mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-07-01 15:00:31 +02:00
Compare commits
56 Commits
java-bindi
...
distil-sup
Author | SHA1 | Date | |
---|---|---|---|
673c55c683 | |||
b8c93c5f3b | |||
8a2bee6717 | |||
d445098c8f | |||
74de25158e | |||
bce49a260e | |||
45c87b5481 | |||
dfe4bc6e59 | |||
54c978c3a3 | |||
9a7074d4aa | |||
a0040f5d12 | |||
940cdb1396 | |||
1b775cdd68 | |||
80bf931668 | |||
91c0b23384 | |||
2f668c330e | |||
08fa34882f | |||
4037705531 | |||
c76c11e59c | |||
9edbd0a204 | |||
707507ff6d | |||
7e1592d2cd | |||
903c9579b8 | |||
b440ef8c96 | |||
700f63a806 | |||
951a119926 | |||
1ca4041b86 | |||
80c1512fd5 | |||
0ac9cefd03 | |||
b8432f28f4 | |||
93935980f8 | |||
3fec2119e6 | |||
9b14418863 | |||
6ddc727fac | |||
acb5278cc8 | |||
0839209cab | |||
b39809668a | |||
3e9edc6845 | |||
bfc73f1fa2 | |||
f00c9bba33 | |||
b55b505690 | |||
2818de21ff | |||
aed5d40607 | |||
afa5477d1c | |||
01fcd42431 | |||
f990610776 | |||
64cb45fd79 | |||
ace6c12ec6 | |||
cac75be05b | |||
c3f319d7c2 | |||
ba3c333611 | |||
59a3d0cb57 | |||
6780c98e19 | |||
2f52783a08 | |||
7dec9d8cc4 | |||
fb0a24fba2 |
28
.devops/cublas.Dockerfile
Normal file
28
.devops/cublas.Dockerfile
Normal file
@ -0,0 +1,28 @@
|
||||
ARG UBUNTU_VERSION=22.04
|
||||
|
||||
# This needs to generally match the container host's environment.
|
||||
ARG CUDA_VERSION=11.7.1
|
||||
|
||||
# Target the CUDA build image
|
||||
ARG BASE_CUDA_DEV_CONTAINER=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
|
||||
|
||||
FROM ${BASE_CUDA_DEV_CONTAINER} as build
|
||||
|
||||
# Unless otherwise specified, we make a fat build.
|
||||
ARG CUDA_DOCKER_ARCH=all
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential git cmake
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
COPY . .
|
||||
|
||||
# Set nvcc architecture
|
||||
ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
|
||||
# Enable cuBLAS
|
||||
ENV WHISPER_CUBLAS=1
|
||||
|
||||
RUN make
|
||||
|
||||
ENTRYPOINT ["/app/main"]
|
9
.github/workflows/build.yml
vendored
9
.github/workflows/build.yml
vendored
@ -428,12 +428,15 @@ jobs:
|
||||
|
||||
- name: Publish package
|
||||
if: ${{ github.ref == 'refs/heads/master' }}
|
||||
uses: gradle/gradle-build-action@v2
|
||||
uses: gradle/gradle-build-action@v2.4.2
|
||||
with:
|
||||
arguments: publish
|
||||
build-root-directory: bindings/java
|
||||
env:
|
||||
MAVEN_USERNAME: ${{ secrets.OSSRH_USERNAME }}
|
||||
MAVEN_PASSWORD: ${{ secrets.OSSRH_TOKEN }}
|
||||
MAVEN_USERNAME: ${{ secrets.JIRA_USER }}
|
||||
MAVEN_PASSWORD: ${{ secrets.JIRA_PASS }}
|
||||
PGP_SECRET: ${{ secrets.GPG_PRIVATE_KEY }}
|
||||
PGP_PASSPHRASE: ${{ secrets.GPG_PASSPHRASE }}
|
||||
|
||||
quantize:
|
||||
runs-on: ubuntu-latest
|
||||
|
3
.gitignore
vendored
3
.gitignore
vendored
@ -11,6 +11,7 @@ build/
|
||||
build-em/
|
||||
build-debug/
|
||||
build-release/
|
||||
build-rwdi/
|
||||
build-static/
|
||||
build-cublas/
|
||||
build-no-accel/
|
||||
@ -45,3 +46,5 @@ models/*.mlpackage
|
||||
bindings/java/.gradle/
|
||||
bindings/java/.idea/
|
||||
.idea/
|
||||
|
||||
benchmark_results.csv
|
||||
|
129
CMakeLists.txt
129
CMakeLists.txt
@ -1,4 +1,4 @@
|
||||
cmake_minimum_required (VERSION 3.0)
|
||||
cmake_minimum_required (VERSION 3.5)
|
||||
|
||||
project(whisper.cpp VERSION 1.4.2)
|
||||
|
||||
@ -35,6 +35,12 @@ endif()
|
||||
|
||||
# options
|
||||
|
||||
if (APPLE)
|
||||
set(WHISPER_METAL_DEFAULT ON)
|
||||
else()
|
||||
set(WHISPER_METAL_DEFAULT OFF)
|
||||
endif()
|
||||
|
||||
option(BUILD_SHARED_LIBS "whisper: build shared libs" ${BUILD_SHARED_LIBS_DEFAULT})
|
||||
|
||||
option(WHISPER_ALL_WARNINGS "whisper: enable all compiler warnings" ON)
|
||||
@ -58,6 +64,8 @@ option(WHISPER_OPENVINO "whisper: support for OpenVINO" OFF)
|
||||
|
||||
if (APPLE)
|
||||
option(WHISPER_NO_ACCELERATE "whisper: disable Accelerate framework" OFF)
|
||||
option(WHISPER_METAL "whisper: use Metal" ${WHISPER_METAL_DEFAULT})
|
||||
option(WHISPER_METAL_NDEBUG "whisper: disable Metal debugging" OFF)
|
||||
option(WHISPER_COREML "whisper: enable Core ML framework" OFF)
|
||||
option(WHISPER_COREML_ALLOW_FALLBACK "whisper: allow non-CoreML fallback" OFF)
|
||||
else()
|
||||
@ -109,10 +117,38 @@ if (APPLE)
|
||||
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ${ACCELERATE_FRAMEWORK})
|
||||
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_ACCELERATE)
|
||||
else()
|
||||
message(WARNING "Accelerate framework not found")
|
||||
message(FATAL_ERROR "Accelerate framework not found")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (WHISPER_METAL)
|
||||
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
|
||||
find_library(METAL_FRAMEWORK Metal REQUIRED)
|
||||
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
|
||||
|
||||
if (METAL_FRAMEWORK)
|
||||
message(STATUS "Metal framework found")
|
||||
|
||||
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS}
|
||||
${FOUNDATION_LIBRARY}
|
||||
${METAL_FRAMEWORK}
|
||||
${METALKIT_FRAMEWORK}
|
||||
)
|
||||
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_METAL)
|
||||
|
||||
if (WHISPER_METAL_NDEBUG)
|
||||
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_METAL_NDEBUG)
|
||||
endif()
|
||||
else()
|
||||
message(FATAL_ERROR "Metal framework not found")
|
||||
endif()
|
||||
|
||||
set(GGML_SOURCES_METAL ggml-metal.m ggml-metal.h)
|
||||
|
||||
# copy ggml-metal.metal to bin directory
|
||||
configure_file(ggml-metal.metal bin/ggml-metal.metal COPYONLY)
|
||||
endif()
|
||||
|
||||
if (WHISPER_COREML)
|
||||
find_library(FOUNDATION_FRAMEWORK Foundation)
|
||||
find_library(COREML_FRAMEWORK CoreML)
|
||||
@ -122,7 +158,7 @@ if (APPLE)
|
||||
|
||||
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DWHISPER_USE_COREML)
|
||||
else()
|
||||
message(WARNING "CoreML framework not found")
|
||||
message(FATAL_ERROR "CoreML framework not found")
|
||||
endif()
|
||||
|
||||
if (WHISPER_COREML_ALLOW_FALLBACK)
|
||||
@ -145,13 +181,13 @@ if (WHISPER_BLAS)
|
||||
include_directories($ENV{OPENBLAS_PATH}/include)
|
||||
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ${BLAS_LIBRARIES})
|
||||
else ()
|
||||
message(WARNING "BLAS library was not found. Environment variable OPENBLAS_PATH not defined.")
|
||||
message(FATAL_ERROR "BLAS library was not found. Environment variable OPENBLAS_PATH not defined.")
|
||||
endif ()
|
||||
else ()
|
||||
set(BLA_STATIC 1)
|
||||
set(BLA_VENDOR ${WHISPER_BLAS_VENDOR})
|
||||
# set(BLA_PREFER_PKGCONFIG 1)
|
||||
set(BLA_SIZEOF_INTEGER 8)
|
||||
set(BLA_PREFER_PKGCONFIG 1)
|
||||
find_package(BLAS)
|
||||
|
||||
if(BLAS_FOUND)
|
||||
@ -162,7 +198,7 @@ if (WHISPER_BLAS)
|
||||
include_directories(${BLAS_INCLUDE_DIRS})
|
||||
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ${BLAS_LIBRARIES})
|
||||
else()
|
||||
message(WARNING "BLAS library was not found")
|
||||
message(FATAL_ERROR "BLAS library was not found")
|
||||
endif()
|
||||
endif ()
|
||||
endif ()
|
||||
@ -177,7 +213,7 @@ if (WHISPER_CUBLAS)
|
||||
|
||||
enable_language(CUDA)
|
||||
|
||||
set(GGML_CUDA_SOURCES ggml-cuda.cu ggml-cuda.h)
|
||||
set(GGML_SOURCES_CUDA ggml-cuda.cu ggml-cuda.h)
|
||||
|
||||
add_compile_definitions(GGML_USE_CUBLAS)
|
||||
|
||||
@ -188,7 +224,7 @@ if (WHISPER_CUBLAS)
|
||||
endif()
|
||||
|
||||
else()
|
||||
message(WARNING "cuBLAS not found")
|
||||
message(FATAL_ERROR "cuBLAS not found")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
@ -219,7 +255,7 @@ if (WHISPER_HIPBLAS)
|
||||
endif()
|
||||
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ggml-rocm)
|
||||
else()
|
||||
message(WARNING "hipBLAS or HIP not found. Try setting CMAKE_PREFIX_PATH=/opt/rocm")
|
||||
message(FATAL_ERROR "hipBLAS or HIP not found. Try setting CMAKE_PREFIX_PATH=/opt/rocm")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
@ -228,13 +264,13 @@ if (WHISPER_CLBLAST)
|
||||
if (CLBlast_FOUND)
|
||||
message(STATUS "CLBlast found")
|
||||
|
||||
set(GGML_OPENCL_SOURCES ggml-opencl.cpp ggml-opencl.h)
|
||||
set(GGML_SOURCES_OPENCL ggml-opencl.cpp ggml-opencl.h)
|
||||
|
||||
add_compile_definitions(GGML_USE_CLBLAST)
|
||||
|
||||
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} clblast)
|
||||
else()
|
||||
message(WARNING "CLBlast not found")
|
||||
message(FATAL_ERROR "CLBlast not found")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
@ -321,6 +357,53 @@ else()
|
||||
endif()
|
||||
endif()
|
||||
|
||||
#
|
||||
# POSIX conformance
|
||||
#
|
||||
|
||||
# clock_gettime came in POSIX.1b (1993)
|
||||
# CLOCK_MONOTONIC came in POSIX.1-2001 / SUSv3 as optional
|
||||
# posix_memalign came in POSIX.1-2001 / SUSv3
|
||||
# M_PI is an XSI extension since POSIX.1-2001 / SUSv3, came in XPG1 (1985)
|
||||
add_compile_definitions(_XOPEN_SOURCE=600)
|
||||
|
||||
# Somehow in OpenBSD whenever POSIX conformance is specified
|
||||
# some string functions rely on locale_t availability,
|
||||
# which was introduced in POSIX.1-2008, forcing us to go higher
|
||||
if (CMAKE_SYSTEM_NAME MATCHES "OpenBSD")
|
||||
remove_definitions(-D_XOPEN_SOURCE=600)
|
||||
add_compile_definitions(_XOPEN_SOURCE=700)
|
||||
endif()
|
||||
|
||||
# Data types, macros and functions related to controlling CPU affinity
|
||||
# are available on Linux through GNU extensions in libc
|
||||
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
|
||||
add_compile_definitions(_GNU_SOURCE)
|
||||
endif()
|
||||
|
||||
# RLIMIT_MEMLOCK came in BSD, is not specified in POSIX.1,
|
||||
# and on macOS its availability depends on enabling Darwin extensions
|
||||
# similarly on DragonFly, enabling BSD extensions is necessary
|
||||
if (CMAKE_SYSTEM_NAME MATCHES "Darwin")
|
||||
add_compile_definitions(_DARWIN_C_SOURCE)
|
||||
endif()
|
||||
if (CMAKE_SYSTEM_NAME MATCHES "DragonFly")
|
||||
add_compile_definitions(_DARWIN_C_SOURCE)
|
||||
endif()
|
||||
|
||||
# alloca is a non-standard interface that is not visible on BSDs when
|
||||
# POSIX conformance is specified, but not all of them provide a clean way
|
||||
# to enable it in such cases
|
||||
if (CMAKE_SYSTEM_NAME MATCHES "FreeBSD")
|
||||
add_compile_definitions(__BSD_VISIBLE)
|
||||
endif()
|
||||
if (CMAKE_SYSTEM_NAME MATCHES "NetBSD")
|
||||
add_compile_definitions(_NETBSD_SOURCE)
|
||||
endif()
|
||||
if (CMAKE_SYSTEM_NAME MATCHES "OpenBSD")
|
||||
add_compile_definitions(_BSD_SOURCE)
|
||||
endif()
|
||||
|
||||
if (WHISPER_PERF)
|
||||
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_PERF)
|
||||
endif()
|
||||
@ -379,8 +462,11 @@ set(TARGET whisper)
|
||||
add_library(${TARGET}
|
||||
ggml.h
|
||||
ggml.c
|
||||
${GGML_CUDA_SOURCES}
|
||||
${GGML_OPENCL_SOURCES}
|
||||
ggml-alloc.h
|
||||
ggml-alloc.c
|
||||
${GGML_SOURCES_METAL}
|
||||
${GGML_SOURCES_CUDA}
|
||||
${GGML_SOURCES_OPENCL}
|
||||
whisper.h
|
||||
whisper.cpp
|
||||
)
|
||||
@ -421,9 +507,15 @@ if (BUILD_SHARED_LIBS)
|
||||
WHISPER_BUILD
|
||||
GGML_BUILD
|
||||
)
|
||||
|
||||
if (WHISPER_METAL)
|
||||
# TODO: I think this should make ggml-metal.m "see" the ggml-metal.metal file from the "bin" directory
|
||||
# but for some reason it does not work here like it does in llama.cpp
|
||||
set_target_properties(${TARGET} PROPERTIES RESOURCE "${CMAKE_CURRENT_SOURCE_DIR}/ggml-metal.metal")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_SOURCES)
|
||||
if (GGML_SOURCES_CUDA)
|
||||
message(STATUS "GGML CUDA sources found, configuring CUDA architecture")
|
||||
set_property(TARGET whisper PROPERTY CUDA_ARCHITECTURES OFF)
|
||||
set_property(TARGET whisper PROPERTY CUDA_SELECT_NVCC_ARCH_FLAGS "Auto")
|
||||
@ -439,10 +531,13 @@ target_compile_definitions(${TARGET} PUBLIC
|
||||
|
||||
set_target_properties(${TARGET} PROPERTIES PUBLIC_HEADER "whisper.h")
|
||||
|
||||
include(GNUInstallDirs)
|
||||
|
||||
install(TARGETS ${TARGET}
|
||||
LIBRARY DESTINATION lib
|
||||
ARCHIVE DESTINATION lib/static
|
||||
RUNTIME DESTINATION bin
|
||||
LIBRARY DESTINATION lib
|
||||
ARCHIVE DESTINATION lib/static
|
||||
RUNTIME DESTINATION bin
|
||||
RESOURCE DESTINATION bin
|
||||
PUBLIC_HEADER DESTINATION include
|
||||
)
|
||||
|
||||
|
131
Makefile
131
Makefile
@ -18,7 +18,7 @@ ifndef NVCC_VERSION
|
||||
endif
|
||||
endif
|
||||
|
||||
CCV := $(shell $(CC) --version | head -n 1)
|
||||
CCV := $(shell $(CC) --version | head -n 1)
|
||||
CXXV := $(shell $(CXX) --version | head -n 1)
|
||||
|
||||
# Mac OS + Arm can report x86_64
|
||||
@ -42,18 +42,55 @@ CFLAGS = -I. -O3 -DNDEBUG -std=c11 -fPIC
|
||||
CXXFLAGS = -I. -I./examples -O3 -DNDEBUG -std=c++11 -fPIC
|
||||
LDFLAGS =
|
||||
|
||||
# ref: https://github.com/ggerganov/whisper.cpp/issues/37
|
||||
ifneq ($(wildcard /usr/include/musl/*),)
|
||||
CFLAGS += -D_POSIX_SOURCE -D_GNU_SOURCE
|
||||
CXXFLAGS += -D_POSIX_SOURCE -D_GNU_SOURCE
|
||||
# clock_gettime came in POSIX.1b (1993)
|
||||
# CLOCK_MONOTONIC came in POSIX.1-2001 / SUSv3 as optional
|
||||
# posix_memalign came in POSIX.1-2001 / SUSv3
|
||||
# M_PI is an XSI extension since POSIX.1-2001 / SUSv3, came in XPG1 (1985)
|
||||
CFLAGS += -D_XOPEN_SOURCE=600
|
||||
CXXFLAGS += -D_XOPEN_SOURCE=600
|
||||
|
||||
# Somehow in OpenBSD whenever POSIX conformance is specified
|
||||
# some string functions rely on locale_t availability,
|
||||
# which was introduced in POSIX.1-2008, forcing us to go higher
|
||||
ifeq ($(UNAME_S),OpenBSD)
|
||||
CFLAGS += -U_XOPEN_SOURCE -D_XOPEN_SOURCE=700
|
||||
CXXFLAGS += -U_XOPEN_SOURCE -D_XOPEN_SOURCE=700
|
||||
endif
|
||||
|
||||
# Data types, macros and functions related to controlling CPU affinity
|
||||
# are available on Linux through GNU extensions in libc
|
||||
ifeq ($(UNAME_S),Linux)
|
||||
CFLAGS += -D_GNU_SOURCE
|
||||
CXXFLAGS += -D_GNU_SOURCE
|
||||
endif
|
||||
|
||||
# RLIMIT_MEMLOCK came in BSD, is not specified in POSIX.1,
|
||||
# and on macOS its availability depends on enabling Darwin extensions
|
||||
# similarly on DragonFly, enabling BSD extensions is necessary
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
CFLAGS += -D_DARWIN_C_SOURCE
|
||||
CXXFLAGS += -D_DARWIN_C_SOURCE
|
||||
endif
|
||||
ifeq ($(UNAME_S),DragonFly)
|
||||
CFLAGS += -D__BSD_VISIBLE
|
||||
CXXFLAGS += -D__BSD_VISIBLE
|
||||
endif
|
||||
|
||||
# alloca is a non-standard interface that is not visible on BSDs when
|
||||
# POSIX conformance is specified, but not all of them provide a clean way
|
||||
# to enable it in such cases
|
||||
ifeq ($(UNAME_S),FreeBSD)
|
||||
CFLAGS += -D__BSD_VISIBLE
|
||||
CXXFLAGS += -D__BSD_VISIBLE
|
||||
endif
|
||||
ifeq ($(UNAME_S),NetBSD)
|
||||
CFLAGS += -D_NETBSD_SOURCE
|
||||
CXXFLAGS += -D_NETBSD_SOURCE
|
||||
endif
|
||||
ifeq ($(UNAME_S),OpenBSD)
|
||||
CFLAGS += -D_BSD_SOURCE
|
||||
CXXFLAGS += -D_BSD_SOURCE
|
||||
endif
|
||||
|
||||
# OS specific
|
||||
# TODO: support Windows
|
||||
@ -65,57 +102,57 @@ endif
|
||||
# Architecture specific
|
||||
# TODO: probably these flags need to be tweaked on some architectures
|
||||
# feel free to update the Makefile for your architecture and send a pull request or issue
|
||||
ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686))
|
||||
ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686 amd64))
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
CPUINFO_CMD := sysctl machdep.cpu.features
|
||||
CPUINFO_CMD := sysctl machdep.cpu.features machdep.cpu.leaf7_features
|
||||
else ifeq ($(UNAME_S),Linux)
|
||||
CPUINFO_CMD := cat /proc/cpuinfo
|
||||
else ifneq (,$(filter MINGW32_NT% MINGW64_NT%,$(UNAME_S)))
|
||||
CPUINFO_CMD := cat /proc/cpuinfo
|
||||
else ifneq (,$(filter DragonFly FreeBSD,$(UNAME_S)))
|
||||
CPUINFO_CMD := grep Features /var/run/dmesg.boot
|
||||
else ifeq ($(UNAME_S),Haiku)
|
||||
CPUINFO_CMD := sysinfo -cpu
|
||||
endif
|
||||
|
||||
ifdef CPUINFO_CMD
|
||||
AVX_M := $(shell $(CPUINFO_CMD) | grep -m 1 "avx ")
|
||||
ifneq (,$(findstring avx,$(AVX_M)))
|
||||
CFLAGS += -mavx
|
||||
endif
|
||||
|
||||
AVX2_M := $(shell $(CPUINFO_CMD) | grep -m 1 "avx2 ")
|
||||
ifneq (,$(findstring avx2,$(AVX2_M)))
|
||||
CFLAGS += -mavx2
|
||||
ifdef CPUINFO_CMD
|
||||
AVX_M := $(shell $(CPUINFO_CMD) | grep -iwE 'AVX|AVX1.0')
|
||||
ifneq (,$(AVX_M))
|
||||
CFLAGS += -mavx
|
||||
CXXFLAGS += -mavx
|
||||
endif
|
||||
|
||||
FMA_M := $(shell $(CPUINFO_CMD) | grep -m 1 "fma ")
|
||||
ifneq (,$(findstring fma,$(FMA_M)))
|
||||
CFLAGS += -mfma
|
||||
AVX2_M := $(shell $(CPUINFO_CMD) | grep -iw 'AVX2')
|
||||
ifneq (,$(AVX2_M))
|
||||
CFLAGS += -mavx2
|
||||
CXXFLAGS += -mavx2
|
||||
endif
|
||||
|
||||
F16C_M := $(shell $(CPUINFO_CMD) | grep -m 1 "f16c ")
|
||||
ifneq (,$(findstring f16c,$(F16C_M)))
|
||||
CFLAGS += -mf16c
|
||||
|
||||
AVX1_M := $(shell $(CPUINFO_CMD) | grep -m 1 "avx ")
|
||||
ifneq (,$(findstring avx,$(AVX1_M)))
|
||||
CFLAGS += -mavx
|
||||
endif
|
||||
FMA_M := $(shell $(CPUINFO_CMD) | grep -iw 'FMA')
|
||||
ifneq (,$(FMA_M))
|
||||
CFLAGS += -mfma
|
||||
CXXFLAGS += -mfma
|
||||
endif
|
||||
|
||||
SSE3_M := $(shell $(CPUINFO_CMD) | grep -m 1 "sse3 ")
|
||||
ifneq (,$(findstring sse3,$(SSE3_M)))
|
||||
CFLAGS += -msse3
|
||||
F16C_M := $(shell $(CPUINFO_CMD) | grep -iw 'F16C')
|
||||
ifneq (,$(F16C_M))
|
||||
CFLAGS += -mf16c
|
||||
CXXFLAGS += -mf16c
|
||||
endif
|
||||
|
||||
SSSE3_M := $(shell $(CPUINFO_CMD) | grep -m 1 "ssse3 ")
|
||||
ifneq (,$(findstring ssse3,$(SSSE3_M)))
|
||||
CFLAGS += -mssse3
|
||||
SSE3_M := $(shell $(CPUINFO_CMD) | grep -iwE 'PNI|SSE3')
|
||||
ifneq (,$(SSE3_M))
|
||||
CFLAGS += -msse3
|
||||
CXXFLAGS += -msse3
|
||||
endif
|
||||
|
||||
SSSE3_M := $(shell $(CPUINFO_CMD) | grep -iw 'SSSE3')
|
||||
ifneq (,$(SSSE3_M))
|
||||
CFLAGS += -mssse3
|
||||
CXXFLAGS += -mssse3
|
||||
endif
|
||||
endif
|
||||
endif
|
||||
ifeq ($(UNAME_M),amd64)
|
||||
CFLAGS += -mavx -mavx2 -mfma -mf16c
|
||||
endif
|
||||
|
||||
ifneq ($(filter ppc64%,$(UNAME_M)),)
|
||||
POWER9_M := $(shell grep "POWER9" /proc/cpuinfo)
|
||||
@ -145,6 +182,16 @@ ifdef WHISPER_COREML_ALLOW_FALLBACK
|
||||
endif
|
||||
endif
|
||||
|
||||
ifndef WHISPER_NO_METAL
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
WHISPER_METAL := 1
|
||||
|
||||
CFLAGS += -DGGML_USE_METAL
|
||||
CXXFLAGS += -DGGML_USE_METAL
|
||||
LDFLAGS += -framework Foundation -framework Metal -framework MetalKit
|
||||
endif
|
||||
endif
|
||||
|
||||
ifdef WHISPER_OPENBLAS
|
||||
CFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/openblas -I/usr/include/openblas
|
||||
LDFLAGS += -lopenblas
|
||||
@ -251,6 +298,11 @@ $(info )
|
||||
ggml.o: ggml.c ggml.h ggml-cuda.h
|
||||
$(CC) $(CFLAGS) -c $< -o $@
|
||||
|
||||
ggml-alloc.o: ggml-alloc.c ggml.h ggml-alloc.h
|
||||
$(CC) $(CFLAGS) -c $< -o $@
|
||||
|
||||
WHISPER_OBJ += ggml-alloc.o
|
||||
|
||||
whisper.o: whisper.cpp whisper.h ggml.h ggml-cuda.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
@ -266,6 +318,13 @@ whisper-encoder-impl.o: coreml/whisper-encoder-impl.m coreml/whisper-encoder-imp
|
||||
WHISPER_OBJ += whisper.o whisper-encoder.o whisper-encoder-impl.o
|
||||
endif
|
||||
|
||||
ifdef WHISPER_METAL
|
||||
ggml-metal.o: ggml-metal.m ggml-metal.h
|
||||
$(CC) $(CFLAGS) -c $< -o $@
|
||||
|
||||
WHISPER_OBJ += ggml-metal.o
|
||||
endif
|
||||
|
||||
libwhisper.a: ggml.o $(WHISPER_OBJ)
|
||||
$(AR) rcs libwhisper.a ggml.o $(WHISPER_OBJ)
|
||||
|
||||
|
54
README.md
54
README.md
@ -11,14 +11,14 @@ Beta: [v1.4.2](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.4.2) / S
|
||||
High-performance inference of [OpenAI's Whisper](https://github.com/openai/whisper) automatic speech recognition (ASR) model:
|
||||
|
||||
- Plain C/C++ implementation without dependencies
|
||||
- Apple silicon first-class citizen - optimized via ARM NEON, Accelerate framework and [Core ML](https://github.com/ggerganov/whisper.cpp#core-ml-support)
|
||||
- Apple Silicon first-class citizen - optimized via ARM NEON, Accelerate framework, Metal and [Core ML](https://github.com/ggerganov/whisper.cpp#core-ml-support)
|
||||
- AVX intrinsics support for x86 architectures
|
||||
- VSX intrinsics support for POWER architectures
|
||||
- Mixed F16 / F32 precision
|
||||
- [4-bit and 5-bit integer quantization support](https://github.com/ggerganov/whisper.cpp#quantization)
|
||||
- Low memory usage (Flash Attention)
|
||||
- Zero memory allocations at runtime
|
||||
- Runs on the CPU
|
||||
- Support for CPU-only inference
|
||||
- [Partial GPU support for NVIDIA via cuBLAS](https://github.com/ggerganov/whisper.cpp#nvidia-gpu-support-via-cublas)
|
||||
- [Partial OpenCL GPU support via CLBlast](https://github.com/ggerganov/whisper.cpp#opencl-gpu-support-via-clblast)
|
||||
- [BLAS CPU support via OpenBLAS](https://github.com/ggerganov/whisper.cpp#blas-cpu-support-via-openblas)
|
||||
@ -50,6 +50,10 @@ You can also easily make your own offline voice assistant application: [command]
|
||||
|
||||
https://user-images.githubusercontent.com/1991296/204038393-2f846eae-c255-4099-a76d-5735c25c49da.mp4
|
||||
|
||||
On Apple Silicon, the inference runs fully on the GPU via Metal:
|
||||
|
||||
https://github.com/ggerganov/whisper.cpp/assets/1991296/c82e8f86-60dc-49f2-b048-d2fdbd6b5225
|
||||
|
||||
Or you can even run it straight in the browser: [talk.wasm](examples/talk.wasm)
|
||||
|
||||
## Implementation details
|
||||
@ -109,30 +113,37 @@ options:
|
||||
-d N, --duration N [0 ] duration of audio to process in milliseconds
|
||||
-mc N, --max-context N [-1 ] maximum number of text context tokens to store
|
||||
-ml N, --max-len N [0 ] maximum segment length in characters
|
||||
-bo N, --best-of N [5 ] number of best candidates to keep
|
||||
-sow, --split-on-word [false ] split on word rather than on token
|
||||
-bo N, --best-of N [2 ] number of best candidates to keep
|
||||
-bs N, --beam-size N [-1 ] beam size for beam search
|
||||
-wt N, --word-thold N [0.01 ] word timestamp probability threshold
|
||||
-et N, --entropy-thold N [2.40 ] entropy threshold for decoder fail
|
||||
-lpt N, --logprob-thold N [-1.00 ] log probability threshold for decoder fail
|
||||
-su, --speed-up [false ] speed up audio by x2 (reduced accuracy)
|
||||
-debug, --debug-mode [false ] enable debug mode (eg. dump log_mel)
|
||||
-tr, --translate [false ] translate from source language to english
|
||||
-tdrz, --tinydiarize [false ] enable tinydiarize (requires a tdrz model)
|
||||
-di, --diarize [false ] stereo audio diarization
|
||||
-tdrz, --tinydiarize [false ] enable tinydiarize (requires a tdrz model)
|
||||
-nf, --no-fallback [false ] do not use temperature fallback while decoding
|
||||
-otxt, --output-txt [false ] output result in a text file
|
||||
-ovtt, --output-vtt [false ] output result in a vtt file
|
||||
-osrt, --output-srt [false ] output result in a srt file
|
||||
-olrc, --output-lrc [false ] output result in a lrc file
|
||||
-owts, --output-words [false ] output script for generating karaoke video
|
||||
-fp, --font-path [/System/Library/Fonts/Supplemental/Courier New Bold.ttf] path to a monospace font for karaoke video
|
||||
-ocsv, --output-csv [false ] output result in a CSV file
|
||||
-oj, --output-json [false ] output result in a JSON file
|
||||
-of FNAME, --output-file FNAME [ ] output file path (without file extension)
|
||||
-ps, --print-special [false ] print special tokens
|
||||
-pc, --print-colors [false ] print colors
|
||||
-pp, --print-progress [false ] print progress
|
||||
-nt, --no-timestamps [true ] do not print timestamps
|
||||
-nt, --no-timestamps [false ] do not print timestamps
|
||||
-l LANG, --language LANG [en ] spoken language ('auto' for auto-detect)
|
||||
-dl, --detect-language [false ] exit after automatically detecting language
|
||||
--prompt PROMPT [ ] initial prompt
|
||||
-m FNAME, --model FNAME [models/ggml-base.en.bin] model path
|
||||
-f FNAME, --file FNAME [ ] input WAV file path
|
||||
-oved D, --ov-e-device DNAME [CPU ] the OpenVINO device used for encode inference
|
||||
-ls, --log-score [false ] log best decoder scores of token
|
||||
|
||||
|
||||
bash ./models/download-ggml-model.sh base.en
|
||||
@ -287,8 +298,8 @@ speed-up - more than x3 faster compared with CPU-only execution. Here are the in
|
||||
WHISPER_COREML=1 make -j
|
||||
|
||||
# using CMake
|
||||
cd build
|
||||
cmake -DWHISPER_COREML=1 ..
