Compare commits

..

17 Commits

Author SHA1 Message Date
b2083c5d02 release : v1.2.0 2023-02-04 09:49:49 +02:00
f3ee4a9673 whisper : reduce memory usage during inference (#431)
* ggml : add "scratch" buffer support

* ggml : support for scratch ring-buffer

* ggml : bug fix in ggml_repeat()

* ggml : error on scratch buffer overflow

* whisper : use scratch buffers during inference (base model only)

* whisper : update memory usage for all models

* whisper : fix encoder memory usage

* whisper : use whisper_context functions instead of macros

* whisper : fix FF + remove it from README

* ggml : reuse ggml_new_i32

* ggml : refactor the scratch buffer storage

* whisper : reorder scratch buffers in the decoder

* main : add option to disable temp fallback

* Update README.md
2023-02-04 09:45:52 +02:00
c306a7fd89 addon.node : using whisper as a Node.js addon (#443)
* addon: implement node addon call whisper through cpp

* addon: modify the license to MIT

* addon: remove iostream

* addon: rename dir

* addon: fix typo

* addon: configure cmake to build when cmake-js is used
2023-02-04 09:10:25 +02:00
b2fc4c7010 go : support "auto" as an option when set language (#462)
Co-authored-by: Ming <ming@localhost>
2023-02-04 09:09:27 +02:00
291980369c whisper : suppress task tokens (#442) 2023-02-04 09:03:14 +02:00
86ef64a855 wasm : fix typo in helper.js (#459) 2023-02-04 08:49:15 +02:00
3b1960520a main : CSV format export trimmed spaces fix (#444)
* Update main.cpp

Removed string trimming

* Update main.cpp

* Update main.cpp

* Revert "Update main.cpp"

This reverts commit d8924fdcfe.

* Revert "Update main.cpp"

This reverts commit 252e508d85.
2023-02-04 08:48:35 +02:00
2bee2650c6 go : add wrapper for system info (#456) 2023-01-28 18:44:56 +02:00
beb9512be3 go : add WhisperLangAutoDetect method to go binding (#451) 2023-01-27 01:14:20 +02:00
47737b2e82 livestream.sh : run main with model arg instead of default (#453)
Actually utilizes the $model var when calling ./main.
2023-01-27 01:13:31 +02:00
b992f3709e whisper : do not provide past prompt when n_max_text_ctx == 0 2023-01-25 20:01:00 +02:00
60337f5306 wasm : check if navigator.storage.estimate() is available
Safari does not support it
2023-01-25 20:00:59 +02:00
02c7516c57 go : added wrappers to reset and print timings (#436) 2023-01-25 18:57:30 +02:00
411ea9b833 ci : run workflows on pull requests + bindings depend on .h (#446) 2023-01-25 18:50:50 +02:00
11f61cecd6 whisper.wasm : add labels for easier radio selection (#435) 2023-01-23 20:49:00 +02:00
b5ddb16ec7 whisper : condition timestamps to be monotonically increasing (#425) 2023-01-23 20:48:26 +02:00
ae16c21e9c whisper : PPC64 big-endian support (#398)
* ggml : set cache line size to 128 on POWER9

* whisper : add PPC64 big endian support
2023-01-23 20:48:10 +02:00
28 changed files with 1630 additions and 716 deletions

View File

@ -3,11 +3,16 @@ on:
push:
paths:
- bindings/go/**
- whisper.h
pull_request:
paths:
- bindings/go/**
- whisper.h
jobs:
ubuntu-latest:
runs-on: ubuntu-latest
steps:
ubuntu-latest:
runs-on: ubuntu-latest
steps:
- uses: actions/setup-go@v3
with:
go-version: '^1.19'

