* fix mul_mat fault in cpy_f32_f16
* rm unused function
* add wait() for memcpy
* restore ci/run.sh, rename struct defination, fix bug in ggml_sycl_op_mul_mat_sycl
* fix format issue
* llama : fix segfault from unknown model arch name (llama/5820)
* llama : fix segfault from unknown model arch name
* llama : make all LLM maps const
This also requires using `std::map::at` instead of its `operator[]`
which does not exist for const maps.
* llama : name LLM_ARCH_UNKNOWN to "(unknown)"
This avoids errors from `std::map::at` when
getting the general name of the model architecture.
Using "(unknown)" instead of an empty string as per suggestion
https://github.com/ggerganov/llama.cpp/pull/5820#issuecomment-1973735284
* llama : remove redundant inner const for LLM_TENSOR_NAMES
The extra const won't do anything here as const maps
return const references to values.
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
* llama : remove redundant nullptr check in llm_arch_from_string
Since LLM_ARCH_NAMES is a const map, no spurious elements
with a NULL name are inserted anymore, so this check is dead code.
---------
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
* llama : refactor internal quantization functions (llama/5830)
* scripts : add pod-llama.sh
* ggml : IQ3_S improvements (llama/5829)
* iq3_s: somewhat faster AVX2 dot product
On Ryzen a 7950X TG-128 increases to 16 t/s from 15.5 t/s using
16 threads. For 8 threads it is 13.85 t/s vs 11.75 t/s.
PP-512 increases to 28.5 t/s from 23.8 t/s.
* iq3_s: somewhat faster ARM_NEON dot product
Still dog slow - 10.7 t/s up from 9.9 t/s.
* iq3_s: another small ARM_NEON improvement
10.7 -> 11.0 t/s. Using vmulq_s8 is faster than the xor - sub trick
that works best on AVX2.
* iq3_s: minor improvement on Metal
49.4 t/s -> 50.3 t/s
* iq3_s: PPL improvement
E.g., for a context of 4096 LLaMA-v2-7B goes to 5.1340 from 5.1653.
* iq3_s: use new grid everywhere
* Fix ARM_NEON
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* convert-hf : make model class definitions self-contained (llama/5825)
* convert : automatically fall back to HfVocab if tokenizer.model doesn't exist (llama/5821)
* ggml : fix IQ3_S AVX implementation (llama/5834)
ggml-ci
* llama : add abort_callback to interrupt computation (llama/5409)
* using abort_callback from ggml to stop llama computation
* format fix
* a brief explaining comment
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* server: tests: passkey challenge / self-extend with context shift demo (llama/5832)
* server: tests: add models endpoint scenario
* server: /v1/models add some metadata
* server: tests: add debug field in context before scenario
* server: tests: download model from HF, add batch size
* server: tests: add passkey test
* server: tests: add group attention params
* server: do not truncate prompt tokens if self-extend through group attention is enabled
* server: logs: do not truncate log values
* server: tests - passkey - first good working value of nga
* server: tests: fix server timeout
* server: tests: fix passkey, add doc, fix regex content matching, fix timeout
* server: tests: fix regex content matching
* server: tests: schedule slow tests on master
* server: metrics: fix when no prompt processed
* server: tests: self-extend add llama-2-7B and Mixtral-8x7B-v0.1
* server: tests: increase timeout for completion
* server: tests: keep only the PHI-2 test
* server: tests: passkey add a negative test
* flake.lock: Update (llama/5842)
Flake lock file updates:
• Updated input 'flake-parts':
'github:hercules-ci/flake-parts/b253292d9c0a5ead9bc98c4e9a26c6312e27d69f' (2024-02-01)
→ 'github:hercules-ci/flake-parts/f7b3c975cf067e56e7cda6cb098ebe3fb4d74ca2' (2024-03-01)
• Updated input 'flake-parts/nixpkgs-lib':
'github:NixOS/nixpkgs/97b17f32362e475016f942bbdfda4a4a72a8a652?dir=lib' (2024-01-29)
→ 'github:NixOS/nixpkgs/1536926ef5621b09bba54035ae2bb6d806d72ac8?dir=lib' (2024-02-29)
• Updated input 'nixpkgs':
'github:NixOS/nixpkgs/cbc4211f0afffe6dfd2478a62615dd5175a13f9a' (2024-02-23)
→ 'github:NixOS/nixpkgs/1536926ef5621b09bba54035ae2bb6d806d72ac8' (2024-02-29)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
* server : init http requests thread pool with --parallel if set (llama/5836)
* ci : schedule slow server tests only on Release or on demand (llama/5839)
* llama : fix llama_copy_state_data with fragmented KV cache (llama/5840)
The row size of the saved states was based on kv_self.head while
it should be based on llama_kv_cache_cell_max.
