talk-llama : sync llama.cpp

This commit is contained in:
Georgi Gerganov 2024-06-18 09:45:37 +03:00
parent 5d950c4b8d
commit e293f17d34
No known key found for this signature in database
GPG Key ID: 449E073F9DC10735
3 changed files with 259 additions and 41 deletions

View File

@ -286,6 +286,7 @@ enum llm_kv {
LLM_KV_LEADING_DENSE_BLOCK_COUNT,
LLM_KV_FEED_FORWARD_LENGTH,
LLM_KV_EXPERT_FEED_FORWARD_LENGTH,
LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH,
LLM_KV_USE_PARALLEL_RESIDUAL,
LLM_KV_TENSOR_DATA_LAYOUT,
LLM_KV_EXPERT_COUNT,
@ -364,21 +365,22 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
{ LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
{ LLM_KV_VOCAB_SIZE, "%s.vocab_size" },
{ LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
{ LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
{ LLM_KV_BLOCK_COUNT, "%s.block_count" },
{ LLM_KV_LEADING_DENSE_BLOCK_COUNT, "%s.leading_dense_block_count" },
{ LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
{ LLM_KV_EXPERT_FEED_FORWARD_LENGTH, "%s.expert_feed_forward_length" },
{ LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
{ LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
{ LLM_KV_EXPERT_COUNT, "%s.expert_count" },
{ LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" },
{ LLM_KV_EXPERT_SHARED_COUNT, "%s.expert_shared_count" },
{ LLM_KV_EXPERT_WEIGHTS_SCALE, "%s.expert_weights_scale" },
{ LLM_KV_POOLING_TYPE , "%s.pooling_type" },
{ LLM_KV_LOGIT_SCALE, "%s.logit_scale" },
{ LLM_KV_VOCAB_SIZE, "%s.vocab_size" },
{ LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
{ LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
{ LLM_KV_BLOCK_COUNT, "%s.block_count" },
{ LLM_KV_LEADING_DENSE_BLOCK_COUNT, "%s.leading_dense_block_count" },
{ LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
{ LLM_KV_EXPERT_FEED_FORWARD_LENGTH, "%s.expert_feed_forward_length" },
{ LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, "%s.expert_shared_feed_forward_length" },
{ LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
{ LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
{ LLM_KV_EXPERT_COUNT, "%s.expert_count" },
{ LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" },
{ LLM_KV_EXPERT_SHARED_COUNT, "%s.expert_shared_count" },
{ LLM_KV_EXPERT_WEIGHTS_SCALE, "%s.expert_weights_scale" },
{ LLM_KV_POOLING_TYPE , "%s.pooling_type" },
{ LLM_KV_LOGIT_SCALE, "%s.logit_scale" },
{ LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
{ LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
@ -1278,6 +1280,126 @@ struct no_init {
};
struct llama_file {
#if defined(_WIN32)
// use FILE * so we don't have to re-open the file to mmap
FILE * fp;
HANDLE fp_win32;
size_t size;
private:
std::string GetErrorMessageWin32(DWORD error_code) const {
std::string ret;
LPSTR lpMsgBuf = NULL;
DWORD bufLen = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
NULL, error_code, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&lpMsgBuf, 0, NULL);
if (!bufLen) {
ret = format("Win32 error code: %s", error_code);
} else {
ret = lpMsgBuf;
LocalFree(lpMsgBuf);
}
return ret;
}
public:
llama_file(const char * fname, const char * mode) {
fp = ggml_fopen(fname, mode);
if (fp == NULL) {
throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
}
fp_win32 = (HANDLE) _get_osfhandle(_fileno(fp));
seek(0, SEEK_END);
size = tell();
seek(0, SEEK_SET);
}
size_t tell() const {
// SetFilePointerEx returns the current position when seeking relative 0 bytes
LARGE_INTEGER li;
li.QuadPart = 0;
BOOL ret = SetFilePointerEx(fp_win32, li, &li, FILE_CURRENT);
if (!ret) {
throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
}
return li.QuadPart;
}
void seek(size_t offset, int whence) const {
// no need to convert SEEK_* to FILE_*. The enums are the same.
