mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-08-10 14:28:38 +02:00
llama : initial Mamba-2 support (llama/9126)
* llama : initial Mamba-2 support * ggml : SIMD ggml_ssm_scan for Mamba-2 * ggml : improve ggml_mul speed when masking recurrent states * llama : support running Mamba-Codestral-7B-v0.1 * llama : fix Mamba-2 conv state saving * ggml : make the ggml_mul fast broadcast path more consistently formatted * llama : remove unused variable * llama : add missing break * convert_hf : prefer SentencePiece tokenizer for Mamba-2 when present The tokenzier.json of Mamba-Codestral-7B-v0.1 otherwise requires workarounds to work correctly. * llama : avoid redundant state copy for Mamba 1 and 2 * metal : attempt to adapt SSM_SCAN for Mamba-2 * metal : fix SSM_SCAN pipeline scope * metal : use log and exp instead of log1pf and expf in SSM_SCAN * metal : remove unused arguments for SSM_SCAN The max index is 31, so trimming the arguments is necessary. * metal : add back n_seqs to SSM_SCAN args Whoops, this is needed for the offset in the concatenated output. * metal : fix SSM_SCAN state head offset * metal : fix wrong number of tokens per sequence in SSM_SCAN * ggml : remove unused fast broadcast path in GGML_MUL This was initially added because states were masked with ggml_mul, but this is no longer done and so this "optimisation" is no longer necessary, or at least not worth the additional code complexity. * ggml : avoid multiply by D in GGML_OP_SSM_SCAN This makes the weight buft detection in src/llama.cpp simpler. * convert : transpose Mamba-2 A, D and reshape SSM_NORM This breaks existing conversions of Mamba-2 models to avoid some reshapes. Not sure if it's a good idea, but it makes the graph slightly cleaner. * llama : more appropriate SSM_SCAN and SSM_CONV buft support checks * convert : fix flake8 lint * metal : fix confusion between ; and , * metal : add missing args for nb references in ssm_scan_f32_group * metal : single-user mamba2 inference works * kv-cache : remove const_cast when setting inputs for s_copy And also fix multi-user inference for recurrent models by using cell_id instead of i as the kv cell index when populating s_copy. * convert : avoid AutoConfig for Mamba and Mamba2 hparams * kv-cache : allow context shift for recurrent models * graph : fix recurrent state copies when avoiding copies Works, but using lambda functions might not be that clean. * ggml : fix mamba2 ssm scan when compiled with SVE * ggml-cpu : reorder SVE FMA for consistency with other SIMD arches * cuda : implement ssm scan for Mamba2 There is still room for improvement, but it works! * cuda : adapt Mamba1 ssm scan to shape changes from Mamba2 * mamba : fix mismatched new and delete size for llm_build_mamba Subclasses of llm_graph_context cannot have extra fields, because the called destructor is not the one from the subclass. This otherwise would cause problems when runnning Mamba-(1|2) inference when compiled -DGGML_SANITIZE_ADDRESS=ON * cuda : graceful fallback for Mamba-1 models with weird embd size
This commit is contained in:
committed by
Georgi Gerganov
parent
fb5c4095ee
commit
d2d120c256
@ -2028,7 +2028,8 @@ extern "C" {
|
||||
struct ggml_tensor * dt,
|
||||
struct ggml_tensor * A,
|
||||
struct ggml_tensor * B,
|
||||
struct ggml_tensor * C);
|
||||
struct ggml_tensor * C,
|
||||
struct ggml_tensor * ids);
|
||||
|
||||
// partition into non-overlapping windows with padding if needed
|
||||
// example:
|
||||
|
@ -8337,120 +8337,210 @@ void ggml_compute_forward_ssm_conv(
|
||||
static void ggml_compute_forward_ssm_scan_f32(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0]; // s
|
||||
const ggml_tensor * src1 = dst->src[1]; // x
|
||||
const ggml_tensor * src2 = dst->src[2]; // dt
|
||||
const ggml_tensor * src3 = dst->src[3]; // A
|
||||
const ggml_tensor * src4 = dst->src[4]; // B
|
||||
const ggml_tensor * src5 = dst->src[5]; // C
|
||||
const ggml_tensor * src0 = dst->src[0]; // s {d_state, dim, n_head, n_seqs+}
|
||||
const ggml_tensor * src1 = dst->src[1]; // x {dim, n_head, n_seq_tokens, n_seqs}
|
||||
const ggml_tensor * src2 = dst->src[2]; // dt {n_head, n_seq_tokens, n_seqs}
|
||||
const ggml_tensor * src3 = dst->src[3]; // A {d_state, n_head} or {1, n_head}
|
||||
const ggml_tensor * src4 = dst->src[4]; // B {d_state, n_group, n_seq_tokens, n_seqs}
|
||||
const ggml_tensor * src5 = dst->src[5]; // C {d_state, n_group, n_seq_tokens, n_seqs}
|
||||
const ggml_tensor * src6 = dst->src[6]; // ids {n_seqs}
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
const int64_t nc = src0->ne[0]; // d_state
|
||||
const int64_t nr = src0->ne[1]; // d_inner
|
||||
const int64_t n_t = src1->ne[1]; // number of tokens per sequence
|
||||
const int64_t n_s = src0->ne[2]; // number of sequences in the batch
|
||||
const int64_t nc = src0->ne[0]; // d_state
|
||||
const int64_t nr = src0->ne[1]; // dim
|
||||
const int64_t nh = src1->ne[1]; // n_head
|
||||
const int64_t ng = src4->ne[1];
|
||||
const int64_t nt = src1->ne[2]; // number of tokens per sequence
|
||||
const int64_t ns = src1->ne[3]; // number of sequences in the batch
|
||||
|
||||
GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
|
||||
// can't use ggml_nbytes because src1 is not necessarily contiguous
|
||||
const int64_t s_off = ggml_nelements(src1) * ggml_element_size(src1);
|
||||
|
||||
GGML_ASSERT(ggml_nelements(src1) + nc*nr*nh*ns == ggml_nelements(dst));
|
||||
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
||||
GGML_ASSERT(src1->nb[0] == sizeof(float));
|
||||
GGML_ASSERT(src2->nb[0] == sizeof(float));
|
||||
GGML_ASSERT(src3->nb[0] == sizeof(float));
|
||||
GGML_ASSERT(src4->nb[0] == sizeof(float));
|
||||
GGML_ASSERT(src5->nb[0] == sizeof(float));
|
||||
// required for the dot product between s and C
|
||||
GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
|
||||
// required for per-sequence offsets for states
|
||||
GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
|
||||
// required to get correct offset for state destination (i.e. src1->nb[3])
|
||||
GGML_ASSERT(src1->nb[3] == src1->ne[0]*src1->ne[1]*src1->ne[2]*sizeof(float));
|
||||
GGML_ASSERT(src6->nb[0] == sizeof(int32_t));
|
||||
// allows optimizing the modulo since n_group should be a power of 2
|
||||
GGML_ASSERT((ng & -ng) == ng);
|
||||
|
||||
// rows per thread
|
||||
const int dr = (nr + nth - 1)/nth;
|
||||
// heads per thread
|
||||
const int dh = (nh + nth - 1)/nth;
|
||||
|
||||
// row range for this thread
|
||||
const int ir0 = dr*ith;
|
||||
const int ir1 = MIN(ir0 + dr, nr);
|
||||
const int ir = ir1 - ir0;
|
||||
// head range for this thread
|
||||
const int ih0 = dh*ith;
|
||||
const int ih1 = MIN(ih0 + dh, nh);
|
||||
|
||||
#ifdef __ARM_FEATURE_SVE
|
||||
for (int i3 = 0; i3 < n_s; ++i3) {
|
||||
for (int i2 = 0; i2 < n_t; ++i2) {
|
||||
const float * s0 = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2])); // {d_state, d_inner, n_s}
|
||||
const float * x = (const float *) ((const char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
|
||||
const float * dt = (const float *) ((const char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1]) + i3*(src2->nb[2])); // {d_inner, n_t, n_s}
|
||||
const float * A = (const float *) ((const char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
|
||||
const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[1]) + i3*(src4->nb[2])); // {d_state, n_t, n_s}
|
||||
const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[1]) + i3*(src5->nb[2])); // {d_state, n_t, n_s}
|
||||
float * y = ( float *) (( char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
|
||||
float * s = ( float *) (( char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[3]); // {d_state, d_inner, n_s}
|
||||
const int32_t * ids = (const int32_t *) src6->data;
|
||||
|
||||
