mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-07-01 15:00:31 +02:00
Compare commits
3 Commits
v1.4.1
...
coreml-wit
Author | SHA1 | Date | |
---|---|---|---|
0244810697 | |||
6efb04fc72 | |||
ee0d6ff473 |
41
.github/workflows/build.yml
vendored
41
.github/workflows/build.yml
vendored
@ -265,44 +265,3 @@ jobs:
|
||||
popd
|
||||
emcmake cmake . -DCMAKE_BUILD_TYPE=${{ matrix.build }}
|
||||
make
|
||||
|
||||
ios:
|
||||
runs-on: macos-latest
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
build: [Release]
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Configure
|
||||
run: cp models/for-tests-ggml-base.en.bin models/ggml-base.en.bin
|
||||
|
||||
- name: Build objc example
|
||||
run: xcodebuild -project examples/whisper.objc/whisper.objc.xcodeproj -scheme whisper.objc -configuration ${{ matrix.build }} -sdk iphonesimulator build
|
||||
|
||||
- name: Build swiftui example
|
||||
run: xcodebuild -project examples/whisper.swiftui/whisper.swiftui.xcodeproj -scheme WhisperCppDemo -configuration ${{ matrix.build }} -sdk iphonesimulator build
|
||||
|
||||
android:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Install Java
|
||||
uses: actions/setup-java@v3
|
||||
with:
|
||||
distribution: zulu
|
||||
java-version: 17
|
||||
|
||||
- name: Setup Android SDK
|
||||
uses: android-actions/setup-android@v2
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cd examples/whisper.android
|
||||
./gradlew assembleRelease --no-daemon
|
11
.gitignore
vendored
11
.gitignore
vendored
@ -1,8 +1,8 @@
|
||||
*.o
|
||||
*.a
|
||||
*.mlmodel
|
||||
*.mlmodelc
|
||||
.cache/
|
||||
.coreml/
|
||||
.test/
|
||||
.vs/
|
||||
.vscode/
|
||||
.DS_Store
|
||||
@ -12,7 +12,6 @@ build-em/
|
||||
build-debug/
|
||||
build-release/
|
||||
build-static/
|
||||
build-cublas/
|
||||
build-no-accel/
|
||||
build-sanitize-addr/
|
||||
build-sanitize-thread/
|
||||
@ -21,9 +20,7 @@ build-sanitize-thread/
|
||||
/stream
|
||||
/command
|
||||
/talk
|
||||
/talk-llama
|
||||
/bench
|
||||
/quantize
|
||||
|
||||
arm_neon.h
|
||||
sync.sh
|
||||
@ -37,7 +34,3 @@ examples/whisper.objc/whisper.objc.xcodeproj/xcuserdata/
|
||||
examples/whisper.objc/whisper.objc.xcodeproj/project.xcworkspace/xcuserdata
|
||||
|
||||
extra/bench-gg.txt
|
||||
|
||||
models/*.mlmodel
|
||||
models/*.mlmodelc
|
||||
models/*.mlpackage
|
||||
|
@ -1,10 +1,6 @@
|
||||
cmake_minimum_required (VERSION 3.0)
|
||||
|
||||
project(whisper.cpp VERSION 1.4.1)
|
||||
|
||||
if ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "MSVC")
|
||||
add_compile_options(/utf-8)
|
||||
endif ()
|
||||
project(whisper.cpp VERSION 1.2.1)
|
||||
|
||||
# Add path to modules
|
||||
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake/")
|
||||
@ -39,34 +35,32 @@ endif()
|
||||
|
||||
# options
|
||||
|
||||
option(BUILD_SHARED_LIBS "whisper: build shared libs" ${BUILD_SHARED_LIBS_DEFAULT})
|
||||
option(BUILD_SHARED_LIBS "whisper: build shared libs" ${BUILD_SHARED_LIBS_DEFAULT})
|
||||
|
||||
option(WHISPER_ALL_WARNINGS "whisper: enable all compiler warnings" ON)
|
||||
option(WHISPER_ALL_WARNINGS_3RD_PARTY "whisper: enable all compiler warnings in 3rd party libs" OFF)
|
||||
option(WHISPER_ALL_WARNINGS "whisper: enable all compiler warnings" ON)
|
||||
option(WHISPER_ALL_WARNINGS_3RD_PARTY "whisper: enable all compiler warnings in 3rd party libs" OFF)
|
||||
|
||||
option(WHISPER_SANITIZE_THREAD "whisper: enable thread sanitizer" OFF)
|
||||
option(WHISPER_SANITIZE_ADDRESS "whisper: enable address sanitizer" OFF)
|
||||
option(WHISPER_SANITIZE_UNDEFINED "whisper: enable undefined sanitizer" OFF)
|
||||
option(WHISPER_SANITIZE_THREAD "whisper: enable thread sanitizer" OFF)
|
||||
option(WHISPER_SANITIZE_ADDRESS "whisper: enable address sanitizer" OFF)
|
||||
option(WHISPER_SANITIZE_UNDEFINED "whisper: enable undefined sanitizer" OFF)
|
||||
|
||||
option(WHISPER_BUILD_TESTS "whisper: build tests" ${WHISPER_STANDALONE})
|
||||
option(WHISPER_BUILD_EXAMPLES "whisper: build examples" ${WHISPER_STANDALONE})
|
||||
option(WHISPER_BUILD_TESTS "whisper: build tests" ${WHISPER_STANDALONE})
|
||||
option(WHISPER_BUILD_EXAMPLES "whisper: build examples" ${WHISPER_STANDALONE})
|
||||
|
||||
option(WHISPER_SDL2 "whisper: support for libSDL2" OFF)
|
||||
option(WHISPER_SUPPORT_SDL2 "whisper: support for libSDL2" OFF)
|
||||
|
||||
if (APPLE)
|
||||
option(WHISPER_NO_ACCELERATE "whisper: disable Accelerate framework" OFF)
|
||||
option(WHISPER_NO_AVX "whisper: disable AVX" OFF)
|
||||
option(WHISPER_NO_AVX2 "whisper: disable AVX2" OFF)
|
||||
option(WHISPER_NO_FMA "whisper: disable FMA" OFF)
|
||||
option(WHISPER_NO_ACCELERATE "whisper: disable Accelerate framework" OFF)
|
||||
option(WHISPER_NO_AVX "whisper: disable AVX" OFF)
|
||||
option(WHISPER_NO_AVX2 "whisper: disable AVX2" OFF)
|
||||
option(WHISPER_NO_FMA "whisper: disable FMA" OFF)
|
||||
|
||||
option(WHISPER_COREML "whisper: enable Core ML framework" OFF)
|
||||
option(WHISPER_COREML_ALLOW_FALLBACK "whisper: allow non-CoreML fallback" OFF)
|
||||
option(WHISPER_COREML "whisper: enable Core ML framework" OFF)
|
||||
else()
|
||||
option(WHISPER_OPENBLAS "whisper: support for OpenBLAS" OFF)
|
||||
option(WHISPER_CUBLAS "whisper: support for cuBLAS" OFF)
|
||||
option(WHISPER_SUPPORT_OPENBLAS "whisper: support for OpenBLAS" OFF)
|
||||
endif()
|
||||
|
||||
option(WHISPER_PERF "whisper: enable perf timings" OFF)
|
||||
option(WHISPER_PERF "whisper: enable perf timings" OFF)
|
||||
|
||||
# sanitizers
|
||||
|
||||
@ -121,14 +115,10 @@ if (APPLE)
|
||||
else()
|
||||
message(WARNING "CoreML framework not found")
|
||||
endif()
|
||||
|
||||
if (WHISPER_COREML_ALLOW_FALLBACK)
|
||||
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DWHISPER_USE_COREML_ALLOW_FALLBACK)
|
||||
endif()
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (WHISPER_OPENBLAS)
|
||||
if (WHISPER_SUPPORT_OPENBLAS)
|
||||
find_library(OPENBLAS_LIB
|
||||
NAMES openblas libopenblas
|
||||
)
|
||||
@ -142,31 +132,6 @@ if (WHISPER_OPENBLAS)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (WHISPER_CUBLAS)
|
||||
cmake_minimum_required(VERSION 3.17)
|
||||
|
||||
find_package(CUDAToolkit)
|
||||
|
||||
if (CUDAToolkit_FOUND)
|
||||
message(STATUS "cuBLAS found")
|
||||
|
||||
enable_language(CUDA)
|
||||
|
||||
set(GGML_CUDA_SOURCES ggml-cuda.cu ggml-cuda.h)
|
||||
|
||||
add_compile_definitions(GGML_USE_CUBLAS)
|
||||
|
||||
if (WHISPER_STATIC)
|
||||
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} CUDA::cudart_static CUDA::cublas_static CUDA::cublasLt_static)
|
||||
else()
|
||||
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} CUDA::cudart CUDA::cublas CUDA::cublasLt)
|
||||
endif()
|
||||
|
||||
else()
|
||||
message(WARNING "cuBLAS not found")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
# compiler flags
|
||||
|
||||
if (NOT CMAKE_BUILD_TYPE AND NOT CMAKE_CONFIGURATION_TYPES)
|
||||
@ -273,7 +238,6 @@ set(TARGET whisper)
|
||||
add_library(${TARGET}
|
||||
ggml.h
|
||||
ggml.c
|
||||
${GGML_CUDA_SOURCES}
|
||||
whisper.h
|
||||
whisper.cpp
|
||||
)
|
||||
@ -303,19 +267,7 @@ if (BUILD_SHARED_LIBS)
|
||||
|
||||
target_compile_definitions(${TARGET} PUBLIC
|
||||
WHISPER_SHARED
|
||||
GGML_SHARED
|
||||
)
|
||||
|
||||
target_compile_definitions(${TARGET} PRIVATE
|
||||
WHISPER_BUILD
|
||||
GGML_BUILD
|
||||
)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_SOURCES)
|
||||
message(STATUS "GGML CUDA sources found, configuring CUDA architecture")
|
||||
set_property(TARGET whisper PROPERTY CUDA_ARCHITECTURES OFF)
|
||||
set_property(TARGET whisper PROPERTY CUDA_SELECT_NVCC_ARCH_FLAGS "Auto")
|
||||
endif()
|
||||
|
||||
if (EMSCRIPTEN)
|
||||
|
2
LICENSE
2
LICENSE
@ -1,6 +1,6 @@
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2023 Georgi Gerganov
|
||||
Copyright (c) 2022 Georgi Gerganov
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
|
86
Makefile
86
Makefile
@ -1,5 +1,3 @@
|
||||
default: main bench quantize
|
||||
|
||||
ifndef UNAME_S
|
||||
UNAME_S := $(shell uname -s)
|
||||
endif
|
||||
@ -38,7 +36,7 @@ LDFLAGS =
|
||||
|
||||
# ref: https://github.com/ggerganov/whisper.cpp/issues/37
|
||||
ifneq ($(wildcard /usr/include/musl/*),)
|
||||
CFLAGS += -D_POSIX_SOURCE -D_GNU_SOURCE
|
||||
CFLAGS += -D_POSIX_SOURCE -D_GNU_SOURCE
|
||||
CXXFLAGS += -D_POSIX_SOURCE -D_GNU_SOURCE
|
||||
endif
|
||||
|
||||
@ -79,6 +77,10 @@ ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686))
|
||||
CFLAGS += -mavx2
|
||||
endif
|
||||
else ifeq ($(UNAME_S),Linux)
|
||||
AVX1_M := $(shell grep "avx " /proc/cpuinfo)
|
||||
ifneq (,$(findstring avx,$(AVX1_M)))
|
||||
CFLAGS += -mavx
|
||||
endif
|
||||
AVX2_M := $(shell grep "avx2 " /proc/cpuinfo)
|
||||
ifneq (,$(findstring avx2,$(AVX2_M)))
|
||||
CFLAGS += -mavx2
|
||||
@ -90,17 +92,16 @@ ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686))
|
||||
F16C_M := $(shell grep "f16c " /proc/cpuinfo)
|
||||
ifneq (,$(findstring f16c,$(F16C_M)))
|
||||
CFLAGS += -mf16c
|
||||
|
||||
AVX1_M := $(shell grep "avx " /proc/cpuinfo)
|
||||
ifneq (,$(findstring avx,$(AVX1_M)))
|
||||
CFLAGS += -mavx
|
||||
endif
|
||||
endif
|
||||
SSE3_M := $(shell grep "sse3 " /proc/cpuinfo)
|
||||
ifneq (,$(findstring sse3,$(SSE3_M)))
|
||||
CFLAGS += -msse3
|
||||
endif
|
||||
else ifeq ($(UNAME_S),Haiku)
|
||||
AVX1_M := $(shell sysinfo -cpu | grep "AVX ")
|
||||
ifneq (,$(findstring avx,$(AVX1_M)))
|
||||
CFLAGS += -mavx
|
||||
endif
|
||||
AVX2_M := $(shell sysinfo -cpu | grep "AVX2 ")
|
||||
ifneq (,$(findstring avx2,$(AVX2_M)))
|
||||
CFLAGS += -mavx2
|
||||
@ -112,11 +113,6 @@ ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686))
|
||||
F16C_M := $(shell sysinfo -cpu | grep "F16C ")
|
||||
ifneq (,$(findstring f16c,$(F16C_M)))
|
||||
CFLAGS += -mf16c
|
||||
|
||||
AVX1_M := $(shell sysinfo -cpu | grep "AVX ")
|
||||
ifneq (,$(findstring avx,$(AVX1_M)))
|
||||
CFLAGS += -mavx
|
||||
endif
|
||||
endif
|
||||
else
|
||||
CFLAGS += -mfma -mf16c -mavx -mavx2
|
||||
@ -125,7 +121,6 @@ endif
|
||||
ifeq ($(UNAME_M),amd64)
|
||||
CFLAGS += -mavx -mavx2 -mfma -mf16c
|
||||
endif
|
||||
|
||||
ifneq ($(filter ppc64%,$(UNAME_M)),)
|
||||
POWER9_M := $(shell grep "POWER9" /proc/cpuinfo)
|
||||
ifneq (,$(findstring POWER9,$(POWER9_M)))
|
||||
@ -136,7 +131,6 @@ ifneq ($(filter ppc64%,$(UNAME_M)),)
|
||||
CXXFLAGS += -std=c++23 -DGGML_BIG_ENDIAN
|
||||
endif
|
||||
endif
|
||||
|
||||
ifndef WHISPER_NO_ACCELERATE
|
||||
# Mac M1 - include Accelerate framework
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
@ -144,56 +138,30 @@ ifndef WHISPER_NO_ACCELERATE
|
||||
LDFLAGS += -framework Accelerate
|
||||
endif
|
||||
endif
|
||||
|
||||
ifdef WHISPER_COREML
|
||||
CXXFLAGS += -DWHISPER_USE_COREML
|
||||
LDFLAGS += -framework Foundation -framework CoreML
|
||||
|
||||
ifdef WHISPER_COREML_ALLOW_FALLBACK
|
||||
CXXFLAGS += -DWHISPER_COREML_ALLOW_FALLBACK
|
||||
endif
|
||||
endif
|
||||
|
||||
ifdef WHISPER_OPENBLAS
|
||||
CFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/openblas
|
||||
LDFLAGS += -lopenblas
|
||||
endif
|
||||
|
||||
ifdef WHISPER_CUBLAS
|
||||
CFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include
|
||||
CXXFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include
|
||||
LDFLAGS += -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/x86_64-linux/lib
|
||||
WHISPER_OBJ += ggml-cuda.o
|
||||
NVCC = nvcc
|
||||
NVCCFLAGS = --forward-unknown-to-host-compiler -arch=native
|
||||
|
||||
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
|
||||
$(NVCC) $(NVCCFLAGS) $(CXXFLAGS) -Wno-pedantic -c $< -o $@
|
||||
endif
|
||||
|
||||
ifdef WHISPER_GPROF
|
||||
CFLAGS += -pg
|
||||
CXXFLAGS += -pg
|
||||
endif
|
||||
|
||||
ifneq ($(filter aarch64%,$(UNAME_M)),)
|
||||
CFLAGS += -mcpu=native
|
||||
CXXFLAGS += -mcpu=native
|
||||
endif
|
||||
|
||||
ifneq ($(filter armv6%,$(UNAME_M)),)
|
||||
# 32-bit Raspberry Pi 1, 2, 3
|
||||
CFLAGS += -mfpu=neon -mfp16-format=ieee -mno-unaligned-access
|
||||
# Raspberry Pi 1, 2, 3
|
||||
CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access
|
||||
endif
|
||||
|
||||
ifneq ($(filter armv7%,$(UNAME_M)),)
|
||||
# 32-bit ARM, for example on Armbian or possibly raspbian
|
||||
CFLAGS += -mfpu=neon -mfp16-format=ieee -mno-unaligned-access -funsafe-math-optimizations
|
||||
|
||||
# 64-bit ARM, use these (TODO: auto-detect 64-bit)
|
||||
# CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access -funsafe-math-optimizations
|
||||
# Raspberry Pi 4
|
||||
CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access -funsafe-math-optimizations
|
||||
endif
|
||||
|
||||
ifneq ($(filter armv8%,$(UNAME_M)),)
|
||||
# Raspberry Pi 4
|
||||
CFLAGS += -mfp16-format=ieee -mno-unaligned-access
|
||||
@ -214,18 +182,20 @@ $(info I CC: $(CCV))
|
||||
$(info I CXX: $(CXXV))
|
||||
$(info )
|
||||
|
||||
default: main
|
||||
|
||||
#
|
||||
# Build library
|
||||
#
|
||||
|
||||
ggml.o: ggml.c ggml.h ggml-cuda.h
|
||||
$(CC) $(CFLAGS) -c $< -o $@
|
||||
ggml.o: ggml.c ggml.h
|
||||
$(CC) $(CFLAGS) -c ggml.c -o ggml.o
|
||||
|
||||
whisper.o: whisper.cpp whisper.h ggml.h ggml-cuda.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
whisper.o: whisper.cpp whisper.h
|
||||
$(CXX) $(CXXFLAGS) -c whisper.cpp -o whisper.o
|
||||
|
||||
ifndef WHISPER_COREML
|
||||
WHISPER_OBJ += whisper.o
|
||||
WHISPER_OBJ = whisper.o
|
||||
else
|
||||
whisper-encoder.o: coreml/whisper-encoder.mm coreml/whisper-encoder.h
|
||||
$(CXX) -O3 -I . -c coreml/whisper-encoder.mm -o whisper-encoder.o
|
||||
@ -233,7 +203,7 @@ whisper-encoder.o: coreml/whisper-encoder.mm coreml/whisper-encoder.h
|
||||
whisper-encoder-impl.o: coreml/whisper-encoder-impl.m coreml/whisper-encoder-impl.h
|
||||
$(CXX) -O3 -I . -fobjc-arc -c coreml/whisper-encoder-impl.m -o whisper-encoder-impl.o
|
||||
|
||||
WHISPER_OBJ += whisper.o whisper-encoder.o whisper-encoder-impl.o
|
||||
WHISPER_OBJ = whisper.o whisper-encoder.o whisper-encoder-impl.o
|
||||
endif
|
||||
|
||||
libwhisper.a: ggml.o $(WHISPER_OBJ)
|
||||
@ -243,7 +213,7 @@ libwhisper.so: ggml.o $(WHISPER_OBJ)
|
||||
$(CXX) $(CXXFLAGS) -shared -o libwhisper.so ggml.o $(WHISPER_OBJ) $(LDFLAGS)
|
||||
|
||||
clean:
|
||||
rm -f *.o main stream command talk talk-llama bench quantize libwhisper.a libwhisper.so
|
||||
rm -f *.o main stream command talk bench libwhisper.a libwhisper.so
|
||||
|
||||
#
|
||||
# Examples
|
||||
@ -251,19 +221,13 @@ clean:
|
||||
|
||||
CC_SDL=`sdl2-config --cflags --libs`
|
||||
|
||||
SRC_COMMON = examples/common.cpp examples/common-ggml.cpp
|
||||
SRC_COMMON = examples/common.cpp
|
||||
SRC_COMMON_SDL = examples/common-sdl.cpp
|
||||
|
||||
main: examples/main/main.cpp $(SRC_COMMON) ggml.o $(WHISPER_OBJ)
|
||||
$(CXX) $(CXXFLAGS) examples/main/main.cpp $(SRC_COMMON) ggml.o $(WHISPER_OBJ) -o main $(LDFLAGS)
|
||||
./main -h
|
||||
|
||||
bench: examples/bench/bench.cpp ggml.o $(WHISPER_OBJ)
|
||||
$(CXX) $(CXXFLAGS) examples/bench/bench.cpp ggml.o $(WHISPER_OBJ) -o bench $(LDFLAGS)
|
||||
|
||||
quantize: examples/quantize/quantize.cpp ggml.o $(WHISPER_OBJ) $(SRC_COMMON)
|
||||
$(CXX) $(CXXFLAGS) examples/quantize/quantize.cpp $(SRC_COMMON) ggml.o $(WHISPER_OBJ) -o quantize $(LDFLAGS)
|
||||
|
||||
stream: examples/stream/stream.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ)
|
||||
$(CXX) $(CXXFLAGS) examples/stream/stream.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ) -o stream $(CC_SDL) $(LDFLAGS)
|
||||
|
||||
@ -273,8 +237,8 @@ command: examples/command/command.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(W
|
||||
talk: examples/talk/talk.cpp examples/talk/gpt-2.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ)
|
||||
$(CXX) $(CXXFLAGS) examples/talk/talk.cpp examples/talk/gpt-2.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ) -o talk $(CC_SDL) $(LDFLAGS)
|
||||
|
||||
talk-llama: examples/talk-llama/talk-llama.cpp examples/talk-llama/llama.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ)
|
||||
$(CXX) $(CXXFLAGS) examples/talk-llama/talk-llama.cpp examples/talk-llama/llama.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ) -o talk-llama $(CC_SDL) $(LDFLAGS)
|
||||
bench: examples/bench/bench.cpp ggml.o $(WHISPER_OBJ)
|
||||
$(CXX) $(CXXFLAGS) examples/bench/bench.cpp ggml.o $(WHISPER_OBJ) -o bench $(LDFLAGS)
|
||||
|
||||
#
|
||||
# Audio samples
|
||||
|
108
README.md
108
README.md
@ -1,25 +1,21 @@
|
||||
# whisper.cpp
|
||||
|
||||

|
||||
|
||||
[](https://github.com/ggerganov/whisper.cpp/actions)
|
||||
[](https://opensource.org/licenses/MIT)
|
||||
[](https://www.npmjs.com/package/whisper.cpp/)
|
||||
|
||||
Beta: [v1.4.1](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.4.1) / Stable: [v1.2.1](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.2.1) / [Roadmap | F.A.Q.](https://github.com/ggerganov/whisper.cpp/discussions/126)
|
||||
Stable: [v1.2.1](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.2.1) / [Roadmap | F.A.Q.](https://github.com/ggerganov/whisper.cpp/discussions/126)
|
||||
|
||||
High-performance inference of [OpenAI's Whisper](https://github.com/openai/whisper) automatic speech recognition (ASR) model:
|
||||
|
||||
- Plain C/C++ implementation without dependencies
|
||||
- Apple silicon first-class citizen - optimized via ARM NEON, Accelerate framework and [Core ML](https://github.com/ggerganov/whisper.cpp#core-ml-support)
|
||||
- Apple silicon first-class citizen - optimized via Arm Neon and Accelerate framework
|
||||
- AVX intrinsics support for x86 architectures
|
||||
- VSX intrinsics support for POWER architectures
|
||||
- Mixed F16 / F32 precision
|
||||
- [4-bit and 5-bit integer quantization support](https://github.com/ggerganov/whisper.cpp#quantization)
|
||||
- Low memory usage (Flash Attention)
|
||||
- Zero memory allocations at runtime
|
||||
- Runs on the CPU
|
||||
- [Partial GPU support for NVIDIA via cuBLAS](https://github.com/ggerganov/whisper.cpp#nvidia-gpu-support-via-cublas)
|
||||
- [C-style API](https://github.com/ggerganov/whisper.cpp/blob/master/whisper.h)
|
||||
|
||||
Supported platforms:
|
||||
@ -62,9 +58,7 @@ the Accelerate framework utilizes the special-purpose AMX coprocessor available
|
||||
|
||||
## Quick start
|
||||
|
||||
First clone the repository.