View File

@ -1,267 +1,267 @@
name: CI
on: [push]
on: [push, pull_request]
jobs:
ubuntu-latest:
runs-on: ubuntu-latest
ubuntu-latest:
runs-on: ubuntu-latest
steps:
- name: Clone
uses: actions/checkout@v1
steps:
- name: Clone
uses: actions/checkout@v1
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential
sudo apt-get install libsdl2-dev
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential
sudo apt-get install libsdl2-dev
- name: Build
run: |
make
make stream
- name: Build
run: |
make
make stream
macOS-latest:
runs-on: macOS-latest
macOS-latest:
runs-on: macOS-latest
steps:
- name: Clone
uses: actions/checkout@v1
steps:
- name: Clone
uses: actions/checkout@v1
- name: Dependencies
run: |
brew update
brew install sdl2
- name: Dependencies
run: |
brew update
brew install sdl2
- name: Build
run: |
make
make stream
- name: Build
run: |
make
make stream
ubuntu-latest-gcc:
runs-on: ubuntu-latest
ubuntu-latest-gcc:
runs-on: ubuntu-latest
strategy:
matrix:
build: [Debug, Release]
strategy:
matrix:
build: [Debug, Release]
steps:
- name: Clone
uses: actions/checkout@v1
steps:
- name: Clone
uses: actions/checkout@v1
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential
sudo apt-get install cmake
sudo apt-get install libsdl2-dev
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential
sudo apt-get install cmake
sudo apt-get install libsdl2-dev
- name: Configure
run: cmake . -DWHISPER_SUPPORT_SDL2=ON -DCMAKE_BUILD_TYPE=${{ matrix.build }}
- name: Configure
run: cmake . -DWHISPER_SUPPORT_SDL2=ON -DCMAKE_BUILD_TYPE=${{ matrix.build }}
- name: Build
run: |
make
ctest -L gh --output-on-failure
- name: Build
run: |
make
ctest -L gh --output-on-failure
ubuntu-latest-clang:
runs-on: ubuntu-latest
ubuntu-latest-clang:
runs-on: ubuntu-latest
strategy:
matrix:
build: [Debug, Release]
strategy:
matrix:
build: [Debug, Release]
steps:
- name: Clone
uses: actions/checkout@v1
steps:
- name: Clone
uses: actions/checkout@v1
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential
sudo apt-get install cmake
sudo apt-get install libsdl2-dev
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential
sudo apt-get install cmake
sudo apt-get install libsdl2-dev
- name: Configure
run: cmake . -DWHISPER_SUPPORT_SDL2=ON -DCMAKE_BUILD_TYPE=${{ matrix.build }} -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_COMPILER=clang
- name: Configure
run: cmake . -DWHISPER_SUPPORT_SDL2=ON -DCMAKE_BUILD_TYPE=${{ matrix.build }} -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_COMPILER=clang
- name: Build
run: |
make
ctest -L gh --output-on-failure
- name: Build
run: |
make
ctest -L gh --output-on-failure
ubuntu-latest-gcc-sanitized:
runs-on: ubuntu-latest
ubuntu-latest-gcc-sanitized:
runs-on: ubuntu-latest
strategy:
matrix:
sanitizer: [ADDRESS, THREAD, UNDEFINED]
strategy:
matrix:
sanitizer: [ADDRESS, THREAD, UNDEFINED]
steps:
- name: Clone
uses: actions/checkout@v1
steps:
- name: Clone
uses: actions/checkout@v1
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential
sudo apt-get install cmake
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential
sudo apt-get install cmake
- name: Configure
run: cmake . -DCMAKE_BUILD_TYPE=Debug -DWHISPER_SANITIZE_${{ matrix.sanitizer }}=ON
- name: Configure
run: cmake . -DCMAKE_BUILD_TYPE=Debug -DWHISPER_SANITIZE_${{ matrix.sanitizer }}=ON
- name: Build
run: |
make
ctest -L gh --output-on-failure
- name: Build
run: |
make
ctest -L gh --output-on-failure
windows:
runs-on: windows-latest
windows:
runs-on: windows-latest
strategy:
matrix:
build: [Release]
arch: [Win32, x64]
sdl2: [ON]
include:
- arch: Win32
s2arc: x86
- arch: x64
s2arc: x64
- sdl2: ON
s2ver: 2.26.0
strategy:
matrix:
build: [Release]
arch: [Win32, x64]
sdl2: [ON]
include:
- arch: Win32
s2arc: x86
- arch: x64
s2arc: x64
- sdl2: ON
s2ver: 2.26.0
steps:
- name: Clone
uses: actions/checkout@v1
steps:
- name: Clone
uses: actions/checkout@v1
- name: Add msbuild to PATH
uses: microsoft/setup-msbuild@v1
- name: Add msbuild to PATH
uses: microsoft/setup-msbuild@v1
- name: Fetch SDL2 and set SDL2_DIR
if: matrix.sdl2 == 'ON'
run: |
C:/msys64/usr/bin/wget.exe -qO sdl2.zip https://github.com/libsdl-org/SDL/releases/download/release-${{ matrix.s2ver }}/SDL2-devel-${{ matrix.s2ver }}-VC.zip
7z x sdl2.zip
echo "SDL2_DIR=$env:GITHUB_WORKSPACE/SDL2-${{ matrix.s2ver }}/cmake" >> $env:GITHUB_ENV
- name: Fetch SDL2 and set SDL2_DIR
if: matrix.sdl2 == 'ON'
run: |
C:/msys64/usr/bin/wget.exe -qO sdl2.zip https://github.com/libsdl-org/SDL/releases/download/release-${{ matrix.s2ver }}/SDL2-devel-${{ matrix.s2ver }}-VC.zip
7z x sdl2.zip
echo "SDL2_DIR=$env:GITHUB_WORKSPACE/SDL2-${{ matrix.s2ver }}/cmake" >> $env:GITHUB_ENV
- name: Configure
run: >
cmake -S . -B ./build -A ${{ matrix.arch }}
-DCMAKE_BUILD_TYPE=${{ matrix.build }}
-DWHISPER_SUPPORT_SDL2=${{ matrix.sdl2 }}
- name: Configure
run: >
cmake -S . -B ./build -A ${{ matrix.arch }}
-DCMAKE_BUILD_TYPE=${{ matrix.build }}
-DWHISPER_SUPPORT_SDL2=${{ matrix.sdl2 }}
- name: Build
run: |
cd ./build
msbuild ALL_BUILD.vcxproj -t:build -p:configuration=${{ matrix.build }} -p:platform=${{ matrix.arch }}
- name: Build
run: |
cd ./build
msbuild ALL_BUILD.vcxproj -t:build -p:configuration=${{ matrix.build }} -p:platform=${{ matrix.arch }}
- name: Copy SDL2.dll
if: matrix.sdl2 == 'ON'
run: copy "$env:SDL2_DIR/../lib/${{ matrix.s2arc }}/SDL2.dll" build/bin/${{ matrix.build }}
- name: Copy SDL2.dll
if: matrix.sdl2 == 'ON'
run: copy "$env:SDL2_DIR/../lib/${{ matrix.s2arc }}/SDL2.dll" build/bin/${{ matrix.build }}
- name: Upload binaries
if: matrix.sdl2 == 'ON'
uses: actions/upload-artifact@v1
with:
name: whisper-bin-${{ matrix.arch }}
path: build/bin/${{ matrix.build }}
- name: Upload binaries
if: matrix.sdl2 == 'ON'
uses: actions/upload-artifact@v1
with:
name: whisper-bin-${{ matrix.arch }}
path: build/bin/${{ matrix.build }}
windows-blas:
runs-on: windows-latest
windows-blas:
runs-on: windows-latest
strategy:
matrix:
build: [Release]
arch: [Win32, x64]
blas: [ON]
sdl2: [ON]
include:
- arch: Win32
obzip: https://github.com/xianyi/OpenBLAS/releases/download/v0.3.21/OpenBLAS-0.3.21-x86.zip
s2arc: x86
- arch: x64
obzip: https://github.com/xianyi/OpenBLAS/releases/download/v0.3.21/OpenBLAS-0.3.21-x64.zip
s2arc: x64
- sdl2: ON
s2ver: 2.26.0
strategy:
matrix:
build: [Release]
arch: [Win32, x64]
blas: [ON]
sdl2: [ON]
include:
- arch: Win32
obzip: https://github.com/xianyi/OpenBLAS/releases/download/v0.3.21/OpenBLAS-0.3.21-x86.zip
s2arc: x86
- arch: x64
obzip: https://github.com/xianyi/OpenBLAS/releases/download/v0.3.21/OpenBLAS-0.3.21-x64.zip
s2arc: x64
- sdl2: ON
s2ver: 2.26.0
steps:
- name: Clone
uses: actions/checkout@v1
steps:
- name: Clone
uses: actions/checkout@v1
- name: Add msbuild to PATH
uses: microsoft/setup-msbuild@v1
- name: Add msbuild to PATH
uses: microsoft/setup-msbuild@v1
- name: Fetch OpenBLAS
if: matrix.blas == 'ON'
run: |
C:/msys64/usr/bin/wget.exe -qO blas.zip ${{ matrix.obzip }}
7z x blas.zip -oblas -y
copy blas/include/cblas.h .
copy blas/include/openblas_config.h .
echo "blasdir=$env:GITHUB_WORKSPACE/blas" >> $env:GITHUB_ENV
- name: Fetch OpenBLAS
if: matrix.blas == 'ON'
run: |
C:/msys64/usr/bin/wget.exe -qO blas.zip ${{ matrix.obzip }}
7z x blas.zip -oblas -y
copy blas/include/cblas.h .
copy blas/include/openblas_config.h .
echo "blasdir=$env:GITHUB_WORKSPACE/blas" >> $env:GITHUB_ENV
- name: Fetch SDL2 and set SDL2_DIR
if: matrix.sdl2 == 'ON'
run: |
C:/msys64/usr/bin/wget.exe -qO sdl2.zip https://github.com/libsdl-org/SDL/releases/download/release-${{ matrix.s2ver }}/SDL2-devel-${{ matrix.s2ver }}-VC.zip
7z x sdl2.zip
echo "SDL2_DIR=$env:GITHUB_WORKSPACE/SDL2-${{ matrix.s2ver }}/cmake" >> $env:GITHUB_ENV
- name: Fetch SDL2 and set SDL2_DIR
if: matrix.sdl2 == 'ON'
run: |
C:/msys64/usr/bin/wget.exe -qO sdl2.zip https://github.com/libsdl-org/SDL/releases/download/release-${{ matrix.s2ver }}/SDL2-devel-${{ matrix.s2ver }}-VC.zip
7z x sdl2.zip
echo "SDL2_DIR=$env:GITHUB_WORKSPACE/SDL2-${{ matrix.s2ver }}/cmake" >> $env:GITHUB_ENV
- name: Configure
run: >
cmake -S . -B ./build -A ${{ matrix.arch }}
-DCMAKE_BUILD_TYPE=${{ matrix.build }}
-DWHISPER_SUPPORT_OPENBLAS=${{ matrix.blas }}
-DCMAKE_LIBRARY_PATH="$env:blasdir/lib"
-DWHISPER_SUPPORT_SDL2=${{ matrix.sdl2 }}
- name: Configure
run: >
cmake -S . -B ./build -A ${{ matrix.arch }}
-DCMAKE_BUILD_TYPE=${{ matrix.build }}
-DWHISPER_SUPPORT_OPENBLAS=${{ matrix.blas }}
-DCMAKE_LIBRARY_PATH="$env:blasdir/lib"
-DWHISPER_SUPPORT_SDL2=${{ matrix.sdl2 }}
- name: Build
run: |
cd ./build
msbuild ALL_BUILD.vcxproj -t:build -p:configuration=${{ matrix.build }} -p:platform=${{ matrix.arch }}
- name: Build
run: |
cd ./build
msbuild ALL_BUILD.vcxproj -t:build -p:configuration=${{ matrix.build }} -p:platform=${{ matrix.arch }}
- name: Copy libopenblas.dll
if: matrix.blas == 'ON'
run: copy "$env:blasdir/bin/libopenblas.dll" build/bin/${{ matrix.build }}
- name: Copy libopenblas.dll
if: matrix.blas == 'ON'
run: copy "$env:blasdir/bin/libopenblas.dll" build/bin/${{ matrix.build }}
- name: Copy SDL2.dll
if: matrix.sdl2 == 'ON'
run: copy "$env:SDL2_DIR/../lib/${{ matrix.s2arc }}/SDL2.dll" build/bin/${{ matrix.build }}
- name: Copy SDL2.dll
if: matrix.sdl2 == 'ON'
run: copy "$env:SDL2_DIR/../lib/${{ matrix.s2arc }}/SDL2.dll" build/bin/${{ matrix.build }}
- name: Upload binaries
if: matrix.blas == 'ON' && matrix.sdl2 == 'ON'
uses: actions/upload-artifact@v1
with:
name: whisper-blas-bin-${{ matrix.arch }}
path: build/bin/${{ matrix.build }}
- name: Upload binaries
if: matrix.blas == 'ON' && matrix.sdl2 == 'ON'
uses: actions/upload-artifact@v1
with:
name: whisper-blas-bin-${{ matrix.arch }}
path: build/bin/${{ matrix.build }}
emscripten:
runs-on: ubuntu-latest
emscripten:
runs-on: ubuntu-latest
strategy:
matrix:
build: [Release]
strategy:
matrix:
build: [Release]
steps:
- name: Clone
uses: actions/checkout@v1
steps:
- name: Clone
uses: actions/checkout@v1
- name: Dependencies
run: |
wget -q https://github.com/emscripten-core/emsdk/archive/master.tar.gz
tar -xvf master.tar.gz
emsdk-master/emsdk update
emsdk-master/emsdk install latest
emsdk-master/emsdk activate latest
- name: Dependencies
run: |
wget -q https://github.com/emscripten-core/emsdk/archive/master.tar.gz
tar -xvf master.tar.gz
emsdk-master/emsdk update
emsdk-master/emsdk install latest
emsdk-master/emsdk activate latest
- name: Configure
run: echo "tmp"
- name: Configure
run: echo "tmp"
- name: Build
run: |
pushd emsdk-master
source ./emsdk_env.sh
popd
emcmake cmake . -DCMAKE_BUILD_TYPE=${{ matrix.build }}
make
- name: Build
run: |
pushd emsdk-master
source ./emsdk_env.sh
popd
emcmake cmake . -DCMAKE_BUILD_TYPE=${{ matrix.build }}
make

1
.gitignore vendored
View File

@ -1,4 +1,5 @@
*.o
*.a
.cache/
.vs/
.vscode/

View File

@ -1,6 +1,6 @@
cmake_minimum_required (VERSION 3.0)
project(whisper.cpp VERSION 1.1.1)
project(whisper.cpp VERSION 1.2.0)
# Add path to modules
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake/")

View File

@ -115,11 +115,15 @@ endif
ifeq ($(UNAME_M),amd64)
CFLAGS += -mavx -mavx2 -mfma -mf16c
endif
ifeq ($(UNAME_M),ppc64le)
ifneq ($(filter ppc64%,$(UNAME_M)),)
POWER9_M := $(shell grep "POWER9" /proc/cpuinfo)
ifneq (,$(findstring POWER9,$(POWER9_M)))
CFLAGS += -mpower9-vector
endif
# Require c++23's std::byteswap for big-endian support.
ifeq ($(UNAME_M),ppc64)
CXXFLAGS += -std=c++23 -DGGML_BIG_ENDIAN
endif
endif
ifndef WHISPER_NO_ACCELERATE
# Mac M1 - include Accelerate framework

