Fix the sub group size of Intel (llama/8106)

* use warp_size macro for all sycl kernels

* fix mask of permute_sub_group_by_xor

* fix rms_norm with correct warp number

* fix rms_norm_f32/group_norm_f32

* move norm to norm.cpp file

* fix quantize bug

* fix mmvq's batch size
This commit is contained in:
luoyu-intel 2024-07-02 02:16:00 +00:00 committed by Georgi Gerganov
parent e4bc83ab47
commit f096cc6807
2 changed files with 45 additions and 431 deletions

View File

@ -486,9 +486,11 @@ if (GGML_SYCL)
add_compile_options(-I./) #include DPCT
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-narrowing")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O3")
if (GGML_SYCL_TARGET STREQUAL "NVIDIA")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsycl-targets=nvptx64-nvidia-cuda")
add_compile_definitions(GGML_SYCL_WARP_SIZE=32)
else()
add_compile_definitions(GGML_SYCL_WARP_SIZE=16)
endif()
file(GLOB GGML_HEADERS_SYCL "ggml-sycl/*.hpp")

View File

@ -74,51 +74,6 @@ typedef void (*ggml_sycl_op_flatten_t)(ggml_backend_sycl_context & ctx, const gg
const float *src1_dd, float *dst_dd,
const queue_ptr &main_stream);
static __dpct_inline__ float warp_reduce_sum(float x,
const sycl::nd_item<3> &item_ct1) {
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
/*
DPCT1096:98: The right-most dimension of the work-group used in the SYCL
kernel that calls this function may be less than "32". The function
"dpct::permute_sub_group_by_xor" may return an unexpected result on the
CPU device. Modify the size of the work-group to ensure that the value
of the right-most dimension is a multiple of "32".
*/
x += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), x, mask);
}
return x;
}
static __dpct_inline__ sycl::float2
warp_reduce_sum(sycl::float2 a, const sycl::nd_item<3> &item_ct1) {
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
a.x() += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), a.x(),
mask);
a.y() += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), a.y(),
mask);
}
return a;
}
static __dpct_inline__ float warp_reduce_max(float x,
const sycl::nd_item<3> &item_ct1) {
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
/*
DPCT1096:97: The right-most dimension of the work-group used in the SYCL
kernel that calls this function may be less than "32". The function
"dpct::permute_sub_group_by_xor" may return an unexpected result on the
CPU device. Modify the size of the work-group to ensure that the value
of the right-most dimension is a multiple of "32".
*/
x = sycl::fmax(x, dpct::permute_sub_group_by_xor(
item_ct1.get_sub_group(), x, mask));
}
return x;
}
static __dpct_inline__ float op_repeat(const float a, const float b) {
return b;
GGML_UNUSED(a);
@ -336,47 +291,6 @@ static void sqr_f32(const float * x, float * dst, const int k,
dst[i] = x[i] * x[i];
}
static void norm_f32(const float * x, float * dst, const int ncols, const float eps,
const sycl::nd_item<3> &item_ct1, sycl::float2 *s_sum, int block_size) {
const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
item_ct1.get_local_id(1);
const int tid = item_ct1.get_local_id(2);
sycl::float2 mean_var = sycl::float2(0.f, 0.f);
for (int col = tid; col < ncols; col += block_size) {
const float xi = x[row*ncols + col];
mean_var.x() += xi;
mean_var.y() += xi * xi;
}
// sum up partial sums
mean_var = warp_reduce_sum(mean_var, item_ct1);
if (block_size > WARP_SIZE) {
int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
if (lane_id == 0) {
s_sum[warp_id] = mean_var;
}
/*
DPCT1118:0: SYCL group functions and algorithms must be encountered in
converged control flow. You may need to adjust the code.
*/
