mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-07-01 23:10:47 +02:00
Compare commits
1 Commits
coreml-wit
...
timing
Author | SHA1 | Date | |
---|---|---|---|
4f074fb7a8 |
2
.gitignore
vendored
2
.gitignore
vendored
@ -1,7 +1,5 @@
|
||||
*.o
|
||||
*.a
|
||||
*.mlmodel
|
||||
*.mlmodelc
|
||||
.cache/
|
||||
.vs/
|
||||
.vscode/
|
||||
|
@ -54,8 +54,6 @@ if (APPLE)
|
||||
option(WHISPER_NO_AVX "whisper: disable AVX" OFF)
|
||||
option(WHISPER_NO_AVX2 "whisper: disable AVX2" OFF)
|
||||
option(WHISPER_NO_FMA "whisper: disable FMA" OFF)
|
||||
|
||||
option(WHISPER_COREML "whisper: enable Core ML framework" OFF)
|
||||
else()
|
||||
option(WHISPER_SUPPORT_OPENBLAS "whisper: support for OpenBLAS" OFF)
|
||||
endif()
|
||||
@ -88,33 +86,16 @@ endif()
|
||||
|
||||
find_package(Threads REQUIRED)
|
||||
|
||||
# on APPLE
|
||||
if (APPLE)
|
||||
# include Accelerate framework
|
||||
if (NOT WHISPER_NO_ACCELERATE)
|
||||
find_library(ACCELERATE_FRAMEWORK Accelerate)
|
||||
# on APPLE - include Accelerate framework
|
||||
if (APPLE AND NOT WHISPER_NO_ACCELERATE)
|
||||
find_library(ACCELERATE_FRAMEWORK Accelerate)
|
||||
if (ACCELERATE_FRAMEWORK)
|
||||
message(STATUS "Accelerate framework found")
|
||||
|
||||
if (ACCELERATE_FRAMEWORK)
|
||||
message(STATUS "Accelerate framework found")
|
||||
|
||||
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ${ACCELERATE_FRAMEWORK})
|
||||
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_ACCELERATE)
|
||||
else()
|
||||
message(WARNING "Accelerate framework not found")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (WHISPER_COREML)
|
||||
find_library(FOUNDATION_FRAMEWORK Foundation)
|
||||
find_library(COREML_FRAMEWORK CoreML)
|
||||
|
||||
if (COREML_FRAMEWORK)
|
||||
message(STATUS "CoreML framework found")
|
||||
|
||||
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DWHISPER_USE_COREML)
|
||||
else()
|
||||
message(WARNING "CoreML framework not found")
|
||||
endif()
|
||||
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ${ACCELERATE_FRAMEWORK})
|
||||
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_ACCELERATE)
|
||||
else()
|
||||
message(WARNING "Accelerate framework not found")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
@ -191,9 +172,7 @@ else()
|
||||
if(NOT WHISPER_NO_FMA)
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mfma")
|
||||
endif()
|
||||
if(NOT WHISPER_NO_F16C)
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mf16c")
|
||||
endif()
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mf16c")
|
||||
endif()
|
||||
endif()
|
||||
endif()
|
||||
@ -202,33 +181,6 @@ if (WHISPER_PERF)
|
||||
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_PERF)
|
||||
endif()
|
||||
|
||||
#
|
||||
# whisper.coreml - Core ML support
|
||||
#
|
||||
|
||||
if (WHISPER_COREML)
|
||||
set(TARGET whisper.coreml)
|
||||
|
||||
add_library(${TARGET}
|
||||
coreml/whisper-encoder.h
|
||||
coreml/whisper-encoder.mm
|
||||
coreml/whisper-encoder-impl.h
|
||||
coreml/whisper-encoder-impl.m
|
||||
)
|
||||
|
||||
include(DefaultTargetOptions)
|
||||
|
||||
target_include_directories(${TARGET} PUBLIC
|
||||
.
|
||||
)
|
||||
|
||||
target_link_libraries(${TARGET} PRIVATE ${FOUNDATION_FRAMEWORK} ${COREML_FRAMEWORK})
|
||||
|
||||
set_target_properties(${TARGET} PROPERTIES
|
||||
COMPILE_FLAGS "-fobjc-arc"
|
||||
)
|
||||
endif()
|
||||
|
||||
#
|
||||
# whisper - this is the main library of the project
|
||||
#
|
||||
@ -248,10 +200,6 @@ target_include_directories(${TARGET} PUBLIC
|
||||
.
|
||||
)
|
||||
|
||||
if (WHISPER_COREML)
|
||||
target_link_libraries(${TARGET} PRIVATE whisper.coreml)
|
||||
endif()
|
||||
|
||||
if (MSVC)
|
||||
target_link_libraries(${TARGET} PRIVATE ${WHISPER_EXTRA_LIBS} ${CMAKE_THREAD_LIBS_INIT})
|
||||
|
||||
|
50
Makefile
50
Makefile
@ -34,12 +34,6 @@ CFLAGS = -I. -O3 -DNDEBUG -std=c11 -fPIC
|
||||
CXXFLAGS = -I. -I./examples -O3 -DNDEBUG -std=c++11 -fPIC
|
||||
LDFLAGS =
|
||||
|
||||
# ref: https://github.com/ggerganov/whisper.cpp/issues/37
|
||||
ifneq ($(wildcard /usr/include/musl/*),)
|
||||
CFLAGS += -D_POSIX_SOURCE -D_GNU_SOURCE
|
||||
CXXFLAGS += -D_POSIX_SOURCE -D_GNU_SOURCE
|
||||
endif
|
||||
|
||||
# OS specific
|
||||
# TODO: support Windows
|
||||
ifeq ($(UNAME_S),Linux)
|
||||
@ -138,10 +132,6 @@ ifndef WHISPER_NO_ACCELERATE
|
||||
LDFLAGS += -framework Accelerate
|
||||
endif
|
||||
endif
|
||||
ifdef WHISPER_COREML
|
||||
CXXFLAGS += -DWHISPER_USE_COREML
|
||||
LDFLAGS += -framework Foundation -framework CoreML
|
||||
endif
|
||||
ifdef WHISPER_OPENBLAS
|
||||
CFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/openblas
|
||||
LDFLAGS += -lopenblas
|
||||
@ -194,23 +184,11 @@ ggml.o: ggml.c ggml.h
|
||||
whisper.o: whisper.cpp whisper.h
|
||||
$(CXX) $(CXXFLAGS) -c whisper.cpp -o whisper.o
|
||||
|
||||
ifndef WHISPER_COREML
|
||||
WHISPER_OBJ = whisper.o
|
||||
else
|
||||
whisper-encoder.o: coreml/whisper-encoder.mm coreml/whisper-encoder.h
|
||||
$(CXX) -O3 -I . -c coreml/whisper-encoder.mm -o whisper-encoder.o
|
||||
libwhisper.a: ggml.o whisper.o
|
||||
$(AR) rcs libwhisper.a ggml.o whisper.o
|
||||
|
||||
whisper-encoder-impl.o: coreml/whisper-encoder-impl.m coreml/whisper-encoder-impl.h
|
||||
$(CXX) -O3 -I . -fobjc-arc -c coreml/whisper-encoder-impl.m -o whisper-encoder-impl.o
|
||||
|
||||
WHISPER_OBJ = whisper.o whisper-encoder.o whisper-encoder-impl.o
|
||||
endif
|
||||
|
||||
libwhisper.a: ggml.o $(WHISPER_OBJ)
|
||||
$(AR) rcs libwhisper.a ggml.o $(WHISPER_OBJ)
|
||||
|
||||
libwhisper.so: ggml.o $(WHISPER_OBJ)
|
||||
$(CXX) $(CXXFLAGS) -shared -o libwhisper.so ggml.o $(WHISPER_OBJ) $(LDFLAGS)
|
||||
libwhisper.so: ggml.o whisper.o
|
||||
$(CXX) $(CXXFLAGS) -shared -o libwhisper.so ggml.o whisper.o $(LDFLAGS)
|
||||
|
||||
clean:
|
||||
rm -f *.o main stream command talk bench libwhisper.a libwhisper.so
|
||||
@ -224,21 +202,21 @@ CC_SDL=`sdl2-config --cflags --libs`
|
||||
SRC_COMMON = examples/common.cpp
|
||||
SRC_COMMON_SDL = examples/common-sdl.cpp
|
||||
|
||||
main: examples/main/main.cpp $(SRC_COMMON) ggml.o $(WHISPER_OBJ)
|
||||
$(CXX) $(CXXFLAGS) examples/main/main.cpp $(SRC_COMMON) ggml.o $(WHISPER_OBJ) -o main $(LDFLAGS)
|
||||
main: examples/main/main.cpp $(SRC_COMMON) ggml.o whisper.o
|
||||
$(CXX) $(CXXFLAGS) examples/main/main.cpp $(SRC_COMMON) ggml.o whisper.o -o main $(LDFLAGS)
|
||||
./main -h
|
||||
|
||||
stream: examples/stream/stream.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ)
|
||||
$(CXX) $(CXXFLAGS) examples/stream/stream.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ) -o stream $(CC_SDL) $(LDFLAGS)
|
||||
stream: examples/stream/stream.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o whisper.o
