Commit Graph

1030 Commits

Author SHA1 Message Date
Felix
07d04280be
examples : clean up common code (#1871)
move some utility functions into common.h
2024-02-19 10:50:15 +02:00
Jumper775
917c56ded4
models : fix openvino setup info (#1874) 2024-02-19 02:19:47 +00:00
Georgi Gerganov
3d42463845
models : add update py requirements 2024-02-13 11:51:32 +02:00
Georgi Gerganov
3ffc83d90a
swift : package no longer use ggml dependency (#1861)
* Revert "swift : update Package.swift to use ggml as package dependency (#1701)"

This reverts commit 993acb5d41.

* spm : add ggml.h
2024-02-12 19:54:11 +02:00
Georgi Gerganov
e3c5e2cba8
whisper : fix external encoder (#1860) 2024-02-12 19:53:51 +02:00
Georgi Gerganov
b742f13e70
sync : ggml 2024-02-12 19:07:56 +02:00
slaren
52c529eeb1
ggml-alloc : allocate all leafs as if they were inputs (ggml/731)
* ggml-alloc : allocate all leafs as if they were inputs

* ensure static leafs are allocated

* gpt-2-backend : remove unnecesary ggml_new_tensor

* update other gpt-2 examples to remove ggml_new_tensor calls in the graph
2024-02-12 19:07:38 +02:00
Georgi Gerganov
551529290d
talk-llama : sync llama.cpp 2024-02-12 10:39:58 +02:00
Georgi Gerganov
25a90ffa38
sync : ggml 2024-02-12 09:32:15 +02:00
Georgi Gerganov
866b67ca93
ggml-backend : sync remnant 2024-02-12 09:31:12 +02:00
Johannes Gäßler
d7e9f58f7f
CUDA: mul_mat_vec_q tiling, refactor mul mat logic (llama/5434)
* CUDA: mul_mat_vec_q tiling, refactor mul mat logic

Co-authored-by: slaren <slarengh@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-02-12 09:31:12 +02:00
Sergio López
04839bae22
vulkan: only use M-sized matmul on Apple GPUs (llama/5412)
* vulkan: refactor guess_matmul_pipeline for vendor

Refactor ggml_vk_guess_matmul_pipeline to simplify adding per-vendor
conditionals.

Signed-off-by: Sergio Lopez <slp@redhat.com>

* vulkan: only use M-sized matmul on Apple GPUs

L-sized and S-sized matmuls are broken on Apple GPUs, force using
M-size with this vendor.

Signed-off-by: Sergio Lopez <slp@redhat.com>

---------

Signed-off-by: Sergio Lopez <slp@redhat.com>
2024-02-12 09:31:12 +02:00
Georgi Gerganov
3cc6e04a52
ggml : fix compile warnings (unused vars) (llama/4966) 2024-02-12 09:31:11 +02:00
snadampal
b7ef178b9c
ggml : add mmla kernels for quantized GEMM (llama/4966)
* ggml: aarch64: implement smmla kernel for q8_0_q8_0 quantized gemm

armv8.2-a and above supports MMLA instructions that have higher
throughput than DOT. this commit adds mmla kernel for
q8_0_q8_0 gemm. The feature is enabled if the platform supports
"__ARM_FEATURE_MATMUL_INT8"

On AWS Graviton3 processors this kernel resulted up to 1.5x
improvement for prompt evaluation throughput compared to the
default sdot kernel.

* ggml: aarch64: implement smmla kernel for q4_0_q8_0 quantized gemm

armv8.2-a and above supports MMLA instructions that have higher
throughput than DOT. this commit adds mmla kernel for
q4_0_q8_0 gemm. The feature is enabled if the platform supports
"__ARM_FEATURE_MATMUL_INT8"

On AWS Graviton3 processors this kernel resulted up to 1.5x
improvement for prompt evaluation throughput compared to the
default sdot kernel.

* ggml: aarch64: implement smmla kernel for q4_1_q8_1 quantized gemm

armv8.2-a and above supports MMLA instructions that have higher
throughput than DOT. this commit adds mmla kernel for
q4_1_q8_1 gemm. The feature is enabled if the platform supports
"__ARM_FEATURE_MATMUL_INT8"

On AWS Graviton3 processors this kernel resulted up to 1.5x
improvement for prompt evaluation throughput compared to the
default sdot kernel.

* ggml: update unit tests for the new vec_dot interface

* llama.cpp: add MATMUL_INT8 capability to system_info
2024-02-12 09:31:11 +02:00
Ian Bull
47dfe9d4db
metal : use autoreleasepool to avoid memory leaks (llama/5437)
There appears to be a known memory leak when using the
`MLTCommandBuffer`. It is suggested to use `@autoreleasepool` in
[1,2]

[1] https://developer.apple.com/forums/thread/662721
[2] https://forums.developer.apple.com/forums/thread/120931

This change-set wraps the `ggml_metal_graph_compute` in a
`@autoreleasepool`.