// use the output as the source for the next token-wise iterations
|
||||
if (i2 > 0) { s0 = s; }
|
||||
for (int i3 = 0; i3 < ns; ++i3) {
|
||||
const float * s0 = (const float *) ((const char *) src0->data + ids[i3]*(src0->nb[3])); // {d_state, dim, nh, ns}
|
||||
float * s = ( float *) (( char *) dst->data + i3*(src0->nb[3]) + s_off); // {d_state, dim, nh, ns}
|
||||
|
||||
// d_inner
|
||||
for (int i1 = 0; i1 < ir; ++i1) {
|
||||
float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
|
||||
float x_dt = x[i1] * dt_soft_plus;
|
||||
svfloat32_t vx_dt = GGML_F32_VEC_SET1(x_dt);
|
||||
svfloat32_t vdt_soft_plus = GGML_F32_VEC_SET1(dt_soft_plus);
|
||||
svfloat32_t r1_vector = GGML_F32_VEC_ZERO;
|
||||
for (int i2 = 0; i2 < nt; ++i2) {
|
||||
const float * x = (const float *) ((const char *) src1->data + i2*(src1->nb[2]) + i3*(src1->nb[3])); // {dim, nh, nt, ns}
|
||||
const float * dt = (const float *) ((const char *) src2->data + i2*(src2->nb[1]) + i3*(src2->nb[2])); // {nh, nt, ns}
|
||||
const float * A = (const float *) ((const char *) src3->data); // {d_state, nh} or {1, nh}
|
||||
const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[2]) + i3*(src4->nb[3])); // {d_state, ng, nt, ns}
|
||||
const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[2]) + i3*(src5->nb[3])); // {d_state, ng, nt, ns}
|
||||
float * y = ( float *) (( char *) dst->data + i2*(nh*nr*sizeof(float)) + i3*(nt*nh*nr*sizeof(float))); // {dim, nh, nt, ns}
|
||||
|
||||
for (int64_t k = 0; k < nc; k += svcntw()) {
|
||||
svfloat32_t vA = GGML_F32_VEC_LOAD(&A[i1*nc + k]);
|
||||
svfloat32_t vB = GGML_F32_VEC_LOAD(&B[k]);
|
||||
svfloat32_t vC = GGML_F32_VEC_LOAD(&C[k]);
|
||||
svfloat32_t vs0 = GGML_F32_VEC_LOAD(&s0[i1*nc + k]);
|
||||
if (src3->ne[0] == 1) {
|
||||
// Mamba-2 has a scalar decay factor per head; dA can be outside the state-wise loop
|
||||
|
||||
svfloat32_t t1 = GGML_F32_VEC_MUL(vdt_soft_plus, vA);
|
||||
t1 = exp_ps_sve(svptrue_b32(), t1);
|
||||
svfloat32_t t2 = GGML_F32_VEC_MUL(vx_dt, vB);
|
||||
// n_head
|
||||
for (int h = ih0; h < ih1; ++h) {
|
||||
// ref: https://github.com/state-spaces/mamba/blob/62db608da60f6fc790b8ed9f4b3225e95ca15fde/mamba_ssm/ops/triton/softplus.py#L16
|
||||
const float dt_soft_plus = dt[h] <= 20.0f ? log1pf(expf(dt[h])) : dt[h];
|
||||
const float dA = expf(dt_soft_plus * A[h]);
|
||||
|
||||
vs0 = GGML_F32_VEC_FMA(vs0, t1, t2);
|
||||
r1_vector = GGML_F32_VEC_ADD(GGML_F32_VEC_MUL(vs0, vC), r1_vector);
|
||||
// dim
|
||||
for (int i1 = 0; i1 < nr; ++i1) {
|
||||
const int ii = i1 + h*nr;
|
||||
const float x_dt = x[ii] * dt_soft_plus;
|
||||
float sumf = 0.0f;
|
||||
#if defined(GGML_SIMD)
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
const int ggml_f32_epr = svcntw();
|
||||
const int ggml_f32_step = 1 * ggml_f32_epr;
|
||||
|
||||
GGML_F32_VEC_STORE(&s[i1*nc + k], vs0);
|
||||
}
|
||||
y[i1] = GGML_F32xt_REDUCE_ONE(r1_vector);
|
||||
}
|
||||
}
|
||||
}
|
||||
const int np = (nc & ~(ggml_f32_step - 1));
|
||||
|
||||
GGML_F32_VEC sum = GGML_F32_VEC_ZERO;
|
||||
|
||||
GGML_F32_VEC adA = GGML_F32_VEC_SET1(dA);
|
||||
GGML_F32_VEC axdt = GGML_F32_VEC_SET1(x_dt);
|
||||
|
||||
for (int i = 0; i < np; i += ggml_f32_step) {
|
||||
// TODO: maybe unroll more?
|
||||
for (int j = 0; j < 1; j++) {
|
||||
GGML_F32_VEC t0 = GGML_F32_VEC_LOAD(s0 + i + j*ggml_f32_epr + ii*nc);
|
||||
GGML_F32_VEC t1 = GGML_F32_VEC_LOAD(B + i + j*ggml_f32_epr + (h & (ng - 1))*nc);
|
||||
GGML_F32_VEC t2 = GGML_F32_VEC_LOAD(C + i + j*ggml_f32_epr + (h & (ng - 1))*nc);
|
||||
|
||||
t0 = GGML_F32_VEC_MUL(t0, adA);
|
||||
t1 = GGML_F32_VEC_MUL(t1, axdt);
|
||||
|
||||
t0 = GGML_F32_VEC_ADD(t0, t1);
|
||||
|
||||
sum = GGML_F32_VEC_FMA(sum, t0, t2);
|
||||
|
||||
GGML_F32_VEC_STORE(s + i + j*ggml_f32_epr + ii*nc, t0);
|
||||
}
|
||||
}
|
||||
|
||||
sumf = GGML_F32xt_REDUCE_ONE(sum);
|
||||
#else
|
||||
for (int i3 = 0; i3 < n_s; ++i3) {
|
||||
for (int i2 = 0; i2 < n_t; ++i2) {
|
||||
const float * s0 = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2])); // {d_state, d_inner, n_s}
|
||||
const float * x = (const float *) ((const char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
|
||||
const float * dt = (const float *) ((const char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1]) + i3*(src2->nb[2])); // {d_inner, n_t, n_s}
|
||||
const float * A = (const float *) ((const char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
|
||||
const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[1]) + i3*(src4->nb[2])); // {d_state, n_t, n_s}
|
||||
const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[1]) + i3*(src5->nb[2])); // {d_state, n_t, n_s}
|
||||
float * y = ( float *) (( char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
|
||||
float * s = ( float *) (( char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[3]); // {d_state, d_inner, n_s}
|
||||
const int np = (nc & ~(GGML_F32_STEP - 1));
|
||||
|
||||
// use the output as the source for the next token-wise iterations
|
||||
if (i2 > 0) { s0 = s; }
|
||||
GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
|
||||
|
||||
// d_inner
|
||||
for (int i1 = 0; i1 < ir; ++i1) {
|
||||
// ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
|
||||
float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
|
||||
float x_dt = x[i1] * dt_soft_plus;
|
||||
float sumf = 0.0f;
|
||||
// d_state
|
||||
for (int i0 = 0; i0 < nc; ++i0) {
|
||||
int i = i0 + i1*nc;
|
||||
// state = prev_state * dA + dB * x
|
||||
float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
|
||||
// y = rowwise_dotprod(state, C)
|
||||
sumf += state * C[i0];
|
||||
s[i] = state;
|
||||
GGML_F32_VEC adA = GGML_F32_VEC_SET1(dA);
|
||||
GGML_F32_VEC axdt = GGML_F32_VEC_SET1(x_dt);
|
||||
|
||||
GGML_F32_VEC ax[GGML_F32_ARR];
|
||||
GGML_F32_VEC ay[GGML_F32_ARR];
|
||||
GGML_F32_VEC az[GGML_F32_ARR];
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F32_STEP) {
|
||||
for (int j = 0; j < GGML_F32_ARR; j++) {
|
||||
ax[j] = GGML_F32_VEC_LOAD(s0 + i + j*GGML_F32_EPR + ii*nc);
|
||||
ay[j] = GGML_F32_VEC_LOAD(B + i + j*GGML_F32_EPR + (h & (ng - 1))*nc);
|
||||
az[j] = GGML_F32_VEC_LOAD(C + i + j*GGML_F32_EPR + (h & (ng - 1))*nc);
|
||||
|
||||
ax[j] = GGML_F32_VEC_MUL(ax[j], adA);
|
||||
ay[j] = GGML_F32_VEC_MUL(ay[j], axdt);
|
||||
|
||||
ax[j] = GGML_F32_VEC_ADD(ax[j], ay[j]);
|
||||
|
||||
sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], az[j]);
|
||||
|
||||
GGML_F32_VEC_STORE(s + i + j*GGML_F32_EPR + ii*nc, ax[j]);
|
||||
}
|
||||
}
|
||||
|
||||
// reduce sum0..sum3 to sum0
|
||||
GGML_F32_VEC_REDUCE(sumf, sum);
|
||||
#endif
|
||||
#else
|
||||
const int np = 0;
|
||||
#endif
|
||||
// d_state
|
||||
for (int i0 = np; i0 < nc; ++i0) {
|
||||
const int i = i0 + ii*nc;
|
||||
const int ig = i0 + (h & (ng - 1))*nc;
|
||||
// state = prev_state * dA + dB * x
|
||||
const float state = (s0[i] * dA) + (B[ig] * x_dt);
|
||||
// y = rowwise_dotprod(state, C)
|
||||
sumf += state * C[ig];
|
||||
s[i] = state;
|
||||
}
|
||||
y[ii] = sumf;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// Mamba-1 has an element-wise decay factor for the states
|
||||
|
||||
// n_head
|
||||
for (int h = ih0; h < ih1; ++h) {
|
||||
// ref: https://github.com/state-spaces/mamba/blob/62db608da60f6fc790b8ed9f4b3225e95ca15fde/mamba_ssm/ops/triton/softplus.py#L16
|
||||
const float dt_soft_plus = dt[h] <= 20.0f ? log1pf(expf(dt[h])) : dt[h];
|
||||
|
||||
// dim
|
||||
for (int i1 = 0; i1 < nr; ++i1) {
|
||||
const int ii = i1 + h*nr;
|
||||
const float x_dt = x[ii] * dt_soft_plus;
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
svfloat32_t vx_dt = GGML_F32_VEC_SET1(x_dt);
|
||||
svfloat32_t vdt_soft_plus = GGML_F32_VEC_SET1(dt_soft_plus);
|
||||
svfloat32_t r1_vector = GGML_F32_VEC_ZERO;
|
||||
|
||||
// d_state
|
||||
// TODO: what happens when (d_state % svcntw()) != 0?