201
README.md
View File

@ -4,7 +4,7 @@
[![License: MIT](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT)
[![npm](https://img.shields.io/npm/v/whisper.cpp.svg)](https://www.npmjs.com/package/whisper.cpp/)
Stable: [v1.1.1](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.1.1) / [Roadmap | F.A.Q.](https://github.com/ggerganov/whisper.cpp/discussions/126)
Stable: [v1.2.0](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.2.0) / [Roadmap | F.A.Q.](https://github.com/ggerganov/whisper.cpp/discussions/126)
High-performance inference of [OpenAI's Whisper](https://github.com/openai/whisper) automatic speech recognition (ASR) model:
@ -13,7 +13,7 @@ High-performance inference of [OpenAI's Whisper](https://github.com/openai/whisp
- AVX intrinsics support for x86 architectures
- VSX intrinsics support for POWER architectures
- Mixed F16 / F32 precision
- Low memory usage (Flash Attention + Flash Forward)
- Low memory usage (Flash Attention)
- Zero memory allocations at runtime
- Runs on the CPU
- [C-style API](https://github.com/ggerganov/whisper.cpp/blob/master/whisper.h)
@ -89,35 +89,37 @@ c++ -I. -I./examples -O3 -std=c++11 -pthread examples/main/main.cpp whisper.o gg
usage: ./main [options] file0.wav file1.wav ...
options:
-h, --help [default] show this help message and exit
-t N, --threads N [4 ] number of threads to use during computation
-p N, --processors N [1 ] number of processors to use during computation
-ot N, --offset-t N [0 ] time offset in milliseconds
-on N, --offset-n N [0 ] segment index offset
-d N, --duration N [0 ] duration of audio to process in milliseconds
-mc N, --max-context N [-1 ] maximum number of text context tokens to store
-ml N, --max-len N [0 ] maximum segment length in characters
-bo N, --best-of N [5 ] number of best candidates to keep
-bs N, --beam-size N [-1 ] beam size for beam search
-wt N, --word-thold N [0.01 ] word timestamp probability threshold
-et N, --entropy-thold N [2.40 ] entropy threshold for decoder fail
-lpt N, --logprob-thold N [-1.00 ] log probability threshold for decoder fail
-su, --speed-up [false ] speed up audio by x2 (reduced accuracy)
-tr, --translate [false ] translate from source language to english
-di, --diarize [false ] stereo audio diarization
-otxt, --output-txt [false ] output result in a text file
-ovtt, --output-vtt [false ] output result in a vtt file
-osrt, --output-srt [false ] output result in a srt file
-owts, --output-words [false ] output script for generating karaoke video
-ocsv, --output-csv [false ] output result in a CSV file
-ps, --print-special [false ] print special tokens
-pc, --print-colors [false ] print colors
-pp, --print-progress [false ] print progress
-nt, --no-timestamps [true ] do not print timestamps
-l LANG, --language LANG [en ] spoken language ('auto' for auto-detect)
--prompt PROMPT [ ] initial prompt
-m FNAME, --model FNAME [models/ggml-base.en.bin] model path
-f FNAME, --file FNAME [ ] input WAV file path
-h, --help [default] show this help message and exit
-t N, --threads N [4 ] number of threads to use during computation
-p N, --processors N [1 ] number of processors to use during computation
-ot N, --offset-t N [0 ] time offset in milliseconds
-on N, --offset-n N [0 ] segment index offset
-d N, --duration N [0 ] duration of audio to process in milliseconds
-mc N, --max-context N [-1 ] maximum number of text context tokens to store
-ml N, --max-len N [0 ] maximum segment length in characters
-bo N, --best-of N [5 ] number of best candidates to keep
-bs N, --beam-size N [-1 ] beam size for beam search
-wt N, --word-thold N [0.01 ] word timestamp probability threshold
-et N, --entropy-thold N [2.40 ] entropy threshold for decoder fail
-lpt N, --logprob-thold N [-1.00 ] log probability threshold for decoder fail
-su, --speed-up [false ] speed up audio by x2 (reduced accuracy)
-tr, --translate [false ] translate from source language to english
-di, --diarize [false ] stereo audio diarization
-nf, --no-fallback [false ] do not use temperature fallback while decoding
-otxt, --output-txt [false ] output result in a text file
-ovtt, --output-vtt [false ] output result in a vtt file
-osrt, --output-srt [false ] output result in a srt file
-owts, --output-words [false ] output script for generating karaoke video
-ocsv, --output-csv [false ] output result in a CSV file
-of FNAME, --output-file FNAME [ ] output file path (without file extension)
-ps, --print-special [false ] print special tokens
-pc, --print-colors [false ] print colors
-pp, --print-progress [false ] print progress
-nt, --no-timestamps [true ] do not print timestamps
-l LANG, --language LANG [en ] spoken language ('auto' for auto-detect)
--prompt PROMPT [ ] initial prompt
-m FNAME, --model FNAME [models/ggml-base.en.bin] model path
-f FNAME, --file FNAME [ ] input WAV file path
bash ./models/download-ggml-model.sh base.en
@ -137,7 +139,8 @@ Running base.en on all samples in ./samples ...
[+] Running base.en on samples/jfk.wav ... (run 'ffplay samples/jfk.wav' to listen)
----------------------------------------------
whisper_model_load: loading model from 'models/ggml-base.en.bin'
whisper_init_from_file: loading model from 'models/ggml-base.en.bin'
whisper_model_load: loading model
whisper_model_load: n_vocab = 51864
whisper_model_load: n_audio_ctx = 1500
whisper_model_load: n_audio_state = 512
@ -150,13 +153,14 @@ whisper_model_load: n_text_layer = 6
whisper_model_load: n_mels = 80
whisper_model_load: f16 = 1
whisper_model_load: type = 2
whisper_model_load: mem required = 215.00 MB (+ 6.00 MB per decoder)
whisper_model_load: kv self size = 5.25 MB
whisper_model_load: kv cross size = 17.58 MB
whisper_model_load: adding 1607 extra tokens
whisper_model_load: mem_required = 506.00 MB
whisper_model_load: ggml ctx size = 140.60 MB
whisper_model_load: memory size = 22.83 MB
whisper_model_load: model ctx = 140.60 MB
whisper_model_load: model size = 140.54 MB
system_info: n_threads = 4 / 10 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | NEON = 1 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 |
system_info: n_threads = 4 / 10 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | VSX = 0 |
main: processing 'samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 processors, lang = en, task = transcribe, timestamps = 1 ...
@ -164,12 +168,13 @@ main: processing 'samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 proc
[00:00:00.000 --> 00:00:11.000] And so my fellow Americans, ask not what your country can do for you, ask what you can do for your country.
whisper_print_timings: load time = 105.91 ms
whisper_print_timings: mel time = 24.62 ms
whisper_print_timings: sample time = 3.63 ms
whisper_print_timings: encode time = 324.71 ms / 54.12 ms per layer
whisper_print_timings: decode time = 83.58 ms / 13.93 ms per layer
whisper_print_timings: total time = 542.81 ms
whisper_print_timings: fallbacks = 0 p / 0 h
whisper_print_timings: load time = 113.81 ms
whisper_print_timings: mel time = 15.40 ms
whisper_print_timings: sample time = 11.58 ms / 27 runs ( 0.43 ms per run)
whisper_print_timings: encode time = 266.60 ms / 1 runs ( 266.60 ms per run)
whisper_print_timings: decode time = 66.11 ms / 27 runs ( 2.45 ms per run)
whisper_print_timings: total time = 476.31 ms
```
The command downloads the `base.en` model converted to custom `ggml` format and runs the inference on all `.wav` samples in the folder `samples`.
@ -212,11 +217,11 @@ make large
| Model | Disk | Mem | SHA |
| --- | --- | --- | --- |
| tiny | 75 MB | ~390 MB | `bd577a113a864445d4c299885e0cb97d4ba92b5f` |
| base | 142 MB | ~500 MB | `465707469ff3a37a2b9b8d8f89f2f99de7299dac` |
| small | 466 MB | ~1.0 GB | `55356645c2b361a969dfd0ef2c5a50d530afd8d5` |
| medium | 1.5 GB | ~2.6 GB | `fd9727b6e1217c2f614f9b698455c4ffd82463b4` |
| large | 2.9 GB | ~4.7 GB | `0f4c8e34f21cf1a914c59d8b3ce882345ad349d6` |
| tiny | 75 MB | ~125 MB | `bd577a113a864445d4c299885e0cb97d4ba92b5f` |
| base | 142 MB | ~210 MB | `465707469ff3a37a2b9b8d8f89f2f99de7299dac` |
| small | 466 MB | ~600 MB | `55356645c2b361a969dfd0ef2c5a50d530afd8d5` |
| medium | 1.5 GB | ~1.7 GB | `fd9727b6e1217c2f614f9b698455c4ffd82463b4` |
| large | 2.9 GB | ~3.3 GB | `0f4c8e34f21cf1a914c59d8b3ce882345ad349d6` |
## Limitations
@ -234,7 +239,8 @@ in about half a minute on a MacBook M1 Pro, using `medium.en` model:
```java
$ ./main -m models/ggml-medium.en.bin -f samples/gb1.wav -t 8
whisper_model_load: loading model from 'models/ggml-medium.en.bin'
whisper_init_from_file: loading model from 'models/ggml-medium.en.bin'
whisper_model_load: loading model
whisper_model_load: n_vocab = 51864
whisper_model_load: n_audio_ctx = 1500
whisper_model_load: n_audio_state = 1024
@ -247,55 +253,60 @@ whisper_model_load: n_text_layer = 24
whisper_model_load: n_mels = 80
whisper_model_load: f16 = 1
whisper_model_load: type = 4
whisper_model_load: mem_required = 2610.00 MB
whisper_model_load: mem required = 1720.00 MB (+ 43.00 MB per decoder)
