mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2024-11-07 08:34:37 +01:00
talk-llama : sync llama.cpp
This commit is contained in:
parent
5d950c4b8d
commit
e293f17d34
@ -286,6 +286,7 @@ enum llm_kv {
|
||||
LLM_KV_LEADING_DENSE_BLOCK_COUNT,
|
||||
LLM_KV_FEED_FORWARD_LENGTH,
|
||||
LLM_KV_EXPERT_FEED_FORWARD_LENGTH,
|
||||
LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH,
|
||||
LLM_KV_USE_PARALLEL_RESIDUAL,
|
||||
LLM_KV_TENSOR_DATA_LAYOUT,
|
||||
LLM_KV_EXPERT_COUNT,
|
||||
@ -371,6 +372,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
|
||||
{ LLM_KV_LEADING_DENSE_BLOCK_COUNT, "%s.leading_dense_block_count" },
|
||||
{ LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
|
||||
{ LLM_KV_EXPERT_FEED_FORWARD_LENGTH, "%s.expert_feed_forward_length" },
|
||||
{ LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, "%s.expert_shared_feed_forward_length" },
|
||||
{ LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
|
||||
{ LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
|
||||
{ LLM_KV_EXPERT_COUNT, "%s.expert_count" },
|
||||
@ -1278,6 +1280,126 @@ struct no_init {
|
||||
};
|
||||
|
||||
struct llama_file {
|
||||
|
||||
#if defined(_WIN32)
|
||||
// use FILE * so we don't have to re-open the file to mmap
|
||||
FILE * fp;
|
||||
HANDLE fp_win32;
|
||||
size_t size;
|
||||
|
||||
private:
|
||||
std::string GetErrorMessageWin32(DWORD error_code) const {
|
||||
std::string ret;
|
||||
LPSTR lpMsgBuf = NULL;
|
||||
DWORD bufLen = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
|
||||
NULL, error_code, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&lpMsgBuf, 0, NULL);
|
||||
if (!bufLen) {
|
||||
ret = format("Win32 error code: %s", error_code);
|
||||
} else {
|
||||
ret = lpMsgBuf;
|
||||
LocalFree(lpMsgBuf);
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
llama_file(const char * fname, const char * mode) {
|
||||
fp = ggml_fopen(fname, mode);
|
||||
if (fp == NULL) {
|
||||
throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
|
||||
}
|
||||
fp_win32 = (HANDLE) _get_osfhandle(_fileno(fp));
|
||||
seek(0, SEEK_END);
|
||||
size = tell();
|
||||
seek(0, SEEK_SET);
|
||||
}
|
||||
|
||||
size_t tell() const {
|
||||
// SetFilePointerEx returns the current position when seeking relative 0 bytes
|
||||
LARGE_INTEGER li;
|
||||
li.QuadPart = 0;
|
||||
BOOL ret = SetFilePointerEx(fp_win32, li, &li, FILE_CURRENT);
|
||||
if (!ret) {
|
||||
throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
|
||||
}
|
||||
|
||||
return li.QuadPart;
|
||||
}
|
||||
|
||||
void seek(size_t offset, int whence) const {
|
||||
// no need to convert SEEK_* to FILE_*. The enums are the same.
|
||||
// Still, keep static asserts to avoid failures in the future.
|
||||
static_assert(SEEK_SET == FILE_BEGIN, "SEEK_SET != FILE_BEGIN");
|
||||
static_assert(SEEK_CUR == FILE_CURRENT, "SEEK_CUR != FILE_CURRENT");
|
||||
static_assert(SEEK_END == FILE_END, "SEEK_END != FILE_END");
|
||||
|
||||
LARGE_INTEGER li;
|
||||
li.QuadPart = offset;
|
||||
BOOL ret = SetFilePointerEx(fp_win32, li, NULL, whence);
|
||||
if (!ret) {
|
||||
throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
|
||||
}
|
||||
}
|
||||
|
||||
void read_raw(void * ptr, size_t len) const {
|
||||
// On Win32 ReadFile is significant faster than fread which is again significant faster than std::fstream. Thus
|
||||
// use the Win32 API to do file io instead of the C/C++ library functions.
|
||||
|
||||
// There are conditions under which ReadFile cannot read chunks >64MB.
|
||||
// Thus split the operation into smaller chunks if len exceeds this limit.