|
||||
|
||||
Then, download one of the Whisper models converted in [ggml format](models). For example:
|
||||
First, download one of the Whisper models converted in [ggml format](models). For example:
|
||||
|
||||
```bash
|
||||
bash ./models/download-ggml-model.sh base.en
|
||||
@ -229,93 +223,10 @@ make large
|
||||
| medium | 1.5 GB | ~1.7 GB | `fd9727b6e1217c2f614f9b698455c4ffd82463b4` |
|
||||
| large | 2.9 GB | ~3.3 GB | `0f4c8e34f21cf1a914c59d8b3ce882345ad349d6` |
|
||||
|
||||
## Quantization
|
||||
|
||||
`whisper.cpp` supports integer quantization of the Whisper `ggml` models.
|
||||
Quantized models require less memory and disk space and depending on the hardware can be processed more efficiently.
|
||||
|
||||
Here are the steps for creating and using a quantized model:
|
||||
|
||||
```bash
|
||||
# quantize a model with Q5_0 method
|
||||
make quantize
|
||||
./quantize models/ggml-base.en.bin models/ggml-base.en-q5_0.bin q5_0
|
||||
|
||||
# run the examples as usual, specifying the quantized model file
|
||||
./main -m models/ggml-base.en-q5_0.bin ./samples/gb0.wav
|
||||
```
|
||||
|
||||
## Core ML support
|
||||
|
||||
On Apple Silicon devices, the Encoder inference can be executed on the Apple Neural Engine (ANE) via Core ML. This can result in significant
|
||||
speed-up - more than x3 faster compared with CPU-only execution. Here are the instructions for generating a Core ML model and using it with `whisper.cpp`:
|
||||
|
||||
- Install Python dependencies needed for the creation of the Core ML model:
|
||||
|
||||
```bash
|
||||
pip install ane_transformers
|
||||
pip install openai-whisper
|
||||
pip install coremltools
|
||||
```
|
||||
|
||||
- Generate a Core ML model. For example, to generate a `base.en` model, use:
|
||||
|
||||
```bash
|
||||
./models/generate-coreml-model.sh base.en
|
||||
```
|
||||
|
||||
This will generate the folder `models/ggml-base.en-encoder.mlmodelc`
|
||||
|
||||
- Build `whisper.cpp` with Core ML support:
|
||||
|
||||
```bash
|
||||
# using Makefile
|
||||
make clean
|
||||
WHISPER_COREML=1 make -j
|
||||
|
||||
# using CMake
|
||||
cd build
|
||||
cmake -DWHISPER_COREML=1 ..
|
||||
```
|
||||
|
||||
- Run the examples as usual. For example:
|
||||
|
||||
```bash
|
||||
./main -m models/ggml-base.en.bin -f samples/jfk.wav
|
||||
|
||||
...
|
||||
|
||||
whisper_init_state: loading Core ML model from 'models/ggml-base.en-encoder.mlmodelc'
|
||||
whisper_init_state: first run on a device may take a while ...
|
||||
whisper_init_state: Core ML model loaded
|
||||
|
||||
system_info: n_threads = 4 / 10 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | VSX = 0 | COREML = 1 |
|
||||
|
||||
...
|
||||
```
|
||||
|
||||
The first run on a device is slow, since the ANE service compiles the Core ML model to some device-specific format.
|
||||
Next runs are faster.
|
||||
|
||||
For more information about the Core ML implementation please refer to PR [#566](https://github.com/ggerganov/whisper.cpp/pull/566).
|
||||
|
||||
## NVIDIA GPU support via cuBLAS
|
||||
|
||||
With NVIDIA cards, the Encoder processing can be offloaded to the GPU to a large extend through cuBLAS.
|
||||
First, make sure you have installed `cuda`: https://developer.nvidia.com/cuda-downloads
|
||||
|
||||
Now build `whisper.cpp` with cuBLAS support:
|
||||
|
||||
```
|
||||
make clean
|
||||
WHISPER_CUBLAS=1 make -j
|
||||
```
|
||||
|
||||
Run all the examples as usual.
|
||||
|
||||
## Limitations
|
||||
|
||||
- Inference only
|
||||
- No GPU support (yet)
|
||||
|
||||
## Another example
|
||||
|
||||
@ -402,7 +313,7 @@ whisper_print_timings: total time = 32733.52 ms
|
||||
## Real-time audio input example
|
||||
|
||||
This is a naive example of performing real-time inference on audio from your microphone.
|
||||
The [stream](examples/stream) tool samples the audio every half a second and runs the transcription continuously.
|
||||
The [stream](examples/stream) tool samples the audio every half a second and runs the transcription continously.
|
||||
More info is available in [issue #10](https://github.com/ggerganov/whisper.cpp/issues/10).
|
||||
|
||||
```java
|
||||
@ -417,10 +328,6 @@ https://user-images.githubusercontent.com/1991296/194935793-76afede7-cfa8-48d8-a
|
||||
Adding the `--print-colors` argument will print the transcribed text using an experimental color coding strategy
|
||||
to highlight words with high or low confidence:
|
||||
|
||||
```java
|
||||
./main -m models/ggml-base.en.bin -f samples/gb0.wav --print-colors
|
||||
```
|
||||
|
||||
<img width="965" alt="image" src="https://user-images.githubusercontent.com/1991296/197356445-311c8643-9397-4e5e-b46e-0b4b4daa2530.png">
|
||||
|
||||
## Controlling the length of the generated text segments (experimental)
|
||||
@ -460,7 +367,7 @@ system_info: n_threads = 4 / 10 | AVX2 = 0 | AVX512 = 0 | NEON = 1 | FP16_VA = 1
|
||||
|
||||
main: processing './samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 processors, lang = en, task = transcribe, timestamps = 1 ...
|
||||
|
||||
[00:00:00.000 --> 00:00:00.320]
|
||||
[00:00:00.000 --> 00:00:00.320]
|
||||
[00:00:00.320 --> 00:00:00.370] And
|
||||
[00:00:00.370 --> 00:00:00.690] so
|
||||
[00:00:00.690 --> 00:00:00.850] my
|
||||
@ -573,7 +480,6 @@ in [models](models).
|
||||
- [X] Go: [bindings/go](bindings/go) | [#312](https://github.com/ggerganov/whisper.cpp/discussions/312)
|
||||
- [X] Ruby: [bindings/ruby](bindings/ruby) | [#507](https://github.com/ggerganov/whisper.cpp/discussions/507)
|
||||
- [X] Objective-C / Swift: [ggerganov/whisper.spm](https://github.com/ggerganov/whisper.spm) | [#313](https://github.com/ggerganov/whisper.cpp/discussions/313)
|
||||
- [exPHAT/SwiftWhisper](https://github.com/exPHAT/SwiftWhisper)
|
||||
- [X] .NET: | [#422](https://github.com/ggerganov/whisper.cpp/discussions/422)
|
||||
- [sandrohanea/whisper.net](https://github.com/sandrohanea/whisper.net)
|
||||
- [NickDarvey/whisper](https://github.com/NickDarvey/whisper)
|
||||
@ -581,7 +487,6 @@ in [models](models).
|
||||
- [stlukey/whispercpp.py](https://github.com/stlukey/whispercpp.py) (Cython)
|
||||
- [aarnphm/whispercpp](https://github.com/aarnphm/whispercpp) (Pybind11)
|
||||
- [X] R: [bnosac/audio.whisper](https://github.com/bnosac/audio.whisper)
|
||||
- [X] Unity: [macoron/whisper.unity](https://github.com/Macoron/whisper.unity)
|
||||
|
||||
## Examples
|
||||
|
||||
@ -595,7 +500,6 @@ Some of the examples are even ported to run in the browser using WebAssembly. Ch
|
||||
| [stream](examples/stream) | [stream.wasm](examples/stream.wasm) | Real-time transcription of raw microphone capture |
|
||||
| [command](examples/command) | [command.wasm](examples/command.wasm) | Basic voice assistant example for receiving voice commands from the mic |
|
||||
| [talk](examples/talk) | [talk.wasm](examples/talk.wasm) | Talk with a GPT-2 bot |
|
||||
| [talk-llama](examples/talk-llama) | | Talk with a LLaMA bot |
|
||||
| [whisper.objc](examples/whisper.objc) | | iOS mobile application using whisper.cpp |
|
||||
| [whisper.swiftui](examples/whisper.swiftui) | | SwiftUI iOS / macOS application using whisper.cpp |
|
||||
| [whisper.android](examples/whisper.android) | | Android mobile application using whisper.cpp |
|
||||
|
@ -105,10 +105,6 @@ func (p *Params) SetMaxSegmentLength(n int) {
|
||||
p.max_len = C.int(n)
|
||||
}
|
||||
|
||||
func (p *Params) SetTokenTimestamps(b bool) {
|
||||
p.token_timestamps = toBool(b)
|
||||
}
|
||||
|
||||
// Set max tokens per segment (0 = no limit)
|
||||
func (p *Params) SetMaxTokensPerSegment(n int) {
|
||||
p.max_tokens = C.int(n)
|
||||
|
@ -111,11 +111,6 @@ func (context *context) SetMaxSegmentLength(n uint) {
|
||||
context.params.SetMaxSegmentLength(int(n))
|
||||
}
|
||||
|
||||
// Set token timestamps flag
|
||||
func (context *context) SetTokenTimestamps(b bool) {
|
||||
context.params.SetTokenTimestamps(b)
|
||||
}
|
||||
|
||||
// Set max tokens per segment (0 = no limit)
|
||||
func (context *context) SetMaxTokensPerSegment(n uint) {
|
||||
context.params.SetMaxTokensPerSegment(int(n))
|
||||
@ -285,14 +280,10 @@ func toSegment(ctx *whisper.Context, n int) Segment {
|
||||
func toTokens(ctx *whisper.Context, n int) []Token {
|
||||
result := make([]Token, ctx.Whisper_full_n_tokens(n))
|
||||
for i := 0; i < len(result); i++ {
|
||||
data := ctx.Whisper_full_get_token_data(n, i)
|
||||
|
||||
result[i] = Token{
|
||||
Id: int(ctx.Whisper_full_get_token_id(n, i)),
|
||||
Text: ctx.Whisper_full_get_token_text(n, i),
|
||||
P: ctx.Whisper_full_get_token_p(n, i),
|
||||
Start: time.Duration(data.T0()) * time.Millisecond * 10,
|
||||
End: time.Duration(data.T1()) * time.Millisecond * 10,
|
||||
Id: int(ctx.Whisper_full_get_token_id(n, i)),
|
||||
Text: strings.TrimSpace(ctx.Whisper_full_get_token_text(n, i)),
|
||||
P: ctx.Whisper_full_get_token_p(n, i),
|
||||
}
|
||||
}
|
||||
return result
|
||||
|
@ -41,7 +41,6 @@ type Context interface {
|
||||
SetTokenThreshold(float32) // Set timestamp token probability threshold
|
||||
SetTokenSumThreshold(float32) // Set timestamp token sum probability threshold
|
||||
SetMaxSegmentLength(uint) // Set max segment length in characters
|
||||
SetTokenTimestamps(bool) // Set token timestamps flag
|
||||
SetMaxTokensPerSegment(uint) // Set max tokens per segment (0 = no limit)
|
||||
|
||||
// Process mono audio data and return any errors.
|
||||
@ -86,8 +85,7 @@ type Segment struct {
|
||||
|
||||
// Token is a text or special token
|
||||
type Token struct {
|
||||
Id int
|
||||
Text string
|
||||
P float32
|
||||
Start, End time.Duration
|
||||
Id int
|
||||
Text string
|
||||
P float32
|
||||
}
|
||||
|
@ -356,7 +356,7 @@ func (ctx *Context) Whisper_full_get_token_id(segment int, token int) Token {
|
||||
|
||||
// Get token data for the specified token in the specified segment.
|
||||
// This contains probabilities, timestamps, etc.
|
||||
func (ctx *Context) Whisper_full_get_token_data(segment int, token int) TokenData {
|
||||
func (ctx *Context) whisper_full_get_token_data(segment int, token int) TokenData {
|
||||
return TokenData(C.whisper_full_get_token_data((*C.struct_whisper_context)(ctx), C.int(segment), C.int(token)))
|
||||
}
|
||||
|
||||
@ -407,11 +407,3 @@ func callEncoderBegin(user_data unsafe.Pointer) C.bool {
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
func (t TokenData) T0() int64 {
|
||||
return int64(t.t0)
|
||||
}
|
||||
|
||||
func (t TokenData) T1() int64 {
|
||||
return int64(t.t1)
|
||||
}
|
||||
|
Submodule bindings/ios updated: af745e4f2f...92d4c5c9a0
@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "whisper.cpp",
|
||||
"version": "1.4.1",
|
||||
"version": "1.2.1",
|
||||
"description": "Whisper speech recognition",
|
||||
"main": "whisper.js",
|
||||
"scripts": {
|
||||
|
File diff suppressed because one or more lines are too long
@ -1,146 +0,0 @@
|
||||
//
|
||||
// whisper-decoder-impl.h
|
||||
//
|
||||
// This file was automatically generated and should not be edited.