whisper_model_load: kv self size = 42.00 MB
whisper_model_load: kv cross size = 140.62 MB
whisper_model_load: adding 1607 extra tokens
whisper_model_load: ggml ctx size = 1644.97 MB
whisper_model_load: memory size = 182.62 MB
whisper_model_load: model size = 1462.12 MB
whisper_model_load: model ctx = 1462.35 MB
whisper_model_load: model size = 1462.12 MB
main: processing 'samples/gb1.wav' (3179750 samples, 198.7 sec), 8 threads, lang = en, task = transcribe, timestamps = 1 ...
system_info: n_threads = 8 / 10 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | VSX = 0 |
[00:00.000 --> 00:08.000] My fellow Americans, this day has brought terrible news and great sadness to our country.
[00:08.000 --> 00:17.000] At nine o'clock this morning, Mission Control in Houston lost contact with our Space Shuttle Columbia.
[00:17.000 --> 00:23.000] A short time later, debris was seen falling from the skies above Texas.
[00:23.000 --> 00:29.000] The Columbia's lost. There are no survivors.
[00:29.000 --> 00:32.000] On board was a crew of seven.
[00:32.000 --> 00:39.000] Colonel Rick Husband, Lieutenant Colonel Michael Anderson, Commander Laurel Clark,
[00:39.000 --> 00:48.000] Captain David Brown, Commander William McCool, Dr. Kultna Shavla, and Ilan Ramon,
[00:48.000 --> 00:52.000] a colonel in the Israeli Air Force.
[00:52.000 --> 00:58.000] These men and women assumed great risk in the service to all humanity.
[00:58.000 --> 01:03.000] In an age when space flight has come to seem almost routine,
[01:03.000 --> 01:07.000] it is easy to overlook the dangers of travel by rocket
[01:07.000 --> 01:12.000] and the difficulties of navigating the fierce outer atmosphere of the Earth.
[01:12.000 --> 01:18.000] These astronauts knew the dangers, and they faced them willingly,
[01:18.000 --> 01:23.000] knowing they had a high and noble purpose in life.
[01:23.000 --> 01:31.000] Because of their courage and daring and idealism, we will miss them all the more.
[01:31.000 --> 01:36.000] All Americans today are thinking as well of the families of these men and women
[01:36.000 --> 01:40.000] who have been given this sudden shock and grief.
[01:40.000 --> 01:45.000] You're not alone. Our entire nation grieves with you,
[01:45.000 --> 01:52.000] and those you love will always have the respect and gratitude of this country.
[01:52.000 --> 01:56.000] The cause in which they died will continue.
[01:56.000 --> 02:04.000] Mankind is led into the darkness beyond our world by the inspiration of discovery
[02:04.000 --> 02:11.000] and the longing to understand. Our journey into space will go on.
[02:11.000 --> 02:16.000] In the skies today, we saw destruction and tragedy.
[02:16.000 --> 02:22.000] Yet farther than we can see, there is comfort and hope.
[02:22.000 --> 02:29.000] In the words of the prophet Isaiah, "Lift your eyes and look to the heavens
[02:29.000 --> 02:35.000] who created all these. He who brings out the starry hosts one by one
[02:35.000 --> 02:39.000] and calls them each by name."
[02:39.000 --> 02:46.000] Because of His great power and mighty strength, not one of them is missing.
[02:46.000 --> 02:55.000] The same Creator who names the stars also knows the names of the seven souls we mourn today.
[02:55.000 --> 03:01.000] The crew of the shuttle Columbia did not return safely to earth,
[03:01.000 --> 03:05.000] yet we can pray that all are safely home.
[03:05.000 --> 03:13.000] May God bless the grieving families, and may God continue to bless America.
[03:13.000 --> 03:41.000] Audio
main: processing 'samples/gb1.wav' (3179750 samples, 198.7 sec), 8 threads, 1 processors, lang = en, task = transcribe, timestamps = 1 ...
whisper_print_timings: load time = 575.92 ms
whisper_print_timings: mel time = 230.60 ms
whisper_print_timings: sample time = 73.19 ms
whisper_print_timings: encode time = 19552.61 ms / 814.69 ms per layer
whisper_print_timings: decode time = 13249.96 ms / 552.08 ms per layer
whisper_print_timings: total time = 33686.27 ms
[00:00:00.000 --> 00:00:08.000] My fellow Americans, this day has brought terrible news and great sadness to our country.
[00:00:08.000 --> 00:00:17.000] At nine o'clock this morning, Mission Control in Houston lost contact with our Space Shuttle Columbia.
[00:00:17.000 --> 00:00:23.000] A short time later, debris was seen falling from the skies above Texas.
[00:00:23.000 --> 00:00:29.000] The Columbia's lost. There are no survivors.
[00:00:29.000 --> 00:00:32.000] On board was a crew of seven.
[00:00:32.000 --> 00:00:39.000] Colonel Rick Husband, Lieutenant Colonel Michael Anderson, Commander Laurel Clark,
[00:00:39.000 --> 00:00:48.000] Captain David Brown, Commander William McCool, Dr. Kultna Shavla, and Ilan Ramon,
[00:00:48.000 --> 00:00:52.000] a colonel in the Israeli Air Force.
[00:00:52.000 --> 00:00:58.000] These men and women assumed great risk in the service to all humanity.
[00:00:58.000 --> 00:01:03.000] In an age when space flight has come to seem almost routine,
[00:01:03.000 --> 00:01:07.000] it is easy to overlook the dangers of travel by rocket
[00:01:07.000 --> 00:01:12.000] and the difficulties of navigating the fierce outer atmosphere of the Earth.
[00:01:12.000 --> 00:01:18.000] These astronauts knew the dangers, and they faced them willingly,
[00:01:18.000 --> 00:01:23.000] knowing they had a high and noble purpose in life.
[00:01:23.000 --> 00:01:31.000] Because of their courage and daring and idealism, we will miss them all the more.
[00:01:31.000 --> 00:01:36.000] All Americans today are thinking as well of the families of these men and women
[00:01:36.000 --> 00:01:40.000] who have been given this sudden shock and grief.
[00:01:40.000 --> 00:01:45.000] You're not alone. Our entire nation grieves with you,
[00:01:45.000 --> 00:01:52.000] and those you love will always have the respect and gratitude of this country.
[00:01:52.000 --> 00:01:56.000] The cause in which they died will continue.
[00:01:56.000 --> 00:02:04.000] Mankind is led into the darkness beyond our world by the inspiration of discovery
[00:02:04.000 --> 00:02:11.000] and the longing to understand. Our journey into space will go on.
[00:02:11.000 --> 00:02:16.000] In the skies today, we saw destruction and tragedy.
[00:02:16.000 --> 00:02:22.000] Yet farther than we can see, there is comfort and hope.
[00:02:22.000 --> 00:02:29.000] In the words of the prophet Isaiah, "Lift your eyes and look to the heavens
[00:02:29.000 --> 00:02:35.000] who created all these. He who brings out the starry hosts one by one
[00:02:35.000 --> 00:02:39.000] and calls them each by name."
[00:02:39.000 --> 00:02:46.000] Because of His great power and mighty strength, not one of them is missing.
[00:02:46.000 --> 00:02:55.000] The same Creator who names the stars also knows the names of the seven souls we mourn today.
[00:02:55.000 --> 00:03:01.000] The crew of the shuttle Columbia did not return safely to earth,
[00:03:01.000 --> 00:03:05.000] yet we can pray that all are safely home.
[00:03:05.000 --> 00:03:13.000] May God bless the grieving families, and may God continue to bless America.
[00:03:13.000 --> 00:03:19.000] [Silence]
whisper_print_timings: fallbacks = 1 p / 0 h
whisper_print_timings: load time = 569.03 ms
whisper_print_timings: mel time = 146.85 ms
whisper_print_timings: sample time = 238.66 ms / 553 runs ( 0.43 ms per run)
whisper_print_timings: encode time = 18665.10 ms / 9 runs ( 2073.90 ms per run)
whisper_print_timings: decode time = 13090.93 ms / 549 runs ( 23.85 ms per run)
whisper_print_timings: total time = 32733.52 ms
```
</details>
@ -321,14 +332,14 @@ to highlight words with high or low confidence:
## Controlling the length of the generated text segments (experimental)
For example, to limit the line length to a maximum of 16 characters, simply add `-ml 16`:
For example, to limit the line length to a maximum of 16 characters, simply add `-ml 16`:
```java
./main -m ./models/ggml-base.en.bin -f ./samples/jfk.wav -ml 16
whisper_model_load: loading model from './models/ggml-base.en.bin'
...
system_info: n_threads = 4 / 10 | AVX2 = 0 | AVX512 = 0 | NEON = 1 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 |
system_info: n_threads = 4 / 10 | AVX2 = 0 | AVX512 = 0 | NEON = 1 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 |
main: processing './samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 processors, lang = en, task = transcribe, timestamps = 1 ...
@ -352,7 +363,7 @@ The `--max-len` argument can be used to obtain word-level timestamps. Simply use
whisper_model_load: loading model from './models/ggml-base.en.bin'
...
system_info: n_threads = 4 / 10 | AVX2 = 0 | AVX512 = 0 | NEON = 1 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 |
system_info: n_threads = 4 / 10 | AVX2 = 0 | AVX512 = 0 | NEON = 1 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 |
main: processing './samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 processors, lang = en, task = transcribe, timestamps = 1 ...