This commit addresses https://github.com/ggerganov/llama.cpp/issues/5436
2024-02-12 09:31:11 +02:00
slaren
1d3270cc8f
ggml-alloc : v3 (ggml/727)
* ggml-alloc v3

ggml-ci

* fix ci

ggml-ci

* whisper : check for backend buffer allocation failures

* whisper : avoid leaks when initialization fails

* cleanup

ggml-ci

* style fixes

ggml-ci
2024-02-12 09:31:11 +02:00
dscripka
a6fb6ab597
examples : added audio_ctx argument to main and server (#1857)
* added audio_ctx argument to main and server examples

* Better default value

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* better default value (again)

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-12 09:19:07 +02:00
Didzis Gosko
163e74b6c3
metal : option to embed MSL source into compiled binary (#1842)
* ggml : embed Metal library source (ggml-metal.metal) into binary

enable by setting WHISPER_EMBED_METAL_LIBRARY

* rename the build option

* rename the preprocessor directive

* generate Metal library embedding assembly on-fly during build process
2024-02-11 16:41:41 +02:00
Georgi Gerganov
f273e66dc6
examples : initialize context params properly (#1852) 2024-02-11 16:39:12 +02:00
Georgi Gerganov
02b4c52c12
talk-llama : sync llama.cpp 2024-02-10 10:10:59 +02:00
Georgi Gerganov
518199c09e
sync : ggml 2024-02-10 09:56:47 +02:00
Georgi Gerganov
8b17a2f776
src : relocate new backend sources 2024-02-10 09:55:47 +02:00
Michael Podvitskiy
b6d2827914
ggml : fix error C2078: too many initializers for MSVC ARM64 (llama/5404) 2024-02-10 09:55:47 +02:00
Johannes Gäßler
9711bae0b3
CUDA: more warps for mmvq on NVIDIA (llama/5394) 2024-02-10 09:55:47 +02:00
Johannes Gäßler
eec38f63bd
CUDA: fixed mmvq kernel for bs 2,3,4 and -sm row (llama/5386) 2024-02-10 09:55:47 +02:00
0cc4m
ef5e6b746f
Basic Vulkan Multi-GPU implementation (llama/5321)
* Initial Vulkan multi-gpu implementation

Move most global variables into backend context

* Add names to backend device functions

* Add further missing cleanup code

* Reduce code duplication in tensor split layer assignment

* generalize LLAMA_SPLIT_LAYER for all backends, do not expose device count and memory in llama.h

* Only do device info print in the beginning and initialize one backend for cpu assist

Add missing cleanup code

* Rework backend memory management to make sure devices and buffers get properly allocated and freed

* Rename cpu assist free function

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-02-10 09:55:47 +02:00
Johannes Gäßler
77bf6b5f56
CUDA: mul_mat_vec_q max. batch size 8 -> 4 (llama/5370) 2024-02-10 09:55:47 +02:00
Kawrakow
b562fff9d0
Slight quantization improvement for Q4_K and Q5_K (llama/5361)
* Q4_K: slightly better quantization

* Q5_K: slightly better quantization

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-10 09:55:47 +02:00
Johannes Gäßler
b5dec374f4
CUDA: mul_mat_vec_q for batch sizes > 1 (llama/5351) 2024-02-10 09:55:47 +02:00
Kawrakow
fa0dc6167c
ggml : make use of ggml-quants.h possible in C++ code (llama/5338)
* Make use of ggml-quants.h possible in C++ code

* One cannot possibly be defining static_assert in a C++ compilation

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-10 09:55:47 +02:00
Dr. Tom Murphy VII Ph.D
55bcd62a4b
ggml : avoid duplicating function calls using MIN/MAX macros (llama/5325)
* Avoid duplicating function calls when using MIN/MAX macros.

Since these copy "a" and "b" they ask the compiler to evaluate one of them twice. The compiler doesn't have a problem with removing the duplication in something like MAX(0, x + 2), but in some cases we're calling functions, and those calls just happen twice.
By explicitly evaluating at the expression we get smaller and faster code without duplicate calls. See ggml_rope_yarn_corr_dims in Compiler Explorer:

https://godbolt.org/z/Ee4KMrvKh

Code behaves exactly the same.

* Update ggml.c

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-10 09:55:46 +02:00
Kawrakow
0ed762d691
iq2_xxs: tune quantization (llama/5320)
We get slightly better PPL, and we cut quantization time in
nearly half.

The trick is to 1st quantize without forcing points onto the E8-lattice.
We can then use a narrower search range around the block scale that we
got that way.

