mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-07-01 23:10:47 +02:00
Compare commits
13 Commits
batched
...
quantize-e
Author | SHA1 | Date | |
---|---|---|---|
ec96d68402 | |||
bebf0da983 | |||
848e54f3ad | |||
7883d1cae4 | |||
ccc85b4ff8 | |||
c7606b47df | |||
d38af151a1 | |||
94267df08e | |||
8713c67133 | |||
57a60639bb | |||
bfbaa4dce5 | |||
1d79e78402 | |||
b6c5f49b78 |
@ -1,6 +1,6 @@
|
||||
cmake_minimum_required (VERSION 3.5)
|
||||
|
||||
project(whisper.cpp VERSION 1.4.3)
|
||||
project(whisper.cpp VERSION 1.5.0)
|
||||
|
||||
# Add path to modules
|
||||
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake/")
|
||||
|
4
Makefile
4
Makefile
@ -418,9 +418,9 @@ samples:
|
||||
.PHONY: medium
|
||||
.PHONY: large-v1
|
||||
.PHONY: large-v2
|
||||
.PHONY: large
|
||||
.PHONY: large-v3
|
||||
|
||||
tiny.en tiny base.en base small.en small medium.en medium large-v1 large-v2 large: main
|
||||
tiny.en tiny base.en base small.en small medium.en medium large-v1 large-v2 large-v3: main
|
||||
bash ./models/download-ggml-model.sh $@
|
||||
@echo ""
|
||||
@echo "==============================================="
|
||||
|
18
README.md
18
README.md
@ -6,7 +6,7 @@
|
||||
[](https://opensource.org/licenses/MIT)
|
||||
[](https://www.npmjs.com/package/whisper.cpp/)
|
||||
|
||||
Beta: [v1.4.3](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.4.3) / Stable: [v1.2.1](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.2.1) / [Roadmap | F.A.Q.](https://github.com/ggerganov/whisper.cpp/discussions/126)
|
||||
Stable: [v1.5.0](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.5.0) / [Roadmap | F.A.Q.](https://github.com/ggerganov/whisper.cpp/discussions/126)
|
||||
|
||||
High-performance inference of [OpenAI's Whisper](https://github.com/openai/whisper) automatic speech recognition (ASR) model:
|
||||
|
||||
@ -231,18 +231,18 @@ make medium.en
|
||||
make medium
|
||||
make large-v1
|
||||
make large-v2
|
||||
make large
|
||||
make large-v3
|
||||
```
|
||||
|
||||
## Memory usage
|
||||
|
||||
| Model | Disk | Mem | SHA |
|
||||
| --- | --- | --- | --- |
|
||||
| tiny | 75 MB | ~125 MB | `bd577a113a864445d4c299885e0cb97d4ba92b5f` |
|
||||
| base | 142 MB | ~210 MB | `465707469ff3a37a2b9b8d8f89f2f99de7299dac` |
|
||||
| small | 466 MB | ~600 MB | `55356645c2b361a969dfd0ef2c5a50d530afd8d5` |
|
||||
| medium | 1.5 GB | ~1.7 GB | `fd9727b6e1217c2f614f9b698455c4ffd82463b4` |
|
||||
| large | 2.9 GB | ~3.3 GB | `ad82bf6a9043ceed055076d0fd39f5f186ff8062` |
|
||||
| Model | Disk | Mem |
|
||||
| --- | --- | --- |
|
||||
| tiny | 75 MiB | ~273 MB |
|
||||
| base | 142 MiB | ~388 MB |
|
||||
| small | 466 MiB | ~852 MB |
|
||||
| medium | 1.5 GiB | ~2.1 GB |
|
||||
| large | 2.9 GiB | ~3.9 GB |
|
||||
|
||||
## Quantization
|
||||
|
||||
|
@ -24,7 +24,7 @@ const (
|
||||
|
||||
var (
|
||||
// The models which will be downloaded, if no model is specified as an argument
|
||||
modelNames = []string{"ggml-tiny.en", "ggml-tiny", "ggml-base.en", "ggml-base", "ggml-small.en", "ggml-small", "ggml-medium.en", "ggml-medium", "ggml-large-v1", "ggml-large-v2", "ggml-large"}
|
||||
modelNames = []string{"ggml-tiny.en", "ggml-tiny", "ggml-base.en", "ggml-base", "ggml-small.en", "ggml-small", "ggml-medium.en", "ggml-medium", "ggml-large-v1", "ggml-large-v2", "ggml-large-v3"}
|
||||
)
|
||||
|
||||
var (
|
||||
|
Submodule bindings/ios updated: 9752de4100...c9d5095f0c
@ -45,7 +45,7 @@ class WhisperCppTest {
|
||||
assertEquals(16384, params.n_max_text_ctx);
|
||||
assertFalse(params.translate);
|
||||
assertEquals(0.01f, params.thold_pt);
|
||||
assertEquals(2, params.beam_search.beam_size);
|
||||
assertEquals(5, params.beam_search.beam_size);
|
||||
assertEquals(-1.0f, params.beam_search.patience);
|
||||
}
|
||||
|
||||
@ -58,7 +58,7 @@ class WhisperCppTest {
|
||||
assertEquals(WhisperSamplingStrategy.WHISPER_SAMPLING_GREEDY.ordinal(), params.strategy);
|
||||
assertNotEquals(0, params.n_threads);
|
||||
assertEquals(16384, params.n_max_text_ctx);
|
||||
assertEquals(2, params.greedy.best_of);
|
||||
assertEquals(5, params.greedy.best_of);
|
||||
}
|
||||
|
||||
@Test
|
||||
|
@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "whisper.cpp",
|
||||
"version": "1.4.3",
|
||||
"version": "1.5.0",
|
||||
"description": "Whisper speech recognition",
|
||||
"main": "whisper.js",
|
||||
"scripts": {
|
||||
|
File diff suppressed because one or more lines are too long
@ -81,7 +81,7 @@ int whisper_bench_full(const whisper_params & params) {
|
||||
}
|
||||
// heat encoder
|
||||
if (int ret = whisper_encode(ctx, 0, params.n_threads) != 0) {
|
||||
fprintf(stderr, "error: failed to encode model: %d\n", ret);
|
||||
fprintf(stderr, "error: failed to encode: %d\n", ret);
|
||||
return 4;
|
||||
}
|
||||
|
||||
@ -90,13 +90,13 @@ int whisper_bench_full(const whisper_params & params) {
|
||||
|
||||
// prompt heat
|
||||
if (int ret = whisper_decode(ctx, tokens, 256, 0, params.n_threads) != 0) {
|
||||
fprintf(stderr, "error: failed to encode model: %d\n", ret);
|
||||
fprintf(stderr, "error: failed to decode: %d\n", ret);
|
||||
return 4;
|
||||
}
|
||||
|
||||
// text-generation heat
|
||||
if (int ret = whisper_decode(ctx, tokens, 1, 256, params.n_threads) != 0) {
|
||||
fprintf(stderr, "error: failed to encode model: %d\n", ret);
|
||||
fprintf(stderr, "error: failed to decode: %d\n", ret);
|
||||
return 4;
|
||||
}
|
||||
|
||||
@ -104,20 +104,30 @@ int whisper_bench_full(const whisper_params & params) {
|
||||
|
||||
// actual run
|
||||
if (int ret = whisper_encode(ctx, 0, params.n_threads) != 0) {
|
||||
fprintf(stderr, "error: failed to encode model: %d\n", ret);
|
||||
fprintf(stderr, "error: failed to encode: %d\n", ret);
|
||||
return 4;
|
||||
}
|
||||
|
||||
for (int i = 0; i < 16; i++) {
|
||||
if (int ret = whisper_decode(ctx, tokens, 256, 0, params.n_threads) != 0) {
|
||||
fprintf(stderr, "error: failed to encode model: %d\n", ret);
|
||||
// text-generation
|
||||
for (int i = 0; i < 256; i++) {
|
||||
if (int ret = whisper_decode(ctx, tokens, 1, i, params.n_threads) != 0) {
|
||||
fprintf(stderr, "error: failed to decode: %d\n", ret);
|
||||
return 4;
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < 256; i++) {
|
||||
if (int ret = whisper_decode(ctx, tokens, 1, i, params.n_threads) != 0) {
|
||||
fprintf(stderr, "error: failed to encode model: %d\n", ret);
|
||||
// batched decoding
|
||||
for (int i = 0; i < 64; i++) {
|
||||
if (int ret = whisper_decode(ctx, tokens, 5, 0, params.n_threads) != 0) {
|
||||
fprintf(stderr, "error: failed to decode: %d\n", ret);
|
||||
return 4;
|
||||
}
|
||||
}
|
||||
|
||||
// prompt processing
|
||||
for (int i = 0; i < 16; i++) {
|
||||
if (int ret = whisper_decode(ctx, tokens, 256, 0, params.n_threads) != 0) {
|
||||
fprintf(stderr, "error: failed to decode: %d\n", ret);
|
||||
return 4;
|
||||
}
|
||||
}
|
||||
|
@ -9,6 +9,11 @@ static const std::map<std::string, enum ggml_ftype> GGML_FTYPE_MAP = {
|
||||
{"q5_0", GGML_FTYPE_MOSTLY_Q5_0},
|
||||
{"q5_1", GGML_FTYPE_MOSTLY_Q5_1},
|
||||
{"q8_0", GGML_FTYPE_MOSTLY_Q8_0},
|
||||