|
||||
$(CXX) $(CXXFLAGS) examples/stream/stream.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o whisper.o -o stream $(CC_SDL) $(LDFLAGS)
|
||||
|
||||
command: examples/command/command.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ)
|
||||
$(CXX) $(CXXFLAGS) examples/command/command.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ) -o command $(CC_SDL) $(LDFLAGS)
|
||||
command: examples/command/command.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o whisper.o
|
||||
$(CXX) $(CXXFLAGS) examples/command/command.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o whisper.o -o command $(CC_SDL) $(LDFLAGS)
|
||||
|
||||
talk: examples/talk/talk.cpp examples/talk/gpt-2.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ)
|
||||
$(CXX) $(CXXFLAGS) examples/talk/talk.cpp examples/talk/gpt-2.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ) -o talk $(CC_SDL) $(LDFLAGS)
|
||||
talk: examples/talk/talk.cpp examples/talk/gpt-2.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o whisper.o
|
||||
$(CXX) $(CXXFLAGS) examples/talk/talk.cpp examples/talk/gpt-2.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o whisper.o -o talk $(CC_SDL) $(LDFLAGS)
|
||||
|
||||
bench: examples/bench/bench.cpp ggml.o $(WHISPER_OBJ)
|
||||
$(CXX) $(CXXFLAGS) examples/bench/bench.cpp ggml.o $(WHISPER_OBJ) -o bench $(LDFLAGS)
|
||||
bench: examples/bench/bench.cpp ggml.o whisper.o
|
||||
$(CXX) $(CXXFLAGS) examples/bench/bench.cpp ggml.o whisper.o -o bench $(LDFLAGS)
|
||||
|
||||
#
|
||||
# Audio samples
|
||||
|
@ -466,7 +466,7 @@ The original models are converted to a custom binary format. This allows to pack
|
||||
You can download the converted models using the [models/download-ggml-model.sh](models/download-ggml-model.sh) script
|
||||
or manually from here:
|
||||
|
||||
- https://huggingface.co/ggerganov/whisper.cpp
|
||||
- https://huggingface.co/datasets/ggerganov/whisper.cpp
|
||||
- https://ggml.ggerganov.com
|
||||
|
||||
For more details, see the conversion script [models/convert-pt-to-ggml.py](models/convert-pt-to-ggml.py) or the README
|
||||
@ -476,7 +476,6 @@ in [models](models).
|
||||
|
||||
- [X] Rust: [tazz4843/whisper-rs](https://github.com/tazz4843/whisper-rs) | [#310](https://github.com/ggerganov/whisper.cpp/discussions/310)
|
||||
- [X] Javascript: [bindings/javascript](bindings/javascript) | [#309](https://github.com/ggerganov/whisper.cpp/discussions/309)
|
||||
- React Native (iOS / Android): [whisper.rn](https://github.com/mybigday/whisper.rn)
|
||||
- [X] Go: [bindings/go](bindings/go) | [#312](https://github.com/ggerganov/whisper.cpp/discussions/312)
|
||||
- [X] Ruby: [bindings/ruby](bindings/ruby) | [#507](https://github.com/ggerganov/whisper.cpp/discussions/507)
|
||||
- [X] Objective-C / Swift: [ggerganov/whisper.spm](https://github.com/ggerganov/whisper.spm) | [#313](https://github.com/ggerganov/whisper.cpp/discussions/313)
|
||||
@ -486,7 +485,6 @@ in [models](models).
|
||||
- [X] Python: | [#9](https://github.com/ggerganov/whisper.cpp/issues/9)
|
||||
- [stlukey/whispercpp.py](https://github.com/stlukey/whispercpp.py) (Cython)
|
||||
- [aarnphm/whispercpp](https://github.com/aarnphm/whispercpp) (Pybind11)
|
||||
- [X] R: [bnosac/audio.whisper](https://github.com/bnosac/audio.whisper)
|
||||
|
||||
## Examples
|
||||
|
||||
|
@ -17,9 +17,9 @@ import (
|
||||
// CONSTANTS
|
||||
|
||||
const (
|
||||
srcUrl = "https://huggingface.co/ggerganov/whisper.cpp/resolve/main" // The location of the models
|
||||
srcExt = ".bin" // Filename extension
|
||||
bufSize = 1024 * 64 // Size of the buffer used for downloading the model
|
||||
srcUrl = "https://huggingface.co/datasets/ggerganov/whisper.cpp/resolve/main" // The location of the models
|
||||
srcExt = ".bin" // Filename extension
|
||||
bufSize = 1024 * 64 // Size of the buffer used for downloading the model
|
||||
)
|
||||
|
||||
var (
|
||||
|
@ -1,142 +0,0 @@
|
||||
//
|
||||
// CoremlEncoder.h
|
||||
//
|
||||
// This file was automatically generated and should not be edited.
|
||||
//
|
||||
|
||||
#import <Foundation/Foundation.h>
|
||||
#import <CoreML/CoreML.h>
|
||||
#include <stdint.h>
|
||||
#include <os/log.h>
|
||||
|
||||
NS_ASSUME_NONNULL_BEGIN
|
||||
|
||||
|
||||
/// Model Prediction Input Type
|
||||
API_AVAILABLE(macos(10.15), ios(13.0), watchos(6.0), tvos(13.0)) __attribute__((visibility("hidden")))
|
||||
@interface CoremlEncoderInput : NSObject<MLFeatureProvider>
|
||||
|
||||
/// melSegment as 1 × 80 × 3000 3-dimensional array of floats
|
||||
@property (readwrite, nonatomic, strong) MLMultiArray * melSegment;
|
||||
- (instancetype)init NS_UNAVAILABLE;
|
||||
- (instancetype)initWithMelSegment:(MLMultiArray *)melSegment NS_DESIGNATED_INITIALIZER;
|
||||
|
||||
@end
|
||||
|
||||
|
||||
/// Model Prediction Output Type
|
||||
API_AVAILABLE(macos(10.15), ios(13.0), watchos(6.0), tvos(13.0)) __attribute__((visibility("hidden")))
|
||||
@interface CoremlEncoderOutput : NSObject<MLFeatureProvider>
|
||||
|
||||
/// output as multidimensional array of floats
|
||||
@property (readwrite, nonatomic, strong) MLMultiArray * output;
|
||||
- (instancetype)init NS_UNAVAILABLE;
|
||||
- (instancetype)initWithOutput:(MLMultiArray *)output NS_DESIGNATED_INITIALIZER;
|
||||
|
||||
@end
|
||||
|
||||
|
||||
/// Class for model loading and prediction
|
||||
API_AVAILABLE(macos(10.15), ios(13.0), watchos(6.0), tvos(13.0)) __attribute__((visibility("hidden")))
|
||||
@interface CoremlEncoder : NSObject
|
||||
@property (readonly, nonatomic, nullable) MLModel * model;
|
||||
|
||||
/**
|
||||
URL of the underlying .mlmodelc directory.
|
||||
*/
|
||||
+ (nullable NSURL *)URLOfModelInThisBundle;
|
||||
|
||||
/**
|
||||
Initialize CoremlEncoder instance from an existing MLModel object.
|
||||
|
||||
Usually the application does not use this initializer unless it makes a subclass of CoremlEncoder.
|
||||
Such application may want to use `-[MLModel initWithContentsOfURL:configuration:error:]` and `+URLOfModelInThisBundle` to create a MLModel object to pass-in.
|
||||
*/
|
||||
- (instancetype)initWithMLModel:(MLModel *)model NS_DESIGNATED_INITIALIZER;
|
||||
|
||||
/**
|
||||
Initialize CoremlEncoder instance with the model in this bundle.
|
||||
*/
|
||||
- (nullable instancetype)init;
|
||||
|
||||
/**
|
||||
Initialize CoremlEncoder instance with the model in this bundle.
|
||||
|
||||
@param configuration The model configuration object
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithConfiguration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Initialize CoremlEncoder instance from the model URL.
|
||||
|
||||
@param modelURL URL to the .mlmodelc directory for CoremlEncoder.