|
||||
cmake -B build -DWHISPER_COREML=1
|
||||
cmake --build build -j --config Release
|
||||
```
|
||||
|
||||
- Run the examples as usual. For example:
|
||||
@ -366,8 +377,8 @@ This can result in significant speedup in encoder performance. Here are the inst
|
||||
|
||||
And then build the project using cmake:
|
||||
```bash
|
||||
cd build
|
||||
cmake -DWHISPER_OPENVINO=1 ..
|
||||
cmake -B build -DWHISPER_OPENVINO=1
|
||||
cmake --build build -j --config Release
|
||||
```
|
||||
|
||||
- Run the examples as usual. For example:
|
||||
@ -418,11 +429,9 @@ make clean
|
||||
WHISPER_CLBLAST=1 make -j
|
||||
|
||||
CMake:
|
||||
cd whisper.cpp ; mkdir build ; cd build
|
||||
cmake -DWHISPER_CLBLAST=ON ..
|
||||
make clean
|
||||
make -j
|
||||
cp bin/* ../
|
||||
cd whisper.cpp
|
||||
cmake -B build -DWHISPER_CLBLAST=ON
|
||||
cmake --build build -j --config Release
|
||||
```
|
||||
|
||||
|
||||
@ -700,6 +709,19 @@ took to execute it. The results are summarized in the following Github issue:
|
||||
|
||||
[Benchmark results](https://github.com/ggerganov/whisper.cpp/issues/89)
|
||||
|
||||
Additionally a script to run whisper.cpp with different models and audio files is provided [bench.py](bench.py).
|
||||
|
||||
You can run it with the following command, by default it will run against any standard model in the models folder.
|
||||
|
||||
```bash
|
||||
python3 extra/bench.py -f samples/jfk.wav -t 2,4,8 -p 1,2
|
||||
```
|
||||
|
||||
It is written in python with the intention of being easy to modify and extend for your benchmarking use case.
|
||||
|
||||
It outputs a csv file with the results of the benchmarking.
|
||||
|
||||
|
||||
## ggml format
|
||||
|
||||
The original models are converted to a custom binary format. This allows to pack everything needed into a single file:
|
||||
@ -721,7 +743,7 @@ in [models](models).
|
||||
## [Bindings](https://github.com/ggerganov/whisper.cpp/discussions/categories/bindings)
|
||||
|
||||
- [X] Rust: [tazz4843/whisper-rs](https://github.com/tazz4843/whisper-rs) | [#310](https://github.com/ggerganov/whisper.cpp/discussions/310)
|
||||
- [X] Javascript: [bindings/javascript](bindings/javascript) | [#309](https://github.com/ggerganov/whisper.cpp/discussions/309)
|
||||
- [X] JavaScript: [bindings/javascript](bindings/javascript) | [#309](https://github.com/ggerganov/whisper.cpp/discussions/309)
|
||||
- React Native (iOS / Android): [whisper.rn](https://github.com/mybigday/whisper.rn)
|
||||
- [X] Go: [bindings/go](bindings/go) | [#312](https://github.com/ggerganov/whisper.cpp/discussions/312)
|
||||
- [X] Java:
|
||||
|
@ -118,6 +118,11 @@ func (p *Params) SetMaxTokensPerSegment(n int) {
|
||||
p.max_tokens = C.int(n)
|
||||
}
|
||||
|
||||
// Set audio encoder context
|
||||
func (p *Params) SetAudioCtx(n int) {
|
||||
p.audio_ctx = C.int(n)
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// PRIVATE METHODS
|
||||
|
||||
@ -141,6 +146,7 @@ func (p *Params) String() string {
|
||||
str += fmt.Sprintf(" n_max_text_ctx=%d", p.n_max_text_ctx)
|
||||
str += fmt.Sprintf(" offset_ms=%d", p.offset_ms)
|
||||
str += fmt.Sprintf(" duration_ms=%d", p.duration_ms)
|
||||
str += fmt.Sprintf(" audio_ctx=%d", p.audio_ctx)
|
||||
if p.translate {
|
||||
str += " translate"
|
||||
}
|
||||
|
@ -82,7 +82,7 @@ func (context *context) SetSpeedup(v bool) {
|
||||
}
|
||||
|
||||
func (context *context) SetSplitOnWord(v bool) {
|
||||
context.params.SetSplitOnWord(v)
|
||||
context.params.SetSplitOnWord(v)
|
||||
}
|
||||
|
||||
// Set number of threads to use
|
||||
@ -125,6 +125,11 @@ func (context *context) SetMaxTokensPerSegment(n uint) {
|
||||
context.params.SetMaxTokensPerSegment(int(n))
|
||||
}
|
||||
|
||||
// Set audio encoder context
|
||||
func (context *context) SetAudioCtx(n uint) {
|
||||
context.params.SetAudioCtx(int(n))
|
||||
}
|
||||
|
||||
// ResetTimings resets the mode timings. Should be called before processing
|
||||
func (context *context) ResetTimings() {
|
||||
context.model.ctx.Whisper_reset_timings()
|
||||
|
@ -48,6 +48,7 @@ type Context interface {
|
||||
SetMaxSegmentLength(uint) // Set max segment length in characters
|
||||
SetTokenTimestamps(bool) // Set token timestamps flag
|
||||
SetMaxTokensPerSegment(uint) // Set max tokens per segment (0 = no limit)
|
||||
SetAudioCtx(uint) // Set audio encoder context
|
||||
|
||||
// Process mono audio data and return any errors.
|
||||
// If defined, newly generated segments are passed to the
|
||||
|
Submodule bindings/ios updated: de46d9e781...22a9eef021
@ -2,6 +2,7 @@ plugins {
|
||||
id 'java'
|
||||
id 'java-library'
|
||||
id 'maven-publish'
|
||||
id 'signing'
|
||||
}
|
||||
|
||||
archivesBaseName = 'whispercpp'
|
||||
@ -109,4 +110,23 @@ publishing {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
repositories {
|
||||
maven {
|
||||
def releasesRepoUrl = 'https://s01.oss.sonatype.org/service/local/staging/deploy/maven2/'
|
||||
def snapshotsRepoUrl = 'https://s01.oss.sonatype.org/content/repositories/snapshots/'
|
||||
url = version.endsWith('-SNAPSHOT') ? snapshotsRepoUrl : releasesRepoUrl
|
||||
credentials {
|
||||
username = System.getenv("MAVEN_USERNAME")
|
||||
password = System.getenv("MAVEN_PASSWORD")
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
signing {
|
||||
def signingKey = System.getenv("PGP_SECRET")
|
||||
def signingPassword = System.getenv("PGP_PASSPHRASE")
|
||||
useInMemoryPgpKeys(signingKey, signingPassword)
|
||||
sign publishing.publications.mavenJava
|
||||
}
|
||||
|
@ -1 +1 @@
|
||||
"use strict";var Module={};var ENVIRONMENT_IS_NODE=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require("worker_threads");var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",data=>onmessage({data:data}));var fs=require("fs");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:function(f){(0,eval)(fs.readFileSync(f,"utf8")+"//# sourceURL="+f)},postMessage:function(msg){parentPort.postMessage(msg)},performance:global.performance||{now:function(){return Date.now()}}})}var initializedJS=false;var pendingNotifiedProxyingQueues=[];function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+"\n");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;self.alert=threadAlert;Module["instantiateWasm"]=(info,receiveInstance)=>{var instance=new WebAssembly.Instance(Module["wasmModule"],info);receiveInstance(instance);Module["wasmModule"]=null;return instance.exports};self.onunhandledrejection=e=>{throw e.reason??e};self.onmessage=e=>{try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;for(const handler of e.data.handlers){Module[handler]=function(){postMessage({cmd:"callHandler",handler:handler,args:[...arguments]})}}Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob=="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}whisper_factory(Module).then(function(instance){Module=instance})}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.pthread_ptr,0,0,1);Module["establishStackSpace"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].threadInitTLS();if(!initializedJS){Module["__embind_initialize_bindings"]();pendingNotifiedProxyingQueues.forEach(queue=>{Module["executeNotifiedProxyingQueue"](queue)});pendingNotifiedProxyingQueues=[];initializedJS=true}try{Module["invokeEntryPoint"](e.data.start_routine,e.data.arg)}catch(ex){if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["keepRuntimeAlive"]()){}else{Module["__emscripten_thread_exit"](ex.status)}}else{throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["__emscripten_thread_exit"](-1)}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processProxyingQueue"){if(initializedJS){Module["executeNotifiedProxyingQueue"](e.data.queue)}else{pendingNotifiedProxyingQueues.push(e.data.queue)}}else if(e.data.cmd){err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){if(Module["__emscripten_thread_crashed"]){Module["__emscripten_thread_crashed"]()}throw ex}};
|
||||
"use strict";var Module={};var ENVIRONMENT_IS_NODE=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require("worker_threads");var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",data=>onmessage({data:data}));var fs=require("fs");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:f=>(0,eval)(fs.readFileSync(f,"utf8")+"//# sourceURL="+f),postMessage:msg=>parentPort.postMessage(msg),performance:global.performance||{now:Date.now}})}var initializedJS=false;function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+"\n");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;self.alert=threadAlert;Module["instantiateWasm"]=(info,receiveInstance)=>{var module=Module["wasmModule"];Module["wasmModule"]=null;var instance=new WebAssembly.Instance(module,info);return receiveInstance(instance)};self.onunhandledrejection=e=>{throw e.reason||e};function handleMessage(e){try{if(e.data.cmd==="load"){let messageQueue=[];self.onmessage=e=>messageQueue.push(e);self.startWorker=instance=>{Module=instance;postMessage({"cmd":"loaded"});for(let msg of messageQueue){handleMessage(msg)}self.onmessage=handleMessage};Module["wasmModule"]=e.data.wasmModule;for(const handler of e.data.handlers){Module[handler]=(...args)=>{postMessage({cmd:"callHandler",handler:handler,args:args})}}Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob=="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}whisper_factory(Module)}else if(e.data.cmd==="run"){Module["__emscripten_thread_init"](e.data.pthread_ptr,0,0,1);Module["__emscripten_thread_mailbox_await"](e.data.pthread_ptr);Module["establishStackSpace"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].threadInitTLS();if(!initializedJS){Module["__embind_initialize_bindings"]();initializedJS=true}try{Module["invokeEntryPoint"](e.data.start_routine,e.data.arg)}catch(ex){if(ex!="unwind"){throw ex}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["__emscripten_thread_exit"](-1)}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="checkMailbox"){if(initializedJS){Module["checkMailbox"]()}}else if(e.data.cmd){err(`worker.js received unknown command ${e.data.cmd}`);err(e.data)}}catch(ex){if(Module["__emscripten_thread_crashed"]){Module["__emscripten_thread_crashed"]()}throw ex}}self.onmessage=handleMessage;
|
||||
|
File diff suppressed because one or more lines are too long
2
bindings/ruby/ext/.gitignore
vendored
2
bindings/ruby/ext/.gitignore
vendored
@ -1,6 +1,8 @@
|
||||
Makefile
|
||||
ggml.c
|
||||
ggml.h
|
||||
ggml-alloc.c
|
||||
ggml-alloc.h
|
||||
whisper.bundle
|
||||
whisper.cpp
|
||||
whisper.h
|
||||
|
@ -3,6 +3,8 @@ system("cp #{File.join(File.dirname(__FILE__),'..','..','..','whisper.cpp')} .")
|
||||
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','whisper.h')} .")
|
||||
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml.h')} .")
|
||||
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml.c')} .")
|
||||
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml-alloc.h')} .")
|
||||
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml-alloc.c')} .")
|
||||
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','examples','dr_wav.h')} .")
|
||||
|
||||
|
||||
|
@ -22,7 +22,13 @@ struct whisper_coreml_context * whisper_coreml_init(const char * path_model) {
|
||||
|
||||
NSURL * url_model = [NSURL fileURLWithPath: path_model_str];
|
||||
|
||||
const void * data = CFBridgingRetain([[whisper_encoder_impl alloc] initWithContentsOfURL:url_model error:nil]);
|
||||
// select which device to run the Core ML model on
|
||||
MLModelConfiguration *config = [[MLModelConfiguration alloc] init];
|
||||
config.computeUnits = MLComputeUnitsCPUAndGPU;
|
||||
//config.computeUnits = MLComputeUnitsCPUAndNeuralEngine;
|
||||
//config.computeUnits = MLComputeUnitsAll;
|
||||
|
||||
const void * data = CFBridgingRetain([[whisper_encoder_impl alloc] initWithContentsOfURL:url_model configuration:config error:nil]);
|
||||
|
||||
if (data == NULL) {
|
||||
return NULL;
|
||||
|
@ -1,6 +1,7 @@
|
||||
#include "whisper.h"
|
||||
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <string>
|
||||
#include <thread>
|
||||
|
||||
@ -44,13 +45,13 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
|
||||
fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads);
|
||||
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
|
||||
fprintf(stderr, " -w N, --what N [%-7d] what to benchmark:\n", params.what);
|
||||
fprintf(stderr, " %-7s 0 - whisper encoder\n", "");
|
||||
fprintf(stderr, " %-7s 0 - whisper\n", "");
|
||||
fprintf(stderr, " %-7s 1 - memcpy\n", "");
|
||||
fprintf(stderr, " %-7s 2 - ggml_mul_mat\n", "");
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
int whisper_bench_encoder(const whisper_params & params) {
|
||||
int whisper_bench_full(const whisper_params & params) {
|
||||
// whisper init
|
||||
|
||||
struct whisper_context * ctx = whisper_init_from_file(params.model.c_str());
|
||||
@ -69,12 +70,49 @@ int whisper_bench_encoder(const whisper_params & params) {
|
||||
fprintf(stderr, "error: failed to set mel: %d\n", ret);
|
||||
return 3;
|
||||
}
|
||||
|
||||
// heat encoder
|
||||
if (int ret = whisper_encode(ctx, 0, params.n_threads) != 0) {
|
||||
fprintf(stderr, "error: failed to encode model: %d\n", ret);
|
||||
return 4;
|
||||
}
|
||||
|
||||
whisper_token tokens[512];
|
||||
memset(tokens, 0, sizeof(tokens));
|
||||
|
||||
// prompt heat
|
||||
if (int ret = whisper_decode(ctx, tokens, 256, 0, params.n_threads) != 0) {
|
||||
fprintf(stderr, "error: failed to encode model: %d\n", ret);
|
||||
return 4;
|
||||
}
|
||||
|
||||
// text-generation heat
|
||||
if (int ret = whisper_decode(ctx, tokens, 1, 256, params.n_threads) != 0) {
|
||||
fprintf(stderr, "error: failed to encode model: %d\n", ret);
|
||||
return 4;
|
||||
}
|
||||
|
||||
whisper_reset_timings(ctx);
|
||||
|
||||
// actual run
|
||||
if (int ret = whisper_encode(ctx, 0, params.n_threads) != 0) {
|
||||
fprintf(stderr, "error: failed to encode model: %d\n", ret);
|
||||
return 4;
|
||||
}
|
||||
|
||||
for (int i = 0; i < 16; i++) {
|
||||
if (int ret = whisper_decode(ctx, tokens, 256, 0, params.n_threads) != 0) {
|
||||
fprintf(stderr, "error: failed to encode model: %d\n", ret);
|
||||
return 4;
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < 256; i++) {
|
||||
if (int ret = whisper_decode(ctx, tokens, 1, i, params.n_threads) != 0) {
|
||||
fprintf(stderr, "error: failed to encode model: %d\n", ret);
|
||||
return 4;
|
||||
}
|
||||
}
|
||||
|
||||
whisper_print_timings(ctx);
|
||||
whisper_free(ctx);
|
||||
|
||||
@ -103,7 +141,7 @@ int main(int argc, char ** argv) {
|
||||
int ret = -1;
|
||||
|
||||
switch (params.what) {
|
||||
case 0: ret = whisper_bench_encoder(params); break;
|
||||
case 0: ret = whisper_bench_full(params); break;
|
||||
case 1: ret = whisper_bench_memcpy(params.n_threads); break;
|
||||
case 2: ret = whisper_bench_ggml_mul_mat(params.n_threads); break;
|
||||
default: fprintf(stderr, "error: unknown benchmark: %d\n", params.what); break;
|
||||
|
@ -6,8 +6,8 @@
|
||||
// ref: https://github.com/ggerganov/whisper.cpp/issues/171
|
||||
//
|
||||
|
||||
#include "common.h"
|
||||
#include "common-sdl.h"
|
||||
#include "common.h"
|
||||
#include "whisper.h"
|
||||
|
||||
#include <sstream>
|
||||
|
@ -1,3 +1,5 @@
|
||||
#define _USE_MATH_DEFINES // for M_PI
|
||||
|
||||
#include "common.h"
|
||||
|
||||
// third-party utilities
|
||||
@ -13,53 +15,59 @@
|
||||
#include <codecvt>
|
||||
#include <sstream>
|
||||
|
||||
#ifndef M_PI
|
||||
#define M_PI 3.14159265358979323846
|
||||
#endif
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
// Function to check if the next argument exists
|
||||
std::string get_next_arg(int& i, int argc, char** argv, const std::string& flag, gpt_params& params) {
|
||||
if (i + 1 < argc && argv[i + 1][0] != '-') {
|
||||
return argv[++i];
|
||||
} else {
|
||||
fprintf(stderr, "error: %s requires one argument.\n", flag.c_str());
|
||||
gpt_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
}
|
||||
|
||||
bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
for (int i = 1; i < argc; i++) {
|
||||
std::string arg = argv[i];
|
||||
|
||||
if (arg == "-s" || arg == "--seed") {
|
||||
params.seed = std::stoi(argv[++i]);
|
||||
params.seed = std::stoi(get_next_arg(i, argc, argv, arg, params));
|
||||
} else if (arg == "-t" || arg == "--threads") {
|
||||
params.n_threads = std::stoi(argv[++i]);
|
||||
params.n_threads = std::stoi(get_next_arg(i, argc, argv, arg, params));
|
||||
} else if (arg == "-ngl" || arg == "--gpu-layers" || arg == "--n-gpu-layers") {
|
||||
params.n_gpu_layers = std::stoi(get_next_arg(i, argc, argv, arg, params));
|
||||
} else if (arg == "-p" || arg == "--prompt") {
|
||||
params.prompt = argv[++i];
|
||||
params.prompt = get_next_arg(i, argc, argv, arg, params);
|
||||
} else if (arg == "-n" || arg == "--n_predict") {
|
||||
params.n_predict = std::stoi(argv[++i]);
|
||||
params.n_predict = std::stoi(get_next_arg(i, argc, argv, arg, params));
|
||||
} else if (arg == "--top_k") {
|
||||
params.top_k = std::max(1, std::stoi(argv[++i]));
|
||||
params.top_k = std::stoi(get_next_arg(i, argc, argv, arg, params));
|
||||
} else if (arg == "--top_p") {
|
||||
params.top_p = std::stof(argv[++i]);
|
||||
params.top_p = std::stof(get_next_arg(i, argc, argv, arg, params));
|
||||
} else if (arg == "--temp") {
|
||||
params.temp = std::stof(argv[++i]);
|
||||
params.temp = std::stof(get_next_arg(i, argc, argv, arg, params));
|
||||
} else if (arg == "--repeat-last-n") {
|
||||
params.repeat_last_n = std::stof(argv[++i]);
|
||||
params.repeat_last_n = std::stoi(get_next_arg(i, argc, argv, arg, params));
|
||||
} else if (arg == "--repeat-penalty") {
|
||||
params.repeat_penalty = std::stof(argv[++i]);
|
||||
params.repeat_penalty = std::stof(get_next_arg(i, argc, argv, arg, params));
|
||||
} else if (arg == "-b" || arg == "--batch_size") {
|
||||
params.n_batch = std::stoi(argv[++i]);
|
||||
params.n_batch= std::stoi(get_next_arg(i, argc, argv, arg, params));
|
||||
} else if (arg == "-m" || arg == "--model") {
|
||||
params.model = argv[++i];
|
||||
params.model = get_next_arg(i, argc, argv, arg, params);
|
||||
} else if (arg == "-i" || arg == "--interactive") {
|
||||
params.interactive = true;
|
||||
} else if (arg == "-ip" || arg == "--interactive-port") {
|
||||
params.interactive = true;
|
||||
params.interactive_port = std::stoi(argv[++i]);
|
||||
params.interactive_port = std::stoi(get_next_arg(i, argc, argv, arg, params));
|
||||
} else if (arg == "-h" || arg == "--help") {
|
||||
gpt_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
} else if (arg == "-f" || arg == "--file") {
|
||||
if (++i > argc) {
|
||||
fprintf(stderr, "Invalid file param");
|
||||
break;
|
||||
}
|
||||
get_next_arg(i, argc, argv, arg, params);
|
||||
std::ifstream file(argv[i]);
|
||||
if (!file) {
|
||||
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
|
||||
@ -70,7 +78,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
params.prompt.pop_back();
|
||||
}
|
||||
} else if (arg == "-tt" || arg == "--token_test") {
|
||||
params.token_test = argv[++i];
|
||||
params.token_test = get_next_arg(i, argc, argv, arg, params);
|
||||
}
|
||||
else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
@ -89,6 +97,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
fprintf(stderr, " -h, --help show this help message and exit\n");
|
||||
fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n");
|
||||
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
|
||||
fprintf(stderr, " -ngl N, --gpu-layers N number of layers to offload to GPU on supported models (default: %d)\n", params.n_gpu_layers);
|
||||
fprintf(stderr, " -p PROMPT, --prompt PROMPT\n");
|
||||
fprintf(stderr, " prompt to start generation with (default: random)\n");
|
||||
fprintf(stderr, " -f FNAME, --file FNAME\n");
|
||||
@ -755,3 +764,46 @@ float similarity(const std::string & s0, const std::string & s1) {
|
||||
|
||||
return 1.0f - (dist / std::max(s0.size(), s1.size()));
|
||||
}
|
||||
|
||||
bool sam_params_parse(int argc, char ** argv, sam_params & params) {
|
||||
for (int i = 1; i < argc; i++) {
|
||||
std::string arg = argv[i];
|
||||
|
||||
if (arg == "-s" || arg == "--seed") {
|
||||
params.seed = std::stoi(argv[++i]);
|
||||
} else if (arg == "-t" || arg == "--threads") {
|
||||
params.n_threads = std::stoi(argv[++i]);
|
||||
} else if (arg == "-m" || arg == "--model") {
|
||||
params.model = argv[++i];
|
||||
} else if (arg == "-i" || arg == "--inp") {
|
||||
params.fname_inp = argv[++i];
|
||||
} else if (arg == "-o" || arg == "--out") {
|
||||
params.fname_out = argv[++i];
|
||||
} else if (arg == "-h" || arg == "--help") {
|
||||
sam_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
} else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
sam_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void sam_print_usage(int /*argc*/, char ** argv, const sam_params & params) {
|
||||
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "options:\n");
|
||||
fprintf(stderr, " -h, --help show this help message and exit\n");
|
||||
fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n");
|
||||
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
|
||||
fprintf(stderr, " -m FNAME, --model FNAME\n");
|
||||
fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
|
||||
fprintf(stderr, " -i FNAME, --inp FNAME\n");
|
||||
fprintf(stderr, " input file (default: %s)\n", params.fname_inp.c_str());
|
||||
fprintf(stderr, " -o FNAME, --out FNAME\n");
|
||||
fprintf(stderr, " output file (default: %s)\n", params.fname_out.c_str());
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
@ -7,11 +7,13 @@
|
||||
#include <vector>
|
||||
#include <random>
|
||||
#include <thread>
|
||||
#include <ctime>
|
||||
#include <fstream>
|
||||
|
||||
#define COMMON_SAMPLE_RATE 16000
|
||||
|
||||
//
|
||||
// CLI argument parsing
|
||||
// GPT CLI argument parsing
|
||||
//
|
||||
|
||||
struct gpt_params {
|
||||
@ -33,6 +35,8 @@ struct gpt_params {
|
||||
|
||||
bool interactive = false;
|
||||
int32_t interactive_port = -1;
|
||||
|
||||
int32_t n_gpu_layers = 0;
|
||||
};
|
||||
|
||||
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
|
||||
@ -137,6 +141,104 @@ bool read_wav(
|
||||
std::vector<std::vector<float>> & pcmf32s,
|
||||
bool stereo);
|
||||
|
||||
// Write PCM data into WAV audio file
|
||||
class wav_writer {
|
||||
private:
|
||||
std::ofstream file;
|
||||
uint32_t dataSize = 0;
|
||||
std::string wav_filename;
|
||||
|
||||
bool write_header(const uint32_t sample_rate,
|
||||
const uint16_t bits_per_sample,
|
||||
const uint16_t channels) {
|
||||
|
||||
file.write("RIFF", 4);
|
||||
file.write("\0\0\0\0", 4); // Placeholder for file size
|
||||
file.write("WAVE", 4);
|
||||
file.write("fmt ", 4);
|
||||
|
||||
const uint32_t sub_chunk_size = 16;
|
||||
const uint16_t audio_format = 1; // PCM format
|
||||
const uint32_t byte_rate = sample_rate * channels * bits_per_sample / 8;
|
||||
const uint16_t block_align = channels * bits_per_sample / 8;
|
||||
|
||||
file.write(reinterpret_cast<const char *>(&sub_chunk_size), 4);
|
||||
file.write(reinterpret_cast<const char *>(&audio_format), 2);
|
||||
file.write(reinterpret_cast<const char *>(&channels), 2);
|
||||
file.write(reinterpret_cast<const char *>(&sample_rate), 4);
|
||||
file.write(reinterpret_cast<const char *>(&byte_rate), 4);
|
||||
file.write(reinterpret_cast<const char *>(&block_align), 2);
|
||||
file.write(reinterpret_cast<const char *>(&bits_per_sample), 2);
|
||||
file.write("data", 4);
|
||||
file.write("\0\0\0\0", 4); // Placeholder for data size
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// It is assumed that PCM data is normalized to a range from -1 to 1
|
||||
bool write_audio(const float * data, size_t length) {
|
||||
for (size_t i = 0; i < length; ++i) {
|
||||
const auto intSample = static_cast<const int16_t>(data[i] * 32767);
|
||||
file.write(reinterpret_cast<const char *>(&intSample), sizeof(int16_t));
|
||||
dataSize += sizeof(int16_t);
|
||||
}
|
||||
if (file.is_open()) {
|
||||
file.seekp(4, std::ios::beg);
|
||||
uint32_t fileSize = 36 + dataSize;
|
||||
file.write(reinterpret_cast<char *>(&fileSize), 4);
|
||||
file.seekp(40, std::ios::beg);
|
||||
file.write(reinterpret_cast<char *>(&dataSize), 4);
|
||||
file.seekp(0, std::ios::end);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool open_wav(const std::string & filename) {
|
||||
if (filename != wav_filename) {
|
||||
if (file.is_open()) {
|
||||
file.close();
|
||||
}
|
||||
}
|
||||
if (!file.is_open()) {
|
||||
file.open(filename, std::ios::binary);
|
||||
wav_filename = filename;
|
||||
dataSize = 0;
|
||||
}
|
||||
return file.is_open();
|
||||
}
|
||||
|
||||
public:
|
||||
bool open(const std::string & filename,
|
||||
const uint32_t sample_rate,
|
||||
const uint16_t bits_per_sample,
|
||||