|
||||
//
|
||||
|
||||
#import <Foundation/Foundation.h>
|
||||
#import <CoreML/CoreML.h>
|
||||
#include <stdint.h>
|
||||
#include <os/log.h>
|
||||
|
||||
NS_ASSUME_NONNULL_BEGIN
|
||||
|
||||
|
||||
/// Model Prediction Input Type
|
||||
API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((visibility("hidden")))
|
||||
@interface whisper_decoder_implInput : NSObject<MLFeatureProvider>
|
||||
|
||||
/// token_data as 1 by 1 matrix of 32-bit integers
|
||||
@property (readwrite, nonatomic, strong) MLMultiArray * token_data;
|
||||
|
||||
/// audio_data as 1 × 384 × 1 × 1500 4-dimensional array of floats
|
||||
@property (readwrite, nonatomic, strong) MLMultiArray * audio_data;
|
||||
- (instancetype)init NS_UNAVAILABLE;
|
||||
- (instancetype)initWithToken_data:(MLMultiArray *)token_data audio_data:(MLMultiArray *)audio_data NS_DESIGNATED_INITIALIZER;
|
||||
|
||||
@end
|
||||
|
||||
|
||||
/// Model Prediction Output Type
|
||||
API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((visibility("hidden")))
|
||||
@interface whisper_decoder_implOutput : NSObject<MLFeatureProvider>
|
||||
|
||||
/// var_1346 as multidimensional array of floats
|
||||
@property (readwrite, nonatomic, strong) MLMultiArray * var_1346;
|
||||
- (instancetype)init NS_UNAVAILABLE;
|
||||
- (instancetype)initWithVar_1346:(MLMultiArray *)var_1346 NS_DESIGNATED_INITIALIZER;
|
||||
|
||||
@end
|
||||
|
||||
|
||||
/// Class for model loading and prediction
|
||||
API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((visibility("hidden")))
|
||||
@interface whisper_decoder_impl : NSObject
|
||||
@property (readonly, nonatomic, nullable) MLModel * model;
|
||||
|
||||
/**
|
||||
URL of the underlying .mlmodelc directory.
|
||||
*/
|
||||
+ (nullable NSURL *)URLOfModelInThisBundle;
|
||||
|
||||
/**
|
||||
Initialize whisper_decoder_impl instance from an existing MLModel object.
|
||||
|
||||
Usually the application does not use this initializer unless it makes a subclass of whisper_decoder_impl.
|
||||
Such application may want to use `-[MLModel initWithContentsOfURL:configuration:error:]` and `+URLOfModelInThisBundle` to create a MLModel object to pass-in.
|
||||
*/
|
||||
- (instancetype)initWithMLModel:(MLModel *)model NS_DESIGNATED_INITIALIZER;
|
||||
|
||||
/**
|
||||
Initialize whisper_decoder_impl instance with the model in this bundle.
|
||||
*/
|
||||
- (nullable instancetype)init;
|
||||
|
||||
/**
|
||||
Initialize whisper_decoder_impl instance with the model in this bundle.
|
||||
|
||||
@param configuration The model configuration object
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithConfiguration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Initialize whisper_decoder_impl instance from the model URL.
|
||||
|
||||
@param modelURL URL to the .mlmodelc directory for whisper_decoder_impl.
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Initialize whisper_decoder_impl instance from the model URL.
|
||||
|
||||
@param modelURL URL to the .mlmodelc directory for whisper_decoder_impl.
|
||||
@param configuration The model configuration object
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Construct whisper_decoder_impl instance asynchronously with configuration.
|
||||
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
|
||||
|
||||
@param configuration The model configuration
|
||||
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid whisper_decoder_impl instance or NSError object.
|
||||
*/
|
||||
+ (void)loadWithConfiguration:(MLModelConfiguration *)configuration completionHandler:(void (^)(whisper_decoder_impl * _Nullable model, NSError * _Nullable error))handler;
|
||||
|
||||
/**
|
||||
Construct whisper_decoder_impl instance asynchronously with URL of .mlmodelc directory and optional configuration.
|
||||
|
||||
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
|
||||
|
||||
@param modelURL The model URL.
|
||||
@param configuration The model configuration
|
||||
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid whisper_decoder_impl instance or NSError object.
|
||||
*/
|
||||
+ (void)loadContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration completionHandler:(void (^)(whisper_decoder_impl * _Nullable model, NSError * _Nullable error))handler;
|
||||
|
||||
/**
|
||||
Make a prediction using the standard interface
|
||||
@param input an instance of whisper_decoder_implInput to predict from
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
@return the prediction as whisper_decoder_implOutput
|
||||
*/
|
||||
- (nullable whisper_decoder_implOutput *)predictionFromFeatures:(whisper_decoder_implInput *)input error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Make a prediction using the standard interface
|
||||
@param input an instance of whisper_decoder_implInput to predict from
|
||||
@param options prediction options
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
@return the prediction as whisper_decoder_implOutput
|
||||
*/
|
||||
- (nullable whisper_decoder_implOutput *)predictionFromFeatures:(whisper_decoder_implInput *)input options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Make a prediction using the convenience interface
|
||||
@param token_data as 1 by 1 matrix of 32-bit integers:
|
||||
@param audio_data as 1 × 384 × 1 × 1500 4-dimensional array of floats:
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
@return the prediction as whisper_decoder_implOutput
|
||||
*/
|
||||
- (nullable whisper_decoder_implOutput *)predictionFromToken_data:(MLMultiArray *)token_data audio_data:(MLMultiArray *)audio_data error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Batch prediction
|
||||
@param inputArray array of whisper_decoder_implInput instances to obtain predictions from
|
||||
@param options prediction options
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
@return the predictions as NSArray<whisper_decoder_implOutput *>
|
||||
*/
|
||||
- (nullable NSArray<whisper_decoder_implOutput *> *)predictionsFromInputs:(NSArray<whisper_decoder_implInput*> *)inputArray options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
@end
|
||||
|
||||
NS_ASSUME_NONNULL_END
|
@ -1,201 +0,0 @@
|
||||
//
|
||||
// whisper-decoder-impl.m
|
||||
//
|
||||
// This file was automatically generated and should not be edited.
|
||||
//
|
||||
|
||||
#if !__has_feature(objc_arc)
|
||||
#error This file must be compiled with automatic reference counting enabled (-fobjc-arc)
|
||||
#endif
|
||||
|
||||
#import "whisper-decoder-impl.h"
|
||||
|
||||
@implementation whisper_decoder_implInput
|
||||
|
||||
- (instancetype)initWithToken_data:(MLMultiArray *)token_data audio_data:(MLMultiArray *)audio_data {
|
||||
self = [super init];
|
||||
if (self) {
|
||||
_token_data = token_data;
|
||||
_audio_data = audio_data;
|
||||
}
|
||||
return self;
|
||||
}
|
||||
|
||||
- (NSSet<NSString *> *)featureNames {
|
||||
return [NSSet setWithArray:@[@"token_data", @"audio_data"]];
|
||||
}
|
||||
|
||||
- (nullable MLFeatureValue *)featureValueForName:(NSString *)featureName {
|
||||
if ([featureName isEqualToString:@"token_data"]) {
|
||||
return [MLFeatureValue featureValueWithMultiArray:self.token_data];
|
||||
}
|
||||
if ([featureName isEqualToString:@"audio_data"]) {
|
||||
return [MLFeatureValue featureValueWithMultiArray:self.audio_data];
|
||||
}
|
||||
return nil;
|
||||
}
|
||||
|
||||
@end
|
||||
|
||||
@implementation whisper_decoder_implOutput
|
||||
|
||||
- (instancetype)initWithVar_1346:(MLMultiArray *)var_1346 {
|
||||
self = [super init];
|
||||
if (self) {
|
||||
_var_1346 = var_1346;
|
||||
}
|
||||
return self;
|
||||
}
|
||||
|
||||
- (NSSet<NSString *> *)featureNames {
|
||||
return [NSSet setWithArray:@[@"var_1346"]];
|
||||
}
|
||||
|
||||
- (nullable MLFeatureValue *)featureValueForName:(NSString *)featureName {
|
||||
if ([featureName isEqualToString:@"var_1346"]) {
|
||||
return [MLFeatureValue featureValueWithMultiArray:self.var_1346];
|
||||
}
|
||||
return nil;
|
||||
}
|
||||
|
||||
@end
|
||||
|
||||
@implementation whisper_decoder_impl
|
||||
|
||||
|
||||
/**
|
||||
URL of the underlying .mlmodelc directory.
|
||||
*/
|
||||
+ (nullable NSURL *)URLOfModelInThisBundle {
|
||||
NSString *assetPath = [[NSBundle bundleForClass:[self class]] pathForResource:@"whisper_decoder_impl" ofType:@"mlmodelc"];
|
||||
if (nil == assetPath) { os_log_error(OS_LOG_DEFAULT, "Could not load whisper-decoder-impl.mlmodelc in the bundle resource"); return nil; }
|
||||
return [NSURL fileURLWithPath:assetPath];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Initialize whisper_decoder_impl instance from an existing MLModel object.
|
||||
|
||||
Usually the application does not use this initializer unless it makes a subclass of whisper_decoder_impl.
|
||||
Such application may want to use `-[MLModel initWithContentsOfURL:configuration:error:]` and `+URLOfModelInThisBundle` to create a MLModel object to pass-in.
|
||||
*/
|
||||
- (instancetype)initWithMLModel:(MLModel *)model {
|
||||
self = [super init];
|
||||
if (!self) { return nil; }
|
||||
_model = model;
|
||||
if (_model == nil) { return nil; }
|
||||
return self;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Initialize whisper_decoder_impl instance with the model in this bundle.
|
||||
*/
|
||||
- (nullable instancetype)init {
|
||||
return [self initWithContentsOfURL:(NSURL * _Nonnull)self.class.URLOfModelInThisBundle error:nil];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Initialize whisper_decoder_impl instance with the model in this bundle.
|
||||
|
||||
@param configuration The model configuration object
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithConfiguration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
return [self initWithContentsOfURL:(NSURL * _Nonnull)self.class.URLOfModelInThisBundle configuration:configuration error:error];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Initialize whisper_decoder_impl instance from the model URL.
|
||||
|
||||
@param modelURL URL to the .mlmodelc directory for whisper_decoder_impl.
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
MLModel *model = [MLModel modelWithContentsOfURL:modelURL error:error];
|
||||
if (model == nil) { return nil; }
|
||||
return [self initWithMLModel:model];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Initialize whisper_decoder_impl instance from the model URL.
|
||||
|
||||
@param modelURL URL to the .mlmodelc directory for whisper_decoder_impl.
|
||||
@param configuration The model configuration object
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
MLModel *model = [MLModel modelWithContentsOfURL:modelURL configuration:configuration error:error];
|
||||
if (model == nil) { return nil; }
|
||||
return [self initWithMLModel:model];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Construct whisper_decoder_impl instance asynchronously with configuration.
|
||||
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
|
||||
|
||||
@param configuration The model configuration
|
||||
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid whisper_decoder_impl instance or NSError object.
|
||||
*/
|
||||
+ (void)loadWithConfiguration:(MLModelConfiguration *)configuration completionHandler:(void (^)(whisper_decoder_impl * _Nullable model, NSError * _Nullable error))handler {
|
||||
[self loadContentsOfURL:(NSURL * _Nonnull)[self URLOfModelInThisBundle]
|
||||
configuration:configuration
|
||||
completionHandler:handler];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Construct whisper_decoder_impl instance asynchronously with URL of .mlmodelc directory and optional configuration.
|
||||
|
||||
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
|
||||
|
||||
@param modelURL The model URL.
|
||||
@param configuration The model configuration
|
||||
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid whisper_decoder_impl instance or NSError object.
|
||||
*/
|
||||
+ (void)loadContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration completionHandler:(void (^)(whisper_decoder_impl * _Nullable model, NSError * _Nullable error))handler {
|
||||
[MLModel loadContentsOfURL:modelURL
|
||||
configuration:configuration
|
||||
completionHandler:^(MLModel *model, NSError *error) {
|
||||
if (model != nil) {
|
||||
whisper_decoder_impl *typedModel = [[whisper_decoder_impl alloc] initWithMLModel:model];
|
||||
handler(typedModel, nil);
|
||||
} else {
|
||||
handler(nil, error);
|
||||
}
|
||||
}];
|
||||
}
|
||||
|
||||
- (nullable whisper_decoder_implOutput *)predictionFromFeatures:(whisper_decoder_implInput *)input error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
return [self predictionFromFeatures:input options:[[MLPredictionOptions alloc] init] error:error];
|
||||
}
|
||||
|
||||
- (nullable whisper_decoder_implOutput *)predictionFromFeatures:(whisper_decoder_implInput *)input options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
id<MLFeatureProvider> outFeatures = [self.model predictionFromFeatures:input options:options error:error];
|
||||
if (!outFeatures) { return nil; }
|
||||
return [[whisper_decoder_implOutput alloc] initWithVar_1346:(MLMultiArray *)[outFeatures featureValueForName:@"var_1346"].multiArrayValue];
|
||||
}
|
||||
|
||||
- (nullable whisper_decoder_implOutput *)predictionFromToken_data:(MLMultiArray *)token_data audio_data:(MLMultiArray *)audio_data error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
whisper_decoder_implInput *input_ = [[whisper_decoder_implInput alloc] initWithToken_data:token_data audio_data:audio_data];
|
||||
return [self predictionFromFeatures:input_ error:error];
|
||||
}
|
||||
|
||||
- (nullable NSArray<whisper_decoder_implOutput *> *)predictionsFromInputs:(NSArray<whisper_decoder_implInput*> *)inputArray options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
id<MLBatchProvider> inBatch = [[MLArrayBatchProvider alloc] initWithFeatureProviderArray:inputArray];
|
||||
id<MLBatchProvider> outBatch = [self.model predictionsFromBatch:inBatch options:options error:error];
|
||||
if (!outBatch) { return nil; }
|
||||
NSMutableArray<whisper_decoder_implOutput*> *results = [NSMutableArray arrayWithCapacity:(NSUInteger)outBatch.count];
|
||||
for (NSInteger i = 0; i < outBatch.count; i++) {
|
||||
id<MLFeatureProvider> resultProvider = [outBatch featuresAtIndex:i];
|
||||
whisper_decoder_implOutput * result = [[whisper_decoder_implOutput alloc] initWithVar_1346:(MLMultiArray *)[resultProvider featureValueForName:@"var_1346"].multiArrayValue];
|
||||
[results addObject:result];
|
||||
}
|
||||
return results;
|
||||
}
|
||||
|
||||
@end
|
@ -1,5 +1,5 @@
|
||||
//
|
||||
// whisper-encoder-impl.h
|
||||
// CoremlEncoder.h
|
||||
//
|
||||
// This file was automatically generated and should not be edited.
|
||||
//
|
||||
@ -13,20 +13,20 @@ NS_ASSUME_NONNULL_BEGIN
|
||||
|
||||
|
||||
/// Model Prediction Input Type
|
||||
API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((visibility("hidden")))
|
||||
@interface whisper_encoder_implInput : NSObject<MLFeatureProvider>
|
||||
API_AVAILABLE(macos(10.15), ios(13.0), watchos(6.0), tvos(13.0)) __attribute__((visibility("hidden")))
|
||||
@interface CoremlEncoderInput : NSObject<MLFeatureProvider>
|
||||
|
||||
/// logmel_data as 1 × 80 × 3000 3-dimensional array of floats
|
||||
@property (readwrite, nonatomic, strong) MLMultiArray * logmel_data;
|
||||
/// melSegment as 1 × 80 × 3000 3-dimensional array of floats
|
||||
@property (readwrite, nonatomic, strong) MLMultiArray * melSegment;
|
||||
- (instancetype)init NS_UNAVAILABLE;
|
||||
- (instancetype)initWithLogmel_data:(MLMultiArray *)logmel_data NS_DESIGNATED_INITIALIZER;
|
||||
- (instancetype)initWithMelSegment:(MLMultiArray *)melSegment NS_DESIGNATED_INITIALIZER;
|
||||
|
||||
@end
|
||||
|
||||
|
||||
/// Model Prediction Output Type
|
||||
API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((visibility("hidden")))
|
||||
@interface whisper_encoder_implOutput : NSObject<MLFeatureProvider>
|
||||
API_AVAILABLE(macos(10.15), ios(13.0), watchos(6.0), tvos(13.0)) __attribute__((visibility("hidden")))
|
||||
@interface CoremlEncoderOutput : NSObject<MLFeatureProvider>
|
||||
|
||||
/// output as multidimensional array of floats
|
||||
@property (readwrite, nonatomic, strong) MLMultiArray * output;
|
||||
@ -37,8 +37,8 @@ API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((v
|
||||
|
||||
|
||||
/// Class for model loading and prediction
|
||||
API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((visibility("hidden")))
|
||||
@interface whisper_encoder_impl : NSObject
|
||||
API_AVAILABLE(macos(10.15), ios(13.0), watchos(6.0), tvos(13.0)) __attribute__((visibility("hidden")))
|
||||
@interface CoremlEncoder : NSObject
|
||||
@property (readonly, nonatomic, nullable) MLModel * model;
|
||||
|
||||
/**
|
||||
@ -47,20 +47,20 @@ API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((v
|
||||
+ (nullable NSURL *)URLOfModelInThisBundle;
|
||||
|
||||
/**
|
||||
Initialize whisper_encoder_impl instance from an existing MLModel object.
|
||||
Initialize CoremlEncoder instance from an existing MLModel object.
|
||||
|
||||
Usually the application does not use this initializer unless it makes a subclass of whisper_encoder_impl.
|
||||
Usually the application does not use this initializer unless it makes a subclass of CoremlEncoder.
|
||||
Such application may want to use `-[MLModel initWithContentsOfURL:configuration:error:]` and `+URLOfModelInThisBundle` to create a MLModel object to pass-in.
|
||||
*/
|
||||
- (instancetype)initWithMLModel:(MLModel *)model NS_DESIGNATED_INITIALIZER;
|
||||
|
||||
/**
|
||||
Initialize whisper_encoder_impl instance with the model in this bundle.
|
||||
Initialize CoremlEncoder instance with the model in this bundle.
|
||||
*/
|
||||
- (nullable instancetype)init;
|
||||
|
||||
/**
|
||||
Initialize whisper_encoder_impl instance with the model in this bundle.
|
||||
Initialize CoremlEncoder instance with the model in this bundle.
|
||||
|
||||
@param configuration The model configuration object
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
@ -68,75 +68,75 @@ API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((v
|
||||
- (nullable instancetype)initWithConfiguration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Initialize whisper_encoder_impl instance from the model URL.
|
||||
Initialize CoremlEncoder instance from the model URL.
|
||||
|
||||
@param modelURL URL to the .mlmodelc directory for whisper_encoder_impl.
|
||||
@param modelURL URL to the .mlmodelc directory for CoremlEncoder.