item_ct1.barrier(sycl::access::fence_space::local_space);
mean_var = s_sum[lane_id];
mean_var = warp_reduce_sum(mean_var, item_ct1);
}
const float mean = mean_var.x() / ncols;
const float var = mean_var.y() / ncols - mean * mean;
const float inv_std = sycl::rsqrt(var + eps);
for (int col = tid; col < ncols; col += block_size) {
dst[row*ncols + col] = (x[row*ncols + col] - mean) * inv_std;
}
}
static void concat_f32(const float *x,const float *y, float *dst, const int ne0, const int ne02,
const sycl::nd_item<3> &item_ct1) {
int nidx = item_ct1.get_local_id(2) +
@ -444,126 +358,11 @@ static void pad_f32(const float *x, float *dst, const int ne0, const int ne00,
}
}
static void group_norm_f32(const float * x, float * dst, const int group_size, const int ne_elements, const float eps,
const sycl::nd_item<3> &item_ct1, float *s_sum, int block_size) {
int start = item_ct1.get_group(2) * group_size;
int end = start + group_size;
start += item_ct1.get_local_id(2);
if (end >= ne_elements) {
end = ne_elements;
}
float tmp = 0.0f; // partial sum for thread in warp
for (int j = start; j < end; j += block_size) {
tmp += x[j];
}
tmp = warp_reduce_sum(tmp, item_ct1);
if (block_size > WARP_SIZE) {
int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
if (lane_id == 0) {
s_sum[warp_id] = tmp;
}
/*
DPCT1118:1: SYCL group functions and algorithms must be encountered in
converged control flow. You may need to adjust the code.
*/
/*
DPCT1065:54: Consider replacing sycl::nd_item::barrier() with
sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
better performance if there is no access to global memory.
*/
item_ct1.barrier();
tmp = s_sum[lane_id];
tmp = warp_reduce_sum(tmp, item_ct1);
}
float mean = tmp / group_size;
tmp = 0.0f;
for (int j = start; j < end; j += block_size) {
float xi = x[j] - mean;
dst[j] = xi;
tmp += xi * xi;
}
tmp = warp_reduce_sum(tmp, item_ct1);
if (block_size > WARP_SIZE) {
int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
if (lane_id == 0) {
s_sum[warp_id] = tmp;
}
/*
DPCT1118:2: SYCL group functions and algorithms must be encountered in
converged control flow. You may need to adjust the code.
*/
/*
DPCT1065:55: Consider replacing sycl::nd_item::barrier() with
sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
better performance if there is no access to global memory.
*/
item_ct1.barrier();
tmp = s_sum[lane_id];
tmp = warp_reduce_sum(tmp, item_ct1);
}
float variance = tmp / group_size;
float scale = sycl::rsqrt(variance + eps);
for (int j = start; j < end; j += block_size) {
dst[j] *= scale;
}
}
static void rms_norm_f32(const float * x, float * dst, const int ncols, const float eps,
const sycl::nd_item<3> &item_ct1, float *s_sum, int block_size) {
const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
item_ct1.get_local_id(1);
const int tid = item_ct1.get_local_id(2);
float tmp = 0.0f; // partial sum for thread in warp
for (int col = tid; col < ncols; col += block_size) {
const float xi = x[row*ncols + col];
tmp += xi * xi;
}
// sum up partial sums
tmp = warp_reduce_sum(tmp, item_ct1);
if (block_size > WARP_SIZE) {
int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
if (lane_id == 0) {
s_sum[warp_id] = tmp;
}
/*
DPCT1118:3: SYCL group functions and algorithms must be encountered in
converged control flow. You may need to adjust the code.
*/
item_ct1.barrier(sycl::access::fence_space::local_space);
tmp = s_sum[lane_id];
tmp = warp_reduce_sum(tmp, item_ct1);
}
const float mean = tmp / ncols;
const float scale = sycl::rsqrt(mean + eps);
for (int col = tid; col < ncols; col += block_size) {
dst[row*ncols + col] = scale * x[row*ncols + col];
}
}