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Initialize CoremlEncoder instance from the model URL.
|
||||
|
||||
@param modelURL URL to the .mlmodelc directory for CoremlEncoder.
|
||||
@param configuration The model configuration object
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Construct CoremlEncoder instance asynchronously with configuration.
|
||||
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
|
||||
|
||||
@param configuration The model configuration
|
||||
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid CoremlEncoder instance or NSError object.
|
||||
*/
|
||||
+ (void)loadWithConfiguration:(MLModelConfiguration *)configuration completionHandler:(void (^)(CoremlEncoder * _Nullable model, NSError * _Nullable error))handler API_AVAILABLE(macos(11.0), ios(14.0), watchos(7.0), tvos(14.0)) __attribute__((visibility("hidden")));
|
||||
|
||||
/**
|
||||
Construct CoremlEncoder instance asynchronously with URL of .mlmodelc directory and optional configuration.
|
||||
|
||||
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
|
||||
|
||||
@param modelURL The model URL.
|
||||
@param configuration The model configuration
|
||||
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid CoremlEncoder instance or NSError object.
|
||||
*/
|
||||
+ (void)loadContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration completionHandler:(void (^)(CoremlEncoder * _Nullable model, NSError * _Nullable error))handler API_AVAILABLE(macos(11.0), ios(14.0), watchos(7.0), tvos(14.0)) __attribute__((visibility("hidden")));
|
||||
|
||||
/**
|
||||
Make a prediction using the standard interface
|
||||
@param input an instance of CoremlEncoderInput to predict from
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
@return the prediction as CoremlEncoderOutput
|
||||
*/
|
||||
- (nullable CoremlEncoderOutput *)predictionFromFeatures:(CoremlEncoderInput *)input error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Make a prediction using the standard interface
|
||||
@param input an instance of CoremlEncoderInput to predict from
|
||||
@param options prediction options
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
@return the prediction as CoremlEncoderOutput
|
||||
*/
|
||||
- (nullable CoremlEncoderOutput *)predictionFromFeatures:(CoremlEncoderInput *)input options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Make a prediction using the convenience interface
|
||||
@param melSegment as 1 × 80 × 3000 3-dimensional array of floats:
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
@return the prediction as CoremlEncoderOutput
|
||||
*/
|
||||
- (nullable CoremlEncoderOutput *)predictionFromMelSegment:(MLMultiArray *)melSegment error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Batch prediction
|
||||
@param inputArray array of CoremlEncoderInput instances to obtain predictions from
|
||||
@param options prediction options
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
@return the predictions as NSArray<CoremlEncoderOutput *>
|
||||
*/
|
||||
- (nullable NSArray<CoremlEncoderOutput *> *)predictionsFromInputs:(NSArray<CoremlEncoderInput*> *)inputArray options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
@end
|
||||
|
||||
NS_ASSUME_NONNULL_END
|
@ -1,197 +0,0 @@
|
||||
//
|
||||
// CoremlEncoder.m
|
||||
//
|
||||
// This file was automatically generated and should not be edited.
|
||||
//
|
||||
|
||||
#if !__has_feature(objc_arc)
|
||||
#error This file must be compiled with automatic reference counting enabled (-fobjc-arc)
|
||||
#endif
|
||||
|
||||
#import "whisper-encoder-impl.h"
|
||||
|
||||
@implementation CoremlEncoderInput
|
||||
|
||||
- (instancetype)initWithMelSegment:(MLMultiArray *)melSegment {
|
||||
self = [super init];
|
||||
if (self) {
|
||||
_melSegment = melSegment;
|
||||
}
|
||||
return self;
|
||||
}
|
||||
|
||||
- (NSSet<NSString *> *)featureNames {
|
||||
return [NSSet setWithArray:@[@"melSegment"]];
|
||||
}
|
||||
|
||||
- (nullable MLFeatureValue *)featureValueForName:(NSString *)featureName {
|
||||
if ([featureName isEqualToString:@"melSegment"]) {
|
||||
return [MLFeatureValue featureValueWithMultiArray:self.melSegment];
|
||||
}
|
||||
return nil;
|
||||
}
|
||||
|
||||
@end
|
||||
|
||||
@implementation CoremlEncoderOutput
|
||||
|
||||
- (instancetype)initWithOutput:(MLMultiArray *)output {
|
||||
self = [super init];
|
||||
if (self) {
|
||||
_output = output;
|
||||
}
|
||||
return self;
|
||||
}
|
||||
|
||||
- (NSSet<NSString *> *)featureNames {
|
||||
return [NSSet setWithArray:@[@"output"]];
|
||||
}
|
||||
|
||||
- (nullable MLFeatureValue *)featureValueForName:(NSString *)featureName {
|
||||
if ([featureName isEqualToString:@"output"]) {
|
||||
return [MLFeatureValue featureValueWithMultiArray:self.output];
|
||||
}
|
||||
return nil;
|
||||
}
|
||||
|
||||
@end
|
||||
|
||||
@implementation CoremlEncoder
|
||||
|
||||
|
||||
/**
|
||||
URL of the underlying .mlmodelc directory.
|
||||
*/
|
||||
+ (nullable NSURL *)URLOfModelInThisBundle {
|
||||
NSString *assetPath = [[NSBundle bundleForClass:[self class]] pathForResource:@"CoremlEncoder" ofType:@"mlmodelc"];
|
||||
if (nil == assetPath) { os_log_error(OS_LOG_DEFAULT, "Could not load CoremlEncoder.mlmodelc in the bundle resource"); return nil; }
|
||||
return [NSURL fileURLWithPath:assetPath];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Initialize CoremlEncoder instance from an existing MLModel object.
|
||||
|
||||
Usually the application does not use this initializer unless it makes a subclass of CoremlEncoder.
|
||||
Such application may want to use `-[MLModel initWithContentsOfURL:configuration:error:]` and `+URLOfModelInThisBundle` to create a MLModel object to pass-in.
|
||||
*/
|
||||
- (instancetype)initWithMLModel:(MLModel *)model {
|
||||
self = [super init];
|
||||
if (!self) { return nil; }
|
||||
_model = model;
|
||||
if (_model == nil) { return nil; }
|
||||
return self;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Initialize CoremlEncoder instance with the model in this bundle.
|
||||
*/
|
||||
- (nullable instancetype)init {
|
||||
return [self initWithContentsOfURL:(NSURL * _Nonnull)self.class.URLOfModelInThisBundle error:nil];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Initialize CoremlEncoder instance with the model in this bundle.
|
||||
|
||||
@param configuration The model configuration object
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithConfiguration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
return [self initWithContentsOfURL:(NSURL * _Nonnull)self.class.URLOfModelInThisBundle configuration:configuration error:error];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Initialize CoremlEncoder instance from the model URL.
|
||||
|
||||
@param modelURL URL to the .mlmodelc directory for CoremlEncoder.
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
MLModel *model = [MLModel modelWithContentsOfURL:modelURL error:error];
|
||||
if (model == nil) { return nil; }
|
||||
return [self initWithMLModel:model];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Initialize CoremlEncoder instance from the model URL.
|
||||
|
||||
@param modelURL URL to the .mlmodelc directory for CoremlEncoder.
|
||||
@param configuration The model configuration object
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
MLModel *model = [MLModel modelWithContentsOfURL:modelURL configuration:configuration error:error];
|
||||
if (model == nil) { return nil; }
|
||||
return [self initWithMLModel:model];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Construct CoremlEncoder instance asynchronously with configuration.
|
||||
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
|
||||
|
||||
@param configuration The model configuration
|
||||
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid CoremlEncoder instance or NSError object.
|
||||
*/
|
||||
+ (void)loadWithConfiguration:(MLModelConfiguration *)configuration completionHandler:(void (^)(CoremlEncoder * _Nullable model, NSError * _Nullable error))handler {
|
||||
[self loadContentsOfURL:(NSURL * _Nonnull)[self URLOfModelInThisBundle]
|
||||
configuration:configuration
|
||||
completionHandler:handler];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Construct CoremlEncoder instance asynchronously with URL of .mlmodelc directory and optional configuration.
|
||||
|
||||
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
|
||||
|
||||
@param modelURL The model URL.
|
||||
@param configuration The model configuration
|
||||
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid CoremlEncoder instance or NSError object.