const uint16_t channels) {
|
||||
|
||||
if (open_wav(filename)) {
|
||||
write_header(sample_rate, bits_per_sample, channels);
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool close() {
|
||||
file.close();
|
||||
return true;
|
||||
}
|
||||
|
||||
bool write(const float * data, size_t length) {
|
||||
return write_audio(data, length);
|
||||
}
|
||||
|
||||
~wav_writer() {
|
||||
if (file.is_open()) {
|
||||
file.close();
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// Apply a high-pass frequency filter to PCM audio
|
||||
// Suppresses frequencies below cutoff Hz
|
||||
void high_pass_filter(
|
||||
@ -155,3 +257,20 @@ bool vad_simple(
|
||||
|
||||
// compute similarity between two strings using Levenshtein distance
|
||||
float similarity(const std::string & s0, const std::string & s1);
|
||||
|
||||
//
|
||||
// SAM argument parsing
|
||||
//
|
||||
|
||||
struct sam_params {
|
||||
int32_t seed = -1; // RNG seed
|
||||
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
||||
|
||||
std::string model = "models/sam-vit-b/ggml-model-f16.bin"; // model path
|
||||
std::string fname_inp = "img.jpg";
|
||||
std::string fname_out = "img.out";
|
||||
};
|
||||
|
||||
bool sam_params_parse(int argc, char ** argv, sam_params & params);
|
||||
|
||||
void sam_print_usage(int argc, char ** argv, const sam_params & params);
|
||||
|
@ -324,12 +324,12 @@ json register_commandset(struct whisper_context * ctx, json jparams, std::vector
|
||||
commandset_list.push_back(cs);
|
||||
return json{{"index",index}};
|
||||
}
|
||||
json seek(struct whisper_context * ctx, audio_async &audio, json params) {
|
||||
json seek(struct whisper_context * /*ctx*/, audio_async & /*audio*/, json /*params*/) {
|
||||
// whisper_state has the pertinent offsets, but there also seem to be a large
|
||||
// number of scratch buffers that would prevent rewinding context in a manner similar to llama
|
||||
// I'll give this a another pass once everything else is implemented,
|
||||
// but for now, it's unsupported
|
||||
throw json{
|
||||
throw json {
|
||||
{"code", -32601},
|
||||
{"message", "Seeking is not yet supported."}
|
||||
};
|
||||
@ -412,7 +412,7 @@ void process_loop(struct whisper_context * ctx, audio_async &audio, const whispe
|
||||
jobqueue.pop_front();
|
||||
// send response
|
||||
std::string data = resp.dump(-1, ' ', false, json::error_handler_t::replace);
|
||||
fprintf(stdout, "Content-Length: %d\r\n\r\n%s\n", data.length()+1, data.c_str());
|
||||
fprintf(stdout, "Content-Length: %d\r\n\r\n%s\n", (int)data.length()+1, data.c_str());
|
||||
std::cout.flush();
|
||||
|
||||
}
|
||||
|
@ -83,6 +83,7 @@ struct whisper_params {
|
||||
bool output_wts = false;
|
||||
bool output_csv = false;
|
||||
bool output_jsn = false;
|
||||
bool output_jsn_full = false;
|
||||
bool output_lrc = false;
|
||||
bool print_special = false;
|
||||
bool print_colors = false;
|
||||
@ -151,6 +152,7 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
else if (arg == "-fp" || arg == "--font-path") { params.font_path = argv[++i]; }
|
||||
else if (arg == "-ocsv" || arg == "--output-csv") { params.output_csv = true; }
|
||||
else if (arg == "-oj" || arg == "--output-json") { params.output_jsn = true; }
|
||||
else if (arg == "-ojf" || arg == "--output-json-full"){ params.output_jsn_full = params.output_jsn = true; }
|
||||
else if (arg == "-of" || arg == "--output-file") { params.fname_out.emplace_back(argv[++i]); }
|
||||
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
|
||||
else if (arg == "-pc" || arg == "--print-colors") { params.print_colors = true; }
|
||||
@ -206,6 +208,7 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
|
||||
fprintf(stderr, " -fp, --font-path [%-7s] path to a monospace font for karaoke video\n", params.font_path.c_str());
|
||||
fprintf(stderr, " -ocsv, --output-csv [%-7s] output result in a CSV file\n", params.output_csv ? "true" : "false");
|
||||
fprintf(stderr, " -oj, --output-json [%-7s] output result in a JSON file\n", params.output_jsn ? "true" : "false");
|
||||
fprintf(stderr, " -ojf, --output-json-full [%-7s] include more information in the JSON file\n", params.output_jsn_full ? "true" : "false");
|
||||
fprintf(stderr, " -of FNAME, --output-file FNAME [%-7s] output file path (without file extension)\n", "");
|
||||
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
|
||||
fprintf(stderr, " -pc, --print-colors [%-7s] print colors\n", params.print_colors ? "true" : "false");
|
||||
@ -260,7 +263,7 @@ std::string estimate_diarization_speaker(std::vector<std::vector<float>> pcmf32s
|
||||
|
||||
return speaker;
|
||||
}
|
||||
void whisper_print_progress_callback(struct whisper_context * ctx, struct whisper_state * /*state*/, int progress, void * user_data) {
|
||||
void whisper_print_progress_callback(struct whisper_context * /*ctx*/, struct whisper_state * /*state*/, int progress, void * user_data) {
|
||||
int progress_step = ((whisper_print_user_data *) user_data)->params->progress_step;
|
||||
int * progress_prev = &(((whisper_print_user_data *) user_data)->progress_prev);
|
||||
if (progress >= *progress_prev + progress_step) {
|
||||
@ -492,7 +495,7 @@ bool output_csv(struct whisper_context * ctx, const char * fname, const whisper_
|
||||
return true;
|
||||
}
|
||||
|
||||
bool output_score(struct whisper_context * ctx, const char * fname, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
|
||||
bool output_score(struct whisper_context * ctx, const char * fname, const whisper_params & /*params*/, std::vector<std::vector<float>> /*pcmf32s*/) {
|
||||
std::ofstream fout(fname);
|
||||
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
|
||||
|
||||
@ -511,7 +514,12 @@ bool output_score(struct whisper_context * ctx, const char * fname, const whispe
|
||||
return true;
|
||||
}
|
||||
|
||||
bool output_json(struct whisper_context * ctx, const char * fname, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
|
||||
bool output_json(
|
||||
struct whisper_context * ctx,
|
||||
const char * fname,
|
||||
const whisper_params & params,
|
||||
std::vector<std::vector<float>> pcmf32s,
|
||||
bool full) {
|
||||
std::ofstream fout(fname);
|
||||
int indent = 0;
|
||||
|
||||
@ -528,7 +536,7 @@ bool output_json(struct whisper_context * ctx, const char * fname, const whisper
|
||||
auto end_arr = [&](bool end) {
|
||||
indent--;
|
||||
doindent();
|
||||
fout << (end ? "]\n" : "},\n");
|
||||
fout << (end ? "]\n" : "],\n");
|
||||
};
|
||||
|
||||
auto start_obj = [&](const char *name) {
|
||||
@ -569,12 +577,29 @@ bool output_json(struct whisper_context * ctx, const char * fname, const whisper
|
||||
end_value(end);
|
||||
};
|
||||
|
||||
auto value_f = [&](const char *name, const float val, bool end) {
|
||||
start_value(name);
|
||||
fout << val;
|
||||
end_value(end);
|
||||
};
|
||||
|
||||
auto value_b = [&](const char *name, const bool val, bool end) {
|
||||
start_value(name);
|
||||
fout << (val ? "true" : "false");
|
||||
end_value(end);
|
||||
};
|
||||
|
||||
auto times_o = [&](int64_t t0, int64_t t1, bool end) {
|
||||
start_obj("timestamps");
|
||||
value_s("from", to_timestamp(t0, true).c_str(), false);
|
||||
value_s("to", to_timestamp(t1, true).c_str(), true);
|
||||
end_obj(false);
|
||||
start_obj("offsets");
|
||||
value_i("from", t0 * 10, false);
|
||||
value_i("to", t1 * 10, true);
|
||||
end_obj(end);
|
||||
};
|
||||
|
||||
if (!fout.is_open()) {
|
||||
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname);
|
||||
return false;
|
||||
@ -620,15 +645,26 @@ bool output_json(struct whisper_context * ctx, const char * fname, const whisper
|
||||
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
|
||||
|
||||
start_obj(nullptr);
|
||||
start_obj("timestamps");
|
||||
value_s("from", to_timestamp(t0, true).c_str(), false);
|
||||
value_s("to", to_timestamp(t1, true).c_str(), true);
|
||||
end_obj(false);
|
||||
start_obj("offsets");
|
||||
value_i("from", t0 * 10, false);
|
||||
value_i("to", t1 * 10, true);
|
||||
end_obj(false);
|
||||
value_s("text", text, !params.diarize && !params.tinydiarize);
|
||||
times_o(t0, t1, false);
|
||||
value_s("text", text, !params.diarize && !params.tinydiarize && !full);
|
||||
|
||||
if (full) {
|
||||
start_arr("tokens");
|
||||
const int n = whisper_full_n_tokens(ctx, i);
|
||||
for (int j = 0; j < n; ++j) {
|
||||
auto token = whisper_full_get_token_data(ctx, i, j);
|
||||
start_obj(nullptr);
|
||||
value_s("text", whisper_token_to_str(ctx, token.id), false);
|
||||
if(token.t0 > -1 && token.t1 > -1) {
|
||||
// If we have per-token timestamps, write them out
|
||||
times_o(token.t0, token.t1, false);
|
||||
}
|
||||
value_i("id", token.id, false);
|
||||
value_f("p", token.p, true);
|
||||
end_obj(j == (n - 1));
|
||||
}
|
||||
end_arr(!params.diarize && !params.tinydiarize);
|
||||
}
|
||||
|
||||
if (params.diarize && pcmf32s.size() == 2) {
|
||||
value_s("speaker", estimate_diarization_speaker(pcmf32s, t0, t1, true).c_str(), true);
|
||||
@ -912,7 +948,7 @@ int main(int argc, char ** argv) {
|
||||
wparams.offset_ms = params.offset_t_ms;
|
||||
wparams.duration_ms = params.duration_ms;
|
||||
|
||||
wparams.token_timestamps = params.output_wts || params.max_len > 0;
|
||||
wparams.token_timestamps = params.output_wts || params.output_jsn_full || params.max_len > 0;
|
||||
wparams.thold_pt = params.word_thold;
|
||||
wparams.max_len = params.output_wts && params.max_len == 0 ? 60 : params.max_len;
|
||||
wparams.split_on_word = params.split_on_word;
|
||||
@ -944,8 +980,9 @@ int main(int argc, char ** argv) {
|
||||
wparams.progress_callback_user_data = &user_data;
|
||||
}
|
||||
|
||||
// example for abort mechanism
|
||||
// in this example, we do not abort the processing, but we could if the flag is set to true
|
||||
// examples for abort mechanism
|
||||
// in examples below, we do not abort the processing, but we could if the flag is set to true
|
||||
|
||||
// the callback is called before every encoder run - if it returns false, the processing is aborted
|
||||
{
|
||||
static bool is_aborted = false; // NOTE: this should be atomic to avoid data race
|
||||
@ -957,6 +994,17 @@ int main(int argc, char ** argv) {
|
||||
wparams.encoder_begin_callback_user_data = &is_aborted;
|
||||
}
|
||||
|
||||
// the callback is called before every computation - if it returns true, the computation is aborted
|
||||
{
|
||||
static bool is_aborted = false; // NOTE: this should be atomic to avoid data race
|
||||
|
||||
wparams.abort_callback = [](void * user_data) {
|
||||
bool is_aborted = *(bool*)user_data;
|
||||
return is_aborted;
|
||||
};
|
||||
wparams.abort_callback_user_data = &is_aborted;
|
||||
}
|
||||
|
||||
if (whisper_full_parallel(ctx, wparams, pcmf32.data(), pcmf32.size(), params.n_processors) != 0) {
|
||||
fprintf(stderr, "%s: failed to process audio\n", argv[0]);
|
||||
return 10;
|
||||
@ -1000,7 +1048,7 @@ int main(int argc, char ** argv) {
|
||||
// output to JSON file
|
||||
if (params.output_jsn) {
|
||||
const auto fname_jsn = fname_out + ".json";
|
||||
output_json(ctx, fname_jsn.c_str(), params, pcmf32s);
|
||||
output_json(ctx, fname_jsn.c_str(), params, pcmf32s, params.output_jsn_full);
|
||||
}
|
||||
|
||||
// output to LRC file
|
||||
|
@ -39,6 +39,20 @@ brew install sdl2
|
||||
make stream
|
||||
```
|
||||
|
||||
Ensure you are at the root of the repo when running `make stream`. Not within the `examples/stream` dir
|
||||
as the libraries needed like `common-sdl.h` are located within `examples`. Attempting to compile within
|
||||
`examples/steam` means your compiler cannot find them and it gives an error it cannot find the file.
|
||||
|
||||
```bash
|
||||
whisper.cpp/examples/stream$ make stream
|
||||
g++ stream.cpp -o stream
|
||||
stream.cpp:6:10: fatal error: common/sdl.h: No such file or directory
|
||||
6 | #include "common/sdl.h"
|
||||
| ^~~~~~~~~~~~~~
|
||||
compilation terminated.
|
||||
make: *** [<builtin>: stream] Error 1
|
||||
```
|
||||
|
||||
## Web version
|
||||
|
||||
This tool can also run in the browser: [examples/stream.wasm](/examples/stream.wasm)
|
||||
|
@ -2,9 +2,8 @@
|
||||
//
|
||||
// A very quick-n-dirty implementation serving mainly as a proof of concept.
|
||||
//
|
||||
|
||||
#include "common.h"
|
||||
#include "common-sdl.h"
|
||||
#include "common.h"
|
||||
#include "whisper.h"
|
||||
|
||||
#include <cassert>
|
||||
@ -14,6 +13,7 @@
|
||||
#include <vector>
|
||||
#include <fstream>
|
||||
|
||||
|
||||
// 500 -> 00:05.000
|
||||
// 6000 -> 01:00.000
|
||||
std::string to_timestamp(int64_t t) {
|
||||
@ -52,6 +52,7 @@ struct whisper_params {
|
||||
std::string language = "en";
|
||||
std::string model = "models/ggml-base.en.bin";
|
||||
std::string fname_out;
|
||||
bool save_audio = false; // save audio to wav file
|
||||
};
|
||||
|
||||
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
|
||||
@ -82,6 +83,7 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
|
||||
else if (arg == "-f" || arg == "--file") { params.fname_out = argv[++i]; }
|
||||
else if (arg == "-tdrz" || arg == "--tinydiarize") { params.tinydiarize = true; }
|
||||
else if (arg == "-sa" || arg == "--save-audio") { params.save_audio = true; }
|
||||
|
||||
else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
@ -117,6 +119,7 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
|
||||
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
|
||||
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] text output file name\n", params.fname_out.c_str());
|
||||
fprintf(stderr, " -tdrz, --tinydiarize [%-7s] enable tinydiarize (requires a tdrz model)\n", params.tinydiarize ? "true" : "false");
|
||||
fprintf(stderr, " -sa, --save-audio [%-7s] save the recorded audio to a file\n", params.save_audio ? "true" : "false");
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
@ -154,7 +157,6 @@ int main(int argc, char ** argv) {
|
||||
audio.resume();
|
||||
|
||||
// whisper init
|
||||
|
||||
if (params.language != "auto" && whisper_lang_id(params.language.c_str()) == -1){
|
||||
fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str());
|
||||
whisper_print_usage(argc, argv, params);
|
||||
@ -212,14 +214,28 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
|
||||
printf("[Start speaking]");
|
||||
wav_writer wavWriter;
|
||||
// save wav file
|
||||
if (params.save_audio) {
|
||||
// Get current date/time for filename
|
||||
time_t now = time(0);
|
||||
char buffer[80];
|
||||
strftime(buffer, sizeof(buffer), "%Y%m%d%H%M%S", localtime(&now));
|
||||
std::string filename = std::string(buffer) + ".wav";
|
||||
|
||||
wavWriter.open(filename, WHISPER_SAMPLE_RATE, 16, 1);
|
||||
}
|
||||
printf("[Start speaking]\n");
|
||||
fflush(stdout);
|
||||
|
||||
auto t_last = std::chrono::high_resolution_clock::now();
|
||||
auto t_last = std::chrono::high_resolution_clock::now();
|
||||
const auto t_start = t_last;
|
||||
|
||||
// main audio loop
|
||||
while (is_running) {
|
||||
if (params.save_audio) {
|
||||
wavWriter.write(pcmf32_new.data(), pcmf32_new.size());
|
||||
}
|
||||
// handle Ctrl + C
|
||||
is_running = sdl_poll_events();
|
||||
|
||||
@ -371,7 +387,7 @@ int main(int argc, char ** argv) {
|
||||
fout << std::endl;
|
||||
}
|
||||
|
||||
if (use_vad){
|
||||
if (use_vad) {
|
||||
printf("\n");
|
||||
printf("### Transcription %d END\n", n_iter);
|
||||
}
|
||||
@ -408,4 +424,4 @@ int main(int argc, char ** argv) {
|
||||
whisper_free(ctx);
|
||||
|
||||
return 0;
|
||||
}
|
||||
}
|
@ -7,7 +7,7 @@ if (WHISPER_SDL2)
|
||||
|
||||
# TODO: this is temporary
|
||||
# need to export ggml symbols for MSVC, but too lazy ..
|
||||
add_executable(${TARGET} talk-llama.cpp llama.cpp ../common.cpp ../common-sdl.cpp ../../ggml.c ../../whisper.cpp)
|
||||
add_executable(${TARGET} talk-llama.cpp llama.cpp ../common.cpp ../common-sdl.cpp ../../ggml.c ../../ggml-alloc.c ../../whisper.cpp)
|
||||
|
||||
target_include_directories(${TARGET} PRIVATE ${SDL2_INCLUDE_DIRS} ../../)
|
||||
target_link_libraries(${TARGET} PRIVATE ${SDL2_LIBRARIES} ${CMAKE_THREAD_LIBS_INIT})
|
||||
|
@ -2,6 +2,12 @@
|
||||
|
||||
Talk with an LLaMA AI in your terminal
|
||||
|
||||
*Latest perf as of 2 Nov 2023 using Whisper Medium + LLaMA v2 13B Q8_0 on M2 Ultra:*
|
||||
|
||||
https://github.com/ggerganov/whisper.cpp/assets/1991296/d97a3788-bf2a-4756-9a43-60c6b391649e
|
||||
|
||||
*Previous demo running on CPUs*
|
||||
|
||||
[Demo Talk](https://user-images.githubusercontent.com/1991296/228024237-848f998c-c334-46a6-bef8-3271590da83b.mp4)
|
||||
|
||||
## Building
|
||||
@ -19,7 +25,7 @@ brew install sdl2
|
||||
make talk-llama
|
||||
|
||||
# Run it
|
||||
./talk-llama -mw ./models/ggml-small.en.bin -ml ../llama.cpp/models/13B/ggml-model-q4_0.bin -p "Georgi" -t 8
|
||||
./talk-llama -mw ./models/ggml-small.en.bin -ml ../llama.cpp/models/llama-13b/ggml-model-q4_0.gguf -p "Georgi" -t 8
|
||||
```
|
||||
|
||||
- The `-mw` argument specifies the Whisper model that you would like to use. Recommended `base` or `small` for real-time experience
|
||||
@ -36,7 +42,7 @@ This feature is especially helpful for maintaining context in long conversations
|
||||
Example usage:
|
||||
|
||||
```bash
|
||||
./talk-llama --session ./my-session-file -mw ./models/ggml-small.en.bin -ml ../llama.cpp/models/13B/ggml-model-q4_0.bin -p "Georgi" -t 8
|
||||
./talk-llama --session ./my-session-file -mw ./models/ggml-small.en.bin -ml ../llama.cpp/models/llama-13b/ggml-model-q4_0.gguf -p "Georgi" -t 8
|
||||
```
|
||||
|
||||
## TTS
|
||||
|
@ -1,474 +0,0 @@
|
||||
// Internal header to be included only by llama.cpp.
|
||||
// Contains wrappers around OS interfaces.
|
||||
|
||||
#ifndef LLAMA_UTIL_H
|
||||
#define LLAMA_UTIL_H
|
||||
|
||||
#include <cstdio>
|
||||
#include <cstdint>
|
||||
#include <cerrno>
|
||||
#include <cstring>
|
||||
#include <cstdarg>
|
||||
#include <cstdlib>
|
||||
#include <climits>
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <stdexcept>
|
||||
|
||||
#ifdef __has_include
|
||||
#if __has_include(<unistd.h>)
|
||||
#include <unistd.h>
|
||||
#if defined(_POSIX_MAPPED_FILES)
|
||||
#include <sys/mman.h>
|
||||
#endif
|
||||
#if defined(_POSIX_MEMLOCK_RANGE)
|
||||
#include <sys/resource.h>
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(_WIN32)
|
||||
#define WIN32_LEAN_AND_MEAN
|
||||
#ifndef NOMINMAX
|
||||
#define NOMINMAX
|
||||
#endif
|
||||
#include <windows.h>
|
||||
#include <io.h>
|
||||
#include <stdio.h> // for _fseeki64
|
||||
#endif
|
||||
|
||||
#define LLAMA_ASSERT(x) \
|
||||
do { \
|
||||
if (!(x)) { \
|
||||
fprintf(stderr, "LLAMA_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
|
||||
abort(); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#ifdef __GNUC__
|
||||
#ifdef __MINGW32__
|
||||
__attribute__((format(gnu_printf, 1, 2)))
|
||||
#else
|
||||
__attribute__((format(printf, 1, 2)))
|
||||
#endif
|
||||
#endif
|
||||
static std::string format(const char * fmt, ...) {
|
||||
va_list ap, ap2;
|
||||
va_start(ap, fmt);
|
||||
va_copy(ap2, ap);
|
||||
int size = vsnprintf(NULL, 0, fmt, ap);
|
||||
LLAMA_ASSERT(size >= 0 && size < INT_MAX);
|
||||
std::vector<char> buf(size + 1);
|
||||
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
|
||||
LLAMA_ASSERT(size2 == size);
|
||||
va_end(ap2);
|
||||
va_end(ap);
|
||||
return std::string(buf.data(), size);
|
||||
}
|
||||
|
||||
struct llama_file {
|
||||
// use FILE * so we don't have to re-open the file to mmap
|
||||
FILE * fp;
|
||||
size_t size;
|
||||
|
||||
llama_file(const char * fname, const char * mode) {
|
||||
fp = std::fopen(fname, mode);
|
||||
if (fp == NULL) {
|
||||
throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
|
||||
}
|
||||
seek(0, SEEK_END);
|
||||
size = tell();
|
||||
seek(0, SEEK_SET);
|
||||
}
|
||||
|
||||
size_t tell() const {
|
||||
#ifdef _WIN32
|
||||
__int64 ret = _ftelli64(fp);
|
||||
#else
|
||||
long ret = std::ftell(fp);
|
||||
#endif
|
||||
LLAMA_ASSERT(ret != -1); // this really shouldn't fail
|
||||
return (size_t) ret;
|
||||
}
|
||||
|
||||
void seek(size_t offset, int whence) {
|
||||
#ifdef _WIN32
|
||||
int ret = _fseeki64(fp, (__int64) offset, whence);
|
||||
#else
|
||||
int ret = std::fseek(fp, (long) offset, whence);
|
||||
#endif
|
||||
LLAMA_ASSERT(ret == 0); // same
|
||||
}
|
||||
|
||||
void read_raw(void * ptr, size_t len) const {
|
||||
if (len == 0) {
|
||||
return;
|
||||
}
|
||||
errno = 0;
|
||||
std::size_t ret = std::fread(ptr, len, 1, fp);
|
||||
if (ferror(fp)) {
|
||||
throw std::runtime_error(format("read error: %s", strerror(errno)));
|
||||
}
|
||||
if (ret != 1) {
|
||||
throw std::runtime_error(std::string("unexpectedly reached end of file"));
|
||||
}
|
||||
}
|
||||
|
||||
std::uint32_t read_u32() {
|
||||
std::uint32_t ret;
|
||||
read_raw(&ret, sizeof(ret));
|
||||
return ret;
|
||||
}
|
||||
|
||||
std::string read_string(std::uint32_t len) {
|
||||
std::vector<char> chars(len);
|
||||
read_raw(chars.data(), len);
|
||||
return std::string(chars.data(), len);
|
||||
}
|
||||
|
||||
void write_raw(const void * ptr, size_t len) const {
|
||||
if (len == 0) {
|
||||
return;
|
||||
}
|
||||
errno = 0;
|
||||
size_t ret = std::fwrite(ptr, len, 1, fp);
|
||||
if (ret != 1) {
|
||||
throw std::runtime_error(format("write error: %s", strerror(errno)));
|
||||
}
|
||||
}
|
||||
|
||||
void write_u32(std::uint32_t val) {
|
||||
write_raw(&val, sizeof(val));
|
||||
}
|
||||
|
||||
~llama_file() {
|
||||
if (fp) {
|
||||
std::fclose(fp);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
#if defined(_WIN32)
|
||||
static std::string llama_format_win_err(DWORD err) {
|
||||
LPSTR buf;
|
||||
size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
|
||||
NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
|
||||
if (!size) {
|
||||
return "FormatMessageA failed";
|
||||
}
|
||||
std::string ret(buf, size);
|
||||
LocalFree(buf);
|
||||
return ret;
|
||||
}
|
||||
#endif
|
||||
|
||||
struct llama_mmap {
|
||||
void * addr;
|
||||
size_t size;
|
||||
|
||||
llama_mmap(const llama_mmap &) = delete;
|
||||
|
||||
#ifdef _POSIX_MAPPED_FILES
|
||||
static constexpr bool SUPPORTED = true;
|
||||
|
||||
llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */) {
|
||||
size = file->size;
|
||||
int fd = fileno(file->fp);
|
||||
int flags = MAP_SHARED;
|
||||
#ifdef __linux__
|
||||
flags |= MAP_POPULATE;
|
||||
#endif
|
||||
addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
|
||||
if (addr == MAP_FAILED) {
|
||||
throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
|
||||
}
|
||||
|
||||
if (prefetch > 0) {
|
||||
// Advise the kernel to preload the mapped memory
|
||||
if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) {
|
||||
fprintf(stderr, "warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
|
||||
strerror(errno));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
~llama_mmap() {
|
||||
munmap(addr, size);
|
||||
}
|
||||
#elif defined(_WIN32)
|
||||
static constexpr bool SUPPORTED = true;
|
||||
|
||||
llama_mmap(struct llama_file * file, bool prefetch = true) {
|
||||
size = file->size;
|
||||
|
||||
HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
|
||||
|
||||
HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
|
||||
DWORD error = GetLastError();
|
||||
|
||||
if (hMapping == NULL) {
|
||||
throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
|
||||
}
|
||||
|
||||
addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
|
||||
error = GetLastError();
|
||||
CloseHandle(hMapping);
|
||||
|
||||
if (addr == NULL) {
|
||||
throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
|
||||
}
|
||||
|
||||
#if _WIN32_WINNT >= _WIN32_WINNT_WIN8
|
||||
if (prefetch) {
|
||||
// Advise the kernel to preload the mapped memory
|
||||
WIN32_MEMORY_RANGE_ENTRY range;
|
||||
range.VirtualAddress = addr;
|
||||
range.NumberOfBytes = (SIZE_T)size;
|
||||
if (!PrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
|
||||
fprintf(stderr, "warning: PrefetchVirtualMemory failed: %s\n",
|
||||
llama_format_win_err(GetLastError()).c_str());
|
||||
}
|
||||
}
|
||||
#else
|
||||
#pragma message("warning: You are building for pre-Windows 8; prefetch not supported")
|
||||
#endif // _WIN32_WINNT >= _WIN32_WINNT_WIN8
|
||||
}
|
||||
|
||||
~llama_mmap() {
|
||||
if (!UnmapViewOfFile(addr)) {
|
||||
fprintf(stderr, "warning: UnmapViewOfFile failed: %s\n",
|
||||
llama_format_win_err(GetLastError()).c_str());
|
||||
}
|
||||
}
|
||||
#else
|
||||
static constexpr bool SUPPORTED = false;
|
||||
|
||||
llama_mmap(struct llama_file *, bool prefetch = true) {
|
||||
(void)prefetch;
|
||||
throw std::runtime_error(std::string("mmap not supported"));
|
||||
}
|
||||
#endif
|
||||
};
|
||||
|
||||
// Represents some region of memory being locked using mlock or VirtualLock;
|
||||
// will automatically unlock on destruction.