|
||||
for (int64_t k = 0; k < nc; k += svcntw()) {
|
||||
svfloat32_t vA = GGML_F32_VEC_LOAD(&A[h*nc + k]);
|
||||
svfloat32_t vB = GGML_F32_VEC_LOAD(&B[k + (h & (ng - 1))*nc]);
|
||||
svfloat32_t vC = GGML_F32_VEC_LOAD(&C[k + (h & (ng - 1))*nc]);
|
||||
svfloat32_t vs0 = GGML_F32_VEC_LOAD(&s0[ii*nc + k]);
|
||||
|
||||
svfloat32_t t1 = GGML_F32_VEC_MUL(vdt_soft_plus, vA);
|
||||
t1 = exp_ps_sve(svptrue_b32(), t1);
|
||||
svfloat32_t t2 = GGML_F32_VEC_MUL(vx_dt, vB);
|
||||
|
||||
vs0 = GGML_F32_VEC_FMA(t2, vs0, t1);
|
||||
r1_vector = GGML_F32_VEC_ADD(GGML_F32_VEC_MUL(vs0, vC), r1_vector);
|
||||
|
||||
GGML_F32_VEC_STORE(&s[ii*nc + k], vs0);
|
||||
}
|
||||
y[ii] = GGML_F32xt_REDUCE_ONE(r1_vector);
|
||||
#else
|
||||
float sumf = 0.0f;
|
||||
// NOTE: can't really use GGML_SIMD here because d_state is usually 16
|
||||
// and also because expf is used within the loop.
|
||||
// d_state
|
||||
for (int i0 = 0; i0 < nc; ++i0) {
|
||||
const int i = i0 + ii*nc;
|
||||
const int ig = i0 + (h & (ng - 1))*nc;
|
||||
// state = prev_state * dA + dB * x
|
||||
const float state = (s0[i] * expf(dt_soft_plus * A[i0 + h*nc])) + (B[ig] * x_dt);
|
||||
// y = rowwise_dotprod(state, C)
|
||||
sumf += state * C[ig];
|
||||
s[i] = state;
|
||||
}
|
||||
y[ii] = sumf;
|
||||
#endif
|
||||
}
|
||||
y[i1] = sumf;
|
||||
}
|
||||
}
|
||||
// use the output as the source when it's not the first token-wise iteration
|
||||
s0 = s;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_compute_forward_ssm_scan(
|
||||
|
@ -189,7 +189,7 @@ inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
|
||||
#define GGML_F32xt_LOAD(...) GGML_F32xt_LOAD_IMPL(DEFAULT_PG, __VA_ARGS__)
|
||||
#define GGML_F32xt_STORE_IMPL(pg,a,b) svst1_f32(pg, a, b)
|
||||
#define GGML_F32xt_STORE(...) GGML_F32xt_STORE_IMPL(DEFAULT_PG, __VA_ARGS__)
|
||||
#define GGML_F32xt_FMA_IMPL(pg, a, b, c) svmad_f32_m(pg, a, b, c)
|
||||
#define GGML_F32xt_FMA_IMPL(pg, a, b, c) svmad_f32_m(pg, b, c, a)
|
||||
#define GGML_F32xt_FMA(...) GGML_F32xt_FMA_IMPL(DEFAULT_PG, __VA_ARGS__)
|
||||
#define GGML_F32xt_ADD_IMPL(pg, a, b) svadd_f32_m(pg, a, b)
|
||||
#define GGML_F32xt_ADD(...) GGML_F32xt_ADD_IMPL(DEFAULT_PG, __VA_ARGS__)
|
||||
|
@ -37,35 +37,35 @@ void ggml_vec_dot_f32(int n, float * GGML_RESTRICT s, size_t bs, const float * G
|
||||
for (int i = 0; i < np; i += ggml_f32_step) {
|
||||
ax1 = GGML_F32_VEC_LOAD(x + i);
|
||||
ay1 = GGML_F32_VEC_LOAD(y + i);
|
||||
sum1 = GGML_F32_VEC_FMA(ax1, ay1, sum1);
|
||||
sum1 = GGML_F32_VEC_FMA(sum1, ax1, ay1);
|
||||
|
||||
ax2 = GGML_F32_VEC_LOAD(x + i + 1*ggml_f32_epr);
|
||||
ay2 = GGML_F32_VEC_LOAD(y + i + 1*ggml_f32_epr);
|
||||
sum2 = GGML_F32_VEC_FMA(ax2, ay2, sum2);
|
||||
sum2 = GGML_F32_VEC_FMA(sum2, ax2, ay2);
|
||||
|
||||
ax3 = GGML_F32_VEC_LOAD(x + i + 2*ggml_f32_epr);
|
||||
ay3 = GGML_F32_VEC_LOAD(y + i + 2*ggml_f32_epr);
|
||||
sum3 = GGML_F32_VEC_FMA(ax3, ay3, sum3);
|
||||
sum3 = GGML_F32_VEC_FMA(sum3, ax3, ay3);
|
||||
|
||||
ax4 = GGML_F32_VEC_LOAD(x + i + 3*ggml_f32_epr);
|
||||
ay4 = GGML_F32_VEC_LOAD(y + i + 3*ggml_f32_epr);
|
||||
sum4 = GGML_F32_VEC_FMA(ax4, ay4, sum4);
|
||||
sum4 = GGML_F32_VEC_FMA(sum4, ax4, ay4);
|
||||
|
||||
ax5 = GGML_F32_VEC_LOAD(x + i + 4*ggml_f32_epr);
|
||||
ay5 = GGML_F32_VEC_LOAD(y + i + 4*ggml_f32_epr);
|
||||
sum5 = GGML_F32_VEC_FMA(ax5, ay5, sum5);
|
||||
sum5 = GGML_F32_VEC_FMA(sum5, ax5, ay5);
|
||||
|
||||
ax6 = GGML_F32_VEC_LOAD(x + i + 5*ggml_f32_epr);
|
||||
ay6 = GGML_F32_VEC_LOAD(y + i + 5*ggml_f32_epr);
|
||||
sum6 = GGML_F32_VEC_FMA(ax6, ay6, sum6);
|
||||
sum6 = GGML_F32_VEC_FMA(sum6, ax6, ay6);
|
||||
|
||||
ax7 = GGML_F32_VEC_LOAD(x + i + 6*ggml_f32_epr);
|
||||
ay7 = GGML_F32_VEC_LOAD(y + i + 6*ggml_f32_epr);
|
||||
sum7 = GGML_F32_VEC_FMA(ax7, ay7, sum7);
|
||||
sum7 = GGML_F32_VEC_FMA(sum7, ax7, ay7);
|
||||
|
||||
ax8 = GGML_F32_VEC_LOAD(x + i + 7*ggml_f32_epr);
|
||||
ay8 = GGML_F32_VEC_LOAD(y + i + 7*ggml_f32_epr);
|
||||
sum8 = GGML_F32_VEC_FMA(ax8, ay8, sum8);
|
||||
sum8 = GGML_F32_VEC_FMA(sum8, ax8, ay8);
|
||||
}
|
||||
// leftovers
|
||||
// Since 8 unrolls are done in above loop, leftovers lie in range [0, ggml_f32_step] which is handled in below loop
|
||||
@ -73,7 +73,7 @@ void ggml_vec_dot_f32(int n, float * GGML_RESTRICT s, size_t bs, const float * G
|
||||
for (int i = np; i < np2; i += ggml_f32_epr) {
|
||||
ax1 = GGML_F32_VEC_LOAD(x + i);
|
||||
ay1 = GGML_F32_VEC_LOAD(y + i);
|
||||
sum1 = GGML_F32_VEC_FMA(ax1, ay1, sum1);
|
||||
sum1 = GGML_F32_VEC_FMA(sum1, ax1, ay1);
|
||||
}
|
||||
// maximum number of leftover elements will be less that ggml_f32_epr. Apply predicated svmad on available elements only
|
||||
if (np2 < n) {
|
||||
|
@ -163,49 +163,49 @@ inline static void ggml_vec_mad_f32(const int n, float * GGML_RESTRICT y, const
|
||||
|
||||
ax1 = GGML_F32_VEC_LOAD(x + i);
|
||||
ay1 = GGML_F32_VEC_LOAD(y + i);
|
||||
ay1 = GGML_F32_VEC_FMA(ax1, vx, ay1);
|
||||
ay1 = GGML_F32_VEC_FMA(ay1, ax1, vx);
|
||||
|
||||
GGML_F32_VEC_STORE(y + i, ay1);
|
||||
|
||||
ax2 = GGML_F32_VEC_LOAD(x + i + 1*ggml_f32_epr);
|
||||
ay2 = GGML_F32_VEC_LOAD(y + i + 1*ggml_f32_epr);
|
||||
ay2 = GGML_F32_VEC_FMA(ax2, vx, ay2);
|
||||
ay2 = GGML_F32_VEC_FMA(ay2, ax2, vx);
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + 1*ggml_f32_epr, ay2);
|
||||
|
||||
ax3 = GGML_F32_VEC_LOAD(x + i + 2*ggml_f32_epr);
|
||||
ay3 = GGML_F32_VEC_LOAD(y + i + 2*ggml_f32_epr);
|
||||
ay3 = GGML_F32_VEC_FMA(ax3, vx, ay3);
|
||||
ay3 = GGML_F32_VEC_FMA(ay3, ax3, vx);
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + 2*ggml_f32_epr, ay3);
|
||||
|
||||
ax4 = GGML_F32_VEC_LOAD(x + i + 3*ggml_f32_epr);
|
||||
ay4 = GGML_F32_VEC_LOAD(y + i + 3*ggml_f32_epr);
|
||||
ay4 = GGML_F32_VEC_FMA(ax4, vx, ay4);
|
||||
ay4 = GGML_F32_VEC_FMA(ay4, ax4, vx);
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + 3*ggml_f32_epr, ay4);
|
||||
|
||||
ax5 = GGML_F32_VEC_LOAD(x + i + 4*ggml_f32_epr);
|
||||
ay5 = GGML_F32_VEC_LOAD(y + i + 4*ggml_f32_epr);
|
||||
ay5 = GGML_F32_VEC_FMA(ax5, vx, ay5);
|
||||
ay5 = GGML_F32_VEC_FMA(ay5, ax5, vx);
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + 4*ggml_f32_epr, ay5);