View File

@ -25,6 +25,8 @@ func Process(model whisper.Model, path string, flags *Flags) error {
return err
}
fmt.Printf("\n%s\n", context.SystemInfo())
// Open the file
fmt.Fprintf(flags.Output(), "Loading %q\n", path)
fh, err := os.Open(path)
@ -64,10 +66,13 @@ func Process(model whisper.Model, path string, flags *Flags) error {
// Process the data
fmt.Fprintf(flags.Output(), " ...processing %q\n", path)
context.ResetTimings()
if err := context.Process(data, cb); err != nil {
return err
}
context.PrintTimings()
// Print out the results
switch {
case flags.GetOut() == "srt":

View File

@ -49,6 +49,10 @@ func (p *Params) SetSpeedup(v bool) {
// Set language id
func (p *Params) SetLanguage(lang int) error {
if lang == -1 {
p.language = nil
return nil
}
str := C.whisper_lang_str(C.int(lang))
if str == nil {
return ErrInvalidLanguage
@ -66,6 +70,11 @@ func (p *Params) Language() int {
return int(C.whisper_lang_id(p.language))
}
// Threads available
func (p *Params) Threads() int {
return int(p.n_threads)
}
// Set number of threads to use
func (p *Params) SetThreads(threads int) {
p.n_threads = C.int(threads)

View File

@ -1,7 +1,9 @@
package whisper
import (
"fmt"
"io"
"runtime"
"strings"
"time"
@ -44,7 +46,10 @@ func (context *context) SetLanguage(lang string) error {
if !context.model.IsMultilingual() {
return ErrModelNotMultilingual
}
if id := context.model.ctx.Whisper_lang_id(lang); id < 0 {
if lang == "auto" {
context.params.SetLanguage(-1)
} else if id := context.model.ctx.Whisper_lang_id(lang); id < 0 {
return ErrUnsupportedLanguage
} else if err := context.params.SetLanguage(id); err != nil {
return err
@ -59,6 +64,10 @@ func (context *context) IsMultilingual() bool {
// Get language
func (context *context) Language() string {
id := context.params.Language()
if id == -1 {
return "auto"
}
return whisper.Whisper_lang_str(context.params.Language())
}
@ -107,6 +116,36 @@ func (context *context) SetMaxTokensPerSegment(n uint) {
context.params.SetMaxTokensPerSegment(int(n))
}
// ResetTimings resets the mode timings. Should be called before processing
func (context *context) ResetTimings() {
context.model.ctx.Whisper_reset_timings()
}
// PrintTimings prints the model timings to stdout.
func (context *context) PrintTimings() {
context.model.ctx.Whisper_print_timings()
}
// SystemInfo returns the system information
func (context *context) SystemInfo() string {
return fmt.Sprintf("system_info: n_threads = %d / %d | %s\n",
context.params.Threads(),
runtime.NumCPU(),
whisper.Whisper_print_system_info(),
)
}
// Use mel data at offset_ms to try and auto-detect the spoken language
// Make sure to call whisper_pcm_to_mel() or whisper_set_mel() first.
// Returns the probabilities of all languages.
func (context *context) WhisperLangAutoDetect(offset_ms int, n_threads int) ([]float32, error) {
langProbs, err := context.model.ctx.Whisper_lang_auto_detect(offset_ms, n_threads)
if err != nil {
return nil, err
}
return langProbs, nil
}
// Process new sample data and return any errors
func (context *context) Process(data []float32, cb SegmentCallback) error {
if context.model.ctx == nil {

View File

@ -29,7 +29,7 @@ type Model interface {
// Context is the speach recognition context.
type Context interface {
SetLanguage(string) error // Set the language to use for speech recognition.
SetLanguage(string) error // Set the language to use for speech recognition, use "auto" for auto detect language.
SetTranslate(bool) // Set translate flag
IsMultilingual() bool // Return true if the model is multilingual.
Language() string // Get language
@ -60,6 +60,12 @@ type Context interface {
IsNOT(Token) bool // Test for "No timestamps" token
IsLANG(Token, string) bool // Test for token associated with a specific language
IsText(Token) bool // Test for text token
// Timings
PrintTimings()
ResetTimings()
SystemInfo() string
}
// Segment is the text result of a speech recognition.

View File

@ -1,6 +1,6 @@
{
"name": "whisper.cpp",
"version": "1.1.1",
"version": "1.2.0",
"description": "Whisper speech recognition",
"main": "whisper.js",
"scripts": {

File diff suppressed because one or more lines are too long

View File

@ -24,6 +24,8 @@ if (EMSCRIPTEN)
add_subdirectory(command.wasm)
add_subdirectory(talk.wasm)
add_subdirectory(bench.wasm)
elseif(CMAKE_JS_VERSION)
add_subdirectory(addon.node)
else()
add_subdirectory(main)
add_subdirectory(stream)

3
examples/addon.node/.gitignore vendored Normal file
View File

@ -0,0 +1,3 @@
.idea
node_modules
build

View File

@ -0,0 +1,26 @@
set(TARGET whisper-addon)
# Base settings
#==================================================================
# env var supported by cmake-js
add_definitions(-DNAPI_VERSION=4)
include_directories(${CMAKE_JS_INC})
#==================================================================
add_library(${TARGET} SHARED ${CMAKE_JS_SRC} addon.cpp)
set_target_properties(${TARGET} PROPERTIES PREFIX "" SUFFIX ".node")
include(DefaultTargetOptions)
# Include N-API wrappers
#==================================================================
execute_process(COMMAND node -p "require('node-addon-api').include"
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
OUTPUT_VARIABLE NODE_ADDON_API_DIR
)
string(REPLACE "\n" "" NODE_ADDON_API_DIR ${NODE_ADDON_API_DIR})
string(REPLACE "\"" "" NODE_ADDON_API_DIR ${NODE_ADDON_API_DIR})
target_include_directories(${TARGET} PRIVATE ${NODE_ADDON_API_DIR})
#==================================================================
target_link_libraries(${TARGET} ${CMAKE_JS_LIB} whisper ${CMAKE_THREAD_LIBS_INIT})

View File

@ -0,0 +1,37 @@
# addon
This is an addon demo that can **perform whisper model reasoning in `node` and `electron` environments**, based on [cmake-js](https://github.com/cmake-js/cmake-js).
It can be used as a reference for using the whisper.cpp project in other node projects.
## Install
```shell
npm install
```
## Compile
Make sure it is in the project root directory and compiled with make-js.
```shell
npx cmake-js compile -T whisper-addon
```
For Electron addon and cmake-js options, you can see [cmake-js](https://github.com/cmake-js/cmake-js) and make very few configuration changes.
> Such as appointing special cmake path:
> ```shell
> npx cmake-js compile -c 'xxx/cmake' -T whisper-addon
> ```
## Run
```shell
cd examples/addon.node
node index.js --language='language' --model='model-path' --fname_inp='file-path'
```
Because this is a simple Demo, only the above parameters are set in the node environment.
Other parameters can also be specified in the node environment.