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Initialize whisper_encoder_impl instance from the model URL.
|
||||
Initialize CoremlEncoder instance from the model URL.
|
||||
|
||||
@param modelURL URL to the .mlmodelc directory for whisper_encoder_impl.
|
||||
@param modelURL URL to the .mlmodelc directory for CoremlEncoder.
|
||||
@param configuration The model configuration object
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Construct whisper_encoder_impl instance asynchronously with configuration.
|
||||
Construct CoremlEncoder instance asynchronously with configuration.
|
||||
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
|
||||
|
||||
@param configuration The model configuration
|
||||
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid whisper_encoder_impl instance or NSError object.
|
||||
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid CoremlEncoder instance or NSError object.
|
||||
*/
|
||||
+ (void)loadWithConfiguration:(MLModelConfiguration *)configuration completionHandler:(void (^)(whisper_encoder_impl * _Nullable model, NSError * _Nullable error))handler;
|
||||
+ (void)loadWithConfiguration:(MLModelConfiguration *)configuration completionHandler:(void (^)(CoremlEncoder * _Nullable model, NSError * _Nullable error))handler API_AVAILABLE(macos(11.0), ios(14.0), watchos(7.0), tvos(14.0)) __attribute__((visibility("hidden")));
|
||||
|
||||
/**
|
||||
Construct whisper_encoder_impl instance asynchronously with URL of .mlmodelc directory and optional configuration.
|
||||
Construct CoremlEncoder instance asynchronously with URL of .mlmodelc directory and optional configuration.
|
||||
|
||||
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
|
||||
|
||||
@param modelURL The model URL.
|
||||
@param configuration The model configuration
|
||||
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid whisper_encoder_impl instance or NSError object.
|
||||
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid CoremlEncoder instance or NSError object.
|
||||
*/
|
||||
+ (void)loadContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration completionHandler:(void (^)(whisper_encoder_impl * _Nullable model, NSError * _Nullable error))handler;
|
||||
+ (void)loadContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration completionHandler:(void (^)(CoremlEncoder * _Nullable model, NSError * _Nullable error))handler API_AVAILABLE(macos(11.0), ios(14.0), watchos(7.0), tvos(14.0)) __attribute__((visibility("hidden")));
|
||||
|
||||
/**
|
||||
Make a prediction using the standard interface
|
||||
@param input an instance of whisper_encoder_implInput to predict from
|
||||
@param input an instance of CoremlEncoderInput to predict from
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
@return the prediction as whisper_encoder_implOutput
|
||||
@return the prediction as CoremlEncoderOutput
|
||||
*/
|
||||
- (nullable whisper_encoder_implOutput *)predictionFromFeatures:(whisper_encoder_implInput *)input error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
- (nullable CoremlEncoderOutput *)predictionFromFeatures:(CoremlEncoderInput *)input error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Make a prediction using the standard interface
|
||||
@param input an instance of whisper_encoder_implInput to predict from
|
||||
@param input an instance of CoremlEncoderInput to predict from
|
||||
@param options prediction options
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
@return the prediction as whisper_encoder_implOutput
|
||||
@return the prediction as CoremlEncoderOutput
|
||||
*/
|
||||
- (nullable whisper_encoder_implOutput *)predictionFromFeatures:(whisper_encoder_implInput *)input options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
- (nullable CoremlEncoderOutput *)predictionFromFeatures:(CoremlEncoderInput *)input options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Make a prediction using the convenience interface
|
||||
@param logmel_data as 1 × 80 × 3000 3-dimensional array of floats:
|
||||
@param melSegment as 1 × 80 × 3000 3-dimensional array of floats:
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
@return the prediction as whisper_encoder_implOutput
|
||||
@return the prediction as CoremlEncoderOutput
|
||||
*/
|
||||
- (nullable whisper_encoder_implOutput *)predictionFromLogmel_data:(MLMultiArray *)logmel_data error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
- (nullable CoremlEncoderOutput *)predictionFromMelSegment:(MLMultiArray *)melSegment error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Batch prediction
|
||||
@param inputArray array of whisper_encoder_implInput instances to obtain predictions from
|
||||
@param inputArray array of CoremlEncoderInput instances to obtain predictions from
|
||||
@param options prediction options
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
@return the predictions as NSArray<whisper_encoder_implOutput *>
|
||||
@return the predictions as NSArray<CoremlEncoderOutput *>
|
||||
*/
|
||||
- (nullable NSArray<whisper_encoder_implOutput *> *)predictionsFromInputs:(NSArray<whisper_encoder_implInput*> *)inputArray options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
- (nullable NSArray<CoremlEncoderOutput *> *)predictionsFromInputs:(NSArray<CoremlEncoderInput*> *)inputArray options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
@end
|
||||
|
||||
NS_ASSUME_NONNULL_END
|
||||
|
@ -1,5 +1,5 @@
|
||||
//
|
||||
// whisper-encoder-impl.m
|
||||
// CoremlEncoder.m
|
||||
//
|
||||
// This file was automatically generated and should not be edited.
|
||||
//
|
||||
@ -10,30 +10,30 @@
|
||||
|
||||
#import "whisper-encoder-impl.h"
|
||||
|
||||
@implementation whisper_encoder_implInput
|
||||
@implementation CoremlEncoderInput
|
||||
|
||||
- (instancetype)initWithLogmel_data:(MLMultiArray *)logmel_data {
|
||||
- (instancetype)initWithMelSegment:(MLMultiArray *)melSegment {
|
||||
self = [super init];
|
||||
if (self) {
|
||||
_logmel_data = logmel_data;
|
||||
_melSegment = melSegment;
|
||||
}
|
||||
return self;
|
||||
}
|
||||
|
||||
- (NSSet<NSString *> *)featureNames {
|
||||
return [NSSet setWithArray:@[@"logmel_data"]];
|
||||
return [NSSet setWithArray:@[@"melSegment"]];
|
||||
}
|
||||
|
||||
- (nullable MLFeatureValue *)featureValueForName:(NSString *)featureName {
|
||||
if ([featureName isEqualToString:@"logmel_data"]) {
|
||||
return [MLFeatureValue featureValueWithMultiArray:self.logmel_data];
|
||||
if ([featureName isEqualToString:@"melSegment"]) {
|
||||
return [MLFeatureValue featureValueWithMultiArray:self.melSegment];
|
||||
}
|
||||
return nil;
|
||||
}
|
||||
|
||||
@end
|
||||
|
||||
@implementation whisper_encoder_implOutput
|
||||
@implementation CoremlEncoderOutput
|
||||
|
||||
- (instancetype)initWithOutput:(MLMultiArray *)output {
|
||||
self = [super init];
|
||||
@ -56,23 +56,23 @@
|
||||
|
||||
@end
|
||||
|
||||
@implementation whisper_encoder_impl
|
||||
@implementation CoremlEncoder
|
||||
|
||||
|
||||
/**
|
||||
URL of the underlying .mlmodelc directory.
|
||||
*/
|
||||
+ (nullable NSURL *)URLOfModelInThisBundle {
|
||||
NSString *assetPath = [[NSBundle bundleForClass:[self class]] pathForResource:@"whisper_encoder_impl" ofType:@"mlmodelc"];
|
||||
if (nil == assetPath) { os_log_error(OS_LOG_DEFAULT, "Could not load whisper-encoder-impl.mlmodelc in the bundle resource"); return nil; }
|
||||
NSString *assetPath = [[NSBundle bundleForClass:[self class]] pathForResource:@"CoremlEncoder" ofType:@"mlmodelc"];
|
||||
if (nil == assetPath) { os_log_error(OS_LOG_DEFAULT, "Could not load CoremlEncoder.mlmodelc in the bundle resource"); return nil; }
|
||||
return [NSURL fileURLWithPath:assetPath];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Initialize whisper_encoder_impl instance from an existing MLModel object.
|
||||
Initialize CoremlEncoder instance from an existing MLModel object.
|
||||
|
||||
Usually the application does not use this initializer unless it makes a subclass of whisper_encoder_impl.
|
||||
Usually the application does not use this initializer unless it makes a subclass of CoremlEncoder.
|
||||
Such application may want to use `-[MLModel initWithContentsOfURL:configuration:error:]` and `+URLOfModelInThisBundle` to create a MLModel object to pass-in.
|
||||
*/
|
||||
- (instancetype)initWithMLModel:(MLModel *)model {
|
||||
@ -85,7 +85,7 @@
|
||||
|
||||
|
||||
/**
|
||||
Initialize whisper_encoder_impl instance with the model in this bundle.
|
||||
Initialize CoremlEncoder instance with the model in this bundle.
|
||||
*/
|
||||
- (nullable instancetype)init {
|
||||
return [self initWithContentsOfURL:(NSURL * _Nonnull)self.class.URLOfModelInThisBundle error:nil];
|
||||
@ -93,7 +93,7 @@
|
||||
|
||||
|
||||
/**
|
||||
Initialize whisper_encoder_impl instance with the model in this bundle.
|
||||
Initialize CoremlEncoder instance with the model in this bundle.
|
||||
|
||||
@param configuration The model configuration object
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
@ -104,9 +104,9 @@
|
||||
|
||||
|
||||
/**
|
||||
Initialize whisper_encoder_impl instance from the model URL.
|
||||
Initialize CoremlEncoder instance from the model URL.
|
||||
|
||||
@param modelURL URL to the .mlmodelc directory for whisper_encoder_impl.
|
||||
@param modelURL URL to the .mlmodelc directory for CoremlEncoder.
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
@ -117,9 +117,9 @@
|
||||
|
||||
|
||||
/**
|
||||
Initialize whisper_encoder_impl instance from the model URL.
|
||||
Initialize CoremlEncoder instance from the model URL.
|
||||
|
||||
@param modelURL URL to the .mlmodelc directory for whisper_encoder_impl.
|
||||
@param modelURL URL to the .mlmodelc directory for CoremlEncoder.
|
||||
@param configuration The model configuration object
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
@ -131,13 +131,13 @@
|
||||
|
||||
|
||||
/**
|
||||
Construct whisper_encoder_impl instance asynchronously with configuration.
|
||||
Construct CoremlEncoder instance asynchronously with configuration.
|
||||
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
|
||||
|
||||
@param configuration The model configuration
|
||||
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid whisper_encoder_impl instance or NSError object.
|
||||
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid CoremlEncoder instance or NSError object.
|
||||
*/
|
||||
+ (void)loadWithConfiguration:(MLModelConfiguration *)configuration completionHandler:(void (^)(whisper_encoder_impl * _Nullable model, NSError * _Nullable error))handler {
|
||||
+ (void)loadWithConfiguration:(MLModelConfiguration *)configuration completionHandler:(void (^)(CoremlEncoder * _Nullable model, NSError * _Nullable error))handler {
|
||||
[self loadContentsOfURL:(NSURL * _Nonnull)[self URLOfModelInThisBundle]
|
||||
configuration:configuration
|
||||
completionHandler:handler];
|
||||
@ -145,20 +145,20 @@
|
||||
|
||||
|
||||
/**
|
||||
Construct whisper_encoder_impl instance asynchronously with URL of .mlmodelc directory and optional configuration.
|
||||
Construct CoremlEncoder instance asynchronously with URL of .mlmodelc directory and optional configuration.
|
||||
|
||||
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
|
||||
|
||||
@param modelURL The model URL.
|
||||
@param configuration The model configuration
|
||||
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid whisper_encoder_impl instance or NSError object.
|
||||
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid CoremlEncoder instance or NSError object.
|
||||
*/
|
||||
+ (void)loadContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration completionHandler:(void (^)(whisper_encoder_impl * _Nullable model, NSError * _Nullable error))handler {
|
||||
+ (void)loadContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration completionHandler:(void (^)(CoremlEncoder * _Nullable model, NSError * _Nullable error))handler {
|
||||
[MLModel loadContentsOfURL:modelURL
|
||||
configuration:configuration
|
||||
completionHandler:^(MLModel *model, NSError *error) {
|
||||
if (model != nil) {
|
||||
whisper_encoder_impl *typedModel = [[whisper_encoder_impl alloc] initWithMLModel:model];
|
||||
CoremlEncoder *typedModel = [[CoremlEncoder alloc] initWithMLModel:model];
|
||||
handler(typedModel, nil);
|
||||
} else {
|
||||
handler(nil, error);
|
||||
@ -166,29 +166,29 @@
|
||||
}];
|
||||
}
|
||||
|
||||
- (nullable whisper_encoder_implOutput *)predictionFromFeatures:(whisper_encoder_implInput *)input error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
- (nullable CoremlEncoderOutput *)predictionFromFeatures:(CoremlEncoderInput *)input error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
return [self predictionFromFeatures:input options:[[MLPredictionOptions alloc] init] error:error];
|
||||
}
|
||||
|
||||
- (nullable whisper_encoder_implOutput *)predictionFromFeatures:(whisper_encoder_implInput *)input options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
- (nullable CoremlEncoderOutput *)predictionFromFeatures:(CoremlEncoderInput *)input options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
id<MLFeatureProvider> outFeatures = [self.model predictionFromFeatures:input options:options error:error];
|
||||
if (!outFeatures) { return nil; }
|
||||
return [[whisper_encoder_implOutput alloc] initWithOutput:(MLMultiArray *)[outFeatures featureValueForName:@"output"].multiArrayValue];
|
||||
return [[CoremlEncoderOutput alloc] initWithOutput:(MLMultiArray *)[outFeatures featureValueForName:@"output"].multiArrayValue];
|
||||
}
|
||||
|
||||
- (nullable whisper_encoder_implOutput *)predictionFromLogmel_data:(MLMultiArray *)logmel_data error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
whisper_encoder_implInput *input_ = [[whisper_encoder_implInput alloc] initWithLogmel_data:logmel_data];
|
||||
- (nullable CoremlEncoderOutput *)predictionFromMelSegment:(MLMultiArray *)melSegment error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
CoremlEncoderInput *input_ = [[CoremlEncoderInput alloc] initWithMelSegment:melSegment];
|
||||
return [self predictionFromFeatures:input_ error:error];
|
||||
}
|
||||
|
||||
- (nullable NSArray<whisper_encoder_implOutput *> *)predictionsFromInputs:(NSArray<whisper_encoder_implInput*> *)inputArray options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
- (nullable NSArray<CoremlEncoderOutput *> *)predictionsFromInputs:(NSArray<CoremlEncoderInput*> *)inputArray options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
id<MLBatchProvider> inBatch = [[MLArrayBatchProvider alloc] initWithFeatureProviderArray:inputArray];
|
||||
id<MLBatchProvider> outBatch = [self.model predictionsFromBatch:inBatch options:options error:error];
|
||||
if (!outBatch) { return nil; }
|
||||
NSMutableArray<whisper_encoder_implOutput*> *results = [NSMutableArray arrayWithCapacity:(NSUInteger)outBatch.count];
|
||||
NSMutableArray<CoremlEncoderOutput*> *results = [NSMutableArray arrayWithCapacity:(NSUInteger)outBatch.count];
|
||||
for (NSInteger i = 0; i < outBatch.count; i++) {
|
||||
id<MLFeatureProvider> resultProvider = [outBatch featuresAtIndex:i];
|
||||
whisper_encoder_implOutput * result = [[whisper_encoder_implOutput alloc] initWithOutput:(MLMultiArray *)[resultProvider featureValueForName:@"output"].multiArrayValue];
|
||||
CoremlEncoderOutput * result = [[CoremlEncoderOutput alloc] initWithOutput:(MLMultiArray *)[resultProvider featureValueForName:@"output"].multiArrayValue];
|
||||
[results addObject:result];
|
||||
}
|
||||
return results;
|
||||
|
@ -18,7 +18,7 @@ struct whisper_coreml_context * whisper_coreml_init(const char * path_model) {
|
||||
|
||||
NSURL * url_model = [NSURL fileURLWithPath: path_model_str];
|
||||
|
||||
const void * data = CFBridgingRetain([[whisper_encoder_impl alloc] initWithContentsOfURL:url_model error:nil]);
|
||||
const void * data = CFBridgingRetain([[CoremlEncoder alloc] initWithContentsOfURL:url_model error:nil]);
|
||||
|
||||
if (data == NULL) {
|
||||
return NULL;
|
||||
@ -49,16 +49,10 @@ void whisper_coreml_encode(
|
||||
error: nil
|
||||
];
|
||||
|
||||
whisper_encoder_implOutput * outCoreML = [(__bridge id) ctx->data predictionFromLogmel_data:inMultiArray error:nil];