// Still, keep static asserts to avoid failures in the future.
static_assert(SEEK_SET == FILE_BEGIN, "SEEK_SET != FILE_BEGIN");
static_assert(SEEK_CUR == FILE_CURRENT, "SEEK_CUR != FILE_CURRENT");
static_assert(SEEK_END == FILE_END, "SEEK_END != FILE_END");
LARGE_INTEGER li;
li.QuadPart = offset;
BOOL ret = SetFilePointerEx(fp_win32, li, NULL, whence);
if (!ret) {
throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
}
}
void read_raw(void * ptr, size_t len) const {
// On Win32 ReadFile is significant faster than fread which is again significant faster than std::fstream. Thus
// use the Win32 API to do file io instead of the C/C++ library functions.
// There are conditions under which ReadFile cannot read chunks >64MB.
// Thus split the operation into smaller chunks if len exceeds this limit.
size_t bytes_read = 0;
while (bytes_read < len) {
size_t chunk_size = std::min<size_t>(len - bytes_read, 64*1024*1024);
DWORD chunk_read = 0;
BOOL result = ReadFile(fp_win32, reinterpret_cast<char*>(ptr) + bytes_read, chunk_size, &chunk_read, NULL);
if (!result) {
throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
}
if (chunk_read < chunk_size || chunk_read == 0) {
throw std::runtime_error("unexpectedly reached end of file");
}
bytes_read += chunk_read;
} ;
}
uint32_t read_u32() const {
uint32_t val;
read_raw(&val, sizeof(val));
return val;
}
void write_raw(const void * ptr, size_t len) const {
// There are conditions under which WriteFile cannot write chunks >64MB.
// Thus split the operation into smaller chunks if len exceeds this limit.
size_t bytes_written = 0;
while (bytes_written < len) {
size_t chunk_size = std::min<size_t>(len - bytes_written, 64*1024*1024);
DWORD chunk_written = 0;
BOOL result = WriteFile(fp_win32, reinterpret_cast<char const*>(ptr) + bytes_written, chunk_size, &chunk_written, NULL);
if (!result) {
throw std::runtime_error(format("write error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
}
if (chunk_written < chunk_size || chunk_written == 0) {
throw std::runtime_error("unexpectedly failed to write bytes");
}
bytes_written += chunk_written;
}
}
void write_u32(std::uint32_t val) const {
write_raw(&val, sizeof(val));
}
~llama_file() {
if (fp) {
std::fclose(fp);
}
}
#else
// use FILE * so we don't have to re-open the file to mmap
FILE * fp;
size_t size;
@ -1298,7 +1420,10 @@ struct llama_file {
#else
long ret = std::ftell(fp);
#endif
GGML_ASSERT(ret != -1); // this really shouldn't fail
if (ret == -1) {
throw std::runtime_error(format("ftell error: %s", strerror(errno)));
}
return (size_t) ret;
}
@ -1308,7 +1433,9 @@ struct llama_file {
#else
int ret = std::fseek(fp, (long) offset, whence);
#endif
GGML_ASSERT(ret == 0); // same
if (ret != 0) {
throw std::runtime_error(format("seek error: %s", strerror(errno)));
}
}
void read_raw(void * ptr, size_t len) const {
@ -1351,6 +1478,7 @@ struct llama_file {
std::fclose(fp);
}
}
#endif
};
using llama_files = std::vector<std::unique_ptr<llama_file>>;
@ -1844,6 +1972,7 @@ struct llama_hparams {
uint32_t n_lora_q = 0;
uint32_t n_lora_kv = 0;
uint32_t n_ff_exp = 0;
uint32_t n_ff_shexp = 0;
uint32_t n_expert_shared = 0;
float expert_weights_scale = 0.0;
@ -1892,6 +2021,7 @@ struct llama_hparams {
if (this->n_lora_q != other.n_lora_q) return true;
if (this->n_lora_kv != other.n_lora_kv) return true;
if (this->n_ff_exp != other.n_ff_exp) return true;
if (this->n_ff_shexp != other.n_ff_shexp) return true;
if (this->n_expert_shared != other.n_expert_shared) return true;
if (this->rope_finetuned != other.rope_finetuned) return true;
@ -3721,6 +3851,44 @@ struct llama_model_loader {
std::vector<no_init<uint8_t>> read_buf;
std::vector<std::future<std::pair<ggml_tensor *, bool>>> validation_result;
#if defined(GGML_USE_CUDA)
// 4 staging buffers for async uploads, each sized 1MB seems to be a good default for single NVMe drives.