View File

@ -0,0 +1,421 @@
#include <string>
#include <thread>
#include <vector>
#include <cmath>
#include "napi.h"
#define DR_WAV_IMPLEMENTATION
#include "dr_wav.h"
#include "whisper.h"
struct whisper_params {
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
int32_t n_processors = 1;
int32_t offset_t_ms = 0;
int32_t offset_n = 0;
int32_t duration_ms = 0;
int32_t max_context = -1;
int32_t max_len = 0;
int32_t best_of = 5;
int32_t beam_size = -1;
float word_thold = 0.01f;
float entropy_thold = 2.4f;
float logprob_thold = -1.0f;
bool speed_up = false;
bool translate = false;
bool diarize = false;
bool output_txt = false;
bool output_vtt = false;
bool output_srt = false;
bool output_wts = false;
bool output_csv = false;
bool print_special = false;
bool print_colors = false;
bool print_progress = false;
bool no_timestamps = false;
std::string language = "en";
std::string prompt;
std::string model = "../../ggml-large.bin";
std::vector<std::string> fname_inp = {};
std::vector<std::string> fname_outp = {};
};
struct whisper_print_user_data {
const whisper_params * params;
const std::vector<std::vector<float>> * pcmf32s;
};
// 500 -> 00:05.000
// 6000 -> 01:00.000
std::string to_timestamp(int64_t t, bool comma = false) {
int64_t msec = t * 10;
int64_t hr = msec / (1000 * 60 * 60);
msec = msec - hr * (1000 * 60 * 60);
int64_t min = msec / (1000 * 60);
msec = msec - min * (1000 * 60);
int64_t sec = msec / 1000;
msec = msec - sec * 1000;
char buf[32];
snprintf(buf, sizeof(buf), "%02d:%02d:%02d%s%03d", (int) hr, (int) min, (int) sec, comma ? "," : ".", (int) msec);
return std::string(buf);
}
int timestamp_to_sample(int64_t t, int n_samples) {
return std::max(0, std::min((int) n_samples - 1, (int) ((t*WHISPER_SAMPLE_RATE)/100)));
}
void whisper_print_segment_callback(struct whisper_context * ctx, int n_new, void * user_data) {
const auto & params = *((whisper_print_user_data *) user_data)->params;
const auto & pcmf32s = *((whisper_print_user_data *) user_data)->pcmf32s;
const int n_segments = whisper_full_n_segments(ctx);
std::string speaker = "";
int64_t t0;
int64_t t1;
// print the last n_new segments
const int s0 = n_segments - n_new;
if (s0 == 0) {
printf("\n");
}
for (int i = s0; i < n_segments; i++) {
if (!params.no_timestamps || params.diarize) {
t0 = whisper_full_get_segment_t0(ctx, i);
t1 = whisper_full_get_segment_t1(ctx, i);
}
if (!params.no_timestamps) {
printf("[%s --> %s] ", to_timestamp(t0).c_str(), to_timestamp(t1).c_str());
}
if (params.diarize && pcmf32s.size() == 2) {
const int64_t n_samples = pcmf32s[0].size();
const int64_t is0 = timestamp_to_sample(t0, n_samples);
const int64_t is1 = timestamp_to_sample(t1, n_samples);
double energy0 = 0.0f;
double energy1 = 0.0f;
for (int64_t j = is0; j < is1; j++) {
energy0 += fabs(pcmf32s[0][j]);
energy1 += fabs(pcmf32s[1][j]);
}
if (energy0 > 1.1*energy1) {
speaker = "(speaker 0)";
} else if (energy1 > 1.1*energy0) {
speaker = "(speaker 1)";
} else {
speaker = "(speaker ?)";
}
//printf("is0 = %lld, is1 = %lld, energy0 = %f, energy1 = %f, %s\n", is0, is1, energy0, energy1, speaker.c_str());
}
// colorful print bug
//
const char * text = whisper_full_get_segment_text(ctx, i);
printf("%s%s", speaker.c_str(), text);
// with timestamps or speakers: each segment on new line
if (!params.no_timestamps || params.diarize) {
printf("\n");
}
fflush(stdout);
}
}
int run(whisper_params &params, std::vector<std::vector<std::string>> &result) {
if (params.fname_inp.empty()) {
fprintf(stderr, "error: no input files specified\n");
return 2;
}
if (params.language != "auto" && whisper_lang_id(params.language.c_str()) == -1) {
fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str());
exit(0);
}
// whisper init
struct whisper_context * ctx = whisper_init_from_file(params.model.c_str());
if (ctx == nullptr) {
fprintf(stderr, "error: failed to initialize whisper context\n");
return 3;
}
// initial prompt
std::vector<whisper_token> prompt_tokens;
if (!params.prompt.empty()) {
prompt_tokens.resize(1024);
prompt_tokens.resize(whisper_tokenize(ctx, params.prompt.c_str(), prompt_tokens.data(), prompt_tokens.size()));
fprintf(stderr, "\n");
fprintf(stderr, "initial prompt: '%s'\n", params.prompt.c_str());
fprintf(stderr, "initial tokens: [ ");
for (int i = 0; i < (int) prompt_tokens.size(); ++i) {
fprintf(stderr, "%d ", prompt_tokens[i]);
}
fprintf(stderr, "]\n");
}
for (int f = 0; f < (int) params.fname_inp.size(); ++f) {
const auto fname_inp = params.fname_inp[f];
const auto fname_outp = f < (int)params.fname_outp.size() && !params.fname_outp[f].empty() ? params.fname_outp[f] : params.fname_inp[f];
std::vector<float> pcmf32; // mono-channel F32 PCM
std::vector<std::vector<float>> pcmf32s; // stereo-channel F32 PCM
// WAV input
{
drwav wav;
std::vector<uint8_t> wav_data; // used for pipe input from stdin
if (fname_inp == "-") {
{
uint8_t buf[1024];
while (true)
{
const size_t n = fread(buf, 1, sizeof(buf), stdin);
if (n == 0) {
break;
}
wav_data.insert(wav_data.end(), buf, buf + n);
}
}
if (drwav_init_memory(&wav, wav_data.data(), wav_data.size(), nullptr) == false) {
fprintf(stderr, "error: failed to open WAV file from stdin\n");
return 4;
}
fprintf(stderr, "%s: read %zu bytes from stdin\n", __func__, wav_data.size());
}
else if (drwav_init_file(&wav, fname_inp.c_str(), nullptr) == false) {
fprintf(stderr, "error: failed to open '%s' as WAV file\n", fname_inp.c_str());
return 5;
}
if (wav.channels != 1 && wav.channels != 2) {
fprintf(stderr, "error: WAV file '%s' must be mono or stereo\n", fname_inp.c_str());
return 6;
}
if (params.diarize && wav.channels != 2 && params.no_timestamps == false) {
fprintf(stderr, "error: WAV file '%s' must be stereo for diarization and timestamps have to be enabled\n", fname_inp.c_str());
return 6;
}
if (wav.sampleRate != WHISPER_SAMPLE_RATE) {
fprintf(stderr, "error: WAV file '%s' must be %i kHz\n", fname_inp.c_str(), WHISPER_SAMPLE_RATE/1000);
return 8;
}
if (wav.bitsPerSample != 16) {
fprintf(stderr, "error: WAV file '%s' must be 16-bit\n", fname_inp.c_str());
return 9;
}
const uint64_t n = wav_data.empty() ? wav.totalPCMFrameCount : wav_data.size()/(wav.channels*wav.bitsPerSample/8);
std::vector<int16_t> pcm16;
pcm16.resize(n*wav.channels);
drwav_read_pcm_frames_s16(&wav, n, pcm16.data());
drwav_uninit(&wav);
// convert to mono, float
pcmf32.resize(n);
if (wav.channels == 1) {
for (uint64_t i = 0; i < n; i++) {
pcmf32[i] = float(pcm16[i])/32768.0f;
}
} else {
for (uint64_t i = 0; i < n; i++) {
pcmf32[i] = float(pcm16[2*i] + pcm16[2*i + 1])/65536.0f;
}
}
if (params.diarize) {
// convert to stereo, float
pcmf32s.resize(2);
pcmf32s[0].resize(n);
pcmf32s[1].resize(n);
for (uint64_t i = 0; i < n; i++) {
pcmf32s[0][i] = float(pcm16[2*i])/32768.0f;
pcmf32s[1][i] = float(pcm16[2*i + 1])/32768.0f;
}
}
}
// print system information
{
fprintf(stderr, "\n");
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
params.n_threads*params.n_processors, std::thread::hardware_concurrency(), whisper_print_system_info());
}
// print some info about the processing
{
fprintf(stderr, "\n");
if (!whisper_is_multilingual(ctx)) {
if (params.language != "en" || params.translate) {
params.language = "en";
params.translate = false;
fprintf(stderr, "%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__);
}
}
fprintf(stderr, "%s: processing '%s' (%d samples, %.1f sec), %d threads, %d processors, lang = %s, task = %s, timestamps = %d ...\n",
__func__, fname_inp.c_str(), int(pcmf32.size()), float(pcmf32.size())/WHISPER_SAMPLE_RATE,
params.n_threads, params.n_processors,
params.language.c_str(),
params.translate ? "translate" : "transcribe",
params.no_timestamps ? 0 : 1);
fprintf(stderr, "\n");
}
// run the inference
{
whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
wparams.strategy = params.beam_size > 1 ? WHISPER_SAMPLING_BEAM_SEARCH : WHISPER_SAMPLING_GREEDY;
wparams.print_realtime = false;
wparams.print_progress = params.print_progress;
wparams.print_timestamps = !params.no_timestamps;
wparams.print_special = params.print_special;
wparams.translate = params.translate;
wparams.language = params.language.c_str();
wparams.n_threads = params.n_threads;
wparams.n_max_text_ctx = params.max_context >= 0 ? params.max_context : wparams.n_max_text_ctx;
wparams.offset_ms = params.offset_t_ms;
wparams.duration_ms = params.duration_ms;
wparams.token_timestamps = params.output_wts || params.max_len > 0;
wparams.thold_pt = params.word_thold;
wparams.entropy_thold = params.entropy_thold;
wparams.logprob_thold = params.logprob_thold;
wparams.max_len = params.output_wts && params.max_len == 0 ? 60 : params.max_len;
wparams.speed_up = params.speed_up;
wparams.greedy.best_of = params.best_of;
wparams.beam_search.beam_size = params.beam_size;
wparams.prompt_tokens = prompt_tokens.empty() ? nullptr : prompt_tokens.data();
wparams.prompt_n_tokens = prompt_tokens.empty() ? 0 : prompt_tokens.size();
whisper_print_user_data user_data = { &params, &pcmf32s };
// this callback is called on each new segment
if (!wparams.print_realtime) {
wparams.new_segment_callback = whisper_print_segment_callback;
wparams.new_segment_callback_user_data = &user_data;
}
// example for abort mechanism
// in this example, we do not abort the processing, but we could if the flag is set to true
// the callback is called before every encoder run - if it returns false, the processing is aborted
{
static bool is_aborted = false; // NOTE: this should be atomic to avoid data race
wparams.encoder_begin_callback = [](struct whisper_context * /*ctx*/, void * user_data) {
bool is_aborted = *(bool*)user_data;
return !is_aborted;
};
wparams.encoder_begin_callback_user_data = &is_aborted;
}
if (whisper_full_parallel(ctx, wparams, pcmf32.data(), pcmf32.size(), params.n_processors) != 0) {
fprintf(stderr, "failed to process audio\n");
return 10;
}
}
}
const int n_segments = whisper_full_n_segments(ctx);
result.resize(n_segments);
for (int i = 0; i < n_segments; ++i) {
const char * text = whisper_full_get_segment_text(ctx, i);
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
result[i].emplace_back(to_timestamp(t0, true));
result[i].emplace_back(to_timestamp(t1, true));
result[i].emplace_back(text);
}
whisper_print_timings(ctx);
whisper_free(ctx);
return 0;
}
Napi::Object whisper(const Napi::CallbackInfo& info) {
Napi::Env env = info.Env();
if (info.Length() <= 0 || !info[0].IsObject()) {
Napi::TypeError::New(env, "object expected").ThrowAsJavaScriptException();
}
whisper_params params;
std::vector<std::vector<std::string>> result;
Napi::Object whisper_params = info[0].As<Napi::Object>();
std::string language = whisper_params.Get("language").As<Napi::String>();
std::string model = whisper_params.Get("model").As<Napi::String>();
std::string input = whisper_params.Get("fname_inp").As<Napi::String>();
params.language = language;
params.model = model;
params.fname_inp.emplace_back(input);
// run model
run(params, result);
fprintf(stderr, "RESULT:\n");
for (auto sentence:result) {
fprintf(stderr, "t0: %s, t1: %s, content: %s \n",
sentence[0].c_str(), sentence[1].c_str(), sentence[2].c_str());
}
Napi::Object res = Napi::Array::New(env, result.size());
for (u_int32_t i = 0; i < result.size(); ++i) {
Napi::Object tmp = Napi::Array::New(env, 3);
for (u_int32_t j = 0; j < 3; ++j) {
tmp[j] = Napi::String::New(env, result[i][j]);
}
res[i] = tmp;
}
return res;
}
Napi::Object Init(Napi::Env env, Napi::Object exports) {
exports.Set(
Napi::String::New(env, "whisper"),
Napi::Function::New(env, whisper)
);
return exports;
}
NODE_API_MODULE(whisper, Init);