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-10 09:55:46 +02:00
slaren
1b5bb7792e
cuda : fix LLAMA_CUDA_F16 (llama/5262) 2024-02-10 09:55:46 +02:00
Georgi Gerganov
9b735cea77
metal : add im2col F32 dst support (llama/5132) 2024-02-10 09:55:46 +02:00
JidongZhang-THU
12c462d656
llava : add MobileVLM support (llama/5132)
* New Feature:
    1. Sum_Rows:
        fix cuda kernel overflow
        fix block shape error when nrows too big
    2. Im2Col:
        Support Batch in cuda
        Support f32 to f32 both in cpu && cuda
    3. DepthWiseConv:
        Support by Im2Col && MulMat
    4. Pool_2d:
        Supoort avg pooling in cuda
    5. HardSigmoid:
        Imp in cuda
    6. HardSwish:
        Imp in cuda

* fix tabs instead of spaces

* code clean

* CUDA POOL2D

* ADD POOL2D test case in test-backend-ops.cpp

* code clean

* fix pool2d_kernel

nits

* fix bug in pool2d kernel

* fix avg pooling, count_include_pad

nits

* test-backend-ops : add more pool_2d tests

* cuda : fix warnings and formatting

* ggml : check types in release builds too in pool_2d

* test-backend-ops : remove f16 pool_2d tests

* cuda : more style fixes

* Add assert in ggml_cuda_op_pool2d

* pool2d float padding fallback

* test-backend-ops : add dst_type to im2col

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-02-10 09:55:46 +02:00
slaren
fc7b0e2c28
ggml : limit n_threads to the max n_tasks (llama/5238) 2024-02-10 09:55:46 +02:00
Jared Van Bortel
f850a067ed
kompute : llama-bench support and ggml_cpu_has_kompute() (llama/5226) 2024-02-10 09:55:46 +02:00
Michael Podvitskiy
f75e1197f1
ggml : add abort_callback for cpu backend (ggml/725)
* a way to use abort_callback with the cpu backend

* whisper update
2024-02-10 09:55:46 +02:00
Georgi Gerganov
aa8a75e287
extra : update sync scripts 2024-02-10 09:55:19 +02:00
Valentin Gosu
80e8a2ea39
server : allow CORS request with authorization headers (#1850)
Whisper plugin in Obsidian requires an API key which is
then sent as an authorization header.
However, the presence of an authorization header requires
a CORS Preflight, so both the OPTIONS method and
the Access-Control-Allow-Headers: authorization must be
handled.
2024-02-09 17:42:41 +02:00
Neuman Vong
19f8048139
whisper.android : how to build with CLBlast (#1809)
* FetchContent

* OpenCL

* Documentation and make optional

* Specify GGML build options in build.gradle

* Use gradle properties

* @ggerganov

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* @gpokat

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-09 17:39:05 +02:00
Didzis Gosko
0f80e5a80a
whisper : expose CUDA device setting in public API (#1840)
* Makefile : allow to override CUDA_ARCH_FLAG

* whisper : allow to select GPU (CUDA) device from public API
2024-02-09 17:27:47 +02:00
Didzis Gosko
b6559333ff
make : add macOS deployment target option (#1839) 2024-02-09 17:26:29 +02:00
Georgi Gerganov
434b8f3b96
talk-llama : stream response (#1121) 2024-02-06 19:56:12 +02:00
Georgi Gerganov
7a74e929c8
sync : ggml (#0) 2024-01-30 21:30:26 +02:00
Kawrakow
361ecebe90
ggml : fix IQ3_XXS on Metal (llama/5219)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-30 21:28:00 +02:00
Georgi Gerganov
807cbc672e
sync : ggml (llama/0) 2024-01-30 21:27:59 +02:00
Kawrakow
98ae5276b7
Faster AVX2 dot product for IQ2_XS (llama/5187)
* iq2xs: faster AVX2 dot product

* iq2xs: small AVX2 imrovement

* Speed up computing sign bits in AVX2 iq2_xs dot product

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Peter Reid <peter@peterreid.net>
2024-01-30 21:27:59 +02:00
Kawrakow
6adb969b09
SOTA 3-bit quants (llama/5196)
* iq3_xxs: quantize/dequantize

RMSE seems a bit high-ish at about half-way between q2_K and
q3_K, so need to check more.

* iq3_xxs: CUDA dequantize works

* iq2_xxs: tuning quantization

* iq3_xxs: starting to look better

PPL on wiki.test.raw
LLaMA-v1-7B: 6.4218
LLaMA-v2-7B: 6.3560
Mistral-7B : 6.0717

This is better than Q3_K_XS, with a 5% reduction in quantized model
size.

* iq3_xxs: CUDA dot product

We have
PP-512: 5891 t/s
TG-128: 143.9 t/s

* iq3_xxs: scalar and AVX2 dot products

* iq3_xxs: ARM_NEON and Metal

Metal performance is decent, ARM_NEON is pathetic

* iq3_xxs: slightly better grid points

* Faster iq3_xxs and iq2_xs dot products on CUDA

* iq3_xxs: add some quant mix

* iq3_xxs: fix failing quantization test

Dot product still fails. Is this real?

* iq3_xxs: hopefully fix ROCm

* iq3_xxs: failing tests

This time the dot product accuracy did find an actual bug
in the AVX2 implementation.

* Add IQ3_XXS to test-backend-ops

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-30 21:27:59 +02:00
Paul Tsochantaris
8a7d6ff51a
ggml alloc: Fix for null dereference on alloc failure (llama/5200)
* Fix for a null pointer dereference if a metal GGML buffer fails to be allocated

* Freeing the allocated buffers rather than the pointer in ggml-alloc.c

* Fixed the fix of the fix
2024-01-30 21:27:59 +02:00