// NVMe raid configurations might require more / larger buffers.
constexpr size_t num_buffers = 4;
constexpr size_t buffer_size = 1 * 1024 * 1024; // 1MB
std::vector<ggml_backend_buffer_t> host_buffers;
std::vector<void*> host_ptrs;
std::vector<ggml_backend_event_t> events;
size_t buffer_idx = 0; // buffer to use for async loads
ggml_backend_t cuda_backend = nullptr;
if (!use_mmap && !check_tensors) {
// When not using mmaped io use async uploads from pinned memory to GPU memory.
// First determine if the CUDA backend is active, and if so, determine the device ID.
ggml_backend_buffer_t buf = bufs_mmap.count(0) ? bufs_mmap.at(0) : nullptr;
if (buf) {
ggml_backend_buffer_type_t buffer_type = ggml_backend_buffer_get_type(buf);
for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) {
auto * cuda_buffer_type = ggml_backend_cuda_buffer_type(i);
if (buffer_type == cuda_buffer_type) {
cuda_backend = ggml_backend_cuda_init(i);
break;
}
}
}
// If the cuda backend is active create pinned memory buffers and events for synchronisation.
if (cuda_backend) {
for (size_t idx = 0; idx < num_buffers; ++idx) {
host_buffers.emplace_back(ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), buffer_size));
host_ptrs.emplace_back(ggml_backend_buffer_get_base(host_buffers[idx]));
events.emplace_back(ggml_backend_event_new(cuda_backend));
}
}
}
#endif
for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
const auto * weight = get_weight(ggml_get_name(cur));
if (weight == nullptr) {
@ -3776,12 +3944,36 @@ struct llama_model_loader {
}));
}
} else {
read_buf.resize(n_size);
file->seek(weight->offs, SEEK_SET);
file->read_raw(read_buf.data(), n_size);
ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size);
if (check_tensors && !ggml_validate_row_data(cur->type, read_buf.data(), n_size)) {
throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
#if defined(GGML_USE_CUDA)
// If cuda_backend is valid load the tensor in chunks to pinned memory and upload the buffers asynchronously to the GPU.