View File

@ -0,0 +1,27 @@
const path = require('path');
const { whisper } = require(path.join(__dirname, '../../build/Release/whisper-addon'));
const whisperParams = {
language: 'en',
model: path.join(__dirname, '../../models/ggml-base.en.bin'),
fname_inp: '',
};
const arguments = process.argv.slice(2);
const params = Object.fromEntries(
arguments.reduce((pre, item) => {
if (item.startsWith("--")) {
return [...pre, item.slice(2).split("=")];
}
return pre;
}, []),
);
for (const key in params) {
if (whisperParams.hasOwnProperty(key)) {
whisperParams[key] = params[key];
}
}
console.log('whisperParams =', whisperParams);
console.log(whisper(whisperParams));

View File

@ -0,0 +1,12 @@
{
"name": "whisper-addon",
"version": "0.0.0",
"description": "",
"main": "index.js",
"author": "Qanhe Chen",
"license": "MIT",
"devDependencies": {
"cmake-js": "^7.1.1",
"node-addon-api": "^5.0.0"
}
}

View File

@ -8,7 +8,7 @@ function convertTypedArray(src, type) {
var printTextarea = (function() {
var element = document.getElementById('output');
if (element) element.alue = ''; // clear browser cache
if (element) element.value = ''; // clear browser cache
return function(text) {
if (arguments.length > 1) text = Array.prototype.slice.call(arguments).join(' ');
console.log(text);
@ -88,11 +88,15 @@ async function fetchRemote(url, cbProgress, cbPrint) {
// - check if the data is already in the IndexedDB
// - if not, fetch it from the remote URL and store it in the IndexedDB
function loadRemote(url, dst, size_mb, cbProgress, cbReady, cbCancel, cbPrint) {
// query the storage quota and print it
navigator.storage.estimate().then(function (estimate) {
cbPrint('loadRemote: storage quota: ' + estimate.quota + ' bytes');
cbPrint('loadRemote: storage usage: ' + estimate.usage + ' bytes');
});
if (!navigator.storage || !navigator.storage.estimate) {
cbPrint('loadRemote: navigator.storage.estimate() is not supported');
} else {
// query the storage quota and print it
navigator.storage.estimate().then(function (estimate) {
cbPrint('loadRemote: storage quota: ' + estimate.quota + ' bytes');
cbPrint('loadRemote: storage usage: ' + estimate.usage + ' bytes');
});
}
// check if the data is already in the IndexedDB
var rq = indexedDB.open(dbName, dbVersion);

View File

@ -100,7 +100,7 @@ while [ $running -eq 1 ]; do
err=$(cat /tmp/whisper-live.err | wc -l)
done
./main -t 8 -m ./models/ggml-base.en.bin -f /tmp/whisper-live.wav --no-timestamps -otxt 2> /tmp/whispererr | tail -n 1
./main -t 8 -m ./models/ggml-${model}.bin -f /tmp/whisper-live.wav --no-timestamps -otxt 2> /tmp/whispererr | tail -n 1
while [ $SECONDS -lt $((($i+1)*$step_s)) ]; do
sleep 1