|
||||
struct llama_mlock {
|
||||
void * addr = NULL;
|
||||
size_t size = 0;
|
||||
bool failed_already = false;
|
||||
|
||||
llama_mlock() {}
|
||||
llama_mlock(const llama_mlock &) = delete;
|
||||
|
||||
~llama_mlock() {
|
||||
if (size) {
|
||||
raw_unlock(addr, size);
|
||||
}
|
||||
}
|
||||
|
||||
void init(void * ptr) {
|
||||
LLAMA_ASSERT(addr == NULL && size == 0);
|
||||
addr = ptr;
|
||||
}
|
||||
|
||||
void grow_to(size_t target_size) {
|
||||
LLAMA_ASSERT(addr);
|
||||
if (failed_already) {
|
||||
return;
|
||||
}
|
||||
size_t granularity = lock_granularity();
|
||||
target_size = (target_size + granularity - 1) & ~(granularity - 1);
|
||||
if (target_size > size) {
|
||||
if (raw_lock((uint8_t *) addr + size, target_size - size)) {
|
||||
size = target_size;
|
||||
} else {
|
||||
failed_already = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef _POSIX_MEMLOCK_RANGE
|
||||
static constexpr bool SUPPORTED = true;
|
||||
|
||||
size_t lock_granularity() {
|
||||
return (size_t) sysconf(_SC_PAGESIZE);
|
||||
}
|
||||
|
||||
#ifdef __APPLE__
|
||||
#define MLOCK_SUGGESTION \
|
||||
"Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
|
||||
"decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l).\n"
|
||||
#else
|
||||
#define MLOCK_SUGGESTION \
|
||||
"Try increasing RLIMIT_MLOCK ('ulimit -l' as root).\n"
|
||||
#endif
|
||||
|
||||
bool raw_lock(const void * addr, size_t size) {
|
||||
if (!mlock(addr, size)) {
|
||||
return true;
|
||||
} else {
|
||||
char* errmsg = std::strerror(errno);
|
||||
bool suggest = (errno == ENOMEM);
|
||||
|
||||
// Check if the resource limit is fine after all
|
||||
struct rlimit lock_limit;
|
||||
if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit))
|
||||
suggest = false;
|
||||
if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size))
|
||||
suggest = false;
|
||||
|
||||
fprintf(stderr, "warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
|
||||
size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
#undef MLOCK_SUGGESTION
|
||||
|
||||
void raw_unlock(void * addr, size_t size) {
|
||||
if (munlock(addr, size)) {
|
||||
fprintf(stderr, "warning: failed to munlock buffer: %s\n", std::strerror(errno));
|
||||
}
|
||||
}
|
||||
#elif defined(_WIN32)
|
||||
static constexpr bool SUPPORTED = true;
|
||||
|
||||
size_t lock_granularity() {
|
||||
SYSTEM_INFO si;
|
||||
GetSystemInfo(&si);
|
||||
return (size_t) si.dwPageSize;
|
||||
}
|
||||
|
||||
bool raw_lock(void * ptr, size_t len) {
|
||||
for (int tries = 1; ; tries++) {
|
||||
if (VirtualLock(ptr, len)) {
|
||||
return true;
|
||||
}
|
||||
if (tries == 2) {
|
||||
fprintf(stderr, "warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
|
||||
len, size, llama_format_win_err(GetLastError()).c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
// It failed but this was only the first try; increase the working
|
||||
// set size and try again.
|
||||
SIZE_T min_ws_size, max_ws_size;
|
||||
if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
|
||||
fprintf(stderr, "warning: GetProcessWorkingSetSize failed: %s\n",
|
||||
llama_format_win_err(GetLastError()).c_str());
|
||||
return false;
|
||||
}
|
||||
// Per MSDN: "The maximum number of pages that a process can lock
|
||||
// is equal to the number of pages in its minimum working set minus
|
||||
// a small overhead."
|
||||
// Hopefully a megabyte is enough overhead:
|
||||
size_t increment = len + 1048576;
|
||||
// The minimum must be <= the maximum, so we need to increase both:
|
||||
min_ws_size += increment;
|
||||
max_ws_size += increment;
|
||||
if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
|
||||
fprintf(stderr, "warning: SetProcessWorkingSetSize failed: %s\n",
|
||||
llama_format_win_err(GetLastError()).c_str());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void raw_unlock(void * ptr, size_t len) {
|
||||
if (!VirtualUnlock(ptr, len)) {
|
||||
fprintf(stderr, "warning: failed to VirtualUnlock buffer: %s\n",
|
||||
llama_format_win_err(GetLastError()).c_str());
|
||||
}
|
||||
}
|
||||
#else
|
||||
static constexpr bool SUPPORTED = false;
|
||||
|
||||
size_t lock_granularity() {
|
||||
return (size_t) 65536;
|
||||
}
|
||||
|
||||
bool raw_lock(const void * addr, size_t len) {
|
||||
fprintf(stderr, "warning: mlock not supported on this system\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
void raw_unlock(const void * addr, size_t len) {}
|
||||
#endif
|
||||
};
|
||||
|
||||
// Replacement for std::vector<uint8_t> that doesn't require zero-initialization.
|
||||
struct llama_buffer {
|
||||
uint8_t * addr = NULL;
|
||||
size_t size = 0;
|
||||
|
||||
llama_buffer() = default;
|
||||
|
||||
void resize(size_t len) {
|
||||
delete[] addr;
|
||||
addr = new uint8_t[len];
|
||||
size = len;
|
||||
}
|
||||
|
||||
~llama_buffer() {
|
||||
delete[] addr;
|
||||
}
|
||||
|
||||
// disable copy and move
|
||||
llama_buffer(const llama_buffer&) = delete;
|
||||
llama_buffer(llama_buffer&&) = delete;
|
||||
llama_buffer& operator=(const llama_buffer&) = delete;
|
||||
llama_buffer& operator=(llama_buffer&&) = delete;
|
||||
};
|
||||
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
#include "ggml-cuda.h"
|
||||
struct llama_ctx_buffer {
|
||||
uint8_t * addr = NULL;
|
||||
bool is_cuda;
|
||||
size_t size = 0;
|
||||
|
||||
llama_ctx_buffer() = default;
|
||||
|
||||
void resize(size_t size) {
|
||||
free();
|
||||
|
||||
addr = (uint8_t *) ggml_cuda_host_malloc(size);
|
||||
if (addr) {
|
||||
is_cuda = true;
|
||||
}
|
||||
else {
|
||||
// fall back to pageable memory
|
||||
addr = new uint8_t[size];
|
||||
is_cuda = false;
|
||||
}
|
||||
this->size = size;
|
||||
}
|
||||
|
||||
void free() {
|
||||
if (addr) {
|
||||
if (is_cuda) {
|
||||
ggml_cuda_host_free(addr);
|
||||
}
|
||||
else {
|
||||
delete[] addr;
|
||||
}
|
||||
}
|
||||
addr = NULL;
|
||||
}
|
||||
|
||||
~llama_ctx_buffer() {
|
||||
free();
|
||||
}
|
||||
|
||||
// disable copy and move
|
||||
llama_ctx_buffer(const llama_ctx_buffer&) = delete;
|
||||
llama_ctx_buffer(llama_ctx_buffer&&) = delete;
|
||||
llama_ctx_buffer& operator=(const llama_ctx_buffer&) = delete;
|
||||
llama_ctx_buffer& operator=(llama_ctx_buffer&&) = delete;
|
||||
};
|
||||
#else
|
||||
typedef llama_buffer llama_ctx_buffer;
|
||||
#endif
|
||||
|
||||
#endif
|
File diff suppressed because it is too large
Load Diff
@ -1,8 +1,16 @@
|
||||
#ifndef LLAMA_H
|
||||
#define LLAMA_H
|
||||
|
||||
#include "ggml.h"
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
#include "ggml-cuda.h"
|
||||
#define LLAMA_MAX_DEVICES GGML_CUDA_MAX_DEVICES
|
||||
#else
|
||||
#define LLAMA_MAX_DEVICES 1
|
||||
#endif // GGML_USE_CUBLAS
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
#include <stdbool.h>
|
||||
|
||||
#ifdef LLAMA_SHARED
|
||||
@ -19,17 +27,25 @@
|
||||
# define LLAMA_API
|
||||
#endif
|
||||
|
||||
#define LLAMA_FILE_MAGIC_GGJT 0x67676a74u // 'ggjt'
|
||||
#define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
|
||||
#define LLAMA_FILE_MAGIC_GGMF 0x67676d66u // 'ggmf'
|
||||
#define LLAMA_FILE_MAGIC_GGML 0x67676d6cu // 'ggml'
|
||||
#define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
|
||||
#ifdef __GNUC__
|
||||
# define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
|
||||
#elif defined(_MSC_VER)
|
||||
# define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
|
||||
#else
|
||||
# define DEPRECATED(func, hint) func
|
||||
#endif
|
||||
|
||||
#define LLAMA_FILE_VERSION 3
|
||||
#define LLAMA_FILE_MAGIC LLAMA_FILE_MAGIC_GGJT
|
||||
#define LLAMA_FILE_MAGIC_UNVERSIONED LLAMA_FILE_MAGIC_GGML
|
||||
#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
|
||||
#define LLAMA_SESSION_VERSION 1
|
||||
#define LLAMA_DEFAULT_SEED 0xFFFFFFFF
|
||||
|
||||
#define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
|
||||
|
||||
#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
|
||||
#define LLAMA_SESSION_VERSION 1
|
||||
|
||||
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL)
|
||||
// Defined when llama.cpp is compiled with support for offloading model layers to GPU.
|
||||
#define LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
@ -41,10 +57,57 @@ extern "C" {
|
||||
// TODO: show sample usage
|
||||
//
|
||||
|
||||
struct llama_model;
|
||||
struct llama_context;
|
||||
|
||||
typedef int llama_token;
|
||||
|
||||
enum llama_log_level {
|
||||
LLAMA_LOG_LEVEL_ERROR = 2,
|
||||
LLAMA_LOG_LEVEL_WARN = 3,
|
||||
LLAMA_LOG_LEVEL_INFO = 4
|
||||
};
|
||||
|
||||
enum llama_vocab_type {
|
||||
LLAMA_VOCAB_TYPE_SPM = 0, // SentencePiece
|
||||
LLAMA_VOCAB_TYPE_BPE = 1, // Byte Pair Encoding
|
||||
};
|
||||
|
||||
enum llama_token_type {
|
||||
LLAMA_TOKEN_TYPE_UNDEFINED = 0,
|
||||
LLAMA_TOKEN_TYPE_NORMAL = 1,
|
||||
LLAMA_TOKEN_TYPE_UNKNOWN = 2,
|
||||
LLAMA_TOKEN_TYPE_CONTROL = 3,
|
||||
LLAMA_TOKEN_TYPE_USER_DEFINED = 4,
|
||||
LLAMA_TOKEN_TYPE_UNUSED = 5,
|
||||
LLAMA_TOKEN_TYPE_BYTE = 6,
|
||||
};
|
||||
|
||||
// model file types
|
||||
enum llama_ftype {
|
||||
LLAMA_FTYPE_ALL_F32 = 0,
|
||||
LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
|
||||
// LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
|
||||
// LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
|
||||
LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q2_K = 10,// except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q3_K_S = 11,// except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q3_K_M = 12,// except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q3_K_L = 13,// except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q4_K_S = 14,// except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q4_K_M = 15,// except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q5_K_S = 16,// except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q5_K_M = 17,// except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q6_K = 18,// except 1d tensors
|
||||
|
||||
LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
|
||||
};
|
||||
|
||||
typedef struct llama_token_data {
|
||||
llama_token id; // token id
|
||||
float logit; // log-odds of the token
|
||||
@ -60,67 +123,152 @@ extern "C" {
|
||||
typedef void (*llama_progress_callback)(float progress, void *ctx);
|
||||
|
||||
struct llama_context_params {
|
||||
int n_ctx; // text context
|
||||
int n_gpu_layers; // number of layers to store in VRAM
|
||||
int seed; // RNG seed, -1 for random
|
||||
uint32_t seed; // RNG seed, -1 for random
|
||||
int32_t n_ctx; // text context
|
||||
int32_t n_batch; // prompt processing batch size
|
||||
int32_t n_gpu_layers; // number of layers to store in VRAM
|
||||
int32_t main_gpu; // the GPU that is used for scratch and small tensors
|
||||
|
||||
const float * tensor_split; // how to split layers across multiple GPUs (size: LLAMA_MAX_DEVICES)
|
||||
|
||||
// ref: https://github.com/ggerganov/llama.cpp/pull/2054
|
||||
float rope_freq_base; // RoPE base frequency
|
||||
float rope_freq_scale; // RoPE frequency scaling factor
|
||||
|
||||
// called with a progress value between 0 and 1, pass NULL to disable
|
||||
llama_progress_callback progress_callback;
|
||||
// context pointer passed to the progress callback
|
||||
void * progress_callback_user_data;
|
||||
|
||||
// Keep the booleans together to avoid misalignment during copy-by-value.
|
||||
bool low_vram; // if true, reduce VRAM usage at the cost of performance
|
||||
bool mul_mat_q; // if true, use experimental mul_mat_q kernels
|
||||
bool f16_kv; // use fp16 for KV cache
|
||||
bool logits_all; // the llama_eval() call computes all logits, not just the last one
|
||||
bool vocab_only; // only load the vocabulary, no weights
|
||||
bool use_mmap; // use mmap if possible
|
||||
bool use_mlock; // force system to keep model in RAM
|
||||
bool embedding; // embedding mode only
|
||||
|
||||
// called with a progress value between 0 and 1, pass NULL to disable
|
||||
llama_progress_callback progress_callback;
|
||||
// context pointer passed to the progress callback
|
||||
void * progress_callback_user_data;
|
||||
};
|
||||
|
||||
// model file types
|
||||
enum llama_ftype {
|
||||
LLAMA_FTYPE_ALL_F32 = 0,
|
||||
LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
|
||||
// LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
|
||||
// LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
|
||||
LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
|
||||
// Signature for logging events
|
||||
// Note that text includes the new line character at the end for most events.
|
||||
// If your logging mechanism cannot handle that, check if the last character is '\n' and strip it
|
||||
// if it exists.
|
||||
// It might not exist for progress report where '.' is output repeatedly.
|
||||
typedef void (*llama_log_callback)(enum llama_log_level level, const char * text, void * user_data);
|
||||
|
||||
// model quantization parameters
|
||||
typedef struct llama_model_quantize_params {
|
||||
int nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
|
||||
enum llama_ftype ftype; // quantize to this llama_ftype
|
||||
bool allow_requantize; // allow quantizing non-f32/f16 tensors
|
||||
bool quantize_output_tensor; // quantize output.weight
|
||||
bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
|
||||
} llama_model_quantize_params;
|
||||
|
||||
// grammar types
|
||||
struct llama_grammar;
|
||||
|
||||
// grammar element type
|
||||
enum llama_gretype {
|
||||
// end of rule definition
|
||||
LLAMA_GRETYPE_END = 0,
|
||||
|
||||
// start of alternate definition for rule
|
||||
LLAMA_GRETYPE_ALT = 1,
|
||||
|
||||
// non-terminal element: reference to rule
|
||||
LLAMA_GRETYPE_RULE_REF = 2,
|
||||
|
||||
// terminal element: character (code point)
|
||||
LLAMA_GRETYPE_CHAR = 3,
|
||||
|
||||
// inverse char(s) ([^a], [^a-b] [^abc])
|
||||
LLAMA_GRETYPE_CHAR_NOT = 4,
|
||||
|
||||
// modifies a preceding LLAMA_GRETYPE_CHAR or LLAMA_GRETYPE_CHAR_ALT to
|
||||
// be an inclusive range ([a-z])
|
||||
LLAMA_GRETYPE_CHAR_RNG_UPPER = 5,
|
||||
|
||||
// modifies a preceding LLAMA_GRETYPE_CHAR or
|
||||
// LLAMA_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab], [a-zA])
|
||||
LLAMA_GRETYPE_CHAR_ALT = 6,
|
||||
};
|
||||
|
||||
LLAMA_API struct llama_context_params llama_context_default_params();
|
||||
typedef struct llama_grammar_element {
|
||||
enum llama_gretype type;
|
||||
uint32_t value; // Unicode code point or rule ID
|
||||
} llama_grammar_element;
|
||||
|
||||
LLAMA_API bool llama_mmap_supported();
|
||||
LLAMA_API bool llama_mlock_supported();
|
||||
// performance timing information
|
||||
struct llama_timings {
|
||||
double t_start_ms;
|
||||
double t_end_ms;
|
||||
double t_load_ms;
|
||||
double t_sample_ms;
|
||||
double t_p_eval_ms;
|
||||
double t_eval_ms;
|
||||
|
||||
int32_t n_sample;
|
||||
int32_t n_p_eval;
|
||||
int32_t n_eval;
|
||||
};
|
||||
|
||||
LLAMA_API struct llama_context_params llama_context_default_params(void);
|
||||
LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
|
||||
|
||||
// TODO: not great API - very likely to change
|
||||
// Initialize the llama + ggml backend
|
||||
// If numa is true, use NUMA optimizations
|
||||
// Call once at the start of the program
|
||||
LLAMA_API void llama_init_backend();
|
||||
LLAMA_API void llama_backend_init(bool numa);
|
||||
|
||||
LLAMA_API int64_t llama_time_us();
|
||||
// Call once at the end of the program - currently only used for MPI
|
||||
LLAMA_API void llama_backend_free(void);
|
||||
|
||||
// Various functions for loading a ggml llama model.
|
||||
// Allocate (almost) all memory needed for the model.
|
||||
// Return NULL on failure
|
||||
LLAMA_API struct llama_context * llama_init_from_file(
|
||||
LLAMA_API struct llama_model * llama_load_model_from_file(
|
||||
const char * path_model,
|
||||
struct llama_context_params params);
|
||||
|
||||
LLAMA_API void llama_free_model(struct llama_model * model);
|
||||
|
||||
LLAMA_API struct llama_context * llama_new_context_with_model(
|
||||
struct llama_model * model,
|
||||
struct llama_context_params params);
|
||||
|
||||
// Frees all allocated memory
|
||||
LLAMA_API void llama_free(struct llama_context * ctx);
|
||||
|
||||
// TODO: not great API - very likely to change
|
||||
LLAMA_API int64_t llama_time_us(void);
|
||||
|
||||
LLAMA_API int llama_max_devices (void);
|
||||
LLAMA_API bool llama_mmap_supported (void);
|
||||
LLAMA_API bool llama_mlock_supported(void);
|
||||
|
||||
LLAMA_API int llama_n_vocab (const struct llama_context * ctx);
|
||||
LLAMA_API int llama_n_ctx (const struct llama_context * ctx);
|
||||
LLAMA_API int llama_n_ctx_train(const struct llama_context * ctx);
|
||||
LLAMA_API int llama_n_embd (const struct llama_context * ctx);
|
||||
|
||||
LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_context * ctx);
|
||||
|
||||
LLAMA_API int llama_model_n_vocab (const struct llama_model * model);
|
||||
LLAMA_API int llama_model_n_ctx (const struct llama_model * model);
|
||||
LLAMA_API int llama_model_n_ctx_train(const struct llama_model * model);
|
||||
LLAMA_API int llama_model_n_embd (const struct llama_model * model);
|
||||
|
||||
// Get a string describing the model type
|
||||
LLAMA_API int llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
|
||||
// Returns the total size of all the tensors in the model in bytes
|
||||
LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
|
||||
// Returns the total number of parameters in the model
|
||||
LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
|
||||
|
||||
// Returns 0 on success
|
||||
// nthread - how many threads to use. If <=0, will use std::thread::hardware_concurrency(), else the number given
|
||||
LLAMA_API int llama_model_quantize(
|
||||
const char * fname_inp,
|
||||
const char * fname_out,
|
||||
enum llama_ftype ftype,
|
||||
int nthread);
|
||||
const llama_model_quantize_params * params);
|
||||
|
||||
// Apply a LoRA adapter to a loaded model
|
||||
// path_base_model is the path to a higher quality model to use as a base for
|
||||
@ -128,17 +276,24 @@ extern "C" {
|
||||
// The model needs to be reloaded before applying a new adapter, otherwise the adapter
|
||||
// will be applied on top of the previous one
|
||||
// Returns 0 on success
|
||||
LLAMA_API int llama_apply_lora_from_file(
|
||||
LLAMA_API DEPRECATED(int llama_apply_lora_from_file(
|
||||
struct llama_context * ctx,
|
||||
const char * path_lora,
|
||||
const char * path_base_model,
|
||||
int n_threads);
|
||||
int n_threads),
|
||||
"please use llama_model_apply_lora_from_file instead");
|
||||
|
||||
LLAMA_API int llama_model_apply_lora_from_file(
|
||||
const struct llama_model * model,
|
||||
const char * path_lora,
|
||||
const char * path_base_model,
|
||||
int n_threads);
|
||||
|
||||
// Returns the number of tokens in the KV cache
|
||||
LLAMA_API int llama_get_kv_cache_token_count(const struct llama_context * ctx);
|
||||
|
||||
// Sets the current rng seed.
|
||||
LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, int seed);
|
||||
LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
|
||||
|
||||
// Returns the maximum size in bytes of the state (rng, logits, embedding
|
||||
// and kv_cache) - will often be smaller after compacting tokens
|
||||
@ -168,21 +323,19 @@ extern "C" {
|
||||
int n_past,
|
||||
int n_threads);
|
||||
|
||||
// Convert the provided text into tokens.
|
||||
// The tokens pointer must be large enough to hold the resulting tokens.
|
||||
// Returns the number of tokens on success, no more than n_max_tokens
|
||||
// Returns a negative number on failure - the number of tokens that would have been returned
|
||||
// TODO: not sure if correct
|
||||
LLAMA_API int llama_tokenize(
|
||||
// Same as llama_eval, but use float matrix input directly.
|
||||
LLAMA_API int llama_eval_embd(
|
||||
struct llama_context * ctx,
|
||||
const char * text,
|
||||
llama_token * tokens,
|
||||
int n_max_tokens,
|
||||
bool add_bos);
|
||||
const float * embd,
|
||||
int n_tokens,
|
||||
int n_past,
|
||||
int n_threads);
|
||||
|
||||
LLAMA_API int llama_n_vocab(const struct llama_context * ctx);
|
||||
LLAMA_API int llama_n_ctx (const struct llama_context * ctx);
|
||||
LLAMA_API int llama_n_embd (const struct llama_context * ctx);
|
||||
// Export a static computation graph for context of 511 and batch size of 1
|
||||
// NOTE: since this functionality is mostly for debugging and demonstration purposes, we hardcode these
|
||||
// parameters here to keep things simple
|
||||
// IMPORTANT: do not use for anything else other than debugging and testing!
|
||||
LLAMA_API int llama_eval_export(struct llama_context * ctx, const char * fname);
|
||||
|
||||
// Token logits obtained from the last call to llama_eval()
|
||||
// The logits for the last token are stored in the last row
|
||||
@ -195,15 +348,75 @@ extern "C" {
|
||||
// shape: [n_embd] (1-dimensional)
|
||||
LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
|
||||
|
||||
// Token Id -> String. Uses the vocabulary in the provided context
|
||||
LLAMA_API const char * llama_token_to_str(const struct llama_context * ctx, llama_token token);
|
||||
//
|
||||
// Vocab
|
||||
//
|
||||
|
||||
LLAMA_API const char * llama_token_get_text(const struct llama_context * ctx, llama_token token);
|
||||
|
||||
LLAMA_API float llama_token_get_score(const struct llama_context * ctx, llama_token token);
|
||||
|
||||
LLAMA_API enum llama_token_type llama_token_get_type(const struct llama_context * ctx, llama_token token);
|
||||
|
||||
// Special tokens
|
||||
LLAMA_API llama_token llama_token_bos();
|
||||
LLAMA_API llama_token llama_token_eos();
|
||||
LLAMA_API llama_token llama_token_nl();
|
||||
LLAMA_API llama_token llama_token_bos(const struct llama_context * ctx); // beginning-of-sentence
|
||||
LLAMA_API llama_token llama_token_eos(const struct llama_context * ctx); // end-of-sentence
|
||||
LLAMA_API llama_token llama_token_nl (const struct llama_context * ctx); // next-line
|
||||
|
||||
//
|
||||
// Tokenization
|
||||
//
|
||||
|
||||
// Convert the provided text into tokens.
|
||||
// The tokens pointer must be large enough to hold the resulting tokens.
|
||||
// Returns the number of tokens on success, no more than n_max_tokens
|
||||
// Returns a negative number on failure - the number of tokens that would have been returned
|
||||
LLAMA_API int llama_tokenize(
|
||||
struct llama_context * ctx,
|
||||
const char * text,
|
||||
llama_token * tokens,
|
||||
int n_max_tokens,
|
||||
bool add_bos);
|
||||
|
||||
LLAMA_API int llama_tokenize_with_model(
|
||||
const struct llama_model * model,
|
||||
const char * text,
|
||||
llama_token * tokens,
|
||||
int n_max_tokens,
|
||||
bool add_bos);
|
||||
|
||||
// Token Id -> Piece.
