mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-07-02 07:20:13 +02:00
Compare commits
130 Commits
Author | SHA1 | Date | |
---|---|---|---|
c23588cc4b | |||
5108b30e6d | |||
f19e23fbd1 | |||
ea1f8a50d4 | |||
3dead611bb | |||
355da83690 | |||
3e5c49e59a | |||
5e47e223bd | |||
794ff3074a | |||
7e2afa4384 | |||
1c5edc3cb3 | |||
34b772727d | |||
2c856fb9e5 | |||
7727a40dc9 | |||
b5639ed313 | |||
2c4ac2627d | |||
674a8e579b | |||
001083a769 | |||
62b51c3070 | |||
61128870b8 | |||
78548dc03f | |||
66110dafcc | |||
b73a4638ac | |||
5f16420333 | |||
ccb47e7e10 | |||
677ad754a0 | |||
514cd04452 | |||
6704a81255 | |||
463e46338c | |||
2f889132c6 | |||
ebef1e8620 | |||
114df388fe | |||
ea36831459 | |||
69b8503935 | |||
0a2d1210bc | |||
859ffc994e | |||
5e6e2187a3 | |||
a7f1f33715 | |||
86ecfc6333 | |||
18e6fb0287 | |||
0f759f125d | |||
eefed45e37 | |||
aac1710afb | |||
21c1e6afc5 | |||
a47e812a54 | |||
42c6855103 | |||
0be9cd3497 | |||
e5c197d8aa | |||
7cd1d3bc34 | |||
82637b8e9f | |||
4a0deb8b1e | |||
8e361d90d7 | |||
fc49c44426 | |||
aec01bb337 | |||
21165580a1 | |||
1d749919e3 | |||
d4fa0d92ad | |||
a5e60c019d | |||
8fcd1a3b32 | |||
992aa2cd1b | |||
4aa3bcf8a4 | |||
1beff6f66d | |||
09e9068007 | |||
fa9d43181f | |||
bb6b54a03d | |||
b597c5a779 | |||
a3fb6c507f | |||
59fdcd19c8 | |||
478289a4b3 | |||
5e94129cb2 | |||
72af0f5697 | |||
af005d573f | |||
ad1389003d | |||
f420de1322 | |||
d176160f6f | |||
ca21f7ab16 | |||
373043cabe | |||
fb4d0d470f | |||
0d229163bb | |||
f254e78737 | |||
a94897bcde | |||
2407ae8ef0 | |||
b623ca43b1 | |||
69e6e4644a | |||
09d7d2b68e | |||
0336161b7d | |||
459753342d | |||
9764782bd9 | |||
3b010f9bed | |||
113fcec513 | |||
cfc06bf8df | |||
2bfe0ebc0f | |||
4dd7119deb | |||
ab1916fc59 | |||
a1c1583cc7 | |||
d012b5c7e4 | |||
b2083c5d02 | |||
f3ee4a9673 | |||
c306a7fd89 | |||
b2fc4c7010 | |||
291980369c | |||
86ef64a855 | |||
3b1960520a | |||
2bee2650c6 | |||
beb9512be3 | |||
47737b2e82 | |||
b992f3709e | |||
60337f5306 | |||
02c7516c57 | |||
411ea9b833 | |||
11f61cecd6 | |||
b5ddb16ec7 | |||
ae16c21e9c | |||
2c3f50a021 | |||
9a65269a20 | |||
78f166174f | |||
21c569ba4a | |||
1a91c19af9 | |||
f583e2d2f5 | |||
206fc93396 | |||
a6cf6f4c4a | |||
472a473fd1 | |||
9ba66c2fad | |||
1ccb8a46a5 | |||
1290fc6457 | |||
49b529ba74 | |||
8088a977af | |||
c9aeb33676 | |||
4a3f0d3fe9 | |||
874bde887e |
@ -1,13 +1,18 @@
|
||||
name: Bindings Tests
|
||||
name: Bindings Tests (Go)
|
||||
on:
|
||||
push:
|
||||
paths:
|
||||
- bindings/go/**
|
||||
- whisper.h
|
||||
pull_request:
|
||||
paths:
|
||||
- bindings/go/**
|
||||
- whisper.h
|
||||
|
||||
jobs:
|
||||
ubuntu-latest:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
ubuntu-latest:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/setup-go@v3
|
||||
with:
|
||||
go-version: '^1.19'
|
22
.github/workflows/bindings-ruby.yml
vendored
Normal file
22
.github/workflows/bindings-ruby.yml
vendored
Normal file
@ -0,0 +1,22 @@
|
||||
name: Bindings Tests (Ruby)
|
||||
on:
|
||||
push:
|
||||
paths:
|
||||
- bindings/ruby/**
|
||||
- whisper.h
|
||||
pull_request:
|
||||
paths:
|
||||
- bindings/ruby/**
|
||||
- whisper.h
|
||||
|
||||
jobs:
|
||||
ubuntu-latest:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: ruby/setup-ruby@v1
|
||||
with:
|
||||
ruby-version: '3.0'
|
||||
- uses: actions/checkout@v1
|
||||
- run: |
|
||||
cd bindings/ruby/ext
|
||||
ruby extconf.rb && make
|
467
.github/workflows/build.yml
vendored
467
.github/workflows/build.yml
vendored
@ -1,267 +1,308 @@
|
||||
name: CI
|
||||
on: [push]
|
||||
on: [push, pull_request]
|
||||
|
||||
jobs:
|
||||
ubuntu-latest:
|
||||
runs-on: ubuntu-latest
|
||||
ubuntu-latest:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v1
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential
|
||||
sudo apt-get install libsdl2-dev
|
||||
- name: Dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential
|
||||
sudo apt-get install libsdl2-dev
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
make
|
||||
make stream
|
||||
- name: Build
|
||||
run: |
|
||||
make
|
||||
make stream
|
||||
|
||||
macOS-latest:
|
||||
runs-on: macOS-latest
|
||||
macOS-latest:
|
||||
runs-on: macOS-latest
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v1
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Dependencies
|
||||
run: |
|
||||
brew update
|
||||
brew install sdl2
|
||||
- name: Dependencies
|
||||
run: |
|
||||
brew update
|
||||
brew install sdl2
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
make
|
||||
make stream
|
||||
- name: Build
|
||||
run: |
|
||||
make
|
||||
make stream
|
||||
|
||||
ubuntu-latest-gcc:
|
||||
runs-on: ubuntu-latest
|
||||
ubuntu-latest-gcc:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
build: [Debug, Release]
|
||||
strategy:
|
||||
matrix:
|
||||
build: [Debug, Release]
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v1
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential
|
||||
sudo apt-get install cmake
|
||||
sudo apt-get install libsdl2-dev
|
||||
- name: Dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential
|
||||
sudo apt-get install cmake
|
||||
sudo apt-get install libsdl2-dev
|
||||
|
||||
- name: Configure
|
||||
run: cmake . -DWHISPER_SUPPORT_SDL2=ON -DCMAKE_BUILD_TYPE=${{ matrix.build }}
|
||||
- name: Configure
|
||||
run: cmake . -DWHISPER_SUPPORT_SDL2=ON -DCMAKE_BUILD_TYPE=${{ matrix.build }}
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
make
|
||||
ctest -L gh --output-on-failure
|
||||
- name: Build
|
||||
run: |
|
||||
make
|
||||
ctest -L gh --output-on-failure
|
||||
|
||||
ubuntu-latest-clang:
|
||||
runs-on: ubuntu-latest
|
||||
ubuntu-latest-clang:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
build: [Debug, Release]
|
||||
strategy:
|
||||
matrix:
|
||||
build: [Debug, Release]
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v1
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential
|
||||
sudo apt-get install cmake
|
||||
sudo apt-get install libsdl2-dev
|
||||
- name: Dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential
|
||||
sudo apt-get install cmake
|
||||
sudo apt-get install libsdl2-dev
|
||||
|
||||
- name: Configure
|
||||
run: cmake . -DWHISPER_SUPPORT_SDL2=ON -DCMAKE_BUILD_TYPE=${{ matrix.build }} -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_COMPILER=clang
|
||||
- name: Configure
|
||||
run: cmake . -DWHISPER_SUPPORT_SDL2=ON -DCMAKE_BUILD_TYPE=${{ matrix.build }} -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_COMPILER=clang
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
make
|
||||
ctest -L gh --output-on-failure
|
||||
- name: Build
|
||||
run: |
|
||||
make
|
||||
ctest -L gh --output-on-failure
|
||||
|
||||
ubuntu-latest-gcc-sanitized:
|
||||
runs-on: ubuntu-latest
|
||||
ubuntu-latest-gcc-sanitized:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
sanitizer: [ADDRESS, THREAD, UNDEFINED]
|
||||
strategy:
|
||||
matrix:
|
||||
sanitizer: [ADDRESS, THREAD, UNDEFINED]
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v1
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential
|
||||
sudo apt-get install cmake
|
||||
- name: Dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential
|
||||
sudo apt-get install cmake
|
||||
|
||||
- name: Configure
|
||||
run: cmake . -DCMAKE_BUILD_TYPE=Debug -DWHISPER_SANITIZE_${{ matrix.sanitizer }}=ON
|
||||
- name: Configure
|
||||
run: cmake . -DCMAKE_BUILD_TYPE=Debug -DWHISPER_SANITIZE_${{ matrix.sanitizer }}=ON
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
make
|
||||
ctest -L gh --output-on-failure
|
||||
- name: Build
|
||||
run: |
|
||||
make
|
||||
ctest -L gh --output-on-failure
|
||||
|
||||
windows:
|
||||
runs-on: windows-latest
|
||||
windows:
|
||||
runs-on: windows-latest
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
build: [Release]
|
||||
arch: [Win32, x64]
|
||||
sdl2: [ON]
|
||||
include:
|
||||
- arch: Win32
|
||||
s2arc: x86
|
||||
- arch: x64
|
||||
s2arc: x64
|
||||
- sdl2: ON
|
||||
s2ver: 2.26.0
|
||||
strategy:
|
||||
matrix:
|
||||
build: [Release]
|
||||
arch: [Win32, x64]
|
||||
sdl2: [ON]
|
||||
include:
|
||||
- arch: Win32
|
||||
s2arc: x86
|
||||
- arch: x64
|
||||
s2arc: x64
|
||||
- sdl2: ON
|
||||
s2ver: 2.26.0
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v1
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Add msbuild to PATH
|
||||
uses: microsoft/setup-msbuild@v1
|
||||
- name: Add msbuild to PATH
|
||||
uses: microsoft/setup-msbuild@v1
|
||||
|
||||
- name: Fetch SDL2 and set SDL2_DIR
|
||||
if: matrix.sdl2 == 'ON'
|
||||
run: |
|
||||
C:/msys64/usr/bin/wget.exe -qO sdl2.zip https://github.com/libsdl-org/SDL/releases/download/release-${{ matrix.s2ver }}/SDL2-devel-${{ matrix.s2ver }}-VC.zip
|
||||
7z x sdl2.zip
|
||||
echo "SDL2_DIR=$env:GITHUB_WORKSPACE/SDL2-${{ matrix.s2ver }}/cmake" >> $env:GITHUB_ENV
|
||||
- name: Fetch SDL2 and set SDL2_DIR
|
||||
if: matrix.sdl2 == 'ON'
|
||||
run: |
|
||||
C:/msys64/usr/bin/wget.exe -qO sdl2.zip https://github.com/libsdl-org/SDL/releases/download/release-${{ matrix.s2ver }}/SDL2-devel-${{ matrix.s2ver }}-VC.zip
|
||||
7z x sdl2.zip
|
||||
echo "SDL2_DIR=$env:GITHUB_WORKSPACE/SDL2-${{ matrix.s2ver }}/cmake" >> $env:GITHUB_ENV
|
||||
|
||||
- name: Configure
|
||||
run: >
|
||||
cmake -S . -B ./build -A ${{ matrix.arch }}
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build }}
|
||||
-DWHISPER_SUPPORT_SDL2=${{ matrix.sdl2 }}
|
||||
- name: Configure
|
||||
run: >
|
||||
cmake -S . -B ./build -A ${{ matrix.arch }}
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build }}
|
||||
-DWHISPER_SUPPORT_SDL2=${{ matrix.sdl2 }}
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cd ./build
|
||||
msbuild ALL_BUILD.vcxproj -t:build -p:configuration=${{ matrix.build }} -p:platform=${{ matrix.arch }}
|
||||
- name: Build
|
||||
run: |
|
||||
cd ./build
|
||||
msbuild ALL_BUILD.vcxproj -t:build -p:configuration=${{ matrix.build }} -p:platform=${{ matrix.arch }}
|
||||
|
||||
- name: Copy SDL2.dll
|
||||
if: matrix.sdl2 == 'ON'
|
||||
run: copy "$env:SDL2_DIR/../lib/${{ matrix.s2arc }}/SDL2.dll" build/bin/${{ matrix.build }}
|
||||
- name: Copy SDL2.dll
|
||||
if: matrix.sdl2 == 'ON'
|
||||
run: copy "$env:SDL2_DIR/../lib/${{ matrix.s2arc }}/SDL2.dll" build/bin/${{ matrix.build }}
|
||||
|
||||
- name: Upload binaries
|
||||
if: matrix.sdl2 == 'ON'
|
||||
uses: actions/upload-artifact@v1
|
||||
with:
|
||||
name: whisper-bin-${{ matrix.arch }}
|
||||
path: build/bin/${{ matrix.build }}
|
||||
- name: Upload binaries
|
||||
if: matrix.sdl2 == 'ON'
|
||||
uses: actions/upload-artifact@v1
|
||||
with:
|
||||
name: whisper-bin-${{ matrix.arch }}
|
||||
path: build/bin/${{ matrix.build }}
|
||||
|
||||
windows-blas:
|
||||
runs-on: windows-latest
|
||||
windows-blas:
|
||||
runs-on: windows-latest
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
build: [Release]
|
||||
arch: [Win32, x64]
|
||||
blas: [ON]
|
||||
sdl2: [ON]
|
||||
include:
|
||||
- arch: Win32
|
||||
obzip: https://github.com/xianyi/OpenBLAS/releases/download/v0.3.21/OpenBLAS-0.3.21-x86.zip
|
||||
s2arc: x86
|
||||
- arch: x64
|
||||
obzip: https://github.com/xianyi/OpenBLAS/releases/download/v0.3.21/OpenBLAS-0.3.21-x64.zip
|
||||
s2arc: x64
|
||||
- sdl2: ON
|
||||
s2ver: 2.26.0
|
||||
strategy:
|
||||
matrix:
|
||||
build: [Release]
|
||||
arch: [Win32, x64]
|
||||
blas: [ON]
|
||||
sdl2: [ON]
|
||||
include:
|
||||
- arch: Win32
|
||||
obzip: https://github.com/xianyi/OpenBLAS/releases/download/v0.3.21/OpenBLAS-0.3.21-x86.zip
|
||||
s2arc: x86
|
||||
- arch: x64
|
||||
obzip: https://github.com/xianyi/OpenBLAS/releases/download/v0.3.21/OpenBLAS-0.3.21-x64.zip
|
||||
s2arc: x64
|
||||
- sdl2: ON
|
||||
s2ver: 2.26.0
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v1
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Add msbuild to PATH
|
||||
uses: microsoft/setup-msbuild@v1
|
||||
- name: Add msbuild to PATH
|
||||
uses: microsoft/setup-msbuild@v1
|
||||
|
||||
- name: Fetch OpenBLAS
|
||||
if: matrix.blas == 'ON'
|
||||
run: |
|
||||
C:/msys64/usr/bin/wget.exe -qO blas.zip ${{ matrix.obzip }}
|
||||
7z x blas.zip -oblas -y
|
||||
copy blas/include/cblas.h .
|
||||
copy blas/include/openblas_config.h .
|
||||
echo "blasdir=$env:GITHUB_WORKSPACE/blas" >> $env:GITHUB_ENV
|
||||
- name: Fetch OpenBLAS
|
||||
if: matrix.blas == 'ON'
|
||||
run: |
|
||||
C:/msys64/usr/bin/wget.exe -qO blas.zip ${{ matrix.obzip }}
|
||||
7z x blas.zip -oblas -y
|
||||
copy blas/include/cblas.h .
|
||||
copy blas/include/openblas_config.h .
|
||||
echo "blasdir=$env:GITHUB_WORKSPACE/blas" >> $env:GITHUB_ENV
|
||||
|
||||
- name: Fetch SDL2 and set SDL2_DIR
|
||||
if: matrix.sdl2 == 'ON'
|
||||
run: |
|
||||
C:/msys64/usr/bin/wget.exe -qO sdl2.zip https://github.com/libsdl-org/SDL/releases/download/release-${{ matrix.s2ver }}/SDL2-devel-${{ matrix.s2ver }}-VC.zip
|
||||
7z x sdl2.zip
|
||||
echo "SDL2_DIR=$env:GITHUB_WORKSPACE/SDL2-${{ matrix.s2ver }}/cmake" >> $env:GITHUB_ENV
|
||||
- name: Fetch SDL2 and set SDL2_DIR
|
||||
if: matrix.sdl2 == 'ON'
|
||||
run: |
|
||||
C:/msys64/usr/bin/wget.exe -qO sdl2.zip https://github.com/libsdl-org/SDL/releases/download/release-${{ matrix.s2ver }}/SDL2-devel-${{ matrix.s2ver }}-VC.zip
|
||||
7z x sdl2.zip
|
||||
echo "SDL2_DIR=$env:GITHUB_WORKSPACE/SDL2-${{ matrix.s2ver }}/cmake" >> $env:GITHUB_ENV
|
||||
|
||||
- name: Configure
|
||||
run: >
|
||||
cmake -S . -B ./build -A ${{ matrix.arch }}
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build }}
|
||||
-DWHISPER_SUPPORT_OPENBLAS=${{ matrix.blas }}
|
||||
-DCMAKE_LIBRARY_PATH="$env:blasdir/lib"
|
||||
-DWHISPER_SUPPORT_SDL2=${{ matrix.sdl2 }}
|
||||
- name: Configure
|
||||
run: >
|
||||
cmake -S . -B ./build -A ${{ matrix.arch }}
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build }}
|
||||
-DWHISPER_SUPPORT_OPENBLAS=${{ matrix.blas }}
|
||||
-DCMAKE_LIBRARY_PATH="$env:blasdir/lib"
|
||||
-DWHISPER_SUPPORT_SDL2=${{ matrix.sdl2 }}
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cd ./build
|
||||
msbuild ALL_BUILD.vcxproj -t:build -p:configuration=${{ matrix.build }} -p:platform=${{ matrix.arch }}
|
||||
- name: Build
|
||||
run: |
|
||||
cd ./build
|
||||
msbuild ALL_BUILD.vcxproj -t:build -p:configuration=${{ matrix.build }} -p:platform=${{ matrix.arch }}
|
||||
|
||||
- name: Copy libopenblas.dll
|
||||
if: matrix.blas == 'ON'
|
||||
run: copy "$env:blasdir/bin/libopenblas.dll" build/bin/${{ matrix.build }}
|
||||
- name: Copy libopenblas.dll
|
||||
if: matrix.blas == 'ON'
|
||||
run: copy "$env:blasdir/bin/libopenblas.dll" build/bin/${{ matrix.build }}
|
||||
|
||||
- name: Copy SDL2.dll
|
||||
if: matrix.sdl2 == 'ON'
|
||||
run: copy "$env:SDL2_DIR/../lib/${{ matrix.s2arc }}/SDL2.dll" build/bin/${{ matrix.build }}
|
||||
- name: Copy SDL2.dll
|
||||
if: matrix.sdl2 == 'ON'
|
||||
run: copy "$env:SDL2_DIR/../lib/${{ matrix.s2arc }}/SDL2.dll" build/bin/${{ matrix.build }}
|
||||
|
||||
- name: Upload binaries
|
||||
if: matrix.blas == 'ON' && matrix.sdl2 == 'ON'
|
||||
uses: actions/upload-artifact@v1
|
||||
with:
|
||||
name: whisper-blas-bin-${{ matrix.arch }}
|
||||
path: build/bin/${{ matrix.build }}
|
||||
- name: Upload binaries
|
||||
if: matrix.blas == 'ON' && matrix.sdl2 == 'ON'
|
||||
uses: actions/upload-artifact@v1
|
||||
with:
|
||||
name: whisper-blas-bin-${{ matrix.arch }}
|
||||
path: build/bin/${{ matrix.build }}
|
||||
|
||||
emscripten:
|
||||
runs-on: ubuntu-latest
|
||||
emscripten:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
build: [Release]
|
||||
strategy:
|
||||
matrix:
|
||||
build: [Release]
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v1
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Dependencies
|
||||
run: |
|
||||
wget -q https://github.com/emscripten-core/emsdk/archive/master.tar.gz
|
||||
tar -xvf master.tar.gz
|
||||
emsdk-master/emsdk update
|
||||
emsdk-master/emsdk install latest
|
||||
emsdk-master/emsdk activate latest
|
||||
- name: Dependencies
|
||||
run: |
|
||||
wget -q https://github.com/emscripten-core/emsdk/archive/master.tar.gz
|
||||
tar -xvf master.tar.gz
|
||||
emsdk-master/emsdk update
|
||||
emsdk-master/emsdk install latest
|
||||
emsdk-master/emsdk activate latest
|
||||
|
||||
- name: Configure
|
||||
run: echo "tmp"
|
||||
- name: Configure
|
||||
run: echo "tmp"
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
pushd emsdk-master
|
||||
source ./emsdk_env.sh
|
||||
popd
|
||||
emcmake cmake . -DCMAKE_BUILD_TYPE=${{ matrix.build }}
|
||||
make
|
||||
- name: Build
|
||||
run: |
|
||||
pushd emsdk-master
|
||||
source ./emsdk_env.sh
|
||||
popd
|
||||
emcmake cmake . -DCMAKE_BUILD_TYPE=${{ matrix.build }}
|
||||
make
|
||||
|
||||
ios:
|
||||
runs-on: macos-latest
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
build: [Release]
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Configure
|
||||
run: cp models/for-tests-ggml-base.en.bin models/ggml-base.en.bin
|
||||
|
||||
- name: Build objc example
|
||||
run: xcodebuild -project examples/whisper.objc/whisper.objc.xcodeproj -scheme whisper.objc -configuration ${{ matrix.build }} -sdk iphonesimulator build
|
||||
|
||||
- name: Build swiftui example
|
||||
run: xcodebuild -project examples/whisper.swiftui/whisper.swiftui.xcodeproj -scheme WhisperCppDemo -configuration ${{ matrix.build }} -sdk iphonesimulator build
|
||||
|
||||
android:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Install Java
|
||||
uses: actions/setup-java@v3
|
||||
with:
|
||||
distribution: zulu
|
||||
java-version: 17
|
||||
|
||||
- name: Setup Android SDK
|
||||
uses: android-actions/setup-android@v2
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cd examples/whisper.android
|
||||
./gradlew assembleRelease --no-daemon
|
48
.github/workflows/examples.yml
vendored
Normal file
48
.github/workflows/examples.yml
vendored
Normal file
@ -0,0 +1,48 @@
|
||||
name: Examples Tests
|
||||
on:
|
||||
push:
|
||||
paths:
|
||||
- examples/addon.node/**
|
||||
- whisper.h
|
||||
pull_request:
|
||||
paths:
|
||||
- examples/addon.node/**
|
||||
- whisper.h
|
||||
|
||||
jobs:
|
||||
addon_node-ubuntu-latest:
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
node-version: [ 16.x, 18.x ]
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential
|
||||
sudo apt-get install cmake
|
||||
sudo apt-get install libsdl2-dev
|
||||
|
||||
- name: Use Node.js ${{ matrix.node-version }}
|
||||
uses: actions/setup-node@v1
|
||||
with:
|
||||
node-version: ${{ matrix.node-version }}
|
||||
cache: 'npm'
|
||||
|
||||
- name: Install package.json dependencies
|
||||
working-directory: ./examples/addon.node
|
||||
run: npm install
|
||||
|
||||
- name: Compile addon.node
|
||||
run: npx cmake-js compile -T whisper-addon -B Release
|
||||
|
||||
- name: Download test model
|
||||
run: |
|
||||
bash ./models/download-ggml-model.sh base.en
|
||||
- name: Test
|
||||
run: |
|
||||
cd examples/addon.node
|
||||
npm run test
|
10
.gitignore
vendored
10
.gitignore
vendored
@ -1,5 +1,8 @@
|
||||
*.o
|
||||
*.a
|
||||
.cache/
|
||||
.coreml/
|
||||
.test/
|
||||
.vs/
|
||||
.vscode/
|
||||
.DS_Store
|
||||
@ -9,6 +12,7 @@ build-em/
|
||||
build-debug/
|
||||
build-release/
|
||||
build-static/
|
||||
build-no-accel/
|
||||
build-sanitize-addr/
|
||||
build-sanitize-thread/
|
||||
|
||||
@ -16,8 +20,10 @@ build-sanitize-thread/
|
||||
/stream
|
||||
/command
|
||||
/talk
|
||||
/talk-llama
|
||||
/bench
|
||||
|
||||
arm_neon.h
|
||||
sync.sh
|
||||
libwhisper.a
|
||||
libwhisper.so
|
||||
@ -29,3 +35,7 @@ examples/whisper.objc/whisper.objc.xcodeproj/xcuserdata/
|
||||
examples/whisper.objc/whisper.objc.xcodeproj/project.xcworkspace/xcuserdata
|
||||
|
||||
extra/bench-gg.txt
|
||||
|
||||
models/*.mlmodel
|
||||
models/*.mlmodelc
|
||||
models/*.mlpackage
|
||||
|
@ -1,6 +1,10 @@
|
||||
cmake_minimum_required (VERSION 3.0)
|
||||
|
||||
project(whisper.cpp VERSION 1.1.0)
|
||||
project(whisper.cpp VERSION 1.3.0)
|
||||
|
||||
if ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "MSVC")
|
||||
add_compile_options(/utf-8)
|
||||
endif ()
|
||||
|
||||
# Add path to modules
|
||||
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake/")
|
||||
@ -54,6 +58,8 @@ if (APPLE)
|
||||
option(WHISPER_NO_AVX "whisper: disable AVX" OFF)
|
||||
option(WHISPER_NO_AVX2 "whisper: disable AVX2" OFF)
|
||||
option(WHISPER_NO_FMA "whisper: disable FMA" OFF)
|
||||
|
||||
option(WHISPER_COREML "whisper: enable Core ML framework" OFF)
|
||||
else()
|
||||
option(WHISPER_SUPPORT_OPENBLAS "whisper: support for OpenBLAS" OFF)
|
||||
endif()
|
||||
@ -86,16 +92,33 @@ endif()
|
||||
|
||||
find_package(Threads REQUIRED)
|
||||
|
||||
# on APPLE - include Accelerate framework
|
||||
if (APPLE AND NOT WHISPER_NO_ACCELERATE)
|
||||
find_library(ACCELERATE_FRAMEWORK Accelerate)
|
||||
if (ACCELERATE_FRAMEWORK)
|
||||
message(STATUS "Accelerate framework found")
|
||||
# on APPLE
|
||||
if (APPLE)
|
||||
# include Accelerate framework
|
||||
if (NOT WHISPER_NO_ACCELERATE)
|
||||
find_library(ACCELERATE_FRAMEWORK Accelerate)
|
||||
|
||||
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ${ACCELERATE_FRAMEWORK})
|
||||
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_ACCELERATE)
|
||||
else()
|
||||
message(WARNING "Accelerate framework not found")
|
||||
if (ACCELERATE_FRAMEWORK)
|
||||
message(STATUS "Accelerate framework found")
|
||||
|
||||
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ${ACCELERATE_FRAMEWORK})
|
||||
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_ACCELERATE)
|
||||
else()
|
||||
message(WARNING "Accelerate framework not found")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (WHISPER_COREML)
|
||||
find_library(FOUNDATION_FRAMEWORK Foundation)
|
||||
find_library(COREML_FRAMEWORK CoreML)
|
||||
|
||||
if (COREML_FRAMEWORK)
|
||||
message(STATUS "CoreML framework found")
|
||||
|
||||
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DWHISPER_USE_COREML)
|
||||
else()
|
||||
message(WARNING "CoreML framework not found")
|
||||
endif()
|
||||
endif()
|
||||
endif()
|
||||
|
||||
@ -172,7 +195,9 @@ else()
|
||||
if(NOT WHISPER_NO_FMA)
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mfma")
|
||||
endif()
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mf16c")
|
||||
if(NOT WHISPER_NO_F16C)
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mf16c")
|
||||
endif()
|
||||
endif()
|
||||
endif()
|
||||
endif()
|
||||
@ -181,6 +206,33 @@ if (WHISPER_PERF)
|
||||
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_PERF)
|
||||
endif()
|
||||
|
||||
#
|
||||
# whisper.coreml - Core ML support
|
||||
#
|
||||
|
||||
if (WHISPER_COREML)
|
||||
set(TARGET whisper.coreml)
|
||||
|
||||
add_library(${TARGET}
|
||||
coreml/whisper-encoder.h
|
||||
coreml/whisper-encoder.mm
|
||||
coreml/whisper-encoder-impl.h
|
||||
coreml/whisper-encoder-impl.m
|
||||
)
|
||||
|
||||
include(DefaultTargetOptions)
|
||||
|
||||
target_include_directories(${TARGET} PUBLIC
|
||||
.
|
||||
)
|
||||
|
||||
target_link_libraries(${TARGET} PRIVATE ${FOUNDATION_FRAMEWORK} ${COREML_FRAMEWORK})
|
||||
|
||||
set_target_properties(${TARGET} PROPERTIES
|
||||
COMPILE_FLAGS "-fobjc-arc"
|
||||
)
|
||||
endif()
|
||||
|
||||
#
|
||||
# whisper - this is the main library of the project
|
||||
#
|
||||
@ -200,6 +252,10 @@ target_include_directories(${TARGET} PUBLIC
|
||||
.
|
||||
)
|
||||
|
||||
if (WHISPER_COREML)
|
||||
target_link_libraries(${TARGET} PRIVATE whisper.coreml)
|
||||
endif()
|
||||
|
||||
if (MSVC)
|
||||
target_link_libraries(${TARGET} PRIVATE ${WHISPER_EXTRA_LIBS} ${CMAKE_THREAD_LIBS_INIT})
|
||||
|
||||
@ -226,10 +282,13 @@ target_compile_definitions(${TARGET} PUBLIC
|
||||
${WHISPER_EXTRA_FLAGS}
|
||||
)
|
||||
|
||||
set_target_properties(${TARGET} PROPERTIES PUBLIC_HEADER "whisper.h")
|
||||
|
||||
install(TARGETS ${TARGET}
|
||||
LIBRARY DESTINATION lib
|
||||
ARCHIVE DESTINATION lib/static
|
||||
RUNTIME DESTINATION bin
|
||||
PUBLIC_HEADER DESTINATION include
|
||||
)
|
||||
|
||||
#
|
||||
@ -242,7 +301,7 @@ add_subdirectory(bindings)
|
||||
# programs, examples and tests
|
||||
#
|
||||
|
||||
if (WHISPER_BUILD_TESTS)
|
||||
if (WHISPER_BUILD_TESTS AND NOT CMAKE_JS_VERSION)
|
||||
enable_testing()
|
||||
add_subdirectory(tests)
|
||||
endif ()
|
||||
|
2
LICENSE
2
LICENSE
@ -1,6 +1,6 @@
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2022 Georgi Gerganov
|
||||
Copyright (c) 2023 Georgi Gerganov
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
|
107
Makefile
107
Makefile
@ -30,10 +30,16 @@ endif
|
||||
# Compile flags
|
||||
#
|
||||
|
||||
CFLAGS = -I. -O3 -std=c11 -fPIC
|
||||
CXXFLAGS = -I. -I./examples -O3 -std=c++11 -fPIC
|
||||
CFLAGS = -I. -O3 -DNDEBUG -std=c11 -fPIC
|
||||
CXXFLAGS = -I. -I./examples -O3 -DNDEBUG -std=c++11 -fPIC
|
||||
LDFLAGS =
|
||||
|
||||
# ref: https://github.com/ggerganov/whisper.cpp/issues/37
|
||||
ifneq ($(wildcard /usr/include/musl/*),)
|
||||
CFLAGS += -D_POSIX_SOURCE -D_GNU_SOURCE
|
||||
CXXFLAGS += -D_POSIX_SOURCE -D_GNU_SOURCE
|
||||
endif
|
||||
|
||||
# OS specific
|
||||
# TODO: support Windows
|
||||
ifeq ($(UNAME_S),Linux)
|
||||
@ -71,10 +77,6 @@ ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686))
|
||||
CFLAGS += -mavx2
|
||||
endif
|
||||
else ifeq ($(UNAME_S),Linux)
|
||||
AVX1_M := $(shell grep "avx " /proc/cpuinfo)
|
||||
ifneq (,$(findstring avx,$(AVX1_M)))
|
||||
CFLAGS += -mavx
|
||||
endif
|
||||
AVX2_M := $(shell grep "avx2 " /proc/cpuinfo)
|
||||
ifneq (,$(findstring avx2,$(AVX2_M)))
|
||||
CFLAGS += -mavx2
|
||||
@ -86,16 +88,17 @@ ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686))
|
||||
F16C_M := $(shell grep "f16c " /proc/cpuinfo)
|
||||
ifneq (,$(findstring f16c,$(F16C_M)))
|
||||
CFLAGS += -mf16c
|
||||
|
||||
AVX1_M := $(shell grep "avx " /proc/cpuinfo)
|
||||
ifneq (,$(findstring avx,$(AVX1_M)))
|
||||
CFLAGS += -mavx
|
||||
endif
|
||||
endif
|
||||
SSE3_M := $(shell grep "sse3 " /proc/cpuinfo)
|
||||
ifneq (,$(findstring sse3,$(SSE3_M)))
|
||||
CFLAGS += -msse3
|
||||
endif
|
||||
else ifeq ($(UNAME_S),Haiku)
|
||||
AVX1_M := $(shell sysinfo -cpu | grep "AVX ")
|
||||
ifneq (,$(findstring avx,$(AVX1_M)))
|
||||
CFLAGS += -mavx
|
||||
endif
|
||||
AVX2_M := $(shell sysinfo -cpu | grep "AVX2 ")
|
||||
ifneq (,$(findstring avx2,$(AVX2_M)))
|
||||
CFLAGS += -mavx2
|
||||
@ -107,6 +110,11 @@ ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686))
|
||||
F16C_M := $(shell sysinfo -cpu | grep "F16C ")
|
||||
ifneq (,$(findstring f16c,$(F16C_M)))
|
||||
CFLAGS += -mf16c
|
||||
|
||||
AVX1_M := $(shell sysinfo -cpu | grep "AVX ")
|
||||
ifneq (,$(findstring avx,$(AVX1_M)))
|
||||
CFLAGS += -mavx
|
||||
endif
|
||||
endif
|
||||
else
|
||||
CFLAGS += -mfma -mf16c -mavx -mavx2
|
||||
@ -115,11 +123,15 @@ endif
|
||||
ifeq ($(UNAME_M),amd64)
|
||||
CFLAGS += -mavx -mavx2 -mfma -mf16c
|
||||
endif
|
||||
ifeq ($(UNAME_M),ppc64le)
|
||||
ifneq ($(filter ppc64%,$(UNAME_M)),)
|
||||
POWER9_M := $(shell grep "POWER9" /proc/cpuinfo)
|
||||
ifneq (,$(findstring POWER9,$(POWER9_M)))
|
||||
CFLAGS += -mpower9-vector
|
||||
endif
|
||||
# Require c++23's std::byteswap for big-endian support.
|
||||
ifeq ($(UNAME_M),ppc64)
|
||||
CXXFLAGS += -std=c++23 -DGGML_BIG_ENDIAN
|
||||
endif
|
||||
endif
|
||||
ifndef WHISPER_NO_ACCELERATE
|
||||
# Mac M1 - include Accelerate framework
|
||||
@ -128,23 +140,32 @@ ifndef WHISPER_NO_ACCELERATE
|
||||
LDFLAGS += -framework Accelerate
|
||||
endif
|
||||
endif
|
||||
ifdef WHISPER_COREML
|
||||
CXXFLAGS += -DWHISPER_USE_COREML
|
||||
LDFLAGS += -framework Foundation -framework CoreML
|
||||
endif
|
||||
ifdef WHISPER_OPENBLAS
|
||||
CFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/openblas
|
||||
LDFLAGS += -lopenblas
|
||||
endif
|
||||
ifdef WHISPER_GPROF
|
||||
CFLAGS += -pg
|
||||
CXXFLAGS += -pg
|
||||
CFLAGS += -pg
|
||||
CXXFLAGS += -pg
|
||||
endif
|
||||
ifneq ($(filter aarch64%,$(UNAME_M)),)
|
||||
CFLAGS += -mcpu=native
|
||||
CXXFLAGS += -mcpu=native
|
||||
endif
|
||||
ifneq ($(filter armv6%,$(UNAME_M)),)
|
||||
# Raspberry Pi 1, 2, 3
|
||||
CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access
|
||||
# 32-bit Raspberry Pi 1, 2, 3
|
||||
CFLAGS += -mfpu=neon -mfp16-format=ieee -mno-unaligned-access
|
||||
endif
|
||||
ifneq ($(filter armv7%,$(UNAME_M)),)
|
||||
# Raspberry Pi 4
|
||||
CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access -funsafe-math-optimizations
|
||||
# 32-bit ARM, for example on Armbian or possibly raspbian
|
||||
CFLAGS += -mfpu=neon -mfp16-format=ieee -mno-unaligned-access -funsafe-math-optimizations
|
||||
|
||||
# 64-bit ARM, use these (TODO: auto-detect 64-bit)
|
||||
# CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access -funsafe-math-optimizations
|
||||
endif
|
||||
ifneq ($(filter armv8%,$(UNAME_M)),)
|
||||
# Raspberry Pi 4
|
||||
@ -166,7 +187,7 @@ $(info I CC: $(CCV))
|
||||
$(info I CXX: $(CXXV))
|
||||
$(info )
|
||||
|
||||
default: main
|
||||
default: main bench
|
||||
|
||||
#
|
||||
# Build library
|
||||
@ -175,17 +196,29 @@ default: main
|
||||
ggml.o: ggml.c ggml.h
|
||||
$(CC) $(CFLAGS) -c ggml.c -o ggml.o
|
||||
|
||||
whisper.o: whisper.cpp whisper.h
|
||||
whisper.o: whisper.cpp whisper.h ggml.h
|
||||
$(CXX) $(CXXFLAGS) -c whisper.cpp -o whisper.o
|
||||
|
||||
libwhisper.a: ggml.o whisper.o
|
||||
$(AR) rcs libwhisper.a ggml.o whisper.o
|
||||
ifndef WHISPER_COREML
|
||||
WHISPER_OBJ = whisper.o
|
||||
else
|
||||
whisper-encoder.o: coreml/whisper-encoder.mm coreml/whisper-encoder.h
|
||||
$(CXX) -O3 -I . -c coreml/whisper-encoder.mm -o whisper-encoder.o
|
||||
|
||||
libwhisper.so: ggml.o whisper.o
|
||||
$(CXX) $(CXXFLAGS) -shared -o libwhisper.so ggml.o whisper.o $(LDFLAGS)
|
||||
whisper-encoder-impl.o: coreml/whisper-encoder-impl.m coreml/whisper-encoder-impl.h
|
||||
$(CXX) -O3 -I . -fobjc-arc -c coreml/whisper-encoder-impl.m -o whisper-encoder-impl.o
|
||||
|
||||
WHISPER_OBJ = whisper.o whisper-encoder.o whisper-encoder-impl.o
|
||||
endif
|
||||
|
||||
libwhisper.a: ggml.o $(WHISPER_OBJ)
|
||||
$(AR) rcs libwhisper.a ggml.o $(WHISPER_OBJ)
|
||||
|
||||
libwhisper.so: ggml.o $(WHISPER_OBJ)
|
||||
$(CXX) $(CXXFLAGS) -shared -o libwhisper.so ggml.o $(WHISPER_OBJ) $(LDFLAGS)
|
||||
|
||||
clean:
|
||||
rm -f *.o main stream command talk bench libwhisper.a libwhisper.so
|
||||
rm -f *.o main stream command talk talk-llama bench libwhisper.a libwhisper.so
|
||||
|
||||
#
|
||||
# Examples
|
||||
@ -193,21 +226,27 @@ clean:
|
||||
|
||||
CC_SDL=`sdl2-config --cflags --libs`
|
||||
|
||||
main: examples/main/main.cpp ggml.o whisper.o
|
||||
$(CXX) $(CXXFLAGS) examples/main/main.cpp ggml.o whisper.o -o main $(LDFLAGS)
|
||||
SRC_COMMON = examples/common.cpp
|
||||
SRC_COMMON_SDL = examples/common-sdl.cpp
|
||||
|
||||
main: examples/main/main.cpp $(SRC_COMMON) ggml.o $(WHISPER_OBJ)
|
||||
$(CXX) $(CXXFLAGS) examples/main/main.cpp $(SRC_COMMON) ggml.o $(WHISPER_OBJ) -o main $(LDFLAGS)
|
||||
./main -h
|
||||
|
||||
stream: examples/stream/stream.cpp ggml.o whisper.o
|
||||
$(CXX) $(CXXFLAGS) examples/stream/stream.cpp ggml.o whisper.o -o stream $(CC_SDL) $(LDFLAGS)
|
||||
bench: examples/bench/bench.cpp ggml.o $(WHISPER_OBJ)
|
||||
$(CXX) $(CXXFLAGS) examples/bench/bench.cpp ggml.o $(WHISPER_OBJ) -o bench $(LDFLAGS)
|
||||
|
||||
command: examples/command/command.cpp ggml.o whisper.o
|
||||
$(CXX) $(CXXFLAGS) examples/command/command.cpp ggml.o whisper.o -o command $(CC_SDL) $(LDFLAGS)
|
||||
stream: examples/stream/stream.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ)
|
||||
$(CXX) $(CXXFLAGS) examples/stream/stream.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ) -o stream $(CC_SDL) $(LDFLAGS)
|
||||
|
||||
talk: examples/talk/talk.cpp examples/talk/gpt-2.cpp ggml.o whisper.o
|
||||
$(CXX) $(CXXFLAGS) examples/talk/talk.cpp examples/talk/gpt-2.cpp ggml.o whisper.o -o talk $(CC_SDL) $(LDFLAGS)
|
||||
command: examples/command/command.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ)
|
||||
$(CXX) $(CXXFLAGS) examples/command/command.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ) -o command $(CC_SDL) $(LDFLAGS)
|
||||
|
||||
bench: examples/bench/bench.cpp ggml.o whisper.o
|
||||
$(CXX) $(CXXFLAGS) examples/bench/bench.cpp ggml.o whisper.o -o bench $(LDFLAGS)
|
||||
talk: examples/talk/talk.cpp examples/talk/gpt-2.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ)
|
||||
$(CXX) $(CXXFLAGS) examples/talk/talk.cpp examples/talk/gpt-2.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ) -o talk $(CC_SDL) $(LDFLAGS)
|
||||
|
||||
talk-llama: examples/talk-llama/talk-llama.cpp examples/talk-llama/llama.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ)
|
||||
$(CXX) $(CXXFLAGS) examples/talk-llama/talk-llama.cpp examples/talk-llama/llama.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ) -o talk-llama $(CC_SDL) $(LDFLAGS)
|
||||
|
||||
#
|
||||
# Audio samples
|
||||
|
295
README.md
295
README.md
@ -4,16 +4,16 @@
|
||||
[](https://opensource.org/licenses/MIT)
|
||||
[](https://www.npmjs.com/package/whisper.cpp/)
|
||||
|
||||
Stable: [1.0.4](https://github.com/ggerganov/whisper.cpp/releases/tag/1.0.4) / Beta: [1.1.0](https://github.com/ggerganov/whisper.cpp/releases/tag/1.1.0) / [Roadmap | F.A.Q.](https://github.com/ggerganov/whisper.cpp/discussions/126)
|
||||
Beta: [v1.3.0](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.3.0) / Stable: [v1.2.1](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.2.1) / [Roadmap | F.A.Q.](https://github.com/ggerganov/whisper.cpp/discussions/126)
|
||||
|
||||
High-performance inference of [OpenAI's Whisper](https://github.com/openai/whisper) automatic speech recognition (ASR) model:
|
||||
|
||||
- Plain C/C++ implementation without dependencies
|
||||
- Apple silicon first-class citizen - optimized via Arm Neon and Accelerate framework
|
||||
- Apple silicon first-class citizen - optimized via ARM NEON, Accelerate framework and [Core ML](https://github.com/ggerganov/whisper.cpp#core-ml-support)
|
||||
- AVX intrinsics support for x86 architectures
|
||||
- VSX intrinsics support for POWER architectures
|
||||
- Mixed F16 / F32 precision
|
||||
- Low memory usage (Flash Attention + Flash Forward)
|
||||
- Low memory usage (Flash Attention)
|
||||
- Zero memory allocations at runtime
|
||||
- Runs on the CPU
|
||||
- [C-style API](https://github.com/ggerganov/whisper.cpp/blob/master/whisper.h)
|
||||
@ -58,7 +58,9 @@ the Accelerate framework utilizes the special-purpose AMX coprocessor available
|
||||
|
||||
## Quick start
|
||||
|
||||
First, download one of the Whisper models converted in [ggml format](models). For example:
|
||||
First clone the repository.
|
||||
|
||||
Then, download one of the Whisper models converted in [ggml format](models). For example:
|
||||
|
||||
```bash
|
||||
bash ./models/download-ggml-model.sh base.en
|
||||
@ -89,35 +91,37 @@ c++ -I. -I./examples -O3 -std=c++11 -pthread examples/main/main.cpp whisper.o gg
|
||||
usage: ./main [options] file0.wav file1.wav ...
|
||||
|
||||
options:
|
||||
-h, --help [default] show this help message and exit
|
||||
-t N, --threads N [4 ] number of threads to use during computation
|
||||
-p N, --processors N [1 ] number of processors to use during computation
|
||||
-ot N, --offset-t N [0 ] time offset in milliseconds
|
||||
-on N, --offset-n N [0 ] segment index offset
|
||||
-d N, --duration N [0 ] duration of audio to process in milliseconds
|
||||
-mc N, --max-context N [-1 ] maximum number of text context tokens to store
|
||||
-ml N, --max-len N [0 ] maximum segment length in characters
|
||||
-bo N, --best-of N [5 ] number of best candidates to keep
|
||||
-bs N, --beam-size N [-1 ] beam size for beam search
|
||||
-wt N, --word-thold N [0.01 ] word timestamp probability threshold
|
||||
-et N, --entropy-thold N [2.40 ] entropy threshold for decoder fail
|
||||
-lpt N, --logprob-thold N [-1.00 ] log probability threshold for decoder fail
|
||||
-su, --speed-up [false ] speed up audio by x2 (reduced accuracy)
|
||||
-tr, --translate [false ] translate from source language to english
|
||||
-di, --diarize [false ] stereo audio diarization
|
||||
-otxt, --output-txt [false ] output result in a text file
|
||||
-ovtt, --output-vtt [false ] output result in a vtt file
|
||||
-osrt, --output-srt [false ] output result in a srt file
|
||||
-owts, --output-words [false ] output script for generating karaoke video
|
||||
-ocsv, --output-csv [false ] output result in a CSV file
|
||||
-ps, --print-special [false ] print special tokens
|
||||
-pc, --print-colors [false ] print colors
|
||||
-pp, --print-progress [false ] print progress
|
||||
-nt, --no-timestamps [true ] do not print timestamps
|
||||
-l LANG, --language LANG [en ] spoken language ('auto' for auto-detect)
|
||||
--prompt PROMPT [ ] initial prompt
|
||||
-m FNAME, --model FNAME [models/ggml-base.en.bin] model path
|
||||
-f FNAME, --file FNAME [ ] input WAV file path
|
||||
-h, --help [default] show this help message and exit
|
||||
-t N, --threads N [4 ] number of threads to use during computation
|
||||
-p N, --processors N [1 ] number of processors to use during computation
|
||||
-ot N, --offset-t N [0 ] time offset in milliseconds
|
||||
-on N, --offset-n N [0 ] segment index offset
|
||||
-d N, --duration N [0 ] duration of audio to process in milliseconds
|
||||
-mc N, --max-context N [-1 ] maximum number of text context tokens to store
|
||||
-ml N, --max-len N [0 ] maximum segment length in characters
|
||||
-bo N, --best-of N [5 ] number of best candidates to keep
|
||||
-bs N, --beam-size N [-1 ] beam size for beam search
|
||||
-wt N, --word-thold N [0.01 ] word timestamp probability threshold
|
||||
-et N, --entropy-thold N [2.40 ] entropy threshold for decoder fail
|
||||
-lpt N, --logprob-thold N [-1.00 ] log probability threshold for decoder fail
|
||||
-su, --speed-up [false ] speed up audio by x2 (reduced accuracy)
|
||||
-tr, --translate [false ] translate from source language to english
|
||||
-di, --diarize [false ] stereo audio diarization
|
||||
-nf, --no-fallback [false ] do not use temperature fallback while decoding
|
||||
-otxt, --output-txt [false ] output result in a text file
|
||||
-ovtt, --output-vtt [false ] output result in a vtt file
|
||||
-osrt, --output-srt [false ] output result in a srt file
|
||||
-owts, --output-words [false ] output script for generating karaoke video
|
||||
-ocsv, --output-csv [false ] output result in a CSV file
|
||||
-of FNAME, --output-file FNAME [ ] output file path (without file extension)
|
||||
-ps, --print-special [false ] print special tokens
|
||||
-pc, --print-colors [false ] print colors
|
||||
-pp, --print-progress [false ] print progress
|
||||
-nt, --no-timestamps [true ] do not print timestamps
|
||||
-l LANG, --language LANG [en ] spoken language ('auto' for auto-detect)
|
||||
--prompt PROMPT [ ] initial prompt
|
||||
-m FNAME, --model FNAME [models/ggml-base.en.bin] model path
|
||||
-f FNAME, --file FNAME [ ] input WAV file path
|
||||
|
||||
|
||||
bash ./models/download-ggml-model.sh base.en
|
||||
@ -137,7 +141,8 @@ Running base.en on all samples in ./samples ...
|
||||
[+] Running base.en on samples/jfk.wav ... (run 'ffplay samples/jfk.wav' to listen)
|
||||
----------------------------------------------
|
||||
|
||||
whisper_model_load: loading model from 'models/ggml-base.en.bin'
|
||||
whisper_init_from_file: loading model from 'models/ggml-base.en.bin'
|
||||
whisper_model_load: loading model
|
||||
whisper_model_load: n_vocab = 51864
|
||||
whisper_model_load: n_audio_ctx = 1500
|
||||
whisper_model_load: n_audio_state = 512
|
||||
@ -150,13 +155,14 @@ whisper_model_load: n_text_layer = 6
|
||||
whisper_model_load: n_mels = 80
|
||||
whisper_model_load: f16 = 1
|
||||
whisper_model_load: type = 2
|
||||
whisper_model_load: mem required = 215.00 MB (+ 6.00 MB per decoder)
|
||||
whisper_model_load: kv self size = 5.25 MB
|
||||
whisper_model_load: kv cross size = 17.58 MB
|
||||
whisper_model_load: adding 1607 extra tokens
|
||||
whisper_model_load: mem_required = 506.00 MB
|
||||
whisper_model_load: ggml ctx size = 140.60 MB
|
||||
whisper_model_load: memory size = 22.83 MB
|
||||
whisper_model_load: model ctx = 140.60 MB
|
||||
whisper_model_load: model size = 140.54 MB
|
||||
|
||||
system_info: n_threads = 4 / 10 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | NEON = 1 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 |
|
||||
system_info: n_threads = 4 / 10 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | VSX = 0 |
|
||||
|
||||
main: processing 'samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 processors, lang = en, task = transcribe, timestamps = 1 ...
|
||||
|
||||
@ -164,12 +170,13 @@ main: processing 'samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 proc
|
||||
[00:00:00.000 --> 00:00:11.000] And so my fellow Americans, ask not what your country can do for you, ask what you can do for your country.
|
||||
|
||||
|
||||
whisper_print_timings: load time = 105.91 ms
|
||||
whisper_print_timings: mel time = 24.62 ms
|
||||
whisper_print_timings: sample time = 3.63 ms
|
||||
whisper_print_timings: encode time = 324.71 ms / 54.12 ms per layer
|
||||
whisper_print_timings: decode time = 83.58 ms / 13.93 ms per layer
|
||||
whisper_print_timings: total time = 542.81 ms
|
||||
whisper_print_timings: fallbacks = 0 p / 0 h
|
||||
whisper_print_timings: load time = 113.81 ms
|
||||
whisper_print_timings: mel time = 15.40 ms
|
||||
whisper_print_timings: sample time = 11.58 ms / 27 runs ( 0.43 ms per run)
|
||||
whisper_print_timings: encode time = 266.60 ms / 1 runs ( 266.60 ms per run)
|
||||
whisper_print_timings: decode time = 66.11 ms / 27 runs ( 2.45 ms per run)
|
||||
whisper_print_timings: total time = 476.31 ms
|
||||
```
|
||||
|
||||
The command downloads the `base.en` model converted to custom `ggml` format and runs the inference on all `.wav` samples in the folder `samples`.