|
||||
CoremlEncoderOutput * outCoreML = [(__bridge id) ctx->data predictionFromMelSegment:inMultiArray error:nil];
|
||||
|
||||
MLMultiArray * outMA = outCoreML.output;
|
||||
|
||||
//NSArray<NSNumber *> * shape = outMA.shape;
|
||||
//NSArray<NSNumber *> * strides = outMA.strides;
|
||||
|
||||
//printf("shape: %ld %ld %ld %ld\n", [shape[0] longValue], [shape[1] longValue], [shape[2] longValue], [shape[3] longValue]);
|
||||
//printf("strides: %ld %ld %ld %ld\n", [strides[0] longValue], [strides[1] longValue], [strides[2] longValue], [strides[3] longValue]);
|
||||
|
||||
memcpy(out, outMA.dataPointer, outMA.count * sizeof(float));
|
||||
}
|
||||
|
||||
|
@ -4,7 +4,7 @@ find_package(Threads REQUIRED)
|
||||
|
||||
# third-party
|
||||
|
||||
if (WHISPER_SDL2)
|
||||
if (WHISPER_SUPPORT_SDL2)
|
||||
# SDL2
|
||||
find_package(SDL2 REQUIRED)
|
||||
|
||||
@ -21,17 +21,13 @@ set(TARGET common)
|
||||
add_library(${TARGET} STATIC
|
||||
common.h
|
||||
common.cpp
|
||||
common-ggml.h
|
||||
common-ggml.cpp
|
||||
)
|
||||
|
||||
include(DefaultTargetOptions)
|
||||
|
||||
target_link_libraries(${TARGET} PRIVATE whisper)
|
||||
|
||||
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
|
||||
if (WHISPER_SDL2)
|
||||
if (WHISPER_SUPPORT_SDL2)
|
||||
# common-sdl
|
||||
|
||||
set(TARGET common-sdl)
|
||||
@ -66,7 +62,5 @@ else()
|
||||
add_subdirectory(stream)
|
||||
add_subdirectory(command)
|
||||
add_subdirectory(bench)
|
||||
add_subdirectory(quantize)
|
||||
add_subdirectory(talk)
|
||||
add_subdirectory(talk-llama)
|
||||
endif()
|
||||
|
@ -1,23 +1,15 @@
|
||||
const path = require("path");
|
||||
const { whisper } = require(path.join(
|
||||
__dirname,
|
||||
"../../../build/Release/whisper-addon"
|
||||
));
|
||||
const { promisify } = require("util");
|
||||
|
||||
const whisperAsync = promisify(whisper);
|
||||
const path = require('path');
|
||||
const { whisper } = require(path.join(__dirname, '../../../build/Release/whisper-addon'));
|
||||
|
||||
const whisperParamsMock = {
|
||||
language: "en",
|
||||
model: path.join(__dirname, "../../../models/ggml-base.en.bin"),
|
||||
fname_inp: path.join(__dirname, "../../../samples/jfk.wav"),
|
||||
language: 'en',
|
||||
model: path.join(__dirname, '../../../models/ggml-base.en.bin'),
|
||||
fname_inp: path.join(__dirname, '../../../samples/jfk.wav'),
|
||||
};
|
||||
|
||||
describe("Run whisper.node", () => {
|
||||
test("it should receive a non-empty value", async () => {
|
||||
let result = await whisperAsync(whisperParamsMock);
|
||||
|
||||
expect(result.length).toBeGreaterThan(0);
|
||||
}, 10000);
|
||||
test("it should receive a non-empty value", () => {
|
||||
expect(whisper(whisperParamsMock).length).toBeGreaterThan(0);
|
||||
});
|
||||
});
|
||||
|
||||
|
@ -160,6 +160,22 @@ int run(whisper_params ¶ms, std::vector<std::vector<std::string>> &result) {
|
||||
return 3;
|
||||
}
|
||||
|
||||
// initial prompt
|
||||
std::vector<whisper_token> prompt_tokens;
|
||||
|
||||
if (!params.prompt.empty()) {
|
||||
prompt_tokens.resize(1024);
|
||||
prompt_tokens.resize(whisper_tokenize(ctx, params.prompt.c_str(), prompt_tokens.data(), prompt_tokens.size()));
|
||||
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "initial prompt: '%s'\n", params.prompt.c_str());
|
||||
fprintf(stderr, "initial tokens: [ ");
|
||||
for (int i = 0; i < (int) prompt_tokens.size(); ++i) {
|
||||
fprintf(stderr, "%d ", prompt_tokens[i]);
|
||||
}
|
||||
fprintf(stderr, "]\n");
|
||||
}
|
||||
|
||||
for (int f = 0; f < (int) params.fname_inp.size(); ++f) {
|
||||
const auto fname_inp = params.fname_inp[f];
|
||||
const auto fname_out = f < (int)params.fname_out.size() && !params.fname_out[f].empty() ? params.fname_out[f] : params.fname_inp[f];
|
||||
@ -227,7 +243,8 @@ int run(whisper_params ¶ms, std::vector<std::vector<std::string>> &result) {
|
||||
wparams.greedy.best_of = params.best_of;
|
||||
wparams.beam_search.beam_size = params.beam_size;
|
||||
|
||||
wparams.initial_prompt = params.prompt.c_str();
|
||||
wparams.prompt_tokens = prompt_tokens.empty() ? nullptr : prompt_tokens.data();
|
||||
wparams.prompt_n_tokens = prompt_tokens.empty() ? 0 : prompt_tokens.size();
|
||||
|
||||
whisper_print_user_data user_data = { ¶ms, &pcmf32s };
|
||||
|
||||
|
@ -31,9 +31,9 @@ endif()
|
||||
set_target_properties(${TARGET} PROPERTIES LINK_FLAGS " \
|
||||
--bind \
|
||||
-s USE_PTHREADS=1 \
|
||||
-s PTHREAD_POOL_SIZE_STRICT=0 \
|
||||
-s INITIAL_MEMORY=2000MB \
|
||||
-s TOTAL_MEMORY=2000MB \
|
||||
-s PTHREAD_POOL_SIZE=8 \
|
||||
-s INITIAL_MEMORY=1024MB \
|
||||
-s TOTAL_MEMORY=1024MB \
|
||||
-s FORCE_FILESYSTEM=1 \
|
||||
-s EXPORTED_RUNTIME_METHODS=\"['print', 'printErr', 'ccall', 'cwrap']\" \
|
||||
${EXTRA_FLAGS} \
|
||||
|
@ -35,15 +35,6 @@
|
||||
|
||||
<br><br>
|
||||
|
||||
<b>More examples:</b>
|
||||
<a href="https://whisper.ggerganov.com/">main</a> |
|
||||
<a href="https://whisper.ggerganov.com/bench">bench</a> |
|
||||
<a href="https://whisper.ggerganov.com/stream">stream</a> |
|
||||
<a href="https://whisper.ggerganov.com/command">command</a> |
|
||||
<a href="https://whisper.ggerganov.com/talk">talk</a> |
|
||||
|
||||
<br><br>
|
||||
|
||||
<hr>
|
||||
|
||||
Select the model you would like to use and click the "Bench" button.<br>
|
||||
@ -53,18 +44,11 @@
|
||||
|
||||
<div id="model-whisper">
|
||||
Whisper model: <span id="model-whisper-status"></span>
|
||||
<button id="fetch-whisper-tiny-en" onclick="loadWhisper('tiny.en')">tiny.en (75 MB)</button>
|
||||
<button id="fetch-whisper-base-en" onclick="loadWhisper('base.en')">base.en (142 MB)</button>
|
||||
<button id="fetch-whisper-small-en" onclick="loadWhisper('small.en')">small.en (466 MB)</button>
|
||||
<input type="file" id="whisper-file" name="file" onchange="loadFile(event, 'whisper.bin')" />
|
||||
<br><br>
|
||||
Quantized models:<br><br>
|
||||
<button id="fetch-whisper-tiny-en-q5_1" onclick="loadWhisper('tiny-en-q5_1')">tiny.en (Q5_1, 31 MB)</button>
|
||||
<button id="fetch-whisper-base-en-q5_1" onclick="loadWhisper('base-en-q5_1')">base.en (Q5_1, 57 MB)</button>
|
||||
<button id="fetch-whisper-small-en-q5_1" onclick="loadWhisper('small-en-q5_1')">small.en (Q5_1, 182 MB)</button>
|
||||
<button id="fetch-whisper-medium-en-q5_0" onclick="loadWhisper('medium-en-q5_0')">medium.en (Q5_0, 515 MB)</button>
|
||||
<button id="fetch-whisper-large-q5_0" onclick="loadWhisper('large-q5_0')">large (Q5_0, 1030 MB)</button>
|
||||
<button id="fetch-whisper-tiny-en" onclick="loadWhisper('tiny.en')">tiny.en (75 MB)</button>
|
||||
<button id="fetch-whisper-base-en" onclick="loadWhisper('base.en')">base.en (142 MB)</button>
|
||||
<span id="fetch-whisper-progress"></span>
|
||||
|
||||
<input type="file" id="whisper-file" name="file" onchange="loadFile(event, 'whisper.bin')" />
|
||||
</div>
|
||||
|
||||
<br>
|
||||
@ -176,14 +160,6 @@
|
||||
|
||||
document.getElementById('fetch-whisper-tiny-en').style.display = 'none';
|
||||
document.getElementById('fetch-whisper-base-en').style.display = 'none';
|
||||
document.getElementById('fetch-whisper-small-en').style.display = 'none';
|
||||
|
||||
document.getElementById('fetch-whisper-tiny-en-q5_1' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-base-en-q5_1' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-small-en-q5_1' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-medium-en-q5_0').style.display = 'none';
|
||||
document.getElementById('fetch-whisper-large-q5_0' ).style.display = 'none';
|
||||
|
||||
document.getElementById('whisper-file' ).style.display = 'none';
|
||||
document.getElementById('model-whisper-status' ).innerHTML = 'loaded model: ' + file.name;
|
||||
}
|
||||
@ -192,42 +168,19 @@
|
||||
let urls = {
|
||||
'tiny.en': 'https://whisper.ggerganov.com/ggml-model-whisper-tiny.en.bin',
|
||||
'base.en': 'https://whisper.ggerganov.com/ggml-model-whisper-base.en.bin',
|
||||
'small.en': 'https://whisper.ggerganov.com/ggml-model-whisper-small.en.bin',
|
||||
|
||||
'tiny-en-q5_1': 'https://whisper.ggerganov.com/ggml-model-whisper-tiny.en-q5_1.bin',
|
||||
'base-en-q5_1': 'https://whisper.ggerganov.com/ggml-model-whisper-base.en-q5_1.bin',
|
||||
'small-en-q5_1': 'https://whisper.ggerganov.com/ggml-model-whisper-small.en-q5_1.bin',
|
||||
'medium-en-q5_0':'https://whisper.ggerganov.com/ggml-model-whisper-medium.en-q5_0.bin',
|
||||
'large-q5_0': 'https://whisper.ggerganov.com/ggml-model-whisper-large-q5_0.bin',
|
||||
};
|
||||
|
||||
let sizes = {
|
||||
'tiny.en': 75,
|
||||
'base.en': 142,
|
||||
'small.en': 466,
|
||||
|
||||
'tiny-en-q5_1': 31,
|
||||
'base-en-q5_1': 57,
|
||||
'small-en-q5_1': 182,
|
||||
'medium-en-q5_0': 515,
|
||||
'large-q5_0': 1030,
|
||||
};
|
||||
|
||||
let url = urls[model];
|
||||
let dst = 'whisper.bin';
|
||||
let size_mb = sizes[model];
|
||||
|
||||
document.getElementById('fetch-whisper-tiny-en').style.display = 'none';
|
||||
document.getElementById('fetch-whisper-base-en').style.display = 'none';
|
||||
document.getElementById('fetch-whisper-small-en').style.display = 'none';
|
||||
|
||||
document.getElementById('fetch-whisper-tiny-en-q5_1' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-base-en-q5_1' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-small-en-q5_1' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-medium-en-q5_0').style.display = 'none';
|
||||
document.getElementById('fetch-whisper-large-q5_0' ).style.display = 'none';
|
||||
|
||||
document.getElementById('whisper-file' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-tiny-en').style.display = 'none';
|
||||
document.getElementById('fetch-whisper-base-en').style.display = 'none';
|
||||
document.getElementById('model-whisper-status').innerHTML = 'loading "' + model + '" ... ';
|
||||
|
||||
cbProgress = function(p) {
|
||||
@ -237,18 +190,9 @@
|
||||
|
||||
cbCancel = function() {
|
||||
var el;
|
||||
el = document.getElementById('fetch-whisper-tiny-en'); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-base-en'); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-small-en'); if (el) el.style.display = 'inline-block';
|
||||
|
||||
el = document.getElementById('fetch-whisper-tiny-en-q5_1' ); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-base-en-q5_1' ); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-small-en-q5_1' ); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-medium-en-q5_0'); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-large-q5_0' ); if (el) el.style.display = 'inline-block';
|
||||
|
||||
el = document.getElementById('whisper-file' ); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('model-whisper-status'); if (el) el.innerHTML = '';
|
||||
el = document.getElementById('fetch-whisper-tiny-en'); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-base-en'); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('model-whisper-status'); if (el) el.innerHTML = '';
|
||||
};
|
||||
|
||||
loadRemote(url, dst, size_mb, cbProgress, storeFS, cbCancel, printTextarea);
|
||||
|
@ -28,6 +28,31 @@ std::string g_transcribed = "";
|
||||
|
||||
std::vector<float> g_pcmf32;
|
||||
|
||||
// compute similarity between two strings using Levenshtein distance
|
||||
static float similarity(const std::string & s0, const std::string & s1) {
|
||||
const size_t len0 = s0.size() + 1;
|
||||
const size_t len1 = s1.size() + 1;
|
||||
|
||||
std::vector<int> col(len1, 0);
|
||||
std::vector<int> prevCol(len1, 0);
|
||||
|
||||
for (size_t i = 0; i < len1; i++) {
|
||||
prevCol[i] = i;
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < len0; i++) {
|
||||
col[0] = i;
|
||||
for (size_t j = 1; j < len1; j++) {
|
||||
col[j] = std::min(std::min(1 + col[j - 1], 1 + prevCol[j]), prevCol[j - 1] + (s0[i - 1] == s1[j - 1] ? 0 : 1));
|
||||
}
|
||||
col.swap(prevCol);
|
||||
}
|
||||
|
||||
const float dist = prevCol[len1 - 1];
|
||||
|
||||
return 1.0f - (dist / std::max(s0.size(), s1.size()));
|
||||
}
|
||||
|
||||
void command_set_status(const std::string & status) {
|
||||
std::lock_guard<std::mutex> lock(g_mutex);
|
||||
g_status = status;
|
||||
|
@ -35,15 +35,6 @@
|
||||
|
||||
<br><br>
|
||||
|
||||
<b>More examples:</b>
|
||||
<a href="https://whisper.ggerganov.com/">main</a> |
|
||||
<a href="https://whisper.ggerganov.com/bench">bench</a> |
|
||||
<a href="https://whisper.ggerganov.com/stream">stream</a> |
|
||||
<a href="https://whisper.ggerganov.com/command">command</a> |
|
||||
<a href="https://whisper.ggerganov.com/talk">talk</a> |
|
||||
|
||||
<br><br>
|
||||
|
||||
<hr>
|
||||
|
||||
Select the model you would like to use, click the "Start" button and follow the instructions.
|
||||
@ -54,10 +45,6 @@
|
||||
Whisper model: <span id="model-whisper-status"></span>
|
||||
<button id="fetch-whisper-tiny-en" onclick="loadWhisper('tiny.en')">tiny.en (75 MB)</button>
|
||||
<button id="fetch-whisper-base-en" onclick="loadWhisper('base.en')">base.en (142 MB)</button>
|
||||
<br><br>
|
||||
Quantized models:<br><br>
|
||||
<button id="fetch-whisper-tiny-en-q5_1" onclick="loadWhisper('tiny-en-q5_1')">tiny.en (Q5_1, 31 MB)</button>
|
||||
<button id="fetch-whisper-base-en-q5_1" onclick="loadWhisper('base-en-q5_1')">base.en (Q5_1, 57 MB)</button>
|
||||
<span id="fetch-whisper-progress"></span>
|
||||
|
||||
<!--
|
||||
@ -175,17 +162,11 @@
|
||||
let urls = {
|
||||
'tiny.en': 'https://whisper.ggerganov.com/ggml-model-whisper-tiny.en.bin',
|
||||
'base.en': 'https://whisper.ggerganov.com/ggml-model-whisper-base.en.bin',
|
||||
|
||||
'tiny-en-q5_1': 'https://whisper.ggerganov.com/ggml-model-whisper-tiny.en-q5_1.bin',
|
||||
'base-en-q5_1': 'https://whisper.ggerganov.com/ggml-model-whisper-base.en-q5_1.bin',
|
||||
};
|
||||
|
||||
let sizes = {
|
||||
'tiny.en': 75,
|
||||
'base.en': 142,
|
||||
|
||||
'tiny-en-q5_1': 31,
|
||||
'base-en-q5_1': 57,
|
||||
};
|
||||
|
||||
let url = urls[model];
|
||||
@ -196,10 +177,6 @@
|
||||
|
||||
document.getElementById('fetch-whisper-tiny-en').style.display = 'none';
|
||||
document.getElementById('fetch-whisper-base-en').style.display = 'none';
|
||||
|
||||
document.getElementById('fetch-whisper-tiny-en-q5_1').style.display = 'none';
|
||||
document.getElementById('fetch-whisper-base-en-q5_1').style.display = 'none';
|
||||
|
||||
document.getElementById('model-whisper-status').innerHTML = 'loading "' + model + '" ... ';
|
||||
|
||||
cbProgress = function(p) {
|
||||
@ -211,10 +188,6 @@
|
||||
var el;
|
||||
el = document.getElementById('fetch-whisper-tiny-en'); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-base-en'); if (el) el.style.display = 'inline-block';
|
||||
|
||||
el = document.getElementById('fetch-whisper-tiny-en-q5_1'); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-base-en-q5_1'); if (el) el.style.display = 'inline-block';
|
||||
|
||||
el = document.getElementById('model-whisper-status'); if (el) el.innerHTML = '';
|
||||
};
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
if (WHISPER_SDL2)
|
||||
if (WHISPER_SUPPORT_SDL2)
|
||||
# command
|
||||
set(TARGET command)
|
||||
add_executable(${TARGET} command.cpp)
|
||||
|
@ -163,6 +163,31 @@ std::string transcribe(whisper_context * ctx, const whisper_params & params, con
|
||||
return result;
|
||||
}
|
||||
|
||||
// compute similarity between two strings using Levenshtein distance
|
||||
float similarity(const std::string & s0, const std::string & s1) {
|
||||
const size_t len0 = s0.size() + 1;
|
||||
const size_t len1 = s1.size() + 1;
|
||||
|
||||
std::vector<int> col(len1, 0);
|
||||
std::vector<int> prevCol(len1, 0);
|
||||
|
||||
for (size_t i = 0; i < len1; i++) {
|
||||
prevCol[i] = i;
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < len0; i++) {
|
||||
col[0] = i;
|
||||
for (size_t j = 1; j < len1; j++) {
|
||||
col[j] = std::min(std::min(1 + col[j - 1], 1 + prevCol[j]), prevCol[j - 1] + (s0[i - 1] == s1[j - 1] ? 0 : 1));
|
||||
}
|
||||
col.swap(prevCol);
|
||||
}
|
||||
|
||||
const float dist = prevCol[len1 - 1];
|
||||
|
||||
return 1.0f - (dist / std::max(s0.size(), s1.size()));
|
||||
}
|
||||
|
||||
std::vector<std::string> read_allowed_commands(const std::string & fname) {
|
||||
std::vector<std::string> allowed_commands;
|
||||
|
||||
|