|
||||
*/
|
||||
+ (void)loadContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration completionHandler:(void (^)(CoremlEncoder * _Nullable model, NSError * _Nullable error))handler {
|
||||
[MLModel loadContentsOfURL:modelURL
|
||||
configuration:configuration
|
||||
completionHandler:^(MLModel *model, NSError *error) {
|
||||
if (model != nil) {
|
||||
CoremlEncoder *typedModel = [[CoremlEncoder alloc] initWithMLModel:model];
|
||||
handler(typedModel, nil);
|
||||
} else {
|
||||
handler(nil, error);
|
||||
}
|
||||
}];
|
||||
}
|
||||
|
||||
- (nullable CoremlEncoderOutput *)predictionFromFeatures:(CoremlEncoderInput *)input error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
return [self predictionFromFeatures:input options:[[MLPredictionOptions alloc] init] error:error];
|
||||
}
|
||||
|
||||
- (nullable CoremlEncoderOutput *)predictionFromFeatures:(CoremlEncoderInput *)input options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
id<MLFeatureProvider> outFeatures = [self.model predictionFromFeatures:input options:options error:error];
|
||||
if (!outFeatures) { return nil; }
|
||||
return [[CoremlEncoderOutput alloc] initWithOutput:(MLMultiArray *)[outFeatures featureValueForName:@"output"].multiArrayValue];
|
||||
}
|
||||
|
||||
- (nullable CoremlEncoderOutput *)predictionFromMelSegment:(MLMultiArray *)melSegment error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
CoremlEncoderInput *input_ = [[CoremlEncoderInput alloc] initWithMelSegment:melSegment];
|
||||
return [self predictionFromFeatures:input_ error:error];
|
||||
}
|
||||
|
||||
- (nullable NSArray<CoremlEncoderOutput *> *)predictionsFromInputs:(NSArray<CoremlEncoderInput*> *)inputArray options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
id<MLBatchProvider> inBatch = [[MLArrayBatchProvider alloc] initWithFeatureProviderArray:inputArray];
|
||||
id<MLBatchProvider> outBatch = [self.model predictionsFromBatch:inBatch options:options error:error];
|
||||
if (!outBatch) { return nil; }
|
||||
NSMutableArray<CoremlEncoderOutput*> *results = [NSMutableArray arrayWithCapacity:(NSUInteger)outBatch.count];
|
||||
for (NSInteger i = 0; i < outBatch.count; i++) {
|
||||
id<MLFeatureProvider> resultProvider = [outBatch featuresAtIndex:i];
|
||||
CoremlEncoderOutput * result = [[CoremlEncoderOutput alloc] initWithOutput:(MLMultiArray *)[resultProvider featureValueForName:@"output"].multiArrayValue];
|
||||
[results addObject:result];
|
||||
}
|
||||
return results;
|
||||
}
|
||||
|
||||
@end
|
@ -1,22 +0,0 @@
|
||||
// Wrapper of the Core ML Whisper Encoder model
|
||||
//
|
||||
// Code is derived from the work of Github user @wangchou
|
||||
// ref: https://github.com/wangchou/callCoreMLFromCpp
|
||||
|
||||
#if __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct whisper_coreml_context;
|
||||
|
||||
struct whisper_coreml_context * whisper_coreml_init(const char * path_model);
|
||||
void whisper_coreml_free(struct whisper_coreml_context * ctx);
|
||||
|
||||
void whisper_coreml_encode(
|
||||
const whisper_coreml_context * ctx,
|
||||
float * mel,
|
||||
float * out);
|
||||
|
||||
#if __cplusplus
|
||||
}
|
||||
#endif
|
@ -1,61 +0,0 @@
|
||||
#import "coreml/whisper-encoder.h"
|
||||
#import "coreml/whisper-encoder-impl.h"
|
||||
|
||||
#import <CoreML/CoreML.h>
|
||||
|
||||
#include <stdlib.h>
|
||||
|
||||
#if __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct whisper_coreml_context {
|
||||
const void * data;
|
||||
};
|
||||
|
||||
struct whisper_coreml_context * whisper_coreml_init(const char * path_model) {
|
||||
NSString * path_model_str = [[NSString alloc] initWithUTF8String:path_model];
|
||||
|
||||
NSURL * url_model = [NSURL fileURLWithPath: path_model_str];
|
||||
|
||||
const void * data = CFBridgingRetain([[CoremlEncoder alloc] initWithContentsOfURL:url_model error:nil]);
|
||||
|
||||
if (data == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
whisper_coreml_context * ctx = new whisper_coreml_context;
|
||||
|
||||
ctx->data = data;
|
||||
|
||||
return ctx;
|
||||
}
|
||||
|
||||
void whisper_coreml_free(struct whisper_coreml_context * ctx) {
|
||||
CFRelease(ctx->data);
|
||||
delete ctx;
|
||||
}
|
||||
|
||||
void whisper_coreml_encode(
|
||||
const whisper_coreml_context * ctx,
|
||||
float * mel,
|
||||
float * out) {
|
||||
MLMultiArray * inMultiArray = [
|
||||
[MLMultiArray alloc] initWithDataPointer: mel
|
||||
shape: @[@1, @80, @3000]
|
||||
dataType: MLMultiArrayDataTypeFloat32
|
||||
strides: @[@(240000), @(3000), @1]
|
||||
deallocator: nil
|
||||
error: nil
|
||||
];
|
||||
|
||||
CoremlEncoderOutput * outCoreML = [(__bridge id) ctx->data predictionFromMelSegment:inMultiArray error:nil];
|
||||
|
||||
MLMultiArray * outMA = outCoreML.output;
|
||||
|
||||
memcpy(out, outMA.dataPointer, outMA.count * sizeof(float));
|
||||
}
|
||||
|
||||
#if __cplusplus
|
||||
}
|
||||
#endif
|
@ -292,64 +292,51 @@ int run(whisper_params ¶ms, std::vector<std::vector<std::string>> &result) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
class Worker : public Napi::AsyncWorker {
|
||||
public:
|
||||
Worker(Napi::Function& callback, whisper_params params)
|
||||
: Napi::AsyncWorker(callback), params(params) {}
|
||||
|
||||
void Execute() override {
|
||||
run(params, result);
|
||||
}
|
||||
|
||||
void OnOK() override {
|
||||
Napi::HandleScope scope(Env());
|
||||
Napi::Object res = Napi::Array::New(Env(), result.size());
|
||||
for (uint64_t i = 0; i < result.size(); ++i) {
|
||||
Napi::Object tmp = Napi::Array::New(Env(), 3);
|
||||
for (uint64_t j = 0; j < 3; ++j) {
|
||||
tmp[j] = Napi::String::New(Env(), result[i][j]);
|
||||
}
|
||||
res[i] = tmp;
|
||||
Napi::Object whisper(const Napi::CallbackInfo& info) {
|
||||
Napi::Env env = info.Env();
|
||||
if (info.Length() <= 0 || !info[0].IsObject()) {
|
||||
Napi::TypeError::New(env, "object expected").ThrowAsJavaScriptException();
|
||||
}
|
||||
Callback().Call({Env().Null(), res});
|
||||
}
|
||||
whisper_params params;
|
||||
std::vector<std::vector<std::string>> result;
|
||||
|
||||
private:
|
||||
whisper_params params;
|
||||
std::vector<std::vector<std::string>> result;
|
||||
};
|
||||
Napi::Object whisper_params = info[0].As<Napi::Object>();
|
||||
std::string language = whisper_params.Get("language").As<Napi::String>();
|
||||
std::string model = whisper_params.Get("model").As<Napi::String>();
|
||||
std::string input = whisper_params.Get("fname_inp").As<Napi::String>();
|
||||
|
||||
params.language = language;
|
||||
params.model = model;
|
||||
params.fname_inp.emplace_back(input);
|
||||
|
||||
// run model
|
||||
run(params, result);
|
||||
|
||||
Napi::Value whisper(const Napi::CallbackInfo& info) {
|
||||
Napi::Env env = info.Env();
|
||||
if (info.Length() <= 0 || !info[0].IsObject()) {
|
||||
Napi::TypeError::New(env, "object expected").ThrowAsJavaScriptException();
|
||||
}
|
||||
whisper_params params;
|
||||
fprintf(stderr, "RESULT:\n");
|
||||
for (auto sentence:result) {
|
||||
fprintf(stderr, "t0: %s, t1: %s, content: %s \n",
|
||||
sentence[0].c_str(), sentence[1].c_str(), sentence[2].c_str());
|
||||
}
|
||||
|
||||