if (cuda_backend) {
file->seek(weight->offs, SEEK_SET);
size_t bytes_read = 0;
while (bytes_read < n_size) {
size_t read_iteration = std::min<size_t>(buffer_size, n_size - bytes_read);
ggml_backend_event_synchronize(events[buffer_idx]);
file->read_raw(host_ptrs[buffer_idx], read_iteration);
ggml_backend_tensor_set_async(cuda_backend, cur, host_ptrs[buffer_idx], bytes_read, read_iteration);
ggml_backend_event_record(events[buffer_idx]);
bytes_read += read_iteration;
++buffer_idx;
buffer_idx %= num_buffers;
}
}
else
#endif
{
read_buf.resize(n_size);
file->seek(weight->offs, SEEK_SET);
file->read_raw(read_buf.data(), n_size);
ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size);
if (check_tensors && !ggml_validate_row_data(cur->type, read_buf.data(), n_size)) {
throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
}
}
}
}
@ -3789,6 +3981,18 @@ struct llama_model_loader {
size_done += n_size;
}
#if defined(GGML_USE_CUDA)
// free temporary resources used for async cuda uploads
if (cuda_backend) {
for (size_t idx = 0; idx < num_buffers;++idx) {
ggml_backend_event_synchronize(events[idx]);
ggml_backend_event_free(events[idx]);
ggml_backend_buffer_free(host_buffers[idx]);
}
ggml_backend_free(cuda_backend);
}
#endif
// check validation results
bool validation_failed = false;
for (auto & future : validation_result) {
@ -4255,6 +4459,9 @@ static void llm_load_hparams(
} break;
case LLM_ARCH_QWEN2MOE:
{
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
case 24: model.type = e_model::MODEL_A2_7B; break;
@ -5040,6 +5247,11 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
LLAMA_LOG_INFO("%s: rope_yarn_log_mul = %.4f\n", __func__, hparams.rope_yarn_log_mul);
}
if (model.arch == LLM_ARCH_QWEN2MOE) {
LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
}
}
// Returns false if cancelled by progress_callback
@ -5183,7 +5395,7 @@ static bool llm_load_tensors(
// create tensors for the weights
{
const int64_t n_embd = hparams.n_embd;
const int64_t n_embd_head = n_embd / hparams.n_head;
const int64_t n_embd_head = (hparams.n_head == 0) ? 0 : n_embd / hparams.n_head;
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
const int64_t n_embd_gqa = n_embd_v_gqa;
@ -5826,16 +6038,17 @@ static bool llm_load_tensors(
GGML_ASSERT(hparams.n_expert_used > 0);
// MoE branch
auto n_ff_exp = n_ff / hparams.n_expert_used;
auto n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / hparams.n_expert_used;
layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
// Shared expert branch
auto n_ff_shexp = hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff;
layer.ffn_gate_inp_shexp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd});
layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff});
layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff, n_embd});
layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff});
layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_shexp});
layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd});
layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_shexp});
}
} break;
case LLM_ARCH_PHI2:
@ -13246,7 +13459,7 @@ struct llm_tokenizer_wpm {
const std::vector<uint32_t> cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text));
std::vector<std::string> words(1, "");
for (const char32_t cpt : cpts_nfd) {
for (const uint32_t cpt : cpts_nfd) {
const auto flags = unicode_cpt_flags(cpt);
if (flags.is_whitespace) {
@ -16060,6 +16273,11 @@ struct llama_context * llama_new_context_with_model(
params.flash_attn = false;
}
if (params.flash_attn && model->hparams.n_embd_head_k != model->hparams.n_embd_head_v) {
LLAMA_LOG_WARN("%s: flash_attn requires n_embd_head_k == n_embd_head_v - forcing off\n", __func__);
params.flash_attn = false;
}
if (params.type_v != GGML_TYPE_F16 && !params.flash_attn) {