template<int QUANT_BLOCK_TILE>
static void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, const int kx, const int kx_padded,
const sycl::nd_item<3> &item_ct1) {
const int ix = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
const int ix = (item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2)) * QUANT_BLOCK_TILE;
if (ix >= kx_padded) {
return;
@ -578,23 +377,39 @@ static void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy,
const int ib = i_padded / QK8_1; // block index
const int iqs = i_padded % QK8_1; // quant index
const float xi = ix < kx ? x[iy*kx + ix] : 0.0f;
float amax = sycl::fabs((float)xi);
float sum = xi;
typedef sycl::vec<float, QUANT_BLOCK_TILE> TC;
typedef sycl::vec<int8_t, QUANT_BLOCK_TILE> TQ;
TC zeros;
TQ qzeros;
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
amax = sycl::fmax(amax, dpct::permute_sub_group_by_xor(
item_ct1.get_sub_group(), amax, mask));
sum +=
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), sum, mask);
for (int i = 0; i < QUANT_BLOCK_TILE; i++)
{
zeros[i] = 0.f;
qzeros[i] = 0;
}
const TC xi = ix < kx ? *(TC *)&x[iy * kx + ix] : zeros;
float sum = xi[0];
float amax = sycl::fabs(xi[0]);
#pragma unroll
for (int i = 1; i < QUANT_BLOCK_TILE; i++)
{
sum += xi[i];
amax = sycl::fmax(sycl::fabs(xi[i]), amax);
}
sum = warp_reduce_sum(sum, item_ct1);
amax = warp_reduce_max(amax, item_ct1);
const float d = amax / 127;
const int8_t q = amax == 0.0f ? 0 : sycl::round(xi / d);
TQ q = qzeros;
if (amax != 0.0f)
{
#pragma unroll
for (int i = 0; i < QUANT_BLOCK_TILE; i++) {
q[i] = sycl::round(xi[i] / d);
}
}
y[ib].qs[iqs] = q;
*(TQ *)&y[ib].qs[iqs] = q;
if (iqs > 0) {
return;
@ -728,7 +543,7 @@ static void mul_mat_p021_f16_f32(
// sum up partial sums and write back result
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
tmp +=
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
}
@ -781,7 +596,7 @@ static void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
// sum up partial sums and write back result
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
tmp +=
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
}
@ -1643,99 +1458,6 @@ static void sqr_f32_sycl(const float *x, float *dst, const int k,
});
}
static void norm_f32_sycl(const float *x, float *dst, const int ncols,
const int nrows, const float eps,
queue_ptr stream) {
GGML_ASSERT(ncols % WARP_SIZE == 0);
if (ncols < 1024) {
const sycl::range<3> block_dims(1, 1, WARP_SIZE);
stream->submit([&](sycl::handler &cgh) {
sycl::local_accessor<sycl::float2, 1> s_sum_acc_ct1(
sycl::range<1>(32), cgh);
cgh.parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
block_dims),
[=](sycl::nd_item<3> item_ct1)
[[intel::reqd_sub_group_size(32)]] {
norm_f32(x, dst, ncols, eps, item_ct1,
s_sum_acc_ct1.get_pointer(), WARP_SIZE);
});
});
} else {
const int work_group_size = get_work_group_size(stream->get_device());
const sycl::range<3> block_dims(1, 1, work_group_size);
/*
DPCT1049:17: The work-group size passed to the SYCL kernel may exceed
the limit. To get the device limit, query
info::device::max_work_group_size. Adjust the work-group size if needed.
*/
stream->submit([&](sycl::handler &cgh) {
sycl::local_accessor<sycl::float2, 1> s_sum_acc_ct1(
sycl::range<1>(32), cgh);
cgh.parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
block_dims),
[=](sycl::nd_item<3> item_ct1)
[[intel::reqd_sub_group_size(32)]] {
norm_f32(x, dst, ncols, eps, item_ct1,
s_sum_acc_ct1.get_pointer(), work_group_size);
});
});
}
}
static void group_norm_f32_sycl(const float *x, float *dst,
const int num_groups, const int group_size,
const int ne_elements, queue_ptr stream) {