|
||||
|
||||
ax6 = GGML_F32_VEC_LOAD(x + i + 5*ggml_f32_epr);
|
||||
ay6 = GGML_F32_VEC_LOAD(y + i + 5*ggml_f32_epr);
|
||||
ay6 = GGML_F32_VEC_FMA(ax6, vx, ay6);
|
||||
ay6 = GGML_F32_VEC_FMA(ay6, ax6, vx);
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + 5*ggml_f32_epr, ay6);
|
||||
|
||||
ax7 = GGML_F32_VEC_LOAD(x + i + 6*ggml_f32_epr);
|
||||
ay7 = GGML_F32_VEC_LOAD(y + i + 6*ggml_f32_epr);
|
||||
ay7 = GGML_F32_VEC_FMA(ax7, vx, ay7);
|
||||
ay7 = GGML_F32_VEC_FMA(ay7, ax7, vx);
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + 6*ggml_f32_epr, ay7);
|
||||
|
||||
ax8 = GGML_F32_VEC_LOAD(x + i + 7*ggml_f32_epr);
|
||||
ay8 = GGML_F32_VEC_LOAD(y + i + 7*ggml_f32_epr);
|
||||
ay8 = GGML_F32_VEC_FMA(ax8, vx, ay8);
|
||||
ay8 = GGML_F32_VEC_FMA(ay8, ax8, vx);
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + 7*ggml_f32_epr, ay8);
|
||||
}
|
||||
@ -215,7 +215,7 @@ inline static void ggml_vec_mad_f32(const int n, float * GGML_RESTRICT y, const
|
||||
for (int i = np; i < np2; i += ggml_f32_epr) {
|
||||
ax1 = GGML_F32_VEC_LOAD(x + i);
|
||||
ay1 = GGML_F32_VEC_LOAD(y + i);
|
||||
ay1 = GGML_F32_VEC_FMA(ax1, vx, ay1);
|
||||
ay1 = GGML_F32_VEC_FMA(ay1, ax1, vx);
|
||||
|
||||
GGML_F32_VEC_STORE(y + i, ay1);
|
||||
}
|
||||
|
@ -3321,9 +3321,22 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
||||
case GGML_OP_COS:
|
||||
case GGML_OP_CLAMP:
|
||||
case GGML_OP_LOG:
|
||||
case GGML_OP_SSM_SCAN:
|
||||
case GGML_OP_SSM_CONV:
|
||||
return true;
|
||||
case GGML_OP_SSM_SCAN: {
|
||||
if (op->src[3]->ne[0] == 1) {
|
||||
// Mamba2
|
||||
// (kernel only supports d_state == 128 && d_head % 16 == 0)
|
||||
return op->src[0]->ne[0] == 128 && op->src[0]->ne[1] % 16 == 0;
|
||||
} else {
|
||||
// Mamba
|
||||
// (kernel only supports d_state == 16, d_head == 1, n_head % 128 == 0, n_group == 1)
|
||||
return op->src[0]->ne[0] == 16 && op->src[0]->ne[1] == 1 && op->src[0]->ne[2] % 128 == 0 && op->src[4]->ne[1] == 1;
|
||||
}
|
||||
}
|
||||
case GGML_OP_SSM_CONV: {
|
||||
// assumes d_inner % threads == 0
|
||||
return op->src[0]->ne[1] % 128 == 0;
|
||||
}
|
||||
case GGML_OP_CONT:
|
||||
return op->src[0]->type != GGML_TYPE_BF16;
|
||||
case GGML_OP_DIAG_MASK_INF:
|
||||
|
@ -4,16 +4,15 @@ template <size_t splitD, size_t N>
|
||||
__global__ void __launch_bounds__(splitD, 2)
|
||||
ssm_scan_f32(const float * __restrict__ src0, const float * __restrict__ src1, const float * __restrict__ src2,
|
||||
const float * __restrict__ src3, const float * __restrict__ src4, const float * __restrict__ src5,
|
||||
const int src0_nb1, const int src0_nb2, const int src1_nb0, const int src1_nb1, const int src1_nb2,
|
||||
const int src1_nb3, const int src2_nb0, const int src2_nb1, const int src2_nb2, const int src3_nb1,
|
||||
const int src4_nb1, const int src4_nb2, const int src5_nb1, const int src5_nb2,
|
||||
float * __restrict__ dst, const int64_t L) {
|
||||
GGML_UNUSED(src1_nb0);
|
||||
GGML_UNUSED(src2_nb0);
|
||||
const int32_t * __restrict__ src6, float * __restrict__ dst,
|
||||
const int src0_nb2, const int src0_nb3, const int src1_nb2, const int src1_nb3,
|
||||
const int src2_nb1, const int src2_nb2, const int src3_nb1,
|
||||
const int src4_nb2, const int src4_nb3, const int src5_nb2, const int src5_nb3,
|
||||
const int64_t s_off, const int64_t d_inner, const int64_t L) {
|
||||
|
||||
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
|
||||
const int bidx = blockIdx.x; // split along B
|
||||
const int bidy = blockIdx.y; // split along D
|
||||
const int bidx = blockIdx.x; // split along B (sequences)
|
||||
const int bidy = blockIdx.y; // split along D (d_inner)
|
||||
const int tid = threadIdx.x;
|
||||
const int wid = tid / 32;
|
||||
const int wtid = tid % 32;
|
||||
@ -24,23 +23,23 @@ __global__ void __launch_bounds__(splitD, 2)
|
||||
float * smem_A = smem;
|
||||
float * smem_s0 = smem_A + splitD * stride_sA;
|
||||
|
||||
const float * s0_block = (const float *) ((const char *) src0 + bidx * src0_nb2 + bidy * splitD * src0_nb1);
|
||||
const float * x_block = (const float *) ((const char *) src1 + (bidx * src1_nb2) + bidy * splitD * sizeof(float));
|
||||
const float * s0_block = (const float *) ((const char *) src0 + src6[bidx] * src0_nb3 + bidy * splitD * src0_nb2);
|
||||
const float * x_block = (const float *) ((const char *) src1 + (bidx * src1_nb3) + bidy * splitD * sizeof(float));
|
||||
const float * dt_block = (const float *) ((const char *) src2 + (bidx * src2_nb2) + bidy * splitD * sizeof(float));
|
||||
const float * A_block = (const float *) ((const char *) src3 + bidy * splitD * src3_nb1);
|
||||
const float * B_block = (const float *) ((const char *) src4 + (bidx * src4_nb2));
|
||||
const float * C_block = (const float *) ((const char *) src5 + (bidx * src5_nb2));
|
||||
float * y_block = (float *) ((char *) dst + (bidx * src1_nb2) + bidy * splitD * sizeof(float));
|
||||
float * s_block = (float *) ((char *) dst + src1_nb3 + bidx * src0_nb2 + bidy * splitD * src0_nb1);
|
||||
const float * B_block = (const float *) ((const char *) src4 + (bidx * src4_nb3));
|
||||
const float * C_block = (const float *) ((const char *) src5 + (bidx * src5_nb3));
|
||||
float * y_block = (float *) ((char *) dst + (bidx * d_inner * L * sizeof(float)) + bidy * splitD * sizeof(float));
|
||||
float * s_block = (float *) ((char *) dst + s_off + bidx * src0_nb3 + bidy * splitD * src0_nb2);
|
||||
|
||||
const int stride_s0 = src0_nb1 / sizeof(float);
|
||||
const int stride_x = src1_nb1 / sizeof(float);
|
||||
const int stride_s0 = src0_nb2 / sizeof(float);
|
||||
const int stride_x = src1_nb2 / sizeof(float);
|
||||
const int stride_dt = src2_nb1 / sizeof(float);
|
||||
const int stride_A = src3_nb1 / sizeof(float);
|
||||
const int stride_B = src4_nb1 / sizeof(float);
|
||||
const int stride_C = src5_nb1 / sizeof(float);
|
||||
const int stride_B = src4_nb2 / sizeof(float);
|
||||
const int stride_C = src5_nb2 / sizeof(float);
|
||||
const int stride_s = stride_s0;
|
||||
const int stride_y = stride_x;
|
||||
const int stride_y = d_inner;
|
||||
|
||||
// can N not be 16? for example 32?