Existing session files should still work.
* llama : fix llama_kv_cache_cell_max inability to return 1
I've also changed its return type to uint32_t,
because this function is always used to set the value of uint32_t variables,
and because the index already has this type.
* llama : fix state size calculation
Some bytes in the state were unaccounted for in llama_get_state_size.
Since the logits reserve so much space, it did not cause problems.
* gguf-dump : support i-quants (llama/5841)
Co-authored-by: Black_Fox <radekliska@gmail.com>
* llama : allow for user specified embedding pooling type (llama/5849)
* allow for user specified pooling type
* llama : use enum types over int
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* readme : add API changes section
* cuda : fix data race in soft max (llama/5853)
* main : support special tokens as reverse/anti prompt (llama/5847)
* Support special tokens as reverse/anti prompt.
* Tokenize antiprompts only once.
* main : minor
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* common : use LLAMA_DEFAULT_SEED (llama/5855)
* add some new ops, fix some operators and add batch operations to certain operators. (ggml/747)
* cuda: fix group_norm
* cuda: add batch inference support for ggml_pad/ggml_upscale
* add ggml_arrange
* add ggml_timestep_embedding
* update ggml_arange/ggml_timestep_embedding tests
* cuda: fix im2col
* add ggml_arange/ggml_timestep_embbeding support for metal backend
* fix some bugs
* fix some bugs
* Update ggml.h
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update ggml-cuda.cu
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update ggml-metal.m
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update ggml-metal.m
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update ggml-metal.metal
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* modify according to the review comments
* ggml : fix compile warnings + code style
* ggml : normalize compute_forward calls + fix seg fault in debug
* minor
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
* sync : ggml
* add alias for chat template (llama/5858)
* speculative : implement stochastic speculative sampling (llama/5625)
* (WIP) Implement stochastic speculative decoding
* sample from residual distribution on draft accept failure
* fix#5657: force greedy sampling with probs when temp is 0
* remove p_accept parameter
* fix style
* remove unused variables
* add srand() in speculative.cpp
* replace use of rand() with mt19937 sampling
* fixes based on review (@JohannesGaessler)
* fix r random generation
* randomly select next sequence to verify + fix bug in memory freeing
* fix bug in active_seqs sync
* fix uniform int distribution initialization
* remove warnings from comparison between int and size_t
* check grammar in `llama_sample_probability_distribution_impl`
* remove malloc code by utilizing vectors
* add PR link to README
* cmake : handle cases where git index is not found in .git (llama/5844)
* Update CMakeLists.txt
* Update CMakeLists.txt
* ggml : introduce ggml_status (ggml/750)
* using enum as an exit code instead of macros
* update return type from enum to unsigned int
* indentation fix
* compound update
ggml_compute_exit_code -> ggml_status
changed ggml_status from a bit-field type to simple codes
ggml_status to string cast
* ggml_status to string cast
* GGML_CALL was removed
Co-authored-by: slaren <slarengh@gmail.com>
---------
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* sync : ggml
ggml-ci
* ggml : fix unknown status (llama/0)
* flake : fix
* llama : fix embeddings (llama/5796)
* llama : fix embeddings
ggml-ci
* llama : do not use KV cache for non-causal models
ggml-ci
* embeddings : fix llama_batch_init arg
* llama : add pooling switch
* llama : distinguish token vs sequence embeddings
ggml-ci
* llama : assert pooling tensor
* llama : simplify causal mask condition
ggml-ci
* llama : assert input batch with pooling enabled
* readme : update API changes list
* nix: static build (llama/5814)
* fix speculative decoding build on windows (llama/5874)
* rebase and rm tailing space
---------
Co-authored-by: LiangtaoJin <liang-tao.jin@intel.com>
Co-authored-by: compilade <113953597+compilade@users.noreply.github.com>
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Kawrakow <48489457+ikawrakow@users.noreply.github.com>
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Jared Van Bortel <jared@nomic.ai>
Co-authored-by: Michael Podvitskiy <podvitskiymichael@gmail.com>
Co-authored-by: Pierrick Hymbert <pierrick.hymbert@gmail.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Nindaleth <Nindaleth@users.noreply.github.com>
Co-authored-by: Black_Fox <radekliska@gmail.com>
Co-authored-by: Douglas Hanley <thesecretaryofwar@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: DAN™ <dranger003@gmail.com>
Co-authored-by: leejet <leejet714@gmail.com>
Co-authored-by: Minsoo Cheong <54794500+mscheong01@users.noreply.github.com>
Co-authored-by: Dane Madsen <dane_madsen@hotmail.com>
Co-authored-by: hutli <6594598+hutli@users.noreply.github.com>
Co-authored-by: Jeffrey Quesnelle <emozilla@nousresearch.com>
* using enum as an exit code instead of macros
* update return type from enum to unsigned int
* indentation fix
* compound update
ggml_compute_exit_code -> ggml_status
changed ggml_status from a bit-field type to simple codes
ggml_status to string cast
* ggml_status to string cast
* GGML_CALL was removed
Co-authored-by: slaren <slarengh@gmail.com>
---------
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* iq3_s: somewhat faster AVX2 dot product
On Ryzen a 7950X TG-128 increases to 16 t/s from 15.5 t/s using
16 threads. For 8 threads it is 13.85 t/s vs 11.75 t/s.