|
||||
@ -212,12 +219,66 @@ make large
|
||||
|
||||
| Model | Disk | Mem | SHA |
|
||||
| --- | --- | --- | --- |
|
||||
| tiny | 75 MB | ~390 MB | `bd577a113a864445d4c299885e0cb97d4ba92b5f` |
|
||||
| base | 142 MB | ~500 MB | `465707469ff3a37a2b9b8d8f89f2f99de7299dac` |
|
||||
| small | 466 MB | ~1.0 GB | `55356645c2b361a969dfd0ef2c5a50d530afd8d5` |
|
||||
| medium | 1.5 GB | ~2.6 GB | `fd9727b6e1217c2f614f9b698455c4ffd82463b4` |
|
||||
| large | 2.9 GB | ~4.7 GB | `0f4c8e34f21cf1a914c59d8b3ce882345ad349d6` |
|
||||
| tiny | 75 MB | ~125 MB | `bd577a113a864445d4c299885e0cb97d4ba92b5f` |
|
||||
| base | 142 MB | ~210 MB | `465707469ff3a37a2b9b8d8f89f2f99de7299dac` |
|
||||
| small | 466 MB | ~600 MB | `55356645c2b361a969dfd0ef2c5a50d530afd8d5` |
|
||||
| medium | 1.5 GB | ~1.7 GB | `fd9727b6e1217c2f614f9b698455c4ffd82463b4` |
|
||||
| large | 2.9 GB | ~3.3 GB | `0f4c8e34f21cf1a914c59d8b3ce882345ad349d6` |
|
||||
|
||||
## Core ML support
|
||||
|
||||
On Apple Silicon devices, the Encoder inference can be executed on the Apple Neural Engine (ANE) via Core ML. This can result in significant
|
||||
speed-up - more than x3 faster compared with CPU-only execution. Here are the instructions for generating a Core ML model and using it with `whisper.cpp`:
|
||||
|
||||
- Install Python dependencies needed for the creation of the Core ML model:
|
||||
|
||||
```bash
|
||||
pip install ane_transformers
|
||||
pip install openai-whisper
|
||||
pip install coremltools
|
||||
```
|
||||
|
||||
- Generate a Core ML model. For example, to generate a `base.en` model, use:
|
||||
|
||||
```bash
|
||||
./models/generate-coreml-model.sh base.en
|
||||
```
|
||||
|
||||
This will generate the folder `models/ggml-base.en-encoder.mlmodelc`
|
||||
|
||||
- Build `whisper.cpp` with Core ML support:
|
||||
|
||||
```bash
|
||||
# using Makefile
|
||||
make clean
|
||||
WHISPER_COREML=1 make -j
|
||||
|
||||
# using CMake
|
||||
cd build
|
||||
cmake -DWHISPER_COREML=1 ..
|
||||
```
|
||||
|
||||
- Run the examples as usual. For example:
|
||||
|
||||
```bash
|
||||
./main -m models/ggml-base.en.bin -f samples/jfk.wav
|
||||
|
||||
...
|
||||
|
||||
whisper_init_state: loading Core ML model from 'models/ggml-base.en-encoder.mlmodelc'
|
||||
whisper_init_state: first run on a device may take a while ...
|
||||
whisper_init_state: Core ML model loaded
|
||||
|
||||
system_info: n_threads = 4 / 10 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | VSX = 0 | COREML = 1 |
|
||||
|
||||
...
|
||||
```
|
||||
|
||||
The first run on a device is slow, since the ANE service compiles the Core ML model to some device-specific format.
|
||||
Next runs are faster.
|
||||
|
||||
For more information about the Core ML implementation please refer to PR [#566](https://github.com/ggerganov/whisper.cpp/pull/566).
|
||||
|
||||
## Limitations
|
||||
|
||||
- Inference only
|
||||
@ -234,7 +295,8 @@ in about half a minute on a MacBook M1 Pro, using `medium.en` model:
|
||||
```java
|
||||
$ ./main -m models/ggml-medium.en.bin -f samples/gb1.wav -t 8
|
||||
|
||||
whisper_model_load: loading model from 'models/ggml-medium.en.bin'
|
||||
whisper_init_from_file: loading model from 'models/ggml-medium.en.bin'
|
||||
whisper_model_load: loading model
|
||||
whisper_model_load: n_vocab = 51864
|
||||
whisper_model_load: n_audio_ctx = 1500
|
||||
whisper_model_load: n_audio_state = 1024
|
||||
@ -247,62 +309,67 @@ whisper_model_load: n_text_layer = 24
|
||||
whisper_model_load: n_mels = 80
|
||||
whisper_model_load: f16 = 1
|
||||
whisper_model_load: type = 4
|
||||
whisper_model_load: mem_required = 2610.00 MB
|
||||
whisper_model_load: mem required = 1720.00 MB (+ 43.00 MB per decoder)
|
||||
whisper_model_load: kv self size = 42.00 MB
|
||||
whisper_model_load: kv cross size = 140.62 MB
|
||||
whisper_model_load: adding 1607 extra tokens
|
||||
whisper_model_load: ggml ctx size = 1644.97 MB
|
||||
whisper_model_load: memory size = 182.62 MB
|
||||
whisper_model_load: model size = 1462.12 MB
|
||||
whisper_model_load: model ctx = 1462.35 MB
|
||||
whisper_model_load: model size = 1462.12 MB
|
||||
|
||||
main: processing 'samples/gb1.wav' (3179750 samples, 198.7 sec), 8 threads, lang = en, task = transcribe, timestamps = 1 ...
|
||||
system_info: n_threads = 8 / 10 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | VSX = 0 |
|
||||
|
||||
[00:00.000 --> 00:08.000] My fellow Americans, this day has brought terrible news and great sadness to our country.
|
||||
[00:08.000 --> 00:17.000] At nine o'clock this morning, Mission Control in Houston lost contact with our Space Shuttle Columbia.
|
||||
[00:17.000 --> 00:23.000] A short time later, debris was seen falling from the skies above Texas.
|
||||
[00:23.000 --> 00:29.000] The Columbia's lost. There are no survivors.
|
||||
[00:29.000 --> 00:32.000] On board was a crew of seven.
|
||||
[00:32.000 --> 00:39.000] Colonel Rick Husband, Lieutenant Colonel Michael Anderson, Commander Laurel Clark,
|
||||
[00:39.000 --> 00:48.000] Captain David Brown, Commander William McCool, Dr. Kultna Shavla, and Ilan Ramon,
|
||||
[00:48.000 --> 00:52.000] a colonel in the Israeli Air Force.
|
||||
[00:52.000 --> 00:58.000] These men and women assumed great risk in the service to all humanity.
|
||||
[00:58.000 --> 01:03.000] In an age when space flight has come to seem almost routine,
|
||||
[01:03.000 --> 01:07.000] it is easy to overlook the dangers of travel by rocket
|
||||
[01:07.000 --> 01:12.000] and the difficulties of navigating the fierce outer atmosphere of the Earth.
|
||||
[01:12.000 --> 01:18.000] These astronauts knew the dangers, and they faced them willingly,
|
||||
[01:18.000 --> 01:23.000] knowing they had a high and noble purpose in life.
|
||||
[01:23.000 --> 01:31.000] Because of their courage and daring and idealism, we will miss them all the more.
|
||||
[01:31.000 --> 01:36.000] All Americans today are thinking as well of the families of these men and women
|
||||
[01:36.000 --> 01:40.000] who have been given this sudden shock and grief.
|
||||
[01:40.000 --> 01:45.000] You're not alone. Our entire nation grieves with you,
|
||||
[01:45.000 --> 01:52.000] and those you love will always have the respect and gratitude of this country.
|
||||
[01:52.000 --> 01:56.000] The cause in which they died will continue.
|
||||
[01:56.000 --> 02:04.000] Mankind is led into the darkness beyond our world by the inspiration of discovery
|
||||
[02:04.000 --> 02:11.000] and the longing to understand. Our journey into space will go on.
|
||||
[02:11.000 --> 02:16.000] In the skies today, we saw destruction and tragedy.
|
||||
[02:16.000 --> 02:22.000] Yet farther than we can see, there is comfort and hope.
|
||||
[02:22.000 --> 02:29.000] In the words of the prophet Isaiah, "Lift your eyes and look to the heavens
|
||||
[02:29.000 --> 02:35.000] who created all these. He who brings out the starry hosts one by one
|
||||
[02:35.000 --> 02:39.000] and calls them each by name."
|
||||
[02:39.000 --> 02:46.000] Because of His great power and mighty strength, not one of them is missing.
|
||||
[02:46.000 --> 02:55.000] The same Creator who names the stars also knows the names of the seven souls we mourn today.
|
||||
[02:55.000 --> 03:01.000] The crew of the shuttle Columbia did not return safely to earth,
|
||||
[03:01.000 --> 03:05.000] yet we can pray that all are safely home.
|
||||
[03:05.000 --> 03:13.000] May God bless the grieving families, and may God continue to bless America.
|
||||
[03:13.000 --> 03:41.000] Audio
|
||||
main: processing 'samples/gb1.wav' (3179750 samples, 198.7 sec), 8 threads, 1 processors, lang = en, task = transcribe, timestamps = 1 ...
|
||||
|
||||
|
||||
whisper_print_timings: load time = 575.92 ms
|
||||
whisper_print_timings: mel time = 230.60 ms
|
||||
whisper_print_timings: sample time = 73.19 ms
|
||||
whisper_print_timings: encode time = 19552.61 ms / 814.69 ms per layer
|
||||
whisper_print_timings: decode time = 13249.96 ms / 552.08 ms per layer
|
||||
whisper_print_timings: total time = 33686.27 ms
|
||||
[00:00:00.000 --> 00:00:08.000] My fellow Americans, this day has brought terrible news and great sadness to our country.
|
||||
[00:00:08.000 --> 00:00:17.000] At nine o'clock this morning, Mission Control in Houston lost contact with our Space Shuttle Columbia.
|
||||
[00:00:17.000 --> 00:00:23.000] A short time later, debris was seen falling from the skies above Texas.
|
||||
[00:00:23.000 --> 00:00:29.000] The Columbia's lost. There are no survivors.
|
||||
[00:00:29.000 --> 00:00:32.000] On board was a crew of seven.
|
||||
[00:00:32.000 --> 00:00:39.000] Colonel Rick Husband, Lieutenant Colonel Michael Anderson, Commander Laurel Clark,
|
||||
[00:00:39.000 --> 00:00:48.000] Captain David Brown, Commander William McCool, Dr. Kultna Shavla, and Ilan Ramon,
|
||||
[00:00:48.000 --> 00:00:52.000] a colonel in the Israeli Air Force.
|
||||
[00:00:52.000 --> 00:00:58.000] These men and women assumed great risk in the service to all humanity.
|
||||
[00:00:58.000 --> 00:01:03.000] In an age when space flight has come to seem almost routine,
|
||||
[00:01:03.000 --> 00:01:07.000] it is easy to overlook the dangers of travel by rocket
|
||||
[00:01:07.000 --> 00:01:12.000] and the difficulties of navigating the fierce outer atmosphere of the Earth.
|
||||
[00:01:12.000 --> 00:01:18.000] These astronauts knew the dangers, and they faced them willingly,
|
||||
[00:01:18.000 --> 00:01:23.000] knowing they had a high and noble purpose in life.
|
||||
[00:01:23.000 --> 00:01:31.000] Because of their courage and daring and idealism, we will miss them all the more.
|
||||
[00:01:31.000 --> 00:01:36.000] All Americans today are thinking as well of the families of these men and women
|
||||
[00:01:36.000 --> 00:01:40.000] who have been given this sudden shock and grief.
|
||||
[00:01:40.000 --> 00:01:45.000] You're not alone. Our entire nation grieves with you,
|
||||
[00:01:45.000 --> 00:01:52.000] and those you love will always have the respect and gratitude of this country.
|
||||
[00:01:52.000 --> 00:01:56.000] The cause in which they died will continue.
|
||||
[00:01:56.000 --> 00:02:04.000] Mankind is led into the darkness beyond our world by the inspiration of discovery
|
||||
[00:02:04.000 --> 00:02:11.000] and the longing to understand. Our journey into space will go on.
|
||||
[00:02:11.000 --> 00:02:16.000] In the skies today, we saw destruction and tragedy.
|
||||
[00:02:16.000 --> 00:02:22.000] Yet farther than we can see, there is comfort and hope.
|
||||
[00:02:22.000 --> 00:02:29.000] In the words of the prophet Isaiah, "Lift your eyes and look to the heavens
|
||||
[00:02:29.000 --> 00:02:35.000] who created all these. He who brings out the starry hosts one by one
|
||||
[00:02:35.000 --> 00:02:39.000] and calls them each by name."
|
||||
[00:02:39.000 --> 00:02:46.000] Because of His great power and mighty strength, not one of them is missing.
|
||||
[00:02:46.000 --> 00:02:55.000] The same Creator who names the stars also knows the names of the seven souls we mourn today.
|
||||
[00:02:55.000 --> 00:03:01.000] The crew of the shuttle Columbia did not return safely to earth,
|
||||
[00:03:01.000 --> 00:03:05.000] yet we can pray that all are safely home.
|
||||
[00:03:05.000 --> 00:03:13.000] May God bless the grieving families, and may God continue to bless America.
|
||||
[00:03:13.000 --> 00:03:19.000] [Silence]
|
||||
|
||||
|
||||
whisper_print_timings: fallbacks = 1 p / 0 h
|
||||
whisper_print_timings: load time = 569.03 ms
|
||||
whisper_print_timings: mel time = 146.85 ms
|
||||
whisper_print_timings: sample time = 238.66 ms / 553 runs ( 0.43 ms per run)
|
||||
whisper_print_timings: encode time = 18665.10 ms / 9 runs ( 2073.90 ms per run)
|
||||
whisper_print_timings: decode time = 13090.93 ms / 549 runs ( 23.85 ms per run)
|
||||
whisper_print_timings: total time = 32733.52 ms
|
||||
```
|
||||
</details>
|
||||
|
||||
## Real-time audio input example
|
||||
|
||||
This is a naive example of performing real-time inference on audio from your microphone.
|
||||
The [stream](examples/stream) tool samples the audio every half a second and runs the transcription continously.
|
||||
The [stream](examples/stream) tool samples the audio every half a second and runs the transcription continuously.
|
||||
More info is available in [issue #10](https://github.com/ggerganov/whisper.cpp/issues/10).
|
||||
|
||||
```java
|
||||
@ -317,18 +384,22 @@ https://user-images.githubusercontent.com/1991296/194935793-76afede7-cfa8-48d8-a
|
||||
Adding the `--print-colors` argument will print the transcribed text using an experimental color coding strategy
|
||||
to highlight words with high or low confidence:
|
||||
|
||||
```java
|
||||
./main -m models/ggml-base.en.bin -f samples/gb0.wav --print-colors
|
||||
```
|
||||
|
||||
<img width="965" alt="image" src="https://user-images.githubusercontent.com/1991296/197356445-311c8643-9397-4e5e-b46e-0b4b4daa2530.png">
|
||||
|
||||
## Controlling the length of the generated text segments (experimental)
|
||||
|
||||
For example, to limit the line length to a maximum of 16 characters, simply add `-ml 16`:
|
||||
For example, to limit the line length to a maximum of 16 characters, simply add `-ml 16`:
|
||||
|
||||
```java
|
||||
./main -m ./models/ggml-base.en.bin -f ./samples/jfk.wav -ml 16
|
||||
|
||||
whisper_model_load: loading model from './models/ggml-base.en.bin'
|
||||
...
|
||||
system_info: n_threads = 4 / 10 | AVX2 = 0 | AVX512 = 0 | NEON = 1 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 |
|
||||
system_info: n_threads = 4 / 10 | AVX2 = 0 | AVX512 = 0 | NEON = 1 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 |
|
||||
|
||||
main: processing './samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 processors, lang = en, task = transcribe, timestamps = 1 ...
|
||||
|
||||
@ -352,7 +423,7 @@ The `--max-len` argument can be used to obtain word-level timestamps. Simply use
|
||||
|
||||
whisper_model_load: loading model from './models/ggml-base.en.bin'
|
||||
...
|
||||
system_info: n_threads = 4 / 10 | AVX2 = 0 | AVX512 = 0 | NEON = 1 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 |
|
||||
system_info: n_threads = 4 / 10 | AVX2 = 0 | AVX512 = 0 | NEON = 1 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 |
|
||||
|
||||
main: processing './samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 processors, lang = en, task = transcribe, timestamps = 1 ...
|
||||
|
||||
@ -422,6 +493,19 @@ https://user-images.githubusercontent.com/1991296/199337538-b7b0c7a3-2753-4a88-a
|
||||
|
||||
---
|
||||
|
||||
## Video comparison of different models
|
||||
|
||||
Use the [extra/bench-wts.sh](https://github.com/ggerganov/whisper.cpp/blob/master/extra/bench-wts.sh) script to generate a video in the following format:
|
||||
|
||||
```java
|
||||
./extra/bench-wts.sh samples/jfk.wav
|
||||
ffplay ./samples/jfk.wav.all.mp4
|
||||
```
|
||||
|
||||
https://user-images.githubusercontent.com/1991296/223206245-2d36d903-cf8e-4f09-8c3b-eb9f9c39d6fc.mp4
|
||||
|
||||
---
|
||||
|
||||
## Benchmarks
|
||||
|
||||
In order to have an objective comparison of the performance of the inference across different system configurations,
|
||||
@ -442,7 +526,7 @@ The original models are converted to a custom binary format. This allows to pack
|
||||
You can download the converted models using the [models/download-ggml-model.sh](models/download-ggml-model.sh) script
|
||||
or manually from here:
|
||||
|
||||
- https://huggingface.co/datasets/ggerganov/whisper.cpp
|
||||
- https://huggingface.co/ggerganov/whisper.cpp
|
||||
- https://ggml.ggerganov.com
|
||||
|
||||
For more details, see the conversion script [models/convert-pt-to-ggml.py](models/convert-pt-to-ggml.py) or the README
|
||||
@ -452,9 +536,19 @@ in [models](models).
|
||||
|
||||
- [X] Rust: [tazz4843/whisper-rs](https://github.com/tazz4843/whisper-rs) | [#310](https://github.com/ggerganov/whisper.cpp/discussions/310)
|
||||
- [X] Javascript: [bindings/javascript](bindings/javascript) | [#309](https://github.com/ggerganov/whisper.cpp/discussions/309)
|
||||
- React Native (iOS / Android): [whisper.rn](https://github.com/mybigday/whisper.rn)
|
||||
- [X] Go: [bindings/go](bindings/go) | [#312](https://github.com/ggerganov/whisper.cpp/discussions/312)
|
||||
- [X] Ruby: [bindings/ruby](bindings/ruby) | [#507](https://github.com/ggerganov/whisper.cpp/discussions/507)
|
||||
- [X] Objective-C / Swift: [ggerganov/whisper.spm](https://github.com/ggerganov/whisper.spm) | [#313](https://github.com/ggerganov/whisper.cpp/discussions/313)
|
||||
- [ ] Python: soon | [WIP](https://github.com/ggerganov/whisper.cpp/issues/9)
|
||||
- [exPHAT/SwiftWhisper](https://github.com/exPHAT/SwiftWhisper)
|
||||
- [X] .NET: | [#422](https://github.com/ggerganov/whisper.cpp/discussions/422)
|
||||
- [sandrohanea/whisper.net](https://github.com/sandrohanea/whisper.net)
|
||||
- [NickDarvey/whisper](https://github.com/NickDarvey/whisper)
|
||||
- [X] Python: | [#9](https://github.com/ggerganov/whisper.cpp/issues/9)
|
||||
- [stlukey/whispercpp.py](https://github.com/stlukey/whispercpp.py) (Cython)
|
||||
- [aarnphm/whispercpp](https://github.com/aarnphm/whispercpp) (Pybind11)
|
||||
- [X] R: [bnosac/audio.whisper](https://github.com/bnosac/audio.whisper)
|
||||
- [X] Unity: [macoron/whisper.unity](https://github.com/Macoron/whisper.unity)
|
||||
|
||||
## Examples
|
||||
|
||||
@ -468,6 +562,7 @@ Some of the examples are even ported to run in the browser using WebAssembly. Ch
|
||||
| [stream](examples/stream) | [stream.wasm](examples/stream.wasm) | Real-time transcription of raw microphone capture |
|
||||
| [command](examples/command) | [command.wasm](examples/command.wasm) | Basic voice assistant example for receiving voice commands from the mic |
|
||||
| [talk](examples/talk) | [talk.wasm](examples/talk.wasm) | Talk with a GPT-2 bot |
|
||||
| [talk-llama](examples/talk-llama) | | Talk with a LLaMA bot |
|
||||
| [whisper.objc](examples/whisper.objc) | | iOS mobile application using whisper.cpp |
|
||||
| [whisper.swiftui](examples/whisper.swiftui) | | SwiftUI iOS / macOS application using whisper.cpp |
|
||||
| [whisper.android](examples/whisper.android) | | Android mobile application using whisper.cpp |
|
||||
|
@ -17,9 +17,9 @@ import (
|
||||
// CONSTANTS
|
||||
|
||||
const (
|
||||
srcUrl = "https://huggingface.co/datasets/ggerganov/whisper.cpp/resolve/main" // The location of the models
|
||||
srcExt = ".bin" // Filename extension
|
||||
bufSize = 1024 * 64 // Size of the buffer used for downloading the model
|
||||
srcUrl = "https://huggingface.co/ggerganov/whisper.cpp/resolve/main" // The location of the models
|
||||
srcExt = ".bin" // Filename extension
|
||||
bufSize = 1024 * 64 // Size of the buffer used for downloading the model
|
||||
)
|
||||
|
||||
var (
|
||||
|
@ -25,6 +25,8 @@ func Process(model whisper.Model, path string, flags *Flags) error {
|
||||
return err
|
||||
}
|
||||
|
||||
fmt.Printf("\n%s\n", context.SystemInfo())
|
||||
|
||||
// Open the file
|
||||
fmt.Fprintf(flags.Output(), "Loading %q\n", path)
|
||||
fh, err := os.Open(path)
|
||||
@ -64,10 +66,13 @@ func Process(model whisper.Model, path string, flags *Flags) error {
|
||||
|
||||
// Process the data
|
||||
fmt.Fprintf(flags.Output(), " ...processing %q\n", path)
|
||||
context.ResetTimings()
|
||||
if err := context.Process(data, cb); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
context.PrintTimings()
|
||||
|
||||
// Print out the results
|
||||
switch {
|
||||
case flags.GetOut() == "srt":
|
||||
|
@ -49,6 +49,10 @@ func (p *Params) SetSpeedup(v bool) {
|
||||
|
||||
// Set language id
|
||||
func (p *Params) SetLanguage(lang int) error {
|
||||
if lang == -1 {
|
||||
p.language = nil
|
||||
return nil
|
||||
}
|
||||
str := C.whisper_lang_str(C.int(lang))
|
||||
if str == nil {
|
||||
return ErrInvalidLanguage
|
||||
@ -66,6 +70,11 @@ func (p *Params) Language() int {
|
||||
return int(C.whisper_lang_id(p.language))
|
||||
}
|
||||
|
||||
// Threads available
|
||||
func (p *Params) Threads() int {
|
||||
return int(p.n_threads)
|
||||
}
|
||||
|
||||
// Set number of threads to use
|
||||
func (p *Params) SetThreads(threads int) {
|
||||
p.n_threads = C.int(threads)
|
||||
@ -96,6 +105,10 @@ func (p *Params) SetMaxSegmentLength(n int) {
|
||||
p.max_len = C.int(n)
|
||||
}
|
||||
|
||||
func (p *Params) SetTokenTimestamps(b bool) {
|
||||
p.token_timestamps = toBool(b)
|
||||
}
|
||||
|
||||
// Set max tokens per segment (0 = no limit)
|
||||
func (p *Params) SetMaxTokensPerSegment(n int) {
|
||||
p.max_tokens = C.int(n)
|
||||
|
@ -1,7 +1,9 @@
|
||||
package whisper
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"io"
|
||||
"runtime"
|
||||
"strings"
|
||||
"time"
|
||||
|
||||
@ -44,7 +46,10 @@ func (context *context) SetLanguage(lang string) error {
|
||||
if !context.model.IsMultilingual() {
|
||||
return ErrModelNotMultilingual
|
||||
}
|
||||
if id := context.model.ctx.Whisper_lang_id(lang); id < 0 {
|
||||
|
||||
if lang == "auto" {
|
||||
context.params.SetLanguage(-1)
|
||||
} else if id := context.model.ctx.Whisper_lang_id(lang); id < 0 {
|
||||
return ErrUnsupportedLanguage
|
||||
} else if err := context.params.SetLanguage(id); err != nil {
|
||||
return err
|
||||
@ -59,6 +64,10 @@ func (context *context) IsMultilingual() bool {
|
||||
|
||||
// Get language
|
||||
func (context *context) Language() string {
|
||||
id := context.params.Language()
|
||||
if id == -1 {
|
||||
return "auto"
|
||||
}
|
||||
return whisper.Whisper_lang_str(context.params.Language())
|
||||
}
|
||||
|
||||
@ -102,11 +111,46 @@ func (context *context) SetMaxSegmentLength(n uint) {
|
||||
context.params.SetMaxSegmentLength(int(n))
|
||||
}
|
||||
|
||||
// Set token timestamps flag
|
||||
func (context *context) SetTokenTimestamps(b bool) {
|
||||
context.params.SetTokenTimestamps(b)
|
||||
}
|
||||
|
||||
// Set max tokens per segment (0 = no limit)
|
||||
func (context *context) SetMaxTokensPerSegment(n uint) {
|
||||
context.params.SetMaxTokensPerSegment(int(n))
|
||||
}
|
||||
|
||||
// ResetTimings resets the mode timings. Should be called before processing
|
||||
func (context *context) ResetTimings() {
|
||||
context.model.ctx.Whisper_reset_timings()
|
||||
}
|
||||
|
||||
// PrintTimings prints the model timings to stdout.
|
||||
func (context *context) PrintTimings() {
|
||||
context.model.ctx.Whisper_print_timings()
|
||||
}
|
||||
|
||||
// SystemInfo returns the system information
|
||||
func (context *context) SystemInfo() string {
|
||||
return fmt.Sprintf("system_info: n_threads = %d / %d | %s\n",
|
||||
context.params.Threads(),
|
||||
runtime.NumCPU(),
|
||||
whisper.Whisper_print_system_info(),
|
||||
)
|
||||
}
|
||||
|
||||
// Use mel data at offset_ms to try and auto-detect the spoken language
|
||||
// Make sure to call whisper_pcm_to_mel() or whisper_set_mel() first.
|
||||
// Returns the probabilities of all languages.
|
||||
func (context *context) WhisperLangAutoDetect(offset_ms int, n_threads int) ([]float32, error) {
|
||||
langProbs, err := context.model.ctx.Whisper_lang_auto_detect(offset_ms, n_threads)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return langProbs, nil
|
||||
}
|
||||
|
||||
// Process new sample data and return any errors
|
||||
func (context *context) Process(data []float32, cb SegmentCallback) error {
|
||||
if context.model.ctx == nil {
|
||||
@ -241,10 +285,14 @@ func toSegment(ctx *whisper.Context, n int) Segment {
|
||||
func toTokens(ctx *whisper.Context, n int) []Token {
|
||||
result := make([]Token, ctx.Whisper_full_n_tokens(n))
|
||||
for i := 0; i < len(result); i++ {
|
||||
data := ctx.Whisper_full_get_token_data(n, i)
|
||||
|
||||
result[i] = Token{
|
||||
Id: int(ctx.Whisper_full_get_token_id(n, i)),
|
||||
Text: strings.TrimSpace(ctx.Whisper_full_get_token_text(n, i)),
|
||||
P: ctx.Whisper_full_get_token_p(n, i),
|
||||
Id: int(ctx.Whisper_full_get_token_id(n, i)),
|
||||
Text: ctx.Whisper_full_get_token_text(n, i),
|
||||
P: ctx.Whisper_full_get_token_p(n, i),
|
||||
Start: time.Duration(data.T0()) * time.Millisecond * 10,
|
||||
End: time.Duration(data.T1()) * time.Millisecond * 10,
|
||||
}
|
||||
}
|
||||
return result
|
||||
|
@ -29,7 +29,7 @@ type Model interface {
|
||||
|
||||
// Context is the speach recognition context.
|
||||
type Context interface {
|
||||
SetLanguage(string) error // Set the language to use for speech recognition.
|
||||
SetLanguage(string) error // Set the language to use for speech recognition, use "auto" for auto detect language.
|
||||
SetTranslate(bool) // Set translate flag
|
||||
IsMultilingual() bool // Return true if the model is multilingual.
|
||||
Language() string // Get language
|
||||
@ -41,6 +41,7 @@ type Context interface {
|
||||
SetTokenThreshold(float32) // Set timestamp token probability threshold
|
||||
SetTokenSumThreshold(float32) // Set timestamp token sum probability threshold
|
||||
SetMaxSegmentLength(uint) // Set max segment length in characters
|
||||
SetTokenTimestamps(bool) // Set token timestamps flag
|
||||
SetMaxTokensPerSegment(uint) // Set max tokens per segment (0 = no limit)
|
||||
|
||||
// Process mono audio data and return any errors.
|
||||
@ -60,6 +61,12 @@ type Context interface {
|
||||
IsNOT(Token) bool // Test for "No timestamps" token
|
||||
IsLANG(Token, string) bool // Test for token associated with a specific language
|
||||
IsText(Token) bool // Test for text token
|
||||
|
||||
// Timings
|
||||
PrintTimings()
|
||||
ResetTimings()
|
||||
|
||||
SystemInfo() string
|
||||
}
|
||||
|
||||
// Segment is the text result of a speech recognition.
|
||||
@ -79,7 +86,8 @@ type Segment struct {
|
||||
|
||||
// Token is a text or special token
|
||||
type Token struct {
|
||||
Id int
|
||||
Text string
|
||||
P float32
|
||||
Id int
|
||||
Text string
|
||||
P float32
|
||||
Start, End time.Duration
|
||||
}
|
||||
|
@ -94,6 +94,7 @@ func (model *model) NewContext() (Context, error) {
|
||||
params.SetPrintRealtime(false)
|
||||
params.SetPrintTimestamps(false)
|
||||
params.SetThreads(runtime.NumCPU())
|
||||
params.SetNoContext(true)
|
||||
|
||||
// Return new context
|
||||
return newContext(model, params)
|
||||
|
@ -20,7 +20,7 @@ extern bool callEncoderBegin(void* user_data);
|
||||
// Text segment callback
|
||||
// Called on every newly generated text segment
|
||||
// Use the whisper_full_...() functions to obtain the text segments
|
||||
static void whisper_new_segment_cb(struct whisper_context* ctx, int n_new, void* user_data) {
|
||||
static void whisper_new_segment_cb(struct whisper_context* ctx, struct whisper_state* state, int n_new, void* user_data) {
|
||||
if(user_data != NULL && ctx != NULL) {
|
||||
callNewSegment(user_data, n_new);
|
||||
}
|
||||
@ -29,7 +29,7 @@ static void whisper_new_segment_cb(struct whisper_context* ctx, int n_new, void*
|
||||
// Encoder begin callback
|
||||
// If not NULL, called before the encoder starts
|
||||
// If it returns false, the computation is aborted
|
||||
static bool whisper_encoder_begin_cb(struct whisper_context* ctx, void* user_data) {
|
||||
static bool whisper_encoder_begin_cb(struct whisper_context* ctx, struct whisper_state* state, void* user_data) {
|
||||
if(user_data != NULL && ctx != NULL) {
|
||||
return callEncoderBegin(user_data);
|
||||
}
|
||||
@ -147,16 +147,6 @@ func (ctx *Context) Whisper_decode(tokens []Token, past, threads int) error {
|
||||
}
|
||||
}
|
||||
|
||||
// whisper_sample_best() returns the token with the highest probability
|
||||
func (ctx *Context) Whisper_sample_best() TokenData {
|
||||
return TokenData(C.whisper_sample_best((*C.struct_whisper_context)(ctx)))
|
||||
}
|
||||
|
||||
// whisper_sample_timestamp() returns the most probable timestamp token
|
||||
func (ctx *Context) Whisper_sample_timestamp(is_initial bool) TokenData {
|
||||
return TokenData(C.whisper_sample_timestamp((*C.struct_whisper_context)(ctx), C.bool(is_initial)))
|
||||
}
|
||||
|
||||
// Convert the provided text into tokens. The tokens pointer must be large enough to hold the resulting tokens.
|
||||
// Returns the number of tokens on success
|
||||
func (ctx *Context) Whisper_tokenize(text string, tokens []Token) (int, error) {
|
||||
@ -366,7 +356,7 @@ func (ctx *Context) Whisper_full_get_token_id(segment int, token int) Token {
|
||||
|
||||
// Get token data for the specified token in the specified segment.
|
||||
// This contains probabilities, timestamps, etc.
|
||||
func (ctx *Context) whisper_full_get_token_data(segment int, token int) TokenData {
|
||||
func (ctx *Context) Whisper_full_get_token_data(segment int, token int) TokenData {
|
||||
return TokenData(C.whisper_full_get_token_data((*C.struct_whisper_context)(ctx), C.int(segment), C.int(token)))
|
||||
}
|
||||
|
||||
@ -417,3 +407,11 @@ func callEncoderBegin(user_data unsafe.Pointer) C.bool {
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
func (t TokenData) T0() int64 {
|
||||
return int64(t.t0)
|
||||
}
|
||||
|
||||
func (t TokenData) T1() int64 {
|
||||
return int64(t.t1)
|
||||
}
|
||||
|
Submodule bindings/ios updated: f6334b026f...fce433c4b7
@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "whisper.cpp",
|
||||
"version": "1.1.0",
|
||||
"version": "1.3.0",
|
||||
"description": "Whisper speech recognition",
|
||||
"main": "whisper.js",
|
||||
"scripts": {
|
||||
|
File diff suppressed because one or more lines are too long
7
bindings/ruby/ext/.gitignore
vendored
Normal file
7
bindings/ruby/ext/.gitignore
vendored
Normal file
@ -0,0 +1,7 @@
|
||||
Makefile
|
||||
ggml.c
|
||||
ggml.h
|
||||
whisper.bundle
|
||||
whisper.cpp
|
||||
whisper.h
|
||||
dr_wav.h
|
21
bindings/ruby/ext/extconf.rb
Normal file
21
bindings/ruby/ext/extconf.rb
Normal file
@ -0,0 +1,21 @@
|
||||
require 'mkmf'
|
||||
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','whisper.cpp')} .")
|
||||
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','whisper.h')} .")
|
||||
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml.h')} .")
|
||||
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml.c')} .")
|
||||
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','examples','dr_wav.h')} .")
|
||||
|
||||
|
||||
# need to use c++ compiler flags
|
||||
$CXXFLAGS << ' -std=c++11'
|
||||
# Set to true when building binary gems
|
||||
if enable_config('static-stdlib', false)
|
||||
$LDFLAGS << ' -static-libgcc -static-libstdc++'
|
||||
end
|
||||
|
||||
if enable_config('march-tune-native', false)
|
||||
$CFLAGS << ' -march=native -mtune=native'
|
||||
$CXXFLAGS << ' -march=native -mtune=native'
|
||||
end
|
||||
|
||||
create_makefile('whisper')
|
426
bindings/ruby/ext/ruby_whisper.cpp
Normal file
426
bindings/ruby/ext/ruby_whisper.cpp
Normal file
@ -0,0 +1,426 @@
|
||||
#include <ruby.h>
|
||||
#include "ruby_whisper.h"
|
||||
#define DR_WAV_IMPLEMENTATION
|
||||
#include "dr_wav.h"
|
||||
#include <cmath>
|
||||
#include <fstream>
|
||||
#include <cstdio>
|
||||
#include <string>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define BOOL_PARAMS_SETTER(self, prop, value) \
|
||||
ruby_whisper_params *rwp; \
|
||||
Data_Get_Struct(self, ruby_whisper_params, rwp); \
|
||||
if (value == Qfalse || value == Qnil) { \
|
||||
rwp->params.prop = false; \
|
||||
} else { \
|
||||
rwp->params.prop = true; \
|
||||
} \
|
||||
return value; \
|
||||
|
||||
#define BOOL_PARAMS_GETTER(self, prop) \
|
||||
ruby_whisper_params *rwp; \
|
||||
Data_Get_Struct(self, ruby_whisper_params, rwp); \
|
||||
if (rwp->params.prop) { \
|
||||
return Qtrue; \
|
||||
} else { \
|
||||
return Qfalse; \
|
||||
}
|
||||
|
||||
VALUE mWhisper;
|
||||
VALUE cContext;
|
||||
VALUE cParams;
|
||||
|
||||
static void ruby_whisper_free(ruby_whisper *rw) {
|
||||
if (rw->context) {
|
||||
whisper_free(rw->context);
|
||||
rw->context = NULL;
|
||||
}
|
||||
}
|
||||
static void ruby_whisper_params_free(ruby_whisper_params *rwp) {
|
||||
}
|
||||
|
||||
void rb_whisper_mark(ruby_whisper *rw) {
|
||||
// call rb_gc_mark on any ruby references in rw
|
||||
}
|
||||
|
||||
void rb_whisper_free(ruby_whisper *rw) {
|
||||
ruby_whisper_free(rw);
|
||||
free(rw);
|
||||
}
|
||||
|
||||
void rb_whisper_params_mark(ruby_whisper_params *rwp) {
|
||||
}
|
||||
|
||||
void rb_whisper_params_free(ruby_whisper_params *rwp) {
|
||||
ruby_whisper_params_free(rwp);
|
||||
free(rwp);
|
||||
}
|
||||
|
||||
static VALUE ruby_whisper_allocate(VALUE klass) {
|
||||
ruby_whisper *rw;
|
||||
rw = ALLOC(ruby_whisper);
|
||||
rw->context = NULL;
|
||||
return Data_Wrap_Struct(klass, rb_whisper_mark, rb_whisper_free, rw);
|
||||
}
|
||||
|
||||
static VALUE ruby_whisper_params_allocate(VALUE klass) {
|
||||
ruby_whisper_params *rwp;
|
||||
rwp = ALLOC(ruby_whisper_params);
|
||||
rwp->params = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
|
||||
return Data_Wrap_Struct(klass, rb_whisper_params_mark, rb_whisper_params_free, rwp);
|
||||
}
|
||||
|
||||
static VALUE ruby_whisper_initialize(int argc, VALUE *argv, VALUE self) {
|
||||
ruby_whisper *rw;
|
||||
VALUE whisper_model_file_path;
|
||||
|
||||
// TODO: we can support init from buffer here too maybe another ruby object to expose
|
||||
rb_scan_args(argc, argv, "01", &whisper_model_file_path);
|
||||
Data_Get_Struct(self, ruby_whisper, rw);
|
||||
|
||||
if (!rb_respond_to(whisper_model_file_path, rb_intern("to_s"))) {
|
||||
rb_raise(rb_eRuntimeError, "Expected file path to model to initialize Whisper::Context");
|
||||
}
|
||||
rw->context = whisper_init_from_file(StringValueCStr(whisper_model_file_path));
|
||||
if (rw->context == nullptr) {
|
||||
rb_raise(rb_eRuntimeError, "error: failed to initialize whisper context");
|
||||
}
|
||||
return self;
|
||||
}
|
||||
|
||||
/*
|
||||
* transcribe a single file
|
||||
* can emit to a block results
|
||||
*
|
||||
**/
|
||||
static VALUE ruby_whisper_transcribe(int argc, VALUE *argv, VALUE self) {
|
||||
ruby_whisper *rw;
|
||||
ruby_whisper_params *rwp;
|
||||
VALUE wave_file_path, blk, params;
|
||||
|
||||
rb_scan_args(argc, argv, "02&", &wave_file_path, ¶ms, &blk);
|
||||
Data_Get_Struct(self, ruby_whisper, rw);
|
||||
Data_Get_Struct(params, ruby_whisper_params, rwp);
|
||||
|
||||
if (!rb_respond_to(wave_file_path, rb_intern("to_s"))) {
|
||||
rb_raise(rb_eRuntimeError, "Expected file path to wave file");
|
||||
}
|
||||
|
||||
std::string fname_inp = StringValueCStr(wave_file_path);
|
||||
|
||||
std::vector<float> pcmf32; // mono-channel F32 PCM
|
||||
std::vector<std::vector<float>> pcmf32s; // stereo-channel F32 PCM
|
||||
|
||||
// WAV input - this is directly from main.cpp example
|
||||
{
|
||||
drwav wav;
|
||||
std::vector<uint8_t> wav_data; // used for pipe input from stdin
|
||||
|
||||
if (fname_inp == "-") {
|
||||
{
|
||||
uint8_t buf[1024];
|
||||
while (true) {
|
||||
const size_t n = fread(buf, 1, sizeof(buf), stdin);
|
||||
if (n == 0) {
|
||||
break;
|
||||
}
|
||||
wav_data.insert(wav_data.end(), buf, buf + n);
|
||||
}
|
||||
}
|
||||
|
||||
if (drwav_init_memory(&wav, wav_data.data(), wav_data.size(), nullptr) == false) {
|
||||
fprintf(stderr, "error: failed to open WAV file from stdin\n");
|
||||
return self;
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: read %zu bytes from stdin\n", __func__, wav_data.size());
|
||||
} else if (drwav_init_file(&wav, fname_inp.c_str(), nullptr) == false) {
|
||||
fprintf(stderr, "error: failed to open '%s' as WAV file\n", fname_inp.c_str());
|
||||
return self;
|
||||
}
|
||||
|
||||
if (wav.channels != 1 && wav.channels != 2) {
|
||||
fprintf(stderr, "WAV file '%s' must be mono or stereo\n", fname_inp.c_str());
|
||||
return self;
|
||||
}
|
||||
|
||||
if (rwp->diarize && wav.channels != 2 && rwp->params.print_timestamps == false) {
|
||||
fprintf(stderr, "WAV file '%s' must be stereo for diarization and timestamps have to be enabled\n", fname_inp.c_str());
|
||||
return self;
|
||||
}
|
||||
|
||||
if (wav.sampleRate != WHISPER_SAMPLE_RATE) {
|
||||
fprintf(stderr, "WAV file '%s' must be %i kHz\n", fname_inp.c_str(), WHISPER_SAMPLE_RATE/1000);
|
||||
return self;
|
||||
}
|
||||
|
||||
if (wav.bitsPerSample != 16) {
|
||||
fprintf(stderr, "WAV file '%s' must be 16-bit\n", fname_inp.c_str());
|
||||
return self;
|
||||
}
|
||||
|
||||
const uint64_t n = wav_data.empty() ? wav.totalPCMFrameCount : wav_data.size()/(wav.channels*wav.bitsPerSample/8);
|
||||
|
||||
std::vector<int16_t> pcm16;
|
||||
pcm16.resize(n*wav.channels);
|
||||
drwav_read_pcm_frames_s16(&wav, n, pcm16.data());
|
||||
drwav_uninit(&wav);
|
||||
|
||||
// convert to mono, float
|
||||
pcmf32.resize(n);
|
||||
if (wav.channels == 1) {
|
||||
for (uint64_t i = 0; i < n; i++) {
|
||||
pcmf32[i] = float(pcm16[i])/32768.0f;
|
||||
}
|
||||
} else {
|
||||
for (uint64_t i = 0; i < n; i++) {
|
||||
pcmf32[i] = float(pcm16[2*i] + pcm16[2*i + 1])/65536.0f;
|
||||
}
|
||||
}
|
||||
|
||||
if (rwp->diarize) {
|
||||
// convert to stereo, float
|
||||
pcmf32s.resize(2);
|
||||
|
||||
pcmf32s[0].resize(n);
|
||||
pcmf32s[1].resize(n);
|
||||
for (uint64_t i = 0; i < n; i++) {
|
||||
pcmf32s[0][i] = float(pcm16[2*i])/32768.0f;
|
||||
pcmf32s[1][i] = float(pcm16[2*i + 1])/32768.0f;
|
||||
}
|
||||
}
|
||||
}
|
||||
{
|
||||
static bool is_aborted = false; // NOTE: this should be atomic to avoid data race
|
||||
|
||||
rwp->params.encoder_begin_callback = [](struct whisper_context * /*ctx*/, struct whisper_state * /*state*/, void * user_data) {
|
||||
bool is_aborted = *(bool*)user_data;
|
||||
return !is_aborted;
|
||||
};
|
||||
rwp->params.encoder_begin_callback_user_data = &is_aborted;
|
||||
}
|
||||
|
||||
if (whisper_full_parallel(rw->context, rwp->params, pcmf32.data(), pcmf32.size(), 1) != 0) {
|
||||
fprintf(stderr, "failed to process audio\n");
|
||||
return self;
|
||||
}
|
||||
const int n_segments = whisper_full_n_segments(rw->context);
|
||||
VALUE output = rb_str_new2("");
|
||||
for (int i = 0; i < n_segments; ++i) {
|
||||
const char * text = whisper_full_get_segment_text(rw->context, i);
|
||||
output = rb_str_concat(output, rb_str_new2(text));
|
||||
}
|
||||
VALUE idCall = rb_intern("call");
|
||||
if (blk != Qnil) {
|
||||
rb_funcall(blk, idCall, 1, output);
|
||||
}
|
||||
return self;
|
||||
}
|
||||
|
||||
/*
|
||||
* params.language = "auto" | "en", etc...
|
||||
*/
|
||||
static VALUE ruby_whisper_params_set_language(VALUE self, VALUE value) {
|
||||
ruby_whisper_params *rwp;
|
||||
Data_Get_Struct(self, ruby_whisper_params, rwp);
|
||||
if (value == Qfalse || value == Qnil) {
|
||||
rwp->params.language = "auto";
|
||||
} else {
|
||||
rwp->params.language = StringValueCStr(value);
|
||||
}
|
||||
return value;
|
||||
}
|
||||
static VALUE ruby_whisper_params_get_language(VALUE self) {
|
||||
ruby_whisper_params *rwp;
|
||||
Data_Get_Struct(self, ruby_whisper_params, rwp);
|
||||
if (rwp->params.language) {
|
||||
return rb_str_new2(rwp->params.language);
|
||||
} else {
|
||||
return rb_str_new2("auto");
|
||||
}
|
||||
}
|
||||
static VALUE ruby_whisper_params_set_translate(VALUE self, VALUE value) {
|
||||
BOOL_PARAMS_SETTER(self, translate, value)
|
||||
}
|
||||
static VALUE ruby_whisper_params_get_translate(VALUE self) {
|
||||
BOOL_PARAMS_GETTER(self, translate)
|
||||
}
|
||||
static VALUE ruby_whisper_params_set_no_context(VALUE self, VALUE value) {
|
||||
BOOL_PARAMS_SETTER(self, no_context, value)
|
||||
}
|
||||
static VALUE ruby_whisper_params_get_no_context(VALUE self) {
|
||||
BOOL_PARAMS_GETTER(self, no_context)
|
||||
}
|
||||
static VALUE ruby_whisper_params_set_single_segment(VALUE self, VALUE value) {
|
||||
BOOL_PARAMS_SETTER(self, single_segment, value)
|
||||
}
|
||||
static VALUE ruby_whisper_params_get_single_segment(VALUE self) {
|
||||
BOOL_PARAMS_GETTER(self, single_segment)
|
||||
}
|
||||
static VALUE ruby_whisper_params_set_print_special(VALUE self, VALUE value) {
|
||||
BOOL_PARAMS_SETTER(self, print_special, value)
|
||||
}
|
||||
static VALUE ruby_whisper_params_get_print_special(VALUE self) {
|
||||
BOOL_PARAMS_GETTER(self, print_special)
|
||||
}
|
||||
static VALUE ruby_whisper_params_set_print_progress(VALUE self, VALUE value) {
|
||||
BOOL_PARAMS_SETTER(self, print_progress, value)
|
||||
}
|
||||
static VALUE ruby_whisper_params_get_print_progress(VALUE self) {
|
||||
BOOL_PARAMS_GETTER(self, print_progress)
|
||||
}
|
||||
static VALUE ruby_whisper_params_set_print_realtime(VALUE self, VALUE value) {
|
||||
BOOL_PARAMS_SETTER(self, print_realtime, value)
|
||||
}
|
||||
static VALUE ruby_whisper_params_get_print_realtime(VALUE self) {
|
||||
BOOL_PARAMS_GETTER(self, print_realtime)
|
||||
}
|
||||
static VALUE ruby_whisper_params_set_print_timestamps(VALUE self, VALUE value) {
|
||||
BOOL_PARAMS_SETTER(self, print_timestamps, value)
|
||||
}
|
||||
static VALUE ruby_whisper_params_get_print_timestamps(VALUE self) {
|
||||
BOOL_PARAMS_GETTER(self, print_timestamps)
|
||||
}
|
||||
static VALUE ruby_whisper_params_set_suppress_blank(VALUE self, VALUE value) {
|
||||
BOOL_PARAMS_SETTER(self, suppress_blank, value)
|
||||
}
|
||||
static VALUE ruby_whisper_params_get_suppress_blank(VALUE self) {
|
||||
BOOL_PARAMS_GETTER(self, suppress_blank)
|
||||
}
|
||||
static VALUE ruby_whisper_params_set_suppress_non_speech_tokens(VALUE self, VALUE value) {
|
||||
BOOL_PARAMS_SETTER(self, suppress_non_speech_tokens, value)
|
||||
}
|
||||
static VALUE ruby_whisper_params_get_suppress_non_speech_tokens(VALUE self) {
|
||||
BOOL_PARAMS_GETTER(self, suppress_non_speech_tokens)
|
||||
}
|
||||
static VALUE ruby_whisper_params_get_token_timestamps(VALUE self) {
|
||||
BOOL_PARAMS_GETTER(self, token_timestamps)
|
||||
}
|
||||
static VALUE ruby_whisper_params_set_token_timestamps(VALUE self, VALUE value) {
|
||||
BOOL_PARAMS_SETTER(self, token_timestamps, value)
|
||||
}
|
||||
static VALUE ruby_whisper_params_get_split_on_word(VALUE self) {
|
||||
BOOL_PARAMS_GETTER(self, split_on_word)
|
||||
}
|
||||
static VALUE ruby_whisper_params_set_split_on_word(VALUE self, VALUE value) {
|
||||
BOOL_PARAMS_SETTER(self, split_on_word, value)
|
||||
}
|
||||
static VALUE ruby_whisper_params_get_speed_up(VALUE self) {
|
||||
BOOL_PARAMS_GETTER(self, speed_up)
|
||||
}
|
||||
static VALUE ruby_whisper_params_set_speed_up(VALUE self, VALUE value) {
|
||||
BOOL_PARAMS_SETTER(self, speed_up, value)
|
||||
}
|
||||
static VALUE ruby_whisper_params_get_diarize(VALUE self) {
|
||||
ruby_whisper_params *rwp;
|
||||
Data_Get_Struct(self, ruby_whisper_params, rwp);
|
||||
if (rwp->diarize) {
|
||||
return Qtrue;
|
||||
} else {
|
||||
return Qfalse;
|
||||
}
|
||||
}
|
||||
static VALUE ruby_whisper_params_set_diarize(VALUE self, VALUE value) {
|
||||
ruby_whisper_params *rwp;
|
||||
Data_Get_Struct(self, ruby_whisper_params, rwp);
|
||||
if (value == Qfalse || value == Qnil) {
|
||||
rwp->diarize = false;
|
||||
} else {
|
||||
rwp->diarize = true;
|
||||
} \
|
||||
return value;
|
||||
}
|
||||
|
||||
static VALUE ruby_whisper_params_get_offset(VALUE self) {
|
||||
ruby_whisper_params *rwp;
|
||||
Data_Get_Struct(self, ruby_whisper_params, rwp);
|
||||
return INT2NUM(rwp->params.offset_ms);
|
||||
}
|
||||
static VALUE ruby_whisper_params_set_offset(VALUE self, VALUE value) {
|
||||
ruby_whisper_params *rwp;
|
||||
Data_Get_Struct(self, ruby_whisper_params, rwp);
|
||||
rwp->params.offset_ms = NUM2INT(value);
|
||||
return value;
|
||||
}
|
||||
static VALUE ruby_whisper_params_get_duration(VALUE self) {
|
||||
ruby_whisper_params *rwp;
|
||||
Data_Get_Struct(self, ruby_whisper_params, rwp);
|
||||
return INT2NUM(rwp->params.duration_ms);
|
||||
}
|
||||
static VALUE ruby_whisper_params_set_duration(VALUE self, VALUE value) {
|
||||
ruby_whisper_params *rwp;
|
||||
Data_Get_Struct(self, ruby_whisper_params, rwp);
|
||||
rwp->params.duration_ms = NUM2INT(value);
|
||||
return value;
|
||||
}
|
||||
|
||||
static VALUE ruby_whisper_params_get_max_text_tokens(VALUE self) {
|
||||
ruby_whisper_params *rwp;
|
||||
Data_Get_Struct(self, ruby_whisper_params, rwp);
|
||||
return INT2NUM(rwp->params.n_max_text_ctx);
|
||||
}
|
||||
static VALUE ruby_whisper_params_set_max_text_tokens(VALUE self, VALUE value) {
|
||||
ruby_whisper_params *rwp;
|
||||
Data_Get_Struct(self, ruby_whisper_params, rwp);
|
||||
rwp->params.n_max_text_ctx = NUM2INT(value);
|
||||
return value;
|
||||
}
|
||||
|
||||
void Init_whisper() {
|
||||
mWhisper = rb_define_module("Whisper");
|
||||
cContext = rb_define_class_under(mWhisper, "Context", rb_cObject);
|
||||
cParams = rb_define_class_under(mWhisper, "Params", rb_cObject);
|
||||
|
||||
rb_define_alloc_func(cContext, ruby_whisper_allocate);
|
||||
rb_define_method(cContext, "initialize", ruby_whisper_initialize, -1);
|
||||
|
||||
rb_define_method(cContext, "transcribe", ruby_whisper_transcribe, -1);
|
||||
|
||||
rb_define_alloc_func(cParams, ruby_whisper_params_allocate);
|
||||
|
||||
rb_define_method(cParams, "language=", ruby_whisper_params_set_language, 1);
|
||||
rb_define_method(cParams, "language", ruby_whisper_params_get_language, 0);
|
||||
rb_define_method(cParams, "translate=", ruby_whisper_params_set_translate, 1);
|
||||
rb_define_method(cParams, "translate", ruby_whisper_params_get_translate, 0);
|
||||
rb_define_method(cParams, "no_context=", ruby_whisper_params_set_no_context, 1);
|
||||
rb_define_method(cParams, "no_context", ruby_whisper_params_get_no_context, 0);
|
||||
rb_define_method(cParams, "single_segment=", ruby_whisper_params_set_single_segment, 1);
|
||||
rb_define_method(cParams, "single_segment", ruby_whisper_params_get_single_segment, 0);
|
||||
rb_define_method(cParams, "print_special", ruby_whisper_params_get_print_special, 0);
|
||||
rb_define_method(cParams, "print_special=", ruby_whisper_params_set_print_special, 1);
|
||||
rb_define_method(cParams, "print_progress", ruby_whisper_params_get_print_progress, 0);
|
||||
rb_define_method(cParams, "print_progress=", ruby_whisper_params_set_print_progress, 1);
|
||||
rb_define_method(cParams, "print_realtime", ruby_whisper_params_get_print_realtime, 0);
|
||||
rb_define_method(cParams, "print_realtime=", ruby_whisper_params_set_print_realtime, 1);
|
||||
rb_define_method(cParams, "print_timestamps", ruby_whisper_params_get_print_timestamps, 0);
|
||||
rb_define_method(cParams, "print_timestamps=", ruby_whisper_params_set_print_timestamps, 1);
|
||||
rb_define_method(cParams, "suppress_blank", ruby_whisper_params_get_suppress_blank, 0);
|
||||
rb_define_method(cParams, "suppress_blank=", ruby_whisper_params_set_suppress_blank, 1);
|
||||
rb_define_method(cParams, "suppress_non_speech_tokens", ruby_whisper_params_get_suppress_non_speech_tokens, 0);
|
||||
rb_define_method(cParams, "suppress_non_speech_tokens=", ruby_whisper_params_set_suppress_non_speech_tokens, 1);
|
||||
rb_define_method(cParams, "token_timestamps", ruby_whisper_params_get_token_timestamps, 0);
|
||||
rb_define_method(cParams, "token_timestamps=", ruby_whisper_params_set_token_timestamps, 1);
|
||||
rb_define_method(cParams, "split_on_word", ruby_whisper_params_get_split_on_word, 0);
|
||||
rb_define_method(cParams, "split_on_word=", ruby_whisper_params_set_split_on_word, 1);
|
||||
rb_define_method(cParams, "speed_up", ruby_whisper_params_get_speed_up, 0);
|
||||
rb_define_method(cParams, "speed_up=", ruby_whisper_params_set_speed_up, 1);
|
||||
rb_define_method(cParams, "diarize", ruby_whisper_params_get_diarize, 0);
|
||||
rb_define_method(cParams, "diarize=", ruby_whisper_params_set_diarize, 1);
|
||||
|
||||
rb_define_method(cParams, "offset", ruby_whisper_params_get_offset, 0);
|
||||
rb_define_method(cParams, "offset=", ruby_whisper_params_set_offset, 1);
|
||||
rb_define_method(cParams, "duration", ruby_whisper_params_get_duration, 0);
|
||||
rb_define_method(cParams, "duration=", ruby_whisper_params_set_duration, 1);
|
||||
|
||||
rb_define_method(cParams, "max_text_tokens", ruby_whisper_params_get_max_text_tokens, 0);
|
||||
rb_define_method(cParams, "max_text_tokens=", ruby_whisper_params_set_max_text_tokens, 1);
|
||||
}
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
15
bindings/ruby/ext/ruby_whisper.h
Normal file
15
bindings/ruby/ext/ruby_whisper.h
Normal file
@ -0,0 +1,15 @@
|
||||
#ifndef __RUBY_WHISPER_H
|
||||
#define __RUBY_WHISPER_H
|
||||
|
||||
#include "whisper.h"
|
||||
|
||||
typedef struct {
|
||||
struct whisper_context *context;
|
||||
} ruby_whisper;
|
||||
|
||||
typedef struct {
|
||||
struct whisper_full_params params;
|
||||
bool diarize;
|
||||
} ruby_whisper_params;
|
||||
|
||||
#endif
|
138
bindings/ruby/tests/test_whisper.rb
Normal file
138
bindings/ruby/tests/test_whisper.rb
Normal file
@ -0,0 +1,138 @@
|
||||
TOPDIR = File.expand_path(File.join(File.dirname(__FILE__), '..'))