|
||||
size_t bytes_read = 0;
|
||||
while (bytes_read < len) {
|
||||
size_t chunk_size = std::min<size_t>(len - bytes_read, 64*1024*1024);
|
||||
DWORD chunk_read = 0;
|
||||
BOOL result = ReadFile(fp_win32, reinterpret_cast<char*>(ptr) + bytes_read, chunk_size, &chunk_read, NULL);
|
||||
if (!result) {
|
||||
throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
|
||||
}
|
||||
if (chunk_read < chunk_size || chunk_read == 0) {
|
||||
throw std::runtime_error("unexpectedly reached end of file");
|
||||
}
|
||||
|
||||
bytes_read += chunk_read;
|
||||
} ;
|
||||
}
|
||||
|
||||
uint32_t read_u32() const {
|
||||
uint32_t val;
|
||||
read_raw(&val, sizeof(val));
|
||||
return val;
|
||||
}
|
||||
|
||||
void write_raw(const void * ptr, size_t len) const {
|
||||
// There are conditions under which WriteFile cannot write chunks >64MB.
|
||||
// Thus split the operation into smaller chunks if len exceeds this limit.
|
||||
size_t bytes_written = 0;
|
||||
while (bytes_written < len) {
|
||||
size_t chunk_size = std::min<size_t>(len - bytes_written, 64*1024*1024);
|
||||
DWORD chunk_written = 0;
|
||||
BOOL result = WriteFile(fp_win32, reinterpret_cast<char const*>(ptr) + bytes_written, chunk_size, &chunk_written, NULL);
|
||||
if (!result) {
|
||||
throw std::runtime_error(format("write error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
|
||||
}
|
||||
if (chunk_written < chunk_size || chunk_written == 0) {
|
||||
throw std::runtime_error("unexpectedly failed to write bytes");
|
||||
}
|
||||
|
||||
bytes_written += chunk_written;
|
||||
}
|
||||
}
|
||||
|
||||
void write_u32(std::uint32_t val) const {
|
||||
write_raw(&val, sizeof(val));
|
||||
}
|
||||
|
||||
~llama_file() {
|
||||
if (fp) {
|
||||
std::fclose(fp);
|
||||
}
|
||||
}
|
||||
#else
|
||||
// use FILE * so we don't have to re-open the file to mmap
|
||||
FILE * fp;
|
||||
size_t size;
|
||||
@ -1298,7 +1420,10 @@ struct llama_file {
|
||||
#else
|
||||
long ret = std::ftell(fp);
|
||||
#endif
|
||||
GGML_ASSERT(ret != -1); // this really shouldn't fail
|
||||
if (ret == -1) {
|
||||
throw std::runtime_error(format("ftell error: %s", strerror(errno)));
|
||||
}
|
||||
|
||||
return (size_t) ret;
|
||||
}
|
||||
|
||||
@ -1308,7 +1433,9 @@ struct llama_file {
|
||||
#else
|
||||
int ret = std::fseek(fp, (long) offset, whence);
|
||||
#endif
|
||||
GGML_ASSERT(ret == 0); // same
|
||||
if (ret != 0) {
|
||||
throw std::runtime_error(format("seek error: %s", strerror(errno)));
|
||||
}
|
||||
}
|
||||
|
||||
void read_raw(void * ptr, size_t len) const {
|
||||
@ -1351,6 +1478,7 @@ struct llama_file {
|
||||
std::fclose(fp);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
};
|
||||
using llama_files = std::vector<std::unique_ptr<llama_file>>;
|
||||
|
||||
@ -1844,6 +1972,7 @@ struct llama_hparams {
|
||||
uint32_t n_lora_q = 0;
|
||||
uint32_t n_lora_kv = 0;
|
||||
uint32_t n_ff_exp = 0;
|
||||
uint32_t n_ff_shexp = 0;
|
||||
uint32_t n_expert_shared = 0;
|
||||
float expert_weights_scale = 0.0;
|
||||
|
||||
@ -1892,6 +2021,7 @@ struct llama_hparams {
|
||||
if (this->n_lora_q != other.n_lora_q) return true;
|
||||
if (this->n_lora_kv != other.n_lora_kv) return true;
|
||||
if (this->n_ff_exp != other.n_ff_exp) return true;
|
||||
if (this->n_ff_shexp != other.n_ff_shexp) return true;
|
||||
if (this->n_expert_shared != other.n_expert_shared) return true;
|
||||
|
||||
if (this->rope_finetuned != other.rope_finetuned) return true;
|
||||
@ -3721,6 +3851,44 @@ struct llama_model_loader {
|
||||
std::vector<no_init<uint8_t>> read_buf;
|
||||
std::vector<std::future<std::pair<ggml_tensor *, bool>>> validation_result;
|
||||
|
||||
#if defined(GGML_USE_CUDA)
|
||||
// 4 staging buffers for async uploads, each sized 1MB seems to be a good default for single NVMe drives.