PP-512 increases to 28.5 t/s from 23.8 t/s.
* iq3_s: somewhat faster ARM_NEON dot product
Still dog slow - 10.7 t/s up from 9.9 t/s.
* iq3_s: another small ARM_NEON improvement
10.7 -> 11.0 t/s. Using vmulq_s8 is faster than the xor - sub trick
that works best on AVX2.
* iq3_s: minor improvement on Metal
49.4 t/s -> 50.3 t/s
* iq3_s: PPL improvement
E.g., for a context of 4096 LLaMA-v2-7B goes to 5.1340 from 5.1653.
* iq3_s: use new grid everywhere
* Fix ARM_NEON
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* suport multiple cards: split-mode - layer|row
* rm warning
* rebase with master, support tow new OPs, close feature for -sm=row, fix for unit test
* update news
* fix merge error
* update according to review comments
* Use batched mul_mat pathway
* rm extra line
* Explicitly state scaled data type
---------
Co-authored-by: Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>
* WIP: make i-quants work for QK_K = 64
* iq2_xs: attempt to fix AVX dot product for QK_K = 64
Tests pass, but I get gibberish.
* QK_K = 64 tests pass on ARM_NEON and Metal
Sadly, that does not mean it actually works.
* Make CUDA compile with QK_K = 64
Tests don't pass, plus we get misaligned access
* Q2_K: fixed bug in imatrix quantization for QK_K = 64
* iq1_s: turn off SIMD implementation for QK_K = 64 (it does not work)
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* Try IQ4_NL with blocks of 64 - does not look good
* iq4_xs: go to super-blocks of 256 and 6-bit scales for blocks of 32
* iq4_xs: CUDA works - 133.2 t/s
* iq4_xs: AVX2 dot product
* iq4_xs: ARM_NEON dot product
* iq4_nl: Metal implementation
As usual, Metal / Apple Silicon don't like my quants.
* iq3_xs: minor fix
* iq4_xs: shrink by using IQ3_S for attn_k and attn_q
* iq4_xs: revert using IQ3_S for attn_k and attn_v
PPL vs size is good, but CPU performance suffers: on M2 Max
TG-128 drops to 21.7 t/s from 28.8, and on a Ryzen-7950X
to 14.5 t/s from 15.8 t/s. On CUDA we have 135 t/s when
using IQ3_S vs 133 t/s with pure IQ4_XS.
* Fix CI
* iq4_xs: Added forgotten check for 256 divisibility
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* Adding IQ2_S and IQ2_M as a single cumulative commit
* Update examples/quantize/quantize.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* [ggml-quants] Provide ggml_vqtbl1q_u8 for 64bit compatibility
vqtbl1q_u8 is not part of arm v7 neon library
* [android-example] Remove abi filter after arm v7a fix
* [github-workflows] Do not skip Android armeabi-v7a build
* add magika inference example
* ggml : fix unaligned accesses in custom ops
* ggml : fix FP32 GELU for values that exceed the FP16 range
* use ggml_pool_1d
* add README
* Update README.md
* pad inputs if the files are too small
* cleanup
ggml-ci
* iq4_nl: squash commits for easier rebase
* Basics (quantize, dequantize)
* CUDA dequantize and dot product
* Slightly faster CUDA dot product (120 t/s)
* Switch to 6-bit scales
* Scalar dot product
* AVX2 dot product
* ARM_NEON dot product
* Works on metal, but still slow
* Slightly better Metal dot product
* Another small Metal improvement
* Metal dot product is getting there
* Faster CUDA dot product
* Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided
* Report the actual bpw
* Add _xs mix that is 4.05 bpw for non-MoE models
* Remove IQ4_XS for now, slightly adjust kvalues_iq4nl
* AVX2 dot product uses Q8_0 instead of Q8_K
* Add to test-backend-ops
* Minor fix
* Also use use Q5_K for attn_output in MoE models
* Fixes after merging latest master
* Switching to blocks of 32
* AVX2 for blocks of 32
* Scaler dot product for blocks of 32
* ARM_NEON dot product for blocks of 32
* Metal kernels for blocks of 32
* Slightly faster Metal kernels
* Resurrecting iq3_xs
After all the experimentation, nothing was better than this.