|
||||
EXTDIR = File.join(TOPDIR, 'ext')
|
||||
#$LIBDIR = File.join(TOPDIR, 'lib')
|
||||
#$:.unshift(LIBDIR)
|
||||
$:.unshift(EXTDIR)
|
||||
|
||||
require 'whisper'
|
||||
require 'test/unit'
|
||||
|
||||
class TestWhisper < Test::Unit::TestCase
|
||||
def setup
|
||||
@params = Whisper::Params.new
|
||||
end
|
||||
|
||||
def test_language
|
||||
@params.language = "en"
|
||||
assert_equal @params.language, "en"
|
||||
@params.language = "auto"
|
||||
assert_equal @params.language, "auto"
|
||||
end
|
||||
|
||||
def test_offset
|
||||
@params.offset = 10_000
|
||||
assert_equal @params.offset, 10_000
|
||||
@params.offset = 0
|
||||
assert_equal @params.offset, 0
|
||||
end
|
||||
|
||||
def test_duration
|
||||
@params.duration = 60_000
|
||||
assert_equal @params.duration, 60_000
|
||||
@params.duration = 0
|
||||
assert_equal @params.duration, 0
|
||||
end
|
||||
|
||||
def test_max_text_tokens
|
||||
@params.max_text_tokens = 300
|
||||
assert_equal @params.max_text_tokens, 300
|
||||
@params.max_text_tokens = 0
|
||||
assert_equal @params.max_text_tokens, 0
|
||||
end
|
||||
|
||||
def test_translate
|
||||
@params.translate = true
|
||||
assert @params.translate
|
||||
@params.translate = false
|
||||
assert !@params.translate
|
||||
end
|
||||
|
||||
def test_no_context
|
||||
@params.no_context = true
|
||||
assert @params.no_context
|
||||
@params.no_context = false
|
||||
assert !@params.no_context
|
||||
end
|
||||
|
||||
def test_single_segment
|
||||
@params.single_segment = true
|
||||
assert @params.single_segment
|
||||
@params.single_segment = false
|
||||
assert !@params.single_segment
|
||||
end
|
||||
|
||||
def test_print_special
|
||||
@params.print_special = true
|
||||
assert @params.print_special
|
||||
@params.print_special = false
|
||||
assert !@params.print_special
|
||||
end
|
||||
|
||||
def test_print_progress
|
||||
@params.print_progress = true
|
||||
assert @params.print_progress
|
||||
@params.print_progress = false
|
||||
assert !@params.print_progress
|
||||
end
|
||||
|
||||
def test_print_realtime
|
||||
@params.print_realtime = true
|
||||
assert @params.print_realtime
|
||||
@params.print_realtime = false
|
||||
assert !@params.print_realtime
|
||||
end
|
||||
|
||||
def test_print_timestamps
|
||||
@params.print_timestamps = true
|
||||
assert @params.print_timestamps
|
||||
@params.print_timestamps = false
|
||||
assert !@params.print_timestamps
|
||||
end
|
||||
|
||||
def test_suppress_blank
|
||||
@params.suppress_blank = true
|
||||
assert @params.suppress_blank
|
||||
@params.suppress_blank = false
|
||||
assert !@params.suppress_blank
|
||||
end
|
||||
|
||||
def test_suppress_non_speech_tokens
|
||||
@params.suppress_non_speech_tokens = true
|
||||
assert @params.suppress_non_speech_tokens
|
||||
@params.suppress_non_speech_tokens = false
|
||||
assert !@params.suppress_non_speech_tokens
|
||||
end
|
||||
|
||||
def test_token_timestamps
|
||||
@params.token_timestamps = true
|
||||
assert @params.token_timestamps
|
||||
@params.token_timestamps = false
|
||||
assert !@params.token_timestamps
|
||||
end
|
||||
|
||||
def test_split_on_word
|
||||
@params.split_on_word = true
|
||||
assert @params.split_on_word
|
||||
@params.split_on_word = false
|
||||
assert !@params.split_on_word
|
||||
end
|
||||
|
||||
def test_speed_up
|
||||
@params.speed_up = true
|
||||
assert @params.speed_up
|
||||
@params.speed_up = false
|
||||
assert !@params.speed_up
|
||||
end
|
||||
|
||||
def test_whisper
|
||||
@whisper = Whisper::Context.new(File.join(TOPDIR, '..', '..', 'models', 'ggml-base.en.bin'))
|
||||
params = Whisper::Params.new
|
||||
params.print_timestamps = false
|
||||
|
||||
jfk = File.join(TOPDIR, '..', '..', 'samples', 'jfk.wav')
|
||||
@whisper.transcribe(jfk, params) {|text|
|
||||
assert_match /ask not what your country can do for you, ask what you can do for your country/, text
|
||||
}
|
||||
end
|
||||
|
||||
end
|
146
coreml/whisper-decoder-impl.h
Normal file
146
coreml/whisper-decoder-impl.h
Normal file
@ -0,0 +1,146 @@
|
||||
//
|
||||
// whisper-decoder-impl.h
|
||||
//
|
||||
// This file was automatically generated and should not be edited.
|
||||
//
|
||||
|
||||
#import <Foundation/Foundation.h>
|
||||
#import <CoreML/CoreML.h>
|
||||
#include <stdint.h>
|
||||
#include <os/log.h>
|
||||
|
||||
NS_ASSUME_NONNULL_BEGIN
|
||||
|
||||
|
||||
/// Model Prediction Input Type
|
||||
API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((visibility("hidden")))
|
||||
@interface whisper_decoder_implInput : NSObject<MLFeatureProvider>
|
||||
|
||||
/// token_data as 1 by 1 matrix of 32-bit integers
|
||||
@property (readwrite, nonatomic, strong) MLMultiArray * token_data;
|
||||
|
||||
/// audio_data as 1 × 384 × 1 × 1500 4-dimensional array of floats
|
||||
@property (readwrite, nonatomic, strong) MLMultiArray * audio_data;
|
||||
- (instancetype)init NS_UNAVAILABLE;
|
||||
- (instancetype)initWithToken_data:(MLMultiArray *)token_data audio_data:(MLMultiArray *)audio_data NS_DESIGNATED_INITIALIZER;
|
||||
|
||||
@end
|
||||
|
||||
|
||||
/// Model Prediction Output Type
|
||||
API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((visibility("hidden")))
|
||||
@interface whisper_decoder_implOutput : NSObject<MLFeatureProvider>
|
||||
|
||||
/// var_1346 as multidimensional array of floats
|
||||
@property (readwrite, nonatomic, strong) MLMultiArray * var_1346;
|
||||
- (instancetype)init NS_UNAVAILABLE;
|
||||
- (instancetype)initWithVar_1346:(MLMultiArray *)var_1346 NS_DESIGNATED_INITIALIZER;
|
||||
|
||||
@end
|
||||
|
||||
|
||||
/// Class for model loading and prediction
|
||||
API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((visibility("hidden")))
|
||||
@interface whisper_decoder_impl : NSObject
|
||||
@property (readonly, nonatomic, nullable) MLModel * model;
|
||||
|
||||
/**
|
||||
URL of the underlying .mlmodelc directory.
|
||||
*/
|
||||
+ (nullable NSURL *)URLOfModelInThisBundle;
|
||||
|
||||
/**
|
||||
Initialize whisper_decoder_impl instance from an existing MLModel object.
|
||||
|
||||
Usually the application does not use this initializer unless it makes a subclass of whisper_decoder_impl.
|
||||
Such application may want to use `-[MLModel initWithContentsOfURL:configuration:error:]` and `+URLOfModelInThisBundle` to create a MLModel object to pass-in.
|
||||
*/
|
||||
- (instancetype)initWithMLModel:(MLModel *)model NS_DESIGNATED_INITIALIZER;
|
||||
|
||||
/**
|
||||
Initialize whisper_decoder_impl instance with the model in this bundle.
|
||||
*/
|
||||
- (nullable instancetype)init;
|
||||
|
||||
/**
|
||||
Initialize whisper_decoder_impl instance with the model in this bundle.
|
||||
|
||||
@param configuration The model configuration object
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithConfiguration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Initialize whisper_decoder_impl instance from the model URL.
|
||||
|
||||
@param modelURL URL to the .mlmodelc directory for whisper_decoder_impl.
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Initialize whisper_decoder_impl instance from the model URL.
|
||||
|
||||
@param modelURL URL to the .mlmodelc directory for whisper_decoder_impl.
|
||||
@param configuration The model configuration object
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Construct whisper_decoder_impl instance asynchronously with configuration.
|
||||
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
|
||||
|
||||
@param configuration The model configuration
|
||||
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid whisper_decoder_impl instance or NSError object.
|
||||
*/
|
||||
+ (void)loadWithConfiguration:(MLModelConfiguration *)configuration completionHandler:(void (^)(whisper_decoder_impl * _Nullable model, NSError * _Nullable error))handler;
|
||||
|
||||
/**
|
||||
Construct whisper_decoder_impl instance asynchronously with URL of .mlmodelc directory and optional configuration.
|
||||
|
||||
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
|
||||
|
||||
@param modelURL The model URL.
|
||||
@param configuration The model configuration
|
||||
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid whisper_decoder_impl instance or NSError object.
|
||||
*/
|
||||
+ (void)loadContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration completionHandler:(void (^)(whisper_decoder_impl * _Nullable model, NSError * _Nullable error))handler;
|
||||
|
||||
/**
|
||||
Make a prediction using the standard interface
|
||||
@param input an instance of whisper_decoder_implInput to predict from
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
@return the prediction as whisper_decoder_implOutput
|
||||
*/
|
||||
- (nullable whisper_decoder_implOutput *)predictionFromFeatures:(whisper_decoder_implInput *)input error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Make a prediction using the standard interface
|
||||
@param input an instance of whisper_decoder_implInput to predict from
|
||||
@param options prediction options
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
@return the prediction as whisper_decoder_implOutput
|
||||
*/
|
||||
- (nullable whisper_decoder_implOutput *)predictionFromFeatures:(whisper_decoder_implInput *)input options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Make a prediction using the convenience interface
|
||||
@param token_data as 1 by 1 matrix of 32-bit integers:
|
||||
@param audio_data as 1 × 384 × 1 × 1500 4-dimensional array of floats:
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
@return the prediction as whisper_decoder_implOutput
|
||||
*/
|
||||
- (nullable whisper_decoder_implOutput *)predictionFromToken_data:(MLMultiArray *)token_data audio_data:(MLMultiArray *)audio_data error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Batch prediction
|
||||
@param inputArray array of whisper_decoder_implInput instances to obtain predictions from
|
||||
@param options prediction options
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
@return the predictions as NSArray<whisper_decoder_implOutput *>
|
||||
*/
|
||||
- (nullable NSArray<whisper_decoder_implOutput *> *)predictionsFromInputs:(NSArray<whisper_decoder_implInput*> *)inputArray options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
@end
|
||||
|
||||
NS_ASSUME_NONNULL_END
|
201
coreml/whisper-decoder-impl.m
Normal file
201
coreml/whisper-decoder-impl.m
Normal file
@ -0,0 +1,201 @@
|
||||
//
|
||||
// whisper-decoder-impl.m
|
||||
//
|
||||
// This file was automatically generated and should not be edited.
|
||||
//
|
||||
|
||||
#if !__has_feature(objc_arc)
|
||||
#error This file must be compiled with automatic reference counting enabled (-fobjc-arc)
|
||||
#endif
|
||||
|
||||
#import "whisper-decoder-impl.h"
|
||||
|
||||
@implementation whisper_decoder_implInput
|
||||
|
||||
- (instancetype)initWithToken_data:(MLMultiArray *)token_data audio_data:(MLMultiArray *)audio_data {
|
||||
self = [super init];
|
||||
if (self) {
|
||||
_token_data = token_data;
|
||||
_audio_data = audio_data;
|
||||
}
|
||||
return self;
|
||||
}
|
||||
|
||||
- (NSSet<NSString *> *)featureNames {
|
||||
return [NSSet setWithArray:@[@"token_data", @"audio_data"]];
|
||||
}
|
||||
|
||||
- (nullable MLFeatureValue *)featureValueForName:(NSString *)featureName {
|
||||
if ([featureName isEqualToString:@"token_data"]) {
|
||||
return [MLFeatureValue featureValueWithMultiArray:self.token_data];
|
||||
}
|
||||
if ([featureName isEqualToString:@"audio_data"]) {
|
||||
return [MLFeatureValue featureValueWithMultiArray:self.audio_data];
|
||||
}
|
||||
return nil;
|
||||
}
|
||||
|
||||
@end
|
||||
|
||||
@implementation whisper_decoder_implOutput
|
||||
|
||||
- (instancetype)initWithVar_1346:(MLMultiArray *)var_1346 {
|
||||
self = [super init];
|
||||
if (self) {
|
||||
_var_1346 = var_1346;
|
||||
}
|
||||
return self;
|
||||
}
|
||||
|
||||
- (NSSet<NSString *> *)featureNames {
|
||||
return [NSSet setWithArray:@[@"var_1346"]];
|
||||
}
|
||||
|
||||
- (nullable MLFeatureValue *)featureValueForName:(NSString *)featureName {
|
||||
if ([featureName isEqualToString:@"var_1346"]) {
|
||||
return [MLFeatureValue featureValueWithMultiArray:self.var_1346];
|
||||
}
|
||||
return nil;
|
||||
}
|
||||
|
||||
@end
|
||||
|
||||
@implementation whisper_decoder_impl
|
||||
|
||||
|
||||
/**
|
||||
URL of the underlying .mlmodelc directory.
|
||||
*/
|
||||
+ (nullable NSURL *)URLOfModelInThisBundle {
|
||||
NSString *assetPath = [[NSBundle bundleForClass:[self class]] pathForResource:@"whisper_decoder_impl" ofType:@"mlmodelc"];
|
||||
if (nil == assetPath) { os_log_error(OS_LOG_DEFAULT, "Could not load whisper-decoder-impl.mlmodelc in the bundle resource"); return nil; }
|
||||
return [NSURL fileURLWithPath:assetPath];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Initialize whisper_decoder_impl instance from an existing MLModel object.
|
||||
|
||||
Usually the application does not use this initializer unless it makes a subclass of whisper_decoder_impl.
|
||||
Such application may want to use `-[MLModel initWithContentsOfURL:configuration:error:]` and `+URLOfModelInThisBundle` to create a MLModel object to pass-in.
|
||||
*/
|
||||
- (instancetype)initWithMLModel:(MLModel *)model {
|
||||
self = [super init];
|
||||
if (!self) { return nil; }
|
||||
_model = model;
|
||||
if (_model == nil) { return nil; }
|
||||
return self;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Initialize whisper_decoder_impl instance with the model in this bundle.
|
||||
*/
|
||||
- (nullable instancetype)init {
|
||||
return [self initWithContentsOfURL:(NSURL * _Nonnull)self.class.URLOfModelInThisBundle error:nil];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Initialize whisper_decoder_impl instance with the model in this bundle.
|
||||
|
||||
@param configuration The model configuration object
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithConfiguration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
return [self initWithContentsOfURL:(NSURL * _Nonnull)self.class.URLOfModelInThisBundle configuration:configuration error:error];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Initialize whisper_decoder_impl instance from the model URL.
|
||||
|
||||
@param modelURL URL to the .mlmodelc directory for whisper_decoder_impl.
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
MLModel *model = [MLModel modelWithContentsOfURL:modelURL error:error];
|
||||
if (model == nil) { return nil; }
|
||||
return [self initWithMLModel:model];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Initialize whisper_decoder_impl instance from the model URL.
|
||||
|
||||
@param modelURL URL to the .mlmodelc directory for whisper_decoder_impl.
|
||||
@param configuration The model configuration object
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
MLModel *model = [MLModel modelWithContentsOfURL:modelURL configuration:configuration error:error];
|
||||
if (model == nil) { return nil; }
|
||||
return [self initWithMLModel:model];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Construct whisper_decoder_impl instance asynchronously with configuration.
|
||||
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
|
||||
|
||||
@param configuration The model configuration
|
||||
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid whisper_decoder_impl instance or NSError object.
|
||||
*/
|
||||
+ (void)loadWithConfiguration:(MLModelConfiguration *)configuration completionHandler:(void (^)(whisper_decoder_impl * _Nullable model, NSError * _Nullable error))handler {
|
||||
[self loadContentsOfURL:(NSURL * _Nonnull)[self URLOfModelInThisBundle]
|
||||
configuration:configuration
|
||||
completionHandler:handler];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Construct whisper_decoder_impl instance asynchronously with URL of .mlmodelc directory and optional configuration.
|
||||
|
||||
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
|
||||
|
||||
@param modelURL The model URL.
|
||||
@param configuration The model configuration
|
||||
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid whisper_decoder_impl instance or NSError object.
|
||||
*/
|
||||
+ (void)loadContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration completionHandler:(void (^)(whisper_decoder_impl * _Nullable model, NSError * _Nullable error))handler {
|
||||
[MLModel loadContentsOfURL:modelURL
|
||||
configuration:configuration
|
||||
completionHandler:^(MLModel *model, NSError *error) {
|
||||
if (model != nil) {
|
||||
whisper_decoder_impl *typedModel = [[whisper_decoder_impl alloc] initWithMLModel:model];
|
||||
handler(typedModel, nil);
|
||||
} else {
|
||||
handler(nil, error);
|
||||
}
|
||||
}];
|
||||
}
|
||||
|
||||
- (nullable whisper_decoder_implOutput *)predictionFromFeatures:(whisper_decoder_implInput *)input error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
return [self predictionFromFeatures:input options:[[MLPredictionOptions alloc] init] error:error];
|
||||
}
|
||||
|
||||
- (nullable whisper_decoder_implOutput *)predictionFromFeatures:(whisper_decoder_implInput *)input options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
id<MLFeatureProvider> outFeatures = [self.model predictionFromFeatures:input options:options error:error];
|
||||
if (!outFeatures) { return nil; }
|
||||
return [[whisper_decoder_implOutput alloc] initWithVar_1346:(MLMultiArray *)[outFeatures featureValueForName:@"var_1346"].multiArrayValue];
|
||||
}
|
||||
|
||||
- (nullable whisper_decoder_implOutput *)predictionFromToken_data:(MLMultiArray *)token_data audio_data:(MLMultiArray *)audio_data error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
whisper_decoder_implInput *input_ = [[whisper_decoder_implInput alloc] initWithToken_data:token_data audio_data:audio_data];
|
||||
return [self predictionFromFeatures:input_ error:error];
|
||||
}
|
||||
|
||||
- (nullable NSArray<whisper_decoder_implOutput *> *)predictionsFromInputs:(NSArray<whisper_decoder_implInput*> *)inputArray options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
id<MLBatchProvider> inBatch = [[MLArrayBatchProvider alloc] initWithFeatureProviderArray:inputArray];
|
||||
id<MLBatchProvider> outBatch = [self.model predictionsFromBatch:inBatch options:options error:error];
|
||||
if (!outBatch) { return nil; }
|
||||
NSMutableArray<whisper_decoder_implOutput*> *results = [NSMutableArray arrayWithCapacity:(NSUInteger)outBatch.count];
|
||||
for (NSInteger i = 0; i < outBatch.count; i++) {
|
||||
id<MLFeatureProvider> resultProvider = [outBatch featuresAtIndex:i];
|
||||
whisper_decoder_implOutput * result = [[whisper_decoder_implOutput alloc] initWithVar_1346:(MLMultiArray *)[resultProvider featureValueForName:@"var_1346"].multiArrayValue];
|
||||
[results addObject:result];
|
||||
}
|
||||
return results;
|
||||
}
|
||||
|
||||
@end
|
142
coreml/whisper-encoder-impl.h
Normal file
142
coreml/whisper-encoder-impl.h
Normal file
@ -0,0 +1,142 @@
|
||||
//
|
||||
// whisper-encoder-impl.h
|
||||
//
|
||||
// This file was automatically generated and should not be edited.
|
||||
//
|
||||
|
||||
#import <Foundation/Foundation.h>
|
||||
#import <CoreML/CoreML.h>
|
||||
#include <stdint.h>
|
||||
#include <os/log.h>
|
||||
|
||||
NS_ASSUME_NONNULL_BEGIN
|
||||
|
||||
|
||||
/// Model Prediction Input Type
|
||||
API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((visibility("hidden")))
|
||||
@interface whisper_encoder_implInput : NSObject<MLFeatureProvider>
|
||||
|
||||
/// logmel_data as 1 × 80 × 3000 3-dimensional array of floats
|
||||
@property (readwrite, nonatomic, strong) MLMultiArray * logmel_data;
|
||||
- (instancetype)init NS_UNAVAILABLE;
|
||||
- (instancetype)initWithLogmel_data:(MLMultiArray *)logmel_data NS_DESIGNATED_INITIALIZER;
|
||||
|
||||
@end
|
||||
|
||||
|
||||
/// Model Prediction Output Type
|
||||
API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((visibility("hidden")))
|
||||
@interface whisper_encoder_implOutput : NSObject<MLFeatureProvider>
|
||||
|
||||
/// output as multidimensional array of floats
|
||||
@property (readwrite, nonatomic, strong) MLMultiArray * output;
|
||||
- (instancetype)init NS_UNAVAILABLE;
|
||||
- (instancetype)initWithOutput:(MLMultiArray *)output NS_DESIGNATED_INITIALIZER;
|
||||
|
||||
@end
|
||||
|
||||
|
||||
/// Class for model loading and prediction
|
||||
API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((visibility("hidden")))
|
||||
@interface whisper_encoder_impl : NSObject
|
||||
@property (readonly, nonatomic, nullable) MLModel * model;
|
||||
|
||||
/**
|
||||
URL of the underlying .mlmodelc directory.
|
||||
*/
|
||||
+ (nullable NSURL *)URLOfModelInThisBundle;
|
||||
|
||||
/**
|
||||
Initialize whisper_encoder_impl instance from an existing MLModel object.
|
||||
|
||||
Usually the application does not use this initializer unless it makes a subclass of whisper_encoder_impl.
|
||||
Such application may want to use `-[MLModel initWithContentsOfURL:configuration:error:]` and `+URLOfModelInThisBundle` to create a MLModel object to pass-in.
|
||||
*/
|
||||
- (instancetype)initWithMLModel:(MLModel *)model NS_DESIGNATED_INITIALIZER;
|
||||
|
||||
/**
|
||||
Initialize whisper_encoder_impl instance with the model in this bundle.
|
||||
*/
|
||||
- (nullable instancetype)init;
|
||||
|
||||
/**
|
||||
Initialize whisper_encoder_impl instance with the model in this bundle.
|
||||
|
||||
@param configuration The model configuration object
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithConfiguration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Initialize whisper_encoder_impl instance from the model URL.
|
||||
|
||||
@param modelURL URL to the .mlmodelc directory for whisper_encoder_impl.
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Initialize whisper_encoder_impl instance from the model URL.
|
||||
|
||||
@param modelURL URL to the .mlmodelc directory for whisper_encoder_impl.
|
||||
@param configuration The model configuration object
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Construct whisper_encoder_impl instance asynchronously with configuration.
|
||||
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
|
||||
|
||||
@param configuration The model configuration
|
||||
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid whisper_encoder_impl instance or NSError object.
|
||||
*/
|
||||
+ (void)loadWithConfiguration:(MLModelConfiguration *)configuration completionHandler:(void (^)(whisper_encoder_impl * _Nullable model, NSError * _Nullable error))handler;
|
||||
|
||||
/**
|
||||
Construct whisper_encoder_impl instance asynchronously with URL of .mlmodelc directory and optional configuration.
|
||||
|
||||
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
|
||||
|
||||
@param modelURL The model URL.
|
||||
@param configuration The model configuration
|
||||
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid whisper_encoder_impl instance or NSError object.
|
||||
*/
|
||||
+ (void)loadContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration completionHandler:(void (^)(whisper_encoder_impl * _Nullable model, NSError * _Nullable error))handler;
|
||||
|
||||
/**
|
||||
Make a prediction using the standard interface
|
||||
@param input an instance of whisper_encoder_implInput to predict from
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
@return the prediction as whisper_encoder_implOutput
|
||||
*/
|
||||
- (nullable whisper_encoder_implOutput *)predictionFromFeatures:(whisper_encoder_implInput *)input error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Make a prediction using the standard interface
|
||||
@param input an instance of whisper_encoder_implInput to predict from
|
||||
@param options prediction options
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
@return the prediction as whisper_encoder_implOutput
|
||||
*/
|
||||
- (nullable whisper_encoder_implOutput *)predictionFromFeatures:(whisper_encoder_implInput *)input options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Make a prediction using the convenience interface
|
||||
@param logmel_data as 1 × 80 × 3000 3-dimensional array of floats:
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
@return the prediction as whisper_encoder_implOutput
|
||||
*/
|
||||
- (nullable whisper_encoder_implOutput *)predictionFromLogmel_data:(MLMultiArray *)logmel_data error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Batch prediction
|
||||
@param inputArray array of whisper_encoder_implInput instances to obtain predictions from
|
||||
@param options prediction options
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
@return the predictions as NSArray<whisper_encoder_implOutput *>
|
||||
*/
|
||||
- (nullable NSArray<whisper_encoder_implOutput *> *)predictionsFromInputs:(NSArray<whisper_encoder_implInput*> *)inputArray options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
@end
|
||||
|
||||
NS_ASSUME_NONNULL_END
|
197
coreml/whisper-encoder-impl.m
Normal file
197
coreml/whisper-encoder-impl.m
Normal file
@ -0,0 +1,197 @@
|
||||
//
|
||||
// whisper-encoder-impl.m
|
||||
//
|
||||
// This file was automatically generated and should not be edited.
|
||||
//
|
||||
|
||||
#if !__has_feature(objc_arc)
|
||||
#error This file must be compiled with automatic reference counting enabled (-fobjc-arc)
|
||||
#endif
|
||||
|
||||
#import "whisper-encoder-impl.h"
|
||||
|
||||
@implementation whisper_encoder_implInput
|
||||
|
||||
- (instancetype)initWithLogmel_data:(MLMultiArray *)logmel_data {
|
||||
self = [super init];
|
||||
if (self) {
|
||||
_logmel_data = logmel_data;
|
||||
}
|
||||
return self;
|
||||
}
|
||||
|
||||
- (NSSet<NSString *> *)featureNames {
|
||||
return [NSSet setWithArray:@[@"logmel_data"]];
|
||||
}
|
||||
|
||||
- (nullable MLFeatureValue *)featureValueForName:(NSString *)featureName {
|
||||
if ([featureName isEqualToString:@"logmel_data"]) {
|
||||
return [MLFeatureValue featureValueWithMultiArray:self.logmel_data];
|
||||
}
|
||||
return nil;
|
||||
}
|
||||
|
||||
@end
|
||||
|
||||
@implementation whisper_encoder_implOutput
|
||||
|
||||
- (instancetype)initWithOutput:(MLMultiArray *)output {
|
||||
self = [super init];
|
||||
if (self) {
|
||||
_output = output;
|
||||
}
|
||||
return self;
|
||||
}
|
||||
|
||||
- (NSSet<NSString *> *)featureNames {
|
||||
return [NSSet setWithArray:@[@"output"]];
|
||||
}
|
||||
|
||||
- (nullable MLFeatureValue *)featureValueForName:(NSString *)featureName {
|
||||
if ([featureName isEqualToString:@"output"]) {
|
||||
return [MLFeatureValue featureValueWithMultiArray:self.output];
|
||||
}
|
||||
return nil;
|
||||
}
|
||||
|
||||
@end
|
||||
|
||||
@implementation whisper_encoder_impl
|
||||
|
||||
|
||||
/**
|
||||
URL of the underlying .mlmodelc directory.
|
||||
*/
|
||||
+ (nullable NSURL *)URLOfModelInThisBundle {
|
||||
NSString *assetPath = [[NSBundle bundleForClass:[self class]] pathForResource:@"whisper_encoder_impl" ofType:@"mlmodelc"];
|
||||
if (nil == assetPath) { os_log_error(OS_LOG_DEFAULT, "Could not load whisper-encoder-impl.mlmodelc in the bundle resource"); return nil; }
|
||||
return [NSURL fileURLWithPath:assetPath];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Initialize whisper_encoder_impl instance from an existing MLModel object.
|
||||
|
||||
Usually the application does not use this initializer unless it makes a subclass of whisper_encoder_impl.
|
||||
Such application may want to use `-[MLModel initWithContentsOfURL:configuration:error:]` and `+URLOfModelInThisBundle` to create a MLModel object to pass-in.
|
||||
*/
|
||||
- (instancetype)initWithMLModel:(MLModel *)model {
|
||||
self = [super init];
|
||||
if (!self) { return nil; }
|
||||
_model = model;
|
||||
if (_model == nil) { return nil; }
|
||||
return self;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Initialize whisper_encoder_impl instance with the model in this bundle.
|
||||
*/
|
||||
- (nullable instancetype)init {
|
||||
return [self initWithContentsOfURL:(NSURL * _Nonnull)self.class.URLOfModelInThisBundle error:nil];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Initialize whisper_encoder_impl instance with the model in this bundle.
|
||||
|
||||
@param configuration The model configuration object
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithConfiguration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
return [self initWithContentsOfURL:(NSURL * _Nonnull)self.class.URLOfModelInThisBundle configuration:configuration error:error];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Initialize whisper_encoder_impl instance from the model URL.
|
||||
|
||||
@param modelURL URL to the .mlmodelc directory for whisper_encoder_impl.
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
MLModel *model = [MLModel modelWithContentsOfURL:modelURL error:error];
|
||||
if (model == nil) { return nil; }
|
||||
return [self initWithMLModel:model];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Initialize whisper_encoder_impl instance from the model URL.
|
||||
|
||||
@param modelURL URL to the .mlmodelc directory for whisper_encoder_impl.
|
||||
@param configuration The model configuration object
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
MLModel *model = [MLModel modelWithContentsOfURL:modelURL configuration:configuration error:error];
|
||||
if (model == nil) { return nil; }
|
||||
return [self initWithMLModel:model];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Construct whisper_encoder_impl instance asynchronously with configuration.
|
||||
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
|
||||
|
||||
@param configuration The model configuration
|
||||
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid whisper_encoder_impl instance or NSError object.
|
||||
*/
|
||||
+ (void)loadWithConfiguration:(MLModelConfiguration *)configuration completionHandler:(void (^)(whisper_encoder_impl * _Nullable model, NSError * _Nullable error))handler {
|
||||
[self loadContentsOfURL:(NSURL * _Nonnull)[self URLOfModelInThisBundle]
|
||||
configuration:configuration
|
||||
completionHandler:handler];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Construct whisper_encoder_impl instance asynchronously with URL of .mlmodelc directory and optional configuration.
|
||||
|
||||
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
|
||||
|
||||
@param modelURL The model URL.
|
||||
@param configuration The model configuration
|
||||
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid whisper_encoder_impl instance or NSError object.
|
||||
*/
|
||||
+ (void)loadContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration completionHandler:(void (^)(whisper_encoder_impl * _Nullable model, NSError * _Nullable error))handler {
|
||||
[MLModel loadContentsOfURL:modelURL
|
||||
configuration:configuration
|
||||
completionHandler:^(MLModel *model, NSError *error) {
|
||||
if (model != nil) {
|
||||
whisper_encoder_impl *typedModel = [[whisper_encoder_impl alloc] initWithMLModel:model];
|
||||
handler(typedModel, nil);
|
||||
} else {
|
||||
handler(nil, error);
|
||||
}
|
||||
}];
|
||||
}
|
||||
|
||||
- (nullable whisper_encoder_implOutput *)predictionFromFeatures:(whisper_encoder_implInput *)input error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
return [self predictionFromFeatures:input options:[[MLPredictionOptions alloc] init] error:error];
|
||||
}
|
||||
|
||||
- (nullable whisper_encoder_implOutput *)predictionFromFeatures:(whisper_encoder_implInput *)input options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
id<MLFeatureProvider> outFeatures = [self.model predictionFromFeatures:input options:options error:error];
|
||||
if (!outFeatures) { return nil; }
|
||||
return [[whisper_encoder_implOutput alloc] initWithOutput:(MLMultiArray *)[outFeatures featureValueForName:@"output"].multiArrayValue];
|
||||
}
|
||||
|
||||
- (nullable whisper_encoder_implOutput *)predictionFromLogmel_data:(MLMultiArray *)logmel_data error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
whisper_encoder_implInput *input_ = [[whisper_encoder_implInput alloc] initWithLogmel_data:logmel_data];
|
||||
return [self predictionFromFeatures:input_ error:error];
|
||||
}
|
||||
|
||||
- (nullable NSArray<whisper_encoder_implOutput *> *)predictionsFromInputs:(NSArray<whisper_encoder_implInput*> *)inputArray options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
id<MLBatchProvider> inBatch = [[MLArrayBatchProvider alloc] initWithFeatureProviderArray:inputArray];
|
||||
id<MLBatchProvider> outBatch = [self.model predictionsFromBatch:inBatch options:options error:error];
|
||||
if (!outBatch) { return nil; }
|
||||
NSMutableArray<whisper_encoder_implOutput*> *results = [NSMutableArray arrayWithCapacity:(NSUInteger)outBatch.count];
|
||||
for (NSInteger i = 0; i < outBatch.count; i++) {
|
||||
id<MLFeatureProvider> resultProvider = [outBatch featuresAtIndex:i];
|
||||
whisper_encoder_implOutput * result = [[whisper_encoder_implOutput alloc] initWithOutput:(MLMultiArray *)[resultProvider featureValueForName:@"output"].multiArrayValue];
|
||||
[results addObject:result];
|
||||
}
|
||||
return results;
|
||||
}
|
||||
|
||||
@end
|
22
coreml/whisper-encoder.h
Normal file
22
coreml/whisper-encoder.h
Normal file
@ -0,0 +1,22 @@
|
||||
// Wrapper of the Core ML Whisper Encoder model
|
||||
//
|
||||
// Code is derived from the work of Github user @wangchou
|
||||
// ref: https://github.com/wangchou/callCoreMLFromCpp
|
||||
|
||||
#if __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct whisper_coreml_context;
|
||||
|
||||
struct whisper_coreml_context * whisper_coreml_init(const char * path_model);
|
||||
void whisper_coreml_free(struct whisper_coreml_context * ctx);
|
||||
|
||||
void whisper_coreml_encode(
|
||||
const whisper_coreml_context * ctx,
|
||||
float * mel,
|
||||
float * out);
|
||||
|
||||
#if __cplusplus
|
||||
}
|
||||
#endif
|
67
coreml/whisper-encoder.mm
Normal file
67
coreml/whisper-encoder.mm
Normal file
@ -0,0 +1,67 @@
|
||||
#import "coreml/whisper-encoder.h"
|
||||
#import "coreml/whisper-encoder-impl.h"
|
||||
|
||||
#import <CoreML/CoreML.h>
|
||||
|
||||
#include <stdlib.h>
|
||||
|
||||
#if __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct whisper_coreml_context {
|
||||
const void * data;
|
||||
};
|
||||
|
||||
struct whisper_coreml_context * whisper_coreml_init(const char * path_model) {
|
||||
NSString * path_model_str = [[NSString alloc] initWithUTF8String:path_model];
|
||||
|
||||
NSURL * url_model = [NSURL fileURLWithPath: path_model_str];
|
||||
|
||||
const void * data = CFBridgingRetain([[whisper_encoder_impl alloc] initWithContentsOfURL:url_model error:nil]);
|
||||
|
||||
if (data == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
whisper_coreml_context * ctx = new whisper_coreml_context;
|
||||
|
||||
ctx->data = data;
|
||||
|
||||
return ctx;
|
||||
}
|
||||
|
||||
void whisper_coreml_free(struct whisper_coreml_context * ctx) {
|
||||
CFRelease(ctx->data);
|
||||
delete ctx;
|
||||
}
|
||||
|
||||
void whisper_coreml_encode(
|
||||
const whisper_coreml_context * ctx,
|
||||
float * mel,
|
||||
float * out) {
|
||||
MLMultiArray * inMultiArray = [
|
||||
[MLMultiArray alloc] initWithDataPointer: mel
|
||||
shape: @[@1, @80, @3000]
|
||||
dataType: MLMultiArrayDataTypeFloat32
|
||||
strides: @[@(240000), @(3000), @1]
|
||||
deallocator: nil
|
||||
error: nil
|
||||
];
|
||||
|
||||
whisper_encoder_implOutput * outCoreML = [(__bridge id) ctx->data predictionFromLogmel_data:inMultiArray error:nil];
|
||||
|
||||
MLMultiArray * outMA = outCoreML.output;
|
||||
|
||||
//NSArray<NSNumber *> * shape = outMA.shape;
|
||||
//NSArray<NSNumber *> * strides = outMA.strides;
|
||||
|
||||
//printf("shape: %ld %ld %ld %ld\n", [shape[0] longValue], [shape[1] longValue], [shape[2] longValue], [shape[3] longValue]);
|
||||
//printf("strides: %ld %ld %ld %ld\n", [strides[0] longValue], [strides[1] longValue], [strides[2] longValue], [strides[3] longValue]);
|
||||
|
||||
memcpy(out, outMA.dataPointer, outMA.count * sizeof(float));
|
||||
}
|
||||
|
||||
#if __cplusplus
|
||||
}
|
||||
#endif
|
@ -14,6 +14,37 @@ if (WHISPER_SUPPORT_SDL2)
|
||||
message(STATUS "SDL2_LIBRARIES = ${SDL2_LIBRARIES}")
|
||||
endif()
|
||||
|
||||
# common
|
||||
|
||||
set(TARGET common)
|
||||
|
||||
add_library(${TARGET} STATIC
|
||||
common.h
|
||||
common.cpp
|
||||
)
|
||||
|
||||
include(DefaultTargetOptions)
|
||||
|
||||
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
|
||||
if (WHISPER_SUPPORT_SDL2)
|
||||
# common-sdl
|
||||
|
||||
set(TARGET common-sdl)
|
||||
|
||||
add_library(${TARGET} STATIC
|
||||
common-sdl.h
|
||||
common-sdl.cpp
|
||||
)
|
||||
|
||||
include(DefaultTargetOptions)
|
||||
|
||||
target_include_directories(${TARGET} PUBLIC ${SDL2_INCLUDE_DIRS})
|
||||
target_link_libraries(${TARGET} PRIVATE ${SDL2_LIBRARIES})
|
||||
|
||||
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
endif()
|
||||
|
||||
# examples
|
||||
|
||||
include_directories(${CMAKE_CURRENT_SOURCE_DIR})
|
||||
@ -24,10 +55,13 @@ if (EMSCRIPTEN)
|
||||
add_subdirectory(command.wasm)
|
||||
add_subdirectory(talk.wasm)
|
||||
add_subdirectory(bench.wasm)
|
||||
elseif(CMAKE_JS_VERSION)
|
||||
add_subdirectory(addon.node)
|
||||
else()
|
||||
add_subdirectory(main)
|
||||
add_subdirectory(stream)
|
||||
add_subdirectory(command)
|
||||
add_subdirectory(bench)
|
||||
add_subdirectory(talk)
|
||||
add_subdirectory(talk-llama)
|
||||
endif()
|
||||
|
3
examples/addon.node/.gitignore
vendored
Normal file
3
examples/addon.node/.gitignore
vendored
Normal file
@ -0,0 +1,3 @@
|
||||
.idea
|
||||
node_modules
|
||||
build
|
31
examples/addon.node/CMakeLists.txt
Normal file
31
examples/addon.node/CMakeLists.txt
Normal file
@ -0,0 +1,31 @@
|
||||
set(TARGET whisper-addon)
|
||||
|
||||
# Base settings
|
||||
#==================================================================
|
||||
# env var supported by cmake-js
|
||||
add_definitions(-DNAPI_VERSION=4)
|
||||
include_directories(${CMAKE_JS_INC})
|
||||
#==================================================================
|
||||
|
||||
add_library(${TARGET} SHARED ${CMAKE_JS_SRC} addon.cpp)
|
||||
set_target_properties(${TARGET} PROPERTIES PREFIX "" SUFFIX ".node")
|
||||
|
||||
include(DefaultTargetOptions)
|
||||
|
||||
# Include N-API wrappers
|
||||
#==================================================================
|
||||
execute_process(COMMAND node -p "require('node-addon-api').include"
|
||||
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
|
||||
OUTPUT_VARIABLE NODE_ADDON_API_DIR
|
||||
)
|
||||
string(REPLACE "\n" "" NODE_ADDON_API_DIR ${NODE_ADDON_API_DIR})
|
||||
string(REPLACE "\"" "" NODE_ADDON_API_DIR ${NODE_ADDON_API_DIR})
|
||||
target_include_directories(${TARGET} PRIVATE ${NODE_ADDON_API_DIR})
|
||||
#==================================================================
|
||||
|
||||
target_link_libraries(${TARGET} ${CMAKE_JS_LIB} common whisper ${CMAKE_THREAD_LIBS_INIT})
|
||||
|
||||
if(MSVC AND CMAKE_JS_NODELIB_DEF AND CMAKE_JS_NODELIB_TARGET)
|
||||
# Generate node.lib
|
||||
execute_process(COMMAND ${CMAKE_AR} /def:${CMAKE_JS_NODELIB_DEF} /out:${CMAKE_JS_NODELIB_TARGET} ${CMAKE_STATIC_LINKER_FLAGS})
|
||||
endif()
|
37
examples/addon.node/README.md
Normal file
37
examples/addon.node/README.md
Normal file
@ -0,0 +1,37 @@
|
||||
# addon
|
||||
|
||||
This is an addon demo that can **perform whisper model reasoning in `node` and `electron` environments**, based on [cmake-js](https://github.com/cmake-js/cmake-js).
|
||||
It can be used as a reference for using the whisper.cpp project in other node projects.
|
||||
|
||||
## Install
|
||||
|
||||
```shell
|
||||
npm install
|
||||
```
|
||||
|
||||
## Compile
|
||||
|
||||
Make sure it is in the project root directory and compiled with make-js.
|
||||
|
||||
```shell
|
||||
npx cmake-js compile -T whisper-addon -B Release
|
||||
```
|
||||
|
||||
For Electron addon and cmake-js options, you can see [cmake-js](https://github.com/cmake-js/cmake-js) and make very few configuration changes.
|
||||
|
||||
> Such as appointing special cmake path:
|
||||
> ```shell
|
||||
> npx cmake-js compile -c 'xxx/cmake' -T whisper-addon -B Release
|
||||
> ```
|
||||
|
||||
## Run
|
||||
|
||||
```shell
|
||||
cd examples/addon.node
|
||||
|
||||
node index.js --language='language' --model='model-path' --fname_inp='file-path'
|
||||
```
|
||||
|
||||
Because this is a simple Demo, only the above parameters are set in the node environment.
|
||||
|
||||
Other parameters can also be specified in the node environment.