static const float eps = 1e-6f;
if (group_size < 1024) {
const sycl::range<3> block_dims(1, 1, WARP_SIZE);
stream->submit([&](sycl::handler &cgh) {
sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(32),
cgh);
const float eps_ct4 = eps;
cgh.parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, num_groups) * block_dims,
block_dims),
[=](sycl::nd_item<3> item_ct1)
[[intel::reqd_sub_group_size(32)]] {
group_norm_f32(
x, dst, group_size, ne_elements, eps_ct4, item_ct1,
s_sum_acc_ct1.get_pointer(), WARP_SIZE);
});
});
} else {
const int work_group_size = get_work_group_size(stream->get_device());
const sycl::range<3> block_dims(1, 1, work_group_size);
/*
DPCT1049:18: The work-group size passed to the SYCL kernel may exceed
the limit. To get the device limit, query
info::device::max_work_group_size. Adjust the work-group size if needed.
*/
stream->submit([&](sycl::handler &cgh) {
sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(32),
cgh);
const float eps_ct4 = eps;
cgh.parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, num_groups) * block_dims,
block_dims),
[=](sycl::nd_item<3> item_ct1)
[[intel::reqd_sub_group_size(32)]] {
group_norm_f32(x, dst, group_size, ne_elements,
eps_ct4, item_ct1,
s_sum_acc_ct1.get_pointer(), work_group_size);
});
});
}
}
static void concat_f32_sycl(const float *x, const float *y, float *dst,
const int ne0, int ne1, int ne2, int ne02,
queue_ptr stream) {
@ -1777,64 +1499,22 @@ static void pad_f32_sycl(const float *x, float *dst, const int ne00,
});
}
static void rms_norm_f32_sycl(const float *x, float *dst, const int ncols,
const int nrows, const float eps,
queue_ptr stream) {
GGML_ASSERT(ncols % WARP_SIZE == 0);
// printf("%s ncols=%d, nrows=%d, WARP_SIZE=%d\n", __func__, ncols, nrows, WARP_SIZE);
if (ncols < 1024) {
const sycl::range<3> block_dims(1, 1, WARP_SIZE);
stream->submit([&](sycl::handler &cgh) {
sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(32),
cgh);
cgh.parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
block_dims),
[=](sycl::nd_item<3> item_ct1)
[[intel::reqd_sub_group_size(32)]] {
rms_norm_f32(x, dst, ncols, eps, item_ct1,
s_sum_acc_ct1.get_pointer(), WARP_SIZE);
});
});
} else {
const int work_group_size = get_work_group_size(stream->get_device());
const sycl::range<3> block_dims(1, 1, work_group_size);
/*
DPCT1049:19: The work-group size passed to the SYCL kernel may exceed
the limit. To get the device limit, query
info::device::max_work_group_size. Adjust the work-group size if needed.
*/
stream->submit([&](sycl::handler &cgh) {
sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(32),
cgh);
cgh.parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
block_dims),
[=](sycl::nd_item<3> item_ct1)
[[intel::reqd_sub_group_size(32)]] {
rms_norm_f32(x, dst, ncols, eps, item_ct1,
s_sum_acc_ct1.get_pointer(), work_group_size);
});
});
}
}
static void quantize_row_q8_1_sycl(const float *x, void *vy, const int kx,
const int ky, const int kx_padded,
queue_ptr stream) {
const int block_num_x = (kx_padded + SYCL_QUANTIZE_BLOCK_SIZE - 1) / SYCL_QUANTIZE_BLOCK_SIZE;
const sycl::range<3> num_blocks(1, ky, block_num_x);
const sycl::range<3> block_size(1, 1, SYCL_DEQUANTIZE_BLOCK_SIZE);
int constexpr QUANT_BLOCK_TILE = QK8_1 / WARP_SIZE;
static_assert(QK8_1 % WARP_SIZE == 0);
const sycl::range<3> block_size(1, 1, SYCL_QUANTIZE_BLOCK_SIZE / QUANT_BLOCK_TILE);
{
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
stream->parallel_for(
sycl::nd_range<3>(num_blocks * block_size, block_size),
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
quantize_q8_1(x, vy, kx, kx_padded, item_ct1);
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