|
||||
if (N == 16) {
|
||||
@ -84,24 +83,156 @@ __global__ void __launch_bounds__(splitD, 2)
|
||||
}
|
||||
}
|
||||
|
||||
// assumes as many threads as d_state
|
||||
template <int splitH, int d_state>
|
||||
__global__ void __launch_bounds__(d_state, 1)
|
||||
ssm_scan_f32_group(
|
||||
const float * __restrict__ src0, const float * __restrict__ src1, const float * __restrict__ src2,
|
||||
const float * __restrict__ src3, const float * __restrict__ src4, const float * __restrict__ src5,
|
||||
const int32_t * __restrict__ src6, float * __restrict__ dst,
|
||||
const int src0_nb2, const int src0_nb3, const int src1_nb2, const int src1_nb3,
|
||||
const int src2_nb1, const int src2_nb2, const int src3_nb1,
|
||||
const int src4_nb2, const int src4_nb3, const int src5_nb2, const int src5_nb3,
|
||||
const int64_t s_off, const int64_t n_head, const int64_t d_head, const int64_t n_group, const int64_t n_tok) {
|
||||
|
||||
const int head_idx = (blockIdx.x * splitH) / d_head;
|
||||
const int head_off = ((blockIdx.x * splitH) % d_head) * sizeof(float);
|
||||
const int seq_idx = blockIdx.y;
|
||||
|
||||
const int group_off = (head_idx & (n_group - 1)) * d_state * sizeof(float);
|
||||
|
||||
const float * s0_block = (const float *) ((const char *) src0 + src6[seq_idx] * src0_nb3 + head_idx * src0_nb2 + head_off * d_state);
|
||||
const float * x_block = (const float *) ((const char *) src1 + (seq_idx * src1_nb3) + blockIdx.x * splitH * sizeof(float));
|
||||
const float * dt_block = (const float *) ((const char *) src2 + (seq_idx * src2_nb2) + head_idx * sizeof(float));
|
||||
const float * A_block = (const float *) ((const char *) src3 + head_idx * src3_nb1);
|
||||
const float * B_block = (const float *) ((const char *) src4 + (seq_idx * src4_nb3) + (group_off));
|
||||
const float * C_block = (const float *) ((const char *) src5 + (seq_idx * src5_nb3) + (group_off));
|
||||
float * y_block = dst + (seq_idx * n_tok * n_head * d_head) + blockIdx.x * splitH;
|
||||
float * s_block = (float *) ((char *) dst + s_off + seq_idx * src0_nb3 + head_idx * src0_nb2 + head_off * d_state);
|
||||
|
||||
// strides across n_seq_tokens
|
||||
const int stride_x = src1_nb2 / sizeof(float);
|
||||
const int stride_dt = src2_nb1 / sizeof(float);
|
||||
const int stride_B = src4_nb2 / sizeof(float);
|
||||
const int stride_C = src5_nb2 / sizeof(float);
|
||||
const int stride_y = n_head * d_head;
|
||||
|
||||
float state[splitH];
|
||||
// for the parallel accumulation
|
||||
__shared__ float stateC[splitH * d_state];
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < splitH; j++) {
|
||||
state[j] = s0_block[j * d_state + threadIdx.x];
|
||||
}
|
||||
|
||||
for (int64_t i = 0; i < n_tok; i++) {
|
||||
// TODO: only calculate dA and dt_soft_plus once per head instead of every splitH head elements
|
||||
// TODO: only calculate B and C once per head group
|
||||
// NOTE: dt_soft_plus, dA and x_dt have the same value across threads here.
|
||||
float dt_soft_plus = dt_block[i * stride_dt];
|
||||
if (dt_soft_plus <= 20.0f) {
|
||||
dt_soft_plus = log1pf(expf(dt_soft_plus));
|
||||
}
|
||||
const float dA = expf(dt_soft_plus * A_block[0]);
|
||||
const float B = B_block[i * stride_B + threadIdx.x];
|
||||
const float C = C_block[i * stride_C + threadIdx.x];
|
||||
|
||||
// across d_head
|
||||
#pragma unroll
|
||||
for (int j = 0; j < splitH; j++) {
|
||||
const float x_dt = x_block[i * stride_x + j] * dt_soft_plus;
|
||||
|
||||
state[j] = (state[j] * dA) + (B * x_dt);
|
||||
|
||||
stateC[j * d_state + threadIdx.x] = state[j] * C;
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// parallel accumulation for stateC
|
||||
// TODO: simplify
|
||||
{
|
||||
static_assert((d_state & -d_state) == d_state, "the state size has to be a power of 2");
|
||||
static_assert((splitH & -splitH) == splitH, "splitH has to be a power of 2");
|
||||
|
||||
// reduce until w matches the warp size
|
||||
// TODO: does this work even when the physical warp size is 64?
|
||||
#pragma unroll
|
||||
for (int w = d_state; w > WARP_SIZE; w >>= 1) {
|
||||
// (assuming there are d_state threads)
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ((w >> 1) * splitH + d_state - 1) / d_state; j++) {
|
||||
// TODO: check for bank conflicts
|
||||
const int k = (threadIdx.x % (w >> 1)) + (d_state * (threadIdx.x / (w >> 1))) + j * d_state * (d_state / (w >> 1));
|
||||
stateC[k] += stateC[k + (w >> 1)];
|
||||
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
static_assert(splitH >= d_state / WARP_SIZE);
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < splitH / (d_state / WARP_SIZE); j++) {
|
||||
float y = stateC[(threadIdx.x % WARP_SIZE) + d_state * (threadIdx.x / WARP_SIZE) + j * d_state * (d_state / WARP_SIZE)];
|
||||
y = warp_reduce_sum(y);
|
||||
|
||||
// store the above accumulations
|
||||
if (threadIdx.x % WARP_SIZE == 0) {
|
||||
const int k = threadIdx.x / WARP_SIZE + j * (d_state / WARP_SIZE);
|
||||
y_block[i * stride_y + k] = y;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// write back the state
|
||||
#pragma unroll
|
||||
for (int j = 0; j < splitH; j++) {
|
||||
s_block[j * d_state + threadIdx.x] = state[j];
|
||||
}
|
||||
}
|
||||
|
||||
static void ssm_scan_f32_cuda(const float * src0, const float * src1, const float * src2, const float * src3,
|
||||
const float * src4, const float * src5, const int src0_nb1, const int src0_nb2,
|
||||
const int src1_nb0, const int src1_nb1, const int src1_nb2, const int src1_nb3,
|
||||
const int src2_nb0, const int src2_nb1, const int src2_nb2, const int src3_nb1,
|
||||
const int src4_nb1, const int src4_nb2, const int src5_nb1, const int src5_nb2,
|
||||
float * dst, const int64_t N, const int64_t D, const int64_t L, const int64_t B,
|
||||
const float * src4, const float * src5, const int32_t * src6, float * dst,
|
||||
const int src0_nb2, const int src0_nb3, const int src1_nb2, const int src1_nb3, const int src2_nb1,
|
||||
const int src2_nb2, const int src3_nb1, const int src4_nb2, const int src4_nb3, const int src5_nb2,
|
||||
const int src5_nb3, const int64_t s_off, const int64_t d_state, const int64_t head_dim,
|
||||
const int64_t n_head, const int64_t n_group, const int64_t n_tok, const int64_t n_seq,
|
||||
cudaStream_t stream) {
|
||||
const int threads = 128;
|
||||
// todo: consider D cannot be divided,does this situation exist?
|
||||
GGML_ASSERT(D % threads == 0);
|
||||
const dim3 blocks(B, (D + threads - 1) / threads, 1);
|
||||
const int smem_size = (threads * (N + 1) * 2) * sizeof(float);
|
||||
if (N == 16) {
|
||||
ssm_scan_f32<128, 16><<<blocks, threads, smem_size, stream>>>(
|
||||
src0, src1, src2, src3, src4, src5, src0_nb1, src0_nb2, src1_nb0, src1_nb1, src1_nb2, src1_nb3, src2_nb0,
|
||||
src2_nb1, src2_nb2, src3_nb1, src4_nb1, src4_nb2, src5_nb1, src5_nb2, dst, L);
|
||||
// NOTE: if you change conditions here, be sure to update the corresponding supports_op condition!