|
22
examples/addon.node/__test__/whisper.spec.js
Normal file
22
examples/addon.node/__test__/whisper.spec.js
Normal file
@ -0,0 +1,22 @@
|
||||
const path = require("path");
|
||||
const { whisper } = require(path.join(
|
||||
__dirname,
|
||||
"../../../build/Release/whisper-addon"
|
||||
));
|
||||
const { promisify } = require("util");
|
||||
|
||||
const whisperAsync = promisify(whisper);
|
||||
|
||||
const whisperParamsMock = {
|
||||
language: "en",
|
||||
model: path.join(__dirname, "../../../models/ggml-base.en.bin"),
|
||||
fname_inp: path.join(__dirname, "../../../samples/jfk.wav"),
|
||||
};
|
||||
|
||||
describe("Run whisper.node", () => {
|
||||
test("it should receive a non-empty value", async () => {
|
||||
let result = await whisperAsync(whisperParamsMock);
|
||||
|
||||
expect(result.length).toBeGreaterThan(0);
|
||||
});
|
||||
});
|
338
examples/addon.node/addon.cpp
Normal file
338
examples/addon.node/addon.cpp
Normal file
@ -0,0 +1,338 @@
|
||||
#include "napi.h"
|
||||
#include "common.h"
|
||||
|
||||
#include "whisper.h"
|
||||
|
||||
#include <string>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
#include <cmath>
|
||||
#include <cstdint>
|
||||
|
||||
struct whisper_params {
|
||||
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
||||
int32_t n_processors = 1;
|
||||
int32_t offset_t_ms = 0;
|
||||
int32_t offset_n = 0;
|
||||
int32_t duration_ms = 0;
|
||||
int32_t max_context = -1;
|
||||
int32_t max_len = 0;
|
||||
int32_t best_of = 5;
|
||||
int32_t beam_size = -1;
|
||||
|
||||
float word_thold = 0.01f;
|
||||
float entropy_thold = 2.4f;
|
||||
float logprob_thold = -1.0f;
|
||||
|
||||
bool speed_up = false;
|
||||
bool translate = false;
|
||||
bool diarize = false;
|
||||
bool output_txt = false;
|
||||
bool output_vtt = false;
|
||||
bool output_srt = false;
|
||||
bool output_wts = false;
|
||||
bool output_csv = false;
|
||||
bool print_special = false;
|
||||
bool print_colors = false;
|
||||
bool print_progress = false;
|
||||
bool no_timestamps = false;
|
||||
|
||||
std::string language = "en";
|
||||
std::string prompt;
|
||||
std::string model = "../../ggml-large.bin";
|
||||
|
||||
std::vector<std::string> fname_inp = {};
|
||||
std::vector<std::string> fname_out = {};
|
||||
};
|
||||
|
||||
struct whisper_print_user_data {
|
||||
const whisper_params * params;
|
||||
|
||||
const std::vector<std::vector<float>> * pcmf32s;
|
||||
};
|
||||
|
||||
// 500 -> 00:05.000
|
||||
// 6000 -> 01:00.000
|
||||
std::string to_timestamp(int64_t t, bool comma = false) {
|
||||
int64_t msec = t * 10;
|
||||
int64_t hr = msec / (1000 * 60 * 60);
|
||||
msec = msec - hr * (1000 * 60 * 60);
|
||||
int64_t min = msec / (1000 * 60);
|
||||
msec = msec - min * (1000 * 60);
|
||||
int64_t sec = msec / 1000;
|
||||
msec = msec - sec * 1000;
|
||||
|
||||
char buf[32];
|
||||
snprintf(buf, sizeof(buf), "%02d:%02d:%02d%s%03d", (int) hr, (int) min, (int) sec, comma ? "," : ".", (int) msec);
|
||||
|
||||
return std::string(buf);
|
||||
}
|
||||
|
||||
int timestamp_to_sample(int64_t t, int n_samples) {
|
||||
return std::max(0, std::min((int) n_samples - 1, (int) ((t*WHISPER_SAMPLE_RATE)/100)));
|
||||
}
|
||||
|
||||
void whisper_print_segment_callback(struct whisper_context * ctx, struct whisper_state * state, int n_new, void * user_data) {
|
||||
const auto & params = *((whisper_print_user_data *) user_data)->params;
|
||||
const auto & pcmf32s = *((whisper_print_user_data *) user_data)->pcmf32s;
|
||||
|
||||
const int n_segments = whisper_full_n_segments(ctx);
|
||||
|
||||
std::string speaker = "";
|
||||
|
||||
int64_t t0;
|
||||
int64_t t1;
|
||||
|
||||
// print the last n_new segments
|
||||
const int s0 = n_segments - n_new;
|
||||
|
||||
if (s0 == 0) {
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
for (int i = s0; i < n_segments; i++) {
|
||||
if (!params.no_timestamps || params.diarize) {
|
||||
t0 = whisper_full_get_segment_t0(ctx, i);
|
||||
t1 = whisper_full_get_segment_t1(ctx, i);
|
||||
}
|
||||
|
||||
if (!params.no_timestamps) {
|
||||
printf("[%s --> %s] ", to_timestamp(t0).c_str(), to_timestamp(t1).c_str());
|
||||
}
|
||||
|
||||
if (params.diarize && pcmf32s.size() == 2) {
|
||||
const int64_t n_samples = pcmf32s[0].size();
|
||||
|
||||
const int64_t is0 = timestamp_to_sample(t0, n_samples);
|
||||
const int64_t is1 = timestamp_to_sample(t1, n_samples);
|
||||
|
||||
double energy0 = 0.0f;
|
||||
double energy1 = 0.0f;
|
||||
|
||||
for (int64_t j = is0; j < is1; j++) {
|
||||
energy0 += fabs(pcmf32s[0][j]);
|
||||
energy1 += fabs(pcmf32s[1][j]);
|
||||
}
|
||||
|
||||
if (energy0 > 1.1*energy1) {
|
||||
speaker = "(speaker 0)";
|
||||
} else if (energy1 > 1.1*energy0) {
|
||||
speaker = "(speaker 1)";
|
||||
} else {
|
||||
speaker = "(speaker ?)";
|
||||
}
|
||||
|
||||
//printf("is0 = %lld, is1 = %lld, energy0 = %f, energy1 = %f, %s\n", is0, is1, energy0, energy1, speaker.c_str());
|
||||
}
|
||||
|
||||
// colorful print bug
|
||||
//
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
printf("%s%s", speaker.c_str(), text);
|
||||
|
||||
|
||||
// with timestamps or speakers: each segment on new line
|
||||
if (!params.no_timestamps || params.diarize) {
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
fflush(stdout);
|
||||
}
|
||||
}
|
||||
|
||||
int run(whisper_params ¶ms, std::vector<std::vector<std::string>> &result) {
|
||||
if (params.fname_inp.empty()) {
|
||||
fprintf(stderr, "error: no input files specified\n");
|
||||
return 2;
|
||||
}
|
||||
|
||||
if (params.language != "auto" && whisper_lang_id(params.language.c_str()) == -1) {
|
||||
fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str());
|
||||
exit(0);
|
||||
}
|
||||
|
||||
// whisper init
|
||||
|
||||
struct whisper_context * ctx = whisper_init_from_file(params.model.c_str());
|
||||
|
||||
if (ctx == nullptr) {
|
||||
fprintf(stderr, "error: failed to initialize whisper context\n");
|
||||
return 3;
|
||||
}
|
||||
|
||||
for (int f = 0; f < (int) params.fname_inp.size(); ++f) {
|
||||
const auto fname_inp = params.fname_inp[f];
|
||||
const auto fname_out = f < (int)params.fname_out.size() && !params.fname_out[f].empty() ? params.fname_out[f] : params.fname_inp[f];
|
||||
|
||||
std::vector<float> pcmf32; // mono-channel F32 PCM
|
||||
std::vector<std::vector<float>> pcmf32s; // stereo-channel F32 PCM
|
||||
|
||||
if (!::read_wav(fname_inp, pcmf32, pcmf32s, params.diarize)) {
|
||||
fprintf(stderr, "error: failed to read WAV file '%s'\n", fname_inp.c_str());
|
||||
continue;
|
||||
}
|
||||
|
||||
// print system information
|
||||
{
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
|
||||
params.n_threads*params.n_processors, std::thread::hardware_concurrency(), whisper_print_system_info());
|
||||
}
|
||||
|
||||
// print some info about the processing
|
||||
{
|
||||
fprintf(stderr, "\n");
|
||||
if (!whisper_is_multilingual(ctx)) {
|
||||
if (params.language != "en" || params.translate) {
|
||||
params.language = "en";
|
||||
params.translate = false;
|
||||
fprintf(stderr, "%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__);
|
||||
}
|
||||
}
|
||||
fprintf(stderr, "%s: processing '%s' (%d samples, %.1f sec), %d threads, %d processors, lang = %s, task = %s, timestamps = %d ...\n",
|
||||
__func__, fname_inp.c_str(), int(pcmf32.size()), float(pcmf32.size())/WHISPER_SAMPLE_RATE,
|
||||
params.n_threads, params.n_processors,
|
||||
params.language.c_str(),
|
||||
params.translate ? "translate" : "transcribe",
|
||||
params.no_timestamps ? 0 : 1);
|
||||
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
// run the inference
|
||||
{
|
||||
whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
|
||||
|
||||
wparams.strategy = params.beam_size > 1 ? WHISPER_SAMPLING_BEAM_SEARCH : WHISPER_SAMPLING_GREEDY;
|
||||
|
||||
wparams.print_realtime = false;
|
||||
wparams.print_progress = params.print_progress;
|
||||
wparams.print_timestamps = !params.no_timestamps;
|
||||
wparams.print_special = params.print_special;
|
||||
wparams.translate = params.translate;
|
||||
wparams.language = params.language.c_str();
|
||||
wparams.n_threads = params.n_threads;
|
||||
wparams.n_max_text_ctx = params.max_context >= 0 ? params.max_context : wparams.n_max_text_ctx;
|
||||
wparams.offset_ms = params.offset_t_ms;
|
||||
wparams.duration_ms = params.duration_ms;
|
||||
|
||||
wparams.token_timestamps = params.output_wts || params.max_len > 0;
|
||||
wparams.thold_pt = params.word_thold;
|
||||
wparams.entropy_thold = params.entropy_thold;
|
||||
wparams.logprob_thold = params.logprob_thold;
|
||||
wparams.max_len = params.output_wts && params.max_len == 0 ? 60 : params.max_len;
|
||||
|
||||
wparams.speed_up = params.speed_up;
|
||||
|
||||
wparams.greedy.best_of = params.best_of;
|
||||
wparams.beam_search.beam_size = params.beam_size;
|
||||
|
||||
wparams.initial_prompt = params.prompt.c_str();
|
||||
|
||||
whisper_print_user_data user_data = { ¶ms, &pcmf32s };
|
||||
|
||||
// this callback is called on each new segment
|
||||
if (!wparams.print_realtime) {
|
||||
wparams.new_segment_callback = whisper_print_segment_callback;
|
||||
wparams.new_segment_callback_user_data = &user_data;
|
||||
}
|
||||
|
||||
// example for abort mechanism
|
||||
// in this example, we do not abort the processing, but we could if the flag is set to true
|
||||
// the callback is called before every encoder run - if it returns false, the processing is aborted
|
||||
{
|
||||
static bool is_aborted = false; // NOTE: this should be atomic to avoid data race
|
||||
|
||||
wparams.encoder_begin_callback = [](struct whisper_context * /*ctx*/, struct whisper_state * /*state*/, void * user_data) {
|
||||
bool is_aborted = *(bool*)user_data;
|
||||
return !is_aborted;
|
||||
};
|
||||
wparams.encoder_begin_callback_user_data = &is_aborted;
|
||||
}
|
||||
|
||||
if (whisper_full_parallel(ctx, wparams, pcmf32.data(), pcmf32.size(), params.n_processors) != 0) {
|
||||
fprintf(stderr, "failed to process audio\n");
|
||||
return 10;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const int n_segments = whisper_full_n_segments(ctx);
|
||||
result.resize(n_segments);
|
||||
for (int i = 0; i < n_segments; ++i) {
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
|
||||
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
|
||||
|
||||
result[i].emplace_back(to_timestamp(t0, true));
|
||||
result[i].emplace_back(to_timestamp(t1, true));
|
||||
result[i].emplace_back(text);
|
||||
}
|
||||
|
||||
whisper_print_timings(ctx);
|
||||
whisper_free(ctx);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
class Worker : public Napi::AsyncWorker {
|
||||
public:
|
||||
Worker(Napi::Function& callback, whisper_params params)
|
||||
: Napi::AsyncWorker(callback), params(params) {}
|
||||
|
||||
void Execute() override {
|
||||
run(params, result);
|
||||
}
|
||||
|
||||
void OnOK() override {
|
||||
Napi::HandleScope scope(Env());
|
||||
Napi::Object res = Napi::Array::New(Env(), result.size());
|
||||
for (uint64_t i = 0; i < result.size(); ++i) {
|
||||
Napi::Object tmp = Napi::Array::New(Env(), 3);
|
||||
for (uint64_t j = 0; j < 3; ++j) {
|
||||
tmp[j] = Napi::String::New(Env(), result[i][j]);
|
||||
}
|
||||
res[i] = tmp;
|
||||
}
|
||||
Callback().Call({Env().Null(), res});
|
||||
}
|
||||
|
||||
private:
|
||||
whisper_params params;
|
||||
std::vector<std::vector<std::string>> result;
|
||||
};
|
||||
|
||||
|
||||
|
||||
Napi::Value whisper(const Napi::CallbackInfo& info) {
|
||||
Napi::Env env = info.Env();
|
||||
if (info.Length() <= 0 || !info[0].IsObject()) {
|
||||
Napi::TypeError::New(env, "object expected").ThrowAsJavaScriptException();
|
||||
}
|
||||
whisper_params params;
|
||||
|
||||
Napi::Object whisper_params = info[0].As<Napi::Object>();
|
||||
std::string language = whisper_params.Get("language").As<Napi::String>();
|
||||
std::string model = whisper_params.Get("model").As<Napi::String>();
|
||||
std::string input = whisper_params.Get("fname_inp").As<Napi::String>();
|
||||
|
||||
params.language = language;
|
||||
params.model = model;
|
||||
params.fname_inp.emplace_back(input);
|
||||
|
||||
Napi::Function callback = info[1].As<Napi::Function>();
|
||||
Worker* worker = new Worker(callback, params);
|
||||
worker->Queue();
|
||||
return env.Undefined();
|
||||
}
|
||||
|
||||
|
||||
Napi::Object Init(Napi::Env env, Napi::Object exports) {
|
||||
exports.Set(
|
||||
Napi::String::New(env, "whisper"),
|
||||
Napi::Function::New(env, whisper)
|
||||
);
|
||||
return exports;
|
||||
}
|
||||
|
||||
NODE_API_MODULE(whisper, Init);
|
36
examples/addon.node/index.js
Normal file
36
examples/addon.node/index.js
Normal file
@ -0,0 +1,36 @@
|
||||
const path = require("path");
|
||||
const { whisper } = require(path.join(
|
||||
__dirname,
|
||||
"../../build/Release/whisper-addon"
|
||||
));
|
||||
const { promisify } = require("util");
|
||||
|
||||
const whisperAsync = promisify(whisper);
|
||||
|
||||
const whisperParams = {
|
||||
language: "en",
|
||||
model: path.join(__dirname, "../../models/ggml-base.en.bin"),
|
||||
fname_inp: "../../samples/jfk.wav",
|
||||
};
|
||||
|
||||
const arguments = process.argv.slice(2);
|
||||
const params = Object.fromEntries(
|
||||
arguments.reduce((pre, item) => {
|
||||
if (item.startsWith("--")) {
|
||||
return [...pre, item.slice(2).split("=")];
|
||||
}
|
||||
return pre;
|
||||
}, [])
|
||||
);
|
||||
|
||||
for (const key in params) {
|
||||
if (whisperParams.hasOwnProperty(key)) {
|
||||
whisperParams[key] = params[key];
|
||||
}
|
||||
}
|
||||
|
||||
console.log("whisperParams =", whisperParams);
|
||||
|
||||
whisperAsync(whisperParams).then((result) => {
|
||||
console.log(`Result from whisper: ${result}`);
|
||||
});
|
16
examples/addon.node/package.json
Normal file
16
examples/addon.node/package.json
Normal file
@ -0,0 +1,16 @@
|
||||
{
|
||||
"name": "whisper-addon",
|
||||
"version": "0.0.0",
|
||||
"description": "",
|
||||
"main": "index.js",
|
||||
"author": "Qanhe Chen",
|
||||
"license": "MIT",
|
||||
"scripts": {
|
||||
"test": "jest"
|
||||
},
|
||||
"devDependencies": {
|
||||
"cmake-js": "^7.1.1",
|
||||
"jest": "^29.4.0",
|
||||
"node-addon-api": "^5.0.0"
|
||||
}
|
||||
}
|
@ -7,6 +7,7 @@
|
||||
// command-line parameters
|
||||
struct whisper_params {
|
||||
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
||||
int32_t what = 0; // what to benchmark: 0 - whisper ecoder, 1 - memcpy, 2 - ggml_mul_mat
|
||||
|
||||
std::string model = "models/ggml-base.en.bin";
|
||||
};
|
||||
@ -23,6 +24,7 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
}
|
||||
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
|
||||
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
|
||||
else if (arg == "-w" || arg == "--what") { params.what = atoi(argv[++i]); }
|
||||
else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
whisper_print_usage(argc, argv, params);
|
||||
@ -41,16 +43,14 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
|
||||
fprintf(stderr, " -h, --help [default] show this help message and exit\n");
|
||||
fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads);
|
||||
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
|
||||
fprintf(stderr, " -w N, --what N [%-7d] what to benchmark:\n", params.what);
|
||||
fprintf(stderr, " %-7s 0 - whisper encoder\n", "");
|
||||
fprintf(stderr, " %-7s 1 - memcpy\n", "");
|
||||
fprintf(stderr, " %-7s 2 - ggml_mul_mat\n", "");
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
whisper_params params;
|
||||
|
||||
if (whisper_params_parse(argc, argv, params) == false) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
int whisper_bench_encoder(const whisper_params & params) {
|
||||
// whisper init
|
||||
|
||||
struct whisper_context * ctx = whisper_init_from_file(params.model.c_str());
|
||||
@ -92,3 +92,22 @@ int main(int argc, char ** argv) {
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
whisper_params params;
|
||||
|
||||
if (whisper_params_parse(argc, argv, params) == false) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
int ret = -1;
|
||||
|
||||
switch (params.what) {
|
||||
case 0: ret = whisper_bench_encoder(params); break;
|
||||
case 1: ret = whisper_bench_memcpy(params.n_threads); break;
|
||||
case 2: ret = whisper_bench_ggml_mul_mat(params.n_threads); break;
|
||||
default: fprintf(stderr, "error: unknown benchmark: %d\n", params.what); break;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
@ -11,6 +11,7 @@ add_executable(${TARGET}
|
||||
include(DefaultTargetOptions)
|
||||
|
||||
target_link_libraries(${TARGET} PRIVATE
|
||||
common
|
||||
whisper
|
||||
)
|
||||
|
||||
|
@ -1,4 +1,5 @@
|
||||
#include "ggml.h"
|
||||
#include "common.h"
|
||||
#include "whisper.h"
|
||||
|
||||
#include <emscripten.h>
|
||||
@ -27,24 +28,6 @@ std::string g_transcribed = "";
|
||||
|
||||
std::vector<float> g_pcmf32;
|
||||
|
||||
static std::string trim(const std::string & s) {
|
||||
std::regex e("^\\s+|\\s+$");
|
||||
return std::regex_replace(s, e, "");
|
||||
}
|
||||
|
||||
static void high_pass_filter(std::vector<float> & data, float cutoff, float sample_rate) {
|
||||
const float rc = 1.0f / (2.0f * M_PI * cutoff);
|
||||
const float dt = 1.0f / sample_rate;
|
||||
const float alpha = dt / (rc + dt);
|
||||
|
||||
float y = data[0];
|
||||
|
||||
for (size_t i = 1; i < data.size(); i++) {
|
||||
y = alpha * (y + data[i] - data[i - 1]);
|
||||
data[i] = y;
|
||||
}
|
||||
}
|
||||
|
||||
// compute similarity between two strings using Levenshtein distance
|
||||
static float similarity(const std::string & s0, const std::string & s1) {
|
||||
const size_t len0 = s0.size() + 1;
|
||||
@ -75,44 +58,6 @@ void command_set_status(const std::string & status) {
|
||||
g_status = status;
|
||||
}
|
||||
|
||||
bool command_vad_simple(std::vector<float> & pcmf32, int sample_rate, int last_ms, float vad_thold, float freq_thold, bool verbose) {
|
||||
const int n_samples = pcmf32.size();
|
||||
const int n_samples_last = (sample_rate * last_ms) / 1000;
|
||||
|
||||
if (n_samples_last >= n_samples) {
|
||||
// not enough samples - assume no speech
|
||||
return false;
|
||||
}
|
||||
|
||||
if (freq_thold > 0.0f) {
|
||||
high_pass_filter(pcmf32, freq_thold, sample_rate);
|
||||
}
|
||||
|
||||
float energy_all = 0.0f;
|
||||
float energy_last = 0.0f;
|
||||
|
||||
for (size_t i = 0; i < n_samples; i++) {
|
||||
energy_all += fabsf(pcmf32[i]);
|
||||
|
||||
if (i >= n_samples - n_samples_last) {
|
||||
energy_last += fabsf(pcmf32[i]);
|
||||
}
|
||||
}
|
||||
|
||||
energy_all /= n_samples;
|
||||
energy_last /= n_samples_last;
|
||||
|
||||
if (verbose) {
|
||||
fprintf(stderr, "%s: energy_all: %f, energy_last: %f, vad_thold: %f, freq_thold: %f\n", __func__, energy_all, energy_last, vad_thold, freq_thold);
|
||||
}
|
||||
|
||||
if (energy_last > vad_thold*energy_all) {
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
std::string command_transcribe(whisper_context * ctx, const whisper_full_params & wparams, const std::vector<float> & pcmf32, float & prob, int64_t & t_ms) {
|
||||
const auto t_start = std::chrono::high_resolution_clock::now();
|
||||
|
||||
@ -155,7 +100,7 @@ void command_get_audio(int ms, int sample_rate, std::vector<float> & audio) {
|
||||
const int64_t n_samples = (ms * sample_rate) / 1000;
|
||||
|
||||
int64_t n_take = 0;
|
||||
if (g_pcmf32.size() < n_samples) {
|
||||
if (n_samples > (int) g_pcmf32.size()) {
|
||||
n_take = g_pcmf32.size();
|
||||
} else {
|
||||
n_take = n_samples;
|
||||
@ -187,7 +132,6 @@ void command_main(size_t index) {
|
||||
|
||||
printf("command: using %d threads\n", wparams.n_threads);
|
||||
|
||||
bool is_running = true;
|
||||
bool have_prompt = false;
|
||||
bool ask_prompt = true;
|
||||
bool print_energy = false;
|
||||
@ -233,7 +177,7 @@ void command_main(size_t index) {
|
||||
{
|
||||
command_get_audio(vad_ms, WHISPER_SAMPLE_RATE, pcmf32_cur);
|
||||
|
||||
if (command_vad_simple(pcmf32_cur, WHISPER_SAMPLE_RATE, 1000, vad_thold, freq_thold, print_energy)) {
|
||||
if (::vad_simple(pcmf32_cur, WHISPER_SAMPLE_RATE, 1000, vad_thold, freq_thold, print_energy)) {
|
||||
fprintf(stdout, "%s: Speech detected! Processing ...\n", __func__);
|
||||
command_set_status("Speech detected! Processing ...");
|
||||
|
||||
|
@ -5,6 +5,5 @@ if (WHISPER_SUPPORT_SDL2)
|
||||
|
||||
include(DefaultTargetOptions)
|
||||
|
||||
target_include_directories(${TARGET} PRIVATE ${SDL2_INCLUDE_DIRS})
|
||||
target_link_libraries(${TARGET} PRIVATE whisper ${SDL2_LIBRARIES} ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_link_libraries(${TARGET} PRIVATE common common-sdl whisper ${CMAKE_THREAD_LIBS_INIT})
|
||||
endif ()
|
||||
|
@ -6,11 +6,10 @@
|
||||
// ref: https://github.com/ggerganov/whisper.cpp/issues/171
|
||||
//
|
||||
|
||||
#include "common.h"
|
||||
#include "common-sdl.h"
|
||||
#include "whisper.h"
|
||||
|
||||
#include <SDL.h>
|
||||
#include <SDL_audio.h>
|
||||
|
||||
#include <sstream>
|
||||
#include <cassert>
|
||||
#include <cstdio>
|
||||
@ -110,309 +109,6 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
//
|
||||
// SDL Audio capture
|
||||
//
|
||||
|
||||
class audio_async {
|
||||
public:
|
||||
audio_async(int len_ms);
|
||||
~audio_async();
|
||||
|
||||
bool init(int capture_id, int sample_rate);
|
||||
|
||||
// start capturing audio via the provided SDL callback
|
||||
// keep last len_ms seconds of audio in a circular buffer
|
||||
bool resume();
|
||||
bool pause();
|
||||
bool clear();
|
||||
|
||||
// callback to be called by SDL
|
||||
void callback(uint8_t * stream, int len);
|
||||
|
||||
// get audio data from the circular buffer
|
||||
void get(int ms, std::vector<float> & audio);
|
||||
|
||||
private:
|
||||
SDL_AudioDeviceID m_dev_id_in = 0;
|
||||
|
||||
int m_len_ms = 0;
|
||||
int m_sample_rate = 0;
|
||||
|
||||
bool m_running = false;
|
||||
std::mutex m_mutex;
|
||||
|
||||
std::vector<float> m_audio;
|
||||
std::vector<float> m_audio_new;
|
||||
size_t m_audio_pos = 0;
|
||||
size_t m_audio_len = 0;
|
||||
};
|
||||
|
||||
audio_async::audio_async(int len_ms) {
|
||||
m_len_ms = len_ms;
|
||||
}
|
||||
|
||||
audio_async::~audio_async() {
|
||||
if (m_dev_id_in) {
|
||||
SDL_CloseAudioDevice(m_dev_id_in);
|
||||
}
|
||||
}
|
||||
|
||||
bool audio_async::init(int capture_id, int sample_rate) {
|
||||
SDL_LogSetPriority(SDL_LOG_CATEGORY_APPLICATION, SDL_LOG_PRIORITY_INFO);
|
||||
|
||||
if (SDL_Init(SDL_INIT_AUDIO) < 0) {
|
||||
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "Couldn't initialize SDL: %s\n", SDL_GetError());
|
||||
return false;
|
||||
}
|
||||
|
||||
SDL_SetHintWithPriority(SDL_HINT_AUDIO_RESAMPLING_MODE, "medium", SDL_HINT_OVERRIDE);
|
||||
|
||||
{
|
||||
int nDevices = SDL_GetNumAudioDevices(SDL_TRUE);
|
||||
fprintf(stderr, "%s: found %d capture devices:\n", __func__, nDevices);
|
||||
for (int i = 0; i < nDevices; i++) {
|
||||
fprintf(stderr, "%s: - Capture device #%d: '%s'\n", __func__, i, SDL_GetAudioDeviceName(i, SDL_TRUE));
|
||||
}
|
||||
}
|
||||
|
||||
SDL_AudioSpec capture_spec_requested;
|
||||
SDL_AudioSpec capture_spec_obtained;
|
||||
|
||||
SDL_zero(capture_spec_requested);
|
||||
SDL_zero(capture_spec_obtained);
|
||||
|
||||
capture_spec_requested.freq = sample_rate;
|
||||
capture_spec_requested.format = AUDIO_F32;
|
||||
capture_spec_requested.channels = 1;
|
||||
capture_spec_requested.samples = 1024;
|
||||
capture_spec_requested.callback = [](void * userdata, uint8_t * stream, int len) {
|
||||
audio_async * audio = (audio_async *) userdata;
|
||||
audio->callback(stream, len);
|
||||
};
|
||||
capture_spec_requested.userdata = this;
|
||||
|
||||
if (capture_id >= 0) {
|
||||
fprintf(stderr, "%s: attempt to open capture device %d : '%s' ...\n", __func__, capture_id, SDL_GetAudioDeviceName(capture_id, SDL_TRUE));
|
||||
m_dev_id_in = SDL_OpenAudioDevice(SDL_GetAudioDeviceName(capture_id, SDL_TRUE), SDL_TRUE, &capture_spec_requested, &capture_spec_obtained, 0);
|
||||
} else {
|
||||
fprintf(stderr, "%s: attempt to open default capture device ...\n", __func__);
|
||||
m_dev_id_in = SDL_OpenAudioDevice(nullptr, SDL_TRUE, &capture_spec_requested, &capture_spec_obtained, 0);
|
||||
}
|
||||
|
||||
if (!m_dev_id_in) {
|
||||
fprintf(stderr, "%s: couldn't open an audio device for capture: %s!\n", __func__, SDL_GetError());
|
||||
m_dev_id_in = 0;
|
||||
|
||||
return false;
|
||||
} else {
|
||||
fprintf(stderr, "%s: obtained spec for input device (SDL Id = %d):\n", __func__, m_dev_id_in);
|
||||
fprintf(stderr, "%s: - sample rate: %d\n", __func__, capture_spec_obtained.freq);
|
||||
fprintf(stderr, "%s: - format: %d (required: %d)\n", __func__, capture_spec_obtained.format,
|
||||
capture_spec_requested.format);
|
||||
fprintf(stderr, "%s: - channels: %d (required: %d)\n", __func__, capture_spec_obtained.channels,
|
||||
capture_spec_requested.channels);
|
||||
fprintf(stderr, "%s: - samples per frame: %d\n", __func__, capture_spec_obtained.samples);
|
||||
}
|
||||
|
||||
m_sample_rate = capture_spec_obtained.freq;
|
||||
|
||||
m_audio.resize((m_sample_rate*m_len_ms)/1000);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool audio_async::resume() {
|
||||
if (!m_dev_id_in) {
|
||||
fprintf(stderr, "%s: no audio device to resume!\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (m_running) {
|
||||
fprintf(stderr, "%s: already running!\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
SDL_PauseAudioDevice(m_dev_id_in, 0);
|
||||
|
||||
m_running = true;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool audio_async::pause() {
|
||||
if (!m_dev_id_in) {
|
||||
fprintf(stderr, "%s: no audio device to pause!\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!m_running) {
|
||||
fprintf(stderr, "%s: already paused!\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
SDL_PauseAudioDevice(m_dev_id_in, 1);
|
||||
|
||||
m_running = false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool audio_async::clear() {
|
||||
if (!m_dev_id_in) {
|
||||
fprintf(stderr, "%s: no audio device to clear!\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!m_running) {
|
||||
fprintf(stderr, "%s: not running!\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(m_mutex);
|
||||
|
||||
m_audio_pos = 0;
|
||||
m_audio_len = 0;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// callback to be called by SDL
|
||||
void audio_async::callback(uint8_t * stream, int len) {
|
||||
if (!m_running) {
|
||||
return;
|
||||
}
|
||||
|
||||
const size_t n_samples = len / sizeof(float);
|
||||
|
||||
m_audio_new.resize(n_samples);
|
||||
memcpy(m_audio_new.data(), stream, n_samples * sizeof(float));
|
||||
|
||||
//fprintf(stderr, "%s: %zu samples, pos %zu, len %zu\n", __func__, n_samples, m_audio_pos, m_audio_len);
|
||||
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(m_mutex);
|
||||
|
||||
if (m_audio_pos + n_samples > m_audio.size()) {
|
||||
const size_t n0 = m_audio.size() - m_audio_pos;
|
||||
|
||||
memcpy(&m_audio[m_audio_pos], stream, n0 * sizeof(float));
|
||||
memcpy(&m_audio[0], &stream[n0], (n_samples - n0) * sizeof(float));
|
||||
|
||||
m_audio_pos = (m_audio_pos + n_samples) % m_audio.size();
|
||||
m_audio_len = m_audio.size();
|
||||
} else {
|
||||
memcpy(&m_audio[m_audio_pos], stream, n_samples * sizeof(float));
|
||||
|
||||
m_audio_pos = (m_audio_pos + n_samples) % m_audio.size();
|
||||
m_audio_len = std::min(m_audio_len + n_samples, m_audio.size());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void audio_async::get(int ms, std::vector<float> & result) {
|
||||
if (!m_dev_id_in) {
|
||||
fprintf(stderr, "%s: no audio device to get audio from!\n", __func__);
|
||||
return;
|
||||
}
|
||||
|
||||
if (!m_running) {
|
||||
fprintf(stderr, "%s: not running!\n", __func__);
|
||||
return;
|
||||
}
|
||||
|
||||
result.clear();
|
||||
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(m_mutex);
|
||||
|
||||
if (ms <= 0) {
|
||||
ms = m_len_ms;
|
||||
}
|
||||
|
||||
size_t n_samples = (m_sample_rate * ms) / 1000;
|
||||
if (n_samples > m_audio_len) {
|
||||
n_samples = m_audio_len;
|
||||
}
|
||||
|
||||
result.resize(n_samples);
|
||||
|
||||
int s0 = m_audio_pos - n_samples;
|
||||
if (s0 < 0) {
|
||||
s0 += m_audio.size();
|
||||
}
|
||||
|
||||
if (s0 + n_samples > m_audio.size()) {
|
||||
const size_t n0 = m_audio.size() - s0;
|
||||
|
||||
memcpy(result.data(), &m_audio[s0], n0 * sizeof(float));
|
||||
memcpy(&result[n0], &m_audio[0], (n_samples - n0) * sizeof(float));
|
||||
} else {
|
||||
memcpy(result.data(), &m_audio[s0], n_samples * sizeof(float));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////
|
||||
|
||||
std::string trim(const std::string & s) {
|
||||
std::regex e("^\\s+|\\s+$");
|
||||
return std::regex_replace(s, e, "");
|
||||
}
|
||||
|
||||
void high_pass_filter(std::vector<float> & data, float cutoff, float sample_rate) {
|
||||
const float rc = 1.0f / (2.0f * M_PI * cutoff);
|
||||
const float dt = 1.0f / sample_rate;
|
||||
const float alpha = dt / (rc + dt);
|
||||
|
||||
float y = data[0];
|
||||
|
||||
for (size_t i = 1; i < data.size(); i++) {
|
||||
y = alpha * (y + data[i] - data[i - 1]);
|
||||
data[i] = y;
|
||||
}
|
||||
}
|
||||
|
||||
bool vad_simple(std::vector<float> & pcmf32, int sample_rate, int last_ms, float vad_thold, float freq_thold, bool verbose) {
|
||||
const int n_samples = pcmf32.size();
|
||||
const int n_samples_last = (sample_rate * last_ms) / 1000;
|
||||
|
||||
if (n_samples_last >= n_samples) {
|
||||
// not enough samples - assume no speech
|
||||
return false;
|
||||
}
|
||||
|
||||
if (freq_thold > 0.0f) {
|
||||
high_pass_filter(pcmf32, freq_thold, sample_rate);
|
||||
}
|
||||
|
||||
float energy_all = 0.0f;
|
||||
float energy_last = 0.0f;
|
||||
|
||||
for (int i = 0; i < n_samples; i++) {
|
||||
energy_all += fabsf(pcmf32[i]);
|
||||
|
||||
if (i >= n_samples - n_samples_last) {
|
||||
energy_last += fabsf(pcmf32[i]);
|
||||
}
|
||||
}
|
||||
|
||||
energy_all /= n_samples;
|
||||
energy_last /= n_samples_last;
|
||||
|
||||
if (verbose) {
|
||||
fprintf(stderr, "%s: energy_all: %f, energy_last: %f, vad_thold: %f, freq_thold: %f\n", __func__, energy_all, energy_last, vad_thold, freq_thold);
|
||||
}
|
||||
|
||||
if (energy_last > vad_thold*energy_all) {
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
std::string transcribe(whisper_context * ctx, const whisper_params & params, const std::vector<float> & pcmf32, float & prob, int64_t & t_ms) {
|
||||
const auto t_start = std::chrono::high_resolution_clock::now();
|
||||
|
||||
@ -502,7 +198,7 @@ std::vector<std::string> read_allowed_commands(const std::string & fname) {
|
||||
|
||||
std::string line;
|
||||
while (std::getline(ifs, line)) {
|
||||
line = trim(line);
|
||||
line = ::trim(line);
|
||||
if (line.empty()) {
|
||||
continue;
|
||||
}
|
||||
@ -526,23 +222,6 @@ std::vector<std::string> get_words(const std::string &txt) {
|
||||
return words;
|
||||
}
|
||||
|
||||
// returns true if no exit event was received
|
||||
bool process_sdl_events() {
|
||||
SDL_Event event;
|
||||
while (SDL_PollEvent(&event)) {
|
||||
switch (event.type) {
|
||||
case SDL_QUIT:
|
||||
{
|
||||
return false;
|
||||
} break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// command-list mode
|
||||
// guide the transcription to match the most likely command from a provided list
|
||||
int process_command_list(struct whisper_context * ctx, audio_async &audio, const whisper_params ¶ms) {
|
||||
@ -634,14 +313,14 @@ int process_command_list(struct whisper_context * ctx, audio_async &audio, const
|
||||
// main loop
|
||||
while (is_running) {
|
||||
// handle Ctrl + C
|
||||
is_running = process_sdl_events();
|
||||
is_running = sdl_poll_events();
|
||||
|
||||
// delay
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(100));
|
||||
|
||||
audio.get(2000, pcmf32_cur);
|
||||
|
||||
if (vad_simple(pcmf32_cur, WHISPER_SAMPLE_RATE, 1000, params.vad_thold, params.freq_thold, params.print_energy)) {
|
||||
if (::vad_simple(pcmf32_cur, WHISPER_SAMPLE_RATE, 1000, params.vad_thold, params.freq_thold, params.print_energy)) {
|
||||
fprintf(stdout, "%s: Speech detected! Processing ...\n", __func__);
|
||||
|
||||
const auto t_start = std::chrono::high_resolution_clock::now();
|
||||
@ -775,7 +454,7 @@ int always_prompt_transcription(struct whisper_context * ctx, audio_async & audi
|
||||
// main loop
|
||||
while (is_running) {
|
||||
// handle Ctrl + C
|
||||
is_running = process_sdl_events();
|
||||
is_running = sdl_poll_events();
|
||||
|
||||
// delay
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(100));
|
||||
@ -791,7 +470,7 @@ int always_prompt_transcription(struct whisper_context * ctx, audio_async & audi
|
||||
{
|
||||
audio.get(2000, pcmf32_cur);
|
||||
|
||||
if (vad_simple(pcmf32_cur, WHISPER_SAMPLE_RATE, 1000, params.vad_thold, params.freq_thold, params.print_energy)) {
|
||||
if (::vad_simple(pcmf32_cur, WHISPER_SAMPLE_RATE, 1000, params.vad_thold, params.freq_thold, params.print_energy)) {
|
||||
fprintf(stdout, "%s: Speech detected! Processing ...\n", __func__);
|
||||
|
||||
int64_t t_ms = 0;
|
||||
@ -854,7 +533,7 @@ int process_general_transcription(struct whisper_context * ctx, audio_async &aud
|
||||
// main loop
|
||||
while (is_running) {
|
||||
// handle Ctrl + C
|
||||
is_running = process_sdl_events();
|
||||
is_running = sdl_poll_events();
|
||||
|
||||
// delay
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(100));
|
||||
@ -870,7 +549,7 @@ int process_general_transcription(struct whisper_context * ctx, audio_async &aud
|
||||
{
|
||||
audio.get(2000, pcmf32_cur);
|
||||
|
||||
if (vad_simple(pcmf32_cur, WHISPER_SAMPLE_RATE, 1000, params.vad_thold, params.freq_thold, params.print_energy)) {
|
||||
if (::vad_simple(pcmf32_cur, WHISPER_SAMPLE_RATE, 1000, params.vad_thold, params.freq_thold, params.print_energy)) {
|
||||
fprintf(stdout, "%s: Speech detected! Processing ...\n", __func__);
|
||||
|
||||
int64_t t_ms = 0;
|
||||
|
226
examples/common-sdl.cpp
Normal file
226
examples/common-sdl.cpp
Normal file
@ -0,0 +1,226 @@
|
||||
#include "common-sdl.h"
|
||||
|
||||
audio_async::audio_async(int len_ms) {
|
||||
m_len_ms = len_ms;
|
||||
|
||||
m_running = false;
|
||||
}
|
||||
|
||||
audio_async::~audio_async() {
|
||||
if (m_dev_id_in) {
|
||||
SDL_CloseAudioDevice(m_dev_id_in);
|
||||
}
|
||||
}
|
||||
|
||||
bool audio_async::init(int capture_id, int sample_rate) {
|
||||
SDL_LogSetPriority(SDL_LOG_CATEGORY_APPLICATION, SDL_LOG_PRIORITY_INFO);
|
||||
|
||||
if (SDL_Init(SDL_INIT_AUDIO) < 0) {
|
||||
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "Couldn't initialize SDL: %s\n", SDL_GetError());
|
||||
return false;
|
||||
}
|
||||
|
||||
SDL_SetHintWithPriority(SDL_HINT_AUDIO_RESAMPLING_MODE, "medium", SDL_HINT_OVERRIDE);
|
||||
|
||||
{
|
||||
int nDevices = SDL_GetNumAudioDevices(SDL_TRUE);
|
||||
fprintf(stderr, "%s: found %d capture devices:\n", __func__, nDevices);
|
||||
for (int i = 0; i < nDevices; i++) {
|
||||
fprintf(stderr, "%s: - Capture device #%d: '%s'\n", __func__, i, SDL_GetAudioDeviceName(i, SDL_TRUE));
|
||||
}
|
||||
}
|
||||
|
||||
SDL_AudioSpec capture_spec_requested;
|
||||
SDL_AudioSpec capture_spec_obtained;
|
||||
|
||||
SDL_zero(capture_spec_requested);
|
||||
SDL_zero(capture_spec_obtained);
|
||||
|
||||
capture_spec_requested.freq = sample_rate;
|
||||
capture_spec_requested.format = AUDIO_F32;
|
||||
capture_spec_requested.channels = 1;
|
||||
capture_spec_requested.samples = 1024;
|
||||
capture_spec_requested.callback = [](void * userdata, uint8_t * stream, int len) {
|
||||
audio_async * audio = (audio_async *) userdata;
|
||||
audio->callback(stream, len);
|
||||
};
|
||||
capture_spec_requested.userdata = this;
|
||||
|
||||
if (capture_id >= 0) {
|
||||
fprintf(stderr, "%s: attempt to open capture device %d : '%s' ...\n", __func__, capture_id, SDL_GetAudioDeviceName(capture_id, SDL_TRUE));
|
||||
m_dev_id_in = SDL_OpenAudioDevice(SDL_GetAudioDeviceName(capture_id, SDL_TRUE), SDL_TRUE, &capture_spec_requested, &capture_spec_obtained, 0);
|
||||
} else {
|
||||
fprintf(stderr, "%s: attempt to open default capture device ...\n", __func__);
|
||||
m_dev_id_in = SDL_OpenAudioDevice(nullptr, SDL_TRUE, &capture_spec_requested, &capture_spec_obtained, 0);
|
||||
}
|
||||
|
||||
if (!m_dev_id_in) {
|
||||
fprintf(stderr, "%s: couldn't open an audio device for capture: %s!\n", __func__, SDL_GetError());
|
||||
m_dev_id_in = 0;
|
||||
|
||||
return false;
|
||||
} else {
|
||||
fprintf(stderr, "%s: obtained spec for input device (SDL Id = %d):\n", __func__, m_dev_id_in);
|
||||
fprintf(stderr, "%s: - sample rate: %d\n", __func__, capture_spec_obtained.freq);
|
||||
fprintf(stderr, "%s: - format: %d (required: %d)\n", __func__, capture_spec_obtained.format,
|
||||
capture_spec_requested.format);
|
||||
fprintf(stderr, "%s: - channels: %d (required: %d)\n", __func__, capture_spec_obtained.channels,
|
||||
capture_spec_requested.channels);
|
||||
fprintf(stderr, "%s: - samples per frame: %d\n", __func__, capture_spec_obtained.samples);
|
||||
}
|
||||
|
||||
m_sample_rate = capture_spec_obtained.freq;
|
||||
|
||||
m_audio.resize((m_sample_rate*m_len_ms)/1000);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool audio_async::resume() {
|
||||
if (!m_dev_id_in) {
|
||||
fprintf(stderr, "%s: no audio device to resume!\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (m_running) {
|
||||
fprintf(stderr, "%s: already running!\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
SDL_PauseAudioDevice(m_dev_id_in, 0);
|
||||
|
||||
m_running = true;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool audio_async::pause() {
|
||||
if (!m_dev_id_in) {
|
||||
fprintf(stderr, "%s: no audio device to pause!\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!m_running) {
|
||||
fprintf(stderr, "%s: already paused!\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
SDL_PauseAudioDevice(m_dev_id_in, 1);
|
||||
|
||||
m_running = false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool audio_async::clear() {
|
||||
if (!m_dev_id_in) {
|
||||
fprintf(stderr, "%s: no audio device to clear!\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!m_running) {
|
||||
fprintf(stderr, "%s: not running!\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(m_mutex);
|
||||
|
||||
m_audio_pos = 0;
|
||||
m_audio_len = 0;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// callback to be called by SDL
|
||||
void audio_async::callback(uint8_t * stream, int len) {
|
||||
if (!m_running) {
|
||||
return;
|
||||
}
|
||||
|
||||
const size_t n_samples = len / sizeof(float);
|
||||
|
||||
m_audio_new.resize(n_samples);
|
||||
memcpy(m_audio_new.data(), stream, n_samples * sizeof(float));
|
||||
|
||||
//fprintf(stderr, "%s: %zu samples, pos %zu, len %zu\n", __func__, n_samples, m_audio_pos, m_audio_len);
|
||||
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(m_mutex);
|
||||
|
||||
if (m_audio_pos + n_samples > m_audio.size()) {
|
||||
const size_t n0 = m_audio.size() - m_audio_pos;
|
||||
|
||||
memcpy(&m_audio[m_audio_pos], stream, n0 * sizeof(float));
|
||||
memcpy(&m_audio[0], &stream[n0], (n_samples - n0) * sizeof(float));
|
||||
|
||||
m_audio_pos = (m_audio_pos + n_samples) % m_audio.size();
|
||||
m_audio_len = m_audio.size();
|
||||
} else {
|
||||
memcpy(&m_audio[m_audio_pos], stream, n_samples * sizeof(float));
|
||||
|
||||
m_audio_pos = (m_audio_pos + n_samples) % m_audio.size();
|
||||
m_audio_len = std::min(m_audio_len + n_samples, m_audio.size());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void audio_async::get(int ms, std::vector<float> & result) {
|
||||
if (!m_dev_id_in) {
|
||||
fprintf(stderr, "%s: no audio device to get audio from!\n", __func__);
|
||||
return;
|
||||
}
|
||||
|
||||
if (!m_running) {
|
||||
fprintf(stderr, "%s: not running!\n", __func__);
|
||||
return;
|
||||
}
|
||||
|
||||
result.clear();
|
||||
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(m_mutex);
|
||||
|
||||
if (ms <= 0) {
|
||||
ms = m_len_ms;
|
||||
}
|
||||
|
||||
size_t n_samples = (m_sample_rate * ms) / 1000;
|
||||
if (n_samples > m_audio_len) {
|
||||
n_samples = m_audio_len;
|
||||
}
|
||||
|
||||
result.resize(n_samples);
|
||||
|
||||
int s0 = m_audio_pos - n_samples;
|
||||
if (s0 < 0) {
|
||||
s0 += m_audio.size();
|
||||
}
|
||||
|
||||
if (s0 + n_samples > m_audio.size()) {
|
||||
const size_t n0 = m_audio.size() - s0;
|
||||
|
||||
memcpy(result.data(), &m_audio[s0], n0 * sizeof(float));
|
||||
memcpy(&result[n0], &m_audio[0], (n_samples - n0) * sizeof(float));
|
||||
} else {
|
||||
memcpy(result.data(), &m_audio[s0], n_samples * sizeof(float));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bool sdl_poll_events() {
|
||||
SDL_Event event;
|
||||
while (SDL_PollEvent(&event)) {
|
||||
switch (event.type) {
|
||||
case SDL_QUIT:
|
||||
{
|
||||
return false;
|
||||
} break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
50
examples/common-sdl.h
Normal file
50
examples/common-sdl.h
Normal file
@ -0,0 +1,50 @@
|
||||
#pragma once
|
||||
|
||||
#include <SDL.h>
|
||||
#include <SDL_audio.h>
|
||||
|
||||
#include <atomic>
|
||||
#include <cstdint>
|
||||
#include <vector>
|
||||
#include <mutex>
|
||||
|
||||
//
|
||||
// SDL Audio capture
|
||||
//
|
||||
|
||||
class audio_async {
|
||||
public:
|
||||
audio_async(int len_ms);
|
||||
~audio_async();
|
||||
|
||||
bool init(int capture_id, int sample_rate);
|
||||
|
||||
// start capturing audio via the provided SDL callback
|
||||
// keep last len_ms seconds of audio in a circular buffer
|
||||
bool resume();
|
||||
bool pause();
|
||||
bool clear();
|
||||
|
||||
// callback to be called by SDL
|
||||
void callback(uint8_t * stream, int len);
|
||||
|
||||
// get audio data from the circular buffer
|
||||
void get(int ms, std::vector<float> & audio);
|
||||
|
||||
private:
|
||||
SDL_AudioDeviceID m_dev_id_in = 0;
|
||||
|
||||
int m_len_ms = 0;
|
||||
int m_sample_rate = 0;
|
||||
|
||||
std::atomic_bool m_running;
|
||||
std::mutex m_mutex;
|
||||
|
||||
std::vector<float> m_audio;
|
||||
std::vector<float> m_audio_new;
|
||||
size_t m_audio_pos = 0;
|
||||
size_t m_audio_len = 0;
|
||||
};
|
||||
|
||||
// Return false if need to quit
|
||||
bool sdl_poll_events();
|
162
examples/common.cpp
Normal file
162
examples/common.cpp
Normal file
@ -0,0 +1,162 @@
|
||||
#include "common.h"
|
||||
|
||||
// third-party utilities
|
||||
// use your favorite implementations
|
||||
#define DR_WAV_IMPLEMENTATION
|
||||
#include "dr_wav.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <regex>
|
||||
|
||||
#ifndef M_PI
|
||||
#define M_PI 3.14159265358979323846
|
||||
#endif
|
||||
|
||||
std::string trim(const std::string & s) {
|
||||
std::regex e("^\\s+|\\s+$");
|
||||
return std::regex_replace(s, e, "");
|
||||
}
|
||||
|
||||
std::string replace(const std::string & s, const std::string & from, const std::string & to) {
|
||||
std::string result = s;
|
||||
size_t pos = 0;
|
||||
while ((pos = result.find(from, pos)) != std::string::npos) {
|
||||
result.replace(pos, from.length(), to);
|
||||
pos += to.length();
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
bool read_wav(const std::string & fname, std::vector<float>& pcmf32, std::vector<std::vector<float>>& pcmf32s, bool stereo) {
|
||||
drwav wav;
|
||||
std::vector<uint8_t> wav_data; // used for pipe input from stdin
|
||||
|
||||
if (fname == "-") {
|
||||
{
|
||||
uint8_t buf[1024];
|
||||
while (true)
|
||||
{
|
||||
const size_t n = fread(buf, 1, sizeof(buf), stdin);
|
||||
if (n == 0) {
|
||||
break;
|
||||
}
|
||||
wav_data.insert(wav_data.end(), buf, buf + n);
|
||||
}
|
||||
}
|
||||
|
||||
if (drwav_init_memory(&wav, wav_data.data(), wav_data.size(), nullptr) == false) {
|
||||
fprintf(stderr, "error: failed to open WAV file from stdin\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: read %zu bytes from stdin\n", __func__, wav_data.size());
|
||||
}
|
||||
else if (drwav_init_file(&wav, fname.c_str(), nullptr) == false) {
|
||||
fprintf(stderr, "error: failed to open '%s' as WAV file\n", fname.c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
if (wav.channels != 1 && wav.channels != 2) {
|
||||
fprintf(stderr, "%s: WAV file '%s' must be mono or stereo\n", __func__, fname.c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
if (stereo && wav.channels != 2) {
|
||||
fprintf(stderr, "%s: WAV file '%s' must be stereo for diarization\n", __func__, fname.c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
if (wav.sampleRate != COMMON_SAMPLE_RATE) {
|
||||
fprintf(stderr, "%s: WAV file '%s' must be %i kHz\n", __func__, fname.c_str(), COMMON_SAMPLE_RATE/1000);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (wav.bitsPerSample != 16) {
|
||||
fprintf(stderr, "%s: WAV file '%s' must be 16-bit\n", __func__, fname.c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
const uint64_t n = wav_data.empty() ? wav.totalPCMFrameCount : wav_data.size()/(wav.channels*wav.bitsPerSample/8);
|
||||
|
||||
std::vector<int16_t> pcm16;
|
||||
pcm16.resize(n*wav.channels);
|
||||
drwav_read_pcm_frames_s16(&wav, n, pcm16.data());
|
||||
drwav_uninit(&wav);
|
||||
|
||||
// convert to mono, float
|
||||
pcmf32.resize(n);
|
||||
if (wav.channels == 1) {
|
||||
for (uint64_t i = 0; i < n; i++) {
|
||||
pcmf32[i] = float(pcm16[i])/32768.0f;
|
||||
}
|
||||
} else {
|
||||
for (uint64_t i = 0; i < n; i++) {
|
||||
pcmf32[i] = float(pcm16[2*i] + pcm16[2*i + 1])/65536.0f;
|
||||
}
|
||||
}
|
||||
|
||||
if (stereo) {
|
||||
// convert to stereo, float
|
||||
pcmf32s.resize(2);
|
||||
|
||||
pcmf32s[0].resize(n);
|
||||
pcmf32s[1].resize(n);
|
||||
for (uint64_t i = 0; i < n; i++) {
|
||||
pcmf32s[0][i] = float(pcm16[2*i])/32768.0f;
|
||||
pcmf32s[1][i] = float(pcm16[2*i + 1])/32768.0f;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void high_pass_filter(std::vector<float> & data, float cutoff, float sample_rate) {
|
||||
const float rc = 1.0f / (2.0f * M_PI * cutoff);
|
||||
const float dt = 1.0f / sample_rate;
|
||||
const float alpha = dt / (rc + dt);
|
||||
|
||||
float y = data[0];
|
||||
|
||||
for (size_t i = 1; i < data.size(); i++) {
|
||||
y = alpha * (y + data[i] - data[i - 1]);
|
||||
data[i] = y;
|
||||
}
|
||||
}
|
||||
|
||||
bool vad_simple(std::vector<float> & pcmf32, int sample_rate, int last_ms, float vad_thold, float freq_thold, bool verbose) {
|
||||
const int n_samples = pcmf32.size();
|
||||
const int n_samples_last = (sample_rate * last_ms) / 1000;
|
||||
|
||||
if (n_samples_last >= n_samples) {
|
||||
// not enough samples - assume no speech
|
||||
return false;
|
||||
}
|
||||
|
||||
if (freq_thold > 0.0f) {
|
||||
high_pass_filter(pcmf32, freq_thold, sample_rate);
|
||||
}
|
||||
|
||||
float energy_all = 0.0f;
|
||||
float energy_last = 0.0f;
|
||||
|
||||
for (int i = 0; i < n_samples; i++) {
|
||||
energy_all += fabsf(pcmf32[i]);
|
||||
|
||||
if (i >= n_samples - n_samples_last) {
|
||||
energy_last += fabsf(pcmf32[i]);
|
||||
}
|
||||
}
|
||||
|
||||
energy_all /= n_samples;
|
||||
energy_last /= n_samples_last;
|
||||
|
||||
if (verbose) {
|
||||
fprintf(stderr, "%s: energy_all: %f, energy_last: %f, vad_thold: %f, freq_thold: %f\n", __func__, energy_all, energy_last, vad_thold, freq_thold);
|
||||
}
|
||||
|
||||
if (energy_last > vad_thold*energy_all) {
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
40
examples/common.h
Normal file
40
examples/common.h
Normal file
@ -0,0 +1,40 @@
|
||||
#pragma once
|
||||
|
||||
// needs to match WHISPER_SAMPLE_RATE
|
||||
#define COMMON_SAMPLE_RATE 16000
|
||||
|
||||
#include <vector>
|
||||
#include <string>
|
||||
|
||||
std::string trim(const std::string & s);
|
||||
|
||||
std::string replace(
|
||||
const std::string & s,
|
||||
const std::string & from,
|
||||
const std::string & to);
|
||||
|
||||
// Read WAV audio file and store the PCM data into pcmf32
|
||||
// The sample rate of the audio must be equal to COMMON_SAMPLE_RATE
|
||||
// If stereo flag is set and the audio has 2 channels, the pcmf32s will contain 2 channel PCM
|
||||
bool read_wav(
|
||||
const std::string & fname,
|
||||
std::vector<float> & pcmf32,
|
||||
std::vector<std::vector<float>> & pcmf32s,
|
||||
bool stereo);
|
||||
|
||||
// Apply a high-pass frequency filter to PCM audio
|
||||
// Suppresses frequencies below cutoff Hz
|
||||
void high_pass_filter(
|
||||
std::vector<float> & data,
|
||||
float cutoff,
|
||||
float sample_rate);
|
||||
|
||||
// Basic voice activity detection (VAD) using audio energy adaptive threshold
|
||||
bool vad_simple(
|
||||
std::vector<float> & pcmf32,
|
||||
int sample_rate,
|
||||
int last_ms,
|
||||
float vad_thold,
|
||||
float freq_thold,
|
||||
bool verbose);
|
||||
|
@ -8,7 +8,7 @@ function convertTypedArray(src, type) {
|
||||
|
||||
var printTextarea = (function() {
|
||||
var element = document.getElementById('output');
|
||||
if (element) element.alue = ''; // clear browser cache
|
||||
if (element) element.value = ''; // clear browser cache
|
||||
return function(text) {
|
||||
if (arguments.length > 1) text = Array.prototype.slice.call(arguments).join(' ');
|
||||
console.log(text);
|
||||
@ -88,11 +88,15 @@ async function fetchRemote(url, cbProgress, cbPrint) {
|
||||
// - check if the data is already in the IndexedDB
|
||||
// - if not, fetch it from the remote URL and store it in the IndexedDB
|
||||
function loadRemote(url, dst, size_mb, cbProgress, cbReady, cbCancel, cbPrint) {
|
||||
// query the storage quota and print it
|
||||
navigator.storage.estimate().then(function (estimate) {
|
||||
cbPrint('loadRemote: storage quota: ' + estimate.quota + ' bytes');
|
||||
cbPrint('loadRemote: storage usage: ' + estimate.usage + ' bytes');
|
||||
});
|
||||
if (!navigator.storage || !navigator.storage.estimate) {
|
||||
cbPrint('loadRemote: navigator.storage.estimate() is not supported');
|
||||
} else {
|
||||
// query the storage quota and print it
|
||||
navigator.storage.estimate().then(function (estimate) {
|
||||
cbPrint('loadRemote: storage quota: ' + estimate.quota + ' bytes');
|
||||
cbPrint('loadRemote: storage usage: ' + estimate.usage + ' bytes');
|
||||
});
|
||||
}
|
||||
|
||||
// check if the data is already in the IndexedDB
|
||||
var rq = indexedDB.open(dbName, dbVersion);
|
||||
|
@ -100,7 +100,7 @@ while [ $running -eq 1 ]; do
|
||||
err=$(cat /tmp/whisper-live.err | wc -l)
|
||||
done
|
||||
|
||||
./main -t 8 -m ./models/ggml-base.en.bin -f /tmp/whisper-live.wav --no-timestamps -otxt 2> /tmp/whispererr | tail -n 1
|
||||
./main -t 8 -m ./models/ggml-${model}.bin -f /tmp/whisper-live.wav --no-timestamps -otxt 2> /tmp/whispererr | tail -n 1
|
||||
|
||||
while [ $SECONDS -lt $((($i+1)*$step_s)) ]; do
|
||||
sleep 1
|
||||
|
@ -3,4 +3,4 @@ add_executable(${TARGET} main.cpp)
|
||||
|
||||
include(DefaultTargetOptions)
|
||||
|
||||
target_link_libraries(${TARGET} PRIVATE whisper ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_link_libraries(${TARGET} PRIVATE common whisper ${CMAKE_THREAD_LIBS_INIT})
|
||||
|
@ -9,25 +9,36 @@ It can be used as a reference for using the `whisper.cpp` library in other proje
|
||||
usage: ./main [options] file0.wav file1.wav ...