{"q2_k", GGML_FTYPE_MOSTLY_Q2_K},
|
||||
{"q3_k", GGML_FTYPE_MOSTLY_Q3_K},
|
||||
{"q4_k", GGML_FTYPE_MOSTLY_Q4_K},
|
||||
{"q5_k", GGML_FTYPE_MOSTLY_Q5_K},
|
||||
{"q6_k", GGML_FTYPE_MOSTLY_Q6_K},
|
||||
};
|
||||
|
||||
void ggml_print_ftypes(FILE * fp) {
|
||||
@ -48,15 +53,15 @@ bool ggml_common_quantize_0(
|
||||
case GGML_FTYPE_MOSTLY_Q5_0: qtype = GGML_TYPE_Q5_0; break;
|
||||
case GGML_FTYPE_MOSTLY_Q5_1: qtype = GGML_TYPE_Q5_1; break;
|
||||
case GGML_FTYPE_MOSTLY_Q8_0: qtype = GGML_TYPE_Q8_0; break;
|
||||
case GGML_FTYPE_MOSTLY_Q2_K: qtype = GGML_TYPE_Q2_K; break;
|
||||
case GGML_FTYPE_MOSTLY_Q3_K: qtype = GGML_TYPE_Q3_K; break;
|
||||
case GGML_FTYPE_MOSTLY_Q4_K: qtype = GGML_TYPE_Q4_K; break;
|
||||
case GGML_FTYPE_MOSTLY_Q5_K: qtype = GGML_TYPE_Q5_K; break;
|
||||
case GGML_FTYPE_MOSTLY_Q6_K: qtype = GGML_TYPE_Q6_K; break;
|
||||
case GGML_FTYPE_UNKNOWN:
|
||||
case GGML_FTYPE_ALL_F32:
|
||||
case GGML_FTYPE_MOSTLY_F16:
|
||||
case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16:
|
||||
case GGML_FTYPE_MOSTLY_Q2_K:
|
||||
case GGML_FTYPE_MOSTLY_Q3_K:
|
||||
case GGML_FTYPE_MOSTLY_Q4_K:
|
||||
case GGML_FTYPE_MOSTLY_Q5_K:
|
||||
case GGML_FTYPE_MOSTLY_Q6_K:
|
||||
{
|
||||
fprintf(stderr, "%s: invalid model type %d\n", __func__, ftype);
|
||||
return false;
|
||||
@ -167,24 +172,17 @@ bool ggml_common_quantize_0(
|
||||
|
||||
switch ((ggml_type) ttype) {
|
||||
case GGML_TYPE_Q4_0:
|
||||
{
|
||||
cur_size = ggml_quantize_q4_0(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
|
||||
} break;
|
||||
case GGML_TYPE_Q4_1:
|
||||
{
|
||||
cur_size = ggml_quantize_q4_1(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
|
||||
} break;
|
||||
case GGML_TYPE_Q5_0:
|
||||
{
|
||||
cur_size = ggml_quantize_q5_0(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
|
||||
} break;
|
||||
case GGML_TYPE_Q5_1:
|
||||
{
|
||||
cur_size = ggml_quantize_q5_1(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
|
||||
} break;
|
||||
case GGML_TYPE_Q8_0:
|
||||
case GGML_TYPE_Q2_K:
|
||||
case GGML_TYPE_Q3_K:
|
||||
case GGML_TYPE_Q4_K:
|
||||
case GGML_TYPE_Q5_K:
|
||||
case GGML_TYPE_Q6_K:
|
||||
{
|
||||
cur_size = ggml_quantize_q8_0(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
|
||||
cur_size = ggml_quantize_chunk((ggml_type) ttype, data_f32.data(), work.data(), 0, nelements, hist_cur.data());
|
||||
} break;
|
||||
case GGML_TYPE_F32:
|
||||
case GGML_TYPE_F16:
|
||||
@ -192,11 +190,6 @@ bool ggml_common_quantize_0(
|
||||
case GGML_TYPE_I16:
|
||||
case GGML_TYPE_I32:
|
||||
case GGML_TYPE_Q8_1:
|
||||
case GGML_TYPE_Q2_K:
|
||||
case GGML_TYPE_Q3_K:
|
||||
case GGML_TYPE_Q4_K:
|
||||
case GGML_TYPE_Q5_K:
|
||||
case GGML_TYPE_Q6_K:
|
||||
case GGML_TYPE_Q8_K:
|
||||
case GGML_TYPE_COUNT:
|
||||
{
|
||||
|
@ -48,7 +48,7 @@ if [ -n "$3" ]; then
|
||||
fi
|
||||
|
||||
# Whisper models
|
||||
models=( "tiny.en" "tiny" "base.en" "base" "small.en" "small" "medium.en" "medium" "large-v1" "large-v2" "large" )
|
||||
models=( "tiny.en" "tiny" "base.en" "base" "small.en" "small" "medium.en" "medium" "large-v1" "large-v2" "large-v3" )
|
||||
|
||||
# list available models
|
||||
function list_models {
|
||||
|
@ -62,8 +62,8 @@ struct whisper_params {
|
||||
int32_t progress_step = 5;
|
||||
int32_t max_context = -1;
|
||||
int32_t max_len = 0;
|
||||
int32_t best_of = 2;
|
||||
int32_t beam_size = -1;
|
||||
int32_t best_of = whisper_full_default_params(WHISPER_SAMPLING_GREEDY).greedy.best_of;
|
||||
int32_t beam_size = whisper_full_default_params(WHISPER_SAMPLING_BEAM_SEARCH).beam_search.beam_size;
|
||||
|
||||
float word_thold = 0.01f;
|
||||
float entropy_thold = 2.40f;
|
||||
@ -925,9 +925,9 @@ int main(int argc, char ** argv) {
|
||||
if (params.detect_language) {
|
||||
params.language = "auto";
|
||||
}
|
||||
fprintf(stderr, "%s: processing '%s' (%d samples, %.1f sec), %d threads, %d processors, lang = %s, task = %s, %stimestamps = %d ...\n",
|
||||
fprintf(stderr, "%s: processing '%s' (%d samples, %.1f sec), %d threads, %d processors, %d beams + best of %d, lang = %s, task = %s, %stimestamps = %d ...\n",
|
||||
__func__, fname_inp.c_str(), int(pcmf32.size()), float(pcmf32.size())/WHISPER_SAMPLE_RATE,
|
||||
params.n_threads, params.n_processors,
|
||||
params.n_threads, params.n_processors, params.beam_size, params.best_of,
|
||||
params.language.c_str(),
|
||||
params.translate ? "translate" : "transcribe",
|
||||
params.tinydiarize ? "tdrz = 1, " : "",
|
||||
|
@ -162,6 +162,7 @@ bool whisper_model_quantize(const std::string & fname_inp, const std::string & f
|
||||
"encoder.conv2.bias",
|
||||
"encoder.positional_embedding",
|
||||
"decoder.positional_embedding",
|
||||
"decoder.*",
|
||||
};
|
||||
|
||||
if (!ggml_common_quantize_0(finp, fout, ftype, { ".*" }, to_skip)) {
|
||||
|
@ -53,7 +53,7 @@ struct whisper_params {
|
||||
int32_t capture_id = -1;
|
||||
int32_t max_tokens = 32;
|
||||
int32_t audio_ctx = 0;
|
||||
int32_t n_gpu_layers = 0;
|
||||
int32_t n_gpu_layers = 999;
|
||||
|
||||
float vad_thold = 0.6f;
|
||||
float freq_thold = 100.0f;
|
||||
@ -136,7 +136,7 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
|
||||
fprintf(stderr, " -c ID, --capture ID [%-7d] capture device ID\n", params.capture_id);
|
||||
fprintf(stderr, " -mt N, --max-tokens N [%-7d] maximum number of tokens per audio chunk\n", params.max_tokens);
|
||||
fprintf(stderr, " -ac N, --audio-ctx N [%-7d] audio context size (0 - all)\n", params.audio_ctx);
|
||||
fprintf(stderr, " -ngl N, --n-gpu-layers N [%-7s] number of layers to store in VRAM\n", params.n_gpu_layers);
|
||||
fprintf(stderr, " -ngl N, --n-gpu-layers N [%-7d] number of layers to store in VRAM\n", params.n_gpu_layers);
|
||||
fprintf(stderr, " -vth N, --vad-thold N [%-7.2f] voice activity detection threshold\n", params.vad_thold);
|
||||
fprintf(stderr, " -fth N, --freq-thold N [%-7.2f] high-pass frequency cutoff\n", params.freq_thold);
|
||||
fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
|
||||
@ -686,8 +686,8 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
|
||||
text_to_speak = ::replace(text_to_speak, "\"", "");
|
||||
int ret = system((params.speak + " " + std::to_string(voice_id) + " \"" + text_to_speak + "\"").c_str());
|
||||
text_to_speak = ::replace(text_to_speak, "'", "'\"'\"'");
|
||||
int ret = system((params.speak + " " + std::to_string(voice_id) + " '" + text_to_speak + "'").c_str());
|
||||
if (ret != 0) {
|
||||
fprintf(stderr, "%s: failed to speak\n", __func__);
|
||||
}
|
||||
|
@ -21,7 +21,7 @@ help()
|
||||
echo "Usage: ./twitch.sh -s [step] -m [model] -t [threads] [url]"
|
||||
echo "options:"
|
||||
echo "-s Step in seconds (default is $step)."
|
||||
echo "-m Choose model, options are: 'tiny.en' 'tiny' 'base.en' 'base' 'small.en' 'small' 'medium.en' 'medium' 'large-v1' 'large-v2' 'large' (default is '$model')."
|
||||
echo "-m Choose model, options are: 'tiny.en' 'tiny' 'base.en' 'base' 'small.en' 'small' 'medium.en' 'medium' 'large-v1' 'large-v2' 'large-v3' (default is '$model')."
|
||||
echo "-t Number of threads to use."
|
||||
echo "-h Print this help page."