Napi::Object whisper_params = info[0].As<Napi::Object>();
|
||||
std::string language = whisper_params.Get("language").As<Napi::String>();
|
||||
std::string model = whisper_params.Get("model").As<Napi::String>();
|
||||
std::string input = whisper_params.Get("fname_inp").As<Napi::String>();
|
||||
Napi::Object res = Napi::Array::New(env, result.size());
|
||||
for (uint64_t i = 0; i < result.size(); ++i) {
|
||||
Napi::Object tmp = Napi::Array::New(env, 3);
|
||||
for (uint64_t j = 0; j < 3; ++j) {
|
||||
tmp[j] = Napi::String::New(env, result[i][j]);
|
||||
}
|
||||
res[i] = tmp;
|
||||
}
|
||||
|
||||
params.language = language;
|
||||
params.model = model;
|
||||
params.fname_inp.emplace_back(input);
|
||||
|
||||
Napi::Function callback = info[1].As<Napi::Function>();
|
||||
Worker* worker = new Worker(callback, params);
|
||||
worker->Queue();
|
||||
return env.Undefined();
|
||||
return res;
|
||||
}
|
||||
|
||||
|
||||
Napi::Object Init(Napi::Env env, Napi::Object exports) {
|
||||
exports.Set(
|
||||
Napi::String::New(env, "whisper"),
|
||||
Napi::Function::New(env, whisper)
|
||||
);
|
||||
return exports;
|
||||
exports.Set(
|
||||
Napi::String::New(env, "whisper"),
|
||||
Napi::Function::New(env, whisper)
|
||||
);
|
||||
return exports;
|
||||
}
|
||||
|
||||
NODE_API_MODULE(whisper, Init);
|
||||
|
@ -1,36 +1,27 @@
|
||||
const path = require("path");
|
||||
const { whisper } = require(path.join(
|
||||
__dirname,
|
||||
"../../build/Release/whisper-addon"
|
||||
));
|
||||
const { promisify } = require("util");
|
||||
|
||||
const whisperAsync = promisify(whisper);
|
||||
const path = require('path');
|
||||
const { whisper } = require(path.join(__dirname, '../../build/Release/whisper-addon'));
|
||||
|
||||
const whisperParams = {
|
||||
language: "en",
|
||||
model: path.join(__dirname, "../../models/ggml-base.en.bin"),
|
||||
fname_inp: "../../samples/jfk.wav",
|
||||
language: 'en',
|
||||
model: path.join(__dirname, '../../models/ggml-base.en.bin'),
|
||||
fname_inp: '',
|
||||
};
|
||||
|
||||
const arguments = process.argv.slice(2);
|
||||
const params = Object.fromEntries(
|
||||
arguments.reduce((pre, item) => {
|
||||
if (item.startsWith("--")) {
|
||||
return [...pre, item.slice(2).split("=")];
|
||||
}
|
||||
return pre;
|
||||
}, [])
|
||||
arguments.reduce((pre, item) => {
|
||||
if (item.startsWith("--")) {
|
||||
return [...pre, item.slice(2).split("=")];
|
||||
}
|
||||
return pre;
|
||||
}, []),
|
||||
);
|
||||
|
||||
for (const key in params) {
|
||||
if (whisperParams.hasOwnProperty(key)) {
|
||||
whisperParams[key] = params[key];
|
||||
}
|
||||
if (whisperParams.hasOwnProperty(key)) {
|
||||
whisperParams[key] = params[key];
|
||||
}
|
||||
}
|
||||
|
||||
console.log("whisperParams =", whisperParams);
|
||||
|
||||
whisperAsync(whisperParams).then((result) => {
|
||||
console.log(`Result from whisper: ${result}`);
|
||||
});
|
||||
console.log('whisperParams =', whisperParams);
|
||||
console.log(whisper(whisperParams));
|
||||
|
@ -31,7 +31,6 @@ options:
|
||||
-osrt, --output-srt [false ] output result in a srt file
|
||||
-owts, --output-words [false ] output script for generating karaoke video
|
||||
-ocsv, --output-csv [false ] output result in a CSV file
|
||||
-oj, --output-json [false ] output result in a JSON file
|
||||
-of FNAME, --output-file FNAME [ ] output file path (without file extension)
|
||||
-ps, --print-special [false ] print special tokens
|
||||
-pc, --print-colors [false ] print colors
|
||||
|
@ -73,7 +73,6 @@ struct whisper_params {
|
||||
bool output_srt = false;
|
||||
bool output_wts = false;
|
||||
bool output_csv = false;
|
||||
bool output_jsn = false;
|
||||
bool print_special = false;
|
||||
bool print_colors = false;
|
||||
bool print_progress = false;
|
||||
@ -131,7 +130,6 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
else if (arg == "-owts" || arg == "--output-words") { params.output_wts = true; }
|
||||
else if (arg == "-fp" || arg == "--font-path") { params.font_path = argv[++i]; }
|
||||
else if (arg == "-ocsv" || arg == "--output-csv") { params.output_csv = true; }
|
||||
else if (arg == "-oj" || arg == "--output-json") { params.output_jsn = true; }
|
||||
else if (arg == "-of" || arg == "--output-file") { params.fname_out.emplace_back(argv[++i]); }
|
||||
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
|
||||
else if (arg == "-pc" || arg == "--print-colors") { params.print_colors = true; }
|
||||
@ -180,7 +178,6 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
|
||||
fprintf(stderr, " -owts, --output-words [%-7s] output script for generating karaoke video\n", params.output_wts ? "true" : "false");
|
||||
fprintf(stderr, " -fp, --font-path [%-7s] path to a monospace font for karaoke video\n", params.font_path.c_str());
|
||||
fprintf(stderr, " -ocsv, --output-csv [%-7s] output result in a CSV file\n", params.output_csv ? "true" : "false");
|
||||
fprintf(stderr, " -oj, --output-json [%-7s] output result in a JSON file\n", params.output_jsn ? "true" : "false");
|
||||
fprintf(stderr, " -of FNAME, --output-file FNAME [%-7s] output file path (without file extension)\n", "");
|
||||
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
|
||||
fprintf(stderr, " -pc, --print-colors [%-7s] print colors\n", params.print_colors ? "true" : "false");
|
||||
@ -371,129 +368,6 @@ bool output_csv(struct whisper_context * ctx, const char * fname) {
|
||||
return true;
|
||||
}
|
||||
|
||||
bool output_json(struct whisper_context * ctx, const char * fname, const whisper_params & params) {
|
||||
std::ofstream fout(fname);
|
||||
int indent = 0;
|
||||
|
||||
auto doindent = [&]() {
|
||||
for (int i = 0; i < indent; i++) fout << "\t";
|
||||
};
|
||||
|
||||
auto start_arr = [&](const char *name) {
|
||||
doindent();
|
||||
fout << "\"" << name << "\": [\n";
|
||||
indent++;
|
||||
};
|
||||
|
||||
auto end_arr = [&](bool end = false) {
|
||||
indent--;
|
||||
doindent();
|
||||
fout << (end ? "]\n" : "},\n");
|
||||
};
|
||||
|
||||
auto start_obj = [&](const char *name = nullptr) {
|
||||
doindent();
|
||||
if (name) {
|
||||
fout << "\"" << name << "\": {\n";
|
||||
} else {
|
||||
fout << "{\n";
|
||||
}
|
||||
indent++;
|
||||
};
|
||||
|
||||
auto end_obj = [&](bool end = false) {
|
||||
indent--;
|
||||
doindent();
|
||||
fout << (end ? "}\n" : "},\n");
|
||||
};
|
||||
|
||||
auto start_value = [&](const char *name) {
|
||||
doindent();
|
||||
fout << "\"" << name << "\": ";
|
||||
};
|
||||
|
||||
auto value_s = [&](const char *name, const char *val, bool end = false) {
|
||||
start_value(name);
|
||||
fout << "\"" << val << (end ? "\"\n" : "\",\n");
|
||||
};
|
||||
|
||||
auto end_value = [&](bool end = false) {
|
||||
fout << (end ? "\n" : ",\n");
|
||||
};
|
||||
|
||||
auto value_i = [&](const char *name, const int64_t val, bool end = false) {
|
||||
start_value(name);
|
||||
fout << val;
|
||||
end_value(end);
|
||||
};
|
||||
|
||||
auto value_b = [&](const char *name, const bool val, bool end = false) {
|
||||
start_value(name);
|
||||
fout << (val ? "true" : "false");
|
||||
end_value(end);
|
||||
};
|
||||
|
||||
if (!fout.is_open()) {