|
||||
|
||||
options:
|
||||
-h, --help [default] show this help message and exit
|
||||
-t N, --threads N [4 ] number of threads to use during computation
|
||||
-p N, --processors N [1 ] number of processors to use during computation
|
||||
-ot N, --offset-t N [0 ] time offset in milliseconds
|
||||
-on N, --offset-n N [0 ] segment index offset
|
||||
-d N, --duration N [0 ] duration of audio to process in milliseconds
|
||||
-mc N, --max-context N [-1 ] maximum number of text context tokens to store
|
||||
-ml N, --max-len N [0 ] maximum segment length in characters
|
||||
-wt N, --word-thold N [0.01 ] word timestamp probability threshold
|
||||
-su, --speed-up [false ] speed up audio by x2 (reduced accuracy)
|
||||
-tr, --translate [false ] translate from source language to english
|
||||
-otxt, --output-txt [false ] output result in a text file
|
||||
-ovtt, --output-vtt [false ] output result in a vtt file
|
||||
-osrt, --output-srt [false ] output result in a srt file
|
||||
-owts, --output-words [false ] output script for generating karaoke video
|
||||
-ps, --print-special [false ] print special tokens
|
||||
-pc, --print-colors [false ] print colors
|
||||
-nt, --no-timestamps [true ] do not print timestamps
|
||||
-l LANG, --language LANG [en ] spoken language
|
||||
-m FNAME, --model FNAME [models/ggml-base.en.bin] model path
|
||||
-f FNAME, --file FNAME [ ] input WAV file path
|
||||
-h, --help [default] show this help message and exit
|
||||
-t N, --threads N [4 ] number of threads to use during computation
|
||||
-p N, --processors N [1 ] number of processors to use during computation
|
||||
-ot N, --offset-t N [0 ] time offset in milliseconds
|
||||
-on N, --offset-n N [0 ] segment index offset
|
||||
-d N, --duration N [0 ] duration of audio to process in milliseconds
|
||||
-mc N, --max-context N [-1 ] maximum number of text context tokens to store
|
||||
-ml N, --max-len N [0 ] maximum segment length in characters
|
||||
-bo N, --best-of N [5 ] number of best candidates to keep
|
||||
-bs N, --beam-size N [-1 ] beam size for beam search
|
||||
-wt N, --word-thold N [0.01 ] word timestamp probability threshold
|
||||
-et N, --entropy-thold N [2.40 ] entropy threshold for decoder fail
|
||||
-lpt N, --logprob-thold N [-1.00 ] log probability threshold for decoder fail
|
||||
-su, --speed-up [false ] speed up audio by x2 (reduced accuracy)
|
||||
-tr, --translate [false ] translate from source language to english
|
||||
-di, --diarize [false ] stereo audio diarization
|
||||
-nf, --no-fallback [false ] do not use temperature fallback while decoding
|
||||
-otxt, --output-txt [false ] output result in a text file
|
||||
-ovtt, --output-vtt [false ] output result in a vtt file
|
||||
-osrt, --output-srt [false ] output result in a srt file
|
||||
-owts, --output-words [false ] output script for generating karaoke video
|
||||
-ocsv, --output-csv [false ] output result in a CSV file
|
||||
-oj, --output-json [false ] output result in a JSON file
|
||||
-of FNAME, --output-file FNAME [ ] output file path (without file extension)
|
||||
-ps, --print-special [false ] print special tokens
|
||||
-pc, --print-colors [false ] print colors
|
||||
-pp, --print-progress [false ] print progress
|
||||
-nt, --no-timestamps [true ] do not print timestamps
|
||||
-l LANG, --language LANG [en ] spoken language ('auto' for auto-detect)
|
||||
--prompt PROMPT [ ] initial prompt
|
||||
-m FNAME, --model FNAME [models/ggml-base.en.bin] model path
|
||||
-f FNAME, --file FNAME [ ] input WAV file path
|
||||
```
|
||||
|
@ -1,9 +1,6 @@
|
||||
#include "whisper.h"
|
||||
#include "common.h"
|
||||
|
||||
// third-party utilities
|
||||
// use your favorite implementations
|
||||
#define DR_WAV_IMPLEMENTATION
|
||||
#include "dr_wav.h"
|
||||
#include "whisper.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <fstream>
|
||||
@ -11,6 +8,7 @@
|
||||
#include <string>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
#include <cstring>
|
||||
|
||||
// Terminal color map. 10 colors grouped in ranges [0.0, 0.1, ..., 0.9]
|
||||
// Lowest is red, middle is yellow, highest is green.
|
||||
@ -53,27 +51,31 @@ void replace_all(std::string & s, const std::string & search, const std::string
|
||||
// command-line parameters
|
||||
struct whisper_params {
|
||||
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
||||
int32_t n_processors = 1;
|
||||
int32_t offset_t_ms = 0;
|
||||
int32_t offset_n = 0;
|
||||
int32_t duration_ms = 0;
|
||||
int32_t n_processors = 1;
|
||||
int32_t offset_t_ms = 0;
|
||||
int32_t offset_n = 0;
|
||||
int32_t duration_ms = 0;
|
||||
int32_t max_context = -1;
|
||||
int32_t max_len = 0;
|
||||
int32_t best_of = 5;
|
||||
int32_t max_len = 0;
|
||||
int32_t best_of = 2;
|
||||
int32_t beam_size = -1;
|
||||
|
||||
float word_thold = 0.01f;
|
||||
float entropy_thold = 2.4f;
|
||||
float logprob_thold = -1.0f;
|
||||
float word_thold = 0.01f;
|
||||
float entropy_thold = 2.40f;
|
||||
float logprob_thold = -1.00f;
|
||||
|
||||
bool speed_up = false;
|
||||
bool translate = false;
|
||||
bool diarize = false;
|
||||
bool split_on_word = false;
|
||||
bool no_fallback = false;
|
||||
bool output_txt = false;
|
||||
bool output_vtt = false;
|
||||
bool output_srt = false;
|
||||
bool output_wts = false;
|
||||
bool output_csv = false;
|
||||
bool output_jsn = false;
|
||||
bool output_lrc = false;
|
||||
bool print_special = false;
|
||||
bool print_colors = false;
|
||||
bool print_progress = false;
|
||||
@ -81,9 +83,11 @@ struct whisper_params {
|
||||
|
||||
std::string language = "en";
|
||||
std::string prompt;
|
||||
std::string font_path = "/System/Library/Fonts/Supplemental/Courier New Bold.ttf";
|
||||
std::string model = "models/ggml-base.en.bin";
|
||||
|
||||
std::vector<std::string> fname_inp = {};
|
||||
std::vector<std::string> fname_out = {};
|
||||
};
|
||||
|
||||
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
|
||||
@ -92,6 +96,11 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
for (int i = 1; i < argc; i++) {
|
||||
std::string arg = argv[i];
|
||||
|
||||
if (arg == "-"){
|
||||
params.fname_inp.push_back(arg);
|
||||
continue;
|
||||
}
|
||||
|
||||
if (arg[0] != '-') {
|
||||
params.fname_inp.push_back(arg);
|
||||
continue;
|
||||
@ -116,11 +125,17 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; }
|
||||
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
|
||||
else if (arg == "-di" || arg == "--diarize") { params.diarize = true; }
|
||||
else if (arg == "-sow" || arg == "--split-on-word") { params.split_on_word = true; }
|
||||
else if (arg == "-nf" || arg == "--no-fallback") { params.no_fallback = true; }
|
||||
else if (arg == "-otxt" || arg == "--output-txt") { params.output_txt = true; }
|
||||
else if (arg == "-ovtt" || arg == "--output-vtt") { params.output_vtt = true; }
|
||||
else if (arg == "-osrt" || arg == "--output-srt") { params.output_srt = true; }
|
||||
else if (arg == "-owts" || arg == "--output-words") { params.output_wts = true; }
|
||||
else if (arg == "-olrc" || arg == "--output-lrc") { params.output_lrc = true; }
|
||||
else if (arg == "-fp" || arg == "--font-path") { params.font_path = argv[++i]; }
|
||||
else if (arg == "-ocsv" || arg == "--output-csv") { params.output_csv = true; }
|
||||
else if (arg == "-oj" || arg == "--output-json") { params.output_jsn = true; }
|
||||
else if (arg == "-of" || arg == "--output-file") { params.fname_out.emplace_back(argv[++i]); }
|
||||
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
|
||||
else if (arg == "-pc" || arg == "--print-colors") { params.print_colors = true; }
|
||||
else if (arg == "-pp" || arg == "--print-progress") { params.print_progress = true; }
|
||||
@ -144,35 +159,41 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
|
||||
fprintf(stderr, "usage: %s [options] file0.wav file1.wav ...\n", argv[0]);
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "options:\n");
|
||||
fprintf(stderr, " -h, --help [default] show this help message and exit\n");
|
||||
fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads);
|
||||
fprintf(stderr, " -p N, --processors N [%-7d] number of processors to use during computation\n", params.n_processors);
|
||||
fprintf(stderr, " -ot N, --offset-t N [%-7d] time offset in milliseconds\n", params.offset_t_ms);
|
||||
fprintf(stderr, " -on N, --offset-n N [%-7d] segment index offset\n", params.offset_n);
|
||||
fprintf(stderr, " -d N, --duration N [%-7d] duration of audio to process in milliseconds\n", params.duration_ms);
|
||||
fprintf(stderr, " -mc N, --max-context N [%-7d] maximum number of text context tokens to store\n", params.max_context);
|
||||
fprintf(stderr, " -ml N, --max-len N [%-7d] maximum segment length in characters\n", params.max_len);
|
||||
fprintf(stderr, " -bo N, --best-of N [%-7d] number of best candidates to keep\n", params.best_of);
|
||||
fprintf(stderr, " -bs N, --beam-size N [%-7d] beam size for beam search\n", params.beam_size);
|
||||
fprintf(stderr, " -wt N, --word-thold N [%-7.2f] word timestamp probability threshold\n", params.word_thold);
|
||||
fprintf(stderr, " -et N, --entropy-thold N [%-7.2f] entropy threshold for decoder fail\n", params.entropy_thold);
|
||||
fprintf(stderr, " -lpt N, --logprob-thold N [%-7.2f] log probability threshold for decoder fail\n", params.logprob_thold);
|
||||
fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
|
||||
fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
|
||||
fprintf(stderr, " -di, --diarize [%-7s] stereo audio diarization\n", params.diarize ? "true" : "false");
|
||||
fprintf(stderr, " -otxt, --output-txt [%-7s] output result in a text file\n", params.output_txt ? "true" : "false");
|
||||
fprintf(stderr, " -ovtt, --output-vtt [%-7s] output result in a vtt file\n", params.output_vtt ? "true" : "false");
|
||||
fprintf(stderr, " -osrt, --output-srt [%-7s] output result in a srt file\n", params.output_srt ? "true" : "false");
|
||||
fprintf(stderr, " -owts, --output-words [%-7s] output script for generating karaoke video\n", params.output_wts ? "true" : "false");
|
||||
fprintf(stderr, " -ocsv, --output-csv [%-7s] output result in a CSV file\n", params.output_csv ? "true" : "false");
|
||||
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
|
||||
fprintf(stderr, " -pc, --print-colors [%-7s] print colors\n", params.print_colors ? "true" : "false");
|
||||
fprintf(stderr, " -pp, --print-progress [%-7s] print progress\n", params.print_progress ? "true" : "false");
|
||||
fprintf(stderr, " -nt, --no-timestamps [%-7s] do not print timestamps\n", params.no_timestamps ? "false" : "true");
|
||||
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language ('auto' for auto-detect)\n", params.language.c_str());
|
||||
fprintf(stderr, " --prompt PROMPT [%-7s] initial prompt\n", params.prompt.c_str());
|
||||
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
|
||||
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] input WAV file path\n", "");
|
||||
fprintf(stderr, " -h, --help [default] show this help message and exit\n");
|
||||
fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads);
|
||||
fprintf(stderr, " -p N, --processors N [%-7d] number of processors to use during computation\n", params.n_processors);
|
||||
fprintf(stderr, " -ot N, --offset-t N [%-7d] time offset in milliseconds\n", params.offset_t_ms);
|
||||
fprintf(stderr, " -on N, --offset-n N [%-7d] segment index offset\n", params.offset_n);
|
||||
fprintf(stderr, " -d N, --duration N [%-7d] duration of audio to process in milliseconds\n", params.duration_ms);
|
||||
fprintf(stderr, " -mc N, --max-context N [%-7d] maximum number of text context tokens to store\n", params.max_context);
|
||||
fprintf(stderr, " -ml N, --max-len N [%-7d] maximum segment length in characters\n", params.max_len);
|
||||
fprintf(stderr, " -sow, --split-on-word [%-7s] split on word rather than on token\n", params.split_on_word ? "true" : "false");
|
||||
fprintf(stderr, " -bo N, --best-of N [%-7d] number of best candidates to keep\n", params.best_of);
|
||||
fprintf(stderr, " -bs N, --beam-size N [%-7d] beam size for beam search\n", params.beam_size);
|
||||
fprintf(stderr, " -wt N, --word-thold N [%-7.2f] word timestamp probability threshold\n", params.word_thold);
|
||||
fprintf(stderr, " -et N, --entropy-thold N [%-7.2f] entropy threshold for decoder fail\n", params.entropy_thold);
|
||||
fprintf(stderr, " -lpt N, --logprob-thold N [%-7.2f] log probability threshold for decoder fail\n", params.logprob_thold);
|
||||
fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
|
||||
fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
|
||||
fprintf(stderr, " -di, --diarize [%-7s] stereo audio diarization\n", params.diarize ? "true" : "false");
|
||||
fprintf(stderr, " -nf, --no-fallback [%-7s] do not use temperature fallback while decoding\n", params.no_fallback ? "true" : "false");
|
||||
fprintf(stderr, " -otxt, --output-txt [%-7s] output result in a text file\n", params.output_txt ? "true" : "false");
|
||||
fprintf(stderr, " -ovtt, --output-vtt [%-7s] output result in a vtt file\n", params.output_vtt ? "true" : "false");
|
||||
fprintf(stderr, " -osrt, --output-srt [%-7s] output result in a srt file\n", params.output_srt ? "true" : "false");
|
||||
fprintf(stderr, " -olrc, --output-lrc [%-7s] output result in a lrc file\n", params.output_lrc ? "true" : "false");
|
||||
fprintf(stderr, " -owts, --output-words [%-7s] output script for generating karaoke video\n", params.output_wts ? "true" : "false");
|
||||
fprintf(stderr, " -fp, --font-path [%-7s] path to a monospace font for karaoke video\n", params.font_path.c_str());
|
||||
fprintf(stderr, " -ocsv, --output-csv [%-7s] output result in a CSV file\n", params.output_csv ? "true" : "false");
|
||||
fprintf(stderr, " -oj, --output-json [%-7s] output result in a JSON file\n", params.output_jsn ? "true" : "false");
|
||||
fprintf(stderr, " -of FNAME, --output-file FNAME [%-7s] output file path (without file extension)\n", "");
|
||||
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
|
||||
fprintf(stderr, " -pc, --print-colors [%-7s] print colors\n", params.print_colors ? "true" : "false");
|
||||
fprintf(stderr, " -pp, --print-progress [%-7s] print progress\n", params.print_progress ? "true" : "false");
|
||||
fprintf(stderr, " -nt, --no-timestamps [%-7s] do not print timestamps\n", params.no_timestamps ? "false" : "true");
|
||||
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language ('auto' for auto-detect)\n", params.language.c_str());
|
||||
fprintf(stderr, " --prompt PROMPT [%-7s] initial prompt\n", params.prompt.c_str());
|
||||
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
|
||||
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] input WAV file path\n", "");
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
@ -182,7 +203,7 @@ struct whisper_print_user_data {
|
||||
const std::vector<std::vector<float>> * pcmf32s;
|
||||
};
|
||||
|
||||
void whisper_print_segment_callback(struct whisper_context * ctx, int n_new, void * user_data) {
|
||||
void whisper_print_segment_callback(struct whisper_context * ctx, struct whisper_state * /*state*/, int n_new, void * user_data) {
|
||||
const auto & params = *((whisper_print_user_data *) user_data)->params;
|
||||
const auto & pcmf32s = *((whisper_print_user_data *) user_data)->pcmf32s;
|
||||
|
||||
@ -190,8 +211,8 @@ void whisper_print_segment_callback(struct whisper_context * ctx, int n_new, voi
|
||||
|
||||
std::string speaker = "";
|
||||
|
||||
int64_t t0;
|
||||
int64_t t1;
|
||||
int64_t t0 = 0;
|
||||
int64_t t1 = 0;
|
||||
|
||||
// print the last n_new segments
|
||||
const int s0 = n_segments - n_new;
|
||||
@ -341,31 +362,192 @@ bool output_csv(struct whisper_context * ctx, const char * fname) {
|
||||
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
|
||||
|
||||
const int n_segments = whisper_full_n_segments(ctx);
|
||||
fout << "start,end,text\n";
|
||||
for (int i = 0; i < n_segments; ++i) {
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
if (text[0] == ' ') {
|
||||
text = text + sizeof(char); //whisper_full_get_segment_text() returns a string with leading space, point to the next character.
|
||||
}
|
||||
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
|
||||
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
|
||||
|
||||
//need to multiply times returned from whisper_full_get_segment_t{0,1}() by 10 to get milliseconds.
|
||||
fout << 10 * t0 << ", " << 10 * t1 << ", \"" << text << "\"\n";
|
||||
fout << 10 * t0 << "," << 10 * t1 << ",\"" << text << "\"\n";
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
char *escape_double_quotes(const char *str) {
|
||||
if (str == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
size_t escaped_length = strlen(str) + 1;
|
||||
|
||||
for (size_t i = 0; str[i] != '\0'; i++) {
|
||||
if (str[i] == '"') {
|
||||
escaped_length++;
|
||||
}
|
||||
}
|
||||
|
||||
char *escaped = (char *)calloc(escaped_length, 1); // pre-zeroed
|
||||
if (escaped == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
size_t pos = 0;
|
||||
for (size_t i = 0; str[i] != '\0'; i++) {
|
||||
if (str[i] == '"') {
|
||||
escaped[pos++] = '\\';
|
||||
escaped[pos++] = '"';
|
||||
} else {
|
||||
escaped[pos++] = str[i];
|
||||
}
|
||||
}
|
||||
|
||||
// no need to set zero due to calloc() being used prior
|
||||
|
||||
return escaped;
|
||||
}
|
||||
|
||||
bool output_json(struct whisper_context * ctx, const char * fname, const whisper_params & params) {
|
||||
std::ofstream fout(fname);
|
||||
int indent = 0;
|
||||
|
||||
auto doindent = [&]() {
|
||||
for (int i = 0; i < indent; i++) fout << "\t";
|
||||
};
|
||||
|
||||
auto start_arr = [&](const char *name) {
|
||||
doindent();
|
||||
fout << "\"" << name << "\": [\n";
|
||||
indent++;
|
||||
};
|
||||
|
||||
auto end_arr = [&](bool end = false) {
|
||||
indent--;
|
||||
doindent();
|
||||
fout << (end ? "]\n" : "},\n");
|
||||
};
|
||||
|
||||
auto start_obj = [&](const char *name = nullptr) {
|
||||
doindent();
|
||||
if (name) {
|
||||
fout << "\"" << name << "\": {\n";
|
||||
} else {
|
||||
fout << "{\n";
|
||||
}
|
||||
indent++;
|
||||
};
|
||||
|
||||
auto end_obj = [&](bool end = false) {
|
||||
indent--;
|
||||
doindent();
|
||||
fout << (end ? "}\n" : "},\n");
|
||||
};
|
||||
|
||||
auto start_value = [&](const char *name) {
|
||||
doindent();
|
||||
fout << "\"" << name << "\": ";
|
||||
};
|
||||
|
||||
auto value_s = [&](const char *name, const char *val, bool end = false) {
|
||||
start_value(name);
|
||||
char * val_escaped = escape_double_quotes(val);
|
||||
fout << "\"" << val_escaped << (end ? "\"\n" : "\",\n");
|
||||
free(val_escaped);
|
||||
};
|
||||
|
||||
auto end_value = [&](bool end = false) {
|
||||
fout << (end ? "\n" : ",\n");
|
||||
};
|
||||
|
||||
auto value_i = [&](const char *name, const int64_t val, bool end = false) {
|
||||
start_value(name);
|
||||
fout << val;
|
||||
end_value(end);
|
||||
};
|
||||
|
||||
auto value_b = [&](const char *name, const bool val, bool end = false) {
|
||||
start_value(name);
|
||||
fout << (val ? "true" : "false");
|
||||
end_value(end);
|
||||
};
|
||||
|
||||
if (!fout.is_open()) {
|
||||
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname);
|
||||
return false;
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
|
||||
start_obj();
|
||||
value_s("systeminfo", whisper_print_system_info());
|
||||
start_obj("model");
|
||||
value_s("type", whisper_model_type_readable(ctx));
|
||||
value_b("multilingual", whisper_is_multilingual(ctx));
|
||||
value_i("vocab", whisper_model_n_vocab(ctx));
|
||||
start_obj("audio");
|
||||
value_i("ctx", whisper_model_n_audio_ctx(ctx));
|
||||
value_i("state", whisper_model_n_audio_state(ctx));
|
||||
value_i("head", whisper_model_n_audio_head(ctx));
|
||||
value_i("layer", whisper_model_n_audio_layer(ctx), true);
|
||||
end_obj();
|
||||
start_obj("text");
|
||||
value_i("ctx", whisper_model_n_text_ctx(ctx));
|
||||
value_i("state", whisper_model_n_text_state(ctx));
|
||||
value_i("head", whisper_model_n_text_head(ctx));
|
||||
value_i("layer", whisper_model_n_text_layer(ctx), true);
|
||||
end_obj();
|
||||
value_i("mels", whisper_model_n_mels(ctx));
|
||||
value_i("f16", whisper_model_f16(ctx), true);
|
||||
end_obj();
|
||||
start_obj("params");
|
||||
value_s("model", params.model.c_str());
|
||||
value_s("language", params.language.c_str());
|
||||
value_b("translate", params.translate, true);
|
||||
end_obj();
|
||||
start_obj("result");
|
||||
value_s("language", whisper_lang_str(whisper_full_lang_id(ctx)), true);
|
||||
end_obj();
|
||||
start_arr("transcription");
|
||||
|
||||
const int n_segments = whisper_full_n_segments(ctx);
|
||||
for (int i = 0; i < n_segments; ++i) {
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
|
||||
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
|
||||
|
||||
start_obj();
|
||||
start_obj("timestamps");
|
||||
value_s("from", to_timestamp(t0, true).c_str());
|
||||
value_s("to", to_timestamp(t1, true).c_str(), true);
|
||||
end_obj();
|
||||
start_obj("offsets");
|
||||
value_i("from", t0 * 10);
|
||||
value_i("to", t1 * 10, true);
|
||||
end_obj();
|
||||
value_s("text", text, true);
|
||||
end_obj(i == (n_segments - 1));
|
||||
}
|
||||
|
||||
end_arr(true);
|
||||
end_obj(true);
|
||||
return true;
|
||||
}
|
||||
|
||||
// karaoke video generation
|
||||
// outputs a bash script that uses ffmpeg to generate a video with the subtitles
|
||||
// TODO: font parameter adjustments
|
||||
bool output_wts(struct whisper_context * ctx, const char * fname, const char * fname_inp, const whisper_params & /*params*/, float t_sec) {
|
||||
bool output_wts(struct whisper_context * ctx, const char * fname, const char * fname_inp, const whisper_params & params, float t_sec) {
|
||||
std::ofstream fout(fname);
|
||||
|
||||
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
|
||||
|
||||
// TODO: become parameter
|
||||
static const char * font = "/System/Library/Fonts/Supplemental/Courier New Bold.ttf";
|
||||
static const char * font = params.font_path.c_str();
|
||||
|
||||
std::ifstream fin(font);
|
||||
if (!fin.is_open()) {
|
||||
fprintf(stderr, "%s: font not found at '%s', please specify a monospace font with -fp\n", __func__, font);
|
||||
return false;
|
||||
}
|
||||
|
||||
fout << "#!/bin/bash" << "\n";
|
||||
fout << "\n";
|
||||
@ -468,6 +650,39 @@ bool output_wts(struct whisper_context * ctx, const char * fname, const char * f
|
||||
return true;
|
||||
}
|
||||
|
||||
bool output_lrc(struct whisper_context * ctx, const char * fname) {
|
||||
|
||||
std::ofstream fout(fname);
|
||||
if (!fout.is_open()) {
|
||||
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname);
|
||||
return false;
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
|
||||
|
||||
fout << "[by:whisper.cpp]\n";
|
||||
|
||||
const int n_segments = whisper_full_n_segments(ctx);
|
||||
for (int i = 0; i < n_segments; ++i) {
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
const int64_t t = whisper_full_get_segment_t0(ctx, i);
|
||||
|
||||
int64_t msec = t * 10;
|
||||
int64_t min = msec / (1000 * 60);
|
||||
msec = msec - min * (1000 * 60);
|
||||
int64_t sec = msec / 1000;
|
||||
msec = msec - sec * 1000;
|
||||
|
||||
char buf[16];
|
||||
snprintf(buf, sizeof(buf), "%02d:%02d.%02d", (int) min, (int) sec, (int) ( msec / 10));
|
||||
std::string timestamp_lrc = std::string(buf);
|
||||
|
||||
fout << '[' << timestamp_lrc << ']' << text << "\n";
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
whisper_params params;
|
||||
|
||||
@ -496,108 +711,16 @@ int main(int argc, char ** argv) {
|
||||
return 3;
|
||||
}
|
||||
|
||||
// initial prompt
|
||||
std::vector<whisper_token> prompt_tokens;
|
||||
|
||||
if (!params.prompt.empty()) {
|
||||
prompt_tokens.resize(1024);
|
||||
prompt_tokens.resize(whisper_tokenize(ctx, params.prompt.c_str(), prompt_tokens.data(), prompt_tokens.size()));
|
||||
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "initial prompt: '%s'\n", params.prompt.c_str());
|
||||
fprintf(stderr, "initial tokens: [ ");
|
||||
for (int i = 0; i < (int) prompt_tokens.size(); ++i) {
|
||||
fprintf(stderr, "%d ", prompt_tokens[i]);
|
||||
}
|
||||
fprintf(stderr, "]\n");
|
||||
}
|
||||
|
||||
for (int f = 0; f < (int) params.fname_inp.size(); ++f) {
|
||||
const auto fname_inp = params.fname_inp[f];
|
||||
const auto fname_out = f < (int) params.fname_out.size() && !params.fname_out[f].empty() ? params.fname_out[f] : params.fname_inp[f];
|
||||
|
||||
std::vector<float> pcmf32; // mono-channel F32 PCM
|
||||
std::vector<float> pcmf32; // mono-channel F32 PCM
|
||||
std::vector<std::vector<float>> pcmf32s; // stereo-channel F32 PCM
|
||||
|
||||
// WAV input
|
||||
{
|
||||
drwav wav;
|
||||
std::vector<uint8_t> wav_data; // used for pipe input from stdin
|
||||
|
||||
if (fname_inp == "-") {
|
||||
{
|
||||
uint8_t buf[1024];
|
||||
while (true)
|
||||
{
|
||||
const size_t n = fread(buf, 1, sizeof(buf), stdin);
|
||||
if (n == 0) {
|
||||
break;
|
||||
}
|
||||
wav_data.insert(wav_data.end(), buf, buf + n);
|
||||
}
|
||||
}
|
||||
|
||||
if (drwav_init_memory(&wav, wav_data.data(), wav_data.size(), nullptr) == false) {
|
||||
fprintf(stderr, "error: failed to open WAV file from stdin\n");
|
||||
return 4;
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: read %zu bytes from stdin\n", __func__, wav_data.size());
|
||||
}
|
||||
else if (drwav_init_file(&wav, fname_inp.c_str(), nullptr) == false) {
|
||||
fprintf(stderr, "error: failed to open '%s' as WAV file\n", fname_inp.c_str());
|
||||
return 5;
|
||||
}
|
||||
|
||||
if (wav.channels != 1 && wav.channels != 2) {
|
||||
fprintf(stderr, "%s: WAV file '%s' must be mono or stereo\n", argv[0], fname_inp.c_str());
|
||||
return 6;
|
||||
}
|
||||
|
||||
if (params.diarize && wav.channels != 2 && params.no_timestamps == false) {
|
||||
fprintf(stderr, "%s: WAV file '%s' must be stereo for diarization and timestamps have to be enabled\n", argv[0], fname_inp.c_str());
|
||||
return 6;
|
||||
}
|
||||
|
||||
if (wav.sampleRate != WHISPER_SAMPLE_RATE) {
|
||||
fprintf(stderr, "%s: WAV file '%s' must be %i kHz\n", argv[0], fname_inp.c_str(), WHISPER_SAMPLE_RATE/1000);
|
||||
return 8;
|
||||
}
|
||||
|
||||
if (wav.bitsPerSample != 16) {
|
||||
fprintf(stderr, "%s: WAV file '%s' must be 16-bit\n", argv[0], fname_inp.c_str());
|
||||
return 9;
|
||||
}
|
||||
|
||||
const uint64_t n = wav_data.empty() ? wav.totalPCMFrameCount : wav_data.size()/(wav.channels*wav.bitsPerSample/8);
|
||||
|
||||
std::vector<int16_t> pcm16;
|
||||
pcm16.resize(n*wav.channels);
|
||||
drwav_read_pcm_frames_s16(&wav, n, pcm16.data());
|
||||
drwav_uninit(&wav);
|
||||
|
||||
// convert to mono, float
|
||||
pcmf32.resize(n);
|
||||
if (wav.channels == 1) {
|
||||
for (uint64_t i = 0; i < n; i++) {
|
||||
pcmf32[i] = float(pcm16[i])/32768.0f;
|
||||
}
|
||||
} else {
|
||||
for (uint64_t i = 0; i < n; i++) {
|
||||
pcmf32[i] = float(pcm16[2*i] + pcm16[2*i + 1])/65536.0f;
|
||||
}
|
||||
}
|
||||
|
||||
if (params.diarize) {
|
||||
// convert to stereo, float
|
||||
pcmf32s.resize(2);
|
||||
|
||||
pcmf32s[0].resize(n);
|
||||
pcmf32s[1].resize(n);
|
||||
for (uint64_t i = 0; i < n; i++) {
|
||||
pcmf32s[0][i] = float(pcm16[2*i])/32768.0f;
|
||||
pcmf32s[1][i] = float(pcm16[2*i + 1])/32768.0f;
|
||||
}
|
||||
}
|
||||
if (!::read_wav(fname_inp, pcmf32, pcmf32s, params.diarize)) {
|
||||
fprintf(stderr, "error: failed to read WAV file '%s'\n", fname_inp.c_str());
|
||||
continue;
|
||||
}
|
||||
|
||||
// print system information
|
||||
@ -646,18 +769,19 @@ int main(int argc, char ** argv) {
|
||||
|
||||
wparams.token_timestamps = params.output_wts || params.max_len > 0;
|
||||
wparams.thold_pt = params.word_thold;
|
||||
wparams.entropy_thold = params.entropy_thold;
|
||||
wparams.logprob_thold = params.logprob_thold;
|
||||
wparams.max_len = params.output_wts && params.max_len == 0 ? 60 : params.max_len;
|
||||
wparams.split_on_word = params.split_on_word;
|
||||
|
||||
wparams.speed_up = params.speed_up;
|
||||
|
||||
wparams.initial_prompt = params.prompt.c_str();
|
||||
|
||||
wparams.greedy.best_of = params.best_of;
|
||||
wparams.beam_search.beam_size = params.beam_size;
|
||||
wparams.temperature_inc = -1;
|
||||
|
||||
wparams.prompt_tokens = prompt_tokens.empty() ? nullptr : prompt_tokens.data();
|
||||
wparams.prompt_n_tokens = prompt_tokens.empty() ? 0 : prompt_tokens.size();
|
||||
wparams.temperature_inc = params.no_fallback ? 0.0f : wparams.temperature_inc;
|
||||
wparams.entropy_thold = params.entropy_thold;
|
||||
wparams.logprob_thold = params.logprob_thold;
|
||||
|
||||
whisper_print_user_data user_data = { ¶ms, &pcmf32s };
|
||||
|
||||
@ -673,7 +797,7 @@ int main(int argc, char ** argv) {
|
||||
{
|
||||
static bool is_aborted = false; // NOTE: this should be atomic to avoid data race
|
||||
|
||||
wparams.encoder_begin_callback = [](struct whisper_context * /*ctx*/, void * user_data) {
|
||||
wparams.encoder_begin_callback = [](struct whisper_context * /*ctx*/, struct whisper_state * /*state*/, void * user_data) {
|
||||
bool is_aborted = *(bool*)user_data;
|
||||
return !is_aborted;
|
||||
};
|
||||
@ -692,34 +816,45 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// output to text file
|
||||
if (params.output_txt) {
|
||||
const auto fname_txt = fname_inp + ".txt";
|
||||
const auto fname_txt = fname_out + ".txt";
|
||||
output_txt(ctx, fname_txt.c_str());
|
||||
}
|
||||
|
||||
// output to VTT file
|
||||
if (params.output_vtt) {
|
||||
const auto fname_vtt = fname_inp + ".vtt";
|
||||
const auto fname_vtt = fname_out + ".vtt";
|
||||
output_vtt(ctx, fname_vtt.c_str());
|
||||
}
|
||||
|
||||
// output to SRT file
|
||||
if (params.output_srt) {
|
||||
const auto fname_srt = fname_inp + ".srt";
|
||||
const auto fname_srt = fname_out + ".srt";
|
||||
output_srt(ctx, fname_srt.c_str(), params);
|
||||
}
|
||||
|
||||
// output to WTS file
|
||||
if (params.output_wts) {
|
||||
const auto fname_wts = fname_inp + ".wts";
|
||||
const auto fname_wts = fname_out + ".wts";
|
||||
output_wts(ctx, fname_wts.c_str(), fname_inp.c_str(), params, float(pcmf32.size() + 1000)/WHISPER_SAMPLE_RATE);
|
||||
}
|
||||
|
||||
// output to CSV file
|
||||
// output to CSV file
|
||||
if (params.output_csv) {
|
||||
const auto fname_csv = fname_inp + ".csv";
|
||||
const auto fname_csv = fname_out + ".csv";
|
||||
output_csv(ctx, fname_csv.c_str());
|
||||
}
|
||||
|
||||
// output to JSON file
|
||||
if (params.output_jsn) {
|
||||
const auto fname_jsn = fname_out + ".json";
|
||||
output_json(ctx, fname_jsn.c_str(), params);
|
||||
}
|
||||
|
||||
// output to LRC file
|
||||
if (params.output_lrc) {
|
||||
const auto fname_lrc = fname_out + ".lrc";
|
||||
output_lrc(ctx, fname_lrc.c_str());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -5,6 +5,5 @@ if (WHISPER_SUPPORT_SDL2)
|
||||
|
||||
include(DefaultTargetOptions)
|
||||
|
||||
target_include_directories(${TARGET} PRIVATE ${SDL2_INCLUDE_DIRS})
|
||||
target_link_libraries(${TARGET} PRIVATE whisper ${SDL2_LIBRARIES} ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_link_libraries(${TARGET} PRIVATE common common-sdl whisper ${CMAKE_THREAD_LIBS_INIT})
|
||||
endif ()
|
||||
|
@ -3,19 +3,16 @@
|
||||
// A very quick-n-dirty implementation serving mainly as a proof of concept.
|
||||
//
|
||||
|
||||
#include "common.h"
|
||||
#include "common-sdl.h"
|
||||
#include "whisper.h"
|
||||
|
||||
#include <SDL.h>
|
||||
#include <SDL_audio.h>
|
||||
|
||||
#include <atomic>
|
||||
#include <cassert>
|
||||
#include <cstdio>
|
||||
#include <string>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
#include <fstream>
|
||||
#include <mutex>
|
||||
|
||||
// 500 -> 00:05.000
|
||||
// 6000 -> 01:00.000
|
||||
@ -46,6 +43,7 @@ struct whisper_params {
|
||||
|
||||
bool speed_up = false;
|
||||
bool translate = false;
|
||||
bool no_fallback = false;
|
||||
bool print_special = false;
|
||||
bool no_context = true;
|
||||
bool no_timestamps = false;
|
||||
@ -76,6 +74,7 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
else if (arg == "-fth" || arg == "--freq-thold") { params.freq_thold = std::stof(argv[++i]); }
|
||||
else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; }
|
||||
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
|
||||
else if (arg == "-nf" || arg == "--no-fallback") { params.no_fallback = true; }
|
||||
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
|
||||
else if (arg == "-kc" || arg == "--keep-context") { params.no_context = false; }
|
||||
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
|
||||
@ -97,325 +96,26 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "options:\n");
|
||||
fprintf(stderr, " -h, --help [default] show this help message and exit\n");
|
||||
fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads);
|
||||
fprintf(stderr, " --step N [%-7d] audio step size in milliseconds\n", params.step_ms);
|
||||
fprintf(stderr, " --length N [%-7d] audio length in milliseconds\n", params.length_ms);
|
||||
fprintf(stderr, " --keep N [%-7d] audio to keep from previous step in ms\n", params.keep_ms);
|
||||
fprintf(stderr, " -c ID, --capture ID [%-7d] capture device ID\n", params.capture_id);
|
||||
fprintf(stderr, " -mt N, --max-tokens N [%-7d] maximum number of tokens per audio chunk\n", params.max_tokens);
|
||||
fprintf(stderr, " -ac N, --audio-ctx N [%-7d] audio context size (0 - all)\n", params.audio_ctx);
|
||||
fprintf(stderr, " -vth N, --vad-thold N [%-7.2f] voice activity detection threshold\n", params.vad_thold);
|
||||
fprintf(stderr, " -fth N, --freq-thold N [%-7.2f] high-pass frequency cutoff\n", params.freq_thold);
|
||||
fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
|
||||
fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
|
||||
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
|
||||
fprintf(stderr, " -kc, --keep-context [%-7s] keep context between audio chunks\n", params.no_context ? "false" : "true");
|
||||
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str());
|
||||
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
|
||||
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] text output file name\n", params.fname_out.c_str());
|
||||
fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads);
|
||||
fprintf(stderr, " --step N [%-7d] audio step size in milliseconds\n", params.step_ms);
|
||||
fprintf(stderr, " --length N [%-7d] audio length in milliseconds\n", params.length_ms);
|
||||
fprintf(stderr, " --keep N [%-7d] audio to keep from previous step in ms\n", params.keep_ms);
|
||||
fprintf(stderr, " -c ID, --capture ID [%-7d] capture device ID\n", params.capture_id);
|
||||
fprintf(stderr, " -mt N, --max-tokens N [%-7d] maximum number of tokens per audio chunk\n", params.max_tokens);
|
||||
fprintf(stderr, " -ac N, --audio-ctx N [%-7d] audio context size (0 - all)\n", params.audio_ctx);
|
||||
fprintf(stderr, " -vth N, --vad-thold N [%-7.2f] voice activity detection threshold\n", params.vad_thold);
|
||||
fprintf(stderr, " -fth N, --freq-thold N [%-7.2f] high-pass frequency cutoff\n", params.freq_thold);
|
||||
fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
|
||||
fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
|
||||
fprintf(stderr, " -nf, --no-fallback [%-7s] do not use temperature fallback while decoding\n", params.no_fallback ? "true" : "false");
|
||||
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
|
||||
fprintf(stderr, " -kc, --keep-context [%-7s] keep context between audio chunks\n", params.no_context ? "false" : "true");
|
||||
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str());
|
||||
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
|
||||
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] text output file name\n", params.fname_out.c_str());
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
//
|
||||
// SDL Audio capture
|
||||
//
|
||||
|
||||
class audio_async {
|
||||
public:
|
||||
audio_async(int len_ms);
|
||||
~audio_async();
|
||||
|
||||
bool init(int capture_id, int sample_rate);
|
||||
|
||||
// start capturing audio via the provided SDL callback
|
||||
// keep last len_ms seconds of audio in a circular buffer
|
||||
bool resume();
|
||||
bool pause();
|
||||
bool clear();
|
||||
|
||||
// callback to be called by SDL
|
||||
void callback(uint8_t * stream, int len);
|
||||
|
||||
// get audio data from the circular buffer
|
||||
void get(int ms, std::vector<float> & audio);
|
||||
|
||||
private:
|
||||
SDL_AudioDeviceID m_dev_id_in = 0;
|
||||
|
||||
int m_len_ms = 0;
|
||||
int m_sample_rate = 0;
|
||||
|
||||
std::atomic_bool m_running;
|
||||
std::mutex m_mutex;
|
||||
|
||||
std::vector<float> m_audio;
|
||||
std::vector<float> m_audio_new;
|
||||
size_t m_audio_pos = 0;
|
||||
size_t m_audio_len = 0;
|
||||
};
|
||||
|
||||
audio_async::audio_async(int len_ms) {
|
||||
m_len_ms = len_ms;
|
||||
|
||||
m_running = false;
|
||||
}
|
||||
|
||||
audio_async::~audio_async() {
|
||||
if (m_dev_id_in) {
|
||||
SDL_CloseAudioDevice(m_dev_id_in);
|
||||
}
|
||||
}
|
||||
|
||||
bool audio_async::init(int capture_id, int sample_rate) {
|
||||
SDL_LogSetPriority(SDL_LOG_CATEGORY_APPLICATION, SDL_LOG_PRIORITY_INFO);
|
||||
|
||||
if (SDL_Init(SDL_INIT_AUDIO) < 0) {
|
||||
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "Couldn't initialize SDL: %s\n", SDL_GetError());
|
||||
return false;
|
||||
}
|
||||
|
||||
SDL_SetHintWithPriority(SDL_HINT_AUDIO_RESAMPLING_MODE, "medium", SDL_HINT_OVERRIDE);
|
||||
|
||||
{
|
||||
int nDevices = SDL_GetNumAudioDevices(SDL_TRUE);
|
||||
fprintf(stderr, "%s: found %d capture devices:\n", __func__, nDevices);
|
||||
for (int i = 0; i < nDevices; i++) {
|
||||
fprintf(stderr, "%s: - Capture device #%d: '%s'\n", __func__, i, SDL_GetAudioDeviceName(i, SDL_TRUE));
|
||||
}
|
||||
}
|
||||
|
||||
SDL_AudioSpec capture_spec_requested;
|
||||
SDL_AudioSpec capture_spec_obtained;
|
||||
|
||||
SDL_zero(capture_spec_requested);
|
||||
SDL_zero(capture_spec_obtained);
|
||||
|
||||
capture_spec_requested.freq = sample_rate;
|
||||
capture_spec_requested.format = AUDIO_F32;
|
||||
capture_spec_requested.channels = 1;
|
||||
capture_spec_requested.samples = 1024;
|
||||
capture_spec_requested.callback = [](void * userdata, uint8_t * stream, int len) {
|
||||
audio_async * audio = (audio_async *) userdata;
|
||||
audio->callback(stream, len);
|
||||
};
|
||||
capture_spec_requested.userdata = this;
|
||||
|
||||
if (capture_id >= 0) {
|
||||
fprintf(stderr, "%s: attempt to open capture device %d : '%s' ...\n", __func__, capture_id, SDL_GetAudioDeviceName(capture_id, SDL_TRUE));
|
||||
m_dev_id_in = SDL_OpenAudioDevice(SDL_GetAudioDeviceName(capture_id, SDL_TRUE), SDL_TRUE, &capture_spec_requested, &capture_spec_obtained, 0);
|
||||
} else {
|
||||
fprintf(stderr, "%s: attempt to open default capture device ...\n", __func__);
|
||||
m_dev_id_in = SDL_OpenAudioDevice(nullptr, SDL_TRUE, &capture_spec_requested, &capture_spec_obtained, 0);
|
||||
}
|
||||
|
||||
if (!m_dev_id_in) {
|
||||
fprintf(stderr, "%s: couldn't open an audio device for capture: %s!\n", __func__, SDL_GetError());
|
||||
m_dev_id_in = 0;
|
||||
|
||||
return false;
|
||||
} else {
|
||||
fprintf(stderr, "%s: obtained spec for input device (SDL Id = %d):\n", __func__, m_dev_id_in);
|
||||
fprintf(stderr, "%s: - sample rate: %d\n", __func__, capture_spec_obtained.freq);
|
||||
fprintf(stderr, "%s: - format: %d (required: %d)\n", __func__, capture_spec_obtained.format,
|
||||
capture_spec_requested.format);
|
||||
fprintf(stderr, "%s: - channels: %d (required: %d)\n", __func__, capture_spec_obtained.channels,
|
||||
capture_spec_requested.channels);
|
||||
fprintf(stderr, "%s: - samples per frame: %d\n", __func__, capture_spec_obtained.samples);
|
||||
}
|
||||
|
||||
m_sample_rate = capture_spec_obtained.freq;
|
||||
|
||||
m_audio.resize((m_sample_rate*m_len_ms)/1000);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool audio_async::resume() {
|
||||
if (!m_dev_id_in) {
|
||||
fprintf(stderr, "%s: no audio device to resume!\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (m_running) {
|
||||
fprintf(stderr, "%s: already running!\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
SDL_PauseAudioDevice(m_dev_id_in, 0);
|
||||
|
||||
m_running = true;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool audio_async::pause() {
|
||||
if (!m_dev_id_in) {
|
||||
fprintf(stderr, "%s: no audio device to pause!\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!m_running) {
|
||||
fprintf(stderr, "%s: already paused!\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
SDL_PauseAudioDevice(m_dev_id_in, 1);
|
||||
|
||||
m_running = false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool audio_async::clear() {
|
||||
if (!m_dev_id_in) {
|
||||
fprintf(stderr, "%s: no audio device to clear!\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!m_running) {
|
||||
fprintf(stderr, "%s: not running!\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(m_mutex);
|
||||
|
||||
m_audio_pos = 0;
|
||||
m_audio_len = 0;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// callback to be called by SDL
|
||||
void audio_async::callback(uint8_t * stream, int len) {
|
||||
if (!m_running) {
|
||||
return;
|
||||
}
|
||||
|
||||
const size_t n_samples = len / sizeof(float);
|
||||
|
||||
m_audio_new.resize(n_samples);
|
||||
memcpy(m_audio_new.data(), stream, n_samples * sizeof(float));
|
||||
|
||||
//fprintf(stderr, "%s: %zu samples, pos %zu, len %zu\n", __func__, n_samples, m_audio_pos, m_audio_len);
|
||||
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(m_mutex);
|
||||
|
||||
if (m_audio_pos + n_samples > m_audio.size()) {
|
||||
const size_t n0 = m_audio.size() - m_audio_pos;
|
||||
|
||||
memcpy(&m_audio[m_audio_pos], stream, n0 * sizeof(float));
|
||||
memcpy(&m_audio[0], &stream[n0], (n_samples - n0) * sizeof(float));
|
||||
|
||||
m_audio_pos = (m_audio_pos + n_samples) % m_audio.size();
|
||||
m_audio_len = m_audio.size();
|
||||
} else {
|
||||
memcpy(&m_audio[m_audio_pos], stream, n_samples * sizeof(float));
|
||||
|
||||
m_audio_pos = (m_audio_pos + n_samples) % m_audio.size();
|
||||
m_audio_len = std::min(m_audio_len + n_samples, m_audio.size());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void audio_async::get(int ms, std::vector<float> & result) {
|
||||
if (!m_dev_id_in) {
|
||||
fprintf(stderr, "%s: no audio device to get audio from!\n", __func__);
|
||||
return;
|
||||
}
|
||||
|
||||
if (!m_running) {
|
||||
fprintf(stderr, "%s: not running!\n", __func__);
|
||||
return;
|
||||
}
|
||||
|
||||
result.clear();
|
||||
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(m_mutex);
|
||||
|
||||
if (ms <= 0) {
|
||||
ms = m_len_ms;
|
||||
}
|
||||
|
||||
size_t n_samples = (m_sample_rate * ms) / 1000;
|
||||
if (n_samples > m_audio_len) {
|
||||
n_samples = m_audio_len;
|
||||
}
|
||||
|
||||
result.resize(n_samples);
|
||||
|
||||
int s0 = m_audio_pos - n_samples;
|
||||
if (s0 < 0) {
|
||||
s0 += m_audio.size();
|
||||
}
|
||||
|
||||
if (s0 + n_samples > m_audio.size()) {
|
||||
const size_t n0 = m_audio.size() - s0;
|
||||
|
||||
memcpy(result.data(), &m_audio[s0], n0 * sizeof(float));
|
||||
memcpy(&result[n0], &m_audio[0], (n_samples - n0) * sizeof(float));
|
||||
} else {
|
||||
memcpy(result.data(), &m_audio[s0], n_samples * sizeof(float));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////
|
||||
|
||||
void high_pass_filter(std::vector<float> & data, float cutoff, float sample_rate) {
|
||||
const float rc = 1.0f / (2.0f * M_PI * cutoff);
|
||||
const float dt = 1.0f / sample_rate;
|
||||
const float alpha = dt / (rc + dt);
|
||||
|
||||
float y = data[0];
|
||||
|
||||
for (size_t i = 1; i < data.size(); i++) {
|
||||
y = alpha * (y + data[i] - data[i - 1]);
|
||||
data[i] = y;
|
||||
}
|
||||
}
|
||||
|
||||
bool vad_simple(std::vector<float> & pcmf32, int sample_rate, int last_ms, float vad_thold, float freq_thold, bool verbose) {
|
||||
const int n_samples = pcmf32.size();
|
||||
const int n_samples_last = (sample_rate * last_ms) / 1000;
|
||||
|
||||
if (n_samples_last >= n_samples) {
|
||||
// not enough samples - assume no speech
|
||||
return false;
|
||||
}
|
||||
|
||||
if (freq_thold > 0.0f) {
|
||||
high_pass_filter(pcmf32, freq_thold, sample_rate);
|
||||
}
|
||||
|
||||
float energy_all = 0.0f;
|
||||
float energy_last = 0.0f;
|
||||
|
||||
for (int i = 0; i < n_samples; i++) {
|
||||
energy_all += fabsf(pcmf32[i]);
|
||||
|
||||
if (i >= n_samples - n_samples_last) {
|
||||
energy_last += fabsf(pcmf32[i]);
|
||||
}
|
||||
}
|
||||
|
||||
energy_all /= n_samples;
|
||||
energy_last /= n_samples_last;
|
||||
|
||||
if (verbose) {
|
||||
fprintf(stderr, "%s: energy_all: %f, energy_last: %f, vad_thold: %f, freq_thold: %f\n", __func__, energy_all, energy_last, vad_thold, freq_thold);
|
||||
}
|
||||
|
||||
if (energy_last > vad_thold*energy_all) {
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
whisper_params params;
|
||||
|
||||
@ -423,20 +123,21 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
params.keep_ms = std::min(params.keep_ms, params.step_ms); // cannot be more than step_ms
|
||||
params.keep_ms = std::min(params.keep_ms, params.step_ms);
|
||||
params.length_ms = std::max(params.length_ms, params.step_ms);
|
||||
|
||||
const int n_samples_step = (params.step_ms *1e-3)*WHISPER_SAMPLE_RATE;
|
||||
const int n_samples_len = (params.length_ms*1e-3)*WHISPER_SAMPLE_RATE;
|
||||
const int n_samples_keep = (params.keep_ms *1e-3)*WHISPER_SAMPLE_RATE;
|
||||
const int n_samples_30s = (30000 *1e-3)*WHISPER_SAMPLE_RATE;
|
||||
const int n_samples_step = (1e-3*params.step_ms )*WHISPER_SAMPLE_RATE;
|
||||
const int n_samples_len = (1e-3*params.length_ms)*WHISPER_SAMPLE_RATE;
|
||||
const int n_samples_keep = (1e-3*params.keep_ms )*WHISPER_SAMPLE_RATE;
|
||||
const int n_samples_30s = (1e-3*30000.0 )*WHISPER_SAMPLE_RATE;
|
||||
|
||||
const bool use_vad = n_samples_step <= 0; // sliding window mode uses VAD
|
||||
|
||||
const int n_new_line = !use_vad ? params.length_ms / params.step_ms - 1 : 1; // number of steps to print new line
|
||||
const int n_new_line = !use_vad ? std::max(1, params.length_ms / params.step_ms - 1) : 1; // number of steps to print new line
|
||||
|
||||
params.no_timestamps = !use_vad;
|
||||
params.no_context = use_vad;
|
||||
params.max_tokens = 0;
|
||||
params.no_timestamps = !use_vad;
|
||||
params.no_context |= use_vad;
|
||||
params.max_tokens = 0;
|
||||
|
||||
// init audio
|
||||
|
||||
@ -450,7 +151,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// whisper init
|
||||
|
||||
if (whisper_lang_id(params.language.c_str()) == -1) {
|
||||
if (params.language != "auto" && whisper_lang_id(params.language.c_str()) == -1){
|
||||
fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str());
|
||||
whisper_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
@ -486,7 +187,7 @@ int main(int argc, char ** argv) {
|
||||
params.no_timestamps ? 0 : 1);
|
||||
|
||||
if (!use_vad) {
|
||||
fprintf(stderr, "%s: n_new_line = %d\n", __func__, n_new_line);
|
||||
fprintf(stderr, "%s: n_new_line = %d, no_context = %d\n", __func__, n_new_line, params.no_context);
|
||||
} else {
|
||||
fprintf(stderr, "%s: using VAD, will transcribe on speech activity\n", __func__);
|
||||
}
|
||||
@ -516,23 +217,7 @@ int main(int argc, char ** argv) {
|
||||
// main audio loop
|
||||
while (is_running) {
|
||||
// handle Ctrl + C
|
||||
{
|
||||
SDL_Event event;
|
||||
while (SDL_PollEvent(&event)) {
|
||||
switch (event.type) {
|
||||
case SDL_QUIT:
|
||||
{
|
||||
is_running = false;
|
||||
} break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (!is_running) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
is_running = sdl_poll_events();
|
||||
|
||||
if (!is_running) {
|
||||
break;
|
||||
@ -555,7 +240,7 @@ int main(int argc, char ** argv) {
|
||||
break;
|
||||
}
|
||||
|
||||
SDL_Delay(1);
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(1));
|
||||
}
|
||||
|
||||
const int n_samples_new = pcmf32_new.size();
|
||||
@ -586,7 +271,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
audio.get(2000, pcmf32_new);
|
||||
|
||||
if (vad_simple(pcmf32_new, WHISPER_SAMPLE_RATE, 1000, params.vad_thold, params.freq_thold, false)) {
|
||||
if (::vad_simple(pcmf32_new, WHISPER_SAMPLE_RATE, 1000, params.vad_thold, params.freq_thold, false)) {
|
||||
audio.get(params.length_ms, pcmf32);
|
||||
} else {
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(100));
|
||||
@ -606,7 +291,6 @@ int main(int argc, char ** argv) {
|
||||
wparams.print_realtime = false;
|
||||
wparams.print_timestamps = !params.no_timestamps;
|
||||
wparams.translate = params.translate;
|
||||
wparams.no_context = true;
|
||||
wparams.single_segment = !use_vad;
|
||||
wparams.max_tokens = params.max_tokens;
|
||||
wparams.language = params.language.c_str();
|
||||
@ -616,7 +300,8 @@ int main(int argc, char ** argv) {
|
||||
wparams.speed_up = params.speed_up;
|
||||
|
||||
// disable temperature fallback
|
||||
wparams.temperature_inc = -1.0f;
|
||||
//wparams.temperature_inc = -1.0f;
|
||||
wparams.temperature_inc = params.no_fallback ? 0.0f : wparams.temperature_inc;
|
||||
|
||||
wparams.prompt_tokens = params.no_context ? nullptr : prompt_tokens.data();
|
||||
wparams.prompt_n_tokens = params.no_context ? 0 : prompt_tokens.size();
|
||||
|
1
examples/talk-llama/.gitignore
vendored
Normal file
1
examples/talk-llama/.gitignore
vendored
Normal file
@ -0,0 +1 @@
|
||||
audio.mp3
|
16
examples/talk-llama/CMakeLists.txt
Normal file
16
examples/talk-llama/CMakeLists.txt
Normal file
@ -0,0 +1,16 @@
|
||||
if (WHISPER_SUPPORT_SDL2)
|
||||
# talk-llama
|
||||
set(TARGET talk-llama)
|
||||
#add_executable(${TARGET} talk-llama.cpp llama.cpp)
|
||||
#target_include_directories(${TARGET} PRIVATE ${SDL2_INCLUDE_DIRS})
|
||||
#target_link_libraries(${TARGET} PRIVATE common common-sdl whisper ${SDL2_LIBRARIES} ${CMAKE_THREAD_LIBS_INIT})