* Minor PPL improvement via a block scale fudge factor
* Minor improvement via 3 neighbours
* iq3_xs: working scalar and AVX2 dot products
* iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s)
* iq3_xs: working Metal implementation
* Adding IQ3_M - IQ3_XS mix with mostly Q4_K
* iiq3_xs: a 3.4375 bpw variant
* iq3_xs: make CUDA work for new version
* iq3_xs: make scalar and AVX2 work for new version
* iq3_s: make ARM_NEON work with new version
* iq3_xs: make new version work on metal
Performance is very similar to Q3_K_S
* iq3_xs: tiny Metal speed improvement
* iq3_xs: tiny Metal speed improvement
* Fix stupid warning
* Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS
* iq3_xs: rename to iq3_s
* iq3_s: make tests pass
* Move Q3_K_XS mix to 3.25 bpw
* Attempt to fix failing tests
* Another attempt to fix the Windows builds
* Attempt to fix ROCm
* ROCm again
* iq3_s: partial fix for QK_K = 64
* iq3_s: make it work on metal for QK_K = 64
Pleasent surprise: the coding was super-block size independent,
so all it took was to delete some QK_K == 256 guards.
* Will this fix ROCm?
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* Introduce backend GUIDs
Initial proposed implementation of backend GUIDs
(Discussed in https://github.com/ggerganov/ggml/pull/741)
Hardcoded CPU backend GUID (for now)
Change ggml_backend_is_cpu logic to use GUID
* Remove redundant functions
Remove redundant functions `ggml_backend_i::get_name` and `ggml_backend_guid` which are not desired for future expansion
* Add spaces to match style
Co-authored-by: slaren <slarengh@gmail.com>
* Fix brace style to match
Co-authored-by: slaren <slarengh@gmail.com>
* Add void to () in function signature
Co-authored-by: slaren <slarengh@gmail.com>
* Add back ggml_backend_guid and make CPU_GUID a local static in ggml_backend_cpu_guid
* add guids to all backends
ggml-ci
---------
Co-authored-by: slaren <slarengh@gmail.com>
* talk-llama: pass file instead of arg
it is too hard to quote text in a portable way
* talk-llama: pass heard_ok as a file
* talk-llama: let eleven-labs.py accept options
Options: -v voice, -s savefile, -p (--play)
* talk-llama: check installed commands in "speak"
Pass "-q" to eleven-labs.py to skip checking whether elevenlabs is installed
* talk-llama: pass voice_id again
in order to sync talk with talk-llama
* talk: sync with talk-llama
Passing text_to_speak as a file is safer and more portable
cf. https://stackoverflow.com/a/59036879/45375
* talk and talk-llama: get all installed voices in speak.ps1
* talk and talk-llama: get voices from api
* talk and talk-llama: add more options to eleven-labs.py
and remove DEFAULT_VOICE because it is deprecated (https://www.reddit.com/r/ElevenLabs/comments/1830abt/what_happened_to_bella/)
```
usage: eleven-labs.py [-q] [-l] [-h] [-n NAME | -v NUMBER] [-f KEY=VAL] [-s FILE | -p] [TEXTFILE]
options:
-q, --quick skip checking the required library
action:
TEXTFILE read the text file (default: stdin)
-l, --list show the list of voices and exit
-h, --help show this help and exit
voice selection:
-n NAME, --name NAME get a voice object by name (default: Arnold)
-v NUMBER, --voice NUMBER
get a voice object by number (see --list)
-f KEY=VAL, --filter KEY=VAL
filter voices by labels (default: "use case=narration")
this option can be used multiple times
filtering will be disabled if the first -f has no "=" (e.g. -f "any")
output:
-s FILE, --save FILE save the TTS to a file (default: audio.mp3)
-p, --play play the TTS with ffplay
```
* examples: add speak_with_file()
as suggested in the review
* talk and talk-llama: ignore to_speak.txt