|
||||
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname);
|
||||
return false;
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
|
||||
start_obj();
|
||||
value_s("systeminfo", whisper_print_system_info());
|
||||
start_obj("model");
|
||||
value_s("type", whisper_model_type_readable(ctx));
|
||||
value_b("multilingual", whisper_is_multilingual(ctx));
|
||||
value_i("vocab", whisper_model_n_vocab(ctx));
|
||||
start_obj("audio");
|
||||
value_i("ctx", whisper_model_n_audio_ctx(ctx));
|
||||
value_i("state", whisper_model_n_audio_state(ctx));
|
||||
value_i("head", whisper_model_n_audio_head(ctx));
|
||||
value_i("layer", whisper_model_n_audio_layer(ctx), true);
|
||||
end_obj();
|
||||
start_obj("text");
|
||||
value_i("ctx", whisper_model_n_text_ctx(ctx));
|
||||
value_i("state", whisper_model_n_text_state(ctx));
|
||||
value_i("head", whisper_model_n_text_head(ctx));
|
||||
value_i("leyer", whisper_model_n_text_layer(ctx), true);
|
||||
end_obj();
|
||||
value_i("mels", whisper_model_n_mels(ctx));
|
||||
value_i("f16", whisper_model_f16(ctx), true);
|
||||
end_obj();
|
||||
start_obj("params");
|
||||
value_s("model", params.model.c_str());
|
||||
value_s("language", params.language.c_str());
|
||||
value_b("translate", params.translate, true);
|
||||
end_obj();
|
||||
start_obj("result");
|
||||
value_s("language", whisper_lang_str(whisper_full_lang_id(ctx)), true);
|
||||
end_obj();
|
||||
start_arr("transcription");
|
||||
|
||||
const int n_segments = whisper_full_n_segments(ctx);
|
||||
for (int i = 0; i < n_segments; ++i) {
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
|
||||
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
|
||||
|
||||
start_obj();
|
||||
start_obj("timestanps");
|
||||
value_s("from", to_timestamp(t0, true).c_str());
|
||||
value_s("to", to_timestamp(t1, true).c_str(), true);
|
||||
end_obj();
|
||||
start_obj("offsets");
|
||||
value_i("from", t0 * 10);
|
||||
value_i("to", t1 * 10, true);
|
||||
end_obj();
|
||||
value_s("text", text, true);
|
||||
end_obj(i == (n_segments - 1));
|
||||
}
|
||||
|
||||
end_arr(true);
|
||||
end_obj(true);
|
||||
return true;
|
||||
}
|
||||
|
||||
// karaoke video generation
|
||||
// outputs a bash script that uses ffmpeg to generate a video with the subtitles
|
||||
// TODO: font parameter adjustments
|
||||
@ -788,12 +662,6 @@ int main(int argc, char ** argv) {
|
||||
const auto fname_csv = fname_out + ".csv";
|
||||
output_csv(ctx, fname_csv.c_str());
|
||||
}
|
||||
|
||||
// output to JSON file
|
||||
if (params.output_jsn) {
|
||||
const auto fname_jsn = fname_out + ".json";
|
||||
output_json(ctx, fname_jsn.c_str(), params);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -31,7 +31,7 @@ To run this, you will need a ggml GPT-2 model: [instructions](https://github.com
|
||||
Alternatively, you can simply download the smallest ggml GPT-2 117M model (240 MB) like this:
|
||||
|
||||
```
|
||||
wget --quiet --show-progress -O models/ggml-gpt-2-117M.bin https://huggingface.co/ggerganov/ggml/raw/main/ggml-model-gpt-2-117M.bin
|
||||
wget --quiet --show-progress -O models/ggml-gpt-2-117M.bin https://huggingface.co/datasets/ggerganov/ggml/raw/main/ggml-model-gpt-2-117M.bin
|
||||
```
|
||||
|
||||
## TTS
|
||||
|
@ -24,5 +24,3 @@ Also, don't forget to add the `-DGGML_USE_ACCELERATE` compiler flag in Build Pha
|
||||
This can significantly improve the performance of the transcription:
|
||||
|
||||
<img width="1072" alt="image" src="https://user-images.githubusercontent.com/1991296/208511239-8d7cdbd1-aa48-41b5-becd-ca288d53cc07.png">
|
||||
|
||||
In this project, it also added `-O3 -DNDEBUG` to `Other C Flags`, but adding flags to app proj is not ideal in real world (applies to all C/C++ files), consider splitting xcodeproj in workspace in your own project.
|
||||
|
@ -296,10 +296,6 @@
|
||||
IPHONEOS_DEPLOYMENT_TARGET = 16.0;
|
||||
MTL_ENABLE_DEBUG_INFO = NO;
|
||||
MTL_FAST_MATH = YES;
|
||||
OTHER_CFLAGS = (
|
||||
"-O3",
|
||||
"-DNDEBUG",
|
||||
);
|
||||
SDKROOT = iphoneos;
|
||||
VALIDATE_PRODUCT = YES;
|
||||
};
|
||||
|
@ -7,9 +7,8 @@ To use:
|
||||
2. Add the model to "whisper.swiftui.demo/Resources/models" via Xcode.
|
||||
3. Select a sample audio file (for example, [jfk.wav](https://github.com/ggerganov/whisper.cpp/raw/master/samples/jfk.wav)).
|
||||
4. Add the model to "whisper.swiftui.demo/Resources/samples" via Xcode.
|
||||
5. Select the "Release" [^2] build configuration under "Run", then deploy and run to your device.
|
||||
5. Select the "release" build configuration under "Run", then deploy and run to your device.
|
||||
|
||||
[^1]: I recommend the tiny, base or small models for running on an iOS device.
|
||||
[^2]: The `Release` build can boost performance of transcription. In this project, it also added `-O3 -DNDEBUG` to `Other C Flags`, but adding flags to app proj is not ideal in real world (applies to all C/C++ files), consider splitting xcodeproj in workspace in your own project.
|
||||
|
||||

|
||||
|
@ -430,10 +430,6 @@
|
||||
LLVM_LTO = YES;
|
||||
MACOSX_DEPLOYMENT_TARGET = 13.0;
|
||||
MARKETING_VERSION = 1.0;
|
||||
OTHER_CFLAGS = (
|
||||
"-O3",
|
||||
"-DNDEBUG",
|
||||
);
|
||||
PRODUCT_BUNDLE_IDENTIFIER = com.whispercppdemo.WhisperCppDemo;
|
||||
PRODUCT_NAME = "$(TARGET_NAME)";
|
||||
SDKROOT = auto;
|
||||
|
2
ggml.c
2
ggml.c
@ -79,7 +79,7 @@ typedef void* thread_ret_t;
|
||||
#define static_assert(cond, msg) _Static_assert(cond, msg)
|
||||
#endif
|
||||
|
||||
/*#define GGML_PERF*/
|
||||
#define GGML_PERF
|
||||
#define GGML_DEBUG 0
|
||||
#define GGML_GELU_FP16
|
||||
|
||||
|
@ -6,7 +6,7 @@ using the [convert-pt-to-ggml.py](convert-pt-to-ggml.py) script. You can either
|
||||
the `ggml` files yourself using the conversion script, or you can use the [download-ggml-model.sh](download-ggml-model.sh)
|
||||
script to download the already converted models. Currently, they are hosted on the following locations:
|
||||
|
||||
- https://huggingface.co/ggerganov/whisper.cpp
|
||||
- https://huggingface.co/datasets/ggerganov/whisper.cpp
|
||||
- https://ggml.ggerganov.com
|
||||
|
||||
Sample usage:
|
||||
@ -23,7 +23,7 @@ You can now use it like this:
|
||||
|
||||
A third option to obtain the model files is to download them from Hugging Face:
|
||||
|
||||
https://huggingface.co/ggerganov/whisper.cpp/tree/main
|
||||
https://huggingface.co/datasets/ggerganov/whisper.cpp/tree/main
|
||||
|
||||
## Available models
|
||||
|
||||
|
@ -79,11 +79,11 @@ dir_model = sys.argv[1]
|
||||
dir_whisper = sys.argv[2]
|
||||
dir_out = sys.argv[3]
|
||||
|
||||
with open(dir_model + "/vocab.json", "r", encoding="utf8") as f:
|
||||
with open(dir_model + "/vocab.json", "r") as f:
|
||||
encoder = json.load(f)
|
||||
with open(dir_model + "/added_tokens.json", "r", encoding="utf8") as f:
|
||||
with open(dir_model + "/added_tokens.json", "r") as f:
|
||||
encoder_added = json.load(f)
|
||||
with open(dir_model + "/config.json", "r", encoding="utf8") as f:
|
||||
with open(dir_model + "/config.json", "r") as f:
|
||||
hparams = json.load(f)
|
||||
|
||||
model = WhisperForConditionalGeneration.from_pretrained(dir_model)