|
||||
|
||||
# TODO: this is temporary
|
||||
# need to export ggml symbols for MSVC, but too lazy ..
|
||||
add_executable(${TARGET} talk-llama.cpp llama.cpp ../common.cpp ../common-sdl.cpp ../../ggml.c ../../whisper.cpp)
|
||||
|
||||
target_include_directories(${TARGET} PRIVATE ${SDL2_INCLUDE_DIRS} ../../)
|
||||
target_link_libraries(${TARGET} PRIVATE ${SDL2_LIBRARIES} ${CMAKE_THREAD_LIBS_INIT})
|
||||
|
||||
include(DefaultTargetOptions)
|
||||
endif ()
|
36
examples/talk-llama/README.md
Normal file
36
examples/talk-llama/README.md
Normal file
@ -0,0 +1,36 @@
|
||||
# talk-llama
|
||||
|
||||
Talk with an LLaMA AI in your terminal
|
||||
|
||||
[Demo Talk](https://user-images.githubusercontent.com/1991296/228024237-848f998c-c334-46a6-bef8-3271590da83b.mp4)
|
||||
|
||||
## Building
|
||||
|
||||
The `talk-llama` tool depends on SDL2 library to capture audio from the microphone. You can build it like this:
|
||||
|
||||
```bash
|
||||
# Install SDL2 on Linux
|
||||
sudo apt-get install libsdl2-dev
|
||||
|
||||
# Install SDL2 on Mac OS
|
||||
brew install sdl2
|
||||
|
||||
# Build the "talk-llama" executable
|
||||
make talk-llama
|
||||
|
||||
# Run it
|
||||
./talk-llama -mw ./models/ggml-small.en.bin -ml ../llama.cpp/models/13B/ggml-model-q4_0.bin -p "Georgi" -t 8
|
||||
```
|
||||
|
||||
- The `-mw` argument specifies the Whisper model that you would like to use. Recommended `base` or `small` for real-time experience
|
||||
- The `-ml` argument specifies the LLaMA model that you would like to use. Read the instructions in https://github.com/ggerganov/llama.cpp for information about how to obtain a `ggml` compatible LLaMA model
|
||||
|
||||
## TTS
|
||||
|
||||
For best experience, this example needs a TTS tool to convert the generated text responses to voice.
|
||||
You can use any TTS engine that you would like - simply edit the [speak.sh](speak.sh) script to your needs.
|
||||
By default, it is configured to use MacOS's `say`, but you can use whatever you wish.
|
||||
|
||||
## Discussion
|
||||
|
||||
If you have any feedback, please let "us" know in the following discussion: https://github.com/ggerganov/whisper.cpp/discussions/672?converting=1
|
23
examples/talk-llama/eleven-labs.py
Normal file
23
examples/talk-llama/eleven-labs.py
Normal file
@ -0,0 +1,23 @@
|
||||
import sys
|
||||
import importlib.util
|
||||
|
||||
api_key = "" #Write your https://beta.elevenlabs.io api key here
|
||||
if not api_key:
|
||||
print("To use elevenlabs you have to register to https://beta.elevenlabs.io and add your elevenlabs api key to examples/talk-llama/eleven-labs.py")
|
||||
sys.exit()
|
||||
|
||||
if importlib.util.find_spec("elevenlabs") is None:
|
||||
print("elevenlabs library is not installed, you can install it to your enviroment using 'pip install elevenlabs'")
|
||||
sys.exit()
|
||||
|
||||
from elevenlabs import ElevenLabs
|
||||
eleven = ElevenLabs(api_key)
|
||||
|
||||
# Get a Voice object, by name or UUID
|
||||
voice = eleven.voices["Arnold"] #Possible Voices: Adam Antoni Arnold Bella Domi Elli Josh
|
||||
|
||||
# Generate the TTS
|
||||
audio = voice.generate(str(sys.argv[2:]))
|
||||
|
||||
# Save the TTS to a file
|
||||
audio.save("audio")
|
1929
examples/talk-llama/llama.cpp
Normal file
1929
examples/talk-llama/llama.cpp
Normal file
File diff suppressed because it is too large
Load Diff
173
examples/talk-llama/llama.h
Normal file
173
examples/talk-llama/llama.h
Normal file
@ -0,0 +1,173 @@
|
||||
#ifndef LLAMA_H
|
||||
#define LLAMA_H
|
||||
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
|
||||
#ifdef LLAMA_SHARED
|
||||
# if defined(_WIN32) && !defined(__MINGW32__)
|
||||
# ifdef LLAMA_BUILD
|
||||
# define LLAMA_API __declspec(dllexport)
|
||||
# else
|
||||
# define LLAMA_API __declspec(dllimport)
|
||||
# endif
|
||||
# else
|
||||
# define LLAMA_API __attribute__ ((visibility ("default")))
|
||||
# endif
|
||||
#else
|
||||
# define LLAMA_API
|
||||
#endif
|
||||
|
||||
#define LLAMA_FILE_VERSION 1
|
||||
#define LLAMA_FILE_MAGIC 0x67676a74 // 'ggjt' in hex
|
||||
#define LLAMA_FILE_MAGIC_UNVERSIONED 0x67676d6c // pre-versioned files
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
//
|
||||
// C interface
|
||||
//
|
||||
// TODO: show sample usage
|
||||
//
|
||||
|
||||
struct llama_context;
|
||||
|
||||
typedef int llama_token;
|
||||
|
||||
typedef struct llama_token_data {
|
||||
llama_token id; // token id
|
||||
|
||||
float p; // probability of the token
|
||||
float plog; // log probability of the token
|
||||
|
||||
} llama_token_data;
|
||||
|
||||
typedef void (*llama_progress_callback)(float progress, void *ctx);
|
||||
|
||||
struct llama_context_params {
|
||||
int n_ctx; // text context
|
||||
int n_parts; // -1 for default
|
||||
int seed; // RNG seed, 0 for random
|
||||
|
||||
bool f16_kv; // use fp16 for KV cache
|
||||
bool logits_all; // the llama_eval() call computes all logits, not just the last one
|
||||
bool vocab_only; // only load the vocabulary, no weights
|
||||
bool use_mmap; // use mmap if possible
|
||||
bool use_mlock; // force system to keep model in RAM
|
||||
bool embedding; // embedding mode only
|
||||
|
||||
// called with a progress value between 0 and 1, pass NULL to disable
|
||||
llama_progress_callback progress_callback;
|
||||
// context pointer passed to the progress callback
|
||||
void * progress_callback_user_data;
|
||||
};
|
||||
|
||||
LLAMA_API struct llama_context_params llama_context_default_params();
|
||||
|
||||
LLAMA_API bool llama_mmap_supported();
|
||||
LLAMA_API bool llama_mlock_supported();
|
||||
|
||||
// Various functions for loading a ggml llama model.
|
||||
// Allocate (almost) all memory needed for the model.
|
||||
// Return NULL on failure
|
||||
LLAMA_API struct llama_context * llama_init_from_file(
|
||||
const char * path_model,
|
||||
struct llama_context_params params);
|
||||
|
||||
// Frees all allocated memory
|
||||
LLAMA_API void llama_free(struct llama_context * ctx);
|
||||
|
||||
// TODO: not great API - very likely to change
|
||||
// Returns 0 on success
|
||||
LLAMA_API int llama_model_quantize(
|
||||
const char * fname_inp,
|
||||
const char * fname_out,
|
||||
int itype);
|
||||
|
||||
// Returns the KV cache that will contain the context for the
|
||||
// ongoing prediction with the model.
|
||||
LLAMA_API const uint8_t * llama_get_kv_cache(struct llama_context * ctx);
|
||||
|
||||
// Returns the size of the KV cache
|
||||
LLAMA_API size_t llama_get_kv_cache_size(struct llama_context * ctx);
|
||||
|
||||
// Returns the number of tokens in the KV cache
|
||||
LLAMA_API int llama_get_kv_cache_token_count(struct llama_context * ctx);
|
||||
|
||||
// Sets the KV cache containing the current context for the model
|
||||
LLAMA_API void llama_set_kv_cache(
|
||||
struct llama_context * ctx,
|
||||
const uint8_t * kv_cache,
|
||||
size_t n_size,
|
||||
int n_token_count);
|
||||
|
||||
// Run the llama inference to obtain the logits and probabilities for the next token.
|
||||
// tokens + n_tokens is the provided batch of new tokens to process
|
||||
// n_past is the number of tokens to use from previous eval calls
|
||||
// Returns 0 on success
|
||||
LLAMA_API int llama_eval(
|
||||
struct llama_context * ctx,
|
||||
const llama_token * tokens,
|
||||
int n_tokens,
|
||||
int n_past,
|
||||
int n_threads);
|
||||
|
||||
// Convert the provided text into tokens.
|
||||
// The tokens pointer must be large enough to hold the resulting tokens.
|
||||
// Returns the number of tokens on success, no more than n_max_tokens
|
||||
// Returns a negative number on failure - the number of tokens that would have been returned
|
||||
// TODO: not sure if correct
|
||||
LLAMA_API int llama_tokenize(
|
||||
struct llama_context * ctx,
|
||||
const char * text,
|
||||
llama_token * tokens,
|
||||
int n_max_tokens,
|
||||
bool add_bos);
|
||||
|
||||
LLAMA_API int llama_n_vocab(struct llama_context * ctx);
|
||||
LLAMA_API int llama_n_ctx (struct llama_context * ctx);
|
||||
LLAMA_API int llama_n_embd (struct llama_context * ctx);
|
||||
|
||||
// Token logits obtained from the last call to llama_eval()
|
||||
// The logits for the last token are stored in the last row
|
||||
// Can be mutated in order to change the probabilities of the next token
|
||||
// Rows: n_tokens
|
||||
// Cols: n_vocab
|
||||
LLAMA_API float * llama_get_logits(struct llama_context * ctx);
|
||||
|
||||
// Get the embeddings for the input
|
||||
// shape: [n_embd] (1-dimensional)
|
||||
LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
|
||||
|
||||
// Token Id -> String. Uses the vocabulary in the provided context
|
||||
LLAMA_API const char * llama_token_to_str(struct llama_context * ctx, llama_token token);
|
||||
|
||||
// Special tokens
|
||||
LLAMA_API llama_token llama_token_bos();
|
||||
LLAMA_API llama_token llama_token_eos();
|
||||
|
||||
// TODO: improve the last_n_tokens interface ?
|
||||
LLAMA_API llama_token llama_sample_top_p_top_k(
|
||||
struct llama_context * ctx,
|
||||
const llama_token * last_n_tokens_data,
|
||||
int last_n_tokens_size,
|
||||
int top_k,
|
||||
float top_p,
|
||||
float temp,
|
||||
float repeat_penalty);
|
||||
|
||||
// Performance information
|
||||
LLAMA_API void llama_print_timings(struct llama_context * ctx);
|
||||
LLAMA_API void llama_reset_timings(struct llama_context * ctx);
|
||||
|
||||
// Print system information
|
||||
LLAMA_API const char * llama_print_system_info(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif // LLAMA_H
|
12
examples/talk-llama/llama_internal.h
Normal file
12
examples/talk-llama/llama_internal.h
Normal file
@ -0,0 +1,12 @@
|
||||
// Internal header to be included by llama.cpp and tests/benchmarks only.
|
||||
|
||||
#ifndef LLAMA_INTERNAL_H
|
||||
#define LLAMA_INTERNAL_H
|
||||
|
||||
#include <vector>
|
||||
#include <string>
|
||||
struct ggml_tensor;
|
||||
|
||||
std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx);
|
||||
|
||||
#endif // LLAMA_INTERNAL_H
|
383
examples/talk-llama/llama_util.h
Executable file
383
examples/talk-llama/llama_util.h
Executable file
@ -0,0 +1,383 @@
|
||||
// Internal header to be included only by llama.cpp.
|
||||
// Contains wrappers around OS interfaces.
|
||||
|
||||
#ifndef LLAMA_UTIL_H
|
||||
#define LLAMA_UTIL_H
|
||||
|
||||
#include <cstdio>
|
||||
#include <cstdint>
|
||||
#include <cerrno>
|
||||
#include <cstring>
|
||||
#include <cstdarg>
|
||||
#include <cstdlib>
|
||||
#include <climits>
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#ifdef __has_include
|
||||
#if __has_include(<unistd.h>)
|
||||
#include <unistd.h>
|
||||
#if defined(_POSIX_MAPPED_FILES)
|
||||
#include <sys/mman.h>
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(_WIN32)
|
||||
#define WIN32_LEAN_AND_MEAN
|
||||
#define NOMINMAX
|
||||
#include <windows.h>
|
||||
#include <io.h>
|
||||
#include <stdio.h> // for _fseeki64
|
||||
#endif
|
||||
|
||||
#define LLAMA_ASSERT(x) \
|
||||
do { \
|
||||
if (!(x)) { \
|
||||
fprintf(stderr, "LLAMA_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
|
||||
abort(); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#ifdef __GNUC__
|
||||
__attribute__((format(printf, 1, 2)))
|
||||
#endif
|
||||
static std::string format(const char * fmt, ...) {
|
||||
va_list ap, ap2;
|
||||
va_start(ap, fmt);
|
||||
va_copy(ap2, ap);
|
||||
int size = vsnprintf(NULL, 0, fmt, ap);
|
||||
LLAMA_ASSERT(size >= 0 && size < INT_MAX);
|
||||
std::vector<char> buf(size + 1);
|
||||
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
|
||||
LLAMA_ASSERT(size2 == size);
|
||||
va_end(ap2);
|
||||
va_end(ap);
|
||||
return std::string(buf.data(), size);
|
||||
};
|
||||
|
||||
struct llama_file {
|
||||
// use FILE * so we don't have to re-open the file to mmap
|
||||
FILE * fp;
|
||||
size_t size;
|
||||
|
||||
llama_file(const char * fname, const char * mode) {
|
||||
fp = std::fopen(fname, mode);
|
||||
if (fp == NULL) {
|
||||
throw format("failed to open %s: %s", fname, std::strerror(errno));
|
||||
}
|
||||
seek(0, SEEK_END);
|
||||
size = tell();
|
||||
seek(0, SEEK_SET);
|
||||
}
|
||||
|
||||
size_t tell() const {
|
||||
#ifdef _WIN32
|
||||
__int64 ret = _ftelli64(fp);
|
||||
#else
|
||||
long ret = std::ftell(fp);
|
||||
#endif
|
||||
LLAMA_ASSERT(ret != -1); // this really shouldn't fail
|
||||
return (size_t) ret;
|
||||
}
|
||||
|
||||
void seek(size_t offset, int whence) {
|
||||
#ifdef _WIN32
|
||||
int ret = _fseeki64(fp, (__int64) offset, whence);
|
||||
#else
|
||||
int ret = std::fseek(fp, (long) offset, whence);
|
||||
#endif
|
||||
LLAMA_ASSERT(ret == 0); // same
|
||||
}
|
||||
|
||||
void read_raw(void * ptr, size_t size) {
|
||||
if (size == 0) {
|
||||
return;
|
||||
}
|
||||
errno = 0;
|
||||
std::size_t ret = std::fread(ptr, size, 1, fp);
|
||||
if (ferror(fp)) {
|
||||
throw format("read error: %s", strerror(errno));
|
||||
}
|
||||
if (ret != 1) {
|
||||
throw std::string("unexpectedly reached end of file");
|
||||
}
|
||||
}
|
||||
|
||||
std::uint32_t read_u32() {
|
||||
std::uint32_t ret;
|
||||
read_raw(&ret, sizeof(ret));
|
||||
return ret;
|
||||
}
|
||||
|
||||
std::string read_string(std::uint32_t len) {
|
||||
std::vector<char> chars(len);
|
||||
read_raw(chars.data(), len);
|
||||
return std::string(chars.data(), len);
|
||||
}
|
||||
|
||||
void write_raw(const void * ptr, size_t size) {
|
||||
if (size == 0) {
|
||||
return;
|
||||
}
|
||||
errno = 0;
|
||||
size_t ret = std::fwrite(ptr, size, 1, fp);
|
||||
if (ret != 1) {
|
||||
throw format("write error: %s", strerror(errno));
|
||||
}
|
||||
}
|
||||
|
||||
void write_u32(std::uint32_t val) {
|
||||
write_raw(&val, sizeof(val));
|
||||
}
|
||||
|
||||
~llama_file() {
|
||||
if (fp) {
|
||||
std::fclose(fp);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
#if defined(_WIN32)
|
||||
static std::string llama_format_win_err(DWORD err) {
|
||||
LPSTR buf;
|
||||
size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
|
||||
NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
|
||||
if (!size) {
|
||||
return "FormatMessageA failed";
|
||||
}
|
||||
std::string ret(buf, size);
|
||||
LocalFree(buf);
|
||||
return ret;
|
||||
}
|
||||
#endif
|
||||
|
||||
struct llama_mmap {
|
||||
void * addr;
|
||||
size_t size;
|
||||
|
||||
llama_mmap(const llama_mmap &) = delete;
|
||||
|
||||
#ifdef _POSIX_MAPPED_FILES
|
||||
static constexpr bool SUPPORTED = true;
|
||||
|
||||
llama_mmap(struct llama_file * file) {
|
||||
size = file->size;
|
||||
int fd = fileno(file->fp);
|
||||
int flags = MAP_SHARED;
|
||||
#ifdef __linux__
|
||||
flags |= MAP_POPULATE;
|
||||
#endif
|
||||
addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
|
||||
close(fd);
|
||||
if (addr == MAP_FAILED) {
|
||||
throw format("mmap failed: %s", strerror(errno));
|
||||
}
|
||||
|
||||
// Advise the kernel to preload the mapped memory
|
||||
if (madvise(addr, file->size, MADV_WILLNEED)) {
|
||||
fprintf(stderr, "warning: madvise(.., MADV_WILLNEED) failed: %s\n",
|
||||
strerror(errno));
|
||||
}
|
||||
}
|
||||
|
||||
~llama_mmap() {
|
||||
munmap(addr, size);
|
||||
}
|
||||
#elif defined(_WIN32)
|
||||
static constexpr bool SUPPORTED = true;
|
||||
|
||||
llama_mmap(struct llama_file * file) {
|
||||
size = file->size;
|
||||
|
||||
HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
|
||||
|
||||
HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
|
||||
DWORD error = GetLastError();
|
||||
CloseHandle(hFile);
|
||||
|
||||
if (hMapping == NULL) {
|
||||
throw format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str());
|
||||
}
|
||||
|
||||
addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
|
||||
error = GetLastError();
|
||||
CloseHandle(hMapping);
|
||||
|
||||
if (addr == NULL) {
|
||||
throw format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str());
|
||||
}
|
||||
|
||||
// Advise the kernel to preload the mapped memory
|
||||
WIN32_MEMORY_RANGE_ENTRY range;
|
||||
range.VirtualAddress = addr;
|
||||
range.NumberOfBytes = (SIZE_T)size;
|
||||
if (!PrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
|
||||
fprintf(stderr, "warning: PrefetchVirtualMemory failed: %s\n",
|
||||
llama_format_win_err(GetLastError()).c_str());
|
||||
}
|
||||
}
|
||||
|
||||
~llama_mmap() {
|
||||
if (!UnmapViewOfFile(addr)) {
|
||||
fprintf(stderr, "warning: UnmapViewOfFile failed: %s\n",
|
||||
llama_format_win_err(GetLastError()).c_str());
|
||||
}
|
||||
}
|
||||
#else
|
||||
static constexpr bool SUPPORTED = false;
|
||||
|
||||
llama_mmap(struct llama_file *) {
|
||||
throw std::string("mmap not supported");
|
||||
}
|
||||
#endif
|
||||
};
|
||||
|
||||
// Represents some region of memory being locked using mlock or VirtualLock;
|
||||
// will automatically unlock on destruction.
|
||||
struct llama_mlock {
|
||||
void * addr = NULL;
|
||||
size_t size = 0;
|
||||
bool failed_already = false;
|
||||
|
||||
llama_mlock() {}
|
||||
llama_mlock(const llama_mlock &) = delete;
|
||||
|
||||
~llama_mlock() {
|
||||
if (size) {
|
||||
raw_unlock(addr, size);
|
||||
}
|
||||
}
|
||||
|
||||
void init(void * addr) {
|
||||
LLAMA_ASSERT(this->addr == NULL && this->size == 0);
|
||||
this->addr = addr;
|
||||
}
|
||||
|
||||
void grow_to(size_t target_size) {
|
||||
LLAMA_ASSERT(addr);
|
||||
if (failed_already) {
|
||||
return;
|
||||
}
|
||||
size_t granularity = lock_granularity();
|
||||
target_size = (target_size + granularity - 1) & ~(granularity - 1);
|
||||
if (target_size > size) {
|
||||
if (raw_lock((uint8_t *) addr + size, target_size - size)) {
|
||||
size = target_size;
|
||||
} else {
|
||||
failed_already = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef _POSIX_MEMLOCK_RANGE
|
||||
static constexpr bool SUPPORTED = true;
|
||||
|
||||
size_t lock_granularity() {
|
||||
return (size_t) sysconf(_SC_PAGESIZE);
|
||||
}
|
||||
|
||||
#ifdef __APPLE__
|
||||
#define MLOCK_SUGGESTION \
|
||||
"Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
|
||||
"decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l).\n"
|
||||
#else
|
||||
#define MLOCK_SUGGESTION \
|
||||
"Try increasing RLIMIT_MLOCK ('ulimit -l' as root).\n"
|
||||
#endif
|
||||
|
||||
bool raw_lock(const void * addr, size_t size) {
|
||||
if (!mlock(addr, size)) {
|
||||
return true;
|
||||
} else {
|
||||
fprintf(stderr, "warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n" MLOCK_SUGGESTION,
|
||||
size, this->size, std::strerror(errno));
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
#undef MLOCK_SUGGESTION
|
||||
|
||||
void raw_unlock(void * addr, size_t size) {
|
||||
if (munlock(addr, size)) {
|
||||
fprintf(stderr, "warning: failed to munlock buffer: %s\n", std::strerror(errno));
|
||||
}
|
||||
}
|
||||
#elif defined(_WIN32)
|
||||
static constexpr bool SUPPORTED = true;
|
||||
|
||||
size_t lock_granularity() {
|
||||
SYSTEM_INFO si;
|
||||
GetSystemInfo(&si);
|
||||
return (size_t) si.dwPageSize;
|
||||
}
|
||||
|
||||
bool raw_lock(void * addr, size_t size) {
|
||||
for (int tries = 1; ; tries++) {
|
||||
if (VirtualLock(addr, size)) {
|
||||
return true;
|
||||
}
|
||||
if (tries == 2) {
|
||||
fprintf(stderr, "warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
|
||||
size, this->size, llama_format_win_err(GetLastError()).c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
// It failed but this was only the first try; increase the working
|
||||
// set size and try again.
|
||||
SIZE_T min_ws_size, max_ws_size;
|
||||
if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
|
||||
fprintf(stderr, "warning: GetProcessWorkingSetSize failed: %s\n",
|
||||
llama_format_win_err(GetLastError()).c_str());
|
||||
return false;
|
||||
}
|
||||
// Per MSDN: "The maximum number of pages that a process can lock
|
||||
// is equal to the number of pages in its minimum working set minus
|
||||
// a small overhead."
|
||||
// Hopefully a megabyte is enough overhead:
|
||||
size_t increment = size + 1048576;
|
||||
// The minimum must be <= the maximum, so we need to increase both:
|
||||
min_ws_size += size;
|
||||
max_ws_size += size;
|
||||
if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
|
||||
fprintf(stderr, "warning: SetProcessWorkingSetSize failed: %s\n",
|
||||
llama_format_win_err(GetLastError()).c_str());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void raw_unlock(void * addr, size_t size) {
|
||||
if (!VirtualUnlock(addr, size)) {
|
||||
fprintf(stderr, "warning: failed to VirtualUnlock buffer: %s\n",
|
||||
llama_format_win_err(GetLastError()).c_str());
|
||||
}
|
||||
}
|
||||
#else
|
||||
static constexpr bool SUPPORTED = false;
|
||||
|
||||
void raw_lock(const void * addr, size_t size) {
|
||||
fprintf(stderr, "warning: mlock not supported on this system\n");
|
||||
}
|
||||
|
||||
void raw_unlock(const void * addr, size_t size) {}
|
||||
#endif
|
||||
};
|
||||
|
||||
// Replacement for std::vector<uint8_t> that doesn't require zero-initialization.
|
||||
struct llama_buffer {
|
||||
uint8_t * addr = NULL;
|
||||
size_t size = 0;
|
||||
|
||||
void resize(size_t size) {
|
||||
delete[] addr;
|
||||
addr = new uint8_t[size];
|
||||
this->size = size;
|
||||
}
|
||||
|
||||
~llama_buffer() {
|
||||
delete[] addr;
|
||||
}
|
||||
};
|
||||
#endif
|
23
examples/talk-llama/prompts/talk-alpaca.txt
Normal file
23
examples/talk-llama/prompts/talk-alpaca.txt
Normal file
@ -0,0 +1,23 @@
|
||||
Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
||||
|
||||
### Instruction:
|
||||
|
||||
Write a text transcript of a never ending dialog, where {0} interacts with an AI assistant named {1}.
|
||||
{1} is helpful, kind, honest, friendly, good at writing and never fails to answer {0}’s requests immediately and with details and precision.
|
||||
There are no annotations like (30 seconds passed...) or (to himself), just what {0} and {1} say aloud to each other.
|
||||
The transcript only includes text, it does not include markup like HTML and Markdown.
|
||||
{1} responds with short and concise answers.
|
||||
|
||||
### Response:
|
||||
|
||||
{0}{4} Hello, {1}!
|
||||
{1}{4} Hello {0}! How may I help you today?
|
||||
{0}{4} What time is it?
|
||||
{1}{4} It is {2} o'clock.
|
||||
{0}{4} What year is it?
|
||||
{1}{4} We are in {3}.
|
||||
{0}{4} What is a cat?
|
||||
{1}{4} A cat is a domestic species of small carnivorous mammal. It is the only domesticated species in the family Felidae.
|
||||
{0}{4} Name a color.
|
||||
{1}{4} Blue
|
||||
{0}{4}
|
21
examples/talk-llama/speak.sh
Executable file
21
examples/talk-llama/speak.sh
Executable file
@ -0,0 +1,21 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Usage:
|
||||
# speak.sh <voice_id> <text-to-speak>
|
||||
|
||||
# espeak
|
||||
# Mac OS: brew install espeak
|
||||
# Linux: apt-get install espeak
|
||||
#
|
||||
#espeak -v en-us+m$1 -s 225 -p 50 -a 200 -g 5 -k 5 "$2"
|
||||
|
||||
# for Mac
|
||||
say "$2"
|
||||
|
||||
# Eleven Labs
|
||||
# To use it, install the elevenlabs module from pip (pip install elevenlabs), register to https://beta.elevenlabs.io to get an api key and paste it in /examples/talk-llama/eleven-labs.py
|
||||
#
|
||||
#wd=$(dirname $0)
|
||||
#script=$wd/eleven-labs.py
|
||||
#python3 $script $1 "$2" >/dev/null 2>&1
|
||||
#ffplay -autoexit -nodisp -loglevel quiet -hide_banner -i ./audio.mp3 >/dev/null 2>&1
|
550
examples/talk-llama/talk-llama.cpp
Normal file
550
examples/talk-llama/talk-llama.cpp
Normal file
@ -0,0 +1,550 @@
|
||||
// Talk with AI
|
||||
//
|
||||
|
||||
#include "common.h"
|
||||
#include "common-sdl.h"
|
||||
#include "whisper.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <cassert>
|
||||
#include <cstdio>
|
||||
#include <fstream>
|
||||
#include <regex>
|
||||
#include <string>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
#include <regex>
|
||||
|
||||
std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::string & text, bool add_bos) {
|
||||
// initialize to prompt numer of chars, since n_tokens <= n_prompt_chars
|
||||
std::vector<llama_token> res(text.size() + (int)add_bos);
|
||||
int n = llama_tokenize(ctx, text.c_str(), res.data(), res.size(), add_bos);
|
||||
assert(n >= 0);
|
||||
res.resize(n);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
// command-line parameters
|
||||
struct whisper_params {
|
||||
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
||||
int32_t voice_ms = 10000;
|
||||
int32_t capture_id = -1;
|
||||
int32_t max_tokens = 32;
|
||||
int32_t audio_ctx = 0;
|
||||
|
||||
int32_t n_parts_llama = -1;
|
||||
|
||||
float vad_thold = 0.6f;
|
||||
float freq_thold = 100.0f;
|
||||
|
||||
bool speed_up = false;
|
||||
bool translate = false;
|
||||
bool print_special = false;
|
||||
bool print_energy = false;
|
||||
bool no_timestamps = true;
|
||||
bool verbose_prompt = false;
|
||||
|
||||
std::string person = "Georgi";
|
||||
std::string language = "en";
|
||||
std::string model_wsp = "models/ggml-base.en.bin";
|
||||
std::string model_llama = "models/ggml-llama-7B.bin";
|
||||
std::string speak = "./examples/talk-llama/speak.sh";
|
||||
std::string prompt = "";
|
||||
std::string fname_out;
|
||||
};
|
||||
|
||||
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
|
||||
|
||||
bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
for (int i = 1; i < argc; i++) {
|
||||
std::string arg = argv[i];
|
||||
|
||||
if (arg == "-h" || arg == "--help") {
|
||||
whisper_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
|
||||
else if (arg == "-vms" || arg == "--voice-ms") { params.voice_ms = std::stoi(argv[++i]); }
|
||||
else if (arg == "-c" || arg == "--capture") { params.capture_id = std::stoi(argv[++i]); }
|
||||
else if (arg == "-mt" || arg == "--max-tokens") { params.max_tokens = std::stoi(argv[++i]); }
|
||||
else if (arg == "-ac" || arg == "--audio-ctx") { params.audio_ctx = std::stoi(argv[++i]); }
|
||||
else if (arg == "-vth" || arg == "--vad-thold") { params.vad_thold = std::stof(argv[++i]); }
|
||||
else if (arg == "-fth" || arg == "--freq-thold") { params.freq_thold = std::stof(argv[++i]); }
|
||||
else if (arg == "--n-parts-llama") { params.n_parts_llama = std::stoi(argv[++i]); }
|
||||
else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; }
|
||||
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
|
||||
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
|
||||
else if (arg == "-pe" || arg == "--print-energy") { params.print_energy = true; }
|
||||
else if (arg == "--verbose-prompt") { params.verbose_prompt = true; }
|
||||
else if (arg == "-p" || arg == "--person") { params.person = argv[++i]; }
|
||||
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
|
||||
else if (arg == "-mw" || arg == "--model-whisper") { params.model_wsp = argv[++i]; }
|
||||
else if (arg == "-ml" || arg == "--model-llama") { params.model_llama = argv[++i]; }
|
||||
else if (arg == "-s" || arg == "--speak") { params.speak = argv[++i]; }
|
||||
else if (arg == "--prompt-file") {
|
||||
std::ifstream file(argv[++i]);
|
||||
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
|
||||
if (params.prompt.back() == '\n') {
|
||||
params.prompt.pop_back();
|
||||
}
|
||||
}
|
||||
else if (arg == "-f" || arg == "--file") { params.fname_out = argv[++i]; }
|
||||
else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
whisper_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & params) {
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "options:\n");
|
||||
fprintf(stderr, " -h, --help [default] show this help message and exit\n");
|
||||
fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads);
|
||||
fprintf(stderr, " -vms N, --voice-ms N [%-7d] voice duration in milliseconds\n", params.voice_ms);
|
||||
fprintf(stderr, " -c ID, --capture ID [%-7d] capture device ID\n", params.capture_id);
|
||||
fprintf(stderr, " -mt N, --max-tokens N [%-7d] maximum number of tokens per audio chunk\n", params.max_tokens);
|
||||
fprintf(stderr, " -ac N, --audio-ctx N [%-7d] audio context size (0 - all)\n", params.audio_ctx);
|
||||
fprintf(stderr, " -vth N, --vad-thold N [%-7.2f] voice activity detection threshold\n", params.vad_thold);
|
||||
fprintf(stderr, " -fth N, --freq-thold N [%-7.2f] high-pass frequency cutoff\n", params.freq_thold);
|
||||
fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
|
||||
fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
|
||||
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
|
||||
fprintf(stderr, " -pe, --print-energy [%-7s] print sound energy (for debugging)\n", params.print_energy ? "true" : "false");
|
||||
fprintf(stderr, " -p NAME, --person NAME [%-7s] person name (for prompt selection)\n", params.person.c_str());
|
||||
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str());
|
||||
fprintf(stderr, " -mw FILE, --model-whisper [%-7s] whisper model file\n", params.model_wsp.c_str());
|
||||
fprintf(stderr, " -ml FILE, --model-llama [%-7s] llama model file\n", params.model_llama.c_str());
|
||||
fprintf(stderr, " --n-parts-llama N [%-7d] num parts in llama model file\n", params.n_parts_llama);
|
||||
fprintf(stderr, " -s FILE, --speak TEXT [%-7s] command for TTS\n", params.speak.c_str());
|
||||
fprintf(stderr, " --prompt-file FNAME [%-7s] file with custom prompt to start dialog\n", "");
|
||||
fprintf(stderr, " --verbose-prompt [%-7s] print prompt at start\n", params.verbose_prompt ? "true" : "false");
|
||||
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] text output file name\n", params.fname_out.c_str());
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
std::string transcribe(
|
||||
whisper_context * ctx,
|
||||
const whisper_params & params,
|
||||
const std::vector<float> & pcmf32,
|
||||
const std::string prompt_text,
|
||||
float & prob,
|
||||
int64_t & t_ms) {
|
||||
const auto t_start = std::chrono::high_resolution_clock::now();
|
||||
|
||||
prob = 0.0f;
|
||||
t_ms = 0;
|
||||
|
||||
std::vector<whisper_token> prompt_tokens;
|
||||
|
||||
whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
|
||||
|
||||
prompt_tokens.resize(1024);
|
||||
prompt_tokens.resize(whisper_tokenize(ctx, prompt_text.c_str(), prompt_tokens.data(), prompt_tokens.size()));
|
||||
|
||||
wparams.print_progress = false;
|
||||
wparams.print_special = params.print_special;
|
||||
wparams.print_realtime = false;
|
||||
wparams.print_timestamps = !params.no_timestamps;
|
||||
wparams.translate = params.translate;
|
||||
wparams.no_context = true;
|
||||
wparams.single_segment = true;
|
||||
wparams.max_tokens = params.max_tokens;
|
||||
wparams.language = params.language.c_str();
|
||||
wparams.n_threads = params.n_threads;
|
||||
|
||||
wparams.prompt_tokens = prompt_tokens.empty() ? nullptr : prompt_tokens.data();
|
||||
wparams.prompt_n_tokens = prompt_tokens.empty() ? 0 : prompt_tokens.size();
|
||||
|
||||
wparams.audio_ctx = params.audio_ctx;
|
||||
wparams.speed_up = params.speed_up;
|
||||
|
||||
if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) {
|
||||
return "";
|
||||
}
|
||||
|
||||
int prob_n = 0;
|
||||
std::string result;
|
||||
|
||||
const int n_segments = whisper_full_n_segments(ctx);
|
||||
for (int i = 0; i < n_segments; ++i) {
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
|
||||
result += text;
|
||||
|
||||
const int n_tokens = whisper_full_n_tokens(ctx, i);
|
||||
for (int j = 0; j < n_tokens; ++j) {
|
||||
const auto token = whisper_full_get_token_data(ctx, i, j);
|
||||
|
||||
prob += token.p;
|
||||
++prob_n;
|
||||
}
|
||||
}
|
||||
|
||||
if (prob_n > 0) {
|
||||
prob /= prob_n;
|
||||
}
|
||||
|
||||
const auto t_end = std::chrono::high_resolution_clock::now();
|
||||
t_ms = std::chrono::duration_cast<std::chrono::milliseconds>(t_end - t_start).count();
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
const std::string k_prompt_whisper = R"(A conversation with a person called {1}.)";
|
||||
|
||||
const std::string k_prompt_llama = R"(Text transcript of a never ending dialog, where {0} interacts with an AI assistant named {1}.
|
||||
{1} is helpful, kind, honest, friendly, good at writing and never fails to answer {0}’s requests immediately and with details and precision.
|
||||
There are no annotations like (30 seconds passed...) or (to himself), just what {0} and {1} say aloud to each other.
|
||||
The transcript only includes text, it does not include markup like HTML and Markdown.
|
||||
{1} responds with short and concise answers.
|
||||
|
||||
{0}{4} Hello, {1}!
|
||||
{1}{4} Hello {0}! How may I help you today?
|
||||
{0}{4} What time is it?
|
||||
{1}{4} It is {2} o'clock.
|
||||
{0}{4} What year is it?
|
||||
{1}{4} We are in {3}.
|
||||
{0}{4} What is a cat?
|
||||
{1}{4} A cat is a domestic species of small carnivorous mammal. It is the only domesticated species in the family Felidae.
|
||||
{0}{4} Name a color.
|
||||
{1}{4} Blue
|
||||
{0}{4})";
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
whisper_params params;
|
||||
|
||||
if (whisper_params_parse(argc, argv, params) == false) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (whisper_lang_id(params.language.c_str()) == -1) {
|
||||
fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str());
|
||||
whisper_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
|
||||
// whisper init
|
||||
|
||||
struct whisper_context * ctx_wsp = whisper_init_from_file(params.model_wsp.c_str());
|
||||
|
||||
// llama init
|
||||
|
||||
auto lparams = llama_context_default_params();
|
||||
|
||||
// tune these to your liking
|
||||
lparams.n_ctx = 2048;
|
||||
lparams.seed = 1;
|
||||
lparams.f16_kv = true;
|
||||
lparams.n_parts = params.n_parts_llama;
|
||||
|
||||
struct llama_context * ctx_llama = llama_init_from_file(params.model_llama.c_str(), lparams);
|
||||
|
||||
// print some info about the processing
|
||||
{
|
||||
fprintf(stderr, "\n");
|
||||
|
||||
if (!whisper_is_multilingual(ctx_wsp)) {
|
||||
if (params.language != "en" || params.translate) {
|
||||
params.language = "en";
|
||||
params.translate = false;
|
||||
fprintf(stderr, "%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__);
|
||||
}
|
||||
}
|
||||
fprintf(stderr, "%s: processing, %d threads, lang = %s, task = %s, timestamps = %d ...\n",
|
||||
__func__,
|
||||
params.n_threads,
|
||||
params.language.c_str(),
|
||||
params.translate ? "translate" : "transcribe",
|
||||
params.no_timestamps ? 0 : 1);
|
||||
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
|
||||
// init audio
|
||||
|
||||
audio_async audio(30*1000);
|
||||
if (!audio.init(params.capture_id, WHISPER_SAMPLE_RATE)) {
|
||||
fprintf(stderr, "%s: audio.init() failed!\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
audio.resume();
|
||||
|
||||
int n_iter = 0;
|
||||
|
||||
bool is_running = true;
|
||||
bool force_speak = false;
|
||||
|
||||
float prob0 = 0.0f;
|
||||
|
||||
const std::string chat_symb = ":";
|
||||
const std::string bot_name = "LLaMA";
|
||||
|
||||
std::vector<float> pcmf32_cur;
|
||||
std::vector<float> pcmf32_prompt;
|
||||
|
||||
const std::string prompt_whisper = ::replace(k_prompt_whisper, "{1}", bot_name);
|
||||
|
||||
// construct the initial prompt for LLaMA inference
|
||||
std::string prompt_llama = params.prompt.empty() ? k_prompt_llama : params.prompt;
|
||||
|
||||
// need to have leading ' '
|
||||
prompt_llama.insert(0, 1, ' ');
|
||||
|
||||
prompt_llama = ::replace(prompt_llama, "{0}", params.person);
|
||||
prompt_llama = ::replace(prompt_llama, "{1}", bot_name);
|
||||
|
||||
{
|
||||
// get time string
|
||||
std::string time_str;
|
||||
{
|
||||
time_t t = time(0);
|
||||
struct tm * now = localtime(&t);
|
||||
char buf[128];
|
||||
strftime(buf, sizeof(buf), "%H:%M", now);
|
||||
time_str = buf;
|
||||
}
|
||||
prompt_llama = ::replace(prompt_llama, "{2}", time_str);
|
||||
}
|
||||
|
||||
{
|
||||
// get year string
|
||||
std::string year_str;
|
||||
{
|
||||
time_t t = time(0);
|
||||
struct tm * now = localtime(&t);
|
||||
char buf[128];
|
||||
strftime(buf, sizeof(buf), "%Y", now);
|
||||
year_str = buf;
|
||||
}
|
||||
prompt_llama = ::replace(prompt_llama, "{3}", year_str);
|
||||
}
|
||||
|
||||
prompt_llama = ::replace(prompt_llama, "{4}", chat_symb);
|
||||
|
||||
// evaluate the initial prompt
|
||||
|
||||
auto embd_inp = ::llama_tokenize(ctx_llama, prompt_llama, true);
|
||||
|
||||
printf("\n");
|
||||
printf("%s : initializing - please wait ...\n", __func__);
|
||||
|
||||
if (llama_eval(ctx_llama, embd_inp.data(), embd_inp.size(), 0, params.n_threads)) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (params.verbose_prompt) {
|
||||
fprintf(stdout, "\n");
|
||||
fprintf(stdout, "%s", prompt_llama.c_str());
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
printf("%s : done! start speaking in the microphone\n", __func__);
|
||||
printf("\n");
|
||||
printf("%s%s", params.person.c_str(), chat_symb.c_str());
|
||||
fflush(stdout);
|
||||
|
||||
// clear audio buffer
|
||||
audio.clear();
|
||||
|
||||
// text inference variables
|
||||
const int voice_id = 2;
|
||||
const int n_keep = embd_inp.size();
|
||||
const int n_ctx = llama_n_ctx(ctx_llama);
|
||||
|
||||
int n_past = n_keep;
|
||||
int n_prev = 64; // TODO arg
|
||||
|
||||
std::vector<llama_token> embd;
|
||||
|
||||
// reverse prompts for detecting when it's time to stop speaking
|
||||
std::vector<std::string> antiprompts = {
|
||||
params.person + chat_symb,
|
||||
};
|
||||
|
||||
// main loop
|
||||
while (is_running) {
|
||||
// handle Ctrl + C
|
||||
is_running = sdl_poll_events();
|
||||
|
||||
if (!is_running) {
|
||||
break;
|
||||
}
|
||||
|
||||
// delay
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(100));
|
||||
|
||||
int64_t t_ms = 0;
|
||||
|
||||
{
|
||||
audio.get(2000, pcmf32_cur);
|
||||
|
||||
if (::vad_simple(pcmf32_cur, WHISPER_SAMPLE_RATE, 1250, params.vad_thold, params.freq_thold, params.print_energy) || force_speak) {
|
||||
//fprintf(stdout, "%s: Speech detected! Processing ...\n", __func__);
|
||||
|
||||
audio.get(params.voice_ms, pcmf32_cur);
|
||||
|
||||
std::string text_heard;
|
||||
|
||||
if (!force_speak) {
|
||||
text_heard = ::trim(::transcribe(ctx_wsp, params, pcmf32_cur, prompt_whisper, prob0, t_ms));
|
||||
}
|
||||
|
||||
// remove text between brackets using regex
|
||||
{
|
||||
std::regex re("\\[.*?\\]");
|
||||
text_heard = std::regex_replace(text_heard, re, "");
|
||||
}
|
||||
|
||||
// remove text between brackets using regex
|
||||
{
|
||||
std::regex re("\\(.*?\\)");
|
||||
text_heard = std::regex_replace(text_heard, re, "");
|
||||
}
|
||||
|
||||
// remove all characters, except for letters, numbers, punctuation and ':', '\'', '-', ' '
|
||||
text_heard = std::regex_replace(text_heard, std::regex("[^a-zA-Z0-9\\.,\\?!\\s\\:\\'\\-]"), "");
|
||||
|
||||
// take first line
|
||||
text_heard = text_heard.substr(0, text_heard.find_first_of('\n'));
|
||||
|
||||
// remove leading and trailing whitespace
|
||||
text_heard = std::regex_replace(text_heard, std::regex("^\\s+"), "");
|
||||
text_heard = std::regex_replace(text_heard, std::regex("\\s+$"), "");
|
||||
|
||||
const std::vector<llama_token> tokens = llama_tokenize(ctx_llama, text_heard.c_str(), false);
|
||||
|
||||
if (text_heard.empty() || tokens.empty() || force_speak) {
|
||||
//fprintf(stdout, "%s: Heard nothing, skipping ...\n", __func__);
|
||||
audio.clear();
|
||||
|
||||
continue;
|
||||
}
|
||||
|
||||
force_speak = false;
|
||||
|
||||
text_heard.insert(0, 1, ' ');
|
||||
text_heard += "\n" + bot_name + chat_symb;
|
||||
fprintf(stdout, "%s%s%s", "\033[1m", text_heard.c_str(), "\033[0m");
|
||||
fflush(stdout);
|
||||
|
||||
embd = ::llama_tokenize(ctx_llama, text_heard, false);
|
||||
|
||||
// text inference
|
||||
bool done = false;
|
||||
std::string text_to_speak;
|
||||
while (true) {
|
||||
// predict
|
||||
if (embd.size() > 0) {
|
||||
if (n_past + (int) embd.size() > n_ctx) {
|
||||
n_past = n_keep;
|
||||
|
||||
// insert n_left/2 tokens at the start of embd from last_n_tokens
|
||||
embd.insert(embd.begin(), embd_inp.begin() + embd_inp.size() - n_prev, embd_inp.end());
|
||||
|
||||
//printf("\n---\n");
|
||||
//printf("resetting: '");
|
||||
//for (int i = 0; i < (int) embd.size(); i++) {
|
||||
// printf("%s", llama_token_to_str(ctx_llama, embd[i]));
|
||||
//}
|
||||
//printf("'\n");
|
||||
//printf("\n---\n");
|
||||
}
|
||||
|
||||
if (llama_eval(ctx_llama, embd.data(), embd.size(), n_past, params.n_threads)) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
//printf("n_iter = %d, n_past = %d, n_ctx = %d, n_keep = %d, n_prev = %d, embd.size() = %d\n", n_iter, n_past, n_ctx, n_keep, n_prev, (int) embd.size());
|
||||
|
||||
embd_inp.insert(embd_inp.end(), embd.begin(), embd.end());
|
||||
n_past += embd.size();
|
||||
embd.clear();
|
||||
|
||||
if (done) break;
|
||||
|
||||
{
|
||||
// out of user input, sample next token
|
||||
const float top_k = 5;
|
||||
const float top_p = 0.80f;
|
||||
const float temp = 0.30f;
|
||||
const float repeat_penalty = 1.1764f;
|
||||
|
||||
const int repeat_last_n = 256;
|
||||
|
||||
llama_token id = 0;
|
||||
|
||||
{
|
||||
auto logits = llama_get_logits(ctx_llama);
|
||||
logits[llama_token_eos()] = 0;
|
||||
|
||||
id = llama_sample_top_p_top_k(ctx_llama,
|
||||
embd_inp.data() + std::max(0, n_past - repeat_last_n),
|
||||
repeat_last_n, top_k, top_p, temp, repeat_penalty);
|
||||
}
|
||||
|
||||
if (id != llama_token_eos()) {
|
||||
// add it to the context
|
||||
embd.push_back(id);
|
||||
|
||||
text_to_speak += llama_token_to_str(ctx_llama, id);
|
||||
|
||||
printf("%s", llama_token_to_str(ctx_llama, id));
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
std::string last_output;
|
||||
for (int i = embd_inp.size() - 16; i < (int) embd_inp.size(); i++) {
|
||||
last_output += llama_token_to_str(ctx_llama, embd_inp[i]);
|
||||
}
|
||||
last_output += llama_token_to_str(ctx_llama, embd[0]);
|
||||
|
||||
for (std::string & antiprompt : antiprompts) {
|
||||
if (last_output.find(antiprompt.c_str(), last_output.length() - antiprompt.length(), antiprompt.length()) != std::string::npos) {
|
||||
done = true;
|
||||
text_to_speak = ::replace(text_to_speak, antiprompt, "");
|
||||
fflush(stdout);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
is_running = sdl_poll_events();
|
||||
|
||||
if (!is_running) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
text_to_speak = ::replace(text_to_speak, "\"", "");
|
||||
system((params.speak + " " + std::to_string(voice_id) + " \"" + text_to_speak + "\"").c_str());
|
||||
|
||||
audio.clear();
|
||||
|
||||
++n_iter;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
audio.pause();
|
||||
|
||||
whisper_print_timings(ctx_wsp);
|
||||
whisper_free(ctx_wsp);
|
||||
|
||||
llama_print_timings(ctx_llama);
|
||||
llama_free(ctx_llama);
|
||||
|
||||
return 0;
|
||||
}
|
@ -841,6 +841,7 @@ struct gpt2_context * gpt2_init(const char * path_model) {
|
||||
|
||||
if (!gpt2_model_load(path_model, ctx->model, ctx->vocab)) {
|
||||
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, "gpt-2.bin");
|
||||
delete ctx;
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
|
2
examples/talk/.gitignore
vendored
2
examples/talk/.gitignore
vendored
@ -1 +1 @@
|
||||
eleven-labs.py
|
||||
audio.mp3
|
||||
|
@ -7,7 +7,7 @@ if (WHISPER_SUPPORT_SDL2)