|
||||
// Uses the vocabulary in the provided context.
|
||||
// Does not write null terminator to the buffer.
|
||||
// User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens.
|
||||
LLAMA_API int llama_token_to_piece(
|
||||
const struct llama_context * ctx,
|
||||
llama_token token,
|
||||
char * buf,
|
||||
int length);
|
||||
|
||||
LLAMA_API int llama_token_to_piece_with_model(
|
||||
const struct llama_model * model,
|
||||
llama_token token,
|
||||
char * buf,
|
||||
int length);
|
||||
|
||||
//
|
||||
// Grammar
|
||||
//
|
||||
|
||||
LLAMA_API struct llama_grammar * llama_grammar_init(
|
||||
const llama_grammar_element ** rules,
|
||||
size_t n_rules,
|
||||
size_t start_rule_index);
|
||||
|
||||
LLAMA_API void llama_grammar_free(struct llama_grammar * grammar);
|
||||
|
||||
LLAMA_API struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar);
|
||||
|
||||
//
|
||||
// Sampling functions
|
||||
//
|
||||
|
||||
/// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
|
||||
LLAMA_API void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty);
|
||||
@ -211,6 +424,16 @@ extern "C" {
|
||||
/// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
|
||||
LLAMA_API void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float alpha_frequency, float alpha_presence);
|
||||
|
||||
/// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
|
||||
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, the logits must be directly extracted from the original generation context without being sorted.
|
||||
/// @params guidance_ctx A separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
|
||||
/// @params scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
|
||||
LLAMA_API void llama_sample_classifier_free_guidance(
|
||||
struct llama_context * ctx,
|
||||
llama_token_data_array * candidates,
|
||||
struct llama_context * guidance_ctx,
|
||||
float scale);
|
||||
|
||||
/// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
|
||||
LLAMA_API void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates);
|
||||
|
||||
@ -227,6 +450,9 @@ extern "C" {
|
||||
LLAMA_API void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep);
|
||||
LLAMA_API void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates, float temp);
|
||||
|
||||
/// @details Apply constraints from grammar
|
||||
LLAMA_API void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar);
|
||||
|
||||
/// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
|
||||
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
|
||||
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
|
||||
@ -248,13 +474,60 @@ extern "C" {
|
||||
/// @details Randomly selects a token from the candidates based on their probabilities.
|
||||
LLAMA_API llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates);
|
||||
|
||||
/// @details Accepts the sampled token into the grammar
|
||||
LLAMA_API void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token);
|
||||
|
||||
//
|
||||
// Beam search
|
||||
//
|
||||
|
||||
struct llama_beam_view {
|
||||
const llama_token * tokens;
|
||||
size_t n_tokens;
|
||||
float p; // Cumulative beam probability (renormalized relative to all beams)
|
||||
bool eob; // Callback should set this to true when a beam is at end-of-beam.
|
||||
};
|
||||
|
||||
// Passed to beam_search_callback function.
|
||||
// Whenever 0 < common_prefix_length, this number of tokens should be copied from any of the beams
|
||||
// (e.g. beams[0]) as they will be removed (shifted) from all beams in all subsequent callbacks.
|
||||
// These pointers are valid only during the synchronous callback, so should not be saved.
|
||||
struct llama_beams_state {
|
||||
struct llama_beam_view * beam_views;
|
||||
size_t n_beams; // Number of elements in beam_views[].
|
||||
size_t common_prefix_length; // Current max length of prefix tokens shared by all beams.
|
||||
bool last_call; // True iff this is the last callback invocation.
|
||||
};
|
||||
|
||||
// Type of pointer to the beam_search_callback function.
|
||||
// void* callback_data is any custom data passed to llama_beam_search, that is subsequently
|
||||
// passed back to beam_search_callback. This avoids having to use global variables in the callback.
|
||||
typedef void (*llama_beam_search_callback_fn_t)(void * callback_data, struct llama_beams_state);
|
||||
|
||||
/// @details Deterministically returns entire sentence constructed by a beam search.
|
||||
/// @param ctx Pointer to the llama_context.
|
||||
/// @param callback Invoked for each iteration of the beam_search loop, passing in beams_state.
|
||||
/// @param callback_data A pointer that is simply passed back to callback.
|
||||
/// @param n_beams Number of beams to use.
|
||||
/// @param n_past Number of tokens already evaluated.
|
||||
/// @param n_predict Maximum number of tokens to predict. EOS may occur earlier.
|
||||
/// @param n_threads Number of threads as passed to llama_eval().
|
||||
LLAMA_API void llama_beam_search(struct llama_context * ctx, llama_beam_search_callback_fn_t callback, void * callback_data, size_t n_beams, int n_past, int n_predict, int n_threads);
|
||||
|
||||
// Performance information
|
||||
LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
|
||||
LLAMA_API void llama_print_timings(struct llama_context * ctx);
|
||||
LLAMA_API void llama_reset_timings(struct llama_context * ctx);
|
||||
|
||||
// Print system information
|
||||
LLAMA_API const char * llama_print_system_info(void);
|
||||
|
||||
// Set callback for all future logging events.
|
||||
// If this is not called, or NULL is supplied, everything is output on stderr.
|
||||
LLAMA_API void llama_log_set(llama_log_callback log_callback, void * user_data);
|
||||
|
||||
LLAMA_API void llama_dump_timing_info_yaml(FILE * stream, const struct llama_context * ctx);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
@ -264,10 +537,11 @@ extern "C" {
|
||||
|
||||
#include <vector>
|
||||
#include <string>
|
||||
|
||||
struct ggml_tensor;
|
||||
|
||||
std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx);
|
||||
const std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx);
|
||||
|
||||
#endif
|
||||
#endif // LLAMA_API_INTERNAL
|
||||
|
||||
#endif // LLAMA_H
|
||||
|
0
examples/talk-llama/speak
Normal file → Executable file
0
examples/talk-llama/speak
Normal file → Executable file
@ -1,8 +1,8 @@
|
||||
// Talk with AI
|
||||
//
|
||||
|
||||
#include "common.h"
|
||||
#include "common-sdl.h"
|
||||
#include "common.h"
|
||||
#include "whisper.h"
|
||||
#include "llama.h"
|
||||
|
||||
@ -25,6 +25,20 @@ std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::s
|
||||
return res;
|
||||
}
|
||||
|
||||
std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) {
|
||||
std::vector<char> result(8, 0);
|
||||
const int n_tokens = llama_token_to_piece(ctx, token, result.data(), result.size());
|
||||
if (n_tokens < 0) {
|
||||
result.resize(-n_tokens);
|
||||
int check = llama_token_to_piece(ctx, token, result.data(), result.size());
|
||||
GGML_ASSERT(check == -n_tokens);
|
||||
} else {
|
||||
result.resize(n_tokens);
|
||||
}
|
||||
|
||||
return std::string(result.data(), result.size());
|
||||
}
|
||||
|
||||
// command-line parameters
|
||||
struct whisper_params {
|
||||
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
||||
@ -33,14 +47,14 @@ struct whisper_params {
|
||||
int32_t max_tokens = 32;
|
||||
int32_t audio_ctx = 0;
|
||||
|
||||
float vad_thold = 0.6f;
|
||||
float freq_thold = 100.0f;
|
||||
float vad_thold = 0.6f;
|
||||
float freq_thold = 100.0f;
|
||||
|
||||
bool speed_up = false;
|
||||
bool translate = false;
|
||||
bool print_special = false;
|
||||
bool print_energy = false;
|
||||
bool no_timestamps = true;
|
||||
bool speed_up = false;
|
||||
bool translate = false;
|
||||
bool print_special = false;
|
||||
bool print_energy = false;
|
||||
bool no_timestamps = true;
|
||||
bool verbose_prompt = false;
|
||||
|
||||
std::string person = "Georgi";
|
||||
@ -235,7 +249,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// llama init
|
||||
|
||||
llama_init_backend();
|
||||
llama_backend_init(true);
|
||||
|
||||
auto lparams = llama_context_default_params();
|
||||
|
||||
@ -244,7 +258,9 @@ int main(int argc, char ** argv) {
|
||||
lparams.seed = 1;
|
||||
lparams.f16_kv = true;
|
||||
|
||||
struct llama_context * ctx_llama = llama_init_from_file(params.model_llama.c_str(), lparams);
|
||||
struct llama_model * model_llama = llama_load_model_from_file(params.model_llama.c_str(), lparams);
|
||||
|
||||
struct llama_context * ctx_llama = llama_new_context_with_model(model_llama, lparams);
|
||||
|
||||
// print some info about the processing
|
||||
{
|
||||
@ -267,7 +283,6 @@ int main(int argc, char ** argv) {
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
|
||||
// init audio
|
||||
|
||||
audio_async audio(30*1000);
|
||||
@ -278,8 +293,6 @@ int main(int argc, char ** argv) {
|
||||
|
||||
audio.resume();
|
||||
|
||||
int n_iter = 0;
|
||||
|
||||
bool is_running = true;
|
||||
bool force_speak = false;
|
||||
|
||||
@ -514,7 +527,7 @@ int main(int argc, char ** argv) {
|
||||
//printf("\n---\n");
|
||||
//printf("resetting: '");
|
||||
//for (int i = 0; i < (int) embd.size(); i++) {
|
||||
// printf("%s", llama_token_to_str(ctx_llama, embd[i]));
|
||||
// printf("%s", llama_token_to_piece(ctx_llama, embd[i]));
|
||||
//}
|
||||
//printf("'\n");
|
||||
//printf("\n---\n");
|
||||
@ -582,7 +595,7 @@ int main(int argc, char ** argv) {
|
||||
auto logits = llama_get_logits(ctx_llama);
|
||||
auto n_vocab = llama_n_vocab(ctx_llama);
|
||||
|
||||
logits[llama_token_eos()] = 0;
|
||||
logits[llama_token_eos(ctx_llama)] = 0;
|
||||
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(n_vocab);
|
||||
@ -593,13 +606,13 @@ int main(int argc, char ** argv) {
|
||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||
|
||||
// apply repeat penalty
|
||||
const float nl_logit = logits[llama_token_nl()];
|
||||
const float nl_logit = logits[llama_token_nl(ctx_llama)];
|
||||
|
||||
llama_sample_repetition_penalty(ctx_llama, &candidates_p,
|
||||
embd_inp.data() + std::max(0, n_past - repeat_last_n),
|
||||
repeat_last_n, repeat_penalty);
|
||||
|
||||
logits[llama_token_nl()] = nl_logit;
|
||||
logits[llama_token_nl(ctx_llama)] = nl_logit;
|
||||
|
||||
if (temp <= 0) {
|
||||
// Greedy sampling
|
||||
@ -613,22 +626,22 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
|
||||
if (id != llama_token_eos()) {
|
||||
if (id != llama_token_eos(ctx_llama)) {
|
||||
// add it to the context
|
||||
embd.push_back(id);
|
||||
|
||||
text_to_speak += llama_token_to_str(ctx_llama, id);
|
||||
text_to_speak += llama_token_to_piece(ctx_llama, id);
|
||||
|
||||
printf("%s", llama_token_to_str(ctx_llama, id));
|
||||
printf("%s", llama_token_to_piece(ctx_llama, id).c_str());
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
std::string last_output;
|
||||
for (int i = embd_inp.size() - 16; i < (int) embd_inp.size(); i++) {
|
||||
last_output += llama_token_to_str(ctx_llama, embd_inp[i]);
|
||||
last_output += llama_token_to_piece(ctx_llama, embd_inp[i]);
|
||||
}
|
||||
last_output += llama_token_to_str(ctx_llama, embd[0]);
|
||||
last_output += llama_token_to_piece(ctx_llama, embd[0]);
|
||||
|
||||
for (std::string & antiprompt : antiprompts) {
|
||||
if (last_output.find(antiprompt.c_str(), last_output.length() - antiprompt.length(), antiprompt.length()) != std::string::npos) {
|
||||
@ -649,11 +662,12 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
text_to_speak = ::replace(text_to_speak, "\"", "");
|
||||
system((params.speak + " " + std::to_string(voice_id) + " \"" + text_to_speak + "\"").c_str());
|
||||
int ret = system((params.speak + " " + std::to_string(voice_id) + " \"" + text_to_speak + "\"").c_str());
|
||||
if (ret != 0) {
|
||||
fprintf(stderr, "%s: failed to speak\n", __func__);
|
||||
}
|
||||
|
||||
audio.clear();
|
||||
|
||||
++n_iter;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -191,9 +191,9 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
|
||||
// create the ggml context
|
||||
{
|
||||
struct ggml_init_params params = {
|
||||
.mem_size = ctx_size,
|
||||
.mem_buffer = NULL,
|
||||
.no_alloc = false,
|
||||
/*.mem_size =*/ ctx_size,
|
||||
/*.mem_buffer =*/ NULL,
|
||||
/*.no_alloc =*/ false,
|
||||
};
|
||||
|
||||
model.ctx = ggml_init(params);
|
||||
@ -420,7 +420,6 @@ bool gpt2_eval(
|
||||
|
||||
struct ggml_context * ctx0 = ggml_init(params);
|
||||
struct ggml_cgraph gf = {};
|
||||
gf.n_threads = n_threads;
|
||||
|
||||
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
||||
memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd));
|
||||
@ -442,7 +441,7 @@ bool gpt2_eval(
|
||||
// norm
|
||||
{
|
||||
// [ 768, N]
|
||||
cur = ggml_norm(ctx0, inpL);
|
||||
cur = ggml_norm(ctx0, inpL, 1e-5f);
|
||||
|
||||
// cur = ln_1_g*cur + ln_1_b
|
||||
// [ 768, N]
|
||||
@ -589,7 +588,7 @@ bool gpt2_eval(
|
||||
{
|
||||
// norm
|
||||
{
|
||||
cur = ggml_norm(ctx0, inpFF);
|
||||
cur = ggml_norm(ctx0, inpFF, 1e-5f);
|
||||
|
||||
// cur = ln_2_g*cur + ln_2_b
|
||||
// [ 768, N]
|
||||
@ -644,7 +643,7 @@ bool gpt2_eval(
|
||||
// norm
|
||||
{
|
||||
// [ 768, N]
|
||||
inpL = ggml_norm(ctx0, inpL);
|
||||
inpL = ggml_norm(ctx0, inpL, 1e-5f);
|
||||
|
||||
// inpL = ln_f_g*inpL + ln_f_b
|
||||
// [ 768, N]
|
||||
@ -664,8 +663,8 @@ bool gpt2_eval(
|
||||
//inpL = ggml_soft_max(ctx0, inpL);
|
||||
|
||||
// run the computation
|
||||
ggml_build_forward_expand(&gf, inpL);
|
||||
ggml_graph_compute (ctx0, &gf);
|
||||
ggml_build_forward_expand (&gf, inpL);
|
||||
ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
|
||||
|
||||
//if (n_past%100 == 0) {
|
||||
// ggml_graph_print (&gf);
|
||||
|
@ -31,7 +31,7 @@ To run this, you will need a ggml GPT-2 model: [instructions](https://github.com
|
||||
Alternatively, you can simply download the smallest ggml GPT-2 117M model (240 MB) like this:
|
||||
|
||||
```
|
||||
wget --quiet --show-progress -O models/ggml-gpt-2-117M.bin https://huggingface.co/ggerganov/ggml/raw/main/ggml-model-gpt-2-117M.bin
|
||||
wget --quiet --show-progress -O models/ggml-gpt-2-117M.bin https://huggingface.co/ggerganov/ggml/resolve/main/ggml-model-gpt-2-117M.bin
|
||||
```
|
||||
|
||||
## TTS
|
||||
|
@ -191,9 +191,9 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
|
||||
// create the ggml context
|
||||
{
|
||||
struct ggml_init_params params = {
|
||||
.mem_size = ctx_size,
|
||||
.mem_buffer = NULL,
|
||||
.no_alloc = false,
|
||||
/*.mem_size =*/ ctx_size,
|
||||
/*.mem_buffer =*/ NULL,
|
||||
/*.no_alloc =*/ false,
|
||||
};
|
||||
|
||||
model.ctx = ggml_init(params);
|
||||
@ -379,6 +379,7 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
|
||||
// - embd_inp: the embeddings of the tokens in the context
|
||||
// - embd_w: the predicted logits for the next token
|
||||
//
|
||||
// TODO: sync latest version from ggml repo
|
||||
bool gpt2_eval(
|
||||
const gpt2_model & model,
|
||||
const int n_threads,
|
||||
@ -420,7 +421,6 @@ bool gpt2_eval(
|
||||
|
||||
struct ggml_context * ctx0 = ggml_init(params);
|
||||
struct ggml_cgraph gf = {};
|
||||
gf.n_threads = n_threads;
|
||||
|
||||
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
||||
memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd));
|
||||
@ -442,7 +442,7 @@ bool gpt2_eval(
|
||||
// norm
|
||||
{
|
||||
// [ 768, N]
|
||||
cur = ggml_norm(ctx0, inpL);
|
||||
cur = ggml_norm(ctx0, inpL, 1e-5f);
|
||||
|
||||
// cur = ln_1_g*cur + ln_1_b
|
||||
// [ 768, N]
|
||||
@ -589,7 +589,7 @@ bool gpt2_eval(
|
||||
{
|
||||
// norm
|
||||
{
|
||||
cur = ggml_norm(ctx0, inpFF);
|
||||
cur = ggml_norm(ctx0, inpFF, 1e-5f);
|
||||
|
||||
// cur = ln_2_g*cur + ln_2_b
|
||||
// [ 768, N]
|
||||
@ -644,7 +644,7 @@ bool gpt2_eval(
|
||||
// norm
|
||||
{
|
||||
// [ 768, N]
|
||||
inpL = ggml_norm(ctx0, inpL);
|
||||
inpL = ggml_norm(ctx0, inpL, 1e-5f);
|
||||
|
||||
// inpL = ln_f_g*inpL + ln_f_b
|
||||
// [ 768, N]
|
||||
@ -664,8 +664,8 @@ bool gpt2_eval(
|
||||
//inpL = ggml_soft_max(ctx0, inpL);
|
||||
|
||||
// run the computation
|
||||
ggml_build_forward_expand(&gf, inpL);
|
||||
ggml_graph_compute (ctx0, &gf);
|
||||
ggml_build_forward_expand (&gf, inpL);
|
||||
ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
|
||||
|
||||
//if (n_past%100 == 0) {
|
||||
// ggml_graph_print (&gf);
|
||||
|
@ -1,8 +1,8 @@
|
||||
// Talk with AI
|
||||
//
|
||||
|
||||
#include "common.h"
|
||||
#include "common-sdl.h"
|
||||
#include "common.h"
|
||||
#include "whisper.h"
|
||||
#include "gpt-2.h"
|
||||
|
||||
@ -349,7 +349,10 @@ int main(int argc, char ** argv) {
|
||||
gpt2_set_prompt(ctx_gpt, prompt_base.c_str());
|
||||
|
||||
text_to_speak = ::replace(text_to_speak, params.person + ": ", "");
|
||||
system((params.speak + " " + std::to_string(voice_id) + " \"" + text_to_speak + "\"").c_str());
|
||||
int ret = system((params.speak + " " + std::to_string(voice_id) + " \"" + text_to_speak + "\"").c_str());
|
||||
if (ret != 0) {
|
||||
fprintf(stderr, "%s: system() failed!\n", __func__);
|
||||
}
|
||||
|
||||
audio.clear();
|
||||
|
||||
|
2
examples/whisper.android/.idea/compiler.xml
generated
2
examples/whisper.android/.idea/compiler.xml
generated
@ -1,6 +1,6 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="CompilerConfiguration">
|
||||
<bytecodeTargetLevel target="11" />
|
||||
<bytecodeTargetLevel target="17" />
|
||||
</component>
|
||||
</project>
|
4
examples/whisper.android/.idea/gradle.xml
generated
4
examples/whisper.android/.idea/gradle.xml
generated
@ -4,15 +4,15 @@
|
||||
<component name="GradleSettings">
|
||||
<option name="linkedExternalProjectsSettings">
|
||||
<GradleProjectSettings>
|
||||
<option name="testRunner" value="GRADLE" />
|
||||
<option name="distributionType" value="DEFAULT_WRAPPED" />
|
||||
<option name="externalProjectPath" value="$PROJECT_DIR$" />
|
||||
<option name="gradleJvm" value="#GRADLE_LOCAL_JAVA_HOME" />
|
||||
<option name="modules">
|
||||
<set>
|
||||
<option value="$PROJECT_DIR$" />
|
||||
<option value="$PROJECT_DIR$/app" />
|
||||
</set>
|
||||
</option>
|
||||
<option name="resolveExternalAnnotations" value="false" />
|
||||
</GradleProjectSettings>
|
||||
</option>
|
||||
</component>
|
||||
|
2
examples/whisper.android/.idea/misc.xml
generated
2
examples/whisper.android/.idea/misc.xml
generated
@ -1,7 +1,7 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="ExternalStorageConfigurationManager" enabled="true" />
|
||||
<component name="ProjectRootManager" version="2" languageLevel="JDK_11" default="true" project-jdk-name="Android Studio default JDK" project-jdk-type="JavaSDK">
|
||||
<component name="ProjectRootManager" version="2" languageLevel="JDK_17" default="true" project-jdk-name="jbr-17" project-jdk-type="JavaSDK">
|
||||
<output url="file://$PROJECT_DIR$/build/classes" />
|
||||
</component>
|
||||
<component name="ProjectType">
|
||||
|
@ -5,12 +5,12 @@ plugins {
|
||||
|
||||
android {
|
||||
namespace 'com.whispercppdemo'
|
||||
compileSdk 33
|
||||
compileSdk 34
|
||||
|
||||
defaultConfig {
|
||||
applicationId "com.whispercppdemo"
|
||||
minSdk 26
|
||||
targetSdk 32
|
||||
targetSdk 34
|
||||
versionCode 1
|
||||
versionName "1.0"
|
||||
|
||||
@ -31,19 +31,19 @@ android {
|
||||
}
|
||||
}
|
||||
compileOptions {
|
||||
sourceCompatibility JavaVersion.VERSION_1_8
|
||||
targetCompatibility JavaVersion.VERSION_1_8
|
||||
sourceCompatibility JavaVersion.VERSION_17
|
||||
targetCompatibility JavaVersion.VERSION_17
|
||||
}
|
||||
kotlinOptions {
|
||||
jvmTarget = '1.8'
|
||||
jvmTarget = '17'
|
||||
}
|
||||
buildFeatures {
|
||||
compose true
|
||||
}
|
||||
composeOptions {
|
||||
kotlinCompilerExtensionVersion '1.3.1'
|
||||
kotlinCompilerExtensionVersion '1.5.0'
|
||||
}
|
||||
ndkVersion "25.1.8937393"
|
||||
ndkVersion "25.2.9519653"
|
||||
externalNativeBuild {
|
||||
cmake {
|
||||
path = file("src/main/jni/whisper/CMakeLists.txt")
|
||||
@ -57,19 +57,19 @@ android {
|
||||
}
|
||||
|
||||
dependencies {
|
||||
implementation 'androidx.activity:activity-compose:1.6.1'
|
||||
implementation 'androidx.compose.material:material-icons-core:1.3.1'
|
||||
implementation 'androidx.compose.material3:material3:1.0.1'
|
||||
implementation "androidx.compose.ui:ui:1.3.2"
|
||||
implementation "androidx.compose.ui:ui-tooling-preview:1.3.2"
|
||||
implementation 'androidx.lifecycle:lifecycle-viewmodel-compose:2.5.1'
|
||||
implementation 'androidx.activity:activity-compose:1.7.2'
|
||||
implementation 'androidx.compose.material:material-icons-core:1.5.0'
|
||||
implementation 'androidx.compose.material3:material3:1.1.1'
|
||||
implementation "androidx.compose.ui:ui:1.5.0"
|
||||
implementation "androidx.compose.ui:ui-tooling-preview:1.5.0"
|
||||
implementation 'androidx.lifecycle:lifecycle-viewmodel-compose:2.6.1'
|
||||
implementation "com.google.accompanist:accompanist-permissions:0.28.0"
|
||||
implementation 'org.jetbrains.kotlinx:kotlinx-coroutines-core:1.6.4'
|
||||
implementation 'org.jetbrains.kotlinx:kotlinx-coroutines-core:1.7.2'
|
||||
|
||||
testImplementation 'junit:junit:4.13.2'
|
||||
androidTestImplementation 'androidx.test.ext:junit:1.1.4'
|
||||
androidTestImplementation 'androidx.test.espresso:espresso-core:3.5.0'
|
||||
androidTestImplementation "androidx.compose.ui:ui-test-junit4:1.3.2"
|
||||
debugImplementation "androidx.compose.ui:ui-tooling:1.3.2"
|
||||
debugImplementation "androidx.compose.ui:ui-test-manifest:1.3.2"
|
||||
androidTestImplementation 'androidx.test.ext:junit:1.1.5'
|
||||
androidTestImplementation 'androidx.test.espresso:espresso-core:3.5.1'
|
||||
androidTestImplementation "androidx.compose.ui:ui-test-junit4:1.5.0"
|
||||
debugImplementation "androidx.compose.ui:ui-tooling:1.5.0"
|
||||
debugImplementation "androidx.compose.ui:ui-test-manifest:1.5.0"
|
||||
}
|
@ -66,7 +66,7 @@ private fun MainScreen(
|
||||
|
||||
@Composable
|
||||
private fun MessageLog(log: String) {
|
||||
SelectionContainer() {
|
||||
SelectionContainer {
|
||||
Text(modifier = Modifier.verticalScroll(rememberScrollState()), text = log)
|
||||
}
|
||||
}
|
||||
|
@ -47,7 +47,7 @@ class MainScreenViewModel(private val application: Application) : ViewModel() {
|
||||
}
|
||||
|
||||
private suspend fun printSystemInfo() {
|
||||
printMessage(String.format("System Info: %s\n", WhisperContext.getSystemInfo()));
|
||||
printMessage(String.format("System Info: %s\n", WhisperContext.getSystemInfo()))
|
||||
}
|
||||
|
||||
private suspend fun loadData() {
|
||||
|
@ -13,7 +13,7 @@ import androidx.compose.runtime.SideEffect
|
||||
import androidx.compose.ui.graphics.toArgb
|
||||
import androidx.compose.ui.platform.LocalContext
|
||||
import androidx.compose.ui.platform.LocalView
|
||||
import androidx.core.view.ViewCompat
|
||||
import androidx.core.view.WindowCompat
|
||||
|
||||
private val DarkColorScheme = darkColorScheme(
|
||||
primary = Purple80,
|
||||
@ -55,8 +55,9 @@ fun WhisperCppDemoTheme(
|
||||
val view = LocalView.current
|
||||
if (!view.isInEditMode) {
|
||||
SideEffect {
|
||||
(view.context as Activity).window.statusBarColor = colorScheme.primary.toArgb()
|
||||
ViewCompat.getWindowInsetsController(view)?.isAppearanceLightStatusBars = darkTheme
|
||||
val window = (view.context as Activity).window
|
||||
window.statusBarColor = colorScheme.primary.toArgb()
|
||||
WindowCompat.getInsetsController(window, view).isAppearanceLightStatusBars = darkTheme
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -18,7 +18,9 @@ class WhisperContext private constructor(private var ptr: Long) {
|
||||
|
||||
suspend fun transcribeData(data: FloatArray): String = withContext(scope.coroutineContext) {
|
||||
require(ptr != 0L)
|
||||
WhisperLib.fullTranscribe(ptr, data)
|
||||
val numThreads = WhisperCpuConfig.preferredThreadCount
|
||||
Log.d(LOG_TAG, "Selecting $numThreads threads")
|
||||
WhisperLib.fullTranscribe(ptr, numThreads, data)
|
||||
val textCount = WhisperLib.getTextSegmentCount(ptr)
|
||||
return@withContext buildString {
|
||||
for (i in 0 until textCount) {
|
||||
@ -126,7 +128,7 @@ private class WhisperLib {
|
||||
external fun initContextFromAsset(assetManager: AssetManager, assetPath: String): Long
|
||||
external fun initContext(modelPath: String): Long
|
||||
external fun freeContext(contextPtr: Long)
|
||||
external fun fullTranscribe(contextPtr: Long, audioData: FloatArray)
|
||||
external fun fullTranscribe(contextPtr: Long, numThreads: Int, audioData: FloatArray)
|
||||
external fun getTextSegmentCount(contextPtr: Long): Int
|
||||
external fun getTextSegment(contextPtr: Long, index: Int): String
|
||||
external fun getSystemInfo(): String
|
||||
|
@ -0,0 +1,73 @@
|
||||
package com.whispercppdemo.whisper
|
||||
|
||||
import android.util.Log
|
||||
import java.io.BufferedReader
|
||||
import java.io.FileReader
|
||||
|
||||
object WhisperCpuConfig {
|
||||
val preferredThreadCount: Int
|
||||
// Always use at least 2 threads:
|
||||
get() = CpuInfo.getHighPerfCpuCount().coerceAtLeast(2)
|
||||
}
|
||||
|
||||
private class CpuInfo(private val lines: List<String>) {
|
||||
private fun getHighPerfCpuCount(): Int = try {
|
||||
getHighPerfCpuCountByFrequencies()
|
||||
} catch (e: Exception) {
|
||||
Log.d(LOG_TAG, "Couldn't read CPU frequencies", e)
|
||||
getHighPerfCpuCountByVariant()
|
||||
}
|
||||
|
||||
private fun getHighPerfCpuCountByFrequencies(): Int =
|
||||
getCpuValues(property = "processor") { getMaxCpuFrequency(it.toInt()) }
|
||||
.also { Log.d(LOG_TAG, "Binned cpu frequencies (frequency, count): ${it.binnedValues()}") }
|
||||
.countDroppingMin()
|
||||
|
||||
private fun getHighPerfCpuCountByVariant(): Int =
|
||||
getCpuValues(property = "CPU variant") { it.substringAfter("0x").toInt(radix = 16) }
|
||||
.also { Log.d(LOG_TAG, "Binned cpu variants (variant, count): ${it.binnedValues()}") }
|
||||
.countKeepingMin()
|
||||
|
||||
private fun List<Int>.binnedValues() = groupingBy { it }.eachCount()
|
||||
|
||||
private fun getCpuValues(property: String, mapper: (String) -> Int) = lines
|
||||
.asSequence()
|
||||
.filter { it.startsWith(property) }
|
||||
.map { mapper(it.substringAfter(':').trim()) }
|
||||
.sorted()
|
||||
.toList()
|
||||
|
||||
|
||||
private fun List<Int>.countDroppingMin(): Int {
|
||||
val min = min()
|
||||
return count { it > min }
|
||||
}
|
||||
|
||||
private fun List<Int>.countKeepingMin(): Int {
|
||||
val min = min()
|
||||
return count { it == min }
|
||||
}
|
||||
|
||||
companion object {
|
||||
private const val LOG_TAG = "WhisperCpuConfig"
|
||||
|
||||
fun getHighPerfCpuCount(): Int = try {
|
||||
readCpuInfo().getHighPerfCpuCount()
|
||||
} catch (e: Exception) {
|
||||
Log.d(LOG_TAG, "Couldn't read CPU info", e)
|
||||
// Our best guess -- just return the # of CPUs minus 4.