|
||||
// NVMe raid configurations might require more / larger buffers.
|
||||
constexpr size_t num_buffers = 4;
|
||||
constexpr size_t buffer_size = 1 * 1024 * 1024; // 1MB
|
||||
|
||||
std::vector<ggml_backend_buffer_t> host_buffers;
|
||||
std::vector<void*> host_ptrs;
|
||||
std::vector<ggml_backend_event_t> events;
|
||||
size_t buffer_idx = 0; // buffer to use for async loads
|
||||
|
||||
ggml_backend_t cuda_backend = nullptr;
|
||||
if (!use_mmap && !check_tensors) {
|
||||
// When not using mmaped io use async uploads from pinned memory to GPU memory.
|
||||
// First determine if the CUDA backend is active, and if so, determine the device ID.
|
||||
ggml_backend_buffer_t buf = bufs_mmap.count(0) ? bufs_mmap.at(0) : nullptr;
|
||||
if (buf) {
|
||||
ggml_backend_buffer_type_t buffer_type = ggml_backend_buffer_get_type(buf);
|
||||
for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) {
|
||||
auto * cuda_buffer_type = ggml_backend_cuda_buffer_type(i);
|
||||
if (buffer_type == cuda_buffer_type) {
|
||||
cuda_backend = ggml_backend_cuda_init(i);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// If the cuda backend is active create pinned memory buffers and events for synchronisation.
|
||||
if (cuda_backend) {
|
||||
for (size_t idx = 0; idx < num_buffers; ++idx) {
|
||||
host_buffers.emplace_back(ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), buffer_size));
|
||||
host_ptrs.emplace_back(ggml_backend_buffer_get_base(host_buffers[idx]));
|
||||
events.emplace_back(ggml_backend_event_new(cuda_backend));
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
|
||||
const auto * weight = get_weight(ggml_get_name(cur));
|
||||
if (weight == nullptr) {
|
||||
@ -3776,6 +3944,29 @@ struct llama_model_loader {
|
||||
}));
|
||||
}
|
||||
} else {
|
||||
#if defined(GGML_USE_CUDA)
|
||||
// If cuda_backend is valid load the tensor in chunks to pinned memory and upload the buffers asynchronously to the GPU.
|
||||
if (cuda_backend) {
|
||||
file->seek(weight->offs, SEEK_SET);
|
||||
|
||||
size_t bytes_read = 0;
|
||||
|
||||
while (bytes_read < n_size) {
|
||||
size_t read_iteration = std::min<size_t>(buffer_size, n_size - bytes_read);
|
||||
|
||||
ggml_backend_event_synchronize(events[buffer_idx]);
|
||||
file->read_raw(host_ptrs[buffer_idx], read_iteration);
|
||||
ggml_backend_tensor_set_async(cuda_backend, cur, host_ptrs[buffer_idx], bytes_read, read_iteration);
|
||||
ggml_backend_event_record(events[buffer_idx]);
|
||||
|
||||
bytes_read += read_iteration;
|
||||
++buffer_idx;
|
||||
buffer_idx %= num_buffers;
|
||||
}
|
||||
}
|
||||
else
|
||||
#endif
|
||||
{
|
||||
read_buf.resize(n_size);
|
||||
file->seek(weight->offs, SEEK_SET);
|
||||
file->read_raw(read_buf.data(), n_size);
|
||||
@ -3785,10 +3976,23 @@ struct llama_model_loader {
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
size_done += n_size;
|
||||
}
|
||||
|
||||
#if defined(GGML_USE_CUDA)
|
||||
// free temporary resources used for async cuda uploads
|
||||
if (cuda_backend) {
|
||||
for (size_t idx = 0; idx < num_buffers;++idx) {
|
||||
ggml_backend_event_synchronize(events[idx]);
|
||||
ggml_backend_event_free(events[idx]);
|
||||
ggml_backend_buffer_free(host_buffers[idx]);
|
||||
}
|
||||
ggml_backend_free(cuda_backend);
|
||||
}
|
||||
#endif
|
||||
|
||||
// check validation results
|
||||
bool validation_failed = false;
|
||||
for (auto & future : validation_result) {
|
||||
@ -4255,6 +4459,9 @@ static void llm_load_hparams(
|
||||
} break;
|
||||
case LLM_ARCH_QWEN2MOE:
|
||||
{
|
||||
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
|
||||
ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
|
||||
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
switch (hparams.n_layer) {
|
||||