|
||||
|
||||
# TODO: this is temporary
|
||||
# need to export ggml symbols for MSVC, but too lazy ..
|
||||
add_executable(${TARGET} talk.cpp gpt-2.cpp ../../ggml.c ../../whisper.cpp)
|
||||
add_executable(${TARGET} talk.cpp gpt-2.cpp ../common.cpp ../common-sdl.cpp ../../ggml.c ../../whisper.cpp)
|
||||
|
||||
include(DefaultTargetOptions)
|
||||
|
||||
|
@ -31,7 +31,7 @@ To run this, you will need a ggml GPT-2 model: [instructions](https://github.com
|
||||
Alternatively, you can simply download the smallest ggml GPT-2 117M model (240 MB) like this:
|
||||
|
||||
```
|
||||
wget --quiet --show-progress -O models/ggml-gpt-2-117M.bin https://huggingface.co/datasets/ggerganov/ggml/raw/main/ggml-model-gpt-2-117M.bin
|
||||
wget --quiet --show-progress -O models/ggml-gpt-2-117M.bin https://huggingface.co/ggerganov/ggml/raw/main/ggml-model-gpt-2-117M.bin
|
||||
```
|
||||
|
||||
## TTS
|
||||
|
23
examples/talk/eleven-labs.py
Normal file
23
examples/talk/eleven-labs.py
Normal file
@ -0,0 +1,23 @@
|
||||
import sys
|
||||
import importlib.util
|
||||
|
||||
api_key = "" #Write your https://beta.elevenlabs.io api key here
|
||||
if not api_key:
|
||||
print("To use elevenlabs you have to register to https://beta.elevenlabs.io and add your elevenlabs api key to examples/talk/eleven-labs.py")
|
||||
sys.exit()
|
||||
|
||||
if importlib.util.find_spec("elevenlabs") is None:
|
||||
print("elevenlabs library is not installed, you can install it to your enviroment using 'pip install elevenlabs'")
|
||||
sys.exit()
|
||||
|
||||
from elevenlabs import ElevenLabs
|
||||
eleven = ElevenLabs(api_key)
|
||||
|
||||
# Get a Voice object, by name or UUID
|
||||
voice = eleven.voices["Arnold"] #Possible Voices: Adam Antoni Arnold Bella Domi Elli Josh
|
||||
|
||||
# Generate the TTS
|
||||
audio = voice.generate(str(sys.argv[2:]))
|
||||
|
||||
# Save the TTS to a file
|
||||
audio.save("audio")
|
@ -7,9 +7,13 @@
|
||||
# Mac OS: brew install espeak
|
||||
# Linux: apt-get install espeak
|
||||
#
|
||||
espeak -v en-us+m$1 -s 175 -p 50 -a 200 -g 5 -k 5 "$2"
|
||||
#espeak -v en-us+m$1 -s 175 -p 50 -a 200 -g 5 -k 5 "$2"
|
||||
|
||||
# Mac OS "say" command
|
||||
say "$2"
|
||||
|
||||
# Eleven Labs
|
||||
# To use it, install the elevenlabs module from pip (pip install elevenlabs), register to https://beta.elevenlabs.io to get an api key and paste it in /examples/talk/eleven-labs.py
|
||||
#
|
||||
#wd=$(dirname $0)
|
||||
#script=$wd/eleven-labs.py
|
||||
|
@ -1,16 +1,14 @@
|
||||
// Talk with AI
|
||||
//
|
||||
|
||||
#include "common.h"
|
||||
#include "common-sdl.h"
|
||||
#include "whisper.h"
|
||||
#include "gpt-2.h"
|
||||
|
||||
#include <SDL.h>
|
||||
#include <SDL_audio.h>
|
||||
|
||||
#include <cassert>
|
||||
#include <cstdio>
|
||||
#include <fstream>
|
||||
#include <mutex>
|
||||
#include <regex>
|
||||
#include <string>
|
||||
#include <thread>
|
||||
@ -105,320 +103,6 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
//
|
||||
// SDL Audio capture
|
||||
//
|
||||
|
||||
class audio_async {
|
||||
public:
|
||||
audio_async(int len_ms);
|
||||
~audio_async();
|
||||
|
||||
bool init(int capture_id, int sample_rate);
|
||||
|
||||
// start capturing audio via the provided SDL callback
|
||||
// keep last len_ms seconds of audio in a circular buffer
|
||||
bool resume();
|
||||
bool pause();
|
||||
bool clear();
|
||||
|
||||
// callback to be called by SDL
|
||||
void callback(uint8_t * stream, int len);
|
||||
|
||||
// get audio data from the circular buffer
|
||||
void get(int ms, std::vector<float> & audio);
|
||||
|
||||
private:
|
||||
SDL_AudioDeviceID m_dev_id_in = 0;
|
||||
|
||||
int m_len_ms = 0;
|
||||
int m_sample_rate = 0;
|
||||
|
||||
bool m_running = false;
|
||||
std::mutex m_mutex;
|
||||
|
||||
std::vector<float> m_audio;
|
||||
std::vector<float> m_audio_new;
|
||||
size_t m_audio_pos = 0;
|
||||
size_t m_audio_len = 0;
|
||||
};
|
||||
|
||||
audio_async::audio_async(int len_ms) {
|
||||
m_len_ms = len_ms;
|
||||
}
|
||||
|
||||
audio_async::~audio_async() {
|
||||
if (m_dev_id_in) {
|
||||
SDL_CloseAudioDevice(m_dev_id_in);
|
||||
}
|
||||
}
|
||||
|
||||
bool audio_async::init(int capture_id, int sample_rate) {
|
||||
SDL_LogSetPriority(SDL_LOG_CATEGORY_APPLICATION, SDL_LOG_PRIORITY_INFO);
|
||||
|
||||
if (SDL_Init(SDL_INIT_AUDIO) < 0) {
|
||||
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "Couldn't initialize SDL: %s\n", SDL_GetError());
|
||||
return false;
|
||||
}
|
||||
|
||||
SDL_SetHintWithPriority(SDL_HINT_AUDIO_RESAMPLING_MODE, "medium", SDL_HINT_OVERRIDE);
|
||||
|
||||
{
|
||||
int nDevices = SDL_GetNumAudioDevices(SDL_TRUE);
|
||||
fprintf(stderr, "%s: found %d capture devices:\n", __func__, nDevices);
|
||||
for (int i = 0; i < nDevices; i++) {
|
||||
fprintf(stderr, "%s: - Capture device #%d: '%s'\n", __func__, i, SDL_GetAudioDeviceName(i, SDL_TRUE));
|
||||
}
|
||||
}
|
||||
|
||||
SDL_AudioSpec capture_spec_requested;
|
||||
SDL_AudioSpec capture_spec_obtained;
|
||||
|
||||
SDL_zero(capture_spec_requested);
|
||||
SDL_zero(capture_spec_obtained);
|
||||
|
||||
capture_spec_requested.freq = sample_rate;
|
||||
capture_spec_requested.format = AUDIO_F32;
|
||||
capture_spec_requested.channels = 1;
|
||||
capture_spec_requested.samples = 1024;
|
||||
capture_spec_requested.callback = [](void * userdata, uint8_t * stream, int len) {
|
||||
audio_async * audio = (audio_async *) userdata;
|
||||
audio->callback(stream, len);
|
||||
};
|
||||
capture_spec_requested.userdata = this;
|
||||
|
||||
if (capture_id >= 0) {
|
||||
fprintf(stderr, "%s: attempt to open capture device %d : '%s' ...\n", __func__, capture_id, SDL_GetAudioDeviceName(capture_id, SDL_TRUE));
|
||||
m_dev_id_in = SDL_OpenAudioDevice(SDL_GetAudioDeviceName(capture_id, SDL_TRUE), SDL_TRUE, &capture_spec_requested, &capture_spec_obtained, 0);
|
||||
} else {
|
||||
fprintf(stderr, "%s: attempt to open default capture device ...\n", __func__);
|
||||
m_dev_id_in = SDL_OpenAudioDevice(nullptr, SDL_TRUE, &capture_spec_requested, &capture_spec_obtained, 0);
|
||||
}
|
||||
|
||||
if (!m_dev_id_in) {
|
||||
fprintf(stderr, "%s: couldn't open an audio device for capture: %s!\n", __func__, SDL_GetError());
|
||||
m_dev_id_in = 0;
|
||||
|
||||
return false;
|
||||
} else {
|
||||
fprintf(stderr, "%s: obtained spec for input device (SDL Id = %d):\n", __func__, m_dev_id_in);
|
||||
fprintf(stderr, "%s: - sample rate: %d\n", __func__, capture_spec_obtained.freq);
|
||||
fprintf(stderr, "%s: - format: %d (required: %d)\n", __func__, capture_spec_obtained.format,
|
||||
capture_spec_requested.format);
|
||||
fprintf(stderr, "%s: - channels: %d (required: %d)\n", __func__, capture_spec_obtained.channels,
|
||||
capture_spec_requested.channels);
|
||||
fprintf(stderr, "%s: - samples per frame: %d\n", __func__, capture_spec_obtained.samples);
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
m_sample_rate = capture_spec_obtained.freq;
|
||||
|
||||
m_audio.resize((m_sample_rate*m_len_ms)/1000);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool audio_async::resume() {
|
||||
if (!m_dev_id_in) {
|
||||
fprintf(stderr, "%s: no audio device to resume!\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (m_running) {
|
||||
fprintf(stderr, "%s: already running!\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
SDL_PauseAudioDevice(m_dev_id_in, 0);
|
||||
|
||||
m_running = true;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool audio_async::pause() {
|
||||
if (!m_dev_id_in) {
|
||||
fprintf(stderr, "%s: no audio device to pause!\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!m_running) {
|
||||
fprintf(stderr, "%s: already paused!\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
SDL_PauseAudioDevice(m_dev_id_in, 1);
|
||||
|
||||
m_running = false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool audio_async::clear() {
|
||||
if (!m_dev_id_in) {
|
||||
fprintf(stderr, "%s: no audio device to clear!\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!m_running) {
|
||||
fprintf(stderr, "%s: not running!\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(m_mutex);
|
||||
|
||||
m_audio_pos = 0;
|
||||
m_audio_len = 0;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// callback to be called by SDL
|
||||
void audio_async::callback(uint8_t * stream, int len) {
|
||||
if (!m_running) {
|
||||
return;
|
||||
}
|
||||
|
||||
const size_t n_samples = len / sizeof(float);
|
||||
|
||||
m_audio_new.resize(n_samples);
|
||||
memcpy(m_audio_new.data(), stream, n_samples * sizeof(float));
|
||||
|
||||
//fprintf(stderr, "%s: %zu samples, pos %zu, len %zu\n", __func__, n_samples, m_audio_pos, m_audio_len);
|
||||
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(m_mutex);
|
||||
|
||||
if (m_audio_pos + n_samples > m_audio.size()) {
|
||||
const size_t n0 = m_audio.size() - m_audio_pos;
|
||||
|
||||
memcpy(&m_audio[m_audio_pos], stream, n0 * sizeof(float));
|
||||
memcpy(&m_audio[0], &stream[n0], (n_samples - n0) * sizeof(float));
|
||||
|
||||
m_audio_pos = (m_audio_pos + n_samples) % m_audio.size();
|
||||
m_audio_len = m_audio.size();
|
||||
} else {
|
||||
memcpy(&m_audio[m_audio_pos], stream, n_samples * sizeof(float));
|
||||
|
||||
m_audio_pos = (m_audio_pos + n_samples) % m_audio.size();
|
||||
m_audio_len = std::min(m_audio_len + n_samples, m_audio.size());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void audio_async::get(int ms, std::vector<float> & result) {
|
||||
if (!m_dev_id_in) {
|
||||
fprintf(stderr, "%s: no audio device to get audio from!\n", __func__);
|
||||
return;
|
||||
}
|
||||
|
||||
if (!m_running) {
|
||||
fprintf(stderr, "%s: not running!\n", __func__);
|
||||
return;
|
||||
}
|
||||
|
||||
result.clear();
|
||||
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(m_mutex);
|
||||
|
||||
if (ms <= 0) {
|
||||
ms = m_len_ms;
|
||||
}
|
||||
|
||||
size_t n_samples = (m_sample_rate * ms) / 1000;
|
||||
if (n_samples > m_audio_len) {
|
||||
n_samples = m_audio_len;
|
||||
}
|
||||
|
||||
result.resize(n_samples);
|
||||
|
||||
int s0 = m_audio_pos - n_samples;
|
||||
if (s0 < 0) {
|
||||
s0 += m_audio.size();
|
||||
}
|
||||
|
||||
if (s0 + n_samples > m_audio.size()) {
|
||||
const size_t n0 = m_audio.size() - s0;
|
||||
|
||||
memcpy(result.data(), &m_audio[s0], n0 * sizeof(float));
|
||||
memcpy(&result[n0], &m_audio[0], (n_samples - n0) * sizeof(float));
|
||||
} else {
|
||||
memcpy(result.data(), &m_audio[s0], n_samples * sizeof(float));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////
|
||||
|
||||
std::string trim(const std::string & s) {
|
||||
std::regex e("^\\s+|\\s+$");
|
||||
return std::regex_replace(s, e, "");
|
||||
}
|
||||
|
||||
std::string replace(const std::string & s, const std::string & from, const std::string & to) {
|
||||
std::string result = s;
|
||||
size_t pos = 0;
|
||||
while ((pos = result.find(from, pos)) != std::string::npos) {
|
||||
result.replace(pos, from.length(), to);
|
||||
pos += to.length();
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
void high_pass_filter(std::vector<float> & data, float cutoff, float sample_rate) {
|
||||
const float rc = 1.0f / (2.0f * M_PI * cutoff);
|
||||
const float dt = 1.0f / sample_rate;
|
||||
const float alpha = dt / (rc + dt);
|
||||
|
||||
float y = data[0];
|
||||
|
||||
for (size_t i = 1; i < data.size(); i++) {
|
||||
y = alpha * (y + data[i] - data[i - 1]);
|
||||
data[i] = y;
|
||||
}
|
||||
}
|
||||
|
||||
bool vad_simple(std::vector<float> & pcmf32, int sample_rate, int last_ms, float vad_thold, float freq_thold, bool verbose) {
|
||||
const int n_samples = pcmf32.size();
|
||||
const int n_samples_last = (sample_rate * last_ms) / 1000;
|
||||
|
||||
if (n_samples_last >= n_samples) {
|
||||
// not enough samples - assume no speech
|
||||
return false;
|
||||
}
|
||||
|
||||
if (freq_thold > 0.0f) {
|
||||
high_pass_filter(pcmf32, freq_thold, sample_rate);
|
||||
}
|
||||
|
||||
float energy_all = 0.0f;
|
||||
float energy_last = 0.0f;
|
||||
|
||||
for (int i = 0; i < n_samples; i++) {
|
||||
energy_all += fabsf(pcmf32[i]);
|
||||
|
||||
if (i >= n_samples - n_samples_last) {
|
||||
energy_last += fabsf(pcmf32[i]);
|
||||
}
|
||||
}
|
||||
|
||||
energy_all /= n_samples;
|
||||
energy_last /= n_samples_last;
|
||||
|
||||
if (verbose) {
|
||||
fprintf(stderr, "%s: energy_all: %f, energy_last: %f, vad_thold: %f, freq_thold: %f\n", __func__, energy_all, energy_last, vad_thold, freq_thold);
|
||||
}
|
||||
|
||||
if (energy_last > vad_thold*energy_all) {
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
std::string transcribe(whisper_context * ctx, const whisper_params & params, const std::vector<float> & pcmf32, float & prob, int64_t & t_ms) {
|
||||
const auto t_start = std::chrono::high_resolution_clock::now();
|
||||
|
||||
@ -557,22 +241,10 @@ int main(int argc, char ** argv) {
|
||||
// main loop
|
||||
while (is_running) {
|
||||
// handle Ctrl + C
|
||||
{
|
||||
SDL_Event event;
|
||||
while (SDL_PollEvent(&event)) {
|
||||
switch (event.type) {
|
||||
case SDL_QUIT:
|
||||
{
|
||||
is_running = false;
|
||||
} break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
is_running = sdl_poll_events();
|
||||
|
||||
if (!is_running) {
|
||||
break;
|
||||
}
|
||||
if (!is_running) {
|
||||
break;
|
||||
}
|
||||
|
||||
// delay
|
||||
@ -583,7 +255,7 @@ int main(int argc, char ** argv) {
|
||||
{
|
||||
audio.get(2000, pcmf32_cur);
|
||||
|
||||
if (vad_simple(pcmf32_cur, WHISPER_SAMPLE_RATE, 1250, params.vad_thold, params.freq_thold, params.print_energy) || force_speak) {
|
||||
if (::vad_simple(pcmf32_cur, WHISPER_SAMPLE_RATE, 1250, params.vad_thold, params.freq_thold, params.print_energy) || force_speak) {
|
||||
fprintf(stdout, "%s: Speech detected! Processing ...\n", __func__);
|
||||
|
||||
audio.get(params.voice_ms, pcmf32_cur);
|
||||
|
@ -9,4 +9,4 @@ To use:
|
||||
5. Select the "release" active build variant, and use Android Studio to run and deploy to your device.
|
||||
[^1]: I recommend the tiny or base models for running on an Android device.
|
||||
|
||||
<img width="300" alt="image" src="https://user-images.githubusercontent.com/1991296/208154256-82d972dc-221b-48c4-bfcb-36ce68602f93.png">
|
||||
<img width="300" alt="image" src="https://user-images.githubusercontent.com/1670775/221613663-a17bf770-27ef-45ab-9a46-a5f99ba65d2a.jpg">
|
||||
|
@ -2,6 +2,7 @@ package com.whispercppdemo.ui.main
|
||||
|
||||
import androidx.compose.foundation.layout.*
|
||||
import androidx.compose.foundation.rememberScrollState
|
||||
import androidx.compose.foundation.text.selection.SelectionContainer
|
||||
import androidx.compose.foundation.verticalScroll
|
||||
import androidx.compose.material3.*
|
||||
import androidx.compose.runtime.Composable
|
||||
@ -19,6 +20,7 @@ fun MainScreen(viewModel: MainScreenViewModel) {
|
||||
canTranscribe = viewModel.canTranscribe,
|
||||
isRecording = viewModel.isRecording,
|
||||
messageLog = viewModel.dataLog,
|
||||
onBenchmarkTapped = viewModel::benchmark,
|
||||
onTranscribeSampleTapped = viewModel::transcribeSample,
|
||||
onRecordTapped = viewModel::toggleRecord
|
||||
)
|
||||
@ -30,6 +32,7 @@ private fun MainScreen(
|
||||
canTranscribe: Boolean,
|
||||
isRecording: Boolean,
|
||||
messageLog: String,
|
||||
onBenchmarkTapped: () -> Unit,
|
||||
onTranscribeSampleTapped: () -> Unit,
|
||||
onRecordTapped: () -> Unit
|
||||
) {
|
||||
@ -45,8 +48,11 @@ private fun MainScreen(
|
||||
.padding(innerPadding)
|
||||
.padding(16.dp)
|
||||
) {
|
||||
Row(horizontalArrangement = Arrangement.SpaceBetween) {
|
||||
TranscribeSampleButton(enabled = canTranscribe, onClick = onTranscribeSampleTapped)
|
||||
Column(verticalArrangement = Arrangement.SpaceBetween) {
|
||||
Row(horizontalArrangement = Arrangement.SpaceBetween, modifier = Modifier.fillMaxWidth()) {
|
||||
BenchmarkButton(enabled = canTranscribe, onClick = onBenchmarkTapped)
|
||||
TranscribeSampleButton(enabled = canTranscribe, onClick = onTranscribeSampleTapped)
|
||||
}
|
||||
RecordButton(
|
||||
enabled = canTranscribe,
|
||||
isRecording = isRecording,
|
||||
@ -60,7 +66,16 @@ private fun MainScreen(
|
||||
|
||||
@Composable
|
||||
private fun MessageLog(log: String) {
|
||||
Text(modifier = Modifier.verticalScroll(rememberScrollState()), text = log)
|
||||
SelectionContainer() {
|
||||
Text(modifier = Modifier.verticalScroll(rememberScrollState()), text = log)
|
||||
}
|
||||
}
|
||||
|
||||
@Composable
|
||||
private fun BenchmarkButton(enabled: Boolean, onClick: () -> Unit) {
|
||||
Button(onClick = onClick, enabled = enabled) {
|
||||
Text("Benchmark")
|
||||
}
|
||||
}
|
||||
|
||||
@Composable
|
||||
|
@ -41,10 +41,15 @@ class MainScreenViewModel(private val application: Application) : ViewModel() {
|
||||
|
||||
init {
|
||||
viewModelScope.launch {
|
||||
printSystemInfo()
|
||||
loadData()
|
||||
}
|
||||
}
|
||||
|
||||
private suspend fun printSystemInfo() {
|
||||
printMessage(String.format("System Info: %s\n", WhisperContext.getSystemInfo()));
|
||||
}
|
||||
|
||||
private suspend fun loadData() {
|
||||
printMessage("Loading data...\n")
|
||||
try {
|
||||
@ -73,8 +78,7 @@ class MainScreenViewModel(private val application: Application) : ViewModel() {
|
||||
printMessage("Loading model...\n")
|
||||
val models = application.assets.list("models/")
|
||||
if (models != null) {
|
||||
val inputstream = application.assets.open("models/" + models[0])
|
||||
whisperContext = WhisperContext.createContextFromInputStream(inputstream)
|
||||
whisperContext = WhisperContext.createContextFromAsset(application.assets, "models/" + models[0])
|
||||
printMessage("Loaded model ${models[0]}.\n")
|
||||
}
|
||||
|
||||
@ -82,10 +86,29 @@ class MainScreenViewModel(private val application: Application) : ViewModel() {
|
||||
//whisperContext = WhisperContext.createContextFromFile(firstModel.absolutePath)
|
||||
}
|
||||
|
||||
fun benchmark() = viewModelScope.launch {
|
||||
runBenchmark(6)
|
||||
}
|
||||
|
||||
fun transcribeSample() = viewModelScope.launch {
|
||||
transcribeAudio(getFirstSample())
|
||||
}
|
||||
|
||||
private suspend fun runBenchmark(nthreads: Int) {
|
||||
if (!canTranscribe) {
|
||||
return
|
||||
}
|
||||
|
||||
canTranscribe = false
|
||||
|
||||
printMessage("Running benchmark. This will take minutes...\n")
|
||||
whisperContext?.benchMemory(nthreads)?.let{ printMessage(it) }
|
||||
printMessage("\n")
|
||||
whisperContext?.benchGgmlMulMat(nthreads)?.let{ printMessage(it) }
|
||||
|
||||
canTranscribe = true
|
||||
}
|
||||
|
||||
private suspend fun getFirstSample(): File = withContext(Dispatchers.IO) {
|
||||
samplesPath.listFiles()!!.first()
|
||||
}
|
||||
@ -115,11 +138,14 @@ class MainScreenViewModel(private val application: Application) : ViewModel() {
|
||||
canTranscribe = false
|
||||
|
||||
try {
|
||||
printMessage("Reading wave samples...\n")
|
||||
printMessage("Reading wave samples... ")
|
||||
val data = readAudioSamples(file)
|
||||
printMessage("${data.size / (16000 / 1000)} ms\n")
|
||||
printMessage("Transcribing data...\n")
|
||||
val start = System.currentTimeMillis()
|
||||
val text = whisperContext?.transcribeData(data)
|
||||
printMessage("Done: $text\n")
|
||||
val elapsed = System.currentTimeMillis() - start
|
||||
printMessage("Done ($elapsed ms): $text\n")
|
||||
} catch (e: Exception) {
|
||||
Log.w(LOG_TAG, e)
|
||||
printMessage("${e.localizedMessage}\n")
|
||||
|
@ -1,5 +1,6 @@
|
||||
package com.whispercppdemo.whisper
|
||||
|
||||
import android.content.res.AssetManager
|
||||
import android.os.Build
|
||||
import android.util.Log
|
||||
import kotlinx.coroutines.*
|
||||
@ -26,6 +27,14 @@ class WhisperContext private constructor(private var ptr: Long) {
|
||||
}
|
||||
}
|
||||
|
||||
suspend fun benchMemory(nthreads: Int): String = withContext(scope.coroutineContext) {
|
||||
return@withContext WhisperLib.benchMemcpy(nthreads)
|
||||
}
|
||||
|
||||
suspend fun benchGgmlMulMat(nthreads: Int): String = withContext(scope.coroutineContext) {
|
||||
return@withContext WhisperLib.benchGgmlMulMat(nthreads)
|
||||
}
|
||||
|
||||
suspend fun release() = withContext(scope.coroutineContext) {
|
||||
if (ptr != 0L) {
|
||||
WhisperLib.freeContext(ptr)
|
||||
@ -56,6 +65,19 @@ class WhisperContext private constructor(private var ptr: Long) {
|
||||
}
|
||||
return WhisperContext(ptr)
|
||||
}
|
||||
|
||||
fun createContextFromAsset(assetManager: AssetManager, assetPath: String): WhisperContext {
|
||||
val ptr = WhisperLib.initContextFromAsset(assetManager, assetPath)
|
||||
|
||||
if (ptr == 0L) {
|
||||
throw java.lang.RuntimeException("Couldn't create context from asset $assetPath")
|
||||
}
|
||||
return WhisperContext(ptr)
|
||||
}
|
||||
|
||||
fun getSystemInfo(): String {
|
||||
return WhisperLib.getSystemInfo()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -64,6 +86,7 @@ private class WhisperLib {
|
||||
init {
|
||||
Log.d(LOG_TAG, "Primary ABI: ${Build.SUPPORTED_ABIS[0]}")
|
||||
var loadVfpv4 = false
|
||||
var loadV8fp16 = false
|
||||
if (isArmEabiV7a()) {
|
||||
// armeabi-v7a needs runtime detection support
|
||||
val cpuInfo = cpuInfo()
|
||||
@ -74,11 +97,24 @@ private class WhisperLib {
|
||||
loadVfpv4 = true
|
||||
}
|
||||
}
|
||||
} else if (isArmEabiV8a()) {
|
||||
// ARMv8.2a needs runtime detection support
|
||||
val cpuInfo = cpuInfo()
|
||||
cpuInfo?.let {
|
||||
Log.d(LOG_TAG, "CPU info: $cpuInfo")
|
||||
if (cpuInfo.contains("fphp")) {
|
||||
Log.d(LOG_TAG, "CPU supports fp16 arithmetic")
|
||||
loadV8fp16 = true
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (loadVfpv4) {
|
||||
Log.d(LOG_TAG, "Loading libwhisper_vfpv4.so")
|
||||
System.loadLibrary("whisper_vfpv4")
|
||||
} else if (loadV8fp16) {
|
||||
Log.d(LOG_TAG, "Loading libwhisper_v8fp16_va.so")
|
||||
System.loadLibrary("whisper_v8fp16_va")
|
||||
} else {
|
||||
Log.d(LOG_TAG, "Loading libwhisper.so")
|
||||
System.loadLibrary("whisper")
|
||||
@ -87,11 +123,15 @@ private class WhisperLib {
|
||||
|
||||
// JNI methods
|
||||
external fun initContextFromInputStream(inputStream: InputStream): Long
|
||||
external fun initContextFromAsset(assetManager: AssetManager, assetPath: String): Long
|
||||
external fun initContext(modelPath: String): Long
|
||||
external fun freeContext(contextPtr: Long)
|
||||
external fun fullTranscribe(contextPtr: Long, audioData: FloatArray)
|
||||
external fun getTextSegmentCount(contextPtr: Long): Int
|
||||
external fun getTextSegment(contextPtr: Long, index: Int): String
|
||||
external fun getSystemInfo(): String
|
||||
external fun benchMemcpy(nthread: Int): String
|
||||
external fun benchGgmlMulMat(nthread: Int): String
|
||||
}
|
||||
}
|
||||
|
||||
@ -99,6 +139,10 @@ private fun isArmEabiV7a(): Boolean {
|
||||
return Build.SUPPORTED_ABIS[0].equals("armeabi-v7a")
|
||||
}
|
||||
|
||||
private fun isArmEabiV8a(): Boolean {
|
||||
return Build.SUPPORTED_ABIS[0].equals("arm64-v8a")
|
||||
}
|
||||
|
||||
private fun cpuInfo(): String? {
|
||||
return try {
|
||||
File("/proc/cpuinfo").inputStream().bufferedReader().use {
|
||||
|
@ -12,4 +12,15 @@ ifeq ($(TARGET_ARCH_ABI),armeabi-v7a)
|
||||
# https://android.googlesource.com/platform/ndk/+/master/sources/android/cpufeatures/cpu-features.h
|
||||
LOCAL_CFLAGS += -mfpu=neon-vfpv4
|
||||
include $(BUILD_SHARED_LIBRARY)
|
||||
endif
|
||||
endif
|
||||
|
||||
ifeq ($(TARGET_ARCH_ABI),arm64-v8a)
|
||||
include $(CLEAR_VARS)
|
||||
LOCAL_MODULE := libwhisper_v8fp16_va
|
||||
include $(LOCAL_PATH)/Whisper.mk
|
||||
# Allow building NEON FMA code.
|
||||
# https://android.googlesource.com/platform/ndk/+/master/sources/android/cpufeatures/cpu-features.h
|
||||
LOCAL_CFLAGS += -march=armv8.2-a+fp16
|
||||
include $(BUILD_SHARED_LIBRARY)
|
||||
endif
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
WHISPER_LIB_DIR := $(LOCAL_PATH)/../../../../../../../
|
||||
LOCAL_LDLIBS := -llog
|
||||
LOCAL_LDLIBS := -landroid -llog
|
||||
|
||||
# Make the final output library smaller by only keeping the symbols referenced from the app.
|
||||
ifneq ($(APP_OPTIM),debug)
|
||||
|
@ -1,14 +1,18 @@
|
||||
#include <jni.h>
|
||||
#include <android/asset_manager.h>
|
||||
#include <android/asset_manager_jni.h>
|
||||
#include <android/log.h>
|
||||
#include <stdlib.h>
|
||||
#include <sys/sysinfo.h>
|
||||
#include <string.h>
|
||||
#include "whisper.h"
|
||||
#include "ggml.h"
|
||||
|
||||
#define UNUSED(x) (void)(x)
|
||||
#define TAG "JNI"
|
||||
|
||||
#define LOGI(...) __android_log_print(ANDROID_LOG_INFO, TAG, __VA_ARGS__)
|
||||
#define LOGW(...) __android_log_print(ANDROID_LOG_WARN, TAG, __VA_ARGS__)
|
||||
|
||||
static inline int min(int a, int b) {
|
||||
return (a < b) ? a : b;
|
||||
@ -91,6 +95,52 @@ Java_com_whispercppdemo_whisper_WhisperLib_00024Companion_initContextFromInputSt
|
||||
return (jlong) context;
|
||||
}
|
||||
|
||||
static size_t asset_read(void *ctx, void *output, size_t read_size) {
|
||||
return AAsset_read((AAsset *) ctx, output, read_size);
|
||||
}
|
||||
|
||||
static bool asset_is_eof(void *ctx) {
|
||||
return AAsset_getRemainingLength64((AAsset *) ctx) <= 0;
|
||||
}
|
||||
|
||||
static void asset_close(void *ctx) {
|
||||
AAsset_close((AAsset *) ctx);
|
||||
}
|
||||
|
||||
static struct whisper_context *whisper_init_from_asset(
|
||||
JNIEnv *env,
|
||||
jobject assetManager,
|
||||
const char *asset_path
|
||||
) {
|
||||
LOGI("Loading model from asset '%s'\n", asset_path);
|
||||
AAssetManager *asset_manager = AAssetManager_fromJava(env, assetManager);
|
||||
AAsset *asset = AAssetManager_open(asset_manager, asset_path, AASSET_MODE_STREAMING);
|
||||
if (!asset) {
|
||||
LOGW("Failed to open '%s'\n", asset_path);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
whisper_model_loader loader = {
|
||||
.context = asset,
|
||||
.read = &asset_read,
|
||||
.eof = &asset_is_eof,
|
||||
.close = &asset_close
|
||||
};
|
||||
|
||||
return whisper_init(&loader);
|
||||
}
|
||||
|
||||
JNIEXPORT jlong JNICALL
|
||||
Java_com_whispercppdemo_whisper_WhisperLib_00024Companion_initContextFromAsset(
|
||||
JNIEnv *env, jobject thiz, jobject assetManager, jstring asset_path_str) {
|
||||
UNUSED(thiz);
|
||||
struct whisper_context *context = NULL;
|
||||
const char *asset_path_chars = (*env)->GetStringUTFChars(env, asset_path_str, NULL);
|
||||
context = whisper_init_from_asset(env, assetManager, asset_path_chars);
|
||||
(*env)->ReleaseStringUTFChars(env, asset_path_str, asset_path_chars);
|
||||
return (jlong) context;
|
||||
}
|
||||
|
||||
JNIEXPORT jlong JNICALL
|
||||
Java_com_whispercppdemo_whisper_WhisperLib_00024Companion_initContext(
|
||||
JNIEnv *env, jobject thiz, jstring model_path_str) {
|
||||
@ -164,4 +214,30 @@ Java_com_whispercppdemo_whisper_WhisperLib_00024Companion_getTextSegment(
|
||||
const char *text = whisper_full_get_segment_text(context, index);
|
||||
jstring string = (*env)->NewStringUTF(env, text);
|
||||
return string;
|
||||
}
|
||||
}
|
||||
|
||||
JNIEXPORT jstring JNICALL
|
||||
Java_com_whispercppdemo_whisper_WhisperLib_00024Companion_getSystemInfo(
|
||||
JNIEnv *env, jobject thiz
|
||||
) {
|
||||
UNUSED(thiz);
|
||||
const char *sysinfo = whisper_print_system_info();
|
||||
jstring string = (*env)->NewStringUTF(env, sysinfo);
|
||||
return string;
|
||||
}
|
||||
|
||||
JNIEXPORT jstring JNICALL
|
||||
Java_com_whispercppdemo_whisper_WhisperLib_00024Companion_benchMemcpy(JNIEnv *env, jobject thiz,
|
||||
jint n_threads) {
|
||||
UNUSED(thiz);
|
||||
const char *bench_ggml_memcpy = whisper_bench_memcpy_str(n_threads);
|
||||
jstring string = (*env)->NewStringUTF(env, bench_ggml_memcpy);
|
||||
}
|
||||
|
||||
JNIEXPORT jstring JNICALL
|
||||
Java_com_whispercppdemo_whisper_WhisperLib_00024Companion_benchGgmlMulMat(JNIEnv *env, jobject thiz,
|
||||
jint n_threads) {
|
||||
UNUSED(thiz);
|
||||
const char *bench_ggml_mul_mat = whisper_bench_ggml_mul_mat_str(n_threads);
|
||||
jstring string = (*env)->NewStringUTF(env, bench_ggml_mul_mat);
|
||||
}
|
||||
|
@ -24,3 +24,5 @@ Also, don't forget to add the `-DGGML_USE_ACCELERATE` compiler flag in Build Pha
|
||||
This can significantly improve the performance of the transcription:
|
||||
|
||||
<img width="1072" alt="image" src="https://user-images.githubusercontent.com/1991296/208511239-8d7cdbd1-aa48-41b5-becd-ca288d53cc07.png">
|
||||
|
||||
In this project, it also added `-O3 -DNDEBUG` to `Other C Flags`, but adding flags to app proj is not ideal in real world (applies to all C/C++ files), consider splitting xcodeproj in workspace in your own project.
|
||||
|
@ -296,6 +296,10 @@
|
||||
IPHONEOS_DEPLOYMENT_TARGET = 16.0;
|
||||
MTL_ENABLE_DEBUG_INFO = NO;
|
||||
MTL_FAST_MATH = YES;
|
||||
OTHER_CFLAGS = (
|
||||
"-O3",
|
||||
"-DNDEBUG",
|
||||
);
|
||||
SDKROOT = iphoneos;
|
||||
VALIDATE_PRODUCT = YES;
|
||||
};
|
||||
|
@ -1,14 +1,18 @@
|
||||
A sample SwiftUI app using [whisper.cpp](https://github.com/ggerganov/whisper.cpp/) to do voice-to-text transcriptions.
|
||||
See also: [whisper.objc](https://github.com/ggerganov/whisper.cpp/tree/master/examples/whisper.objc).
|
||||
|
||||
To use:
|
||||
**Usage**:
|
||||
|
||||
1. Select a model from the [whisper.cpp repository](https://github.com/ggerganov/whisper.cpp/tree/master/models).[^1]
|
||||
2. Add the model to "whisper.swiftui.demo/Resources/models" via Xcode.
|
||||
2. Add the model to `whisper.swiftui.demo/Resources/models` **via Xcode**.
|
||||
3. Select a sample audio file (for example, [jfk.wav](https://github.com/ggerganov/whisper.cpp/raw/master/samples/jfk.wav)).
|
||||
4. Add the model to "whisper.swiftui.demo/Resources/samples" via Xcode.
|
||||
5. Select the "release" build configuration under "Run", then deploy and run to your device.
|
||||
4. Add the sample audio file to `whisper.swiftui.demo/Resources/samples` **via Xcode**.
|
||||
5. Select the "Release" [^2] build configuration under "Run", then deploy and run to your device.
|
||||
|
||||
**Note:** Pay attention to the folder path: `whisper.swiftui.demo/Resources/models` is the appropriate directory to place resources whilst `whisper.swiftui.demo/Models` is related to actual code.
|
||||
|
||||
[^1]: I recommend the tiny, base or small models for running on an iOS device.
|
||||
|
||||
[^2]: The `Release` build can boost performance of transcription. In this project, it also added `-O3 -DNDEBUG` to `Other C Flags`, but adding flags to app proj is not ideal in real world (applies to all C/C++ files), consider splitting xcodeproj in workspace in your own project.
|
||||
|
||||

|
||||
|
@ -430,6 +430,10 @@
|
||||
LLVM_LTO = YES;
|
||||
MACOSX_DEPLOYMENT_TARGET = 13.0;
|
||||
MARKETING_VERSION = 1.0;
|
||||
OTHER_CFLAGS = (
|
||||
"-O3",
|
||||
"-DNDEBUG",
|
||||
);
|
||||
PRODUCT_BUNDLE_IDENTIFIER = com.whispercppdemo.WhisperCppDemo;
|
||||
PRODUCT_NAME = "$(TARGET_NAME)";
|
||||
SDKROOT = auto;
|
||||
|
@ -32,8 +32,8 @@ set_target_properties(${TARGET} PROPERTIES LINK_FLAGS " \
|
||||
--bind \
|
||||
-s USE_PTHREADS=1 \
|
||||
-s PTHREAD_POOL_SIZE=8 \
|
||||
-s INITIAL_MEMORY=1024MB \
|
||||
-s TOTAL_MEMORY=1024MB \
|
||||
-s INITIAL_MEMORY=1500MB \
|
||||
-s TOTAL_MEMORY=1500MB \
|
||||
-s FORCE_FILESYSTEM=1 \
|
||||
-s EXPORTED_RUNTIME_METHODS=\"['print', 'printErr', 'ccall', 'cwrap']\" \
|
||||
${EXTRA_FLAGS} \
|
||||
|
@ -46,10 +46,12 @@
|
||||
|
||||
<div id="model">
|
||||
Whisper model: <span id="model-whisper-status"></span>
|
||||
<button id="fetch-whisper-tiny-en" onclick="loadWhisper('tiny.en')">tiny.en (75 MB)</button>
|
||||
<button id="fetch-whisper-tiny" onclick="loadWhisper('tiny')">tiny (75 MB)</button>
|
||||
<button id="fetch-whisper-base-en" onclick="loadWhisper('base.en')">base.en (142 MB)</button>
|
||||
<button id="fetch-whisper-base" onclick="loadWhisper('base')">base (142 MB)</button>
|
||||
<button id="fetch-whisper-tiny-en" onclick="loadWhisper('tiny.en')">tiny.en (75 MB)</button>
|
||||
<button id="fetch-whisper-tiny" onclick="loadWhisper('tiny')">tiny (75 MB)</button>
|
||||
<button id="fetch-whisper-base-en" onclick="loadWhisper('base.en')">base.en (142 MB)</button>
|
||||
<button id="fetch-whisper-base" onclick="loadWhisper('base')">base (142 MB)</button>
|
||||
<button id="fetch-whisper-small-en" onclick="loadWhisper('small.en')">small.en (466 MB)</button>
|
||||
<button id="fetch-whisper-small" onclick="loadWhisper('small')">small (466 MB)</button>
|
||||
<span id="fetch-whisper-progress"></span>
|
||||
|
||||
<input type="file" id="whisper-file" name="file" onchange="loadFile(event, 'whisper.bin')" />
|
||||
@ -60,8 +62,8 @@
|
||||
<!-- radio button to select between file upload or microphone -->
|
||||
<div id="input">
|
||||
Input:
|
||||
<input type="radio" id="file" name="input" value="file" checked="checked" onchange="changeInput('file')" /> File
|
||||
<input type="radio" id="mic" name="input" value="mic" onchange="changeInput('mic')" /> Microphone
|
||||
<input type="radio" id="file" name="input" value="file" checked="checked" onchange="changeInput('file')" /> <label for="file">File</label>
|
||||
<input type="radio" id="mic" name="input" value="mic" onchange="changeInput('mic')" /> <label for="mic">Microphone</label>
|
||||
</div>
|
||||
|
||||
<br>
|
||||
@ -284,27 +286,33 @@
|
||||
}
|
||||
reader.readAsArrayBuffer(file);
|
||||
|
||||
document.getElementById('fetch-whisper-tiny-en').style.display = 'none';
|
||||
document.getElementById('fetch-whisper-base-en').style.display = 'none';
|
||||
document.getElementById('fetch-whisper-tiny' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-base' ).style.display = 'none';
|
||||
document.getElementById('whisper-file' ).style.display = 'none';
|
||||
document.getElementById('model-whisper-status' ).innerHTML = 'loaded model: ' + file.name;
|
||||
document.getElementById('fetch-whisper-tiny-en' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-base-en' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-small-en').style.display = 'none';
|
||||
document.getElementById('fetch-whisper-tiny' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-base' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-small' ).style.display = 'none';
|
||||
document.getElementById('whisper-file' ).style.display = 'none';
|
||||
document.getElementById('model-whisper-status' ).innerHTML = 'loaded model: ' + file.name;
|
||||
}
|
||||
|
||||
function loadWhisper(model) {
|
||||
let urls = {
|
||||
'tiny.en': 'https://whisper.ggerganov.com/ggml-model-whisper-tiny.en.bin',
|
||||
'tiny': 'https://whisper.ggerganov.com/ggml-model-whisper-tiny.bin',
|
||||
'base.en': 'https://whisper.ggerganov.com/ggml-model-whisper-base.en.bin',
|
||||
'base': 'https://whisper.ggerganov.com/ggml-model-whisper-base.bin',
|
||||
'tiny.en': 'https://whisper.ggerganov.com/ggml-model-whisper-tiny.en.bin',
|
||||
'tiny': 'https://whisper.ggerganov.com/ggml-model-whisper-tiny.bin',
|
||||
'base.en': 'https://whisper.ggerganov.com/ggml-model-whisper-base.en.bin',
|
||||
'base': 'https://whisper.ggerganov.com/ggml-model-whisper-base.bin',
|
||||
'small.en': 'https://whisper.ggerganov.com/ggml-model-whisper-small.en.bin',
|
||||
'small': 'https://whisper.ggerganov.com/ggml-model-whisper-small.bin',
|
||||
};
|
||||
|
||||
let sizes = {
|
||||
'tiny.en': 75,
|
||||
'tiny': 75,
|
||||
'base.en': 142,
|
||||
'base': 142,
|
||||
'tiny.en': 75,
|
||||
'tiny': 75,
|
||||
'base.en': 142,
|
||||
'base': 142,
|
||||
'small.en': 466,
|
||||
'small': 466,
|
||||
};
|
||||
|
||||
let url = urls[model];
|
||||
@ -313,12 +321,14 @@
|
||||
|
||||
model_whisper = model;
|
||||
|
||||
document.getElementById('fetch-whisper-tiny-en').style.display = 'none';
|
||||
document.getElementById('fetch-whisper-base-en').style.display = 'none';
|
||||
document.getElementById('fetch-whisper-tiny' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-base' ).style.display = 'none';
|
||||
document.getElementById('whisper-file' ).style.display = 'none';
|
||||
document.getElementById('model-whisper-status' ).innerHTML = 'loading model: ' + model;
|
||||
document.getElementById('fetch-whisper-tiny-en' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-base-en' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-small-en').style.display = 'none';
|
||||
document.getElementById('fetch-whisper-tiny' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-base' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-small' ).style.display = 'none';
|
||||
document.getElementById('whisper-file' ).style.display = 'none';
|
||||
document.getElementById('model-whisper-status' ).innerHTML = 'loading model: ' + model;
|
||||
|
||||
cbProgress = function(p) {
|
||||
let el = document.getElementById('fetch-whisper-progress');
|
||||
@ -327,12 +337,14 @@
|
||||
|
||||
cbCancel = function() {
|
||||
var el;
|
||||
el = document.getElementById('fetch-whisper-tiny-en'); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-base-en'); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-tiny' ); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-base' ); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('whisper-file' ); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('model-whisper-status' ); if (el) el.innerHTML = '';
|
||||
el = document.getElementById('fetch-whisper-tiny-en' ); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-base-en' ); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-small-en'); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-tiny' ); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-base' ); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-small' ); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('whisper-file' ); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('model-whisper-status' ); if (el) el.innerHTML = '';
|
||||
};
|
||||
|
||||
loadRemote(url, dst, size_mb, cbProgress, storeFS, cbCancel, printTextarea);
|
||||
|
@ -1,20 +1,10 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
# Small shell script to more easily automatically download and transcribe live stream VODs.
|
||||
# This uses YT-DLP, ffmpeg and the CPP version of Whisper: https://github.com/ggerganov/whisper.cpp
|
||||
# Use `./examples/yt-wsp.sh help` to print help info.
|
||||
#
|
||||
# Sample usage:
|
||||
#
|
||||
# git clone https://github.com/ggerganov/whisper.cpp
|
||||
# cd whisper.cpp
|
||||
# make
|
||||
# ./examples/yt-wsp.sh https://www.youtube.com/watch?v=1234567890
|
||||
#
|
||||
# shellcheck disable=2086
|
||||
|
||||
# MIT License
|
||||
|
||||
# Copyright (c) 2022 Daniils Petrovs
|
||||
# Copyright (c) 2023 Jennifer Capasso
|
||||
|
||||
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
# of this software and associated documentation files (the "Software"), to deal
|
||||
@ -34,114 +24,178 @@
|
||||
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
# SOFTWARE.
|
||||
|
||||
# Small shell script to more easily automatically download and transcribe live stream VODs.
|
||||
# This uses YT-DLP, ffmpeg and the CPP version of Whisper: https://github.com/ggerganov/whisper.cpp
|
||||
# Use `./examples/yt-wsp.sh help` to print help info.
|
||||
#
|
||||
# Sample usage:
|
||||
#
|
||||
# git clone https://github.com/ggerganov/whisper.cpp
|
||||
# cd whisper.cpp
|
||||
# make
|
||||
# ./examples/yt-wsp.sh https://www.youtube.com/watch?v=1234567890
|
||||
#
|
||||
|
||||
set -Eeuo pipefail
|
||||
|
||||
# You can find how to download models in the OG repo: https://github.com/ggerganov/whisper.cpp/#usage
|
||||
MODEL_PATH="${MODEL_PATH:-models/ggml-base.en.bin}" # Set to a multilingual model if you want to translate from foreign lang to en
|
||||
WHISPER_EXECUTABLE="${WHISPER_EXECUTABLE:-whisper}" # Where to find the whisper.cpp executable
|
||||
WHISPER_LANG="${WHISPER_LANG:-en}" # Set to desired lang to translate from
|
||||
# get script file location
|
||||
SCRIPT_PATH="$(realpath -e ${BASH_SOURCE[0]})";
|
||||
SCRIPT_DIR="${SCRIPT_PATH%/*}"
|
||||
|
||||
################################################################################
|
||||
# Documentation on downloading models can be found in the whisper.cpp repo:
|
||||
# https://github.com/ggerganov/whisper.cpp/#usage
|
||||
#
|
||||
# note: unless a multilingual model is specified, WHISPER_LANG will be ignored
|
||||
# and the video will be transcribed as if the audio were in the English language
|
||||
################################################################################
|
||||
MODEL_PATH="${MODEL_PATH:-${SCRIPT_DIR}/../models/ggml-base.en.bin}"
|
||||
|
||||
################################################################################
|
||||
# Where to find the whisper.cpp executable. default to the examples directory
|
||||
# which holds this script in source control
|
||||
################################################################################
|
||||
WHISPER_EXECUTABLE="${WHISPER_EXECUTABLE:-${SCRIPT_DIR}/../main}";
|
||||
|
||||
# Set to desired language to be translated into english
|
||||
WHISPER_LANG="${WHISPER_LANG:-en}";
|
||||
|
||||
# Default to 4 threads (this was most performant on my 2020 M1 MBP)
|
||||
WHISPER_THREAD_COUNT="${WHISPER_THREAD_COUNT:-4}";
|
||||
|
||||
msg() {
|
||||
echo >&2 -e "${1-}"
|
||||
}
|
||||
|
||||
cleanup() {
|
||||
msg "Cleaning up..."