LLAMA_LOG_ERROR("%s: V cache quantization requires flash_attn\n", __func__);
return nullptr;

View File

@ -226,7 +226,7 @@ static std::vector<size_t> unicode_regex_split_custom_gpt2(const std::string & t
assert(offset_end <= cpts.size());
start = offset_end;
auto _get_cpt = [&] (const size_t pos) -> char32_t {
auto _get_cpt = [&] (const size_t pos) -> uint32_t {
return (offset_ini <= pos && pos < offset_end) ? cpts[pos] : 0;
};
@ -253,18 +253,18 @@ static std::vector<size_t> unicode_regex_split_custom_gpt2(const std::string & t
};
for (size_t pos = offset_ini; pos < offset_end; /*pos++*/ ) {
const char32_t cpt = _get_cpt(pos);
const uint32_t cpt = _get_cpt(pos);
const auto flags = _get_flags(pos);
// regex: 's|'t|'re|'ve|'m|'ll|'d
if (cpt == '\'' && pos+1 < offset_end) {
char32_t cpt_next = _get_cpt(pos+1);
uint32_t cpt_next = _get_cpt(pos+1);
if (cpt_next == 's' || cpt_next == 't' || cpt_next == 'm' || cpt_next == 'd') {
pos += _add_token(pos+2);
continue;
}
if (pos+2 < offset_end) {
char32_t cpt_next_next = _get_cpt(pos+2);
uint32_t cpt_next_next = _get_cpt(pos+2);
if ((cpt_next == 'r' && cpt_next_next == 'e') ||
(cpt_next == 'v' && cpt_next_next == 'e') ||
(cpt_next == 'l' && cpt_next_next == 'l')) {
@ -344,7 +344,7 @@ static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string &
assert(offset_end <= cpts.size());
start = offset_end;
auto _get_cpt = [&] (const size_t pos) -> char32_t {
auto _get_cpt = [&] (const size_t pos) -> uint32_t {
return (offset_ini <= pos && pos < offset_end) ? cpts[pos] : 0;
};
@ -371,18 +371,18 @@ static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string &
};
for (size_t pos = offset_ini; pos < offset_end; /*pos++*/ ) {
const char32_t cpt = _get_cpt(pos);
const uint32_t cpt = _get_cpt(pos);
const auto flags = _get_flags(pos);
// regex: (?i:'s|'t|'re|'ve|'m|'ll|'d) // case insensitive
if (cpt == '\'' && pos+1 < offset_end) {
char32_t cpt_next = unicode_tolower(_get_cpt(pos+1));
uint32_t cpt_next = unicode_tolower(_get_cpt(pos+1));
if (cpt_next == 's' || cpt_next == 't' || cpt_next == 'm' || cpt_next == 'd') {
pos += _add_token(pos+2);
continue;
}
if (pos+2 < offset_end) {
char32_t cpt_next_next = unicode_tolower(_get_cpt(pos+2));
uint32_t cpt_next_next = unicode_tolower(_get_cpt(pos+2));
if ((cpt_next == 'r' && cpt_next_next == 'e') ||
(cpt_next == 'v' && cpt_next_next == 'e') ||
(cpt_next == 'l' && cpt_next_next == 'l')) {
@ -424,7 +424,7 @@ static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string &
while (!(flags2.is_whitespace || flags2.is_letter || flags2.is_number || flags2.is_undefined)) {
flags2 = _get_flags(++pos);
}
char32_t cpt2 = _get_cpt(pos);
uint32_t cpt2 = _get_cpt(pos);
while (cpt2 == '\r' || cpt2 == '\n') {
cpt2 = _get_cpt(++pos);
}
@ -435,7 +435,7 @@ static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string &
size_t num_whitespaces = 0;
size_t last_end_r_or_n = 0;
while (_get_flags(pos+num_whitespaces).is_whitespace) {
char32_t cpt2 = _get_cpt(pos+num_whitespaces);
uint32_t cpt2 = _get_cpt(pos+num_whitespaces);
if (cpt2 == '\r' || cpt2 == '\n') {
last_end_r_or_n = pos + num_whitespaces + 1;
}
@ -626,7 +626,7 @@ uint8_t unicode_utf8_to_byte(const std::string & utf8) {
return map.at(utf8);
}
char32_t unicode_tolower(char32_t cp) {
uint32_t unicode_tolower(uint32_t cp) {
auto it = unicode_map_lowercase.find(cp);
return it == unicode_map_lowercase.end() ? cp : it->second;
}

View File

@ -58,6 +58,6 @@ codepoint_flags unicode_cpt_flags(const std::string & utf8);
std::string unicode_byte_to_utf8(uint8_t byte);
uint8_t unicode_utf8_to_byte(const std::string & utf8);
char32_t unicode_tolower(char32_t cp);
uint32_t unicode_tolower(uint32_t cp);
std::vector<std::string> unicode_regex_split(const std::string & text, const std::vector<std::string> & regex_exprs);