|
||||
(Runtime.getRuntime().availableProcessors() - 4).coerceAtLeast(0)
|
||||
}
|
||||
|
||||
private fun readCpuInfo() = CpuInfo(
|
||||
BufferedReader(FileReader("/proc/cpuinfo"))
|
||||
.useLines { it.toList() }
|
||||
)
|
||||
|
||||
private fun getMaxCpuFrequency(cpuIndex: Int): Int {
|
||||
val path = "/sys/devices/system/cpu/cpu${cpuIndex}/cpufreq/cpuinfo_max_freq"
|
||||
val maxFreq = BufferedReader(FileReader(path)).use { it.readLine() }
|
||||
return maxFreq.toInt()
|
||||
}
|
||||
}
|
||||
}
|
@ -8,6 +8,7 @@ set(WHISPER_LIB_DIR ${CMAKE_SOURCE_DIR}/../../../../../../../)
|
||||
set(
|
||||
SOURCE_FILES
|
||||
${WHISPER_LIB_DIR}/ggml.c
|
||||
${WHISPER_LIB_DIR}/ggml-alloc.c
|
||||
${WHISPER_LIB_DIR}/whisper.cpp
|
||||
${CMAKE_SOURCE_DIR}/jni.c
|
||||
)
|
||||
@ -20,7 +21,7 @@ function(build_library target_name)
|
||||
SHARED
|
||||
${SOURCE_FILES}
|
||||
)
|
||||
|
||||
|
||||
target_link_libraries(${target_name} ${LOG_LIB} android)
|
||||
|
||||
if (${target_name} STREQUAL "whisper_v8fp16_va")
|
||||
|
@ -163,16 +163,12 @@ Java_com_whispercppdemo_whisper_WhisperLib_00024Companion_freeContext(
|
||||
|
||||
JNIEXPORT void JNICALL
|
||||
Java_com_whispercppdemo_whisper_WhisperLib_00024Companion_fullTranscribe(
|
||||
JNIEnv *env, jobject thiz, jlong context_ptr, jfloatArray audio_data) {
|
||||
JNIEnv *env, jobject thiz, jlong context_ptr, jint num_threads, jfloatArray audio_data) {
|
||||
UNUSED(thiz);
|
||||
struct whisper_context *context = (struct whisper_context *) context_ptr;
|
||||
jfloat *audio_data_arr = (*env)->GetFloatArrayElements(env, audio_data, NULL);
|
||||
const jsize audio_data_length = (*env)->GetArrayLength(env, audio_data);
|
||||
|
||||
// Leave 2 processors free (i.e. the high-efficiency cores).
|
||||
int max_threads = max(1, min(8, get_nprocs() - 2));
|
||||
LOGI("Selecting %d threads", max_threads);
|
||||
|
||||
// The below adapted from the Objective-C iOS sample
|
||||
struct whisper_full_params params = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
|
||||
params.print_realtime = true;
|
||||
@ -181,7 +177,7 @@ Java_com_whispercppdemo_whisper_WhisperLib_00024Companion_fullTranscribe(
|
||||
params.print_special = false;
|
||||
params.translate = false;
|
||||
params.language = "en";
|
||||
params.n_threads = max_threads;
|
||||
params.n_threads = num_threads;
|
||||
params.offset_ms = 0;
|
||||
params.no_context = true;
|
||||
params.single_segment = false;
|
||||
|
@ -1,10 +0,0 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<resources>
|
||||
<color name="purple_200">#FFBB86FC</color>
|
||||
<color name="purple_500">#FF6200EE</color>
|
||||
<color name="purple_700">#FF3700B3</color>
|
||||
<color name="teal_200">#FF03DAC5</color>
|
||||
<color name="teal_700">#FF018786</color>
|
||||
<color name="black">#FF000000</color>
|
||||
<color name="white">#FFFFFFFF</color>
|
||||
</resources>
|
@ -1,6 +1,6 @@
|
||||
// Top-level build file where you can add configuration options common to all sub-projects/modules.
|
||||
plugins {
|
||||
id 'com.android.application' version '7.3.1' apply false
|
||||
id 'com.android.library' version '7.3.1' apply false
|
||||
id 'org.jetbrains.kotlin.android' version '1.7.10' apply false
|
||||
id 'com.android.application' version '8.1.1' apply false
|
||||
id 'com.android.library' version '8.1.1' apply false
|
||||
id 'org.jetbrains.kotlin.android' version '1.9.0' apply false
|
||||
}
|
@ -1,6 +1,6 @@
|
||||
#Wed Dec 14 10:37:24 EST 2022
|
||||
distributionBase=GRADLE_USER_HOME
|
||||
distributionUrl=https\://services.gradle.org/distributions/gradle-7.4-bin.zip
|
||||
distributionUrl=https\://services.gradle.org/distributions/gradle-8.2-bin.zip
|
||||
distributionPath=wrapper/dists
|
||||
zipStorePath=wrapper/dists
|
||||
zipStoreBase=GRADLE_USER_HOME
|
||||
|
@ -28,6 +28,8 @@ This can significantly improve the performance of the transcription:
|
||||
|
||||
<img width="1072" alt="image" src="https://user-images.githubusercontent.com/1991296/208511239-8d7cdbd1-aa48-41b5-becd-ca288d53cc07.png">
|
||||
|
||||
## Core ML
|
||||
|
||||
If you want to enable Core ML support, you can add the `-DWHISPER_USE_COREML -DWHISPER_COREML_ALLOW_FALLBACK` compiler flag for `whisper.cpp` in Build Phases:
|
||||
|
||||
<img width="1072" alt="image" src="https://github.com/ggerganov/whisper.cpp/assets/3001525/103e8f57-6eb6-490d-a60c-f6cf6c319324">
|
||||
@ -35,3 +37,13 @@ If you want to enable Core ML support, you can add the `-DWHISPER_USE_COREML -DW
|
||||
Then follow the [`Core ML support` section of readme](../../README.md#core-ml-support) for convert the model.
|
||||
|
||||
In this project, it also added `-O3 -DNDEBUG` to `Other C Flags`, but adding flags to app proj is not ideal in real world (applies to all C/C++ files), consider splitting xcodeproj in workspace in your own project.
|
||||
|
||||
## Metal
|
||||
|
||||
You can also enable Metal to make the inference run on the GPU of your device. This might or might not be more efficient
|
||||
compared to Core ML depending on the model and device that you use.
|
||||
|
||||
To enable Metal, just add `-DGGML_USE_METAL` instead off the `-DWHISPER_USE_COREML` flag and you are ready.
|
||||
This will make both the Encoder and the Decoder run on the GPU.
|
||||
|
||||
If you want to run the Encoder with Core ML and the Decoder with Metal then simply add both `-DWHISPER_USE_COREML -DGGML_USE_METAL` flags. That's all!
|
||||
|
@ -7,6 +7,9 @@
|
||||
objects = {
|
||||
|
||||
/* Begin PBXBuildFile section */
|
||||
1844471A2AB211A2007D6BFE /* ggml-alloc.c in Sources */ = {isa = PBXBuildFile; fileRef = 184447182AB211A2007D6BFE /* ggml-alloc.c */; };
|
||||
1844471C2AB21655007D6BFE /* ggml-metal.m in Sources */ = {isa = PBXBuildFile; fileRef = 1844471B2AB21655007D6BFE /* ggml-metal.m */; settings = {COMPILER_FLAGS = "-framework Foundation -framework Metal -framework MetalKit -fno-objc-arc"; }; };
|
||||
184447212AB21B43007D6BFE /* ggml-metal.metal in CopyFiles */ = {isa = PBXBuildFile; fileRef = 1844471D2AB2195F007D6BFE /* ggml-metal.metal */; };
|
||||
18627C7B29052BDF00BD2A04 /* AppDelegate.m in Sources */ = {isa = PBXBuildFile; fileRef = 18627C7A29052BDF00BD2A04 /* AppDelegate.m */; };
|
||||
18627C7E29052BDF00BD2A04 /* SceneDelegate.m in Sources */ = {isa = PBXBuildFile; fileRef = 18627C7D29052BDF00BD2A04 /* SceneDelegate.m */; };
|
||||
18627C8129052BDF00BD2A04 /* ViewController.m in Sources */ = {isa = PBXBuildFile; fileRef = 18627C8029052BDF00BD2A04 /* ViewController.m */; };
|
||||
@ -14,7 +17,7 @@
|
||||
18627C8629052BE000BD2A04 /* Assets.xcassets in Resources */ = {isa = PBXBuildFile; fileRef = 18627C8529052BE000BD2A04 /* Assets.xcassets */; };
|
||||
18627C8929052BE000BD2A04 /* LaunchScreen.storyboard in Resources */ = {isa = PBXBuildFile; fileRef = 18627C8729052BE000BD2A04 /* LaunchScreen.storyboard */; };
|
||||
18627C8C29052BE000BD2A04 /* main.m in Sources */ = {isa = PBXBuildFile; fileRef = 18627C8B29052BE000BD2A04 /* main.m */; };
|
||||
18627C9429052C4900BD2A04 /* whisper.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 18627C9329052C4900BD2A04 /* whisper.cpp */; settings = {COMPILER_FLAGS = "-DWHISPER_USE_COREML -DWHISPER_COREML_ALLOW_FALLBACK"; }; };
|
||||
18627C9429052C4900BD2A04 /* whisper.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 18627C9329052C4900BD2A04 /* whisper.cpp */; settings = {COMPILER_FLAGS = "-DWHISPER_USE_COREML"; }; };
|
||||
18627C9629052C5800BD2A04 /* ggml.c in Sources */ = {isa = PBXBuildFile; fileRef = 18627C9529052C5800BD2A04 /* ggml.c */; settings = {COMPILER_FLAGS = "-DGGML_USE_ACCELERATE"; }; };
|
||||
18627C9B29052CFF00BD2A04 /* ggml-base.en.bin in Resources */ = {isa = PBXBuildFile; fileRef = 18627C9A29052CFF00BD2A04 /* ggml-base.en.bin */; };
|
||||
7FE3424B2A0C3FA20015A058 /* whisper-encoder-impl.m in Sources */ = {isa = PBXBuildFile; fileRef = 7FE342452A0C3FA20015A058 /* whisper-encoder-impl.m */; };
|
||||
@ -23,7 +26,24 @@
|
||||
7FE3424F2A0C418A0015A058 /* ggml-base.en-encoder.mlmodelc in Resources */ = {isa = PBXBuildFile; fileRef = 7FE3424E2A0C418A0015A058 /* ggml-base.en-encoder.mlmodelc */; };
|
||||
/* End PBXBuildFile section */
|
||||
|
||||
/* Begin PBXCopyFilesBuildPhase section */
|
||||
184447202AB21B25007D6BFE /* CopyFiles */ = {
|
||||
isa = PBXCopyFilesBuildPhase;
|
||||
buildActionMask = 2147483647;
|
||||
dstPath = "";
|
||||
dstSubfolderSpec = 7;
|
||||
files = (
|
||||
184447212AB21B43007D6BFE /* ggml-metal.metal in CopyFiles */,
|
||||
);
|
||||
runOnlyForDeploymentPostprocessing = 0;
|
||||
};
|
||||
/* End PBXCopyFilesBuildPhase section */
|
||||
|
||||
/* Begin PBXFileReference section */
|
||||
184447182AB211A2007D6BFE /* ggml-alloc.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; name = "ggml-alloc.c"; path = "../../../ggml-alloc.c"; sourceTree = "<group>"; };
|
||||
184447192AB211A2007D6BFE /* ggml-alloc.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-alloc.h"; path = "../../../ggml-alloc.h"; sourceTree = "<group>"; };
|
||||
1844471B2AB21655007D6BFE /* ggml-metal.m */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.objc; name = "ggml-metal.m"; path = "../../../ggml-metal.m"; sourceTree = "<group>"; };
|
||||
1844471D2AB2195F007D6BFE /* ggml-metal.metal */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.metal; name = "ggml-metal.metal"; path = "../../../ggml-metal.metal"; sourceTree = "<group>"; };
|
||||
18627C7629052BDF00BD2A04 /* whisper.objc.app */ = {isa = PBXFileReference; explicitFileType = wrapper.application; includeInIndex = 0; path = whisper.objc.app; sourceTree = BUILT_PRODUCTS_DIR; };
|
||||
18627C7929052BDF00BD2A04 /* AppDelegate.h */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.h; path = AppDelegate.h; sourceTree = "<group>"; };
|
||||
18627C7A29052BDF00BD2A04 /* AppDelegate.m */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.objc; path = AppDelegate.m; sourceTree = "<group>"; };
|
||||
@ -80,6 +100,10 @@
|
||||
18627C7829052BDF00BD2A04 /* whisper.objc */ = {
|
||||
isa = PBXGroup;
|
||||
children = (
|
||||
1844471D2AB2195F007D6BFE /* ggml-metal.metal */,
|
||||
1844471B2AB21655007D6BFE /* ggml-metal.m */,
|
||||
184447182AB211A2007D6BFE /* ggml-alloc.c */,
|
||||
184447192AB211A2007D6BFE /* ggml-alloc.h */,
|
||||
7FE3424E2A0C418A0015A058 /* ggml-base.en-encoder.mlmodelc */,
|
||||
7FE342442A0C3FA20015A058 /* coreml */,
|
||||
18627C9A29052CFF00BD2A04 /* ggml-base.en.bin */,
|
||||
@ -126,6 +150,7 @@
|
||||
18627C7229052BDF00BD2A04 /* Sources */,
|
||||
18627C7329052BDF00BD2A04 /* Frameworks */,
|
||||
18627C7429052BDF00BD2A04 /* Resources */,
|
||||
184447202AB21B25007D6BFE /* CopyFiles */,
|
||||
);
|
||||
buildRules = (
|
||||
);
|
||||
@ -194,8 +219,10 @@
|
||||
18627C9629052C5800BD2A04 /* ggml.c in Sources */,
|
||||
18627C7B29052BDF00BD2A04 /* AppDelegate.m in Sources */,
|
||||
7FE3424D2A0C3FA20015A058 /* whisper-decoder-impl.m in Sources */,
|
||||
1844471A2AB211A2007D6BFE /* ggml-alloc.c in Sources */,
|
||||
18627C8C29052BE000BD2A04 /* main.m in Sources */,
|
||||
18627C7E29052BDF00BD2A04 /* SceneDelegate.m in Sources */,
|
||||
1844471C2AB21655007D6BFE /* ggml-metal.m in Sources */,
|
||||
7FE3424B2A0C3FA20015A058 /* whisper-encoder-impl.m in Sources */,
|
||||
);
|
||||
runOnlyForDeploymentPostprocessing = 0;
|
||||
|
@ -20,6 +20,7 @@
|
||||
0AAC5DCC29539EB1003032C3 /* ggml.c in Sources */ = {isa = PBXBuildFile; fileRef = 0AAC5DC929539EB0003032C3 /* ggml.c */; settings = {COMPILER_FLAGS = "-DGGML_USE_ACCELERATE -Wno-shorten-64-to-32"; }; };
|
||||
0AAC5DCE2953A05C003032C3 /* WhisperState.swift in Sources */ = {isa = PBXBuildFile; fileRef = 0AAC5DCD2953A05C003032C3 /* WhisperState.swift */; };
|
||||
0AAC5DD12953A394003032C3 /* LibWhisper.swift in Sources */ = {isa = PBXBuildFile; fileRef = 0AAC5DD02953A394003032C3 /* LibWhisper.swift */; };
|
||||
18AED4812AB21F2B009D854F /* ggml-alloc.c in Sources */ = {isa = PBXBuildFile; fileRef = 18AED47F2AB21F2B009D854F /* ggml-alloc.c */; };
|
||||
/* End PBXBuildFile section */
|
||||
|
||||
/* Begin PBXFileReference section */
|
||||
@ -41,6 +42,8 @@
|
||||
0AAC5DCA29539EB0003032C3 /* ggml.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = ggml.h; sourceTree = "<group>"; };
|
||||
0AAC5DCD2953A05C003032C3 /* WhisperState.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = WhisperState.swift; sourceTree = "<group>"; };
|
||||
0AAC5DD02953A394003032C3 /* LibWhisper.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = LibWhisper.swift; sourceTree = "<group>"; };
|
||||
18AED47F2AB21F2B009D854F /* ggml-alloc.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; path = "ggml-alloc.c"; sourceTree = "<group>"; };
|
||||
18AED4802AB21F2B009D854F /* ggml-alloc.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = "ggml-alloc.h"; sourceTree = "<group>"; };
|
||||
/* End PBXFileReference section */
|
||||
|
||||
/* Begin PBXFrameworksBuildPhase section */
|
||||
@ -124,6 +127,8 @@
|
||||
0AAC5DC529539E89003032C3 /* whisper.cpp */ = {
|
||||
isa = PBXGroup;
|
||||
children = (
|
||||
18AED47F2AB21F2B009D854F /* ggml-alloc.c */,
|
||||
18AED4802AB21F2B009D854F /* ggml-alloc.h */,
|
||||
0AAC5DC929539EB0003032C3 /* ggml.c */,
|
||||
0AAC5DCA29539EB0003032C3 /* ggml.h */,
|
||||
0AAC5DC729539EB0003032C3 /* whisper.cpp */,
|
||||
@ -242,6 +247,7 @@
|
||||
0AA7514C2953B569001EE061 /* RiffWaveUtils.swift in Sources */,
|
||||
0AAC5DCB29539EB1003032C3 /* whisper.cpp in Sources */,
|
||||
0AA7514E2953D958001EE061 /* Recorder.swift in Sources */,
|
||||
18AED4812AB21F2B009D854F /* ggml-alloc.c in Sources */,
|
||||
);
|
||||
runOnlyForDeploymentPostprocessing = 0;
|
||||
};
|
||||
@ -369,7 +375,7 @@
|
||||
CODE_SIGN_STYLE = Automatic;
|
||||
CURRENT_PROJECT_VERSION = 1;
|
||||
DEVELOPMENT_ASSET_PATHS = "\"whisper.swiftui.demo/Supporting files/Preview Content\"";
|
||||
DEVELOPMENT_TEAM = 3TZ9BM962G;
|
||||
DEVELOPMENT_TEAM = P8JZH34X63;
|
||||
ENABLE_HARDENED_RUNTIME = YES;
|
||||
ENABLE_PREVIEWS = YES;
|
||||
GENERATE_INFOPLIST_FILE = YES;
|
||||
@ -410,7 +416,7 @@
|
||||
CODE_SIGN_STYLE = Automatic;
|
||||
CURRENT_PROJECT_VERSION = 1;
|
||||
DEVELOPMENT_ASSET_PATHS = "\"whisper.swiftui.demo/Supporting files/Preview Content\"";
|
||||
DEVELOPMENT_TEAM = 3TZ9BM962G;
|
||||
DEVELOPMENT_TEAM = P8JZH34X63;
|
||||
ENABLE_HARDENED_RUNTIME = YES;
|
||||
ENABLE_PREVIEWS = YES;
|
||||
GENERATE_INFOPLIST_FILE = YES;
|
||||
|
@ -44,27 +44,26 @@ if [ "$encoder_only" -eq 0 ]; then
|
||||
printf "\n"
|
||||
fi
|
||||
|
||||
printf "| CPU | OS | Config | Model | Th | Load | Enc. | Commit |\n"
|
||||
printf "| --- | -- | ------ | ----- | -- | ---- | ---- | ------ |\n"
|
||||
printf "| %6s | %6s | %16s | %11s | %3s | %7s | %7s | %7s | %7s |\n" "CPU" "OS" "Config" "Model" "Th" "Enc." "Dec." "PP" "Commit"
|
||||
printf "| %6s | %6s | %16s | %11s | %3s | %7s | %7s | %7s | %7s |\n" "---" "---" "---" "---" "---" "---" "---" "---" "---"
|
||||
|
||||
for model in "${models[@]}"; do
|
||||
# run once to heat-up the cache
|
||||
./bench -m ./models/ggml-$model.bin -t $n_threads 2>/dev/null 1>/dev/null
|
||||
|
||||
# actual run
|
||||
# store stderr output in a variable in order to parse it later
|
||||
output=$(./bench -m ./models/ggml-$model.bin -t $n_threads 2>&1)
|
||||
ret=$?