|
||||
rm -rf "${temp_dir}" "vod-resampled.wav" "vod-resampled.wav.srt"
|
||||
local -r clean_me="${1}";
|
||||
|
||||
if [ -d "${clean_me}" ]; then
|
||||
msg "Cleaning up...";
|
||||
rm -rf "${clean_me}";
|
||||
else
|
||||
msg "'${clean_me}' does not appear to be a directory!";
|
||||
exit 1;
|
||||
fi;
|
||||
}
|
||||
|
||||
print_help() {
|
||||
echo "################################################################################"
|
||||
echo "Usage: ./examples/yt-wsp.sh <video_url>"
|
||||
echo "See configurable env variables in the script"
|
||||
echo "This will produce an MP4 muxed file called res.mp4 in the working directory"
|
||||
echo "Requirements: ffmpeg yt-dlp whisper"
|
||||
echo "Whisper needs to be built into the main binary with make, then you can rename it to something like 'whisper' and add it to your PATH for convenience."
|
||||
echo "E.g. in the root of Whisper.cpp, run: 'make && cp ./main /usr/local/bin/whisper'"
|
||||
echo "# See configurable env variables in the script; there are many!"
|
||||
echo "# This script will produce an MP4 muxed file in the working directory; it will"
|
||||
echo "# be named for the title and id of the video."
|
||||
echo "# passing in https://youtu.be/VYJtb2YXae8 produces a file named";
|
||||
echo "# 'Why_we_all_need_subtitles_now-VYJtb2YXae8-res.mp4'"
|
||||
echo "# Requirements: ffmpeg yt-dlp whisper.cpp"
|
||||
echo "################################################################################"
|
||||
}
|
||||
|
||||
check_requirements() {
|
||||
if ! command -v ffmpeg &>/dev/null; then
|
||||
echo "ffmpeg is required (https://ffmpeg.org)."
|
||||
echo "ffmpeg is required: https://ffmpeg.org";
|
||||
exit 1
|
||||
fi
|
||||
fi;
|
||||
|
||||
if ! command -v yt-dlp &>/dev/null; then
|
||||
echo "yt-dlp is required (https://github.com/yt-dlp/yt-dlp)."
|
||||
exit 1
|
||||
fi
|
||||
echo "yt-dlp is required: https://github.com/yt-dlp/yt-dlp";
|
||||
exit 1;
|
||||
fi;
|
||||
|
||||
if ! command -v "${WHISPER_EXECUTABLE}" &>/dev/null; then
|
||||
echo "The C++ implementation of Whisper is required: https://github.com/ggerganov/whisper.cpp"
|
||||
echo "Sample usage:";
|
||||
echo "";
|
||||
echo " git clone https://github.com/ggerganov/whisper.cpp";
|
||||
echo " cd whisper.cpp";
|
||||
echo " make";
|
||||
echo " ./examples/yt-wsp.sh https://www.youtube.com/watch?v=1234567890";
|
||||
echo "";
|
||||
exit 1;
|
||||
fi;
|
||||
|
||||
if ! command -v "$WHISPER_EXECUTABLE" &>/dev/null; then
|
||||
WHISPER_EXECUTABLE="./main"
|
||||
if ! command -v "$WHISPER_EXECUTABLE" &>/dev/null; then
|
||||
echo "Whisper is required (https://github.com/ggerganov/whisper.cpp):"
|
||||
echo "Sample usage:"
|
||||
echo ""
|
||||
echo " git clone https://github.com/ggerganov/whisper.cpp"
|
||||
echo " cd whisper.cpp"
|
||||
echo " make"
|
||||
echo " ./examples/yt-wsp.sh https://www.youtube.com/watch?v=1234567890"
|
||||
echo ""
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
}
|
||||
|
||||
if [[ $# -lt 1 ]]; then
|
||||
print_help
|
||||
exit 1
|
||||
if [[ "${#}" -lt 1 ]]; then
|
||||
print_help;
|
||||
exit 1;
|
||||
fi
|
||||
|
||||
if [[ "$1" == "help" ]]; then
|
||||
print_help
|
||||
exit 0
|
||||
if [[ "${1##-*}" == "help" ]]; then
|
||||
print_help;
|
||||
exit 0;
|
||||
fi
|
||||
|
||||
temp_dir="tmp"
|
||||
source_url="$1"
|
||||
check_requirements;
|
||||
|
||||
check_requirements
|
||||
################################################################################
|
||||
# create a temporary directory to work in
|
||||
# set the temp_dir and temp_filename variables
|
||||
################################################################################
|
||||
temp_dir="$(mktemp -d ${SCRIPT_DIR}/tmp.XXXXXX)";
|
||||
temp_filename="${temp_dir}/yt-dlp-filename";
|
||||
|
||||
msg "Downloading VOD..."
|
||||
################################################################################
|
||||
# for now we only take one argument
|
||||
# TODO: a for loop
|
||||
################################################################################
|
||||
source_url="${1}"
|
||||
title_name="";
|
||||
|
||||
# Optionally add --cookies-from-browser BROWSER[+KEYRING][:PROFILE][::CONTAINER] for members only VODs
|
||||
msg "Downloading VOD...";
|
||||
|
||||
################################################################################
|
||||
# Download the video, put the dynamic output filename into a variable.
|
||||
# Optionally add --cookies-from-browser BROWSER[+KEYRING][:PROFILE][::CONTAINER]
|
||||
# for videos only available to logged-in users.
|
||||
################################################################################
|
||||
yt-dlp \
|
||||
-f "bestvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best" \
|
||||
-o "${temp_dir}/%(title)s-%(id)s.vod.mp4" \
|
||||
--print-to-file "%(filename)s" "${temp_filename}" \
|
||||
--no-simulate \
|
||||
--no-write-auto-subs \
|
||||
--restrict-filenames \
|
||||
--embed-thumbnail \
|
||||
--embed-chapters \
|
||||
--xattrs \
|
||||
"${source_url}" -o "${temp_dir}/vod.mp4"
|
||||
"${source_url}";
|
||||
|
||||
msg "Extracting audio and resampling..."
|
||||
title_name="$(xargs basename -s .vod.mp4 < ${temp_filename})";
|
||||
|
||||
ffmpeg -i "${temp_dir}/vod.mp4" \
|
||||
msg "Extracting audio and resampling...";
|
||||
|
||||
ffmpeg -i "${temp_dir}/${title_name}.vod.mp4" \
|
||||
-hide_banner \
|
||||
-vn \
|
||||
-loglevel error \
|
||||
-ar 16000 \
|
||||
-ac 1 \
|
||||
-c:a \
|
||||
pcm_s16le -y "vod-resampled.wav"
|
||||
-c:a pcm_s16le \
|
||||
-y \
|
||||
"${temp_dir}/${title_name}.vod-resampled.wav";
|
||||
|
||||
msg "Transcribing to subtitle file..."
|
||||
msg "Whisper specified at: ${WHISPER_EXECUTABLE}"
|
||||
msg "Transcribing to subtitle file...";
|
||||
msg "Whisper specified at: '${WHISPER_EXECUTABLE}'";
|
||||
|
||||
$WHISPER_EXECUTABLE \
|
||||
"${WHISPER_EXECUTABLE}" \
|
||||
-m "${MODEL_PATH}" \
|
||||
-l "${WHISPER_LANG}" \
|
||||
-f "vod-resampled.wav" \
|
||||
-t 8 \
|
||||
-f "${temp_dir}/${title_name}.vod-resampled.wav" \
|
||||
-t "${WHISPER_THREAD_COUNT}" \
|
||||
-osrt \
|
||||
--translate
|
||||
--translate;
|
||||
|
||||
msg "Embedding subtitle track..."
|
||||
msg "Embedding subtitle track...";
|
||||
|
||||
ffmpeg -i "${temp_dir}/vod.mp4" \
|
||||
ffmpeg -i "${temp_dir}/${title_name}.vod.mp4" \
|
||||
-hide_banner \
|
||||
-loglevel error \
|
||||
-i "vod-resampled.wav.srt" \
|
||||
-i "${temp_dir}/${title_name}.vod-resampled.wav.srt" \
|
||||
-c copy \
|
||||
-c:s mov_text \
|
||||
-y res.mp4
|
||||
-y "${title_name}-res.mp4";
|
||||
|
||||
cleanup
|
||||
#cleanup "${temp_dir}";
|
||||
|
||||
msg "Done! Your finished file is ready: res.mp4"
|
||||
msg "Done! Your finished file is ready: ${title_name}-res.mp4";
|
||||
|
@ -12,6 +12,18 @@ fi
|
||||
|
||||
models=( "tiny" "base" "small" "medium" "large" )
|
||||
|
||||
printf "\n"
|
||||
printf "Running memcpy benchmark with 1 thread\n"
|
||||
printf "\n"
|
||||
|
||||
./bench -w 1 -t 1 2>&1
|
||||
|
||||
printf "\n"
|
||||
printf "Running ggml_mul_mat benchmark with $n_threads threads\n"
|
||||
printf "\n"
|
||||
|
||||
./bench -w 2 -t $n_threads 2>&1
|
||||
|
||||
printf "\n"
|
||||
printf "Running benchmark for all models\n"
|
||||
printf "This can take a while!\n"
|
||||
@ -52,8 +64,11 @@ for model in "${models[@]}"; do
|
||||
config="$config BLAS"
|
||||
fi
|
||||
|
||||
if [[ $system_info == *"COREML = 1"* ]]; then
|
||||
config="$config COREML"
|
||||
fi
|
||||
|
||||
commit=$(git rev-parse --short HEAD)
|
||||
|
||||
printf "| <todo> | <todo> | $config | $model | $n_threads | $load_time | $encode_time | $commit |\n"
|
||||
done
|
||||
|
||||
|
70
extra/bench-wts.sh
Executable file
70
extra/bench-wts.sh
Executable file
@ -0,0 +1,70 @@
|
||||
# Benchmark word-level timestamps for different models
|
||||
#
|
||||
# This script takes two arguments
|
||||
# - an audio file
|
||||
# - [optional] path to a font file
|
||||
|
||||
# I'm using "/usr/share/fonts/truetype/freefont/FreeMono.ttf" on Ubuntu
|
||||
|
||||
if [ -z "$1" ]; then
|
||||
echo "Usage: $0 <audio file> [font file]"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
#TODO: Make this a command line parameter
|
||||
#models="base small large"
|
||||
#models="tiny.en tiny base.en base small.en small medium.en medium large-v1 large"
|
||||
models="tiny.en base.en small.en medium.en large"
|
||||
|
||||
DURATION=$(ffprobe -i $1 -show_entries format=duration -v quiet -of csv="p=0")
|
||||
DURATION=$(printf "%.2f" $DURATION)
|
||||
echo "Input file duration: ${DURATION}s"
|
||||
|
||||
for model in $models; do
|
||||
echo "Running $model"
|
||||
COMMAND="./main -m models/ggml-$model.bin -owts -f $1 -of $1.$model"
|
||||
|
||||
if [ ! -z "$2" ]; then
|
||||
COMMAND="$COMMAND -fp $2"
|
||||
fi
|
||||
#TODO: Surface errors better
|
||||
# TIMEFMT is for zsh, TIMEFORMAT is for bash
|
||||
EXECTIME=$({ TIMEFMT="%E";TIMEFORMAT=%E; time $COMMAND >/dev/null 2>&1; } 2>&1)
|
||||
|
||||
# Slightly different formats between zsh and bash
|
||||
if [ "${EXECTIME: -1}" == "s" ]; then
|
||||
EXECTIME=${EXECTIME::-1}
|
||||
fi
|
||||
|
||||
RATIO=$(echo "$DURATION / $EXECTIME" | bc -l)
|
||||
RATIO=$(printf "%.2f" $RATIO)
|
||||
|
||||
echo "Execution time: ${EXECTIME}s (${RATIO}x realtime)"
|
||||
|
||||
# If the file already exists, delete it
|
||||
if [ -f $1.mp4 ]; then
|
||||
rm $1.mp4
|
||||
fi
|
||||
|
||||
bash $1.$model.wts >/dev/null 2>&1
|
||||
mv $1.mp4 $1.$model.mp4
|
||||
|
||||
ffmpeg -y -f lavfi -i color=c=black:s=1200x50:d=$DURATION -vf "drawtext=fontfile=$2:fontsize=36:x=10:y=(h-text_h)/2:text='ggml-$model - ${EXECTIME}s (${RATIO}x realtime)':fontcolor=lightgrey" $1.$model.info.mp4 >/dev/null 2>&1
|
||||
done
|
||||
|
||||
COMMAND="ffmpeg -y"
|
||||
for model in $models; do
|
||||
COMMAND="$COMMAND -i $1.$model.info.mp4 -i $1.$model.mp4"
|
||||
done
|
||||
COMMAND="$COMMAND -filter_complex \""
|
||||
COUNT=0
|
||||
for model in $models; do
|
||||
COMMAND="$COMMAND[${COUNT}:v][$(($COUNT+1)):v]"
|
||||
COUNT=$((COUNT+2))
|
||||
done
|
||||
COMMAND="$COMMAND vstack=inputs=${COUNT}[v]\" -map \"[v]\" -map 1:a $1.all.mp4 >/dev/null 2>&1"
|
||||
|
||||
echo $COMMAND
|
||||
|
||||
# Run the command
|
||||
eval $COMMAND
|
173
ggml.h
173
ggml.h
@ -177,11 +177,12 @@ extern "C" {
|
||||
#include <stddef.h>
|
||||
#include <stdbool.h>
|
||||
|
||||
#define GGML_MAX_DIMS 4
|
||||
#define GGML_MAX_NODES 4096
|
||||
#define GGML_MAX_PARAMS 16
|
||||
#define GGML_MAX_CONTEXTS 64
|
||||
#define GGML_MAX_OPT 4
|
||||
#define GGML_MAX_DIMS 4
|
||||
#define GGML_MAX_NODES 4096
|
||||
#define GGML_MAX_PARAMS 16
|
||||
#define GGML_MAX_CONTEXTS 64
|
||||
#define GGML_MAX_OPT 4
|
||||
#define GGML_DEFAULT_N_THREADS 4
|
||||
|
||||
#ifdef __ARM_NEON
|
||||
// we use the built-in 16-bit float type
|
||||
@ -198,11 +199,14 @@ struct ggml_object;
|
||||
struct ggml_context;
|
||||
|
||||
enum ggml_type {
|
||||
// explicitly numbered values are used in llama.cpp files
|
||||
GGML_TYPE_F32 = 0,
|
||||
GGML_TYPE_F16 = 1,
|
||||
GGML_TYPE_Q4_0 = 2,
|
||||
GGML_TYPE_Q4_1 = 3,
|
||||
GGML_TYPE_I8,
|
||||
GGML_TYPE_I16,
|
||||
GGML_TYPE_I32,
|
||||
GGML_TYPE_F16,
|
||||
GGML_TYPE_F32,
|
||||
GGML_TYPE_COUNT,
|
||||
};
|
||||
|
||||
@ -226,12 +230,15 @@ enum ggml_op {
|
||||
GGML_OP_STEP,
|
||||
GGML_OP_RELU,
|
||||
GGML_OP_GELU,
|
||||
GGML_OP_SILU,
|
||||
GGML_OP_NORM, // normalize
|
||||
GGML_OP_RMS_NORM,
|
||||
|
||||
GGML_OP_MUL_MAT,
|
||||
|
||||
GGML_OP_SCALE,
|
||||
GGML_OP_CPY,
|
||||
GGML_OP_CONT,
|
||||
GGML_OP_RESHAPE,
|
||||
GGML_OP_VIEW,
|
||||
GGML_OP_PERMUTE,
|
||||
@ -246,19 +253,35 @@ enum ggml_op {
|
||||
GGML_OP_FLASH_ATTN,
|
||||
GGML_OP_FLASH_FF,
|
||||
|
||||
GGML_OP_MAP_UNARY,
|
||||
GGML_OP_MAP_BINARY,
|
||||
|
||||
GGML_OP_COUNT,
|
||||
};
|
||||
|
||||
|
||||
// ggml object
|
||||
struct ggml_object {
|
||||
size_t offs;
|
||||
size_t size;
|
||||
|
||||
struct ggml_object * next;
|
||||
|
||||
char padding[8];
|
||||
};
|
||||
|
||||
static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
|
||||
|
||||
// n-dimensional tensor
|
||||
struct ggml_tensor {
|
||||
enum ggml_type type;
|
||||
|
||||
int n_dims;
|
||||
int ne[GGML_MAX_DIMS]; // number of elements
|
||||
size_t nb[GGML_MAX_DIMS]; // stride in bytes:
|
||||
// nb[0] = sizeof(type)
|
||||
// nb[1] = nb[0] * ne[0] + padding
|
||||
// nb[i] = nb[i-1] * ne[i-1]
|
||||
int64_t ne[GGML_MAX_DIMS]; // number of elements
|
||||
size_t nb[GGML_MAX_DIMS]; // stride in bytes:
|
||||
// nb[0] = sizeof(type)
|
||||
// nb[1] = nb[0] * ne[0] + padding
|
||||
// nb[i] = nb[i-1] * ne[i-1]
|
||||
|
||||
// compute data
|
||||
enum ggml_op op;
|
||||
@ -301,10 +324,18 @@ struct ggml_cgraph {
|
||||
int64_t perf_time_us;
|
||||
};
|
||||
|
||||
// scratch buffer
|
||||
struct ggml_scratch {
|
||||
size_t offs;
|
||||
size_t size;
|
||||
void * data;
|
||||
};
|
||||
|
||||
struct ggml_init_params {
|
||||
// memory pool
|
||||
size_t mem_size; // bytes
|
||||
void * mem_buffer; // if NULL, memory will be allocated internally
|
||||
bool no_alloc; // don't allocate memory for the tensor data
|
||||
};
|
||||
|
||||
void ggml_time_init(void); // call this once at the beginning of the program
|
||||
@ -316,10 +347,13 @@ int64_t ggml_cycles_per_ms(void);
|
||||
void ggml_print_object (const struct ggml_object * obj);
|
||||
void ggml_print_objects(const struct ggml_context * ctx);
|
||||
|
||||
int ggml_nelements(const struct ggml_tensor * tensor);
|
||||
size_t ggml_nbytes (const struct ggml_tensor * tensor);
|
||||
int64_t ggml_nelements(const struct ggml_tensor * tensor);
|
||||
size_t ggml_nbytes (const struct ggml_tensor * tensor);
|
||||
|
||||
int ggml_blck_size (enum ggml_type type);
|
||||
size_t ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block
|
||||
float ggml_type_sizef(enum ggml_type type); // ggml_type_size()/ggml_blck_size() as float
|
||||
|
||||
size_t ggml_type_size (enum ggml_type type);
|
||||
size_t ggml_element_size(const struct ggml_tensor * tensor);
|
||||
|
||||
struct ggml_context * ggml_init(struct ggml_init_params params);
|
||||
@ -327,37 +361,39 @@ void ggml_free(struct ggml_context * ctx);
|
||||
|
||||
size_t ggml_used_mem(const struct ggml_context * ctx);
|
||||
|
||||
size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch);
|
||||
|
||||
struct ggml_tensor * ggml_new_tensor(
|
||||
struct ggml_context * ctx,
|
||||
enum ggml_type type,
|
||||
int n_dims,
|
||||
const int *ne);
|
||||
const int64_t *ne);
|
||||
|
||||
struct ggml_tensor * ggml_new_tensor_1d(
|
||||
struct ggml_context * ctx,
|
||||
enum ggml_type type,
|
||||
int ne0);
|
||||
int64_t ne0);
|
||||
|
||||
struct ggml_tensor * ggml_new_tensor_2d(
|
||||
struct ggml_context * ctx,
|
||||
enum ggml_type type,
|
||||
int ne0,
|
||||
int ne1);
|
||||
int64_t ne0,
|
||||
int64_t ne1);
|
||||
|
||||
struct ggml_tensor * ggml_new_tensor_3d(
|
||||
struct ggml_context * ctx,
|
||||
enum ggml_type type,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int ne2);
|
||||
int64_t ne0,
|
||||
int64_t ne1,
|
||||
int64_t ne2);
|
||||
|
||||
struct ggml_tensor * ggml_new_tensor_4d(
|
||||
struct ggml_context * ctx,
|
||||
enum ggml_type type,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int ne2,
|
||||
int ne3);
|
||||
int64_t ne0,
|
||||
int64_t ne1,
|
||||
int64_t ne2,
|
||||
int64_t ne3);
|
||||
|
||||
struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
|
||||
struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
|
||||
@ -457,12 +493,20 @@ struct ggml_tensor * ggml_gelu(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
struct ggml_tensor * ggml_silu(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
// normalize along rows
|
||||
// TODO: eps is hardcoded to 1e-5 for now
|
||||
struct ggml_tensor * ggml_norm(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
struct ggml_tensor * ggml_rms_norm(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
// A: m rows, n columns
|
||||
// B: p rows, n columns (i.e. we transpose it internally)
|
||||
// result is m columns, p rows
|
||||
@ -487,6 +531,11 @@ struct ggml_tensor * ggml_cpy(
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
|
||||
// make contiguous
|
||||
struct ggml_tensor * ggml_cont(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
// return view(a), b specifies the new shape
|
||||
// TODO: when we start computing gradient, make a copy instead of view
|
||||
struct ggml_tensor * ggml_reshape(
|
||||
@ -499,33 +548,43 @@ struct ggml_tensor * ggml_reshape(
|
||||
struct ggml_tensor * ggml_reshape_2d(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int ne0,
|
||||
int ne1);
|
||||
int64_t ne0,
|
||||
int64_t ne1);
|
||||
|
||||
// return view(a)
|
||||
// TODO: when we start computing gradient, make a copy instead of view
|
||||
struct ggml_tensor * ggml_reshape_3d(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int ne2);
|
||||
int64_t ne0,
|
||||
int64_t ne1,
|
||||
int64_t ne2);
|
||||
|
||||
// offset in bytes
|
||||
struct ggml_tensor * ggml_view_1d(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int ne0,
|
||||
int64_t ne0,
|
||||
size_t offset);
|
||||
|
||||
struct ggml_tensor * ggml_view_2d(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int64_t ne0,
|
||||
int64_t ne1,
|
||||
size_t nb1, // row stride in bytes
|
||||
size_t offset);
|
||||
|
||||
struct ggml_tensor * ggml_view_3d(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int64_t ne0,
|
||||
int64_t ne1,
|
||||
int64_t ne2,
|
||||
size_t nb1, // row stride in bytes
|
||||
size_t nb2, // slice stride in bytes
|
||||
size_t offset);
|
||||
|
||||
struct ggml_tensor * ggml_permute(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
@ -596,6 +655,21 @@ struct ggml_tensor * ggml_flash_ff(
|
||||
struct ggml_tensor * c0,
|
||||
struct ggml_tensor * c1);
|
||||
|
||||
// Mapping operations
|
||||
typedef void (*ggml_unary_op_f32_t)(const int, float *, const float *);
|
||||
typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
|
||||
|
||||
struct ggml_tensor * ggml_map_unary_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
const ggml_unary_op_f32_t fun);
|
||||
|
||||
struct ggml_tensor * ggml_map_binary_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
const ggml_binary_op_f32_t fun);
|
||||
|
||||
//
|
||||
// automatic differentiation
|
||||
//
|
||||
@ -717,6 +791,13 @@ enum ggml_opt_result ggml_opt(
|
||||
struct ggml_opt_params params,
|
||||
struct ggml_tensor * f);
|
||||
|
||||
//
|
||||
// quantization
|
||||
//
|
||||
|
||||
size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);
|
||||
size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);
|
||||
|
||||
//
|
||||
// system info
|
||||
//
|
||||
@ -734,6 +815,30 @@ int ggml_cpu_has_blas(void);
|
||||
int ggml_cpu_has_sse3(void);
|
||||
int ggml_cpu_has_vsx(void);
|
||||
|
||||
|
||||
//
|
||||
// Internal types and functions exposed for tests and benchmarks
|
||||
//
|
||||
|
||||
#ifdef __cplusplus
|
||||
// restrict not standard in C++
|
||||
#define GGML_RESTRICT
|
||||
#else
|
||||
#define GGML_RESTRICT restrict
|
||||
#endif
|
||||
typedef void (*dequantize_row_q_t)(const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
typedef void (*quantize_row_q_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
||||
typedef void (*vec_dot_q_t)(const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y);
|
||||
|
||||
typedef struct {
|
||||
dequantize_row_q_t dequantize_row_q;
|
||||
quantize_row_q_t quantize_row_q;
|
||||
quantize_row_q_t quantize_row_q_reference;
|
||||
vec_dot_q_t vec_dot_q;
|
||||
} quantize_fns_t;
|
||||
|
||||
quantize_fns_t ggml_internal_get_quantize_fn(size_t i);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
@ -6,7 +6,7 @@ using the [convert-pt-to-ggml.py](convert-pt-to-ggml.py) script. You can either
|
||||
the `ggml` files yourself using the conversion script, or you can use the [download-ggml-model.sh](download-ggml-model.sh)
|
||||
script to download the already converted models. Currently, they are hosted on the following locations:
|
||||
|
||||
- https://huggingface.co/datasets/ggerganov/whisper.cpp
|
||||
- https://huggingface.co/ggerganov/whisper.cpp
|
||||
- https://ggml.ggerganov.com
|
||||
|
||||
Sample usage:
|
||||
@ -23,7 +23,7 @@ You can now use it like this:
|
||||
|
||||
A third option to obtain the model files is to download them from Hugging Face:
|
||||
|
||||
https://huggingface.co/datasets/ggerganov/whisper.cpp/tree/main
|
||||
https://huggingface.co/ggerganov/whisper.cpp/tree/main
|
||||
|
||||
## Available models
|
||||
|
||||
|
@ -79,11 +79,11 @@ dir_model = sys.argv[1]
|
||||
dir_whisper = sys.argv[2]
|
||||
dir_out = sys.argv[3]
|
||||
|
||||
with open(dir_model + "/vocab.json", "r") as f:
|
||||
with open(dir_model + "/vocab.json", "r", encoding="utf8") as f:
|
||||
encoder = json.load(f)
|
||||
with open(dir_model + "/added_tokens.json", "r") as f:
|
||||
with open(dir_model + "/added_tokens.json", "r", encoding="utf8") as f:
|
||||
encoder_added = json.load(f)
|
||||
with open(dir_model + "/config.json", "r") as f:
|
||||
with open(dir_model + "/config.json", "r", encoding="utf8") as f:
|
||||
hparams = json.load(f)
|
||||
|
||||
model = WhisperForConditionalGeneration.from_pretrained(dir_model)
|
||||
|
@ -39,6 +39,7 @@ import json
|
||||
import code
|
||||
import torch
|
||||
import numpy as np
|
||||
import base64
|
||||
|
||||
#from transformers import GPTJForCausalLM
|
||||
#from transformers import GPT2TokenizerFast
|
||||
@ -224,18 +225,14 @@ with np.load(os.path.join(dir_whisper, "whisper/assets", "mel_filters.npz")) as
|
||||
#code.interact(local=locals())
|
||||
|
||||
multilingual = hparams["n_vocab"] == 51865
|
||||
dir_tokenizer = os.path.join(dir_whisper, "whisper/assets", multilingual and "multilingual" or "gpt2")
|
||||
|
||||
#tokenizer = build_tokenizer(dir_whisper, multilingual and "multilingual" or "gpt2")
|
||||
#print(tokenizer)
|
||||
#print(tokenizer.name_or_path)
|
||||
#print(len(tokenizer.additional_special_tokens))
|
||||
tokenizer = os.path.join(dir_whisper, "whisper/assets", multilingual and "multilingual.tiktoken" or "gpt2.tiktoken")
|
||||
|
||||
# output in the same directory as the model
|
||||
fname_out = dir_out + "/ggml-model.bin"
|
||||
|
||||
with open(dir_tokenizer + "/vocab.json", "r", encoding="utf8") as f:
|
||||
tokens = json.load(f)
|
||||
with open(tokenizer, "rb") as f:
|
||||
contents = f.read()
|
||||
tokens = {base64.b64decode(token): int(rank) for token, rank in (line.split() for line in contents.splitlines() if line)}
|
||||
|
||||
# use 16-bit or 32-bit floats
|
||||
use_f16 = True
|
||||
@ -271,9 +268,8 @@ byte_decoder = {v:k for k, v in byte_encoder.items()}
|
||||
fout.write(struct.pack("i", len(tokens)))
|
||||
|
||||
for key in tokens:
|
||||
text = bytearray([byte_decoder[c] for c in key])
|
||||
fout.write(struct.pack("i", len(text)))
|
||||
fout.write(text)
|
||||
fout.write(struct.pack("i", len(key)))
|
||||
fout.write(key)
|
||||
|
||||
for name in list_vars.keys():
|
||||
data = list_vars[name].squeeze().numpy()
|
||||
|
334
models/convert-whisper-to-coreml.py
Normal file
334
models/convert-whisper-to-coreml.py
Normal file
@ -0,0 +1,334 @@
|
||||
import argparse
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import coremltools as ct
|
||||
|
||||
from torch import Tensor
|
||||
from torch import nn
|
||||
from typing import Dict
|
||||
from typing import Optional
|
||||
from ane_transformers.reference.layer_norm import LayerNormANE as LayerNormANEBase
|
||||
from coremltools.models.neural_network.quantization_utils import quantize_weights
|
||||
from whisper.model import Whisper, AudioEncoder, TextDecoder, ResidualAttentionBlock, MultiHeadAttention, ModelDimensions
|
||||
from whisper import load_model
|
||||
|
||||
# Use for changing dim of input in encoder and decoder embeddings
|
||||
def linear_to_conv2d_map(state_dict, prefix, local_metadata, strict,
|
||||
missing_keys, unexpected_keys, error_msgs):
|
||||
"""
|
||||
Unsqueeze twice to map nn.Linear weights to nn.Conv2d weights
|
||||
"""
|
||||
for k in state_dict:
|
||||
is_attention = all(substr in k for substr in ['attn', '.weight'])
|
||||
is_mlp = any([k.endswith(s) for s in ['mlp.0.weight', 'mlp.2.weight']])
|
||||
|
||||
if (is_attention or is_mlp) and len(state_dict[k].shape) == 2:
|
||||
state_dict[k] = state_dict[k][:, :, None, None]
|
||||
|
||||
|
||||
def correct_for_bias_scale_order_inversion(state_dict, prefix, local_metadata,
|
||||
strict, missing_keys,
|
||||
unexpected_keys, error_msgs):
|
||||
state_dict[prefix + 'bias'] = state_dict[prefix + 'bias'] / state_dict[prefix + 'weight']
|
||||
return state_dict
|
||||
|
||||
class LayerNormANE(LayerNormANEBase):
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self._register_load_state_dict_pre_hook(
|
||||
correct_for_bias_scale_order_inversion)
|
||||
|
||||
class MultiHeadAttentionANE(MultiHeadAttention):
|
||||
def __init__(self, n_state: int, n_head: int):
|
||||
super().__init__(n_state, n_head)
|
||||
|
||||
setattr(self, 'query', nn.Conv2d(n_state, n_state, kernel_size=1))
|
||||
setattr(self, 'key', nn.Conv2d(n_state, n_state, kernel_size=1, bias=False))
|
||||
setattr(self, 'value', nn.Conv2d(n_state, n_state, kernel_size=1))
|
||||
setattr(self, 'out', nn.Conv2d(n_state, n_state, kernel_size=1))
|
||||
|
||||
def forward(self,
|
||||
x: Tensor,
|
||||
xa: Optional[Tensor] = None,
|
||||
mask: Optional[Tensor] = None,
|
||||
kv_cache: Optional[dict] = None):
|
||||
|
||||
q = self.query(x)
|
||||
|
||||
if kv_cache is None or xa is None or self.key not in kv_cache:
|
||||
# hooks, if installed (i.e. kv_cache is not None), will prepend the cached kv tensors;
|
||||
# otherwise, perform key/value projections for self- or cross-attention as usual.
|
||||
k = self.key(x if xa is None else xa)
|
||||
v = self.value(x if xa is None else xa)
|
||||
|
||||
else:
|
||||
# for cross-attention, calculate keys and values once and reuse in subsequent calls.
|
||||
k = kv_cache[self.key]
|
||||
v = kv_cache[self.value]
|
||||
|
||||
wv, qk = self.qkv_attention_ane(q, k, v, mask)
|
||||
|
||||
return self.out(wv), qk
|
||||
|
||||
def qkv_attention_ane(self, q: Tensor, k: Tensor, v: Tensor, mask: Optional[Tensor] = None):
|
||||
|
||||
_, dim, _, seqlen = q.size()
|
||||
|
||||
dim_per_head = dim // self.n_head
|
||||
|
||||
scale = float(dim_per_head)**-0.5
|
||||
|
||||
q = q * scale
|
||||
|
||||
mh_q = q.split(dim_per_head, dim=1)
|
||||
mh_k = k.transpose(1,3).split(dim_per_head, dim=3)
|
||||
mh_v = v.split(dim_per_head, dim=1)
|
||||
|
||||
mh_qk = [
|
||||
torch.einsum('bchq,bkhc->bkhq', [qi, ki])
|
||||
for qi, ki in zip(mh_q, mh_k)
|
||||
] # (batch_size, max_seq_length, 1, max_seq_length) * n_heads
|
||||
|
||||
if mask is not None:
|
||||
for head_idx in range(self.n_head):
|
||||
mh_qk[head_idx] = mh_qk[head_idx] + mask[:, :seqlen, :, :seqlen]
|
||||
|
||||
attn_weights = [aw.softmax(dim=1) for aw in mh_qk] # (batch_size, max_seq_length, 1, max_seq_length) * n_heads
|
||||
attn = [torch.einsum('bkhq,bchk->bchq', wi, vi) for wi, vi in zip(attn_weights, mh_v)] # (batch_size, dim_per_head, 1, max_seq_length) * n_heads
|
||||
attn = torch.cat(attn, dim=1) # (batch_size, dim, 1, max_seq_length)
|
||||
|
||||
return attn, torch.cat(mh_qk, dim=1).float().detach()
|
||||
|
||||
|
||||
class ResidualAttentionBlockANE(ResidualAttentionBlock):
|
||||
def __init__(self, n_state: int, n_head: int, cross_attention: bool = False):
|
||||
super().__init__(n_state, n_head, cross_attention)
|
||||
|
||||
setattr(self, 'attn', MultiHeadAttentionANE(n_state, n_head))
|
||||
setattr(self, 'attn_ln', LayerNormANE(n_state))
|
||||
|
||||
setattr(self, 'cross_attn', MultiHeadAttentionANE(n_state, n_head) if cross_attention else None)
|
||||
setattr(self, 'cross_attn_ln', LayerNormANE(n_state) if cross_attention else None)
|
||||
|
||||
n_mlp = n_state * 4
|
||||
setattr(self, 'mlp', nn.Sequential(
|
||||
nn.Conv2d(n_state, n_mlp, kernel_size=1),
|
||||
nn.GELU(),
|
||||
nn.Conv2d(n_mlp, n_state, kernel_size=1)
|
||||
))
|
||||
setattr(self, 'mlp_ln', LayerNormANE(n_state))
|
||||
|
||||
|
||||
class AudioEncoderANE(AudioEncoder):
|
||||
def __init__(self, n_mels: int, n_ctx: int, n_state: int, n_head: int, n_layer: int):
|
||||
super().__init__(n_mels, n_ctx, n_state, n_head, n_layer)
|
||||
|
||||
setattr(self, 'blocks', nn.ModuleList(
|
||||
[ResidualAttentionBlockANE(n_state, n_head) for _ in range(n_layer)]
|
||||
))
|
||||
setattr(self, 'ln_post', LayerNormANE(n_state))
|
||||
|
||||
def forward(self, x: Tensor):
|
||||
"""
|
||||
x : torch.Tensor, shape = (batch_size, n_mels, n_ctx)
|
||||
the mel spectrogram of the audio
|
||||
"""
|
||||
x = F.gelu(self.conv1(x))
|
||||
x = F.gelu(self.conv2(x))
|
||||
|
||||
assert x.shape[1:] == self.positional_embedding.shape[::-1], "incorrect audio shape"
|
||||
|
||||
# Add positional embedding and add dummy dim for ANE
|
||||
x = (x + self.positional_embedding.transpose(0,1)).to(x.dtype).unsqueeze(2)
|
||||
|
||||
for block in self.blocks:
|
||||
x = block(x)
|
||||
|
||||
x = self.ln_post(x)
|
||||
|
||||
# """
|
||||
# TODO:
|
||||
# I think we need to transpose the result here to make it fit whisper.cpp memory order.
|
||||
# However, even doing this, the results are still wrong. Kind of less wrong compared to
|
||||
# not transposing, but still wrong.
|
||||
|
||||
# Also, I don't know why the original OpenAI implementation does not need to transpose
|
||||
|
||||
# transpose to (batch_size, n_ctx, n_state)
|
||||
# x : torch.Tensor, shape = (batch_size, n_state, 1, n_ctx)
|
||||
|
||||
# """
|
||||
# x = x.transpose(1,3)
|
||||
|
||||
return x
|
||||
|
||||
class TextDecoderANE(TextDecoder):
|
||||
|
||||
def __init__(self, n_vocab: int, n_ctx: int, n_state: int, n_head: int, n_layer: int):
|
||||
super().__init__(n_vocab, n_ctx, n_state, n_head, n_layer)
|
||||
|
||||
setattr(self, 'blocks', nn.ModuleList(
|
||||
[ResidualAttentionBlockANE(n_state, n_head, cross_attention=True) for _ in range(n_layer)]
|
||||
))
|
||||
setattr(self, 'ln', LayerNormANE(n_state))
|
||||
|
||||
def forward(self, x: Tensor, xa: Tensor, kv_cache: Optional[dict] = None):
|
||||
"""
|
||||
x : torch.LongTensor, shape = (batch_size, <= n_ctx)
|
||||
the text tokens
|
||||
xa : torch.Tensor, shape = (batch_size, n_mels, n_audio_ctx)
|
||||
the encoded audio features to be attended on
|
||||
"""
|
||||
offset = next(iter(kv_cache.values())).shape[3] if kv_cache else 0
|
||||
x = self.token_embedding(x) + self.positional_embedding[offset : offset + x.shape[-1]]
|
||||
x = x.to(xa.dtype)
|
||||
|
||||
# Reformat for ANE
|
||||
mask = self.mask[None, None, :, :].permute(0,3,1,2)
|
||||
x = x.transpose(1,2).unsqueeze(2)
|
||||
|
||||
for block in self.blocks:
|
||||
x = block(x, xa, mask=mask, kv_cache=kv_cache)
|
||||
|
||||
x = self.ln(x)
|
||||
|
||||
# Reformat back from ANE
|
||||
x = x.permute(0,2,3,1).squeeze(0)
|
||||
|
||||
# ANE can only load tensors with dim size of at most 16,384 - whisper uses 51,864 (en) or 51,865 (multi-lang) tokens so we need to compute in chunks
|
||||
if self.token_embedding.weight.shape[0] == 51865:
|
||||
# split in 11 chunks - 4715 each
|
||||
splits = self.token_embedding.weight.split(self.token_embedding.weight.shape[0]//11, dim=0)
|
||||
logits = torch.cat([torch.einsum('bid,jd->bij', x, split) for split in splits]).view(*x.shape[:2], -1)
|
||||
else:
|
||||
# split in 12 chunks - 4322 each
|
||||
assert(self.token_embedding.weight.shape[0] == 51864)
|
||||
splits = self.token_embedding.weight.split(self.token_embedding.weight.shape[0]//12, dim=0)
|
||||
logits = torch.cat([torch.einsum('bid,jd->bij', x, split) for split in splits]).view(*x.shape[:2], -1)
|
||||
|
||||
return logits
|
||||
|
||||
class WhisperANE(Whisper):
|
||||
def __init__(self, dims: ModelDimensions):
|
||||
super().__init__(dims)
|
||||
|
||||
setattr(self, 'encoder', AudioEncoderANE(
|
||||
self.dims.n_mels,
|
||||
self.dims.n_audio_ctx,
|
||||
self.dims.n_audio_state,
|
||||
self.dims.n_audio_head,
|
||||
self.dims.n_audio_layer,
|
||||
))
|
||||
setattr(self, 'decoder', TextDecoderANE(
|
||||
self.dims.n_vocab,
|
||||
self.dims.n_text_ctx,
|
||||
self.dims.n_text_state,
|
||||
self.dims.n_text_head,
|
||||
self.dims.n_text_layer,
|
||||
))
|
||||
|
||||
self._register_load_state_dict_pre_hook(linear_to_conv2d_map)
|
||||
|
||||
def forward(self, mel: torch.Tensor, tokens: torch.Tensor) -> Dict[str, torch.Tensor]:
|
||||
return self.decoder(tokens, self.encoder(mel))
|
||||
|
||||
def install_kv_cache_hooks(self, cache: Optional[dict] = None):
|
||||
cache = {**cache} if cache is not None else {}
|
||||
hooks = []
|
||||
|
||||
def save_to_cache(module, _, output):
|
||||
if module not in cache or output.shape[3] > self.decoder.positional_embedding.shape[0]:
|
||||
cache[module] = output # save as-is, for the first token or cross attention
|
||||
else:
|
||||
cache[module] = torch.cat([cache[module], output], dim=3).detach()
|
||||
return cache[module]
|
||||
|
||||
def install_hooks(layer: nn.Module):
|
||||
if isinstance(layer, MultiHeadAttentionANE):
|
||||
hooks.append(layer.key.register_forward_hook(save_to_cache))
|
||||
hooks.append(layer.value.register_forward_hook(save_to_cache))
|
||||
|
||||
self.decoder.apply(install_hooks)
|
||||
return cache, hooks
|
||||
|
||||
def convert_encoder(hparams, model, quantize=False):
|
||||
model.eval()
|
||||
|
||||
input_shape = (1, 80, 3000)
|
||||
input_data = torch.randn(input_shape)
|
||||
traced_model = torch.jit.trace(model, input_data)
|
||||
|
||||
model = ct.convert(
|
||||
traced_model,
|
||||
convert_to=None if quantize else "mlprogram", # convert will fail if weights are quantized, not sure why
|
||||
inputs=[ct.TensorType(name="logmel_data", shape=input_shape)],
|
||||
outputs=[ct.TensorType(name="output")],
|
||||
compute_units=ct.ComputeUnit.ALL
|
||||
)
|
||||
|
||||
if quantize:
|
||||
model = quantize_weights(model, nbits=16)
|
||||
|
||||
return model
|
||||
|
||||
def convert_decoder(hparams, model, quantize=False):
|
||||
model.eval()
|
||||
|
||||
tokens_shape = (1, 1)
|
||||
audio_shape = (1, hparams.n_audio_state, 1, 1500)
|
||||
|
||||
audio_data = torch.randn(audio_shape)
|
||||
token_data = torch.randint(50257, tokens_shape).long()
|
||||
traced_model = torch.jit.trace(model, (token_data, audio_data))
|
||||
|
||||
model = ct.convert(
|
||||
traced_model,
|
||||
convert_to=None if quantize else "mlprogram", # convert will fail if weights are quantized, not sure why
|
||||
inputs=[
|
||||
ct.TensorType(name="token_data", shape=tokens_shape, dtype=int),
|
||||
ct.TensorType(name="audio_data", shape=audio_shape)
|
||||
]
|
||||
)
|
||||
|
||||
if quantize:
|
||||
model = quantize_weights(model, nbits=16)
|
||||
|
||||
return model
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--model", type=str, help="model to convert (e.g. tiny, tiny.en, base, base.en, small, small.en, medium, medium.en, large)", required=True)
|
||||
parser.add_argument("--encoder-only", type=bool, help="only convert encoder", default=False)
|
||||
parser.add_argument("--quantize", type=bool, help="quantize weights to F16", default=False)
|
||||
parser.add_argument("--optimize-ane", type=bool, help="optimize for ANE execution (currently broken)", default=False)
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.model not in ["tiny", "tiny.en", "base", "base.en", "small", "small.en", "medium", "medium.en", "large"]:
|
||||
raise ValueError("Invalid model name")
|
||||
|
||||
whisper = load_model(args.model).cpu()
|
||||
hparams = whisper.dims
|
||||
print(hparams)
|
||||
|
||||
if args.optimize_ane:
|
||||
whisperANE = WhisperANE(hparams).eval()
|
||||
whisperANE.load_state_dict(whisper.state_dict())
|
||||
|
||||
encoder = whisperANE.encoder
|
||||
decoder = whisperANE.decoder
|
||||
else:
|
||||
encoder = whisper.encoder
|
||||
decoder = whisper.decoder
|
||||
|
||||
# Convert encoder
|
||||
encoder = convert_encoder(hparams, encoder, quantize=args.quantize)
|
||||
encoder.save(f"models/coreml-encoder-{args.model}.mlpackage")
|
||||
|
||||
if args.encoder_only is False:
|
||||
# Convert decoder
|
||||
decoder = convert_decoder(hparams, decoder, quantize=args.quantize)
|
||||
decoder.save(f"models/coreml-decoder-{args.model}.mlpackage")
|
||||
|
||||
print("done converting")
|
82
models/download-coreml-model.sh
Executable file
82
models/download-coreml-model.sh
Executable file
@ -0,0 +1,82 @@
|
||||
#!/bin/bash
|
||||
|
||||
# This script downloads Whisper model files that have already been converted to Core ML format.
|
||||
# This way you don't have to convert them yourself.
|
||||
|
||||
src="https://huggingface.co/datasets/ggerganov/whisper.cpp-coreml"
|
||||
pfx="resolve/main/ggml"
|
||||
|
||||
# get the path of this script
|
||||
function get_script_path() {
|
||||
if [ -x "$(command -v realpath)" ]; then
|
||||
echo "$(dirname $(realpath $0))"
|
||||
else
|
||||
local ret="$(cd -- "$(dirname "$0")" >/dev/null 2>&1 ; pwd -P)"
|
||||
echo "$ret"
|
||||
fi
|
||||
}
|
||||
|
||||
models_path="$(get_script_path)"
|
||||
|
||||
# Whisper models
|
||||
models=( "tiny.en" "tiny" "base.en" "base" "small.en" "small" "medium.en" "medium" "large-v1" "large" )
|
||||
|
||||
# list available models
|
||||
function list_models {
|
||||
printf "\n"
|
||||
printf " Available models:"
|
||||
for model in "${models[@]}"; do
|
||||
printf " $model"
|
||||
done
|
||||
printf "\n\n"
|
||||
}
|
||||
|
||||
if [ "$#" -ne 1 ]; then
|
||||
printf "Usage: $0 <model>\n"
|
||||
list_models
|
||||
|
||||
exit 1
|
||||
fi
|
||||
|
||||
model=$1
|
||||
|
||||
if [[ ! " ${models[@]} " =~ " ${model} " ]]; then
|
||||
printf "Invalid model: $model\n"
|
||||
list_models
|
||||
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# download Core ML model
|
||||
|
||||
printf "Downloading Core ML model $model from '$src' ...\n"
|
||||
|
||||
cd $models_path
|
||||
|
||||
if [ -f "ggml-$model.mlmodel" ]; then
|
||||
printf "Model $model already exists. Skipping download.\n"
|
||||
exit 0
|
||||
fi
|
||||
|
||||
if [ -x "$(command -v wget)" ]; then
|
||||
wget --quiet --show-progress -O ggml-$model.mlmodel $src/$pfx-$model.mlmodel
|
||||
elif [ -x "$(command -v curl)" ]; then
|
||||
curl -L --output ggml-$model.mlmodel $src/$pfx-$model.mlmodel
|
||||
else
|
||||
printf "Either wget or curl is required to download models.\n"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
printf "Failed to download Core ML model $model \n"
|
||||
printf "Please try again later or download the original Whisper model files and convert them yourself.\n"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
printf "Done! Model '$model' saved in 'models/ggml-$model.mlmodel'\n"
|
||||
printf "Run the following command to compile it:\n\n"
|
||||
printf " $ xcrun coremlc compile ./models/ggml-$model.mlmodel ./models\n\n"
|
||||
printf "You can now use it like this:\n\n"
|
||||
printf " $ ./main -m models/ggml-$model.bin -f samples/jfk.wav\n"
|
||||
printf "\n"
|
@ -40,7 +40,7 @@ if exist "ggml-%model%.bin" (
|
||||
goto :eof
|
||||
)
|
||||
|
||||
PowerShell -NoProfile -ExecutionPolicy Bypass -Command "Invoke-WebRequest -Uri https://huggingface.co/datasets/ggerganov/whisper.cpp/resolve/main/ggml-%model%.bin -OutFile ggml-%model%.bin"
|
||||
PowerShell -NoProfile -ExecutionPolicy Bypass -Command "Invoke-WebRequest -Uri https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-%model%.bin -OutFile ggml-%model%.bin"
|
||||
|
||||
if %ERRORLEVEL% neq 0 (
|
||||
echo Failed to download ggml model %model%
|
||||
|
@ -6,13 +6,13 @@
|
||||
#src="https://ggml.ggerganov.com"
|
||||
#pfx="ggml-model-whisper"
|
||||
|
||||
src="https://huggingface.co/datasets/ggerganov/whisper.cpp"
|
||||
src="https://huggingface.co/ggerganov/whisper.cpp"
|
||||
pfx="resolve/main/ggml"
|
||||
|
||||
# get the path of this script
|
||||
function get_script_path() {
|
||||
if [ -x "$(command -v realpath)" ]; then
|
||||
echo "$(dirname $(realpath $0))"
|
||||
echo "$(dirname "$(realpath "$0")")"
|
||||
else
|
||||
local ret="$(cd -- "$(dirname "$0")" >/dev/null 2>&1 ; pwd -P)"
|
||||
echo "$ret"
|
||||
|
29
models/generate-coreml-interface.sh
Executable file
29
models/generate-coreml-interface.sh
Executable file
@ -0,0 +1,29 @@
|
||||
#!/bin/bash
|
||||
#
|
||||
# This generates:
|
||||
# - coreml/whisper-encoder-impl.h and coreml/whisper-encoder-impl.m
|
||||
# - coreml/whisper-decoder-impl.h and coreml/whisper-decoder-impl.m
|
||||
#
|
||||
|
||||
wd=$(dirname "$0")
|
||||
cd "$wd/../"
|
||||
|
||||
python3 models/convert-whisper-to-coreml.py --model tiny.en
|
||||
|
||||
mv -v models/coreml-encoder-tiny.en.mlpackage models/whisper-encoder-impl.mlpackage
|
||||
xcrun coremlc generate models/whisper-encoder-impl.mlpackage coreml/
|
||||
mv coreml/whisper_encoder_impl.h coreml/whisper-encoder-impl.h
|
||||
mv coreml/whisper_encoder_impl.m coreml/whisper-encoder-impl.m
|
||||
sed -i '' 's/whisper_encoder_impl\.h/whisper-encoder-impl.h/g' coreml/whisper-encoder-impl.m
|
||||
sed -i '' 's/whisper_encoder_impl\.m/whisper-encoder-impl.m/g' coreml/whisper-encoder-impl.m
|
||||
sed -i '' 's/whisper_encoder_impl\.h/whisper-encoder-impl.h/g' coreml/whisper-encoder-impl.h
|
||||
|
||||
mv -v models/coreml-decoder-tiny.en.mlpackage models/whisper-decoder-impl.mlpackage
|
||||
xcrun coremlc generate models/whisper-decoder-impl.mlpackage coreml/
|
||||
mv coreml/whisper_decoder_impl.h coreml/whisper-decoder-impl.h
|
||||
mv coreml/whisper_decoder_impl.m coreml/whisper-decoder-impl.m
|
||||
sed -i '' 's/whisper_decoder_impl\.h/whisper-decoder-impl.h/g' coreml/whisper-decoder-impl.m
|
||||
sed -i '' 's/whisper_decoder_impl\.m/whisper-decoder-impl.m/g' coreml/whisper-decoder-impl.m
|
||||
sed -i '' 's/whisper_decoder_impl\.h/whisper-decoder-impl.h/g' coreml/whisper-decoder-impl.h
|
||||
|
||||
rm -rfv models/whisper-encoder-impl.mlpackage models/whisper-decoder-impl.mlpackage
|
25
models/generate-coreml-model.sh
Executable file
25
models/generate-coreml-model.sh
Executable file
@ -0,0 +1,25 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Usage: ./generate-coreml-model.sh <model-name>
|
||||
if [ $# -eq 0 ]
|
||||
then
|
||||
echo "No model name supplied"
|
||||
echo "Usage: ./generate-coreml-model.sh <model-name>"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
mname="$1"
|
||||
|
||||
wd=$(dirname "$0")
|
||||
cd "$wd/../"
|
||||
|
||||
python3 models/convert-whisper-to-coreml.py --model $mname --encoder-only True
|
||||
|
||||
xcrun coremlc compile models/coreml-encoder-${mname}.mlpackage models/
|
||||
rm -rf models/ggml-${mname}-encoder.mlmodelc
|
||||
mv -v models/coreml-encoder-${mname}.mlmodelc models/ggml-${mname}-encoder.mlmodelc
|
||||
|
||||
# TODO: decoder (sometime in the future maybe)
|
||||
#xcrun coremlc compile models/whisper-decoder-${mname}.mlpackage models/
|
||||
#rm -rf models/ggml-${mname}-decoder.mlmodelc
|
||||
#mv -v models/coreml_decoder_${mname}.mlmodelc models/ggml-${mname}-decoder.mlmodelc
|
2355
whisper.cpp
2355
whisper.cpp
File diff suppressed because it is too large
Load Diff
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user