ASSERT(ggml_is_contiguous(mask));
|
||||
GGML_ASSERT(mask->ne[2] == 1);
|
||||
GGML_ASSERT(mask->ne[3] == 1);
|
||||
GGML_ASSERT(mask->ne[2] == q->ne[3]);
|
||||
GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) &&
|
||||
"the Flash-Attention kernel requires the mask to be padded to GGML_KQ_MASK_PAD and at least n_queries big");
|
||||
//GGML_ASSERT(ggml_can_repeat_rows(mask, qk));
|
||||
|
||||
GGML_ASSERT(q->ne[3] % mask->ne[2] == 0);
|
||||
}
|
||||
|
||||
if (max_bias > 0.0f) {
|
||||
|
Reference in New Issue
Block a user