|
||||
|
||||
# parse the output:
|
||||
load_time=$(echo "$output" | grep "load time" | awk '{print $5}')
|
||||
encode_time=$(echo "$output" | grep "encode time" | awk '{print $5}')
|
||||
encode_time=$(echo "$output" | grep "encode time" | awk '{print $11}')
|
||||
decode_time=$(echo "$output" | grep "decode time" | awk '{print $11}')
|
||||
prompt_time=$(echo "$output" | grep "prompt time" | awk '{print $11}')
|
||||
system_info=$(echo "$output" | grep "system_info")
|
||||
n_threads=$(echo "$output" | grep "system_info" | awk '{print $4}')
|
||||
|
||||
# floor to milliseconds
|
||||
load_time=${load_time%.*}
|
||||
encode_time=${encode_time%.*}
|
||||
#encode_time=${encode_time%.*}
|
||||
#decode_time=${decode_time%.*}
|
||||
#prompt_time=${prompt_time%.*}
|
||||
|
||||
config=""
|
||||
|
||||
@ -84,9 +83,13 @@ for model in "${models[@]}"; do
|
||||
config="$config COREML"
|
||||
fi
|
||||
|
||||
if [[ $system_info == *"METAL = 1"* ]]; then
|
||||
config="$config METAL"
|
||||
fi
|
||||
|
||||
commit=$(git rev-parse --short HEAD)
|
||||
|
||||
if [ $ret -eq 0 ]; then
|
||||
printf "| <todo> | <todo> | $config | $model | $n_threads | $load_time | $encode_time | $commit |\n"
|
||||
printf "| <todo> | <todo> | %16s | %11s | %3s | %7s | %7s | %7s | %7s |\n" "$config" "$model" "$n_threads" "$encode_time" "$decode_time" "$prompt_time" "$commit"
|
||||
fi
|
||||
done
|
||||
|
222
extra/bench.py
Normal file
222
extra/bench.py
Normal file
@ -0,0 +1,222 @@
|
||||
import os
|
||||
import subprocess
|
||||
import re
|
||||
import csv
|
||||
import wave
|
||||
import contextlib
|
||||
import argparse
|
||||
|
||||
|
||||
# Custom action to handle comma-separated list
|
||||
class ListAction(argparse.Action):
|
||||
def __call__(self, parser, namespace, values, option_string=None):
|
||||
setattr(namespace, self.dest, [int(val) for val in values.split(",")])
|
||||
|
||||
|
||||
parser = argparse.ArgumentParser(description="Benchmark the speech recognition model")
|
||||
|
||||
# Define the argument to accept a list
|
||||
parser.add_argument(
|
||||
"-t",
|
||||
"--threads",
|
||||
dest="threads",
|
||||
action=ListAction,
|
||||
default=[4],
|
||||
help="List of thread counts to benchmark (comma-separated, default: 4)",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"-p",
|
||||
"--processors",
|
||||
dest="processors",
|
||||
action=ListAction,
|
||||
default=[1],
|
||||
help="List of processor counts to benchmark (comma-separated, default: 1)",
|
||||
)
|
||||
|
||||
|
||||
parser.add_argument(
|
||||
"-f",
|
||||
"--filename",
|
||||
type=str,
|
||||
default="./samples/jfk.wav",
|
||||
help="Relative path of the file to transcribe (default: ./samples/jfk.wav)",
|
||||
)
|
||||
|
||||
# Parse the command line arguments
|
||||
args = parser.parse_args()
|
||||
|
||||
sample_file = args.filename
|
||||
|
||||
threads = args.threads
|
||||
processors = args.processors
|
||||
|
||||
# Define the models, threads, and processor counts to benchmark
|
||||
models = [
|
||||
"ggml-tiny.en.bin",
|
||||
"ggml-tiny.bin",
|
||||
"ggml-base.en.bin",
|
||||
"ggml-base.bin",
|
||||
"ggml-small.en.bin",
|
||||
"ggml-small.bin",
|
||||
"ggml-medium.en.bin",
|
||||
"ggml-medium.bin",
|
||||
"ggml-large.bin",
|
||||
]
|
||||
|
||||
|
||||
metal_device = ""
|
||||
|
||||
# Initialize a dictionary to hold the results
|
||||
results = {}
|
||||
|
||||
gitHashHeader = "Commit"
|
||||
modelHeader = "Model"
|
||||
hardwareHeader = "Hardware"
|
||||
recordingLengthHeader = "Recording Length (seconds)"
|
||||
threadHeader = "Thread"
|
||||
processorCountHeader = "Processor Count"
|
||||
loadTimeHeader = "Load Time (ms)"
|
||||
sampleTimeHeader = "Sample Time (ms)"
|
||||
encodeTimeHeader = "Encode Time (ms)"
|
||||
decodeTimeHeader = "Decode Time (ms)"
|
||||
sampleTimePerRunHeader = "Sample Time per Run (ms)"
|
||||
encodeTimePerRunHeader = "Encode Time per Run (ms)"
|
||||
decodeTimePerRunHeader = "Decode Time per Run (ms)"
|
||||
totalTimeHeader = "Total Time (ms)"
|
||||
|
||||
|
||||
def check_file_exists(file: str) -> bool:
|
||||
return os.path.isfile(file)
|
||||
|
||||
|
||||
def get_git_short_hash() -> str:
|
||||
try:
|
||||
return (
|
||||
subprocess.check_output(["git", "rev-parse", "--short", "HEAD"])
|
||||
.decode()
|
||||
.strip()
|
||||
)
|
||||
except subprocess.CalledProcessError as e:
|
||||
return ""
|
||||
|
||||
|
||||
def wav_file_length(file: str = sample_file) -> float:
|
||||
with contextlib.closing(wave.open(file, "r")) as f:
|
||||
frames = f.getnframes()
|
||||
rate = f.getframerate()
|
||||
duration = frames / float(rate)
|
||||
return duration
|
||||
|
||||
|
||||
def extract_metrics(output: str, label: str) -> tuple[float, float]:
|
||||
match = re.search(rf"{label} \s*=\s*(\d+\.\d+)\s*ms\s*/\s*(\d+)\s*runs", output)
|
||||
time = float(match.group(1)) if match else None
|
||||
runs = float(match.group(2)) if match else None
|
||||
return time, runs
|
||||
|
||||
|
||||
def extract_device(output: str) -> str:
|
||||
match = re.search(r"picking default device: (.*)", output)
|
||||
device = match.group(1) if match else "Not found"
|
||||
return device
|
||||
|
||||
|
||||
# Check if the sample file exists
|
||||
if not check_file_exists(sample_file):
|
||||
raise FileNotFoundError(f"Sample file {sample_file} not found")
|
||||
|
||||
recording_length = wav_file_length()
|
||||
|
||||
|
||||
# Check that all models exist
|
||||
# Filter out models from list that are not downloaded
|
||||
filtered_models = []
|
||||
for model in models:
|
||||
if check_file_exists(f"models/{model}"):
|
||||
filtered_models.append(model)
|
||||
else:
|
||||
print(f"Model {model} not found, removing from list")
|
||||
|
||||
models = filtered_models
|
||||
|
||||
# Loop over each combination of parameters
|
||||
for model in filtered_models:
|
||||
for thread in threads:
|
||||
for processor_count in processors:
|
||||
# Construct the command to run
|
||||
cmd = f"./main -m models/{model} -t {thread} -p {processor_count} -f {sample_file}"
|
||||
# Run the command and get the output
|
||||
process = subprocess.Popen(
|
||||
cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT
|
||||
)
|
||||
|
||||
output = ""
|
||||
while process.poll() is None:
|
||||
output += process.stdout.read().decode()
|
||||
|
||||
# Parse the output
|
||||
load_time_match = re.search(r"load time\s*=\s*(\d+\.\d+)\s*ms", output)
|
||||
load_time = float(load_time_match.group(1)) if load_time_match else None
|
||||
|
||||
metal_device = extract_device(output)
|
||||
sample_time, sample_runs = extract_metrics(output, "sample time")
|
||||
encode_time, encode_runs = extract_metrics(output, "encode time")
|
||||
decode_time, decode_runs = extract_metrics(output, "decode time")
|
||||
|
||||
total_time_match = re.search(r"total time\s*=\s*(\d+\.\d+)\s*ms", output)
|
||||
total_time = float(total_time_match.group(1)) if total_time_match else None
|
||||
|
||||
model_name = model.replace("ggml-", "").replace(".bin", "")
|
||||
|
||||
print(
|
||||
f"Ran model={model_name} threads={thread} processor_count={processor_count}, took {total_time}ms"
|
||||
)
|
||||
# Store the times in the results dictionary
|
||||
results[(model_name, thread, processor_count)] = {
|
||||
loadTimeHeader: load_time,
|
||||
sampleTimeHeader: sample_time,
|
||||
encodeTimeHeader: encode_time,
|
||||
decodeTimeHeader: decode_time,
|
||||
sampleTimePerRunHeader: round(sample_time / sample_runs, 2),
|
||||
encodeTimePerRunHeader: round(encode_time / encode_runs, 2),
|
||||
decodeTimePerRunHeader: round(decode_time / decode_runs, 2),
|
||||
totalTimeHeader: total_time,
|
||||
}
|
||||
|
||||
# Write the results to a CSV file
|
||||
with open("benchmark_results.csv", "w", newline="") as csvfile:
|
||||
fieldnames = [
|
||||
gitHashHeader,
|
||||
modelHeader,
|
||||
hardwareHeader,
|
||||
recordingLengthHeader,
|
||||
threadHeader,
|
||||
processorCountHeader,
|
||||
loadTimeHeader,
|
||||
sampleTimeHeader,
|
||||
encodeTimeHeader,
|
||||
decodeTimeHeader,
|
||||
sampleTimePerRunHeader,
|
||||
encodeTimePerRunHeader,
|
||||
decodeTimePerRunHeader,
|
||||
totalTimeHeader,
|
||||
]
|
||||
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
|
||||
|
||||
writer.writeheader()
|
||||
|
||||
shortHash = get_git_short_hash()
|
||||
# Sort the results by total time in ascending order
|
||||
sorted_results = sorted(results.items(), key=lambda x: x[1].get(totalTimeHeader, 0))
|
||||
for params, times in sorted_results:
|
||||
row = {
|
||||
gitHashHeader: shortHash,
|
||||
modelHeader: params[0],
|
||||
hardwareHeader: metal_device,
|
||||
recordingLengthHeader: recording_length,
|
||||
threadHeader: params[1],
|
||||
processorCountHeader: params[2],
|
||||
}
|
||||
row.update(times)
|
||||
writer.writerow(row)
|
@ -1,18 +1,20 @@
|
||||
#!/bin/bash
|
||||
|
||||
cp -rpv ../ggml/src/ggml.c ./ggml.c
|
||||
cp -rpv ../ggml/src/ggml-cuda.h ./ggml-cuda.h
|
||||
cp -rpv ../ggml/src/ggml-cuda.cu ./ggml-cuda.cu
|
||||
cp -rpv ../ggml/src/ggml-opencl.h ./ggml-opencl.h
|
||||
cp -rpv ../ggml/src/ggml-opencl.cpp ./ggml-opencl.cpp
|
||||
cp -rpv ../ggml/src/ggml-metal.h ./ggml-metal.h
|
||||
cp -rpv ../ggml/src/ggml-metal.m ./ggml-metal.m
|
||||
cp -rpv ../ggml/src/ggml-metal.metal ./ggml-metal.metal
|
||||
cp -rpv ../ggml/include/ggml/ggml.h ./ggml.h
|
||||
cp -rpv ../ggml/examples/common.h ./examples/common.h
|
||||
cp -rpv ../ggml/examples/common.cpp ./examples/common.cpp
|
||||
cp -rpv ../ggml/examples/common-ggml.h ./examples/common-ggml.h
|
||||
cp -rpv ../ggml/examples/common-ggml.cpp ./examples/common-ggml.cpp
|
||||
cp -rpv ../ggml/src/ggml.c ./ggml.c
|
||||
cp -rpv ../ggml/src/ggml-alloc.c ./ggml-alloc.c
|
||||
cp -rpv ../ggml/src/ggml-cuda.h ./ggml-cuda.h
|
||||
cp -rpv ../ggml/src/ggml-cuda.cu ./ggml-cuda.cu
|
||||
cp -rpv ../ggml/src/ggml-opencl.h ./ggml-opencl.h
|
||||
cp -rpv ../ggml/src/ggml-opencl.cpp ./ggml-opencl.cpp
|
||||
cp -rpv ../ggml/src/ggml-metal.h ./ggml-metal.h
|
||||
cp -rpv ../ggml/src/ggml-metal.m ./ggml-metal.m
|
||||
cp -rpv ../ggml/src/ggml-metal.metal ./ggml-metal.metal
|
||||
cp -rpv ../ggml/include/ggml/ggml.h ./ggml.h
|
||||
cp -rpv ../ggml/include/ggml/ggml-alloc.h ./ggml-alloc.h
|
||||
cp -rpv ../ggml/examples/common.h ./examples/common.h
|
||||
cp -rpv ../ggml/examples/common.cpp ./examples/common.cpp
|
||||
cp -rpv ../ggml/examples/common-ggml.h ./examples/common-ggml.h
|
||||
cp -rpv ../ggml/examples/common-ggml.cpp ./examples/common-ggml.cpp
|
||||
|
||||
cp -rpv ../ggml/examples/whisper/whisper.h ./whisper.h
|
||||
cp -rpv ../ggml/examples/whisper/whisper.cpp ./whisper.cpp
|
||||
|
633
ggml-alloc.c
Normal file
633
ggml-alloc.c
Normal file
@ -0,0 +1,633 @@
|
||||
#include "ggml-alloc.h"
|
||||
#include "ggml.h"
|
||||
#include <assert.h>
|
||||
#include <stdarg.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
#ifdef __has_include
|
||||
#if __has_include(<unistd.h>)
|
||||
#include <unistd.h>
|
||||
#if defined(_POSIX_MAPPED_FILES)
|
||||
#include <sys/types.h>
|
||||
#include <sys/mman.h>
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(_WIN32)
|
||||
#define WIN32_LEAN_AND_MEAN
|
||||
#ifndef NOMINMAX
|
||||
#define NOMINMAX
|
||||
#endif
|
||||
#include <windows.h>
|
||||
#include <memoryapi.h>
|
||||
#endif
|
||||
|
||||
|
||||
#define UNUSED(x) (void)(x)
|
||||
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
||||
#define GGML_MAX_CONCUR (2*GGML_MAX_NODES)
|
||||
|
||||
//#define GGML_ALLOCATOR_DEBUG
|
||||
|
||||
//#define AT_PRINTF printf
|
||||
#define AT_PRINTF(...) ((void)0)
|
||||
|
||||
struct hash_node {
|
||||
struct ggml_tensor * t;
|
||||
int n_children;
|
||||
int n_views;
|
||||
};
|
||||
|
||||
static size_t hash(void * p) {
|
||||
return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
|
||||
}
|
||||
|
||||
static struct hash_node * hash_get(struct hash_node hash_table[], struct ggml_tensor * t) {
|
||||
size_t h = hash(t);
|
||||
|
||||
// linear probing
|
||||
size_t i = h;
|
||||
while (hash_table[i].t != NULL) {
|
||||
if (hash_table[i].t == t) {
|
||||
return &hash_table[i];
|
||||
}
|
||||
i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
|
||||
if (i == h) {
|
||||
// hash table is full
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
}
|
||||
|
||||
hash_table[i].t = t;
|
||||
return &hash_table[i];
|
||||
}
|
||||
|
||||
// TODO: GGML_PAD ?
|
||||
static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) {
|
||||
assert(alignment && !(alignment & (alignment - 1))); // power of 2
|
||||
size_t align = (alignment - (((uintptr_t)buffer + offset) % alignment)) % alignment;
|
||||
return offset + align;
|
||||
}
|
||||
|
||||
struct free_block {
|
||||
void * addr;
|
||||
size_t size;
|
||||
};
|
||||
|
||||
#define MAX_FREE_BLOCKS 128
|
||||
|
||||
struct ggml_allocr {
|
||||
void * data;
|
||||
size_t size;
|
||||
size_t alignment;
|
||||
int n_free_blocks;
|
||||
struct free_block free_blocks[MAX_FREE_BLOCKS];
|
||||
struct hash_node hash_table[GGML_GRAPH_HASHTABLE_SIZE];
|
||||
size_t max_size;
|
||||
bool measure;
|
||||
int parse_seq[GGML_MAX_CONCUR];
|
||||
int parse_seq_len;
|
||||
|
||||
#ifdef GGML_ALLOCATOR_DEBUG
|
||||
struct ggml_tensor * allocated_tensors[1024];
|
||||
#endif
|
||||
};
|
||||
|
||||
#ifdef GGML_ALLOCATOR_DEBUG
|
||||
static void add_allocated_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
|
||||
for (int i = 0; i < 1024; i++) {
|
||||
if (alloc->allocated_tensors[i] == NULL) {
|
||||
alloc->allocated_tensors[i] = tensor;
|
||||
return;
|
||||
}
|
||||
}
|
||||
GGML_ASSERT(!"out of allocated_tensors");
|
||||
}
|
||||
static void remove_allocated_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
|
||||
for (int i = 0; i < 1024; i++) {
|
||||
if (alloc->allocated_tensors[i] == tensor ||
|
||||
(alloc->allocated_tensors[i] != NULL && alloc->allocated_tensors[i]->data == tensor->data)) {
|
||||
alloc->allocated_tensors[i] = NULL;
|
||||
return;
|
||||
}
|
||||
}
|
||||
printf("tried to free tensor %s not found\n", tensor->name);
|
||||
GGML_ASSERT(!"tensor not found");
|
||||
}
|
||||
#endif
|
||||
|
||||
static size_t ggml_allocr_get_alloc_size(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
|
||||
return ggml_nbytes(tensor);
|
||||
|
||||
UNUSED(alloc);
|
||||
}
|
||||
|
||||
// check if a tensor is allocated by this buffer
|
||||
static bool ggml_allocr_is_own(struct ggml_allocr * alloc, const struct ggml_tensor * tensor) {
|
||||
void * ptr = tensor->data;
|
||||
return ptr >= alloc->data && (char *)ptr < (char *)alloc->data + alloc->max_size;
|
||||
}
|
||||
|
||||
static bool ggml_is_view(struct ggml_tensor * t) {
|
||||
return t->view_src != NULL;
|
||||
}
|
||||
|
||||
void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
|
||||
#ifdef GGML_ALLOCATOR_DEBUG
|
||||
GGML_ASSERT(!ggml_is_view(tensor)); // views generally get data pointer from one of their sources
|
||||
GGML_ASSERT(tensor->data == NULL); // avoid allocating tensor which already has memory allocated
|
||||
#endif
|
||||
size_t size = ggml_allocr_get_alloc_size(alloc, tensor);
|
||||
size = aligned_offset(NULL, size, alloc->alignment);
|
||||
|
||||
AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size);
|
||||
|
||||
size_t max_avail = 0;
|
||||
|
||||
// find the best fitting free block besides the last block
|
||||
int best_fit_block = -1;
|
||||
size_t best_fit_size = SIZE_MAX;
|
||||
for (int i = 0; i < alloc->n_free_blocks - 1; i++) {
|
||||
struct free_block * block = &alloc->free_blocks[i];
|
||||
max_avail = MAX(max_avail, block->size);
|
||||
if (block->size >= size && block->size <= best_fit_size) {
|
||||
best_fit_block = i;
|
||||
best_fit_size = block->size;
|
||||
}
|
||||
}
|
||||
|
||||
AT_PRINTF("block %d\n", best_fit_block);
|
||||
|
||||
if (best_fit_block == -1) {
|
||||
// the last block is our last resort
|
||||
struct free_block * block = &alloc->free_blocks[alloc->n_free_blocks - 1];
|
||||
max_avail = MAX(max_avail, block->size);
|
||||
if (block->size >= size) {
|
||||
best_fit_block = alloc->n_free_blocks - 1;
|
||||
} else {
|
||||
fprintf(stderr, "%s: not enough space in the buffer (needed %zu, largest block available %zu)\n",
|
||||
__func__, size, max_avail);
|
||||
GGML_ASSERT(!"not enough space in the buffer");
|
||||
return;
|
||||
}
|
||||
}
|
||||
struct free_block * block = &alloc->free_blocks[best_fit_block];
|
||||
void * addr = block->addr;
|
||||
block->addr = (char*)block->addr + size;
|
||||
block->size -= size;
|
||||
if (block->size == 0) {
|
||||
// remove block if empty
|
||||
alloc->n_free_blocks--;
|
||||
for (int j = best_fit_block; j < alloc->n_free_blocks; j++) {
|
||||
alloc->free_blocks[j] = alloc->free_blocks[j+1];
|
||||
}
|
||||
}
|
||||
|
||||
tensor->data = addr;
|
||||
|
||||
#ifdef GGML_ALLOCATOR_DEBUG
|
||||
add_allocated_tensor(alloc, tensor);
|
||||
size_t cur_max = (char*)addr - (char*)alloc->data + size;
|
||||
if (cur_max > alloc->max_size) {
|
||||
printf("max_size = %.2f MB: tensors: ", cur_max / 1024.0 / 1024.0);
|
||||
for (int i = 0; i < 1024; i++) {
|
||||
if (alloc->allocated_tensors[i]) {
|
||||
printf("%s (%.2f MB) ", alloc->allocated_tensors[i]->name, ggml_nbytes(alloc->allocated_tensors[i]) / 1024.0 / 1024.0);
|
||||
}
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
#endif
|
||||
|
||||
alloc->max_size = MAX(alloc->max_size, (char*)addr - (char*)alloc->data + size);
|
||||
}
|
||||
|
||||
// this is a very naive implementation, but for our case the number of free blocks should be very small
|
||||
static void ggml_allocr_free_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
|
||||
void * ptr = tensor->data;
|
||||
|
||||
if (ggml_allocr_is_own(alloc, tensor) == false) {
|
||||
// the tensor was not allocated in this buffer
|
||||
// this can happen because the graph allocator will try to free weights and other tensors from different buffers
|
||||
// the easiest way to deal with this is just to ignore it
|
||||
return;
|
||||
}
|
||||
|
||||
size_t size = ggml_allocr_get_alloc_size(alloc, tensor);
|
||||
size = aligned_offset(NULL, size, alloc->alignment);
|
||||
AT_PRINTF("%s: freeing %s (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, size, alloc->n_free_blocks);
|
||||
|
||||
#ifdef GGML_ALLOCATOR_DEBUG
|
||||
remove_allocated_tensor(alloc, tensor);
|
||||
#endif
|
||||
|
||||
// see if we can merge with an existing block
|
||||
for (int i = 0; i < alloc->n_free_blocks; i++) {
|
||||
struct free_block * block = &alloc->free_blocks[i];
|
||||
// check if ptr is at the end of the block
|
||||
if ((char*)block->addr + block->size == ptr) {
|
||||
block->size += size;
|
||||
// check if we can merge with the next block
|
||||
if (i < alloc->n_free_blocks - 1 && (char*)block->addr + block->size == alloc->free_blocks[i+1].addr) {
|
||||
block->size += alloc->free_blocks[i+1].size;
|
||||
alloc->n_free_blocks--;
|
||||
for (int j = i+1; j < alloc->n_free_blocks; j++) {
|
||||
alloc->free_blocks[j] = alloc->free_blocks[j+1];
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
// check if ptr is at the beginning of the block
|
||||
if ((char*)ptr + size == block->addr) {
|
||||
block->addr = ptr;
|
||||
block->size += size;
|
||||
// check if we can merge with the previous block
|
||||
if (i > 0 && (char*)alloc->free_blocks[i-1].addr + alloc->free_blocks[i-1].size == block->addr) {
|
||||
alloc->free_blocks[i-1].size += block->size;
|
||||
alloc->n_free_blocks--;
|
||||
for (int j = i; j < alloc->n_free_blocks; j++) {
|
||||
alloc->free_blocks[j] = alloc->free_blocks[j+1];
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
}
|
||||
// otherwise, add a new block
|
||||
GGML_ASSERT(alloc->n_free_blocks < MAX_FREE_BLOCKS && "out of free blocks");
|
||||
// insert the new block in the correct position to keep the array sorted by address (to make merging blocks faster)
|
||||
int insert_pos = 0;
|
||||
while (insert_pos < alloc->n_free_blocks && alloc->free_blocks[insert_pos].addr < ptr) {
|
||||
insert_pos++;
|
||||
}
|
||||
// shift all blocks from insert_pos onward to make room for the new block
|
||||
for (int i = alloc->n_free_blocks; i > insert_pos; i--) {
|
||||
alloc->free_blocks[i] = alloc->free_blocks[i-1];
|
||||
}
|
||||
// insert the new block
|
||||
alloc->free_blocks[insert_pos].addr = ptr;
|
||||
alloc->free_blocks[insert_pos].size = size;
|
||||
alloc->n_free_blocks++;
|
||||
}
|
||||
|
||||
void ggml_allocr_set_parse_seq(struct ggml_allocr * alloc, const int * list, int n) {
|
||||
for (int i = 0; i < n; i++) {
|
||||
alloc->parse_seq[i] = list[i];
|
||||
}
|
||||
alloc->parse_seq_len = n;
|
||||
}
|
||||
|
||||
void ggml_allocr_reset(struct ggml_allocr * alloc) {
|
||||
alloc->n_free_blocks = 1;
|
||||
size_t align_offset = aligned_offset(alloc->data, 0, alloc->alignment);
|
||||
alloc->free_blocks[0].addr = (char *)alloc->data + align_offset;
|
||||
alloc->free_blocks[0].size = alloc->size - align_offset;
|
||||
}
|
||||
|
||||
struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment) {
|
||||
struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr) /* + n_free_blocks * sizeof(struct free_block) */);
|
||||
|
||||
*alloc = (struct ggml_allocr){
|
||||
/*.data = */ data,
|
||||
/*.size = */ size,
|
||||
/*.alignment = */ alignment,
|
||||
/*.n_free_blocks = */ 0,
|
||||
/*.free_blocks = */ {{0}},
|
||||
/*.hash_table = */ {{0}},
|
||||
/*.max_size = */ 0,
|
||||
/*.measure = */ false,
|
||||
/*.parse_seq = */ {0},
|
||||
/*.parse_seq_len = */ 0,
|
||||
#ifdef GGML_ALLOCATOR_DEBUG
|
||||
/*.allocated_tensors = */ {0},
|
||||
#endif
|
||||
};
|
||||
|
||||
ggml_allocr_reset(alloc);
|
||||
|
||||
return alloc;
|
||||
}
|
||||
|
||||
// OS specific functions to allocate and free uncommitted virtual memory
|
||||
static void * alloc_vmem(size_t size) {
|
||||
#if defined(_WIN32)
|
||||
return VirtualAlloc(NULL, size, MEM_RESERVE, PAGE_NOACCESS);
|
||||
#elif defined(_POSIX_MAPPED_FILES)
|
||||
void * ptr = mmap(NULL, size, PROT_NONE, MAP_PRIVATE | MAP_ANON, -1, 0);
|
||||
if (ptr == MAP_FAILED) {
|
||||
return NULL;
|
||||
}
|
||||
return ptr;
|
||||
#else
|
||||
// use a fixed address for other platforms
|
||||
uintptr_t base_addr = (uintptr_t)-size - 0x100;
|
||||
return (void *)base_addr;
|
||||
#endif
|
||||
}
|
||||
|
||||
static void free_vmem(void * base_addr, size_t size) {
|
||||
#if defined(_WIN32)
|
||||
VirtualFree(base_addr, 0, MEM_RELEASE);
|
||||
UNUSED(size);
|
||||
#elif defined(_POSIX_MAPPED_FILES)
|
||||
munmap(base_addr, size);
|
||||
#else
|
||||
// nothing to do
|
||||
UNUSED(base_addr);
|
||||
UNUSED(size);
|
||||
#endif
|
||||
}
|
||||
|
||||
// allocate uncommitted virtual memory to measure the size of the graph
|
||||
static void alloc_measure_vmem(void ** base_addr, size_t * size) {
|
||||
// 128GB for 64-bit, 1GB for 32-bit
|
||||
*size = sizeof(void *) == 4 ? 1ULL<<30 : 1ULL<<37;
|
||||
do {
|
||||
*base_addr = alloc_vmem(*size);
|
||||
if (*base_addr != NULL) {
|
||||
AT_PRINTF("allocated %.2f GB of virtual memory for measure buffer at %p\n", *size / 1024.0 / 1024.0 / 1024.0, *base_addr);
|
||||
return;
|
||||
}
|
||||
// try again with half the size
|
||||
*size /= 2;
|
||||
} while (*size > 0);
|
||||
|
||||
GGML_ASSERT(!"failed to allocate virtual memory for measure buffer");
|
||||
}
|
||||
|
||||
static void free_measure_vmem(void * base_addr, size_t size) {
|
||||
free_vmem(base_addr, size);
|
||||
}
|
||||
|
||||
struct ggml_allocr * ggml_allocr_new_measure(size_t alignment) {
|
||||
struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr) /* + n_free_blocks * sizeof(struct free_block) */);
|
||||
|
||||
void * base_addr;
|
||||
size_t size;
|
||||
|
||||
alloc_measure_vmem(&base_addr, &size);
|
||||
|
||||
*alloc = (struct ggml_allocr){
|
||||
/*.data = */ base_addr,
|
||||
/*.size = */ size,
|
||||
/*.alignment = */ alignment,
|
||||
/*.n_free_blocks = */ 0,
|
||||
/*.free_blocks = */ {{0}},
|
||||
/*.hash_table = */ {{0}},
|
||||
/*.max_size = */ 0,
|
||||
/*.measure = */ true,
|
||||
/*.parse_seq = */ {0},
|
||||
/*.parse_seq_len = */ 0,
|
||||
#ifdef GGML_ALLOCATOR_DEBUG
|
||||
/*.allocated_tensors = */ {0},
|
||||
#endif
|
||||
};
|
||||
|
||||
ggml_allocr_reset(alloc);
|
||||
|
||||
return alloc;
|
||||
}
|
||||
|
||||
void ggml_allocr_free(struct ggml_allocr * alloc) {
|
||||
if (alloc->measure) {
|
||||
free_measure_vmem(alloc->data, alloc->size);
|
||||
}
|
||||
free(alloc);
|
||||
}
|
||||
|
||||
bool ggml_allocr_is_measure(struct ggml_allocr * alloc) {
|
||||
return alloc->measure;
|
||||
}
|
||||
|
||||
//////////// compute graph allocator
|
||||
|
||||
static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
|
||||
if (a->type != b->type) {
|
||||
return false;
|
||||
}
|
||||
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
||||
if (a->ne[i] != b->ne[i]) {
|
||||
return false;
|
||||
}
|
||||
if (a->nb[i] != b->nb[i]) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool ggml_op_can_inplace(enum ggml_op op) {
|
||||
switch (op) {
|
||||
case GGML_OP_SCALE:
|
||||
case GGML_OP_DIAG_MASK_ZERO:
|
||||
case GGML_OP_DIAG_MASK_INF:
|
||||
case GGML_OP_ADD:
|
||||
case GGML_OP_ADD1:
|
||||
case GGML_OP_SUB:
|
||||
case GGML_OP_MUL:
|
||||
case GGML_OP_DIV:
|
||||
case GGML_OP_SQR:
|
||||
case GGML_OP_SQRT:
|
||||
case GGML_OP_LOG:
|
||||
case GGML_OP_UNARY:
|
||||
case GGML_OP_ROPE:
|
||||
case GGML_OP_RMS_NORM:
|
||||
case GGML_OP_SOFT_MAX:
|
||||
case GGML_OP_CONT:
|
||||
return true;
|
||||
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node) {
|
||||
struct hash_node * ht = alloc->hash_table;
|
||||
if (node->data == NULL) {
|
||||
if (ggml_is_view(node)) {
|
||||
assert(node->view_src->data != NULL);
|
||||
node->data = (char *)node->view_src->data + node->view_offs;
|
||||
} else {
|
||||
// see if we can reuse a parent's buffer (inplace)
|
||||
if (ggml_op_can_inplace(node->op)) {
|
||||
for (int i = 0; i < GGML_MAX_SRC; i++) {
|
||||
struct ggml_tensor * parent = node->src[i];
|
||||
if (parent == NULL) {
|
||||
break;
|
||||
}
|
||||
|
||||
// if the node's data is external, then we cannot re-use it
|
||||
if (ggml_allocr_is_own(alloc, parent) == false) {
|
||||
AT_PRINTF("not reusing parent %s for %s as %p is external\n", parent->name, node->name, parent->data);
|
||||
continue;
|
||||
}
|
||||
|
||||
struct hash_node * p_hn = hash_get(ht, parent);
|
||||
if (parent->data != NULL && p_hn->n_children == 1 && p_hn->n_views == 0 && ggml_are_same_layout(node, parent)) {
|
||||
if (ggml_is_view(parent)) {
|
||||
struct ggml_tensor * view_src = parent->view_src;
|
||||
struct hash_node * view_src_hn = hash_get(ht, view_src);
|
||||
if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) {
|
||||
// TODO: the offset of the view parent must be kept to ensure that the op doesn't overwrite
|
||||
// the parent's data that it will need later (same layout requirement). the problem is that then
|
||||
// we cannot free the tensor because the original address of the allocation is lost.