@ -1,241 +0,0 @@
|
||||
#include "common-ggml.h"
|
||||
|
||||
#include <regex>
|
||||
#include <map>
|
||||
|
||||
static const std::map<std::string, enum ggml_ftype> GGML_FTYPE_MAP = {
|
||||
{"q4_0", GGML_FTYPE_MOSTLY_Q4_0},
|
||||
{"q4_1", GGML_FTYPE_MOSTLY_Q4_1},
|
||||
{"q4_2", GGML_FTYPE_MOSTLY_Q4_2},
|
||||
{"q5_0", GGML_FTYPE_MOSTLY_Q5_0},
|
||||
{"q5_1", GGML_FTYPE_MOSTLY_Q5_1},
|
||||
{"q8_0", GGML_FTYPE_MOSTLY_Q8_0},
|
||||
};
|
||||
|
||||
void ggml_print_ftypes(FILE * fp) {
|
||||
for (auto it = GGML_FTYPE_MAP.begin(); it != GGML_FTYPE_MAP.end(); it++) {
|
||||
fprintf(fp, " type = \"%s\" or %d\n", it->first.c_str(), it->second);
|
||||
}
|
||||
}
|
||||
|
||||
enum ggml_ftype ggml_parse_ftype(const char * str) {
|
||||
enum ggml_ftype ftype;
|
||||
if (str[0] == 'q') {
|
||||
const auto it = GGML_FTYPE_MAP.find(str);
|
||||
if (it == GGML_FTYPE_MAP.end()) {
|
||||
fprintf(stderr, "%s: unknown ftype '%s'\n", __func__, str);
|
||||
return GGML_FTYPE_UNKNOWN;
|
||||
}
|
||||
ftype = it->second;
|
||||
} else {
|
||||
ftype = (enum ggml_ftype) atoi(str);
|
||||
}
|
||||
|
||||
return ftype;
|
||||
}
|
||||
|
||||
bool ggml_common_quantize_0(
|
||||
std::ifstream & finp,
|
||||
std::ofstream & fout,
|
||||
const ggml_ftype ftype,
|
||||
const std::vector<std::string> & to_quant,
|
||||
const std::vector<std::string> & to_skip) {
|
||||
|
||||
ggml_type qtype = GGML_TYPE_F32;
|
||||
|
||||
switch (ftype) {
|
||||
case GGML_FTYPE_MOSTLY_Q4_0: qtype = GGML_TYPE_Q4_0; break;
|
||||
case GGML_FTYPE_MOSTLY_Q4_1: qtype = GGML_TYPE_Q4_1; break;
|
||||
case GGML_FTYPE_MOSTLY_Q4_2: qtype = GGML_TYPE_Q4_2; break;
|
||||
case GGML_FTYPE_MOSTLY_Q5_0: qtype = GGML_TYPE_Q5_0; break;
|
||||
case GGML_FTYPE_MOSTLY_Q5_1: qtype = GGML_TYPE_Q5_1; break;
|
||||
case GGML_FTYPE_MOSTLY_Q8_0: qtype = GGML_TYPE_Q8_0; break;
|
||||
case GGML_FTYPE_UNKNOWN:
|
||||
case GGML_FTYPE_ALL_F32:
|
||||
case GGML_FTYPE_MOSTLY_F16:
|
||||
case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16:
|
||||
{
|
||||
fprintf(stderr, "%s: invalid model type %d\n", __func__, ftype);
|
||||
return false;
|
||||
}
|
||||
};
|
||||
|
||||
if (!ggml_is_quantized(qtype)) {
|
||||
fprintf(stderr, "%s: invalid quantization type %d (%s)\n", __func__, qtype, ggml_type_name(qtype));
|
||||
return false;
|
||||
}
|
||||
|
||||
size_t total_size_org = 0;
|
||||
size_t total_size_new = 0;
|
||||
|
||||
std::vector<float> work;
|
||||
|
||||
std::vector<uint8_t> data_u8;
|
||||
std::vector<ggml_fp16_t> data_f16;
|
||||
std::vector<float> data_f32;
|
||||
|
||||
std::vector<int64_t> hist_all(1 << 4, 0);
|
||||
|
||||
while (true) {
|
||||
int32_t n_dims;
|
||||
int32_t length;
|
||||
int32_t ttype;
|
||||
|
||||
finp.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
|
||||
finp.read(reinterpret_cast<char *>(&length), sizeof(length));
|
||||
finp.read(reinterpret_cast<char *>(&ttype), sizeof(ttype));
|
||||
|
||||
if (finp.eof()) {
|
||||
break;
|
||||
}
|
||||
|
||||
int32_t nelements = 1;
|
||||
int32_t ne[4] = { 1, 1, 1, 1 };
|
||||
for (int i = 0; i < n_dims; ++i) {
|
||||
finp.read (reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
|
||||
nelements *= ne[i];
|
||||
}
|
||||
|
||||
std::string name(length, 0);
|
||||
finp.read (&name[0], length);
|
||||
|
||||
printf("%64s - [%5d, %5d, %5d], type = %6s ", name.data(), ne[0], ne[1], ne[2], ggml_type_name((ggml_type) ttype));
|
||||
|
||||
bool quantize = false;
|
||||
|
||||
// check if we should quantize this tensor
|
||||
for (const auto & s : to_quant) {
|
||||
if (std::regex_match(name, std::regex(s))) {
|
||||
quantize = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// check if we should skip this tensor
|
||||
for (const auto & s : to_skip) {
|
||||
if (std::regex_match(name, std::regex(s))) {
|
||||
quantize = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// quantize only 2D tensors
|
||||
quantize &= (n_dims == 2);
|
||||
|
||||
if (quantize) {
|
||||
if (ttype != GGML_TYPE_F32 && ttype != GGML_TYPE_F16) {
|
||||
fprintf(stderr, "%s: unsupported ttype %d (%s) for integer quantization\n", __func__, ttype, ggml_type_name((ggml_type) ttype));
|
||||
return false;
|
||||
}
|
||||
|
||||
if (ttype == GGML_TYPE_F16) {
|
||||
data_f16.resize(nelements);
|
||||
finp.read(reinterpret_cast<char *>(data_f16.data()), nelements * sizeof(ggml_fp16_t));
|
||||
data_f32.resize(nelements);
|
||||
for (int i = 0; i < nelements; ++i) {
|
||||
data_f32[i] = ggml_fp16_to_fp32(data_f16[i]);
|
||||
}
|
||||
} else {
|
||||
data_f32.resize(nelements);
|
||||
finp.read(reinterpret_cast<char *>(data_f32.data()), nelements * sizeof(float));
|
||||
}
|
||||
|
||||
ttype = qtype;
|
||||
} else {
|
||||
const int bpe = (ttype == 0) ? sizeof(float) : sizeof(uint16_t);
|
||||
|
||||
data_u8.resize(nelements*bpe);
|
||||
finp.read(reinterpret_cast<char *>(data_u8.data()), nelements * bpe);
|
||||
}
|
||||
|
||||
fout.write(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
|
||||
fout.write(reinterpret_cast<char *>(&length), sizeof(length));
|
||||
fout.write(reinterpret_cast<char *>(&ttype), sizeof(ttype));
|
||||
for (int i = 0; i < n_dims; ++i) {
|
||||
fout.write(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
|
||||
}
|
||||
fout.write(&name[0], length);
|
||||
|
||||
if (quantize) {
|
||||
work.resize(nelements); // for quantization
|
||||
|
||||
size_t cur_size = 0;
|
||||
std::vector<int64_t> hist_cur(1 << 4, 0);
|
||||
|
||||
switch ((ggml_type) ttype) {
|
||||
case GGML_TYPE_Q4_0:
|
||||
{
|
||||
cur_size = ggml_quantize_q4_0(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
|
||||
} break;
|
||||
case GGML_TYPE_Q4_1:
|
||||
{
|
||||
cur_size = ggml_quantize_q4_1(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
|
||||
} break;
|
||||
case GGML_TYPE_Q4_2:
|
||||
{
|
||||
cur_size = ggml_quantize_q4_2(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
|
||||
} break;
|
||||
case GGML_TYPE_Q5_0:
|
||||
{
|
||||
cur_size = ggml_quantize_q5_0(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
|
||||
} break;
|
||||
case GGML_TYPE_Q5_1:
|
||||
{
|
||||
cur_size = ggml_quantize_q5_1(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
|
||||
} break;
|
||||
case GGML_TYPE_Q8_0:
|
||||
{
|
||||
cur_size = ggml_quantize_q8_0(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
|
||||
} break;
|
||||
case GGML_TYPE_F32:
|
||||
case GGML_TYPE_F16:
|
||||
case GGML_TYPE_I8:
|
||||
case GGML_TYPE_I16:
|
||||
case GGML_TYPE_I32:
|
||||
case GGML_TYPE_Q8_1:
|
||||
case GGML_TYPE_COUNT:
|
||||
{
|
||||
fprintf(stderr, "%s: unsupported quantization type %d (%s)\n", __func__, ttype, ggml_type_name((ggml_type) ttype));
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
fout.write(reinterpret_cast<char *>(work.data()), cur_size);
|
||||
total_size_new += cur_size;
|
||||
|
||||
printf("size = %8.2f MB -> %8.2f MB | hist: ", nelements * sizeof(float)/1024.0/1024.0, cur_size/1024.0/1024.0);
|
||||
for (int i = 0; i < (int) hist_cur.size(); ++i) {
|
||||
hist_all[i] += hist_cur[i];
|
||||
}
|
||||
|
||||
for (int i = 0; i < (int) hist_cur.size(); ++i) {
|
||||
printf("%5.3f ", hist_cur[i] / (float)nelements);
|
||||
}
|
||||
printf("\n");
|
||||
} else {
|
||||
printf("size = %8.3f MB\n", data_u8.size()/1024.0/1024.0);
|
||||
fout.write(reinterpret_cast<char *>(data_u8.data()), data_u8.size());
|
||||
total_size_new += data_u8.size();
|
||||
}
|
||||
|
||||
total_size_org += nelements * sizeof(float);
|
||||
}
|
||||
|
||||
printf("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
|
||||
printf("%s: quant size = %8.2f MB | ftype = %d (%s)\n", __func__, total_size_new/1024.0/1024.0, ftype, ggml_type_name(qtype));
|
||||
|
||||
{
|
||||
int64_t sum_all = 0;
|
||||
for (int i = 0; i < (int) hist_all.size(); ++i) {
|
||||
sum_all += hist_all[i];
|
||||
}
|
||||
|
||||
printf("%s: hist: ", __func__);
|
||||
for (int i = 0; i < (int) hist_all.size(); ++i) {
|
||||
printf("%5.3f ", hist_all[i] / (float)sum_all);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
@ -1,18 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
|
||||
#include <fstream>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
|
||||
enum ggml_ftype ggml_parse_ftype(const char * str);
|
||||
|
||||
void ggml_print_ftypes(FILE * fp = stderr);
|
||||
|
||||
bool ggml_common_quantize_0(
|
||||
std::ifstream & finp,
|
||||
std::ofstream & fout,
|
||||
const ggml_ftype ftype,
|
||||
const std::vector<std::string> & to_quant,
|
||||
const std::vector<std::string> & to_skip);
|
@ -6,86 +6,12 @@
|
||||
#include "dr_wav.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <fstream>
|
||||
#include <regex>
|
||||
|
||||
#ifndef M_PI
|
||||
#define M_PI 3.14159265358979323846
|
||||
#endif
|
||||
|
||||
bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
for (int i = 1; i < argc; i++) {
|
||||
std::string arg = argv[i];
|
||||
|
||||
if (arg == "-s" || arg == "--seed") {
|
||||
params.seed = std::stoi(argv[++i]);
|
||||
} else if (arg == "-t" || arg == "--threads") {
|
||||
params.n_threads = std::stoi(argv[++i]);
|
||||
} else if (arg == "-p" || arg == "--prompt") {
|
||||
params.prompt = argv[++i];
|
||||
} else if (arg == "-n" || arg == "--n_predict") {
|
||||
params.n_predict = std::stoi(argv[++i]);
|
||||
} else if (arg == "--top_k") {
|
||||
params.top_k = std::stoi(argv[++i]);
|
||||
} else if (arg == "--top_p") {
|
||||
params.top_p = std::stof(argv[++i]);
|
||||
} else if (arg == "--temp") {
|
||||
params.temp = std::stof(argv[++i]);
|
||||
} else if (arg == "-b" || arg == "--batch_size") {
|
||||
params.n_batch = std::stoi(argv[++i]);
|
||||
} else if (arg == "-m" || arg == "--model") {
|
||||
params.model = argv[++i];
|
||||
} else if (arg == "-h" || arg == "--help") {
|
||||
gpt_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
} else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
gpt_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "options:\n");
|
||||
fprintf(stderr, " -h, --help show this help message and exit\n");
|
||||
fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n");
|
||||
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
|
||||
fprintf(stderr, " -p PROMPT, --prompt PROMPT\n");
|
||||
fprintf(stderr, " prompt to start generation with (default: random)\n");
|
||||
fprintf(stderr, " -n N, --n_predict N number of tokens to predict (default: %d)\n", params.n_predict);
|
||||
fprintf(stderr, " --top_k N top-k sampling (default: %d)\n", params.top_k);
|
||||
fprintf(stderr, " --top_p N top-p sampling (default: %.1f)\n", params.top_p);
|
||||
fprintf(stderr, " --temp N temperature (default: %.1f)\n", params.temp);
|
||||
fprintf(stderr, " -b N, --batch_size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
||||
fprintf(stderr, " -m FNAME, --model FNAME\n");
|
||||
fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
std::string gpt_random_prompt(std::mt19937 & rng) {
|
||||
const int r = rng() % 10;
|
||||
switch (r) {
|
||||
case 0: return "So";
|
||||
case 1: return "Once upon a time";
|
||||
case 2: return "When";
|
||||
case 3: return "The";
|
||||
case 4: return "After";
|
||||
case 5: return "If";
|
||||
case 6: return "import";
|
||||
case 7: return "He";
|
||||
case 8: return "She";
|
||||
case 9: return "They";
|
||||
default: return "To";
|
||||
}
|
||||
|
||||
return "The";
|
||||
}
|
||||
|
||||
std::string trim(const std::string & s) {
|
||||
std::regex e("^\\s+|\\s+$");
|
||||
return std::regex_replace(s, e, "");
|
||||
@ -101,251 +27,6 @@ std::string replace(const std::string & s, const std::string & from, const std::
|
||||
return result;
|
||||
}
|
||||
|
||||
std::map<std::string, int32_t> json_parse(const std::string & fname) {
|
||||
std::map<std::string, int32_t> result;
|
||||
|
||||
// read file into string
|
||||
std::string json;
|
||||
{
|
||||
std::ifstream ifs(fname);
|
||||
if (!ifs) {
|
||||
fprintf(stderr, "Failed to open %s\n", fname.c_str());
|
||||
exit(1);
|
||||
}
|
||||
|
||||
json = std::string((std::istreambuf_iterator<char>(ifs)),
|
||||
(std::istreambuf_iterator<char>()));
|
||||
}
|
||||
|
||||
if (json[0] != '{') {
|
||||
return result;
|
||||
}
|
||||
|
||||
// parse json
|
||||
{
|
||||
bool has_key = false;
|
||||
bool in_token = false;
|
||||
|
||||
std::string str_key = "";
|
||||
std::string str_val = "";
|
||||
|
||||
int n = json.size();
|
||||
for (int i = 1; i < n; ++i) {
|
||||
if (!in_token) {
|
||||
if (json[i] == ' ') continue;
|
||||
if (json[i] == '"') {
|
||||
in_token = true;
|
||||
continue;
|
||||
}
|
||||
} else {
|
||||
if (json[i] == '\\' && i+1 < n) {
|
||||
if (has_key == false) {
|
||||
str_key += json[i];
|
||||
} else {
|
||||
str_val += json[i];
|
||||
}
|
||||
++i;
|
||||
} else if (json[i] == '"') {
|
||||
if (has_key == false) {
|
||||
has_key = true;
|
||||
++i;
|
||||
while (json[i] == ' ') ++i;
|
||||
++i; // :
|
||||
while (json[i] == ' ') ++i;
|
||||
if (json[i] != '\"') {
|
||||
while (json[i] != ',' && json[i] != '}') {
|
||||
str_val += json[i++];
|
||||
}
|
||||
has_key = false;
|
||||
} else {
|
||||
in_token = true;
|
||||
continue;
|
||||
}
|
||||
} else {
|
||||
has_key = false;
|
||||
}
|
||||
|
||||
str_key = ::replace(str_key, "\\u0120", " " ); // \u0120 -> space
|
||||
str_key = ::replace(str_key, "\\u010a", "\n"); // \u010a -> new line
|
||||
str_key = ::replace(str_key, "\\\"", "\""); // \\\" -> "
|
||||
|
||||
try {
|
||||
result[str_key] = std::stoi(str_val);
|
||||
} catch (...) {
|
||||
//fprintf(stderr, "%s: ignoring key '%s' with value '%s'\n", fname.c_str(), str_key.c_str(), str_val.c_str());
|
||||
|
||||
}
|
||||
str_key = "";
|
||||
str_val = "";
|
||||
in_token = false;
|
||||
continue;
|
||||
}
|
||||
if (has_key == false) {
|
||||
str_key += json[i];
|
||||
} else {
|
||||
str_val += json[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text) {
|
||||
std::vector<std::string> words;
|
||||
|
||||
// first split the text into words
|
||||
{
|
||||
std::string str = text;
|
||||
std::string pat = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)";
|
||||
|
||||
std::regex re(pat);
|
||||
std::smatch m;
|
||||
|
||||
while (std::regex_search(str, m, re)) {
|
||||
for (auto x : m) {
|
||||
words.push_back(x);
|
||||
}
|
||||
str = m.suffix();
|
||||
}
|
||||
}
|
||||
|
||||
// find the longest tokens that form the words:
|
||||
std::vector<gpt_vocab::id> tokens;
|
||||
for (const auto & word : words) {
|
||||
if (word.size() == 0) continue;
|
||||
|
||||
int i = 0;
|
||||
int n = word.size();
|
||||
while (i < n) {
|
||||
int j = n;
|
||||
while (j > i) {
|
||||
auto it = vocab.token_to_id.find(word.substr(i, j-i));
|
||||
if (it != vocab.token_to_id.end()) {
|
||||
tokens.push_back(it->second);
|
||||
i = j;
|
||||
break;
|
||||
}
|
||||
--j;
|
||||
}
|
||||
if (i == n) {
|
||||
break;
|
||||
}
|
||||
if (j == i) {
|
||||
auto sub = word.substr(i, 1);
|
||||
if (vocab.token_to_id.find(sub) != vocab.token_to_id.end()) {
|
||||
tokens.push_back(vocab.token_to_id.at(sub));
|
||||
} else {
|
||||
fprintf(stderr, "%s: unknown token '%s'\n", __func__, sub.data());
|
||||
}
|
||||
++i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return tokens;
|
||||
}
|
||||
|
||||
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab) {
|
||||
printf("%s: loading vocab from '%s'\n", __func__, fname.c_str());
|
||||
|
||||
vocab.token_to_id = ::json_parse(fname);
|
||||
|
||||
for (const auto & kv : vocab.token_to_id) {
|
||||
vocab.id_to_token[kv.second] = kv.first;
|
||||
}
|
||||
|
||||
printf("%s: vocab size = %d\n", __func__, (int) vocab.token_to_id.size());
|
||||
|
||||
// print the vocabulary
|
||||
//for (auto kv : vocab.token_to_id) {
|
||||
// printf("'%s' -> %d\n", kv.first.data(), kv.second);
|
||||
//}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
gpt_vocab::id gpt_sample_top_k_top_p(
|
||||
const gpt_vocab & vocab,
|
||||
const float * logits,
|
||||
int top_k,
|
||||
double top_p,
|
||||
double temp,
|
||||
std::mt19937 & rng) {
|
||||
int n_logits = vocab.id_to_token.size();
|
||||
|
||||
std::vector<std::pair<double, gpt_vocab::id>> logits_id;
|
||||
logits_id.reserve(n_logits);
|
||||
|
||||
{
|
||||
const double scale = 1.0/temp;
|
||||
for (int i = 0; i < n_logits; ++i) {
|
||||
logits_id.push_back(std::make_pair(logits[i]*scale, i));