|
||||
|
@ -1,82 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
# This script downloads Whisper model files that have already been converted to Core ML format.
|
||||
# This way you don't have to convert them yourself.
|
||||
|
||||
src="https://huggingface.co/datasets/ggerganov/whisper.cpp-coreml"
|
||||
pfx="resolve/main/ggml"
|
||||
|
||||
# get the path of this script
|
||||
function get_script_path() {
|
||||
if [ -x "$(command -v realpath)" ]; then
|
||||
echo "$(dirname $(realpath $0))"
|
||||
else
|
||||
local ret="$(cd -- "$(dirname "$0")" >/dev/null 2>&1 ; pwd -P)"
|
||||
echo "$ret"
|
||||
fi
|
||||
}
|
||||
|
||||
models_path="$(get_script_path)"
|
||||
|
||||
# Whisper models
|
||||
models=( "tiny.en" "tiny" "base.en" "base" "small.en" "small" "medium.en" "medium" "large-v1" "large" )
|
||||
|
||||
# list available models
|
||||
function list_models {
|
||||
printf "\n"
|
||||
printf " Available models:"
|
||||
for model in "${models[@]}"; do
|
||||
printf " $model"
|
||||
done
|
||||
printf "\n\n"
|
||||
}
|
||||
|
||||
if [ "$#" -ne 1 ]; then
|
||||
printf "Usage: $0 <model>\n"
|
||||
list_models
|
||||
|
||||
exit 1
|
||||
fi
|
||||
|
||||
model=$1
|
||||
|
||||
if [[ ! " ${models[@]} " =~ " ${model} " ]]; then
|
||||
printf "Invalid model: $model\n"
|
||||
list_models
|
||||
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# download Core ML model
|
||||
|
||||
printf "Downloading Core ML model $model from '$src' ...\n"
|
||||
|
||||
cd $models_path
|
||||
|
||||
if [ -f "ggml-$model.mlmodel" ]; then
|
||||
printf "Model $model already exists. Skipping download.\n"
|
||||
exit 0
|
||||
fi
|
||||
|
||||
if [ -x "$(command -v wget)" ]; then
|
||||
wget --quiet --show-progress -O ggml-$model.mlmodel $src/$pfx-$model.mlmodel
|
||||
elif [ -x "$(command -v curl)" ]; then
|
||||
curl -L --output ggml-$model.mlmodel $src/$pfx-$model.mlmodel
|
||||
else
|
||||
printf "Either wget or curl is required to download models.\n"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
printf "Failed to download Core ML model $model \n"
|
||||
printf "Please try again later or download the original Whisper model files and convert them yourself.\n"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
printf "Done! Model '$model' saved in 'models/ggml-$model.mlmodel'\n"
|
||||
printf "Run the following command to compile it:\n\n"
|
||||
printf " $ xcrun coremlc compile ./models/ggml-$model.mlmodel ./models\n\n"
|
||||
printf "You can now use it like this:\n\n"
|
||||
printf " $ ./main -m models/ggml-$model.bin -f samples/jfk.wav\n"
|
||||
printf "\n"
|
@ -40,7 +40,7 @@ if exist "ggml-%model%.bin" (
|
||||
goto :eof
|
||||
)
|
||||
|
||||
PowerShell -NoProfile -ExecutionPolicy Bypass -Command "Invoke-WebRequest -Uri https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-%model%.bin -OutFile ggml-%model%.bin"
|
||||
PowerShell -NoProfile -ExecutionPolicy Bypass -Command "Invoke-WebRequest -Uri https://huggingface.co/datasets/ggerganov/whisper.cpp/resolve/main/ggml-%model%.bin -OutFile ggml-%model%.bin"
|
||||
|
||||
if %ERRORLEVEL% neq 0 (
|
||||
echo Failed to download ggml model %model%
|
||||
|
@ -6,7 +6,7 @@
|
||||
#src="https://ggml.ggerganov.com"
|
||||
#pfx="ggml-model-whisper"
|
||||
|
||||
src="https://huggingface.co/ggerganov/whisper.cpp"
|
||||
src="https://huggingface.co/datasets/ggerganov/whisper.cpp"
|
||||
pfx="resolve/main/ggml"
|
||||
|
||||
# get the path of this script
|
||||
|
141
whisper.cpp
141
whisper.cpp
@ -1,8 +1,5 @@
|
||||
#define WHISPER_BUILD
|
||||
#include "whisper.h"
|
||||
#if WHISPER_USE_COREML
|
||||
#include "coreml/whisper-encoder.h"
|
||||
#endif
|
||||
|
||||
#include "ggml.h"
|
||||
|
||||
@ -589,10 +586,6 @@ struct whisper_state {
|
||||
|
||||
int lang_id = 0; // english by default
|
||||
|
||||
#ifdef WHISPER_USE_COREML
|
||||
whisper_coreml_context * ctx_coreml;
|
||||
#endif
|
||||
|
||||
// [EXPERIMENTAL] token-level timestamps data
|
||||
int64_t t_beg = 0;
|
||||
int64_t t_last = 0;
|
||||
@ -638,13 +631,12 @@ struct whisper_context {
|
||||
int64_t t_load_us = 0;
|
||||
int64_t t_start_us = 0;
|
||||
|
||||
|
||||
ggml_type wtype = ggml_type::GGML_TYPE_F16; // weight type (FP32 or FP16)
|
||||
|
||||
whisper_model model;
|
||||
whisper_vocab vocab;
|
||||
whisper_state * state = nullptr;
|
||||
|
||||
std::string path_model; // populated by whisper_init_from_file()
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
@ -1375,7 +1367,6 @@ static bool whisper_encode_internal(
|
||||
}
|
||||
}
|
||||
|
||||
#ifndef WHISPER_USE_COREML
|
||||
struct ggml_tensor * cur;
|
||||
|
||||
// convolution + gelu
|
||||
@ -1418,7 +1409,7 @@ static bool whisper_encode_internal(
|
||||
//}
|
||||
|
||||
static int iter = 0;
|
||||
|
||||
|
||||
const size_t e_pe_stride = model.e_pe->ne[0]*ggml_element_size(model.e_pe);
|
||||
const size_t e_pe_offset = model.e_pe->ne[0]*ggml_element_size(model.e_pe)*n_ctx*iter;
|
||||
|
||||
@ -1607,7 +1598,7 @@ static bool whisper_encode_internal(
|
||||
ggml_repeat(ctx0, layer.mlp_ln_w, cur),
|
||||
cur),
|
||||
ggml_repeat(ctx0, layer.mlp_ln_b, cur));
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef WHISPER_USE_FLASH_FF
|
||||
wstate.use_buf(ctx0, 0);
|
||||
@ -1647,7 +1638,7 @@ static bool whisper_encode_internal(
|
||||
ggml_repeat(ctx0, layer.mlp_1_b, cur),
|
||||
cur);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
wstate.use_buf(ctx0, 3);
|
||||
|
||||
@ -1684,13 +1675,6 @@ static bool whisper_encode_internal(
|
||||
|
||||
//ggml_graph_print(&gf);
|
||||
}
|
||||
#else
|
||||
wstate.use_buf(ctx0, -1);
|
||||
|
||||
struct ggml_tensor * cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_state, n_ctx);
|
||||
|
||||
whisper_coreml_encode(wstate.ctx_coreml, (float *) mel->data, (float *) cur->data);
|
||||
#endif
|
||||
|
||||
// cur
|
||||
//{
|
||||
@ -2176,6 +2160,12 @@ static bool whisper_decode_internal(
|
||||
ggml_graph_compute (ctx0, &gf);
|
||||
}
|
||||
|
||||
// print the time for computing the last ggml_mul_mat that computes logits
|
||||
// also print the total decoder time
|
||||
// these need to be called after ggml_graph_compute()
|
||||
printf("logits t = %7.3f ms (%2d runs, N = %3d, ggml_mul_mat: [%d x %d] * [%d x %d])\n", 1e-3*double(logits->perf_time_us)/logits->perf_runs, logits->perf_runs, N, logits->ne[0], logits->ne[1], cur->ne[1], cur->ne[0]);
|
||||
printf("total t = %7.3f ms (%2d runs)\n", 1e-3*double(gf.perf_time_us)/gf.perf_runs, gf.perf_runs);
|
||||
|
||||
// extract logits for all N tokens
|
||||
//logits_out.resize(N*n_vocab);
|
||||
//memcpy(logits_out.data(), ggml_get_data(logits), sizeof(float)*N*n_vocab);
|
||||
@ -2494,25 +2484,12 @@ static std::vector<whisper_vocab::id> tokenize(const whisper_vocab & vocab, cons
|
||||
// interface implementation
|
||||
//
|
||||
|
||||
#ifdef WHISPER_USE_COREML
|
||||
// replace .bin with .mlmodelc
|
||||
static std::string whisper_get_coreml_path(std::string path_bin) {
|
||||
auto pos = path_bin.rfind('.');
|
||||
if (pos != std::string::npos) {
|
||||
path_bin = path_bin.substr(0, pos);
|
||||
}
|
||||
|
||||
path_bin += ".mlmodelc";
|
||||
|
||||
return path_bin;
|
||||
}
|
||||
#endif
|
||||
|
||||
struct whisper_state * whisper_init_state(whisper_context * ctx) {