|
||||
// adding a view_src pointer to the tensor would solve this and simplify the code dealing with views
|
||||
// for now, we only reuse the parent's data if the offset is zero (view_src->data == parent->data)
|
||||
AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name);
|
||||
node->data = parent->data;
|
||||
return;
|
||||
}
|
||||
}
|
||||
else {
|
||||
AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name);
|
||||
node->data = parent->data;
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
ggml_allocr_alloc(alloc, node);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static size_t ggml_allocr_alloc_graph_tensors_n(
|
||||
struct ggml_allocr * alloc,
|
||||
struct ggml_cgraph ** graphs, int n_graphs,
|
||||
struct ggml_tensor *** inputs, struct ggml_tensor *** outputs) {
|
||||
|
||||
// reset hash table
|
||||
struct hash_node * ht = alloc->hash_table;
|
||||
memset(ht, 0, sizeof(struct hash_node) * GGML_GRAPH_HASHTABLE_SIZE);
|
||||
|
||||
// count number of children and views
|
||||
for (int g = 0; g < n_graphs; g++) {
|
||||
struct ggml_cgraph * gf = graphs[g];
|
||||
for (int i = 0; i < gf->n_nodes; i++) {
|
||||
struct ggml_tensor * node = gf->nodes[i];
|
||||
|
||||
if (ggml_is_view(node)) {
|
||||
struct ggml_tensor * view_src = node->view_src;
|
||||
hash_get(ht, view_src)->n_views += 1;
|
||||
}
|
||||
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * parent = node->src[j];
|
||||
if (parent == NULL) {
|
||||
break;
|
||||
}
|
||||
hash_get(ht, parent)->n_children += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// allocate tensors
|
||||
for (int g = 0; g < n_graphs; g++) {
|
||||
struct ggml_cgraph * gf = graphs[g];
|
||||
AT_PRINTF("####### graph %d/%d\n", g, n_graphs);
|
||||
// graph inputs are allocated first to ensure that they are not overwritten by each other
|
||||
if (inputs != NULL && inputs[g] != NULL) {
|
||||
for (int i = 0; inputs[g][i] != NULL; i++) {
|
||||
struct ggml_tensor * input = inputs[g][i];
|
||||
AT_PRINTF("input: %s\n", input->name);
|
||||
allocate_node(alloc, input);
|
||||
}
|
||||
}
|
||||
// if we have parse_seq then we allocate nodes following the list, and we only free nodes at barriers
|
||||
int last_barrier_pos = 0;
|
||||
int n_nodes = alloc->parse_seq_len ? alloc->parse_seq_len : gf->n_nodes;
|
||||
|
||||
for (int ind = 0; ind < n_nodes; ind++) {
|
||||
// allocate a node if there is no parse_seq or this is not a barrier
|
||||
if ((alloc->parse_seq_len==0) || alloc->parse_seq[ind] != -1) {
|
||||
int i = alloc->parse_seq_len ? alloc->parse_seq[ind] : ind;
|
||||
struct ggml_tensor * node = gf->nodes[i];
|
||||
|
||||
// allocate parents (leafs)
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * parent = node->src[j];
|
||||
if (parent == NULL) {
|
||||
break;
|
||||
}
|
||||
allocate_node(alloc, parent);
|
||||
}
|
||||
|
||||
// allocate node
|
||||
allocate_node(alloc, node);
|
||||
|
||||
AT_PRINTF("exec: %s (%s) <= ", ggml_op_name(node->op), node->name);
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * parent = node->src[j];
|
||||
if (parent == NULL) {
|
||||
break;
|
||||
}
|
||||
AT_PRINTF("%s", parent->name);
|
||||
if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) {
|
||||
AT_PRINTF(", ");
|
||||
}
|
||||
}
|
||||
AT_PRINTF("\n");
|
||||
}
|
||||
|
||||
// update parents
|
||||
// update immediately if there is no parse_seq
|
||||
// update only at barriers if there is parse_seq
|
||||
if ((alloc->parse_seq_len == 0) || alloc->parse_seq[ind] == -1) {
|
||||
int update_start = alloc->parse_seq_len ? last_barrier_pos : ind;
|
||||
int update_end = alloc->parse_seq_len ? ind : ind + 1;
|
||||
for (int i = update_start; i < update_end; i++) {
|
||||
int node_i = alloc->parse_seq_len ? alloc->parse_seq[i] : i;
|
||||
struct ggml_tensor * node = gf->nodes[node_i];
|
||||
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * parent = node->src[j];
|
||||
if (parent == NULL) {
|
||||
break;
|
||||
}
|
||||
struct hash_node * p_hn = hash_get(ht, parent);
|
||||
p_hn->n_children -= 1;
|
||||
|
||||
//AT_PRINTF("parent %s: %d children, %d views\n", parent->name, parent->n_children, parent->n_views);
|
||||
|
||||
if (p_hn->n_children == 0 && p_hn->n_views == 0) {
|
||||
if (ggml_is_view(parent)) {
|
||||
struct ggml_tensor * view_src = parent->view_src;
|
||||
struct hash_node * view_src_hn = hash_get(ht, view_src);
|
||||
view_src_hn->n_views -= 1;
|
||||
AT_PRINTF("view_src %s: %d children, %d views\n", view_src->name, view_src_hn->n_children, view_src_hn->n_views);
|
||||
if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src->data != node->data) {
|
||||
ggml_allocr_free_tensor(alloc, view_src);
|
||||
}
|
||||
}
|
||||
else {
|
||||
if (parent->data != node->data) {
|
||||
ggml_allocr_free_tensor(alloc, parent);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
AT_PRINTF("\n");
|
||||
if (alloc->parse_seq_len) {
|
||||
last_barrier_pos = ind + 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
// free graph outputs here that wouldn't be freed otherwise because they have no children
|
||||
if (outputs != NULL && outputs[g] != NULL) {
|
||||
for (int i = 0; outputs[g][i] != NULL; i++) {
|
||||
struct ggml_tensor * output = outputs[g][i];
|
||||
AT_PRINTF("output: %s\n", output->name);
|
||||
ggml_allocr_free_tensor(alloc, output);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return alloc->max_size;
|
||||
}
|
||||
|
||||
size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph) {
|
||||
return ggml_allocr_alloc_graph_tensors_n(alloc, &graph, 1, NULL, NULL);
|
||||
}
|
26
ggml-alloc.h
Normal file
26
ggml-alloc.h
Normal file
@ -0,0 +1,26 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
|
||||
GGML_API struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment);
|
||||
GGML_API struct ggml_allocr * ggml_allocr_new_measure(size_t alignment);
|
||||
|
||||
// tell the allocator to parse nodes following the order described in the list
|
||||
// you should call this if your graph are optimized to execute out-of-order
|
||||
GGML_API void ggml_allocr_set_parse_seq(struct ggml_allocr * alloc, const int * list, int n);
|
||||
|
||||
GGML_API void ggml_allocr_free(struct ggml_allocr * alloc);
|
||||
GGML_API bool ggml_allocr_is_measure(struct ggml_allocr * alloc);
|
||||
GGML_API void ggml_allocr_reset(struct ggml_allocr * alloc);
|
||||
GGML_API void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor);
|
||||
GGML_API size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph);
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
4401
ggml-cuda.cu
4401
ggml-cuda.cu
File diff suppressed because it is too large
Load Diff
46
ggml-cuda.h
46
ggml-cuda.h
@ -2,34 +2,44 @@
|
||||
|
||||
#include "ggml.h"
|
||||
|
||||
#ifdef GGML_USE_HIPBLAS
|
||||
#define GGML_CUDA_NAME "ROCm"
|
||||
#define GGML_CUBLAS_NAME "hipBLAS"
|
||||
#else
|
||||
#define GGML_CUDA_NAME "CUDA"
|
||||
#define GGML_CUBLAS_NAME "cuBLAS"
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define GGML_CUDA_MAX_DEVICES 16
|
||||
|
||||
void ggml_init_cublas(void);
|
||||
void ggml_cuda_set_tensor_split(const float * tensor_split);
|
||||
GGML_API void ggml_init_cublas(void);
|
||||
GGML_API void * ggml_cuda_host_malloc(size_t size);
|
||||
GGML_API void ggml_cuda_host_free(void * ptr);
|
||||
|
||||
void ggml_cuda_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
|
||||
bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
|
||||
size_t ggml_cuda_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
|
||||
void ggml_cuda_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize);
|
||||
GGML_API bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
|
||||
GGML_API void ggml_cuda_set_tensor_split(const float * tensor_split);
|
||||
GGML_API void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_cuda_free_data(struct ggml_tensor * tensor);
|
||||
|
||||
// TODO: export these with GGML_API
|
||||
void * ggml_cuda_host_malloc(size_t size);
|
||||
void ggml_cuda_host_free(void * ptr);
|
||||
GGML_API void ggml_cuda_assign_buffers(struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_cuda_assign_buffers_no_scratch(struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_cuda_assign_buffers_force_inplace(struct ggml_tensor * tensor);
|
||||
|
||||
void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_cuda_assign_buffers_no_alloc(struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_cuda_assign_scratch_offset(struct ggml_tensor * tensor, size_t offset);
|
||||
|
||||
void ggml_cuda_free_data(struct ggml_tensor * tensor);
|
||||
void ggml_cuda_assign_buffers(struct ggml_tensor * tensor);
|
||||
void ggml_cuda_assign_buffers_no_scratch(struct ggml_tensor * tensor);
|
||||
void ggml_cuda_assign_buffers_force_inplace(struct ggml_tensor * tensor);
|
||||
void ggml_cuda_set_main_device(int main_device);
|
||||
void ggml_cuda_set_scratch_size(size_t scratch_size);
|
||||
void ggml_cuda_free_scratch(void);
|
||||
bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_cuda_set_main_device(int main_device);
|
||||
GGML_API void ggml_cuda_set_mul_mat_q(bool mul_mat_q);
|
||||
GGML_API void ggml_cuda_set_scratch_size(size_t scratch_size);
|
||||
GGML_API void ggml_cuda_free_scratch(void);
|
||||
GGML_API bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor);
|
||||
|
||||
GGML_API int ggml_cuda_get_device_count(void);
|
||||
GGML_API void ggml_cuda_get_device_description(int device, char * description, size_t description_size);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
20
ggml-metal.h
20
ggml-metal.h
@ -24,6 +24,7 @@
|
||||
|
||||
// max memory buffers that can be mapped to the device
|
||||
#define GGML_METAL_MAX_BUFFERS 16
|
||||
#define GGML_METAL_MAX_COMMAND_BUFFERS 32
|
||||
|
||||
struct ggml_tensor;
|
||||
struct ggml_cgraph;
|
||||
@ -34,9 +35,16 @@ extern "C" {
|
||||
|
||||
struct ggml_metal_context;
|
||||
|
||||
struct ggml_metal_context * ggml_metal_init(void);
|
||||
// number of command buffers to use
|
||||
struct ggml_metal_context * ggml_metal_init(int n_cb);
|
||||
void ggml_metal_free(struct ggml_metal_context * ctx);
|
||||
|
||||
void * ggml_metal_host_malloc(size_t n);
|
||||
void ggml_metal_host_free (void * data);
|
||||
|
||||
// set the number of command buffers to use
|
||||
void ggml_metal_set_n_cb(struct ggml_metal_context * ctx, int n_cb);
|
||||
|
||||
// creates a mapping between a host memory buffer and a device memory buffer
|
||||
// - make sure to map all buffers used in the graph before calling ggml_metal_graph_compute
|
||||
// - the mapping is used during computation to determine the arguments of the compute kernels
|
||||
@ -57,6 +65,16 @@ void ggml_metal_set_tensor(struct ggml_metal_context * ctx, struct ggml_tensor *
|
||||
// get data from the device into host memory
|
||||
void ggml_metal_get_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t);
|
||||
|
||||
// try to find operations that can be run concurrently in the graph
|
||||
// you should run it again if the topology of your graph changes
|
||||
void ggml_metal_graph_find_concurrency(struct ggml_metal_context * ctx, struct ggml_cgraph * gf, bool check_mem);
|
||||
|
||||
// if the graph has been optimized for concurrently dispatch, return length of the concur_list if optimized
|
||||
int ggml_metal_if_optimized(struct ggml_metal_context * ctx);
|
||||
|
||||
// output the concur_list for ggml_alloc
|
||||
int * ggml_metal_get_concur_list(struct ggml_metal_context * ctx);
|
||||
|
||||
// same as ggml_graph_compute but uses Metal
|
||||
// creates gf->n_threads command buffers in parallel
|
||||
void ggml_metal_graph_compute(struct ggml_metal_context * ctx, struct ggml_cgraph * gf);
|
||||
|
923
ggml-metal.m
923
ggml-metal.m
File diff suppressed because it is too large
Load Diff
2644
ggml-metal.metal
2644
ggml-metal.metal
File diff suppressed because it is too large
Load Diff
@ -656,10 +656,14 @@ __kernel void dequantize_mul_mat_vec_q6_K(__global const struct block_q6_K * xx,
|
||||
\n#if K_QUANTS_PER_ITERATION == 1\n
|
||||
const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15
|
||||
const int is = 0;
|
||||
|
||||
\n#else\n
|
||||
|
||||
const int l0 = 4 * in; // 0, 4, 8, ..., 28
|
||||
const int is = in / 4;
|
||||
|
||||
\n#endif\n
|
||||
|
||||
const int ql_offset = 64*im + l0;
|
||||
const int qh_offset = 32*im + l0;
|
||||
const int s_offset = 8*im + is;
|
||||
@ -1330,7 +1334,7 @@ void ggml_cl_free_data(const struct ggml_tensor* tensor) {
|
||||
return;
|
||||
}
|
||||
|
||||
cl_mem mem = (cl_mem)tensor->data;
|
||||
cl_mem mem = (cl_mem)tensor->extra;
|
||||
clReleaseMemObject(mem);
|
||||
}
|
||||
|
||||
@ -1376,7 +1380,7 @@ static void ggml_cl_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1,
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t ne01 = src0->ne[1];
|
||||
const int64_t ne02 = src0->ne[2];
|
||||
const int64_t ne03 = src0->ne[2];
|
||||
const int64_t ne03 = src0->ne[3];
|
||||
const int64_t ne0 = ne00 * ne01 * ne02 * ne03;
|
||||
const int64_t ne10 = src1->ne[0];
|
||||
const int64_t ne11 = src1->ne[1];
|
||||
@ -1389,7 +1393,7 @@ static void ggml_cl_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1,
|
||||
size_t d_size;
|
||||
|
||||
cl_mem d_X = ggml_cl_pool_malloc(ne0 * sizeof(float), &x_size); // src0
|
||||
cl_mem d_Y = (cl_mem) src1->data; // src1 is already on device, broadcasted.
|
||||
cl_mem d_Y = (cl_mem) src1->extra; // src1 is already on device, broadcasted.
|
||||
cl_mem d_D = ggml_cl_pool_malloc(ne0 * sizeof(float), &d_size); // dst
|
||||
|
||||
|
||||
@ -1487,9 +1491,9 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
|
||||
size_t d_size;
|
||||
cl_mem d_X;
|
||||
if (src0->backend == GGML_BACKEND_GPU) { // NOLINT
|
||||
d_X = (cl_mem) src0->data;
|
||||
d_X = (cl_mem) src0->extra;
|
||||
} else {
|
||||
d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size);
|
||||
d_X = ggml_cl_pool_malloc(sizeof(float) * x_ne, &x_size);
|
||||
}
|
||||
cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
|
||||
cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
|
||||
@ -1563,7 +1567,7 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
|
||||
size_t d_size;
|
||||
cl_mem d_X;
|
||||
if (src0->backend == GGML_BACKEND_GPU) { // NOLINT
|
||||
d_X = (cl_mem) src0->data;
|
||||
d_X = (cl_mem) src0->extra;
|
||||
} else {
|
||||
d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size);
|
||||
}
|
||||
@ -1693,7 +1697,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
|
||||
events.emplace_back();
|
||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, events.data() + ev_idx++));
|
||||
} else if (src0->backend == GGML_BACKEND_GPU) {
|
||||
d_Q = (cl_mem) src0->data;
|
||||
d_Q = (cl_mem) src0->extra;
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
@ -1856,6 +1860,6 @@ void ggml_cl_transform_tensor(void * data, ggml_tensor * tensor) {
|
||||
|
||||
CL_CHECK(clFinish(queue));
|
||||
|
||||
tensor->data = dst;
|
||||
tensor->extra = dst;
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
|
||||
}
|
||||
|
117
models/convert-h5-to-coreml.py
Normal file
117
models/convert-h5-to-coreml.py
Normal file
@ -0,0 +1,117 @@
|
||||
import argparse
|
||||
import importlib.util
|
||||
|
||||
spec = importlib.util.spec_from_file_location('whisper_to_coreml', 'models/convert-whisper-to-coreml.py')
|
||||
whisper_to_coreml = importlib.util.module_from_spec(spec)
|
||||
spec.loader.exec_module(whisper_to_coreml)
|
||||
|
||||
from whisper import load_model
|
||||
|
||||
from copy import deepcopy
|
||||
import torch
|
||||
from transformers import WhisperForConditionalGeneration
|
||||
from huggingface_hub import metadata_update
|
||||
|
||||
# https://github.com/bayartsogt-ya/whisper-multiple-hf-datasets/blob/main/src/multiple_datasets/hub_default_utils.py
|
||||
WHISPER_MAPPING = {
|
||||
"layers": "blocks",
|
||||
"fc1": "mlp.0",
|
||||
"fc2": "mlp.2",
|
||||
"final_layer_norm": "mlp_ln",
|
||||
"layers": "blocks",
|
||||
".self_attn.q_proj": ".attn.query",
|
||||
".self_attn.k_proj": ".attn.key",
|
||||
".self_attn.v_proj": ".attn.value",
|
||||
".self_attn_layer_norm": ".attn_ln",
|
||||
".self_attn.out_proj": ".attn.out",
|
||||
".encoder_attn.q_proj": ".cross_attn.query",
|
||||
".encoder_attn.k_proj": ".cross_attn.key",
|
||||
".encoder_attn.v_proj": ".cross_attn.value",
|
||||
".encoder_attn_layer_norm": ".cross_attn_ln",
|
||||
".encoder_attn.out_proj": ".cross_attn.out",
|
||||
"decoder.layer_norm.": "decoder.ln.",
|
||||
"encoder.layer_norm.": "encoder.ln_post.",
|
||||
"embed_tokens": "token_embedding",
|
||||
"encoder.embed_positions.weight": "encoder.positional_embedding",
|
||||
"decoder.embed_positions.weight": "decoder.positional_embedding",
|
||||
"layer_norm": "ln_post",
|
||||
}
|
||||
|
||||
# https://github.com/bayartsogt-ya/whisper-multiple-hf-datasets/blob/main/src/multiple_datasets/hub_default_utils.py
|
||||
def rename_keys(s_dict):
|
||||
keys = list(s_dict.keys())
|
||||
for key in keys:
|
||||
new_key = key
|
||||
for k, v in WHISPER_MAPPING.items():
|
||||
if k in key:
|
||||
new_key = new_key.replace(k, v)
|
||||
|
||||
print(f"{key} -> {new_key}")
|
||||
|
||||
s_dict[new_key] = s_dict.pop(key)
|
||||
return s_dict
|
||||
|
||||
# https://github.com/bayartsogt-ya/whisper-multiple-hf-datasets/blob/main/src/multiple_datasets/hub_default_utils.py
|
||||
def convert_hf_whisper(hf_model_name_or_path: str, whisper_state_path: str):
|
||||
transformer_model = WhisperForConditionalGeneration.from_pretrained(hf_model_name_or_path)
|
||||
config = transformer_model.config
|
||||
|
||||
# first build dims
|
||||
dims = {
|
||||
'n_mels': config.num_mel_bins,
|
||||
'n_vocab': config.vocab_size,
|
||||
'n_audio_ctx': config.max_source_positions,
|
||||
'n_audio_state': config.d_model,
|
||||
'n_audio_head': config.encoder_attention_heads,
|
||||
'n_audio_layer': config.encoder_layers,
|
||||
'n_text_ctx': config.max_target_positions,
|
||||
'n_text_state': config.d_model,
|
||||
'n_text_head': config.decoder_attention_heads,
|
||||
'n_text_layer': config.decoder_layers
|
||||
}
|
||||
|
||||
state_dict = deepcopy(transformer_model.model.state_dict())
|
||||
state_dict = rename_keys(state_dict)
|
||||
|
||||
torch.save({"dims": dims, "model_state_dict": state_dict}, whisper_state_path)
|
||||
|
||||
# Ported from models/convert-whisper-to-coreml.py
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--model-name", type=str, help="name of model to convert (e.g. tiny, tiny.en, base, base.en, small, small.en, medium, medium.en, large, large-v1)", required=True)
|
||||
parser.add_argument("--model-path", type=str, help="path to the model (e.g. if published on HuggingFace: Oblivion208/whisper-tiny-cantonese)", required=True)
|
||||
parser.add_argument("--encoder-only", type=bool, help="only convert encoder", default=False)
|
||||
parser.add_argument("--quantize", type=bool, help="quantize weights to F16", default=False)
|
||||
parser.add_argument("--optimize-ane", type=bool, help="optimize for ANE execution (currently broken)", default=False)
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.model_name not in ["tiny", "tiny.en", "base", "base.en", "small", "small.en", "medium", "medium.en", "large", "large-v1"]:
|
||||
raise ValueError("Invalid model name")
|
||||
|
||||
pt_target_path = f"models/hf-{args.model_name}.pt"
|
||||
convert_hf_whisper(args.model_path, pt_target_path)
|
||||
|
||||
whisper = load_model(pt_target_path).cpu()
|
||||
hparams = whisper.dims
|
||||
print(hparams)
|
||||
|
||||
if args.optimize_ane:
|
||||
whisperANE = whisper_to_coreml.WhisperANE(hparams).eval()
|
||||
whisperANE.load_state_dict(whisper.state_dict())
|
||||
|
||||
encoder = whisperANE.encoder
|
||||
decoder = whisperANE.decoder
|
||||
else:
|
||||
encoder = whisper.encoder
|
||||
decoder = whisper.decoder
|
||||
|
||||
# Convert encoder
|
||||
encoder = whisper_to_coreml.convert_encoder(hparams, encoder, quantize=args.quantize)
|
||||
encoder.save(f"models/coreml-encoder-{args.model_name}.mlpackage")
|
||||
|
||||
if args.encoder_only is False:
|
||||
# Convert decoder
|
||||
decoder = whisper_to_coreml.convert_decoder(hparams, decoder, quantize=args.quantize)
|
||||
decoder.save(f"models/coreml-decoder-{args.model_name}.mlpackage")
|
||||
|
||||
print("done converting")
|
@ -29,7 +29,7 @@ def convert_encoder(hparams, encoder, mname):
|
||||
|
||||
# use model optimizer to convert onnx to OpenVINO IR format
|
||||
encoder_model = mo.convert_model(onnx_path, compress_to_fp16=True)
|
||||
serialize(encoder_model, xml_path='ggml-' + mname + '-encoder-openvino.xml')
|
||||
serialize(encoder_model, xml_path=os.path.join(os.path.dirname(__file__),"ggml-" + mname + "-encoder-openvino.xml"))
|
||||
|
||||
#cleanup
|
||||
if os.path.isdir(onnx_folder):
|
||||
|
@ -40,7 +40,7 @@ if exist "ggml-%model%.bin" (
|
||||
goto :eof
|
||||
)
|
||||
|
||||
PowerShell -NoProfile -ExecutionPolicy Bypass -Command "Invoke-WebRequest -Uri https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-%model%.bin -OutFile ggml-%model%.bin"
|
||||
PowerShell -NoProfile -ExecutionPolicy Bypass -Command "Start-BitsTransfer -Source https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-%model%.bin -Destination ggml-%model%.bin"
|
||||
|
||||
if %ERRORLEVEL% neq 0 (
|
||||
echo Failed to download ggml model %model%
|
||||
|
@ -22,7 +22,28 @@ function get_script_path() {
|
||||
models_path="$(get_script_path)"
|
||||
|
||||
# Whisper models
|
||||
models=( "tiny.en" "tiny" "base.en" "base" "small.en" "small.en-tdrz" "small" "medium.en" "medium" "large-v1" "large" )
|
||||
models=(
|
||||
"tiny.en"
|
||||
"tiny"
|
||||
"tiny-q5_1"
|
||||
"tiny.en-q5_1"
|
||||
"base.en"
|
||||
"base"
|
||||
"base-q5_1"
|
||||
"base.en-q5_1"
|
||||
"small.en"
|
||||
"small.en-tdrz"
|
||||
"small"
|
||||
"small-q5_1"
|
||||
"small.en-q5_1"
|
||||
"medium"
|
||||
"medium.en"
|
||||
"medium-q5_0"
|
||||
"medium.en-q5_0"
|
||||
"large-v1"
|
||||
"large"
|
||||
"large-q5_0"
|
||||
)
|
||||
|
||||
# list available models
|
||||
function list_models {
|
||||
|
@ -1,11 +1,15 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Usage: ./generate-coreml-model.sh <model-name>
|
||||
if [ $# -eq 0 ]
|
||||
then
|
||||
echo "No model name supplied"
|
||||
echo "Usage: ./generate-coreml-model.sh <model-name>"
|
||||
exit 1
|
||||
if [ $# -eq 0 ]; then
|
||||
echo "No model name supplied"
|
||||
echo "Usage for Whisper models: ./generate-coreml-model.sh <model-name>"
|
||||
echo "Usage for HuggingFace models: ./generate-coreml-model.sh -h5 <model-name> <model-path>"
|
||||
exit 1
|
||||
elif [[ "$1" == "-h5" && $# != 3 ]]; then
|
||||
echo "No model name and model path supplied for a HuggingFace model"
|
||||
echo "Usage for HuggingFace models: ./generate-coreml-model.sh -h5 <model-name> <model-path>"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
mname="$1"
|
||||
@ -13,7 +17,14 @@ mname="$1"
|
||||
wd=$(dirname "$0")
|
||||
cd "$wd/../"
|
||||
|
||||
python3 models/convert-whisper-to-coreml.py --model $mname --encoder-only True
|
||||
if [[ $mname == "-h5" ]]; then
|
||||
mname="$2"
|
||||
mpath="$3"
|
||||
echo $mpath
|
||||
python3 models/convert-h5-to-coreml.py --model-name $mname --model-path $mpath --encoder-only True
|
||||
else
|
||||
python3 models/convert-whisper-to-coreml.py --model $mname --encoder-only True
|
||||
fi
|
||||
|
||||
xcrun coremlc compile models/coreml-encoder-${mname}.mlpackage models/
|
||||
rm -rf models/ggml-${mname}-encoder.mlmodelc
|
||||
|
1871
whisper.cpp
1871
whisper.cpp
File diff suppressed because it is too large
Load Diff
10
whisper.h
10
whisper.h
@ -334,6 +334,11 @@ extern "C" {
|
||||
// If it returns false, the computation is aborted
|
||||
typedef bool (*whisper_encoder_begin_callback)(struct whisper_context * ctx, struct whisper_state * state, void * user_data);
|
||||
|
||||
// Abort callback
|
||||
// If not NULL, called before ggml computation
|
||||
// If it returns true, the computation is aborted
|
||||
typedef bool (*whisper_abort_callback)(void * user_data);
|
||||
|
||||
// Logits filter callback
|
||||
// Can be used to modify the logits before sampling
|
||||
// If not NULL, called after applying temperature to logits
|
||||
@ -428,6 +433,10 @@ extern "C" {
|
||||
whisper_encoder_begin_callback encoder_begin_callback;
|
||||
void * encoder_begin_callback_user_data;
|
||||
|
||||
// called each time before ggml computation starts
|
||||
whisper_abort_callback abort_callback;
|
||||
void * abort_callback_user_data;
|
||||
|
||||
// called by each decoder to filter obtained logits
|
||||
whisper_logits_filter_callback logits_filter_callback;
|
||||
void * logits_filter_callback_user_data;
|
||||
@ -485,6 +494,7 @@ extern "C" {
|
||||
|
||||
// Get whether the next segment is predicted as a speaker turn
|
||||
WHISPER_API bool whisper_full_get_segment_speaker_turn_next(struct whisper_context * ctx, int i_segment);
|
||||
WHISPER_API bool whisper_full_get_segment_speaker_turn_next_from_state(struct whisper_state * state, int i_segment);
|
||||
|
||||
// Get the text of the specified segment
|
||||
WHISPER_API const char * whisper_full_get_segment_text (struct whisper_context * ctx, int i_segment);
|
||||
|
Reference in New Issue
Block a user