|
||||
}
|
||||
}
|
||||
|
||||
// find the top K tokens
|
||||
std::partial_sort(
|
||||
logits_id.begin(),
|
||||
logits_id.begin() + top_k, logits_id.end(),
|
||||
[](const std::pair<double, gpt_vocab::id> & a, const std::pair<double, gpt_vocab::id> & b) {
|
||||
return a.first > b.first;
|
||||
});
|
||||
|
||||
logits_id.resize(top_k);
|
||||
|
||||
double maxl = -INFINITY;
|
||||
for (const auto & kv : logits_id) {
|
||||
maxl = std::max(maxl, kv.first);
|
||||
}
|
||||
|
||||
// compute probs for the top K tokens
|
||||
std::vector<double> probs;
|
||||
probs.reserve(logits_id.size());
|
||||
|
||||
double sum = 0.0;
|
||||
for (const auto & kv : logits_id) {
|
||||
double p = exp(kv.first - maxl);
|
||||
probs.push_back(p);
|
||||
sum += p;
|
||||
}
|
||||
|
||||
// normalize the probs
|
||||
for (auto & p : probs) {
|
||||
p /= sum;
|
||||
}
|
||||
|
||||
if (top_p < 1.0f) {
|
||||
double cumsum = 0.0f;
|
||||
for (int i = 0; i < top_k; i++) {
|
||||
cumsum += probs[i];
|
||||
if (cumsum >= top_p) {
|
||||
top_k = i + 1;
|
||||
probs.resize(top_k);
|
||||
logits_id.resize(top_k);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
cumsum = 1.0/cumsum;
|
||||
for (int i = 0; i < (int) probs.size(); i++) {
|
||||
probs[i] *= cumsum;
|
||||
}
|
||||
}
|
||||
|
||||
//printf("\n");
|
||||
//for (int i = 0; i < (int) probs.size(); i++) {
|
||||
// printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]);
|
||||
//}
|
||||
//exit(0);
|
||||
|
||||
std::discrete_distribution<> dist(probs.begin(), probs.end());
|
||||
int idx = dist(rng);
|
||||
|
||||
return logits_id[idx].second;
|
||||
}
|
||||
|
||||
bool read_wav(const std::string & fname, std::vector<float>& pcmf32, std::vector<std::vector<float>>& pcmf32s, bool stereo) {
|
||||
drwav wav;
|
||||
std::vector<uint8_t> wav_data; // used for pipe input from stdin
|
||||
@ -479,27 +160,3 @@ bool vad_simple(std::vector<float> & pcmf32, int sample_rate, int last_ms, float
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
float similarity(const std::string & s0, const std::string & s1) {
|
||||
const size_t len0 = s0.size() + 1;
|
||||
const size_t len1 = s1.size() + 1;
|
||||
|
||||
std::vector<int> col(len1, 0);
|
||||
std::vector<int> prevCol(len1, 0);
|
||||
|
||||
for (size_t i = 0; i < len1; i++) {
|
||||
prevCol[i] = i;
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < len0; i++) {
|
||||
col[0] = i;
|
||||
for (size_t j = 1; j < len1; j++) {
|
||||
col[j] = std::min(std::min(1 + col[j - 1], 1 + prevCol[j]), prevCol[j - 1] + (i > 0 && s0[i - 1] == s1[j - 1] ? 0 : 1));
|
||||
}
|
||||
col.swap(prevCol);
|
||||
}
|
||||
|
||||
const float dist = prevCol[len1 - 1];
|
||||
|
||||
return 1.0f - (dist / std::max(s0.size(), s1.size()));
|
||||
}
|
||||
|
@ -1,44 +1,10 @@
|
||||
// Various helper functions and utilities
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <string>
|
||||
#include <map>
|
||||
#include <vector>
|
||||
#include <random>
|
||||
#include <thread>
|
||||
|
||||
// needs to match WHISPER_SAMPLE_RATE
|
||||
#define COMMON_SAMPLE_RATE 16000
|
||||
|
||||
//
|
||||
// CLI argument parsing
|
||||
//
|
||||
|
||||
struct gpt_params {
|
||||
int32_t seed = -1; // RNG seed
|
||||
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
||||
int32_t n_predict = 200; // new tokens to predict
|
||||
|
||||
// sampling parameters
|
||||
int32_t top_k = 40;
|
||||
float top_p = 0.9f;
|
||||
float temp = 0.9f;
|
||||
|
||||
int32_t n_batch = 8; // batch size for prompt processing
|
||||
|
||||
std::string model = "models/gpt-2-117M/ggml-model.bin"; // model path
|
||||
std::string prompt;
|
||||
};
|
||||
|
||||
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
|
||||
|
||||
void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
|
||||
|
||||
std::string gpt_random_prompt(std::mt19937 & rng);
|
||||
|
||||
//
|
||||
// Vocab utils
|
||||
//
|
||||
#include <vector>
|
||||
#include <string>
|
||||
|
||||
std::string trim(const std::string & s);
|
||||
|
||||
@ -47,52 +13,6 @@ std::string replace(
|
||||
const std::string & from,
|
||||
const std::string & to);
|
||||
|
||||
struct gpt_vocab {
|
||||
using id = int32_t;
|
||||
using token = std::string;
|
||||
|
||||
std::map<token, id> token_to_id;
|
||||
std::map<id, token> id_to_token;
|
||||
};
|
||||
|
||||
// poor-man's JSON parsing
|
||||
std::map<std::string, int32_t> json_parse(const std::string & fname);
|
||||
|
||||
// split text into tokens
|
||||
//
|
||||
// ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53
|
||||
//
|
||||
// Regex (Python):
|
||||
// r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""
|
||||
//
|
||||
// Regex (C++):
|
||||
// R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)"
|
||||
//
|
||||
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text);
|
||||
|
||||
// load the tokens from encoder.json
|
||||
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab);
|
||||
|
||||
// sample next token given probabilities for each embedding
|
||||
//
|
||||
// - consider only the top K tokens
|
||||
// - from them, consider only the top tokens with cumulative probability > P
|
||||
//
|
||||
// TODO: not sure if this implementation is correct
|
||||
// TODO: temperature is not implemented
|
||||
//
|
||||
gpt_vocab::id gpt_sample_top_k_top_p(
|
||||
const gpt_vocab & vocab,
|
||||
const float * logits,
|
||||
int top_k,
|
||||
double top_p,
|
||||
double temp,
|
||||
std::mt19937 & rng);
|
||||
|
||||
//
|
||||
// Audio utils
|
||||
//
|
||||
|
||||
// Read WAV audio file and store the PCM data into pcmf32
|
||||
// The sample rate of the audio must be equal to COMMON_SAMPLE_RATE
|
||||
// If stereo flag is set and the audio has 2 channels, the pcmf32s will contain 2 channel PCM
|
||||
@ -118,5 +38,3 @@ bool vad_simple(
|
||||
float freq_thold,
|
||||
bool verbose);
|
||||
|
||||
// compute similarity between two strings using Levenshtein distance
|
||||
float similarity(const std::string & s0, const std::string & s1);
|
||||
|
@ -145,15 +145,7 @@ function loadRemote(url, dst, size_mb, cbProgress, cbReady, cbCancel, cbPrint) {
|
||||
var db = event.target.result;
|
||||
var tx = db.transaction(['models'], 'readwrite');
|
||||
var os = tx.objectStore('models');
|
||||
|
||||
var rq = null;
|
||||
try {
|
||||
var rq = os.put(data, url);
|
||||
} catch (e) {
|
||||
cbPrint('loadRemote: failed to store "' + url + '" in the IndexedDB: \n' + e);
|
||||
cbCancel();
|
||||
return;
|
||||
}
|
||||
var rq = os.put(data, url);
|
||||
|
||||
rq.onsuccess = function (event) {
|
||||
cbPrint('loadRemote: "' + url + '" stored in the IndexedDB');
|
||||
@ -188,6 +180,7 @@ function loadRemote(url, dst, size_mb, cbProgress, cbReady, cbCancel, cbPrint) {
|
||||
|
||||
rq.onabort = function (event) {
|
||||
cbPrint('loadRemote: failed to open IndexedDB: abort');
|
||||
cbCancel();
|
||||
|
||||
};
|
||||
}
|
||||
|
||||
|
@ -8,7 +8,6 @@
|
||||
#include <string>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
#include <cstring>
|
||||
|
||||
// Terminal color map. 10 colors grouped in ranges [0.0, 0.1, ..., 0.9]
|
||||
// Lowest is red, middle is yellow, highest is green.
|
||||
@ -57,7 +56,7 @@ struct whisper_params {
|
||||
int32_t duration_ms = 0;
|
||||
int32_t max_context = -1;
|
||||
int32_t max_len = 0;
|
||||
int32_t best_of = 2;
|
||||
int32_t best_of = 5;
|
||||
int32_t beam_size = -1;
|
||||
|
||||
float word_thold = 0.01f;
|
||||
@ -75,7 +74,6 @@ struct whisper_params {
|
||||
bool output_wts = false;
|
||||
bool output_csv = false;
|
||||
bool output_jsn = false;
|
||||
bool output_lrc = false;
|
||||
bool print_special = false;
|
||||
bool print_colors = false;
|
||||
bool print_progress = false;
|
||||
@ -131,7 +129,6 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
else if (arg == "-ovtt" || arg == "--output-vtt") { params.output_vtt = true; }
|
||||
else if (arg == "-osrt" || arg == "--output-srt") { params.output_srt = true; }
|
||||
else if (arg == "-owts" || arg == "--output-words") { params.output_wts = true; }
|
||||
else if (arg == "-olrc" || arg == "--output-lrc") { params.output_lrc = true; }
|
||||
else if (arg == "-fp" || arg == "--font-path") { params.font_path = argv[++i]; }
|
||||
else if (arg == "-ocsv" || arg == "--output-csv") { params.output_csv = true; }
|
||||
else if (arg == "-oj" || arg == "--output-json") { params.output_jsn = true; }
|
||||
@ -180,7 +177,6 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
|
||||
fprintf(stderr, " -otxt, --output-txt [%-7s] output result in a text file\n", params.output_txt ? "true" : "false");
|
||||
fprintf(stderr, " -ovtt, --output-vtt [%-7s] output result in a vtt file\n", params.output_vtt ? "true" : "false");
|
||||
fprintf(stderr, " -osrt, --output-srt [%-7s] output result in a srt file\n", params.output_srt ? "true" : "false");
|
||||
fprintf(stderr, " -olrc, --output-lrc [%-7s] output result in a lrc file\n", params.output_lrc ? "true" : "false");
|
||||
fprintf(stderr, " -owts, --output-words [%-7s] output script for generating karaoke video\n", params.output_wts ? "true" : "false");
|
||||
fprintf(stderr, " -fp, --font-path [%-7s] path to a monospace font for karaoke video\n", params.font_path.c_str());
|
||||
fprintf(stderr, " -ocsv, --output-csv [%-7s] output result in a CSV file\n", params.output_csv ? "true" : "false");
|
||||
@ -211,8 +207,8 @@ void whisper_print_segment_callback(struct whisper_context * ctx, struct whisper
|
||||
|
||||
std::string speaker = "";
|
||||
|
||||
int64_t t0 = 0;
|
||||
int64_t t1 = 0;
|
||||
int64_t t0;
|
||||
int64_t t1;
|
||||
|
||||
// print the last n_new segments
|
||||
const int s0 = n_segments - n_new;
|
||||
@ -352,37 +348,6 @@ bool output_srt(struct whisper_context * ctx, const char * fname, const whisper_
|
||||
return true;
|
||||
}
|
||||
|
||||
char *escape_double_quotes_and_backslashes(const char *str) {
|
||||
if (str == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
size_t escaped_length = strlen(str) + 1;
|
||||
|
||||
for (size_t i = 0; str[i] != '\0'; i++) {
|
||||
if (str[i] == '"' || str[i] == '\\') {
|
||||
escaped_length++;
|
||||
}
|
||||
}
|
||||
|
||||
char *escaped = (char *)calloc(escaped_length, 1); // pre-zeroed
|
||||
if (escaped == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
size_t pos = 0;
|
||||
for (size_t i = 0; str[i] != '\0'; i++) {
|
||||
if (str[i] == '"' || str[i] == '\\') {
|
||||
escaped[pos++] = '\\';
|
||||
}
|
||||
escaped[pos++] = str[i];
|
||||
}
|
||||
|
||||
// no need to set zero due to calloc() being used prior
|
||||
|
||||
return escaped;
|
||||
}
|
||||
|
||||
bool output_csv(struct whisper_context * ctx, const char * fname) {
|
||||
std::ofstream fout(fname);
|
||||
if (!fout.is_open()) {
|
||||
@ -398,10 +363,9 @@ bool output_csv(struct whisper_context * ctx, const char * fname) {
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
|
||||
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
|
||||
char * text_escaped = escape_double_quotes_and_backslashes(text);
|
||||
|
||||
//need to multiply times returned from whisper_full_get_segment_t{0,1}() by 10 to get milliseconds.
|
||||
fout << 10 * t0 << "," << 10 * t1 << ",\"" << text_escaped << "\"\n";
|
||||
fout << 10 * t0 << "," << 10 * t1 << ",\"" << text << "\"\n";
|
||||
}
|
||||
|
||||
return true;
|
||||
@ -450,9 +414,7 @@ bool output_json(struct whisper_context * ctx, const char * fname, const whisper
|
||||
|
||||
auto value_s = [&](const char *name, const char *val, bool end = false) {
|
||||
start_value(name);
|
||||
char * val_escaped = escape_double_quotes_and_backslashes(val);
|
||||
fout << "\"" << val_escaped << (end ? "\"\n" : "\",\n");
|
||||
free(val_escaped);
|
||||
fout << "\"" << val << (end ? "\"\n" : "\",\n");
|
||||
};
|
||||
|
||||
auto end_value = [&](bool end = false) {
|
||||
@ -493,10 +455,10 @@ bool output_json(struct whisper_context * ctx, const char * fname, const whisper
|
||||
value_i("ctx", whisper_model_n_text_ctx(ctx));
|
||||
value_i("state", whisper_model_n_text_state(ctx));
|
||||
value_i("head", whisper_model_n_text_head(ctx));
|
||||
value_i("layer", whisper_model_n_text_layer(ctx), true);
|
||||
value_i("leyer", whisper_model_n_text_layer(ctx), true);
|
||||
end_obj();
|
||||
value_i("mels", whisper_model_n_mels(ctx));
|
||||
value_i("ftype", whisper_model_ftype(ctx), true);
|
||||
value_i("f16", whisper_model_f16(ctx), true);
|
||||
end_obj();
|
||||
start_obj("params");
|
||||
value_s("model", params.model.c_str());
|
||||
@ -515,7 +477,7 @@ bool output_json(struct whisper_context * ctx, const char * fname, const whisper
|
||||
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
|
||||
|
||||
start_obj();
|
||||
start_obj("timestamps");
|
||||
start_obj("timestanps");
|
||||
value_s("from", to_timestamp(t0, true).c_str());
|
||||
value_s("to", to_timestamp(t1, true).c_str(), true);
|
||||
end_obj();
|
||||
@ -649,39 +611,6 @@ bool output_wts(struct whisper_context * ctx, const char * fname, const char * f
|
||||
return true;
|
||||
}
|
||||
|
||||
bool output_lrc(struct whisper_context * ctx, const char * fname) {
|
||||
|
||||
std::ofstream fout(fname);
|
||||
if (!fout.is_open()) {
|
||||
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname);
|
||||
return false;
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
|
||||
|
||||
fout << "[by:whisper.cpp]\n";
|
||||
|
||||
const int n_segments = whisper_full_n_segments(ctx);
|
||||
for (int i = 0; i < n_segments; ++i) {
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
const int64_t t = whisper_full_get_segment_t0(ctx, i);
|
||||
|
||||
int64_t msec = t * 10;
|
||||
int64_t min = msec / (1000 * 60);
|
||||
msec = msec - min * (1000 * 60);
|
||||
int64_t sec = msec / 1000;
|
||||
msec = msec - sec * 1000;
|
||||
|
||||
char buf[16];
|
||||
snprintf(buf, sizeof(buf), "%02d:%02d.%02d", (int) min, (int) sec, (int) ( msec / 10));
|
||||
std::string timestamp_lrc = std::string(buf);
|
||||
|
||||
fout << '[' << timestamp_lrc << ']' << text << "\n";
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
whisper_params params;
|
||||
|
||||
@ -710,6 +639,22 @@ int main(int argc, char ** argv) {
|
||||
return 3;
|
||||
}
|
||||
|
||||
// initial prompt
|
||||
std::vector<whisper_token> prompt_tokens;
|
||||
|
||||
if (!params.prompt.empty()) {
|
||||
prompt_tokens.resize(1024);
|
||||
prompt_tokens.resize(whisper_tokenize(ctx, params.prompt.c_str(), prompt_tokens.data(), prompt_tokens.size()));
|
||||
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "initial prompt: '%s'\n", params.prompt.c_str());
|
||||
fprintf(stderr, "initial tokens: [ ");
|
||||
for (int i = 0; i < (int) prompt_tokens.size(); ++i) {
|
||||
fprintf(stderr, "%d ", prompt_tokens[i]);
|
||||
}
|
||||
fprintf(stderr, "]\n");
|
||||
}
|
||||
|
||||
for (int f = 0; f < (int) params.fname_inp.size(); ++f) {
|
||||
const auto fname_inp = params.fname_inp[f];
|
||||
const auto fname_out = f < (int) params.fname_out.size() && !params.fname_out[f].empty() ? params.fname_out[f] : params.fname_inp[f];
|
||||
@ -773,7 +718,8 @@ int main(int argc, char ** argv) {
|
||||
|
||||
wparams.speed_up = params.speed_up;
|
||||
|
||||
wparams.initial_prompt = params.prompt.c_str();
|
||||
wparams.prompt_tokens = prompt_tokens.empty() ? nullptr : prompt_tokens.data();
|
||||
wparams.prompt_n_tokens = prompt_tokens.empty() ? 0 : prompt_tokens.size();
|
||||
|
||||
wparams.greedy.best_of = params.best_of;
|
||||
wparams.beam_search.beam_size = params.beam_size;
|
||||
@ -848,12 +794,6 @@ int main(int argc, char ** argv) {
|
||||
const auto fname_jsn = fname_out + ".json";
|
||||
output_json(ctx, fname_jsn.c_str(), params);
|
||||
}
|
||||
|
||||
// output to LRC file
|
||||
if (params.output_lrc) {
|
||||
const auto fname_lrc = fname_out + ".lrc";
|
||||
output_lrc(ctx, fname_lrc.c_str());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1,6 +0,0 @@
|
||||
set(TARGET quantize)
|
||||
add_executable(${TARGET} quantize.cpp)
|
||||
|
||||
include(DefaultTargetOptions)
|
||||
|
||||
target_link_libraries(${TARGET} PRIVATE common whisper ${CMAKE_THREAD_LIBS_INIT})
|
@ -1,3 +0,0 @@
|
||||
# quantize
|
||||
|
||||
Tool for integer quantization of Whisper `ggml` model files
|
@ -1,215 +0,0 @@
|
||||