|
||||
echo
|
||||
|
@ -17,12 +17,12 @@ else
|
||||
encoder_only=$2
|
||||
fi
|
||||
|
||||
models=( \
|
||||
"tiny" "tiny-q4_0" "tiny-q4_1" "tiny-q5_0" "tiny-q5_1" "tiny-q8_0" \
|
||||
"base" "base-q4_0" "base-q4_1" "base-q5_0" "base-q5_1" "base-q8_0" \
|
||||
"small" "small-q4_0" "small-q4_1" "small-q5_0" "small-q5_1" "small-q8_0" \
|
||||
"medium" "medium-q4_0" "medium-q4_1" "medium-q5_0" "medium-q5_1" "medium-q8_0" \
|
||||
"large" "large-q4_0" "large-q4_1" "large-q5_0" "large-q5_1" "large-q8_0" \
|
||||
models=( \
|
||||
"tiny" "tiny-q4_0" "tiny-q4_1" "tiny-q5_0" "tiny-q5_1" "tiny-q8_0" \
|
||||
"base" "base-q4_0" "base-q4_1" "base-q5_0" "base-q5_1" "base-q8_0" \
|
||||
"small" "small-q4_0" "small-q4_1" "small-q5_0" "small-q5_1" "small-q8_0" \
|
||||
"medium" "medium-q4_0" "medium-q4_1" "medium-q5_0" "medium-q5_1" "medium-q8_0" "medium-dis" \
|
||||
"large-v2" "large-v2-q4_0" "large-v2-q4_1" "large-v2-q5_0" "large-v2-q5_1" "large-v2-q8_0" "large-v2-dis" \
|
||||
)
|
||||
|
||||
if [ "$encoder_only" -eq 0 ]; then
|
||||
@ -44,8 +44,8 @@ if [ "$encoder_only" -eq 0 ]; then
|
||||
printf "\n"
|
||||
fi
|
||||
|
||||
printf "| %6s | %6s | %16s | %11s | %3s | %7s | %7s | %7s | %7s |\n" "CPU" "OS" "Config" "Model" "Th" "Enc." "Dec." "PP" "Commit"
|
||||
printf "| %6s | %6s | %16s | %11s | %3s | %7s | %7s | %7s | %7s |\n" "---" "---" "---" "---" "---" "---" "---" "---" "---"
|
||||
printf "| %6s | %6s | %16s | %13s | %3s | %7s | %7s | %7s | %7s | %7s |\n" "CPU" "OS" "Config" "Model" "Th" "Enc." "Dec." "Bch5" "PP" "Commit"
|
||||
printf "| %6s | %6s | %16s | %13s | %3s | %7s | %7s | %7s | %7s | %7s |\n" "---" "---" "---" "---" "---" "---" "---" "---" "---" "---"
|
||||
|
||||
for model in "${models[@]}"; do
|
||||
# actual run
|
||||
@ -56,6 +56,7 @@ for model in "${models[@]}"; do
|
||||
# parse the output:
|
||||
encode_time=$(echo "$output" | grep "encode time" | awk '{print $11}')
|
||||
decode_time=$(echo "$output" | grep "decode time" | awk '{print $11}')
|
||||
batchd_time=$(echo "$output" | grep "batchd time" | awk '{print $11}')
|
||||
prompt_time=$(echo "$output" | grep "prompt time" | awk '{print $11}')
|
||||
system_info=$(echo "$output" | grep "system_info")
|
||||
n_threads=$(echo "$output" | grep "system_info" | awk '{print $4}')
|
||||
@ -94,6 +95,6 @@ for model in "${models[@]}"; do
|
||||
commit=$(git rev-parse --short HEAD)
|
||||
|
||||
if [ $ret -eq 0 ]; then
|
||||
printf "| <todo> | <todo> | %16s | %11s | %3s | %7s | %7s | %7s | %7s |\n" "$config" "$model" "$n_threads" "$encode_time" "$decode_time" "$prompt_time" "$commit"
|
||||
printf "| <todo> | <todo> | %16s | %13s | %3s | %7s | %7s | %7s | %7s | %7s |\n" "$config" "$model" "$n_threads" "$encode_time" "$decode_time" "$batchd_time" "$prompt_time" "$commit"
|
||||
fi
|
||||
done
|
||||
|
@ -1,6 +1,6 @@
|
||||
#!/bin/bash
|
||||
|
||||
models=( "tiny.en" "tiny" "base.en" "base" "small.en" "small" "medium.en" "medium" "large-v1" "large-v2" "large" )
|
||||
models=( "tiny.en" "tiny" "base.en" "base" "small.en" "small" "medium.en" "medium" "large-v1" "large-v2" "large-v3" )
|
||||
|
||||
for model in "${models[@]}"; do
|
||||
python3 models/convert-pt-to-ggml.py ~/.cache/whisper/$model.pt ../whisper models/
|
||||
|
306
ggml-cuda.cu
306
ggml-cuda.cu
@ -39,7 +39,6 @@
|
||||
#define cudaDeviceCanAccessPeer hipDeviceCanAccessPeer
|
||||
#define cudaDeviceDisablePeerAccess hipDeviceDisablePeerAccess
|
||||
#define cudaDeviceEnablePeerAccess hipDeviceEnablePeerAccess
|
||||
#define cudaDeviceGetMemPool hipDeviceGetMemPool
|
||||
#define cudaDeviceProp hipDeviceProp_t
|
||||
#define cudaDeviceSynchronize hipDeviceSynchronize
|
||||
#define cudaError_t hipError_t
|
||||
@ -49,7 +48,6 @@
|
||||
#define cudaEvent_t hipEvent_t
|
||||
#define cudaEventDestroy hipEventDestroy
|
||||
#define cudaFree hipFree
|
||||
#define cudaFreeAsync hipFreeAsync
|
||||
#define cudaFreeHost hipHostFree
|
||||
#define cudaGetDevice hipGetDevice
|
||||
#define cudaGetDeviceCount hipGetDeviceCount
|
||||
@ -57,7 +55,6 @@
|
||||
#define cudaGetErrorString hipGetErrorString
|
||||
#define cudaGetLastError hipGetLastError
|
||||
#define cudaMalloc hipMalloc
|
||||
#define cudaMallocFromPoolAsync hipMallocFromPoolAsync
|
||||
#define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size, hipHostMallocDefault)
|
||||
#define cudaMemcpy hipMemcpy
|
||||
#define cudaMemcpy2DAsync hipMemcpy2DAsync
|
||||
@ -66,9 +63,6 @@
|
||||
#define cudaMemcpyDeviceToHost hipMemcpyDeviceToHost
|
||||
#define cudaMemcpyHostToDevice hipMemcpyHostToDevice
|
||||
#define cudaMemcpyKind hipMemcpyKind
|
||||
#define cudaMemPool_t hipMemPool_t
|
||||
#define cudaMemPoolAttrReleaseThreshold hipMemPoolAttrReleaseThreshold
|
||||
#define cudaMemPoolSetAttribute hipMemPoolSetAttribute
|
||||
#define cudaMemset hipMemset
|
||||
#define cudaMemsetAsync hipMemsetAsync
|
||||
#define cudaOccupancyMaxPotentialBlockSize hipOccupancyMaxPotentialBlockSize
|
||||
@ -94,6 +88,8 @@
|
||||
#define CC_OFFSET_AMD 1000000
|
||||
#define CC_RDNA2 (CC_OFFSET_AMD + 1030)
|
||||
|
||||
#define GGML_CUDA_MAX_NODES 8192
|
||||
|
||||
// define this if you want to always fallback to MMQ kernels and not use cuBLAS for matrix multiplication
|
||||
// on modern hardware, using cuBLAS is recommended as it utilizes F16 tensor cores which are very performant
|
||||
// for large computational tasks. the drawback is that this requires some extra amount of VRAM:
|
||||
@ -188,11 +184,11 @@ static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
|
||||
do { \
|
||||
cudaError_t err_ = (err); \
|
||||
if (err_ != cudaSuccess) { \
|
||||
int dev_id; \
|
||||
cudaGetDevice(&dev_id); \
|
||||
int id; \
|
||||
cudaGetDevice(&id); \
|
||||
fprintf(stderr, "\nCUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \
|
||||
cudaGetErrorString(err_)); \
|
||||
fprintf(stderr, "current device: %d\n", dev_id); \
|
||||
fprintf(stderr, "current device: %d\n", id); \
|
||||
exit(1); \
|
||||
} \
|
||||
} while (0)
|
||||
@ -202,11 +198,11 @@ static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
|
||||
do { \
|
||||
cublasStatus_t err_ = (err); \
|
||||
if (err_ != CUBLAS_STATUS_SUCCESS) { \
|
||||
int dev_id; \
|
||||
cudaGetDevice(&dev_id); \
|
||||
int id; \
|
||||
cudaGetDevice(&id); \
|
||||
fprintf(stderr, "\ncuBLAS error %d at %s:%d: %s\n", \
|
||||
err_, __FILE__, __LINE__, cublasGetStatusString(err_)); \
|
||||
fprintf(stderr, "current device: %d\n", dev_id); \
|
||||
fprintf(stderr, "current device: %d\n", id); \
|
||||
exit(1); \
|
||||
} \
|
||||
} while (0)
|
||||
@ -440,6 +436,8 @@ static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_
|
||||
#define CUDA_MUL_BLOCK_SIZE 256
|
||||
#define CUDA_GELU_BLOCK_SIZE 256
|
||||
#define CUDA_SILU_BLOCK_SIZE 256
|
||||
#define CUDA_RELU_BLOCK_SIZE 256
|
||||
#define CUDA_SQR_BLOCK_SIZE 256
|
||||
#define CUDA_CPY_BLOCK_SIZE 32
|
||||
#define CUDA_SCALE_BLOCK_SIZE 256
|
||||
#define CUDA_CLAMP_BLOCK_SIZE 256
|
||||
@ -472,7 +470,6 @@ static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUA
|
||||
|
||||
#define MAX_STREAMS 8
|
||||
static cudaStream_t g_cudaStreams[GGML_CUDA_MAX_DEVICES][MAX_STREAMS] = { nullptr };
|
||||
static cudaMemPool_t g_cudaMemPools[GGML_CUDA_MAX_DEVICES] = { nullptr };
|
||||
|
||||
struct ggml_tensor_extra_gpu {
|
||||
void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors
|
||||
@ -561,6 +558,24 @@ static __global__ void silu_f32(const float * x, float * dst, const int k) {
|
||||
dst[i] = x[i] / (1.0f + expf(-x[i]));
|
||||
}
|
||||
|
||||
static __global__ void relu_f32(const float * x, float * dst, const int k) {
|
||||
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i >= k) {
|
||||
return;
|
||||
}
|
||||
dst[i] = fmaxf(x[i], 0);
|
||||
}
|
||||
|
||||
static __global__ void sqr_f32(const float * x, float * dst, const int k) {
|
||||
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i >= k) {
|
||||
return;
|
||||
}
|
||||
dst[i] = x[i] * x[i];
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ float2 warp_reduce_sum(float2 a) {
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
@ -990,7 +1005,7 @@ static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx,
|
||||
|
||||
static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
|
||||
|
||||
const int row = blockIdx.y*blockDim.y + threadIdx.y;
|
||||
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
||||
if (row > nrows) return;
|
||||
|
||||
const int num_blocks_per_row = ncols / QK_K;
|
||||
@ -1094,7 +1109,7 @@ static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx,
|
||||
|
||||
static __global__ void dequantize_mul_mat_vec_q3_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
|
||||
|
||||
const int row = blockIdx.y*blockDim.y + threadIdx.y;
|
||||
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
||||
if (row > nrows) return;
|
||||
|
||||
const int num_blocks_per_row = ncols / QK_K;
|
||||
@ -1198,7 +1213,7 @@ static __global__ void dequantize_mul_mat_vec_q3_k(const void * __restrict__ vx,
|
||||
|
||||
static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
|
||||
|
||||
const int row = blockIdx.y*blockDim.y + threadIdx.y;
|
||||
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
||||
if (row > nrows) return;
|
||||
const int num_blocks_per_row = ncols / QK_K;