|
||||
if (src3_nb1 == sizeof(float)) {
|
||||
// Mamba-2
|
||||
if (d_state == 128) {
|
||||
GGML_ASSERT(d_state % threads == 0);
|
||||
// NOTE: can be any power of two between 4 and 64
|
||||
const int splitH = 16;
|
||||
GGML_ASSERT(head_dim % splitH == 0);
|
||||
const dim3 blocks((n_head * head_dim + (splitH - 1)) / splitH, n_seq, 1);
|
||||
ssm_scan_f32_group<16, 128><<<blocks, threads, 0, stream>>>(
|
||||
src0, src1, src2, src3, src4, src5, src6, dst,
|
||||
src0_nb2, src0_nb3, src1_nb2, src1_nb3, src2_nb1, src2_nb2, src3_nb1,
|
||||
src4_nb2, src4_nb3, src5_nb2, src5_nb3, s_off, n_head, head_dim, n_group, n_tok);
|
||||
} else {
|
||||
GGML_ABORT("doesn't support d_state!=128.");
|
||||
}
|
||||
} else {
|
||||
GGML_ABORT("doesn't support N!=16.");
|
||||
// Mamba-1
|
||||
GGML_ASSERT(n_head % threads == 0);
|
||||
GGML_ASSERT(head_dim == 1);
|
||||
GGML_ASSERT(n_group == 1);
|
||||
const dim3 blocks(n_seq, (n_head + threads - 1) / threads, 1);
|
||||
const int smem_size = (threads * (d_state + 1) * 2) * sizeof(float);
|
||||
if (d_state == 16) {
|
||||
ssm_scan_f32<128, 16><<<blocks, threads, smem_size, stream>>>(
|
||||
src0, src1, src2, src3, src4, src5, src6, dst,
|
||||
src0_nb2, src0_nb3, src1_nb2, src1_nb3, src2_nb1, src2_nb2,
|
||||
src3_nb1, src4_nb2, src4_nb3, src5_nb2, src5_nb3, s_off, n_head, n_tok);
|
||||
} else {
|
||||
GGML_ABORT("doesn't support d_state!=16.");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -112,30 +243,25 @@ void ggml_cuda_op_ssm_scan(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const struct ggml_tensor * src3 = dst->src[3]; // A
|
||||
const struct ggml_tensor * src4 = dst->src[4]; // B
|
||||
const struct ggml_tensor * src5 = dst->src[5]; // C
|
||||
|
||||
// const int64_t d_state = src0->ne[0];
|
||||
// const int64_t d_inner = src0->ne[1];
|
||||
// const int64_t l = src1->ne[1];
|
||||
// const int64_t b = src0->ne[2];
|
||||
const struct ggml_tensor * src6 = dst->src[6]; // ids
|
||||
|
||||
const int64_t nc = src0->ne[0]; // d_state
|
||||
const int64_t nr = src0->ne[1]; // d_inner
|
||||
const int64_t n_t = src1->ne[1]; // number of tokens per sequence
|
||||
const int64_t n_s = src0->ne[2]; // number of sequences in the batch
|
||||
const int64_t nr = src0->ne[1]; // head_dim or 1
|
||||
const int64_t nh = src1->ne[1]; // n_head
|
||||
const int64_t ng = src4->ne[1]; // n_group
|
||||
const int64_t n_t = src1->ne[2]; // number of tokens per sequence
|
||||
const int64_t n_s = src1->ne[3]; // number of sequences in the batch
|
||||
|
||||
GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
|
||||
const int64_t s_off = ggml_nelements(src1) * sizeof(float);
|
||||
|
||||
GGML_ASSERT(ggml_nelements(src1) + nc*nr*nh*n_s == ggml_nelements(dst));
|
||||
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
||||
GGML_ASSERT(src1->nb[0] == sizeof(float));
|
||||
GGML_ASSERT(src2->nb[0] == sizeof(float));
|
||||
GGML_ASSERT(src3->nb[0] == sizeof(float));
|
||||
GGML_ASSERT(src4->nb[0] == sizeof(float));
|
||||
GGML_ASSERT(src5->nb[0] == sizeof(float));
|
||||
// required for the dot product between s and C
|
||||
GGML_ASSERT(src0->nb[1] == src0->ne[0] * sizeof(float));
|
||||
// required for per-sequence offsets for states
|
||||
GGML_ASSERT(src0->nb[2] == src0->ne[0] * src0->ne[1] * sizeof(float));
|
||||
// required to get correct offset for state destination (i.e. src1->nb[3])
|
||||
GGML_ASSERT(src1->nb[3] == src1->ne[0] * src1->ne[1] * src1->ne[2] * sizeof(float));
|
||||
GGML_ASSERT(src6->nb[0] == sizeof(int32_t));
|
||||
|
||||
const float * src0_d = (const float *) src0->data;
|
||||
const float * src1_d = (const float *) src1->data;
|
||||
@ -143,13 +269,16 @@ void ggml_cuda_op_ssm_scan(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const float * src3_d = (const float *) src3->data;
|
||||
const float * src4_d = (const float *) src4->data;
|
||||
const float * src5_d = (const float *) src5->data;
|
||||
const int32_t * src6_d = (const int32_t *) src6->data;
|
||||
float * dst_d = (float *) dst->data;
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src6->type == GGML_TYPE_I32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
|
||||
ssm_scan_f32_cuda(src0_d, src1_d, src2_d, src3_d, src4_d, src5_d, src0->nb[1], src0->nb[2], src1->nb[0],
|
||||
src1->nb[1], src1->nb[2], src1->nb[3], src2->nb[0], src2->nb[1], src2->nb[2], src3->nb[1],
|
||||
src4->nb[1], src4->nb[2], src5->nb[1], src5->nb[2], dst_d, nc, nr, n_t, n_s, stream);
|
||||
ssm_scan_f32_cuda(src0_d, src1_d, src2_d, src3_d, src4_d, src5_d, src6_d, dst_d,
|
||||
src0->nb[2], src0->nb[3], src1->nb[2], src1->nb[3], src2->nb[1], src2->nb[2],
|
||||
src3->nb[1], src4->nb[2], src4->nb[3], src5->nb[2], src5->nb[3],
|
||||
s_off, nc, nr, nh, ng, n_t, n_s, stream);
|
||||
}
|
||||
|
@ -513,26 +513,25 @@ typedef struct {
|
||||
typedef struct {
|
||||
int64_t d_state;
|
||||
int64_t d_inner;
|
||||
int64_t n_head;
|
||||
int64_t n_group;
|
||||
int64_t n_seq_tokens;
|
||||
int64_t n_seqs;
|
||||
uint64_t nb00;
|
||||
uint64_t nb01;
|
||||
uint64_t nb02;
|
||||
uint64_t nb10;
|
||||
uint64_t nb03;
|
||||
uint64_t nb11;
|
||||
uint64_t nb12;
|
||||
uint64_t nb13;
|
||||
uint64_t nb20;
|
||||
uint64_t nb21;
|
||||
uint64_t nb22;
|
||||
uint64_t nb30;
|
||||
uint64_t nb31;
|
||||
uint64_t nb40;
|
||||
uint64_t nb41;
|
||||
uint64_t nb42;
|
||||
uint64_t nb50;
|
||||
uint64_t nb43;
|
||||
uint64_t nb51;
|
||||
uint64_t nb52;
|
||||
uint64_t nb53;
|
||||
} ggml_metal_kargs_ssm_scan;
|
||||
|
||||
typedef struct {
|
||||
|
@ -217,6 +217,7 @@ enum ggml_metal_kernel_type {
|
||||
GGML_METAL_KERNEL_TYPE_NORM,
|
||||
GGML_METAL_KERNEL_TYPE_SSM_CONV_F32,
|
||||
GGML_METAL_KERNEL_TYPE_SSM_SCAN_F32,
|
||||
GGML_METAL_KERNEL_TYPE_SSM_SCAN_F32_GROUP,
|
||||
GGML_METAL_KERNEL_TYPE_RWKV_WKV6_F32,
|
||||
GGML_METAL_KERNEL_TYPE_RWKV_WKV7_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32,
|
||||
@ -1196,6 +1197,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_NORM, norm, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SSM_CONV_F32, ssm_conv_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SSM_SCAN_F32, ssm_scan_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SSM_SCAN_F32_GROUP, ssm_scan_f32_group, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RWKV_WKV6_F32, rwkv_wkv6_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RWKV_WKV7_F32, rwkv_wkv7_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32, mul_mv_f32_f32, has_simdgroup_reduction);
|
||||
@ -2809,71 +2811,91 @@ static bool ggml_metal_encode_node(
|
||||
struct ggml_tensor * src3 = node->src[3];
|
||||
struct ggml_tensor * src4 = node->src[4];
|
||||
struct ggml_tensor * src5 = node->src[5];
|
||||
struct ggml_tensor * src6 = node->src[6];
|
||||
|
||||
GGML_ASSERT(src3);
|
||||
GGML_ASSERT(src4);
|
||||
GGML_ASSERT(src5);
|
||||
GGML_ASSERT(src6);
|
||||
|
||||
size_t offs_src3 = 0;
|
||||
size_t offs_src4 = 0;
|
||||
size_t offs_src5 = 0;
|
||||
size_t offs_src6 = 0;
|
||||
|
||||
id<MTLBuffer> id_src3 = src3 ? ggml_metal_get_buffer(src3, &offs_src3) : nil;
|
||||
id<MTLBuffer> id_src4 = src4 ? ggml_metal_get_buffer(src4, &offs_src4) : nil;
|
||||
id<MTLBuffer> id_src5 = src5 ? ggml_metal_get_buffer(src5, &offs_src5) : nil;
|
||||
id<MTLBuffer> id_src6 = src6 ? ggml_metal_get_buffer(src6, &offs_src6) : nil;
|
||||
|
||||
const int64_t ne30 = src3->ne[0]; GGML_UNUSED(ne30);
|
||||
const int64_t ne30 = src3->ne[0];