case 24: model.type = e_model::MODEL_A2_7B; break;
|
||||
@ -5040,6 +5247,11 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
|
||||
LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
|
||||
LLAMA_LOG_INFO("%s: rope_yarn_log_mul = %.4f\n", __func__, hparams.rope_yarn_log_mul);
|
||||
}
|
||||
|
||||
if (model.arch == LLM_ARCH_QWEN2MOE) {
|
||||
LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
|
||||
LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
|
||||
}
|
||||
}
|
||||
|
||||
// Returns false if cancelled by progress_callback
|
||||
@ -5183,7 +5395,7 @@ static bool llm_load_tensors(
|
||||
// create tensors for the weights
|
||||
{
|
||||
const int64_t n_embd = hparams.n_embd;
|
||||
const int64_t n_embd_head = n_embd / hparams.n_head;
|
||||
const int64_t n_embd_head = (hparams.n_head == 0) ? 0 : n_embd / hparams.n_head;
|
||||
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
|
||||
const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
|
||||
const int64_t n_embd_gqa = n_embd_v_gqa;
|
||||
@ -5826,16 +6038,17 @@ static bool llm_load_tensors(
|
||||
GGML_ASSERT(hparams.n_expert_used > 0);
|
||||
|
||||
// MoE branch
|
||||
auto n_ff_exp = n_ff / hparams.n_expert_used;
|
||||
auto n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / hparams.n_expert_used;
|
||||
layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
|
||||
layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
|
||||
layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
|
||||
|
||||
// Shared expert branch
|
||||
auto n_ff_shexp = hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff;
|
||||
layer.ffn_gate_inp_shexp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd});
|
||||
layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff});
|
||||
layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff, n_embd});
|
||||
layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff});
|
||||
layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_shexp});
|
||||
layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd});
|
||||
layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_shexp});
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_PHI2:
|
||||
@ -13246,7 +13459,7 @@ struct llm_tokenizer_wpm {
|
||||
const std::vector<uint32_t> cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text));
|
||||
std::vector<std::string> words(1, "");
|
||||
|
||||
for (const char32_t cpt : cpts_nfd) {
|
||||
for (const uint32_t cpt : cpts_nfd) {
|
||||
const auto flags = unicode_cpt_flags(cpt);
|
||||
|
||||
if (flags.is_whitespace) {
|
||||
@ -16060,6 +16273,11 @@ struct llama_context * llama_new_context_with_model(
|
||||
params.flash_attn = false;
|
||||
}
|
||||
|
||||
if (params.flash_attn && model->hparams.n_embd_head_k != model->hparams.n_embd_head_v) {
|
||||
LLAMA_LOG_WARN("%s: flash_attn requires n_embd_head_k == n_embd_head_v - forcing off\n", __func__);
|
||||
params.flash_attn = false;
|
||||
}
|
||||
|
||||
if (params.type_v != GGML_TYPE_F16 && !params.flash_attn) {
|
||||
LLAMA_LOG_ERROR("%s: V cache quantization requires flash_attn\n", __func__);
|
||||
return nullptr;
|
||||
|
@ -226,7 +226,7 @@ static std::vector<size_t> unicode_regex_split_custom_gpt2(const std::string & t
|
||||
assert(offset_end <= cpts.size());
|
||||
start = offset_end;
|
||||
|
||||
auto _get_cpt = [&] (const size_t pos) -> char32_t {
|
||||
auto _get_cpt = [&] (const size_t pos) -> uint32_t {
|
||||
return (offset_ini <= pos && pos < offset_end) ? cpts[pos] : 0;
|
||||
};
|
||||
|
||||
@ -253,18 +253,18 @@ static std::vector<size_t> unicode_regex_split_custom_gpt2(const std::string & t
|
||||
};
|
||||
|
||||
for (size_t pos = offset_ini; pos < offset_end; /*pos++*/ ) {
|
||||
const char32_t cpt = _get_cpt(pos);
|
||||