|
||||
const int ib0 = row*num_blocks_per_row;
|
||||
@ -1452,7 +1467,7 @@ static __global__ void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx,
|
||||
|
||||
static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
|
||||
|
||||
const int row = blockIdx.y*blockDim.y + threadIdx.y;
|
||||
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
||||
if (row > nrows) return;
|
||||
|
||||
const int num_blocks_per_row = ncols / QK_K;
|
||||
@ -4262,7 +4277,7 @@ template <bool need_check> static __global__ void
|
||||
|
||||
template <int qk, int qi, typename block_q_t, int vdr, vec_dot_q_cuda_t vec_dot_q_cuda>
|
||||
static __global__ void mul_mat_vec_q(const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols, const int nrows) {
|
||||
const int row = blockIdx.y*blockDim.y + threadIdx.y;
|
||||
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
||||
|
||||
if (row >= nrows) {
|
||||
return;
|
||||
@ -4302,7 +4317,7 @@ template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
|
||||
static __global__ void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * __restrict__ y, float * __restrict__ dst, const int ncols, const int nrows) {
|
||||
// qk = quantized weights per x block
|
||||
// qr = number of quantized weights per data value in x block
|
||||
const int row = blockIdx.y*blockDim.y + threadIdx.y;
|
||||
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
||||
|
||||
if (row >= nrows) {
|
||||
return;
|
||||
@ -4741,7 +4756,7 @@ static __global__ void im2col_f32_f16(
|
||||
int ofs0, int ofs1, int IW, int IH, int CHW,
|
||||
int s0, int s1, int p0, int p1, int d0, int d1) {
|
||||
const int iiw = blockIdx.z * s0 + threadIdx.z * d0 - p0;
|
||||
const int iih = blockIdx.y * s1 + threadIdx.y * d1 - p1;
|
||||
const int iih = blockIdx.y * s1 + threadIdx.y * d1 - p1;
|
||||
|
||||
const int offset_dst =
|
||||
(threadIdx.x * gridDim.y * gridDim.z + blockIdx.y * gridDim.z + blockIdx.z) * CHW +
|
||||
@ -4793,6 +4808,16 @@ static void silu_f32_cuda(const float * x, float * dst, const int k, cudaStream_
|
||||
silu_f32<<<num_blocks, CUDA_SILU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
||||
}
|
||||
|
||||
static void relu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
||||
const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE;
|
||||
relu_f32<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
||||
}
|
||||
|
||||
static void sqr_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
||||
const int num_blocks = (k + CUDA_SQR_BLOCK_SIZE - 1) / CUDA_SQR_BLOCK_SIZE;
|
||||
sqr_f32<<<num_blocks, CUDA_SQR_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
||||
}
|
||||
|
||||
static void norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||
GGML_ASSERT(ncols % WARP_SIZE == 0);
|
||||
if (ncols < 1024) {
|
||||
@ -4901,7 +4926,8 @@ static void dequantize_row_q6_K_cuda(const void * vx, dst_t * y, const int k, cu
|
||||
static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
|
||||
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
||||
const dim3 block_nums(1, block_num_y, 1);
|
||||
// the number of rows may exceed maximum grid size in the y or z dimensions, use the x dimension instead
|
||||
const dim3 block_nums(block_num_y, 1, 1);
|
||||
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
||||
dequantize_mul_mat_vec<QK4_0, QR4_0, dequantize_q4_0>
|
||||
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||
@ -4910,7 +4936,7 @@ static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const dfloat * y,
|
||||
static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
|
||||
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
||||
const dim3 block_nums(1, block_num_y, 1);
|
||||
const dim3 block_nums(block_num_y, 1, 1);
|
||||
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
||||
dequantize_mul_mat_vec<QK4_1, QR4_1, dequantize_q4_1>
|
||||
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||
@ -4919,7 +4945,7 @@ static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const dfloat * y,
|
||||
static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
|
||||
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
||||
const dim3 block_nums(1, block_num_y, 1);
|
||||
const dim3 block_nums(block_num_y, 1, 1);
|
||||
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
||||
dequantize_mul_mat_vec<QK5_0, QR5_0, dequantize_q5_0>
|
||||
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||
@ -4928,7 +4954,7 @@ static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const dfloat * y,
|
||||
static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
|
||||
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
||||
const dim3 block_nums(1, block_num_y, 1);
|
||||
const dim3 block_nums(block_num_y, 1, 1);
|
||||
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
||||
dequantize_mul_mat_vec<QK5_1, QR5_1, dequantize_q5_1>
|
||||
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||
@ -4937,7 +4963,7 @@ static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const dfloat * y,
|
||||
static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
|
||||
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
||||
const dim3 block_nums(1, block_num_y, 1);
|
||||
const dim3 block_nums(block_num_y, 1, 1);
|
||||
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
||||
dequantize_mul_mat_vec<QK8_0, QR8_0, dequantize_q8_0>
|
||||
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||
@ -4947,7 +4973,7 @@ static void dequantize_mul_mat_vec_q2_K_cuda(const void * vx, const float * y, f
|
||||
GGML_ASSERT(ncols % QK_K == 0);
|
||||
const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2
|
||||
const int block_num_y = (nrows + ny - 1) / ny;
|
||||
const dim3 block_nums(1, block_num_y, 1);
|
||||
const dim3 block_nums(block_num_y, 1, 1);
|
||||
const dim3 block_dims(32, ny, 1);
|
||||
dequantize_mul_mat_vec_q2_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||
}
|
||||
@ -4956,7 +4982,7 @@ static void dequantize_mul_mat_vec_q3_K_cuda(const void * vx, const float * y, f
|
||||
GGML_ASSERT(ncols % QK_K == 0);
|
||||
const int ny = 2 / K_QUANTS_PER_ITERATION;
|
||||
const int block_num_y = (nrows + ny - 1) / ny;
|
||||
const dim3 block_nums(1, block_num_y, 1);
|
||||
const dim3 block_nums(block_num_y, 1, 1);
|
||||
const dim3 block_dims(32, ny, 1);
|
||||
dequantize_mul_mat_vec_q3_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||
}
|
||||
@ -4965,7 +4991,7 @@ static void dequantize_mul_mat_vec_q4_K_cuda(const void * vx, const float * y, f
|
||||
GGML_ASSERT(ncols % QK_K == 0);
|
||||
const int ny = 2 / K_QUANTS_PER_ITERATION;
|
||||
const int block_num_y = (nrows + ny - 1) / ny;
|
||||
const dim3 block_nums(1, block_num_y, 1);
|
||||
const dim3 block_nums(block_num_y, 1, 1);
|
||||
const dim3 block_dims(32, ny, 1);
|
||||
dequantize_mul_mat_vec_q4_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||
}
|
||||
@ -4980,7 +5006,7 @@ static void dequantize_mul_mat_vec_q6_K_cuda(const void * vx, const float * y, f
|
||||
GGML_ASSERT(ncols % QK_K == 0);
|
||||
const int ny = 2 / K_QUANTS_PER_ITERATION;
|
||||
const int block_num_y = (nrows + ny - 1) / ny;
|
||||
const dim3 block_nums(1, block_num_y, 1);
|
||||
const dim3 block_nums(block_num_y, 1, 1);
|
||||
const dim3 block_dims(32, ny, 1);
|
||||
dequantize_mul_mat_vec_q6_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||
}
|
||||
@ -4988,7 +5014,7 @@ static void dequantize_mul_mat_vec_q6_K_cuda(const void * vx, const float * y, f
|
||||
static void mul_mat_vec_q4_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||
GGML_ASSERT(ncols % QK4_0 == 0);
|
||||
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
||||
const dim3 block_nums(1, block_num_y, 1);
|
||||
const dim3 block_nums(block_num_y, 1, 1);
|
||||
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
||||
mul_mat_vec_q<QK4_0, QI4_0, block_q4_0, VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1>
|
||||
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
|
||||
@ -4997,7 +5023,7 @@ static void mul_mat_vec_q4_0_q8_1_cuda(const void * vx, const void * vy, float *
|
||||
static void mul_mat_vec_q4_1_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||
GGML_ASSERT(ncols % QK4_1 == 0);
|
||||
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
||||
const dim3 block_nums(1, block_num_y, 1);
|
||||
const dim3 block_nums(block_num_y, 1, 1);
|
||||
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
||||
mul_mat_vec_q<QK4_0, QI4_1, block_q4_1, VDR_Q4_1_Q8_1_MMVQ, vec_dot_q4_1_q8_1>
|
||||
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
|
||||
@ -5006,7 +5032,7 @@ static void mul_mat_vec_q4_1_q8_1_cuda(const void * vx, const void * vy, float *
|
||||
static void mul_mat_vec_q5_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||
GGML_ASSERT(ncols % QK5_0 == 0);
|
||||
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
||||
const dim3 block_nums(1, block_num_y, 1);
|
||||
const dim3 block_nums(block_num_y, 1, 1);
|
||||
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
||||
mul_mat_vec_q<QK5_0, QI5_0, block_q5_0, VDR_Q5_0_Q8_1_MMVQ, vec_dot_q5_0_q8_1>
|
||||
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
|
||||
@ -5015,7 +5041,7 @@ static void mul_mat_vec_q5_0_q8_1_cuda(const void * vx, const void * vy, float *