|
||||
const int64_t ne31 = src3->ne[1]; GGML_UNUSED(ne31);
|
||||
|
||||
const uint64_t nb30 = src3->nb[0];
|
||||
const uint64_t nb30 = src3->nb[0]; GGML_UNUSED(nb30);
|
||||
const uint64_t nb31 = src3->nb[1];
|
||||
|
||||
const int64_t ne40 = src4->ne[0]; GGML_UNUSED(ne40);
|
||||
const int64_t ne41 = src4->ne[1]; GGML_UNUSED(ne41);
|
||||
const int64_t ne41 = src4->ne[1];
|
||||
const int64_t ne42 = src4->ne[2]; GGML_UNUSED(ne42);
|
||||
const int64_t ne43 = src4->ne[3]; GGML_UNUSED(ne43);
|
||||
|
||||
const uint64_t nb40 = src4->nb[0];
|
||||
const uint64_t nb40 = src4->nb[0]; GGML_UNUSED(nb40);
|
||||
const uint64_t nb41 = src4->nb[1];
|
||||
const uint64_t nb42 = src4->nb[2];
|
||||
const uint64_t nb43 = src4->nb[3];
|
||||
|
||||
const int64_t ne50 = src5->ne[0]; GGML_UNUSED(ne50);
|
||||
const int64_t ne51 = src5->ne[1]; GGML_UNUSED(ne51);
|
||||
const int64_t ne52 = src5->ne[2]; GGML_UNUSED(ne52);
|
||||
const int64_t ne53 = src5->ne[3]; GGML_UNUSED(ne53);
|
||||
|
||||
const uint64_t nb50 = src5->nb[0];
|
||||
const uint64_t nb50 = src5->nb[0]; GGML_UNUSED(nb50);
|
||||
const uint64_t nb51 = src5->nb[1];
|
||||
const uint64_t nb52 = src5->nb[2];
|
||||
const uint64_t nb53 = src5->nb[3];
|
||||
|
||||
const int64_t ne60 = src6->ne[0]; GGML_UNUSED(ne60);
|
||||
|
||||
const uint64_t nb60 = src6->nb[0]; GGML_UNUSED(nb60);
|
||||
|
||||
const int64_t d_state = ne00;
|
||||
const int64_t d_inner = ne01;
|
||||
const int64_t n_seq_tokens = ne11;
|
||||
const int64_t n_seqs = ne02;
|
||||
const int64_t n_head = ne02;
|
||||
const int64_t n_group = ne41;
|
||||
const int64_t n_seq_tokens = ne12;
|
||||
const int64_t n_seqs = ne13;
|
||||
|
||||
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SSM_SCAN_F32].pipeline;
|
||||
id<MTLComputePipelineState> pipeline = nil;
|
||||
|
||||
if (ne30 == 1) {
|
||||
// Mamba-2
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SSM_SCAN_F32_GROUP].pipeline;
|
||||
} else {
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SSM_SCAN_F32].pipeline;
|
||||
}
|
||||
|
||||
ggml_metal_kargs_ssm_scan args = {
|
||||
/*.d_state =*/ d_state,
|
||||
/*.d_inner =*/ d_inner,
|
||||
/*.d_state =*/ d_state,
|
||||
/*.d_inner =*/ d_inner,
|
||||
/*.n_head =*/ n_head,
|
||||
/*.n_group =*/ n_group,
|
||||
/*.n_seq_tokens =*/ n_seq_tokens,
|
||||
/*.n_seqs =*/ n_seqs,
|
||||
/*.nb00 =*/ nb00,
|
||||
/*.nb01 =*/ nb01,
|
||||
/*.nb02 =*/ nb02,
|
||||
/*.nb10 =*/ nb10,
|
||||
/*.nb11 =*/ nb11,
|
||||
/*.nb12 =*/ nb12,
|
||||
/*.nb13 =*/ nb13,
|
||||
/*.nb20 =*/ nb20,
|
||||
/*.nb21 =*/ nb21,
|
||||
/*.nb22 =*/ nb22,
|
||||
/*.nb30 =*/ nb30,
|
||||
/*.nb31 =*/ nb31,
|
||||
/*.nb40 =*/ nb40,
|
||||
/*.nb41 =*/ nb41,
|
||||
/*.nb42 =*/ nb42,
|
||||
/*.nb50 =*/ nb50,
|
||||
/*.nb51 =*/ nb51,
|
||||
/*.nb52 =*/ nb52,
|
||||
/*.n_seqs =*/ n_seqs,
|
||||
/*.nb01 =*/ nb01,
|
||||
/*.nb02 =*/ nb02,
|
||||
/*.nb03 =*/ nb03,
|
||||
/*.nb11 =*/ nb11,
|
||||
/*.nb12 =*/ nb12,
|
||||
/*.nb13 =*/ nb13,
|
||||
/*.nb21 =*/ nb21,
|
||||
/*.nb22 =*/ nb22,
|
||||
/*.nb31 =*/ nb31,
|
||||
/*.nb41 =*/ nb41,
|
||||
/*.nb42 =*/ nb42,
|
||||
/*.nb43 =*/ nb43,
|
||||
/*.nb51 =*/ nb51,
|
||||
/*.nb52 =*/ nb52,
|
||||
/*.nb53 =*/ nb53,
|
||||
};
|
||||
|
||||
[encoder setComputePipelineState:pipeline];
|
||||
@ -2883,10 +2905,17 @@ static bool ggml_metal_encode_node(
|
||||
[encoder setBuffer:id_src3 offset:offs_src3 atIndex:3];
|
||||
[encoder setBuffer:id_src4 offset:offs_src4 atIndex:4];
|
||||
[encoder setBuffer:id_src5 offset:offs_src5 atIndex:5];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:6];
|
||||
[encoder setBytes:&args length:sizeof(args) atIndex:7];
|
||||
[encoder setBuffer:id_src6 offset:offs_src6 atIndex:6];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:7];
|
||||
[encoder setBytes:&args length:sizeof(args) atIndex:8];
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(d_inner, n_seqs, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
if (ne30 == 1) {
|
||||
// Mamba-2
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(d_inner, n_head, n_seqs) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
} else {
|
||||
GGML_ASSERT(d_inner == 1);
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(n_head, n_seqs, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_RWKV_WKV6:
|
||||
{
|
||||
|
@ -1596,7 +1596,7 @@ kernel void kernel_ssm_conv_f32(
|
||||
x[0] = sumf;
|
||||
}
|
||||
|
||||
// ref: ggml.c:ggml_compute_forward_ssm_scan_f32
|
||||
// ref: ggml.c:ggml_compute_forward_ssm_scan_f32, Mamba-1 part
|
||||
kernel void kernel_ssm_scan_f32(
|
||||
device const void * src0,
|
||||
device const void * src1,
|
||||
@ -1604,46 +1604,119 @@ kernel void kernel_ssm_scan_f32(
|
||||
device const void * src3,
|
||||
device const void * src4,
|
||||
device const void * src5,
|
||||
device const void * src6,
|
||||
device float * dst,
|
||||
constant ggml_metal_kargs_ssm_scan & args,
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint3 tpitg[[thread_position_in_threadgroup]],
|
||||
uint3 ntg[[threads_per_threadgroup]]) {
|
||||
const int64_t ir = tgpig.x;
|
||||
const int64_t i3 = tgpig.y;
|
||||
const int64_t i1 = 0;
|
||||
const int64_t ir = tgpig.x; // current head
|
||||
const int64_t i3 = tgpig.y; // current seq
|
||||
|
||||
const uint64_t nb00 = sizeof(float);
|
||||
const uint64_t nb10 = sizeof(float);
|
||||
const uint64_t nb20 = sizeof(float);
|
||||
|
||||
const int64_t nc = args.d_state;
|
||||
// const int64_t nr = args.d_inner;
|
||||
const int64_t nr = args.d_inner;
|
||||
const int64_t nh = args.n_head;
|
||||
const int64_t ng = args.n_group;
|
||||
const int64_t n_t = args.n_seq_tokens;
|
||||
// const int64_t n_s = args.n_seqs;
|
||||
|
||||
const int64_t s_off = nr * nh * n_t * args.n_seqs * sizeof(float);
|
||||
|
||||
device const int32_t * ids = (device const int32_t *) src6;
|
||||
|
||||
device const float * s0 = (device const float *) ((device const char *) src0 + ir*args.nb02 + ids[i3]*args.nb03);
|
||||
device float * s = (device float *) ((device char *) dst + ir*args.nb02 + i3*args.nb03 + s_off);
|
||||
|
||||
for (int64_t i2 = 0; i2 < n_t; ++i2) {
|
||||
device const float * s0 = (device const float *) ((device const char *) src0 + ir*args.nb01 + i3*args.nb02);
|
||||
device const float * x = (device const float *) ((device const char *) src1 + ir*args.nb10 + i2*args.nb11 + i3*args.nb12);
|
||||
device const float * dt = (device const float *) ((device const char *) src2 + ir*args.nb20 + i2*args.nb21 + i3*args.nb22);
|
||||
device const float * A = (device const float *) ((device const char *) src3 + ir*args.nb31);
|
||||
device const float * B = (device const float *) ((device const char *) src4 + i2*args.nb41 + i3*args.nb42);
|
||||
device const float * C = (device const float *) ((device const char *) src5 + i2*args.nb51 + i3*args.nb52);
|
||||
device float * y = (device float *) ((device char *) dst + ir*args.nb10 + i2*args.nb11 + i3*args.nb12); // TODO: do not use src1 strides
|
||||
device float * s = (device float *) ((device char *) dst + ir*args.nb01 + i3*args.nb02 + args.nb13);
|
||||
device const float * x = (device const float *) ((device const char *) src1 + i1*nb10 + ir*args.nb11 + i2*args.nb12 + i3*args.nb13); // {dim, nh, nt, ns}
|
||||
device const float * dt = (device const float *) ((device const char *) src2 + ir*nb20 + i2*args.nb21 + i3*args.nb22); // {nh, nt, ns}
|
||||