quantize_q8_1<QUANT_BLOCK_TILE>(x, vy, kx, kx_padded, item_ct1);
});
}
}
@ -1854,7 +1534,7 @@ static void ggml_mul_mat_p021_f16_f32_sycl(const void *vx, const float *y,
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
mul_mat_p021_f16_f32(vx, y, dst, ncols_x, nrows_x, nchannels_x,
nchannels_y, item_ct1);
});
@ -1874,7 +1554,7 @@ static void ggml_mul_mat_vec_nc_f16_f32_sycl(
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
mul_mat_vec_nc_f16_f32(vx, y, dst, ncols_x, nrows_x,
row_stride_x, channel_stride_x,
nchannels_y / nchannels_x, item_ct1);
@ -2139,7 +1819,7 @@ static void sum_rows_f32_sycl(const float *x, float *dst, const int ncols,
const sycl::range<3> block_nums(1, nrows, 1);
stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
[[intel::reqd_sub_group_size(32)]] {
[[intel::reqd_sub_group_size(WARP_SIZE)]] {
k_sum_rows_f32(x, dst, ncols, item_ct1);
});
}
@ -2220,7 +1900,7 @@ static void soft_max_f32_submitter(const float * x, const float * mask, float *
cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
soft_max_f32<vals_smem, ncols_template, block_size_template>(x, mask, dst, ncols_par,
nrows_y, scale, max_bias, m0,
m1, n_head_log2, item_ct1,
@ -2400,12 +2080,6 @@ static inline int get_sycl_env(const char *env_name, int default_val) {
return user_number;
}
static inline int get_work_group_size(const sycl::device& device) {
dpct::device_info prop;
dpct::get_device_info(prop, device);
return prop.get_max_work_group_size();
}
static void ggml_check_sycl() try {
static bool initialized = false;
@ -2964,45 +2638,6 @@ inline void ggml_sycl_op_sqr(ggml_backend_sycl_context & ctx, const ggml_tensor
(void) src1_dd;
}
inline void ggml_sycl_op_norm(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst, const float *src0_dd,
const float *src1_dd, float *dst_dd,
const queue_ptr &main_stream) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
const int64_t ne00 = src0->ne[0];
const int64_t nrows = ggml_nrows(src0);
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream);
(void) src1;
(void) dst;
(void) src1_dd;
}
inline void ggml_sycl_op_group_norm(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
float *dst_dd,
const queue_ptr &main_stream) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
int num_groups = dst->op_params[0];
int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups);
group_norm_f32_sycl(src0_dd, dst_dd, num_groups, group_size, src0->ne[0] * src0->ne[1] * src0->ne[2], main_stream);
(void) src1;
(void) dst;
(void) src1_dd;
}
inline void ggml_sycl_op_concat(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
@ -3066,28 +2701,6 @@ inline void ggml_sycl_op_pad(ggml_backend_sycl_context & ctx, const ggml_tensor
(void) src1_dd;
}
inline void ggml_sycl_op_rms_norm(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
float *dst_dd,
const queue_ptr &main_stream) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
const int64_t ne00 = src0->ne[0];
const int64_t nrows = ggml_nrows(src0);
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
rms_norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream);
(void) src1;
(void) dst;
(void) src1_dd;
}
static int64_t get_row_rounding(ggml_type type, const std::array<float, GGML_SYCL_MAX_DEVICES> & tensor_split) {
int64_t min_compute_capability = INT_MAX;
int64_t max_compute_capability = INT_MIN;
@ -4273,7 +3886,6 @@ bool ggml_sycl_supports_dmmv(enum ggml_type type) {
static void ggml_sycl_mul_mat(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
const bool split = ggml_backend_buffer_is_sycl_split(src0->buffer);
int64_t min_compute_capability = INT_MAX;
if (split) {