|
||||
static void mul_mat_vec_q5_1_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||
GGML_ASSERT(ncols % QK5_1 == 0);
|
||||
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
||||
const dim3 block_nums(1, block_num_y, 1);
|
||||
const dim3 block_nums(block_num_y, 1, 1);
|
||||
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
||||
mul_mat_vec_q<QK5_1, QI5_1, block_q5_1, VDR_Q5_1_Q8_1_MMVQ, vec_dot_q5_1_q8_1>
|
||||
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
|
||||
@ -5024,7 +5050,7 @@ static void mul_mat_vec_q5_1_q8_1_cuda(const void * vx, const void * vy, float *
|
||||
static void mul_mat_vec_q8_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||
GGML_ASSERT(ncols % QK8_0 == 0);
|
||||
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
||||
const dim3 block_nums(1, block_num_y, 1);
|
||||
const dim3 block_nums(block_num_y, 1, 1);
|
||||
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
||||
mul_mat_vec_q<QK8_0, QI8_0, block_q8_0, VDR_Q8_0_Q8_1_MMVQ, vec_dot_q8_0_q8_1>
|
||||
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
|
||||
@ -5033,7 +5059,7 @@ static void mul_mat_vec_q8_0_q8_1_cuda(const void * vx, const void * vy, float *
|
||||
static void mul_mat_vec_q2_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||
GGML_ASSERT(ncols % QK_K == 0);
|
||||
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
||||
const dim3 block_nums(1, block_num_y, 1);
|
||||
const dim3 block_nums(block_num_y, 1, 1);
|
||||
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
||||
mul_mat_vec_q<QK_K, QI2_K, block_q2_K, VDR_Q2_K_Q8_1_MMVQ, vec_dot_q2_K_q8_1>
|
||||
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
|
||||
@ -5042,7 +5068,7 @@ static void mul_mat_vec_q2_K_q8_1_cuda(const void * vx, const void * vy, float *
|
||||
static void mul_mat_vec_q3_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||
GGML_ASSERT(ncols % QK_K == 0);
|
||||
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
||||
const dim3 block_nums(1, block_num_y, 1);
|
||||
const dim3 block_nums(block_num_y, 1, 1);
|
||||
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
||||
mul_mat_vec_q<QK_K, QI3_K, block_q3_K, VDR_Q3_K_Q8_1_MMVQ, vec_dot_q3_K_q8_1>
|
||||
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
|
||||
@ -5051,7 +5077,7 @@ static void mul_mat_vec_q3_K_q8_1_cuda(const void * vx, const void * vy, float *
|
||||
static void mul_mat_vec_q4_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||
GGML_ASSERT(ncols % QK_K == 0);
|
||||
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
||||
const dim3 block_nums(1, block_num_y, 1);
|
||||
const dim3 block_nums(block_num_y, 1, 1);
|
||||
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
||||
mul_mat_vec_q<QK_K, QI4_K, block_q4_K, VDR_Q4_K_Q8_1_MMVQ, vec_dot_q4_K_q8_1>
|
||||
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
|
||||
@ -5060,7 +5086,7 @@ static void mul_mat_vec_q4_K_q8_1_cuda(const void * vx, const void * vy, float *
|
||||
static void mul_mat_vec_q5_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||
GGML_ASSERT(ncols % QK_K == 0);
|
||||
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
||||
const dim3 block_nums(1, block_num_y, 1);
|
||||
const dim3 block_nums(block_num_y, 1, 1);
|
||||
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
||||
mul_mat_vec_q<QK_K, QI5_K, block_q5_K, VDR_Q5_K_Q8_1_MMVQ, vec_dot_q5_K_q8_1>
|
||||
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
|
||||
@ -5069,7 +5095,7 @@ static void mul_mat_vec_q5_K_q8_1_cuda(const void * vx, const void * vy, float *
|
||||
static void mul_mat_vec_q6_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||
GGML_ASSERT(ncols % QK_K == 0);
|
||||
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
||||
const dim3 block_nums(1, block_num_y, 1);
|
||||
const dim3 block_nums(block_num_y, 1, 1);
|
||||
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
||||
mul_mat_vec_q<QK_K, QI6_K, block_q6_K, VDR_Q6_K_Q8_1_MMVQ, vec_dot_q6_K_q8_1>
|
||||
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
|
||||
@ -5088,7 +5114,7 @@ static void convert_fp32_to_fp16_cuda(const void * vx, half * y, const int k, cu
|
||||
static void convert_mul_mat_vec_f16_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
|
||||
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
||||
const dim3 block_nums(1, block_num_y, 1);
|
||||
const dim3 block_nums(block_num_y, 1, 1);
|
||||
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
||||
dequantize_mul_mat_vec<1, 1, convert_f16>
|
||||
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||
@ -5825,16 +5851,6 @@ static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
|
||||
return ptr;
|
||||
}
|
||||
|
||||
static void * ggml_cuda_pool_malloc_async(size_t size, size_t * actual_size, int id, cudaStream_t stream) {
|
||||
if (g_cudaMemPools[id] == nullptr) {
|
||||
return ggml_cuda_pool_malloc(size, actual_size);
|
||||
}
|
||||
void *ptr;
|
||||
CUDA_CHECK(cudaMallocFromPoolAsync(&ptr, size, g_cudaMemPools[id], stream));
|
||||
*actual_size = size;
|
||||
return ptr;
|
||||
}
|
||||
|
||||
static void ggml_cuda_pool_free(void * ptr, size_t size) {
|
||||
scoped_spin_lock lock(g_cuda_pool_lock);
|
||||
int id;
|
||||
@ -5852,12 +5868,10 @@ static void ggml_cuda_pool_free(void * ptr, size_t size) {
|
||||
CUDA_CHECK(cudaFree(ptr));
|
||||
}
|
||||
|
||||
static bool g_cublas_loaded = false;
|
||||
|
||||
static void ggml_cuda_pool_free_async(void * ptr, size_t actual_size, int id, cudaStream_t stream) {
|
||||
if (g_cudaMemPools[id] == nullptr) {
|
||||
return ggml_cuda_pool_free(ptr, actual_size);
|
||||
}
|
||||
CUDA_CHECK(cudaFreeAsync(ptr, stream));
|
||||
bool ggml_cublas_loaded(void) {
|
||||
return g_cublas_loaded;
|
||||
}
|
||||
|
||||
void ggml_init_cublas() {
|
||||
@ -5872,7 +5886,12 @@ void ggml_init_cublas() {
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
#endif
|
||||
|
||||
CUDA_CHECK(cudaGetDeviceCount(&g_device_count));
|
||||
if (cudaGetDeviceCount(&g_device_count) != cudaSuccess) {
|
||||
initialized = true;
|
||||
g_cublas_loaded = false;
|
||||
return;
|
||||
}
|
||||
|
||||
GGML_ASSERT(g_device_count <= GGML_CUDA_MAX_DEVICES);
|
||||
int64_t total_vram = 0;
|
||||
#if defined(GGML_CUDA_FORCE_MMQ)
|
||||
@ -5914,19 +5933,13 @@ void ggml_init_cublas() {
|
||||
// create cublas handle
|
||||
CUBLAS_CHECK(cublasCreate(&g_cublas_handles[id]));
|
||||
CUBLAS_CHECK(cublasSetMathMode(g_cublas_handles[id], CUBLAS_TF32_TENSOR_OP_MATH));
|
||||
|
||||
// configure memory pool
|
||||
cudaError_t err = cudaDeviceGetMemPool(&g_cudaMemPools[id], id);
|
||||
if (err == cudaSuccess) {
|
||||
size_t treshold = UINT64_MAX;
|
||||
CUDA_CHECK(cudaMemPoolSetAttribute(g_cudaMemPools[id], cudaMemPoolAttrReleaseThreshold, &treshold));
|
||||
}
|
||||
}
|
||||
|
||||
// configure logging to stdout
|
||||
// CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr));
|
||||
|
||||
initialized = true;
|
||||
g_cublas_loaded = true;
|
||||
}
|
||||
}
|
||||
|
||||
@ -6193,6 +6206,34 @@ inline void ggml_cuda_op_silu(
|
||||
(void) src1_dd;
|
||||
}
|
||||
|
||||
inline void ggml_cuda_op_relu(
|
||||
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||
const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
||||
relu_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
|
||||
|
||||
(void) src1;
|
||||
(void) dst;
|
||||
(void) src1_dd;
|
||||
}
|
||||
|
||||
inline void ggml_cuda_op_sqr(
|
||||
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||
const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
||||
sqr_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
|
||||
|
||||
(void) src1;
|
||||
(void) dst;
|
||||
(void) src1_dd;
|
||||
}
|
||||
|
||||
inline void ggml_cuda_op_norm(
|
||||
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||
const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
|
||||
@ -6514,7 +6555,7 @@ inline void ggml_cuda_op_mul_mat_cublas(
|
||||
const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src0->type);
|
||||
GGML_ASSERT(to_fp16_cuda != nullptr);
|
||||
size_t ne = row_diff*ne00;
|
||||
src0_as_f16 = (half *) ggml_cuda_pool_malloc_async(ne * sizeof(half), &src0_as, id, stream);
|
||||
src0_as_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &src0_as);
|
||||
to_fp16_cuda(src0_dd_i, src0_as_f16, ne, stream);
|
||||
}
|
||||
const half * src0_ptr = src0->type == GGML_TYPE_F16 ? (const half *) src0_dd_i : src0_as_f16;
|
||||
@ -6525,12 +6566,12 @@ inline void ggml_cuda_op_mul_mat_cublas(
|
||||
const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
|
||||
GGML_ASSERT(to_fp16_cuda != nullptr);
|
||||
size_t ne = src1_ncols*ne10;
|
||||
src1_as_f16 = (half *) ggml_cuda_pool_malloc_async(ne * sizeof(half), &src1_as, id, stream);
|
||||
src1_as_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &src1_as);
|
||||
to_fp16_cuda(src1_ddf_i, src1_as_f16, ne, stream);
|
||||
}
|
||||
const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddf_i : src1_as_f16;
|
||||
size_t dst_f16_as = 0;
|
||||
half * dst_f16 = (half *) ggml_cuda_pool_malloc_async(row_diff*src1_ncols * sizeof(half), &dst_f16_as, id, stream);
|
||||
size_t dst_as = 0;
|
||||
half * dst_f16 = (half *) ggml_cuda_pool_malloc(row_diff*src1_ncols * sizeof(half), &dst_as);