device const float * A = (device const float *) ((device const char *) src3 + ir*args.nb31); // {d_state, nh}
|
||||
device const float * B = (device const float *) ((device const char *) src4 + (ir & (ng - 1))*args.nb41 + i2*args.nb42 + i3*args.nb43); // {d_state, ng, nt, ns}
|
||||
device const float * C = (device const float *) ((device const char *) src5 + (ir & (ng - 1))*args.nb51 + i2*args.nb52 + i3*args.nb53); // {d_state, ng, nt, ns}
|
||||
device float * y = (device float *) ((device char *) dst + (i1 + ir*(nr) + i2*(nh*nr) + i3*(n_t*nh*nr))*nb00); // {dim, nh, nt, ns}
|
||||
|
||||
if (i2 > 0) {
|
||||
s0 = s;
|
||||
}
|
||||
|
||||
// i1 == 0
|
||||
float dt_soft_plus = dt[0] <= 20.0f ? log(1.0f + exp(dt[0])) : dt[0];
|
||||
float x_dt = x[0] * dt_soft_plus;
|
||||
const float dt_soft_plus = dt[0] <= 20.0f ? log(1.0f + exp(dt[0])) : dt[0];
|
||||
const float x_dt = x[0] * dt_soft_plus;
|
||||
float sumf = 0.0f;
|
||||
|
||||
for (int64_t i0 = 0; i0 < nc; ++i0) {
|
||||
int64_t i = i0;
|
||||
float state = (s0[i] * exp(dt_soft_plus * A[i])) + (B[i0] * x_dt);
|
||||
const int64_t i = i0 + i1*nc;
|
||||
const float state = (s0[i] * exp(dt_soft_plus * A[i0])) + (B[i0] * x_dt);
|
||||
sumf += state * C[i0];
|
||||
s[i] = state;
|
||||
}
|
||||
|
||||
y[0] = sumf;
|
||||
|
||||
// recurse
|
||||
s0 = s;
|
||||
}
|
||||
}
|
||||
|
||||
// ref: ggml.c:ggml_compute_forward_ssm_scan_f32, Mamba-2 part
|
||||
// TODO: optimize (e.g. by parallelizing over d_state)
|
||||
kernel void kernel_ssm_scan_f32_group(
|
||||
device const void * src0,
|
||||
device const void * src1,
|
||||
device const void * src2,
|
||||
device const void * src3,
|
||||
device const void * src4,
|
||||
device const void * src5,
|
||||
device const void * src6,
|
||||
device float * dst,
|
||||
constant ggml_metal_kargs_ssm_scan & args,
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint3 tpitg[[thread_position_in_threadgroup]],
|
||||
uint3 ntg[[threads_per_threadgroup]]) {
|
||||
const int64_t i1 = tgpig.x;
|
||||
const int64_t ir = tgpig.y; // current head
|
||||
const int64_t i3 = tgpig.z; // current seq
|
||||
|
||||
const uint64_t nb00 = sizeof(float);
|
||||
const uint64_t nb10 = sizeof(float);
|
||||
const uint64_t nb20 = sizeof(float);
|
||||
|
||||
const int64_t nc = args.d_state;
|
||||
const int64_t nr = args.d_inner;
|
||||
const int64_t nh = args.n_head;
|
||||
const int64_t ng = args.n_group;
|
||||
const int64_t n_t = args.n_seq_tokens;
|
||||
|
||||
const int64_t s_off = nr * nh * n_t * args.n_seqs * sizeof(float);
|
||||
|
||||
device const int32_t * ids = (device const int32_t *) src6;
|
||||
|
||||
device const float * s0 = (device const float *) ((device const char *) src0 + ir*args.nb02 + ids[i3]*args.nb03);
|
||||
device float * s = (device float *) ((device char *) dst + ir*args.nb02 + i3*args.nb03 + s_off);
|
||||
|
||||
for (int64_t i2 = 0; i2 < n_t; ++i2) {
|
||||
device const float * x = (device const float *) ((device const char *) src1 + i1*nb10 + ir*args.nb11 + i2*args.nb12 + i3*args.nb13); // {dim, nh, nt, ns}
|
||||
device const float * dt = (device const float *) ((device const char *) src2 + ir*nb20 + i2*args.nb21 + i3*args.nb22); // {nh, nt, ns}
|
||||
device const float * A = (device const float *) ((device const char *) src3 + ir*args.nb31); // {1, nh}
|
||||
device const float * B = (device const float *) ((device const char *) src4 + (ir & (ng - 1))*args.nb41 + i2*args.nb42 + i3*args.nb43); // {d_state, ng, nt, ns}
|
||||
device const float * C = (device const float *) ((device const char *) src5 + (ir & (ng - 1))*args.nb51 + i2*args.nb52 + i3*args.nb53); // {d_state, ng, nt, ns}
|
||||
device float * y = (device float *) ((device char *) dst + (i1 + ir*(nr) + i2*(nh*nr) + i3*(n_t*nh*nr))*nb00); // {dim, nh, nt, ns}
|
||||
|
||||
const float dt_soft_plus = dt[0] <= 20.0f ? log(1.0f + exp(dt[0])) : dt[0];
|
||||
const float x_dt = x[0] * dt_soft_plus;
|
||||
const float dA = exp(dt_soft_plus * A[0]);
|
||||
float sumf = 0.0f;
|
||||
|
||||
for (int64_t i0 = 0; i0 < nc; ++i0) {
|
||||
const int64_t i = i0 + i1*nc;
|
||||
const float state = (s0[i] * dA) + (B[i0] * x_dt);
|
||||
sumf += state * C[i0];
|
||||
s[i] = state;
|
||||
}
|
||||
|
||||
y[0] = sumf;
|
||||
|
||||
// recurse
|
||||
s0 = s;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -4829,7 +4829,6 @@ struct ggml_tensor * ggml_ssm_conv(
|
||||
const int64_t n_s = sx->ne[2];
|
||||
|
||||
// TODO: maybe support other strides than 1?
|
||||
// FIXME: this is always true?
|
||||
GGML_ASSERT(sx->ne[0] == d_conv - 1 + n_t);
|
||||
GGML_ASSERT(sx->ne[1] == d_inner);
|
||||
GGML_ASSERT(n_t >= 0);
|
||||
@ -4852,36 +4851,49 @@ struct ggml_tensor * ggml_ssm_scan(
|
||||
struct ggml_tensor * dt,
|
||||
struct ggml_tensor * A,
|
||||
struct ggml_tensor * B,
|
||||
struct ggml_tensor * C) {
|
||||
struct ggml_tensor * C,
|
||||
struct ggml_tensor * ids) {
|
||||
GGML_ASSERT(ggml_is_contiguous(s));
|
||||
GGML_ASSERT(ggml_is_contiguous(x));
|
||||
GGML_ASSERT(ggml_is_contiguous(dt));
|
||||
GGML_ASSERT(ggml_is_contiguous(A));
|
||||
GGML_ASSERT(ggml_is_matrix(A));
|
||||
GGML_ASSERT(ggml_is_3d(B));
|
||||
GGML_ASSERT(ggml_is_3d(s));
|
||||
GGML_ASSERT(x->nb[0] == ggml_type_size(x->type));
|
||||
GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
|
||||
GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
|
||||
GGML_ASSERT(ggml_are_same_shape(x, dt));
|
||||
GGML_ASSERT(x->nb[1] == x->ne[0]*x->nb[0]);
|
||||
GGML_ASSERT(B->nb[1] == B->ne[0]*B->nb[0]);
|
||||
GGML_ASSERT(C->nb[1] == C->ne[0]*C->nb[0]);
|
||||
GGML_ASSERT(ggml_are_same_shape(B, C));
|
||||
GGML_ASSERT(ids->type == GGML_TYPE_I32);
|
||||
|
||||
{
|
||||
const int64_t d_state = s->ne[0];
|
||||
const int64_t d_inner = s->ne[1];
|
||||
const int64_t n_seq_tokens = x->ne[1];
|
||||
const int64_t n_seqs = x->ne[2];
|
||||
const int64_t head_dim = x->ne[0];
|
||||
const int64_t n_head = x->ne[1];
|
||||
const int64_t n_seq_tokens = x->ne[2];
|
||||
const int64_t n_seqs = x->ne[3];
|
||||
|
||||
GGML_ASSERT(s->ne[2] == n_seqs);
|
||||
GGML_ASSERT(x->ne[0] == d_inner);
|
||||
GGML_ASSERT(A->ne[0] == d_state);
|
||||
GGML_ASSERT(A->ne[1] == d_inner);
|
||||
GGML_ASSERT(dt->ne[0] == n_head);
|
||||
GGML_ASSERT(dt->ne[1] == n_seq_tokens);
|
||||
GGML_ASSERT(dt->ne[2] == n_seqs);
|
||||
GGML_ASSERT(ggml_is_3d(dt));
|
||||
GGML_ASSERT(s->ne[1] == head_dim);
|
||||
GGML_ASSERT(s->ne[2] == n_head);
|
||||
GGML_ASSERT(B->ne[0] == d_state);
|
||||
GGML_ASSERT(B->ne[1] == n_seq_tokens);
|
||||
GGML_ASSERT(B->ne[2] == n_seqs);
|
||||
GGML_ASSERT(B->ne[2] == n_seq_tokens);
|
||||
GGML_ASSERT(B->ne[3] == n_seqs);
|
||||
GGML_ASSERT(ids->ne[0] == n_seqs);
|
||||
GGML_ASSERT(ggml_is_vector(ids));
|
||||
GGML_ASSERT(A->ne[1] == n_head);
|
||||
GGML_ASSERT(ggml_is_matrix(A));
|
||||
|
||||
if (A->ne[0] != 1) {
|
||||
// Mamba-1 has more granular decay factors
|
||||
GGML_ASSERT(A->ne[0] == d_state);
|
||||
}
|
||||
}
|
||||
|
||||
// concatenated y + ssm_states
|
||||
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
|
||||
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + s->ne[0]*s->ne[1]*s->ne[2]*ids->ne[0]);
|
||||
|
||||
result->op = GGML_OP_SSM_SCAN;
|
||||
result->src[0] = s;
|
||||
@ -4890,6 +4902,7 @@ struct ggml_tensor * ggml_ssm_scan(
|
||||
result->src[3] = A;
|
||||
result->src[4] = B;
|
||||
result->src[5] = C;
|
||||
result->src[6] = ids;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
Reference in New Issue
Block a user