const uint32_t cpt = _get_cpt(pos);
|
||||
const auto flags = _get_flags(pos);
|
||||
|
||||
// regex: 's|'t|'re|'ve|'m|'ll|'d
|
||||
if (cpt == '\'' && pos+1 < offset_end) {
|
||||
char32_t cpt_next = _get_cpt(pos+1);
|
||||
uint32_t cpt_next = _get_cpt(pos+1);
|
||||
if (cpt_next == 's' || cpt_next == 't' || cpt_next == 'm' || cpt_next == 'd') {
|
||||
pos += _add_token(pos+2);
|
||||
continue;
|
||||
}
|
||||
if (pos+2 < offset_end) {
|
||||
char32_t cpt_next_next = _get_cpt(pos+2);
|
||||
uint32_t cpt_next_next = _get_cpt(pos+2);
|
||||
if ((cpt_next == 'r' && cpt_next_next == 'e') ||
|
||||
(cpt_next == 'v' && cpt_next_next == 'e') ||
|
||||
(cpt_next == 'l' && cpt_next_next == 'l')) {
|
||||
@ -344,7 +344,7 @@ static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string &
|
||||
assert(offset_end <= cpts.size());
|
||||
start = offset_end;
|
||||
|
||||
auto _get_cpt = [&] (const size_t pos) -> char32_t {
|
||||
auto _get_cpt = [&] (const size_t pos) -> uint32_t {
|
||||
return (offset_ini <= pos && pos < offset_end) ? cpts[pos] : 0;
|
||||
};
|
||||
|
||||
@ -371,18 +371,18 @@ static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string &
|
||||
};
|
||||
|
||||
for (size_t pos = offset_ini; pos < offset_end; /*pos++*/ ) {
|
||||
const char32_t cpt = _get_cpt(pos);
|
||||
const uint32_t cpt = _get_cpt(pos);
|
||||
const auto flags = _get_flags(pos);
|
||||
|
||||
// regex: (?i:'s|'t|'re|'ve|'m|'ll|'d) // case insensitive
|
||||
if (cpt == '\'' && pos+1 < offset_end) {
|
||||
char32_t cpt_next = unicode_tolower(_get_cpt(pos+1));
|
||||
uint32_t cpt_next = unicode_tolower(_get_cpt(pos+1));
|
||||
if (cpt_next == 's' || cpt_next == 't' || cpt_next == 'm' || cpt_next == 'd') {
|
||||
pos += _add_token(pos+2);
|
||||
continue;
|
||||
}
|
||||
if (pos+2 < offset_end) {
|
||||
char32_t cpt_next_next = unicode_tolower(_get_cpt(pos+2));
|
||||
uint32_t cpt_next_next = unicode_tolower(_get_cpt(pos+2));
|
||||
if ((cpt_next == 'r' && cpt_next_next == 'e') ||
|
||||
(cpt_next == 'v' && cpt_next_next == 'e') ||
|
||||
(cpt_next == 'l' && cpt_next_next == 'l')) {
|
||||
@ -424,7 +424,7 @@ static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string &
|
||||
while (!(flags2.is_whitespace || flags2.is_letter || flags2.is_number || flags2.is_undefined)) {
|
||||
flags2 = _get_flags(++pos);
|
||||
}
|
||||
char32_t cpt2 = _get_cpt(pos);
|
||||
uint32_t cpt2 = _get_cpt(pos);
|
||||
while (cpt2 == '\r' || cpt2 == '\n') {
|
||||
cpt2 = _get_cpt(++pos);
|
||||
}
|
||||
@ -435,7 +435,7 @@ static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string &
|
||||
size_t num_whitespaces = 0;
|
||||
size_t last_end_r_or_n = 0;
|
||||
while (_get_flags(pos+num_whitespaces).is_whitespace) {
|
||||
char32_t cpt2 = _get_cpt(pos+num_whitespaces);
|
||||
uint32_t cpt2 = _get_cpt(pos+num_whitespaces);
|
||||
if (cpt2 == '\r' || cpt2 == '\n') {
|
||||
last_end_r_or_n = pos + num_whitespaces + 1;
|
||||
}
|
||||
@ -626,7 +626,7 @@ uint8_t unicode_utf8_to_byte(const std::string & utf8) {
|
||||
return map.at(utf8);
|
||||
}
|
||||
|
||||
char32_t unicode_tolower(char32_t cp) {
|
||||
uint32_t unicode_tolower(uint32_t cp) {
|
||||
auto it = unicode_map_lowercase.find(cp);
|
||||
return it == unicode_map_lowercase.end() ? cp : it->second;
|
||||
}
|
||||
|
@ -58,6 +58,6 @@ codepoint_flags unicode_cpt_flags(const std::string & utf8);
|
||||
std::string unicode_byte_to_utf8(uint8_t byte);
|
||||
uint8_t unicode_utf8_to_byte(const std::string & utf8);
|
||||
|
||||
char32_t unicode_tolower(char32_t cp);
|
||||
uint32_t unicode_tolower(uint32_t cp);
|
||||
|
||||
std::vector<std::string> unicode_regex_split(const std::string & text, const std::vector<std::string> & regex_exprs);
|
||||
|
Loading…
Reference in New Issue
Block a user