|
||||
|
||||
const half alpha_f16 = 1.0f;
|
||||
const half beta_f16 = 0.0f;
|
||||
@ -6548,15 +6589,14 @@ inline void ggml_cuda_op_mul_mat_cublas(
|
||||
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
|
||||
to_fp32_cuda(dst_f16, dst_dd_i, row_diff*src1_ncols, stream);
|
||||
|
||||
if (dst_f16_as != 0) {
|
||||
ggml_cuda_pool_free_async(dst_f16, dst_f16_as, id, stream);
|
||||
}
|
||||
ggml_cuda_pool_free(dst_f16, dst_as);
|
||||
|
||||
if (src0_as != 0) {
|
||||
ggml_cuda_pool_free_async(src0_as_f16, src0_as, id, stream);
|
||||
ggml_cuda_pool_free(src0_as_f16, src0_as);
|
||||
}
|
||||
|
||||
if (src1_as != 0) {
|
||||
ggml_cuda_pool_free_async(src1_as_f16, src1_as, id, stream);
|
||||
ggml_cuda_pool_free(src1_as_f16, src1_as);
|
||||
}
|
||||
}
|
||||
else {
|
||||
@ -6566,7 +6606,7 @@ inline void ggml_cuda_op_mul_mat_cublas(
|
||||
if (src0->type != GGML_TYPE_F32) {
|
||||
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type);
|
||||
GGML_ASSERT(to_fp32_cuda != nullptr);
|
||||
src0_ddq_as_f32 = (float *) ggml_cuda_pool_malloc_async(row_diff*ne00 * sizeof(float), &src0_as, id, stream); // NOLINT
|
||||
src0_ddq_as_f32 = (float *) ggml_cuda_pool_malloc(row_diff*ne00 * sizeof(float), &src0_as); // NOLINT
|
||||
to_fp32_cuda(src0_dd_i, src0_ddq_as_f32, row_diff*ne00, stream);
|
||||
}
|
||||
const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32;
|
||||
@ -6583,7 +6623,7 @@ inline void ggml_cuda_op_mul_mat_cublas(
|
||||
&beta, dst_dd_i, ldc));
|
||||
|
||||
if (src0_as != 0) {
|
||||
ggml_cuda_pool_free_async(src0_ddq_as_f32, src0_as, id, stream);
|
||||
ggml_cuda_pool_free(src0_ddq_as_f32, src0_as);
|
||||
}
|
||||
}
|
||||
|
||||
@ -7008,6 +7048,8 @@ static void ggml_cuda_op_mul_mat(
|
||||
int64_t row_low[GGML_CUDA_MAX_DEVICES];
|
||||
int64_t row_high[GGML_CUDA_MAX_DEVICES];
|
||||
|
||||
int used_devices = 0;
|
||||
|
||||
for (int64_t id = 0; id < g_device_count; ++id) {
|
||||
// by default, use all rows
|
||||
row_low[id] = 0;
|
||||
@ -7035,6 +7077,8 @@ static void ggml_cuda_op_mul_mat(
|
||||
continue;
|
||||
}
|
||||
|
||||
used_devices++;
|
||||
|
||||
const bool src1_on_device = src1->backend == GGML_BACKEND_GPU && id == g_main_device;
|
||||
const bool dst_on_device = dst->backend == GGML_BACKEND_GPU && id == g_main_device;
|
||||
|
||||
@ -7045,22 +7089,21 @@ static void ggml_cuda_op_mul_mat(
|
||||
src0_dd[id] = (char *) src0_extra->data_device[id];
|
||||
} else {
|
||||
const size_t size_src0_ddq = split ? (row_high[id]-row_low[id])*ne00 * src0_ts/src0_bs : ggml_nbytes(src0);
|
||||
src0_dd[id] = (char *) ggml_cuda_pool_malloc_async(ggml_nbytes(src0), &src0_as[id], id, stream);
|
||||
src0_dd[id] = (char *) ggml_cuda_pool_malloc(ggml_nbytes(src0), &src0_as[id]);
|
||||
}
|
||||
|
||||
if (src1_on_device && src1_is_contiguous) {
|
||||
src1_ddf[id] = (float *) src1_extra->data_device[id];
|
||||
} else {
|
||||
src1_ddf[id] = (float *) ggml_cuda_pool_malloc_async(ggml_nbytes(src1), &src1_asf[id], id, stream);
|
||||
src1_ddf[id] = (float *) ggml_cuda_pool_malloc(ggml_nbytes(src1), &src1_asf[id]);
|
||||
}
|
||||
|
||||
if (convert_src1_to_q8_1) {
|
||||
const size_t size_dst_ddq = nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs;
|
||||
src1_ddq[id] = (char *) ggml_cuda_pool_malloc_async(size_dst_ddq, &src1_asq[id], id, stream);
|
||||
src1_ddq[id] = (char *) ggml_cuda_pool_malloc(nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs, &src1_asq[id]);
|
||||
|
||||
if (src1_on_device && src1_is_contiguous) {
|
||||
quantize_row_q8_1_cuda(src1_ddf[id], src1_ddq[id], ne10, nrows1, src1_padded_col_size, stream);
|
||||
// CUDA_CHECK(cudaGetLastError());
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
}
|
||||
}
|
||||
|
||||
@ -7068,18 +7111,18 @@ static void ggml_cuda_op_mul_mat(
|
||||
dst_dd[id] = (float *) dst_extra->data_device[id];
|
||||
} else {
|
||||
const size_t size_dst_ddf = split ? (row_high[id]-row_low[id])*ne1*sizeof(float) : ggml_nbytes(dst);
|
||||
dst_dd[id] = (float *) ggml_cuda_pool_malloc_async(size_dst_ddf, &dst_as[id], id, stream);
|
||||
dst_dd[id] = (float *) ggml_cuda_pool_malloc(size_dst_ddf, &dst_as[id]);
|
||||
}
|
||||
}
|
||||
|
||||
// if multiple devices are used they need to wait for the main device
|
||||
// here an event is recorded that signals that the main device has finished calculating the input data
|
||||
if (split && g_device_count > 1) {
|
||||
if (split && used_devices > 1) {
|
||||
CUDA_CHECK(ggml_cuda_set_device(g_main_device));
|
||||
CUDA_CHECK(cudaEventRecord(src0_extra->events[g_main_device][0], g_cudaStreams[g_main_device][0]));
|
||||
}
|
||||
|
||||
const int64_t src1_col_stride = split && g_device_count > 1 ? MUL_MAT_SRC1_COL_STRIDE : ne11;
|
||||
const int64_t src1_col_stride = split && used_devices > 1 ? MUL_MAT_SRC1_COL_STRIDE : ne11;
|
||||
for (int64_t src1_col_0 = 0; src1_col_0 < ne11; src1_col_0 += src1_col_stride) {
|
||||
const int64_t is = split ? (src1_col_0/src1_col_stride) % MAX_STREAMS : 0;
|
||||
const int64_t src1_ncols = src1_col_0 + src1_col_stride > ne11 ? ne11 - src1_col_0 : src1_col_stride;
|
||||
@ -7194,6 +7237,27 @@ static void ggml_cuda_op_mul_mat(
|
||||
}
|
||||
}
|
||||
|
||||
for (int64_t id = 0; id < g_device_count; ++id) {
|
||||
if ((!split && id != g_main_device) || row_low[id] == row_high[id]) {
|
||||
continue;
|
||||
}
|
||||
CUDA_CHECK(ggml_cuda_set_device(id));
|
||||
|
||||
// free buffers again when done
|
||||
if (src0_as[id] > 0) {
|
||||
ggml_cuda_pool_free(src0_dd[id], src0_as[id]);
|
||||
}
|
||||
if (src1_asf[id] > 0) {
|
||||
ggml_cuda_pool_free(src1_ddf[id], src1_asf[id]);
|
||||
}
|
||||
if (src1_asq[id] > 0) {
|
||||
ggml_cuda_pool_free(src1_ddq[id], src1_asq[id]);
|
||||
}
|
||||
if (dst_as[id] > 0) {
|
||||
ggml_cuda_pool_free(dst_dd[id], dst_as[id]);
|
||||
}
|
||||
}
|
||||
|
||||
// main device waits for all other devices to be finished
|
||||
if (split && g_device_count > 1) {
|
||||
int64_t is_max = (ne11 + MUL_MAT_SRC1_COL_STRIDE - 1) / MUL_MAT_SRC1_COL_STRIDE;
|
||||
@ -7201,6 +7265,9 @@ static void ggml_cuda_op_mul_mat(
|
||||
|
||||
CUDA_CHECK(ggml_cuda_set_device(g_main_device));
|
||||
for (int64_t id = 0; id < g_device_count; ++id) {
|
||||
if (row_low[id] == row_high[id]) {
|
||||
continue;
|
||||
}
|
||||
for (int64_t is = 0; is < is_max; ++is) {
|
||||
CUDA_CHECK(cudaStreamWaitEvent(g_cudaStreams[g_main_device][0], src0_extra->events[id][is], 0));
|
||||
}
|
||||
@ -7211,21 +7278,6 @@ static void ggml_cuda_op_mul_mat(
|
||||
CUDA_CHECK(ggml_cuda_set_device(g_main_device));
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
}
|
||||
|
||||
for (int64_t id = 0; id < g_device_count; ++id) {
|
||||
if (src0_as[id] > 0) {
|
||||
ggml_cuda_pool_free_async(src0_dd[id], src0_as[id], id, g_cudaStreams[id][0]);
|
||||
}
|
||||
if (src1_asf[id] > 0) {
|
||||
ggml_cuda_pool_free_async(src1_ddf[id], src1_asf[id], id, g_cudaStreams[id][0]);
|
||||
}
|
||||
if (src1_asq[id] > 0) {
|
||||
ggml_cuda_pool_free_async(src1_ddq[id], src1_asq[id], id, g_cudaStreams[id][0]);
|
||||
}
|
||||
if (dst_as[id] > 0) {
|
||||
ggml_cuda_pool_free_async(dst_dd[id], dst_as[id], id, g_cudaStreams[id][0]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_cuda_repeat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
@ -7252,6 +7304,14 @@ static void ggml_cuda_silu(const ggml_tensor * src0, const ggml_tensor * src1, g
|
||||
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_silu);
|
||||
}
|
||||
|
||||
static void ggml_cuda_relu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_relu);
|
||||
}
|
||||
|
||||
static void ggml_cuda_sqr(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_sqr);
|
||||
}
|
||||
|
||||
static void ggml_cuda_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_norm);
|
||||
}
|
||||
@ -7261,6 +7321,8 @@ static void ggml_cuda_rms_norm(const ggml_tensor * src0, const ggml_tensor * src
|
||||
}
|
||||
|
||||
bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
|
||||
if (!g_cublas_loaded) return false;
|
||||
|
||||
const int64_t ne10 = src1->ne[0];
|
||||
|
||||
const int64_t ne0 = dst->ne[0];
|
||||
@ -7412,11 +7474,11 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const
|
||||
GGML_ASSERT(to_fp16_cuda != nullptr);
|
||||
|
||||
size_t src1_as = 0;
|
||||
half * src1_as_f16 = (half *) ggml_cuda_pool_malloc_async(ne1 * sizeof(half), &src1_as, id, main_stream);
|
||||
half * src1_as_f16 = (half *) ggml_cuda_pool_malloc(ne1 * sizeof(half), &src1_as);
|
||||
to_fp16_cuda(src1_ddf, src1_as_f16, ne1, main_stream);
|
||||
|
||||
size_t dst_as = 0;
|
||||
half * dst_f16 = (half *) ggml_cuda_pool_malloc_async(ne * sizeof(half), &dst_as, id, main_stream);
|
||||
half * dst_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &dst_as);
|
||||
|
||||
GGML_ASSERT(ne12 % ne02 == 0);
|
||||
GGML_ASSERT(ne13 % ne03 == 0);
|
||||
@ -7470,8 +7532,8 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const
|
||||
size_t ptrs_src_s = 0;
|
||||
size_t ptrs_dst_s = 0;
|
||||
|
||||
ptrs_src = (const void **) ggml_cuda_pool_malloc_async(2*ne23*sizeof(void *), &ptrs_src_s, id, main_stream);
|
||||
ptrs_dst = ( void **) ggml_cuda_pool_malloc_async(1*ne23*sizeof(void *), &ptrs_dst_s, id, main_stream);
|
||||
ptrs_src = (const void **) ggml_cuda_pool_malloc(2*ne23*sizeof(void *), &ptrs_src_s);