|
||||
whisper_state * state = new whisper_state;
|
||||
|
||||
const size_t scale = ctx->model.hparams.f16 ? 1 : 2;
|
||||
|
||||
|
||||
if (!kv_cache_init(ctx->model.hparams, scale * MEM_REQ_KV_SELF.at(ctx->model.type), state->decoders[0].kv_self, ctx->wtype, ctx->model.hparams.n_text_ctx)) {
|
||||
fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__);
|
||||
return nullptr;
|
||||
@ -2533,20 +2510,6 @@ struct whisper_state * whisper_init_state(whisper_context * ctx) {
|
||||
fprintf(stderr, "%s: kv cross size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
|
||||
}
|
||||
|
||||
#ifdef WHISPER_USE_COREML
|
||||
const auto path_coreml = whisper_get_coreml_path(ctx->path_model);
|
||||
|
||||
fprintf(stderr, "%s: loading Core ML model from '%s'\n", __func__, path_coreml.c_str());
|
||||
fprintf(stderr, "%s: first run on a device may take a while ...\n", __func__);
|
||||
|
||||
state->ctx_coreml = whisper_coreml_init(path_coreml.c_str());
|
||||
if (!state->ctx_coreml) {
|
||||
fprintf(stderr, "%s: failed to load Core ML model from '%s'\n", __func__, path_coreml.c_str());
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: Core ML model loaded\n", __func__);
|
||||
#endif
|
||||
|
||||
state->logits.reserve(ctx->vocab.n_vocab * ctx->model.hparams.n_text_ctx);
|
||||
|
||||
@ -2582,7 +2545,6 @@ struct whisper_context * whisper_init_from_file_no_state(const char * path_model
|
||||
}
|
||||
|
||||
loader.context = &fin;
|
||||
|
||||
loader.read = [](void * ctx, void * output, size_t read_size) {
|
||||
std::ifstream * fin = (std::ifstream*)ctx;
|
||||
fin->read((char *)output, read_size);
|
||||
@ -2599,13 +2561,7 @@ struct whisper_context * whisper_init_from_file_no_state(const char * path_model
|
||||
fin->close();
|
||||
};
|
||||
|
||||
auto ctx = whisper_init_no_state(&loader);
|
||||
|
||||
if (ctx) {
|
||||
ctx->path_model = path_model;
|
||||
}
|
||||
|
||||
return ctx;
|
||||
return whisper_init_no_state(&loader);
|
||||
}
|
||||
|
||||
struct whisper_context * whisper_init_from_buffer_no_state(void * buffer, size_t buffer_size) {
|
||||
@ -2730,10 +2686,6 @@ void whisper_free(struct whisper_context * ctx) {
|
||||
|
||||
whisper_free_state(ctx->state);
|
||||
|
||||
#ifdef WHISPER_USE_COREML
|
||||
whisper_coreml_free(ctx->state->ctx_coreml);
|
||||
ctx->state->ctx_coreml = nullptr;
|
||||
#endif
|
||||
delete ctx;
|
||||
}
|
||||
}
|
||||
@ -2910,7 +2862,7 @@ int whisper_lang_auto_detect_with_state(
|
||||
}
|
||||
|
||||
// run the encoder
|
||||
if (whisper_encode_with_state(ctx, state, seek, n_threads) != 0) {
|
||||
if (whisper_encode(ctx, seek, n_threads) != 0) {
|
||||
fprintf(stderr, "%s: failed to encode\n", __func__);
|
||||
return -6;
|
||||
}
|
||||
@ -2974,71 +2926,6 @@ int whisper_lang_auto_detect(
|
||||
return whisper_lang_auto_detect_with_state(ctx, ctx->state, offset_ms, n_threads, lang_probs);
|
||||
}
|
||||
|
||||
int whisper_model_n_vocab(struct whisper_context * ctx) {
|
||||
return ctx->model.hparams.n_vocab;
|
||||
}
|
||||
|
||||
int whisper_model_n_audio_ctx(struct whisper_context * ctx) {
|
||||
return ctx->model.hparams.n_audio_ctx;
|
||||
}
|
||||
|
||||
int whisper_model_n_audio_state(struct whisper_context * ctx) {
|
||||
return ctx->model.hparams.n_audio_state;
|
||||
}
|
||||
|
||||
int whisper_model_n_audio_head(struct whisper_context * ctx) {
|
||||
return ctx->model.hparams.n_audio_head;
|
||||
}
|
||||
|
||||
int whisper_model_n_audio_layer(struct whisper_context * ctx) {
|
||||
return ctx->model.hparams.n_audio_layer;
|
||||
}
|
||||
|
||||
int whisper_model_n_text_ctx(struct whisper_context * ctx) {
|
||||
return ctx->model.hparams.n_text_ctx;
|
||||
}
|
||||
|
||||
int whisper_model_n_text_state(struct whisper_context * ctx) {
|
||||
return ctx->model.hparams.n_text_state;
|
||||
}
|
||||
|
||||
int whisper_model_n_text_head(struct whisper_context * ctx) {
|
||||
return ctx->model.hparams.n_text_head;
|
||||
}
|
||||
|
||||
int whisper_model_n_text_layer(struct whisper_context * ctx) {
|
||||
return ctx->model.hparams.n_text_layer;
|
||||
}
|
||||
|
||||
int whisper_model_n_mels(struct whisper_context * ctx) {
|
||||
return ctx->model.hparams.n_mels;
|
||||
}
|
||||
|
||||
int whisper_model_f16(struct whisper_context * ctx) {
|
||||
return ctx->model.hparams.f16;
|
||||
}
|
||||
|
||||
int whisper_model_type(struct whisper_context * ctx) {
|
||||
return ctx->model.type;
|
||||
}
|
||||
|
||||
const char *whisper_model_type_readable(struct whisper_context * ctx) {
|
||||
switch (ctx->model.type) {
|
||||
case e_model::MODEL_TINY:
|
||||
return "tiny";
|
||||
case e_model::MODEL_BASE:
|
||||
return "base";
|
||||
case e_model::MODEL_SMALL:
|
||||
return "small";
|
||||
case e_model::MODEL_MEDIUM:
|
||||
return "medium";
|
||||
case e_model::MODEL_LARGE:
|
||||
return "large";
|
||||
default:
|
||||
return "unknown";
|
||||
}
|
||||
}
|
||||
|
||||
int whisper_n_len_from_state(struct whisper_state * state) {
|
||||
return state->mel.n_len;
|
||||
}
|
||||
@ -3201,7 +3088,7 @@ struct whisper_full_params whisper_full_default_params(enum whisper_sampling_str
|
||||
/*.max_initial_ts =*/ 1.0f,
|
||||
/*.length_penalty =*/ -1.0f,
|
||||
|
||||
/*.temperature_inc =*/ 0.0f, // TODO: temporary disabled until improve performance
|
||||
/*.temperature_inc =*/ 0.2f,
|
||||
/*.entropy_thold =*/ 2.4f,
|
||||
/*.logprob_thold =*/ -1.0f,
|
||||
/*.no_speech_thold =*/ 0.6f,
|
||||
|
15
whisper.h
15
whisper.h
@ -248,19 +248,6 @@ extern "C" {
|
||||
WHISPER_API int whisper_n_audio_ctx (struct whisper_context * ctx);
|
||||
WHISPER_API int whisper_is_multilingual (struct whisper_context * ctx);
|
||||
|
||||
WHISPER_API int whisper_model_n_vocab (struct whisper_context * ctx);
|
||||
WHISPER_API int whisper_model_n_audio_ctx (struct whisper_context * ctx);
|
||||
WHISPER_API int whisper_model_n_audio_state(struct whisper_context * ctx);
|
||||
WHISPER_API int whisper_model_n_audio_head (struct whisper_context * ctx);
|
||||
WHISPER_API int whisper_model_n_audio_layer(struct whisper_context * ctx);
|
||||
WHISPER_API int whisper_model_n_text_ctx (struct whisper_context * ctx);
|
||||
WHISPER_API int whisper_model_n_text_state (struct whisper_context * ctx);
|
||||
WHISPER_API int whisper_model_n_text_head (struct whisper_context * ctx);
|
||||
WHISPER_API int whisper_model_n_text_layer (struct whisper_context * ctx);
|
||||
WHISPER_API int whisper_model_n_mels (struct whisper_context * ctx);
|
||||
WHISPER_API int whisper_model_f16 (struct whisper_context * ctx);
|
||||
WHISPER_API int whisper_model_type (struct whisper_context * ctx);
|
||||
|
||||
// Token logits obtained from the last call to whisper_decode()
|
||||
// The logits for the last token are stored in the last row
|
||||
// Rows: n_tokens
|
||||
@ -270,8 +257,6 @@ extern "C" {
|
||||
|
||||
// Token Id -> String. Uses the vocabulary in the provided context
|
||||
WHISPER_API const char * whisper_token_to_str(struct whisper_context * ctx, whisper_token token);
|
||||
WHISPER_API const char * whisper_model_type_readable(struct whisper_context * ctx);
|
||||
|
||||
|
||||
// Special tokens
|
||||
WHISPER_API whisper_token whisper_token_eot (struct whisper_context * ctx);
|
||||
|
Reference in New Issue
Block a user