View File

@ -9,25 +9,35 @@ It can be used as a reference for using the `whisper.cpp` library in other proje
usage: ./main [options] file0.wav file1.wav ...
options:
-h, --help [default] show this help message and exit
-t N, --threads N [4 ] number of threads to use during computation
-p N, --processors N [1 ] number of processors to use during computation
-ot N, --offset-t N [0 ] time offset in milliseconds
-on N, --offset-n N [0 ] segment index offset
-d N, --duration N [0 ] duration of audio to process in milliseconds
-mc N, --max-context N [-1 ] maximum number of text context tokens to store
-ml N, --max-len N [0 ] maximum segment length in characters
-wt N, --word-thold N [0.01 ] word timestamp probability threshold
-su, --speed-up [false ] speed up audio by x2 (reduced accuracy)
-tr, --translate [false ] translate from source language to english
-otxt, --output-txt [false ] output result in a text file
-ovtt, --output-vtt [false ] output result in a vtt file
-osrt, --output-srt [false ] output result in a srt file
-owts, --output-words [false ] output script for generating karaoke video
-ps, --print-special [false ] print special tokens
-pc, --print-colors [false ] print colors
-nt, --no-timestamps [true ] do not print timestamps
-l LANG, --language LANG [en ] spoken language
-m FNAME, --model FNAME [models/ggml-base.en.bin] model path
-f FNAME, --file FNAME [ ] input WAV file path
-h, --help [default] show this help message and exit
-t N, --threads N [4 ] number of threads to use during computation
-p N, --processors N [1 ] number of processors to use during computation
-ot N, --offset-t N [0 ] time offset in milliseconds
-on N, --offset-n N [0 ] segment index offset
-d N, --duration N [0 ] duration of audio to process in milliseconds
-mc N, --max-context N [-1 ] maximum number of text context tokens to store
-ml N, --max-len N [0 ] maximum segment length in characters
-bo N, --best-of N [5 ] number of best candidates to keep
-bs N, --beam-size N [-1 ] beam size for beam search
-wt N, --word-thold N [0.01 ] word timestamp probability threshold
-et N, --entropy-thold N [2.40 ] entropy threshold for decoder fail
-lpt N, --logprob-thold N [-1.00 ] log probability threshold for decoder fail
-su, --speed-up [false ] speed up audio by x2 (reduced accuracy)
-tr, --translate [false ] translate from source language to english
-di, --diarize [false ] stereo audio diarization
-nf, --no-fallback [false ] do not use temperature fallback while decoding
-otxt, --output-txt [false ] output result in a text file
-ovtt, --output-vtt [false ] output result in a vtt file
-osrt, --output-srt [false ] output result in a srt file
-owts, --output-words [false ] output script for generating karaoke video
-ocsv, --output-csv [false ] output result in a CSV file
-of FNAME, --output-file FNAME [ ] output file path (without file extension)
-ps, --print-special [false ] print special tokens
-pc, --print-colors [false ] print colors
-pp, --print-progress [false ] print progress
-nt, --no-timestamps [true ] do not print timestamps
-l LANG, --language LANG [en ] spoken language ('auto' for auto-detect)
--prompt PROMPT [ ] initial prompt
-m FNAME, --model FNAME [models/ggml-base.en.bin] model path
-f FNAME, --file FNAME [ ] input WAV file path
```

View File

@ -53,22 +53,23 @@ void replace_all(std::string & s, const std::string & search, const std::string
// command-line parameters
struct whisper_params {
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
int32_t n_processors = 1;
int32_t offset_t_ms = 0;
int32_t offset_n = 0;
int32_t duration_ms = 0;
int32_t n_processors = 1;
int32_t offset_t_ms = 0;
int32_t offset_n = 0;
int32_t duration_ms = 0;
int32_t max_context = -1;
int32_t max_len = 0;
int32_t best_of = 5;
int32_t max_len = 0;
int32_t best_of = 5;
int32_t beam_size = -1;
float word_thold = 0.01f;
float entropy_thold = 2.4f;
float logprob_thold = -1.0f;
float word_thold = 0.01f;
float entropy_thold = 2.40f;
float logprob_thold = -1.00f;
bool speed_up = false;
bool translate = false;
bool diarize = false;
bool no_fallback = false;
bool output_txt = false;
bool output_vtt = false;
bool output_srt = false;
@ -117,6 +118,7 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; }
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
else if (arg == "-di" || arg == "--diarize") { params.diarize = true; }
else if (arg == "-nf" || arg == "--no-fallback") { params.no_fallback = true; }
else if (arg == "-otxt" || arg == "--output-txt") { params.output_txt = true; }
else if (arg == "-ovtt" || arg == "--output-vtt") { params.output_vtt = true; }
else if (arg == "-osrt" || arg == "--output-srt") { params.output_srt = true; }
@ -162,6 +164,7 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
fprintf(stderr, " -di, --diarize [%-7s] stereo audio diarization\n", params.diarize ? "true" : "false");
fprintf(stderr, " -nf, --no-fallback [%-7s] do not use temperature fallback while decoding\n", params.no_fallback ? "true" : "false");
fprintf(stderr, " -otxt, --output-txt [%-7s] output result in a text file\n", params.output_txt ? "true" : "false");
fprintf(stderr, " -ovtt, --output-vtt [%-7s] output result in a vtt file\n", params.output_vtt ? "true" : "false");
fprintf(stderr, " -osrt, --output-srt [%-7s] output result in a srt file\n", params.output_srt ? "true" : "false");
@ -346,9 +349,6 @@ bool output_csv(struct whisper_context * ctx, const char * fname) {
const int n_segments = whisper_full_n_segments(ctx);
for (int i = 0; i < n_segments; ++i) {
const char * text = whisper_full_get_segment_text(ctx, i);
if (text[0] == ' ') {
text = text + sizeof(char); //whisper_full_get_segment_text() returns a string with leading space, point to the next character.
}
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
@ -517,7 +517,7 @@ int main(int argc, char ** argv) {
for (int f = 0; f < (int) params.fname_inp.size(); ++f) {
const auto fname_inp = params.fname_inp[f];
const auto fname_outp = f < params.fname_outp.size() && !params.fname_outp[f].empty() ? params.fname_outp[f] : params.fname_inp[f];
const auto fname_outp = f < (int) params.fname_outp.size() && !params.fname_outp[f].empty() ? params.fname_outp[f] : params.fname_inp[f];
std::vector<float> pcmf32; // mono-channel F32 PCM
std::vector<std::vector<float>> pcmf32s; // stereo-channel F32 PCM
@ -650,17 +650,19 @@ int main(int argc, char ** argv) {
wparams.token_timestamps = params.output_wts || params.max_len > 0;
wparams.thold_pt = params.word_thold;
wparams.entropy_thold = params.entropy_thold;
wparams.logprob_thold = params.logprob_thold;
wparams.max_len = params.output_wts && params.max_len == 0 ? 60 : params.max_len;
wparams.speed_up = params.speed_up;
wparams.prompt_tokens = prompt_tokens.empty() ? nullptr : prompt_tokens.data();
wparams.prompt_n_tokens = prompt_tokens.empty() ? 0 : prompt_tokens.size();
wparams.greedy.best_of = params.best_of;
wparams.beam_search.beam_size = params.beam_size;
wparams.prompt_tokens = prompt_tokens.empty() ? nullptr : prompt_tokens.data();
wparams.prompt_n_tokens = prompt_tokens.empty() ? 0 : prompt_tokens.size();
wparams.temperature_inc = params.no_fallback ? 0.0f : wparams.temperature_inc;
wparams.entropy_thold = params.entropy_thold;
wparams.logprob_thold = params.logprob_thold;
whisper_print_user_data user_data = { &params, &pcmf32s };

View File

@ -62,8 +62,8 @@
<!-- radio button to select between file upload or microphone -->
<div id="input">
Input:
<input type="radio" id="file" name="input" value="file" checked="checked" onchange="changeInput('file')" /> File
<input type="radio" id="mic" name="input" value="mic" onchange="changeInput('mic')" /> Microphone
<input type="radio" id="file" name="input" value="file" checked="checked" onchange="changeInput('file')" /> <label for="file">File</label>
<input type="radio" id="mic" name="input" value="mic" onchange="changeInput('mic')" /> <label for="mic">Microphone</label>
</div>
<br>

136
ggml.c
View File

@ -339,8 +339,12 @@ int64_t ggml_cycles_per_ms(void) {
#if defined(__cpp_lib_hardware_interference_size)
#define CACHE_LINE_SIZE hardware_destructive_interference_size
#else
#if defined(__POWER9_VECTOR__)
#define CACHE_LINE_SIZE 128
#else
#define CACHE_LINE_SIZE 64
#endif
#endif
static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
@ -609,9 +613,12 @@ static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
#define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
vec_extract_fp32_from_shortl(vec_xl(0, p))
#define GGML_F16_VEC_STORE(p, r, i) \
if (i & 0x1) \
vec_xst(vec_pack_to_short_fp32(r[i], r[i - 1]), 0, p - GGML_F16_EPR)
#define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
#define GGML_F16_VEC_STORE(p, r, i) \
if (i & 0x1) \
vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
r[i - GGML_ENDIAN_BYTE(0)]), \
0, p - GGML_F16_EPR)
#elif defined(__wasm_simd128__)
@ -1251,7 +1258,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
//
struct ggml_object {
size_t offset;
size_t offs;
size_t size;
struct ggml_object * next;
@ -1277,6 +1284,9 @@ struct ggml_context {
struct ggml_object * objects_begin;
struct ggml_object * objects_end;
struct ggml_scratch scratch;
struct ggml_scratch scratch_save;
};
struct ggml_context_container {
@ -1339,7 +1349,7 @@ inline static void ggml_critical_section_end(void) {
void ggml_print_object(const struct ggml_object * obj) {
GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
obj->offset, obj->size, (const void *) obj->next);
obj->offs, obj->size, (const void *) obj->next);
}
void ggml_print_objects(const struct ggml_context * ctx) {
@ -1535,12 +1545,14 @@ struct ggml_context * ggml_init(struct ggml_init_params params) {
}
*ctx = (struct ggml_context) {
.mem_size = params.mem_size,
.mem_buffer = params.mem_buffer ? params.mem_buffer : malloc(params.mem_size),
.mem_buffer_owned = params.mem_buffer ? false : true,
.n_objects = 0,
.objects_begin = NULL,
.objects_end = NULL,
/*.mem_size =*/ params.mem_size,
/*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : malloc(params.mem_size),
/*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
/*.n_objects =*/ 0,
/*.objects_begin =*/ NULL,
/*.objects_end =*/ NULL,
/*.scratch =*/ { 0, 0, NULL, },
/*.scratch_save =*/ { 0, 0, NULL, },
};
ggml_assert_aligned(ctx->mem_buffer);
@ -1563,7 +1575,7 @@ void ggml_free(struct ggml_context * ctx) {
g_state.contexts[i].used = false;
GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
__func__, i, ctx->n_objects, ctx->objects_end->offset + ctx->objects_end->size);
__func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
if (ctx->mem_buffer_owned) {
free(ctx->mem_buffer);
@ -1582,7 +1594,15 @@ void ggml_free(struct ggml_context * ctx) {
}
size_t ggml_used_mem(const struct ggml_context * ctx) {
return ctx->objects_end->offset + ctx->objects_end->size;
return ctx->objects_end->offs + ctx->objects_end->size;
}
size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
ctx->scratch = scratch;
return result;
}
////////////////////////////////////////////////////////////////////////////////
@ -1596,9 +1616,9 @@ struct ggml_tensor * ggml_new_tensor_impl(
// always insert objects at the end of the context's memory pool
struct ggml_object * obj_cur = ctx->objects_end;
const size_t cur_offset = obj_cur == NULL ? 0 : obj_cur->offset;
const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
const size_t cur_end = cur_offset + cur_size;
const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
const size_t cur_end = cur_offs + cur_size;
size_t size_needed = 0;
@ -1609,25 +1629,52 @@ struct ggml_tensor * ggml_new_tensor_impl(
}
// align to GGML_MEM_ALIGN
size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
}
size_needed += sizeof(struct ggml_tensor);
if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
GGML_PRINT("%s: not enough space in the context's memory pool\n", __func__);
assert(false);
return NULL;
}
char * const mem_buffer = ctx->mem_buffer;
struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
*obj_new = (struct ggml_object) {
.offset = cur_end + GGML_OBJECT_SIZE,
.size = size_needed,
.next = NULL,
};
if (ctx->scratch.data == NULL || data != NULL) {
size_needed += sizeof(struct ggml_tensor);
if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
__func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
assert(false);
return NULL;
}
*obj_new = (struct ggml_object) {
.offs = cur_end + GGML_OBJECT_SIZE,
.size = size_needed,
.next = NULL,
};
} else {
if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
assert(false);
return NULL;
}
if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
__func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
assert(false);
return NULL;
}
data = (char * const) ctx->scratch.data + ctx->scratch.offs;
*obj_new = (struct ggml_object) {
.offs = cur_end + GGML_OBJECT_SIZE,
.size = sizeof(struct ggml_tensor),
.next = NULL,
};
//printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
ctx->scratch.offs += size_needed;
}
if (obj_cur != NULL) {
obj_cur->next = obj_new;
@ -1638,9 +1685,9 @@ struct ggml_tensor * ggml_new_tensor_impl(
ctx->objects_end = obj_new;
//GGML_PRINT_DEBUG("%s: inserted new object at %zu\n", __func__, cur_end);
//printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offset);
struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
ggml_assert_aligned(result);
@ -1683,7 +1730,7 @@ struct ggml_tensor * ggml_new_tensor(
struct ggml_context * ctx,
enum ggml_type type,
int n_dims,
const int* ne) {
const int * ne) {
return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
}
@ -1725,16 +1772,26 @@ struct ggml_tensor * ggml_new_tensor_4d(
}
struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
ctx->scratch_save = ctx->scratch;
ctx->scratch.data = NULL;
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
ctx->scratch = ctx->scratch_save;
ggml_set_i32(result, value);
return result;
}
struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
ctx->scratch_save = ctx->scratch;
ctx->scratch.data = NULL;
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
ctx->scratch = ctx->scratch_save;
ggml_set_f32(result, value);
return result;
@ -2343,7 +2400,7 @@ struct ggml_tensor * ggml_repeat(
result->op = GGML_OP_REPEAT;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src0 = a;
result->src1 = NULL;
result->src1 = b;
return result;
}
@ -2959,9 +3016,7 @@ struct ggml_tensor * ggml_diag_mask_inf(
// TODO: when implement backward, fix this:
//struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
struct ggml_tensor * result = ggml_view_tensor(ctx, a);
struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
((int32_t *) b->data)[0] = n_past;
struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
result->op = GGML_OP_DIAG_MASK_INF;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
@ -4293,7 +4348,9 @@ static bool ggml_compute_forward_mul_mat_use_blas(
const int ne1 = dst->ne[1];
// TODO: find the optimal values for these
if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ne0 >= 32 && ne1 >= 32 && ne10 >= 32) {
if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && (
(ne0 >= 32 && ne1 >= 32 && ne10 >= 32)
)) {
//printf("BLAS: %d %d %d\n", ne0, ne1, ne10);
return true;
}
@ -7282,6 +7339,9 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
node->n_tasks = 1; // TODO: this actually is doing nothing
// the threads are still spinning
cur = sizeof(float)*(node->src0->ne[0]*node->src0->ne[1]);
//printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
//printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
//printf("cur = %zu\n", cur);
} else {
cur = sizeof(ggml_fp16_t)*ggml_nelements(node->src1);
}

9
ggml.h
View File

@ -301,6 +301,13 @@ struct ggml_cgraph {
int64_t perf_time_us;
};
// scratch buffer
struct ggml_scratch {
size_t offs;
size_t size;
void * data;
};
struct ggml_init_params {
// memory pool
size_t mem_size; // bytes
@ -327,6 +334,8 @@ void ggml_free(struct ggml_context * ctx);
size_t ggml_used_mem(const struct ggml_context * ctx);
size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch);
struct ggml_tensor * ggml_new_tensor(
struct ggml_context * ctx,
enum ggml_type type,

File diff suppressed because it is too large Load Diff