|
||||
ptrs_dst = ( void **) ggml_cuda_pool_malloc(1*ne23*sizeof(void *), &ptrs_dst_s);
|
||||
|
||||
dim3 block_dims(ne13, ne12);
|
||||
k_compute_batched_ptrs<<<1, block_dims, 0, main_stream>>>(
|
||||
@ -7484,6 +7546,7 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const
|
||||
dst->nb[2], dst->nb[3],
|
||||
r2, r3);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
CUBLAS_CHECK(
|
||||
cublasGemmBatchedEx(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N,
|
||||
ne01, ne11, ne10,
|
||||
@ -7495,30 +7558,29 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const
|
||||
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
|
||||
|
||||
if (ptrs_src_s != 0) {
|
||||
ggml_cuda_pool_free_async(ptrs_src, ptrs_src_s, id, main_stream);
|
||||
ggml_cuda_pool_free(ptrs_src, ptrs_src_s);
|
||||
}
|
||||
if (ptrs_dst_s != 0) {
|
||||
ggml_cuda_pool_free_async(ptrs_dst, ptrs_dst_s, id, main_stream);
|
||||
ggml_cuda_pool_free(ptrs_dst, ptrs_dst_s);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
|
||||
to_fp32_cuda(dst_f16, dst_ddf, ne, main_stream);
|
||||
if (src1_as != 0) {
|
||||
ggml_cuda_pool_free_async(src1_as_f16, src1_as, id, main_stream);
|
||||
}
|
||||
if (dst_as != 0) {
|
||||
ggml_cuda_pool_free_async(dst_f16, dst_as, id, main_stream);
|
||||
}
|
||||
|
||||
ggml_cuda_pool_free(src1_as_f16, src1_as);
|
||||
ggml_cuda_pool_free(dst_f16, dst_as);
|
||||
}
|
||||
|
||||
static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
const bool all_on_device =
|
||||
(src0->backend == GGML_BACKEND_GPU) &&
|
||||
(src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT) &&
|
||||
(src1->backend == GGML_BACKEND_GPU) &&
|
||||
( dst->backend == GGML_BACKEND_GPU);
|
||||
|
||||
const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT;
|
||||
|
||||
int64_t min_compute_capability = INT_MAX;
|
||||
for (int64_t id = 0; id < g_device_count; ++id) {
|
||||
if (min_compute_capability > g_compute_capabilities[id] && g_tensor_split[id] < (id + 1 < g_device_count ? g_tensor_split[id + 1] : 1.0f)) {
|
||||
@ -7540,13 +7602,13 @@ static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1
|
||||
//printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
|
||||
//printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);
|
||||
|
||||
if (all_on_device && !use_tensor_cores && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
|
||||
if (!split && all_on_device && !use_tensor_cores && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
|
||||
// KQ single-batch
|
||||
ggml_cuda_mul_mat_vec_p021(src0, src1, dst);
|
||||
} else if (all_on_device && !use_tensor_cores && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
|
||||
} else if (!split && all_on_device && !use_tensor_cores && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
|
||||
// KQV single-batch
|
||||
ggml_cuda_mul_mat_vec_nc(src0, src1, dst);
|
||||
} else if (all_on_device && use_tensor_cores && src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1)) {
|
||||
} else if (!split && all_on_device && use_tensor_cores && src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1)) {
|
||||
// KQ + KQV multi-batch
|
||||
ggml_cuda_mul_mat_mat_batched_cublas(src0, src1, dst);
|
||||
} else if (src0->type == GGML_TYPE_F32) {
|
||||
@ -7667,7 +7729,7 @@ static void ggml_cuda_alibi(const ggml_tensor * src0, const ggml_tensor * src1,
|
||||
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_alibi);
|
||||
}
|
||||
|
||||
void ggml_cuda_im2col(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
static void ggml_cuda_im2col(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_im2col);
|
||||
}
|
||||
|
||||
@ -7782,11 +7844,11 @@ static size_t g_temp_tensor_extra_index = 0;
|
||||
|
||||
static ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() {
|
||||
if (g_temp_tensor_extras == nullptr) {
|
||||
g_temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_DEFAULT_GRAPH_SIZE];
|
||||
g_temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_CUDA_MAX_NODES];
|
||||
}
|
||||
|
||||
size_t alloc_index = g_temp_tensor_extra_index;
|
||||
g_temp_tensor_extra_index = (g_temp_tensor_extra_index + 1) % GGML_DEFAULT_GRAPH_SIZE;
|
||||
g_temp_tensor_extra_index = (g_temp_tensor_extra_index + 1) % GGML_CUDA_MAX_NODES;
|
||||
ggml_tensor_extra_gpu * extra = &g_temp_tensor_extras[alloc_index];
|
||||
memset(extra, 0, sizeof(*extra));
|
||||
|
||||
@ -7953,6 +8015,8 @@ void ggml_cuda_free_scratch() {
|
||||
}
|
||||
|
||||
bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
|
||||
if (!g_cublas_loaded) return false;
|
||||
|
||||
ggml_cuda_func_t func;
|
||||
const bool any_on_device = tensor->backend == GGML_BACKEND_GPU
|
||||
|| (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT))
|
||||
@ -7995,6 +8059,9 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_
|
||||
case GGML_UNARY_OP_SILU:
|
||||
func = ggml_cuda_silu;
|
||||
break;
|
||||
case GGML_UNARY_OP_RELU:
|
||||
func = ggml_cuda_relu;
|
||||
break;
|
||||
default:
|
||||
return false;
|
||||
} break;
|
||||
@ -8013,6 +8080,9 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_
|
||||
case GGML_OP_SCALE:
|
||||
func = ggml_cuda_scale;
|
||||
break;
|
||||
case GGML_OP_SQR:
|
||||
func = ggml_cuda_sqr;
|
||||
break;
|
||||
case GGML_OP_CLAMP:
|
||||
if (!any_on_device) {
|
||||
return false;
|
||||
@ -8105,11 +8175,11 @@ struct ggml_backend_buffer_context_cuda {
|
||||
|
||||
ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() {
|
||||
if (temp_tensor_extras == nullptr) {
|
||||
temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_DEFAULT_GRAPH_SIZE];
|
||||
temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_CUDA_MAX_NODES];
|
||||
}
|
||||
|
||||
size_t alloc_index = temp_tensor_extra_index;
|
||||
temp_tensor_extra_index = (temp_tensor_extra_index + 1) % GGML_DEFAULT_GRAPH_SIZE;
|
||||
temp_tensor_extra_index = (temp_tensor_extra_index + 1) % GGML_CUDA_MAX_NODES;
|
||||
ggml_tensor_extra_gpu * extra = &temp_tensor_extras[alloc_index];
|
||||
memset(extra, 0, sizeof(*extra));
|
||||
|
||||
|
@ -17,7 +17,12 @@ extern "C" {
|
||||
|
||||
#define GGML_CUDA_MAX_DEVICES 16
|
||||
|
||||
// Always success. To check if CUDA is actually loaded, use `ggml_cublas_loaded`.
|
||||
GGML_API void ggml_init_cublas(void);
|
||||
|
||||
// Returns `true` if there are available CUDA devices and cublas loads successfully; otherwise, it returns `false`.
|
||||
GGML_API bool ggml_cublas_loaded(void);
|
||||
|
||||
GGML_API void * ggml_cuda_host_malloc(size_t size);
|
||||
GGML_API void ggml_cuda_host_free(void * ptr);
|
||||
|
||||
|
18
ggml-metal.m
18
ggml-metal.m
@ -346,9 +346,9 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
}
|
||||
|
||||
GGML_METAL_LOG_INFO("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
|
||||
GGML_METAL_LOG_INFO("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
|
||||
GGML_METAL_LOG_INFO("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1e6);
|
||||
if (ctx->device.maxTransferRate != 0) {
|
||||
GGML_METAL_LOG_INFO("%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0);
|
||||
GGML_METAL_LOG_INFO("%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1e6);
|
||||
} else {
|
||||
GGML_METAL_LOG_INFO("%s: maxTransferRate = built-in GPU\n", __func__);
|
||||
}
|
||||
@ -541,11 +541,11 @@ bool ggml_metal_add_buffer(
|
||||
ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:data length:size_aligned options:MTLResourceStorageModeShared deallocator:nil];
|
||||
|
||||
if (ctx->buffers[ctx->n_buffers].metal == nil) {
|
||||
GGML_METAL_LOG_ERROR("%s: error: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_aligned / 1024.0 / 1024.0);
|
||||
GGML_METAL_LOG_ERROR("%s: error: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_aligned / 1e6);
|
||||
return false;
|
||||
}
|
||||
|
||||
GGML_METAL_LOG_INFO("%s: allocated '%-16s' buffer, size = %8.2f MB", __func__, name, size_aligned / 1024.0 / 1024.0);
|
||||
GGML_METAL_LOG_INFO("%s: allocated '%-16s' buffer, size = %8.2f MB", __func__, name, size_aligned / 1e6);
|
||||
|
||||
++ctx->n_buffers;
|
||||
} else {
|
||||
@ -565,11 +565,11 @@ bool ggml_metal_add_buffer(
|
||||
ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:(void *) ((uint8_t *) data + i) length:size_step_aligned options:MTLResourceStorageModeShared deallocator:nil];
|
||||
|
||||
if (ctx->buffers[ctx->n_buffers].metal == nil) {
|
||||
GGML_METAL_LOG_ERROR("%s: error: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_step_aligned / 1024.0 / 1024.0);
|
||||
GGML_METAL_LOG_ERROR("%s: error: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_step_aligned / 1e6);
|
||||
return false;
|
||||
}
|
||||
|
||||
GGML_METAL_LOG_INFO("%s: allocated '%-16s' buffer, size = %8.2f MB, offs = %12ld", __func__, name, size_step_aligned / 1024.0 / 1024.0, i);
|
||||
GGML_METAL_LOG_INFO("%s: allocated '%-16s' buffer, size = %8.2f MB, offs = %12ld", __func__, name, size_step_aligned / 1e6, i);
|
||||
if (i + size_step < size) {
|
||||
GGML_METAL_LOG_INFO("\n");
|
||||
}
|
||||
@ -580,8 +580,8 @@ bool ggml_metal_add_buffer(
|
||||
|
||||
#if TARGET_OS_OSX
|
||||
GGML_METAL_LOG_INFO(", (%8.2f / %8.2f)",
|
||||
ctx->device.currentAllocatedSize / 1024.0 / 1024.0,
|
||||
ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
|
||||
ctx->device.currentAllocatedSize / 1e6,
|
||||
ctx->device.recommendedMaxWorkingSetSize / 1e6);
|
||||
|
||||
if (ctx->device.currentAllocatedSize > ctx->device.recommendedMaxWorkingSetSize) {
|
||||
GGML_METAL_LOG_WARN("%s: warning: current allocated size is greater than the recommended max working set size\n", __func__);
|
||||
@ -589,7 +589,7 @@ bool ggml_metal_add_buffer(
|
||||
GGML_METAL_LOG_INFO("\n");
|
||||
}
|
||||
#else
|
||||
GGML_METAL_LOG_INFO(", (%8.2f)\n", ctx->device.currentAllocatedSize / 1024.0 / 1024.0);
|
||||
GGML_METAL_LOG_INFO(", (%8.2f)\n", ctx->device.currentAllocatedSize / 1e6);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
@ -39,19 +39,19 @@ https://huggingface.co/ggerganov/whisper.cpp/tree/main
|
||||
|
||||
## Available models
|
||||
|
||||
| Model | Disk | Mem | SHA |
|
||||
| --- | --- | --- | --- |
|
||||
| tiny | 75 MB | ~390 MB | `bd577a113a864445d4c299885e0cb97d4ba92b5f` |
|
||||
| tiny.en | 75 MB | ~390 MB | `c78c86eb1a8faa21b369bcd33207cc90d64ae9df` |
|
||||
| base | 142 MB | ~500 MB | `465707469ff3a37a2b9b8d8f89f2f99de7299dac` |
|
||||
| base.en | 142 MB | ~500 MB | `137c40403d78fd54d454da0f9bd998f78703390c` |
|
||||
| small | 466 MB | ~1.0 GB | `55356645c2b361a969dfd0ef2c5a50d530afd8d5` |
|
||||
| small.en | 466 MB | ~1.0 GB | `db8a495a91d927739e50b3fc1cc4c6b8f6c2d022` |
|
||||
| medium | 1.5 GB | ~2.6 GB | `fd9727b6e1217c2f614f9b698455c4ffd82463b4` |
|
||||
| medium.en | 1.5 GB | ~2.6 GB | `8c30f0e44ce9560643ebd10bbe50cd20eafd3723` |
|
||||
| large-v1 | 2.9 GB | ~4.7 GB | `b1caaf735c4cc1429223d5a74f0f4d0b9b59a299` |
|
||||
| large-v2 | 2.9 GB | ~4.7 GB | `0f4c8e34f21cf1a914c59d8b3ce882345ad349d6` |
|
||||
| large | 2.9 GB | ~4.7 GB | `ad82bf6a9043ceed055076d0fd39f5f186ff8062` |
|
||||
| Model | Disk | SHA |
|
||||
| --- | --- | --- |
|
||||
| tiny | 75 MiB | `bd577a113a864445d4c299885e0cb97d4ba92b5f` |
|
||||
| tiny.en | 75 MiB | `c78c86eb1a8faa21b369bcd33207cc90d64ae9df` |
|
||||
| base | 142 MiB | `465707469ff3a37a2b9b8d8f89f2f99de7299dac` |
|
||||
| base.en | 142 MiB | `137c40403d78fd54d454da0f9bd998f78703390c` |
|
||||
| small | 466 MiB | `55356645c2b361a969dfd0ef2c5a50d530afd8d5` |
|
||||
| small.en | 466 MiB | `db8a495a91d927739e50b3fc1cc4c6b8f6c2d022` |
|
||||
| medium | 1.5 GiB | `fd9727b6e1217c2f614f9b698455c4ffd82463b4` |
|
||||
| medium.en | 1.5 GiB | `8c30f0e44ce9560643ebd10bbe50cd20eafd3723` |
|
||||
| large-v1 | 2.9 GiB | `b1caaf735c4cc1429223d5a74f0f4d0b9b59a299` |
|
||||
| large-v2 | 2.9 GiB | `0f4c8e34f21cf1a914c59d8b3ce882345ad349d6` |
|
||||
| large-v3 | 2.9 GiB | `ad82bf6a9043ceed055076d0fd39f5f186ff8062` |
|
||||
|
||||
## Model files for testing purposes
|
||||
|
||||
@ -76,3 +76,27 @@ git clone https://huggingface.co/openai/whisper-medium
|
||||
# convert the model to ggml
|
||||
python3 ./whisper.cpp/models/convert-h5-to-ggml.py ./whisper-medium/ ./whisper .
|
||||
```
|
||||
|
||||
## Distilled models
|
||||
|
||||
Initial support for https://huggingface.co/distil-whisper is available.
|
||||
|
||||
Currently, the chunk-based transcription strategy is not implemented, so there can be sub-optimal quality when using the distilled models with `whisper.cpp`.
|
||||
|
||||
```bash
|
||||
# clone OpenAI whisper and whisper.cpp
|
||||
git clone https://github.com/openai/whisper
|
||||
git clone https://github.com/ggerganov/whisper.cpp
|
||||
|
||||
# get the models
|
||||
cd whisper.cpp/models
|
||||
git clone https://huggingface.co/distil-whisper/distil-medium.en
|
||||
git clone https://huggingface.co/distil-whisper/distil-large-v2
|
||||
|
||||
# convert to ggml
|
||||
python3 ./convert-h5-to-ggml.py ./distil-medium.en/ ../../whisper .
|
||||
mv ggml-model.bin ggml-medium.en-distil.bin
|
||||
|
||||
python3 ./convert-h5-to-ggml.py ./distil-large-v2/ ../../whisper .
|
||||
mv ggml-model.bin ggml-large-v2-distil.bin
|
||||
```
|
||||
|
@ -78,14 +78,14 @@ def convert_hf_whisper(hf_model_name_or_path: str, whisper_state_path: str):
|
||||
# Ported from models/convert-whisper-to-coreml.py
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--model-name", type=str, help="name of model to convert (e.g. tiny, tiny.en, base, base.en, small, small.en, medium, medium.en, large, large-v1, large-v2)", required=True)
|
||||
parser.add_argument("--model-name", type=str, help="name of model to convert (e.g. tiny, tiny.en, base, base.en, small, small.en, medium, medium.en, large-v1, large-v2, large-v3)", required=True)
|
||||
parser.add_argument("--model-path", type=str, help="path to the model (e.g. if published on HuggingFace: Oblivion208/whisper-tiny-cantonese)", required=True)
|
||||
parser.add_argument("--encoder-only", type=bool, help="only convert encoder", default=False)
|
||||
parser.add_argument("--quantize", type=bool, help="quantize weights to F16", default=False)
|
||||
parser.add_argument("--optimize-ane", type=bool, help="optimize for ANE execution (currently broken)", default=False)
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.model_name not in ["tiny", "tiny.en", "base", "base.en", "small", "small.en", "medium", "medium.en", "large", "large-v1", "large-v2"]:
|
||||
if args.model_name not in ["tiny", "tiny.en", "base", "base.en", "small", "small.en", "medium", "medium.en", "large-v1", "large-v2", "large-v3"]:
|
||||
raise ValueError("Invalid model name")
|
||||
|
||||
pt_target_path = f"models/hf-{args.model_name}.pt"
|
||||
|
@ -296,13 +296,13 @@ def convert_decoder(hparams, model, quantize=False):
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--model", type=str, help="model to convert (e.g. tiny, tiny.en, base, base.en, small, small.en, medium, medium.en, large, large-v1, large-v2)", required=True)
|
||||
parser.add_argument("--model", type=str, help="model to convert (e.g. tiny, tiny.en, base, base.en, small, small.en, medium, medium.en, large-v1, large-v2, large-v3)", required=True)
|
||||
parser.add_argument("--encoder-only", type=bool, help="only convert encoder", default=False)
|
||||
parser.add_argument("--quantize", type=bool, help="quantize weights to F16", default=False)
|
||||
parser.add_argument("--optimize-ane", type=bool, help="optimize for ANE execution (currently broken)", default=False)
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.model not in ["tiny", "tiny.en", "base", "base.en", "small", "small.en", "small.en-tdrz", "medium", "medium.en", "large", "large-v1", "large-v2"]:
|
||||
if args.model not in ["tiny", "tiny.en", "base", "base.en", "small", "small.en", "small.en-tdrz", "medium", "medium.en", "large-v1", "large-v2", "large-v3"]:
|
||||
raise ValueError("Invalid model name")
|
||||
|
||||
whisper = load_model(args.model).cpu()
|
||||
|
@ -38,10 +38,10 @@ def convert_encoder(hparams, encoder, mname):
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--model", type=str, help="model to convert (e.g. tiny, tiny.en, base, base.en, small, small.en, medium, medium.en, large, large-v1, large-v2)", required=True)
|
||||
parser.add_argument("--model", type=str, help="model to convert (e.g. tiny, tiny.en, base, base.en, small, small.en, medium, medium.en, large-v1, large-v2, large-v3)", required=True)
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.model not in ["tiny", "tiny.en", "base", "base.en", "small", "small.en", "medium", "medium.en", "large", "large-v1", "large-v2"]:
|
||||
if args.model not in ["tiny", "tiny.en", "base", "base.en", "small", "small.en", "medium", "medium.en", "large-v1", "large-v2", "large-v3"]:
|
||||
raise ValueError("Invalid model name")
|
||||
|
||||
whisper = load_model(args.model).cpu()
|
||||
|
@ -19,7 +19,7 @@ function get_script_path() {
|
||||
models_path="$(get_script_path)"
|
||||
|
||||
# Whisper models
|
||||
models=( "tiny.en" "tiny" "base.en" "base" "small.en" "small" "medium.en" "medium" "large-v1" "large-v2" "large" )
|
||||
models=( "tiny.en" "tiny" "base.en" "base" "small.en" "small" "medium.en" "medium" "large-v1" "large-v2" "large-v3" )
|
||||
|
||||
# list available models
|
||||
function list_models {
|
||||
|
@ -8,7 +8,7 @@ popd
|
||||
set argc=0
|
||||
for %%x in (%*) do set /A argc+=1
|
||||
|
||||
set models=tiny.en tiny base.en base small.en small medium.en medium large-v1 large-v2 large
|
||||
set models=tiny.en tiny base.en base small.en small medium.en medium large-v1 large-v2 large-v3
|
||||
|
||||
if %argc% neq 1 (
|
||||
echo.
|
||||
|
@ -22,7 +22,7 @@ function get_script_path() {
|
||||
models_path="$(get_script_path)"
|
||||
|
||||
# Whisper models
|
||||
models=(
|
||||
models=(
|
||||
"tiny.en"
|
||||
"tiny"
|
||||
"tiny-q5_1"
|
||||
@ -42,7 +42,7 @@ models=(
|
||||
"medium.en-q5_0"
|
||||
"large-v1"
|
||||
"large-v2"
|
||||
"large"
|
||||
"large-v3"
|
||||
"large-q5_0"
|
||||
)
|
||||
|
||||
|
@ -19,7 +19,7 @@
|
||||
cd `dirname $0`
|
||||
|
||||
# Whisper models
|
||||
models=( "tiny.en" "tiny" "base.en" "base" "small.en" "small" "medium.en" "medium" "large-v1" "large-v2" "large" )
|
||||
models=( "tiny.en" "tiny" "base.en" "base" "small.en" "small" "medium.en" "medium" "large-v1" "large-v2" "large-v3" )
|
||||
|
||||
# list available models
|
||||
function list_models {
|
||||
|
1144
whisper.cpp
1144
whisper.cpp
File diff suppressed because it is too large
Load Diff
Reference in New Issue
Block a user