#include "ggml.h"
|
||||
|
||||
#include "common.h"
|
||||
#include "common-ggml.h"
|
||||
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <fstream>
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <regex>
|
||||
|
||||
// default hparams (Whisper tiny)
|
||||
struct whisper_hparams {
|
||||
int32_t n_vocab = 51864;
|
||||
int32_t n_audio_ctx = 1500;
|
||||
int32_t n_audio_state = 384;
|
||||
int32_t n_audio_head = 6;
|
||||
int32_t n_audio_layer = 4;
|
||||
int32_t n_text_ctx = 448;
|
||||
int32_t n_text_state = 384;
|
||||
int32_t n_text_head = 6;
|
||||
int32_t n_text_layer = 4;
|
||||
int32_t n_mels = 80;
|
||||
int32_t f16 = 1;
|
||||
};
|
||||
|
||||
struct whisper_filters {
|
||||
int32_t n_mel;
|
||||
int32_t n_fft;
|
||||
|
||||
std::vector<float> data;
|
||||
};
|
||||
|
||||
// quantize a model
|
||||
bool whisper_model_quantize(const std::string & fname_inp, const std::string & fname_out, ggml_ftype ftype) {
|
||||
gpt_vocab vocab;
|
||||
|
||||
printf("%s: loading model from '%s'\n", __func__, fname_inp.c_str());
|
||||
|
||||
auto finp = std::ifstream(fname_inp, std::ios::binary);
|
||||
if (!finp) {
|
||||
fprintf(stderr, "%s: failed to open '%s' for reading\n", __func__, fname_inp.c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
auto fout = std::ofstream(fname_out, std::ios::binary);
|
||||
if (!fout) {
|
||||
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname_out.c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
// verify magic
|
||||
{
|
||||
uint32_t magic;
|
||||
finp.read((char *) &magic, sizeof(magic));
|
||||
if (magic != 0x67676d6c) {
|
||||
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname_inp.c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
fout.write((char *) &magic, sizeof(magic));
|
||||
}
|
||||
|
||||
whisper_hparams hparams;
|
||||
|
||||
// load hparams
|
||||
{
|
||||
finp.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
|
||||
finp.read((char *) &hparams.n_audio_ctx, sizeof(hparams.n_audio_ctx));
|
||||
finp.read((char *) &hparams.n_audio_state, sizeof(hparams.n_audio_state));
|
||||
finp.read((char *) &hparams.n_audio_head, sizeof(hparams.n_audio_head));
|
||||
finp.read((char *) &hparams.n_audio_layer, sizeof(hparams.n_audio_layer));
|
||||
finp.read((char *) &hparams.n_text_ctx, sizeof(hparams.n_text_ctx));
|
||||
finp.read((char *) &hparams.n_text_state, sizeof(hparams.n_text_state));
|
||||
finp.read((char *) &hparams.n_text_head, sizeof(hparams.n_text_head));
|
||||
finp.read((char *) &hparams.n_text_layer, sizeof(hparams.n_text_layer));
|
||||
finp.read((char *) &hparams.n_mels, sizeof(hparams.n_mels));
|
||||
finp.read((char *) &hparams.f16, sizeof(hparams.f16));
|
||||
|
||||
fprintf(stderr, "%s: n_vocab = %d\n", __func__, hparams.n_vocab);
|
||||
fprintf(stderr, "%s: n_audio_ctx = %d\n", __func__, hparams.n_audio_ctx);
|
||||
fprintf(stderr, "%s: n_audio_state = %d\n", __func__, hparams.n_audio_state);
|
||||
fprintf(stderr, "%s: n_audio_head = %d\n", __func__, hparams.n_audio_head);
|
||||
fprintf(stderr, "%s: n_audio_layer = %d\n", __func__, hparams.n_audio_layer);
|
||||
fprintf(stderr, "%s: n_text_ctx = %d\n", __func__, hparams.n_text_ctx);
|
||||
fprintf(stderr, "%s: n_text_state = %d\n", __func__, hparams.n_text_state);
|
||||
fprintf(stderr, "%s: n_text_head = %d\n", __func__, hparams.n_text_head);
|
||||
fprintf(stderr, "%s: n_text_layer = %d\n", __func__, hparams.n_text_layer);
|
||||
fprintf(stderr, "%s: n_mels = %d\n", __func__, hparams.n_mels);
|
||||
fprintf(stderr, "%s: f16 = %d\n", __func__, hparams.f16);
|
||||
|
||||
fout.write((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
|
||||
fout.write((char *) &hparams.n_audio_ctx, sizeof(hparams.n_audio_ctx));
|
||||
fout.write((char *) &hparams.n_audio_state, sizeof(hparams.n_audio_state));
|
||||
fout.write((char *) &hparams.n_audio_head, sizeof(hparams.n_audio_head));
|
||||
fout.write((char *) &hparams.n_audio_layer, sizeof(hparams.n_audio_layer));
|
||||
fout.write((char *) &hparams.n_text_ctx, sizeof(hparams.n_text_ctx));
|
||||
fout.write((char *) &hparams.n_text_state, sizeof(hparams.n_text_state));
|
||||
fout.write((char *) &hparams.n_text_head, sizeof(hparams.n_text_head));
|
||||
fout.write((char *) &hparams.n_text_layer, sizeof(hparams.n_text_layer));
|
||||
fout.write((char *) &hparams.n_mels, sizeof(hparams.n_mels));
|
||||
fout.write((char *) &ftype, sizeof(hparams.f16));
|
||||
}
|
||||
|
||||
// load mel filters
|
||||
{
|
||||
whisper_filters filters;
|
||||
|
||||
finp.read ((char *) &filters.n_mel, sizeof(filters.n_mel));
|
||||
fout.write((char *) &filters.n_mel, sizeof(filters.n_mel));
|
||||
finp.read ((char *) &filters.n_fft, sizeof(filters.n_fft));
|
||||
fout.write((char *) &filters.n_fft, sizeof(filters.n_fft));
|
||||
|
||||
filters.data.resize(filters.n_mel * filters.n_fft);
|
||||
finp.read ((char *) filters.data.data(), filters.data.size() * sizeof(float));
|
||||
fout.write((char *) filters.data.data(), filters.data.size() * sizeof(float));
|
||||
}
|
||||
|
||||
// load vocab
|
||||
{
|
||||
int32_t n_vocab = 0;
|
||||
finp.read ((char *) &n_vocab, sizeof(n_vocab));
|
||||
fout.write((char *) &n_vocab, sizeof(n_vocab));
|
||||
|
||||
//if (n_vocab != hparams.n_vocab) {
|
||||
// fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
|
||||
// __func__, fname_inp.c_str(), n_vocab, hparams.n_vocab);
|
||||
// return false;
|
||||
//}
|
||||
|
||||
std::string word;
|
||||
for (int i = 0; i < n_vocab; i++) {
|
||||
uint32_t len;
|
||||
finp.read ((char *) &len, sizeof(len));
|
||||
fout.write((char *) &len, sizeof(len));
|
||||
|
||||
word.resize(len);
|
||||
finp.read ((char *) word.data(), len);
|
||||
fout.write((char *) word.data(), len);
|
||||
|
||||
vocab.token_to_id[word] = i;
|
||||
vocab.id_to_token[i] = word;
|
||||
}
|
||||
}
|
||||
|
||||
// regexes of tensor names to not be quantized
|
||||
const std::vector<std::string> to_skip = {
|
||||
//"encoder.*",
|
||||
"encoder.conv1.bias",
|
||||
"encoder.conv2.bias",
|
||||
"encoder.positional_embedding",
|
||||
"decoder.positional_embedding",
|
||||
};
|
||||
|
||||
if (!ggml_common_quantize_0(finp, fout, ftype, { ".*" }, to_skip)) {
|
||||
fprintf(stderr, "%s: failed to quantize model '%s'\n", __func__, fname_inp.c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
finp.close();
|
||||
fout.close();
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
if (argc != 4) {
|
||||
fprintf(stderr, "usage: %s model-f32.bin model-quant.bin type\n", argv[0]);
|
||||
ggml_print_ftypes(stderr);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// needed to initialize f16 tables
|
||||
{
|
||||
struct ggml_init_params params = { 0, NULL, false };
|
||||
struct ggml_context * ctx = ggml_init(params);
|
||||
ggml_free(ctx);
|
||||
}
|
||||
|
||||
const std::string fname_inp = argv[1];
|
||||
const std::string fname_out = argv[2];
|
||||
|
||||
const ggml_ftype ftype = ggml_parse_ftype(argv[3]);
|
||||
|
||||
const int64_t t_main_start_us = ggml_time_us();
|
||||
|
||||
int64_t t_quantize_us = 0;
|
||||
|
||||
// load the model
|
||||
{
|
||||
const int64_t t_start_us = ggml_time_us();
|
||||
|
||||
if (!whisper_model_quantize(fname_inp, fname_out, ggml_ftype(ftype))) {
|
||||
fprintf(stderr, "%s: failed to quantize model from '%s'\n", __func__, fname_inp.c_str());
|
||||
return 1;
|
||||
}
|
||||
|
||||
t_quantize_us = ggml_time_us() - t_start_us;
|
||||
}
|
||||
|
||||
// report timing
|
||||
{
|
||||
const int64_t t_main_end_us = ggml_time_us();
|
||||
|
||||
printf("\n");
|
||||
printf("%s: quantize time = %8.2f ms\n", __func__, t_quantize_us/1000.0f);
|
||||
printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
@ -35,15 +35,6 @@
|
||||
|
||||
<br><br>
|
||||
|
||||
<b>More examples:</b>
|
||||
<a href="https://whisper.ggerganov.com/">main</a> |
|
||||
<a href="https://whisper.ggerganov.com/bench">bench</a> |
|
||||
<a href="https://whisper.ggerganov.com/stream">stream</a> |
|
||||
<a href="https://whisper.ggerganov.com/command">command</a> |
|
||||
<a href="https://whisper.ggerganov.com/talk">talk</a> |
|
||||
|
||||
<br><br>
|
||||
|
||||
<hr>
|
||||
|
||||
Select the model you would like to use, click the "Start" button and start speaking
|
||||
@ -54,10 +45,6 @@
|
||||
Whisper model: <span id="model-whisper-status"></span>
|
||||
<button id="fetch-whisper-tiny-en" onclick="loadWhisper('tiny.en')">tiny.en (75 MB)</button>
|
||||
<button id="fetch-whisper-base-en" onclick="loadWhisper('base.en')">base.en (142 MB)</button>
|
||||
<br><br>
|
||||
Quantized models:<br><br>
|
||||
<button id="fetch-whisper-tiny-en-q5_1" onclick="loadWhisper('tiny-en-q5_1')">tiny.en (Q5_1, 31 MB)</button>
|
||||
<button id="fetch-whisper-base-en-q5_1" onclick="loadWhisper('base-en-q5_1')">base.en (Q5_1, 57 MB)</button>
|
||||
<span id="fetch-whisper-progress"></span>
|
||||
|
||||
<!--
|
||||
@ -175,17 +162,11 @@
|
||||
let urls = {
|
||||
'tiny.en': 'https://whisper.ggerganov.com/ggml-model-whisper-tiny.en.bin',
|
||||
'base.en': 'https://whisper.ggerganov.com/ggml-model-whisper-base.en.bin',
|
||||
|
||||
'tiny-en-q5_1': 'https://whisper.ggerganov.com/ggml-model-whisper-tiny.en-q5_1.bin',
|
||||
'base-en-q5_1': 'https://whisper.ggerganov.com/ggml-model-whisper-base.en-q5_1.bin',
|
||||
};
|
||||
|
||||
let sizes = {
|
||||
'tiny.en': 75,
|
||||
'base.en': 142,
|
||||
|
||||
'tiny-en-q5_1': 31,
|
||||
'base-en-q5_1': 57,
|
||||
};
|
||||
|
||||
let url = urls[model];
|
||||
@ -196,10 +177,6 @@
|
||||
|
||||
document.getElementById('fetch-whisper-tiny-en').style.display = 'none';
|
||||
document.getElementById('fetch-whisper-base-en').style.display = 'none';
|
||||
|
||||
document.getElementById('fetch-whisper-tiny-en-q5_1').style.display = 'none';
|
||||
document.getElementById('fetch-whisper-base-en-q5_1').style.display = 'none';
|
||||
|
||||
document.getElementById('model-whisper-status').innerHTML = 'loading "' + model + '" ... ';
|
||||
|
||||
cbProgress = function(p) {
|
||||
@ -211,10 +188,6 @@
|
||||
var el;
|
||||
el = document.getElementById('fetch-whisper-tiny-en'); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-base-en'); if (el) el.style.display = 'inline-block';
|
||||
|
||||
el = document.getElementById('fetch-whisper-tiny-en-q5_1'); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-base-en-q5_1'); if (el) el.style.display = 'inline-block';
|
||||
|
||||
el = document.getElementById('model-whisper-status'); if (el) el.innerHTML = '';
|
||||
};
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
if (WHISPER_SDL2)
|
||||
if (WHISPER_SUPPORT_SDL2)
|
||||
# stream
|
||||
set(TARGET stream)
|
||||
add_executable(${TARGET} stream.cpp)
|
||||
|
@ -43,7 +43,6 @@ struct whisper_params {
|
||||
|
||||
bool speed_up = false;
|
||||
bool translate = false;
|
||||
bool no_fallback = false;
|
||||
bool print_special = false;
|
||||
bool no_context = true;
|
||||
bool no_timestamps = false;
|
||||
@ -74,7 +73,6 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
else if (arg == "-fth" || arg == "--freq-thold") { params.freq_thold = std::stof(argv[++i]); }
|
||||
else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; }
|
||||
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
|
||||
else if (arg == "-nf" || arg == "--no-fallback") { params.no_fallback = true; }
|
||||
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
|
||||
else if (arg == "-kc" || arg == "--keep-context") { params.no_context = false; }
|
||||
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
|
||||
@ -96,23 +94,22 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "options:\n");
|
||||
fprintf(stderr, " -h, --help [default] show this help message and exit\n");
|
||||
fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads);
|
||||
fprintf(stderr, " --step N [%-7d] audio step size in milliseconds\n", params.step_ms);
|
||||
fprintf(stderr, " --length N [%-7d] audio length in milliseconds\n", params.length_ms);
|
||||
fprintf(stderr, " --keep N [%-7d] audio to keep from previous step in ms\n", params.keep_ms);
|
||||
fprintf(stderr, " -c ID, --capture ID [%-7d] capture device ID\n", params.capture_id);
|
||||
fprintf(stderr, " -mt N, --max-tokens N [%-7d] maximum number of tokens per audio chunk\n", params.max_tokens);
|
||||
fprintf(stderr, " -ac N, --audio-ctx N [%-7d] audio context size (0 - all)\n", params.audio_ctx);
|
||||
fprintf(stderr, " -vth N, --vad-thold N [%-7.2f] voice activity detection threshold\n", params.vad_thold);
|
||||
fprintf(stderr, " -fth N, --freq-thold N [%-7.2f] high-pass frequency cutoff\n", params.freq_thold);
|
||||
fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
|
||||
fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
|
||||
fprintf(stderr, " -nf, --no-fallback [%-7s] do not use temperature fallback while decoding\n", params.no_fallback ? "true" : "false");
|
||||
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
|
||||
fprintf(stderr, " -kc, --keep-context [%-7s] keep context between audio chunks\n", params.no_context ? "false" : "true");
|
||||
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str());
|
||||
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
|
||||
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] text output file name\n", params.fname_out.c_str());
|
||||
fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads);
|
||||
fprintf(stderr, " --step N [%-7d] audio step size in milliseconds\n", params.step_ms);
|
||||
fprintf(stderr, " --length N [%-7d] audio length in milliseconds\n", params.length_ms);
|
||||
fprintf(stderr, " --keep N [%-7d] audio to keep from previous step in ms\n", params.keep_ms);
|
||||
fprintf(stderr, " -c ID, --capture ID [%-7d] capture device ID\n", params.capture_id);
|
||||
fprintf(stderr, " -mt N, --max-tokens N [%-7d] maximum number of tokens per audio chunk\n", params.max_tokens);
|
||||
fprintf(stderr, " -ac N, --audio-ctx N [%-7d] audio context size (0 - all)\n", params.audio_ctx);
|
||||
fprintf(stderr, " -vth N, --vad-thold N [%-7.2f] voice activity detection threshold\n", params.vad_thold);
|
||||
fprintf(stderr, " -fth N, --freq-thold N [%-7.2f] high-pass frequency cutoff\n", params.freq_thold);
|
||||
fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
|
||||
fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
|
||||
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
|
||||
fprintf(stderr, " -kc, --keep-context [%-7s] keep context between audio chunks\n", params.no_context ? "false" : "true");
|
||||
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str());
|
||||
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
|
||||
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] text output file name\n", params.fname_out.c_str());
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
@ -151,7 +148,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// whisper init
|
||||
|
||||
if (params.language != "auto" && whisper_lang_id(params.language.c_str()) == -1){
|
||||
if (whisper_lang_id(params.language.c_str()) == -1) {
|
||||
fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str());
|
||||
whisper_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
@ -300,8 +297,7 @@ int main(int argc, char ** argv) {
|
||||
wparams.speed_up = params.speed_up;
|
||||
|
||||
// disable temperature fallback
|
||||
//wparams.temperature_inc = -1.0f;
|
||||
wparams.temperature_inc = params.no_fallback ? 0.0f : wparams.temperature_inc;
|
||||
wparams.temperature_inc = -1.0f;
|
||||
|
||||
wparams.prompt_tokens = params.no_context ? nullptr : prompt_tokens.data();
|
||||
wparams.prompt_n_tokens = params.no_context ? 0 : prompt_tokens.size();
|
||||
@ -383,7 +379,6 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
}
|
||||
fflush(stdout);
|
||||
}
|
||||
}
|
||||
|
||||
|
1
examples/talk-llama/.gitignore
vendored
1
examples/talk-llama/.gitignore
vendored
@ -1 +0,0 @@
|
||||
audio.mp3
|
@ -1,16 +0,0 @@
|
||||
if (WHISPER_SDL2)
|
||||
# talk-llama
|
||||
set(TARGET talk-llama)
|
||||
#add_executable(${TARGET} talk-llama.cpp llama.cpp)
|
||||
#target_include_directories(${TARGET} PRIVATE ${SDL2_INCLUDE_DIRS})
|
||||
#target_link_libraries(${TARGET} PRIVATE common common-sdl whisper ${SDL2_LIBRARIES} ${CMAKE_THREAD_LIBS_INIT})
|
||||
|
||||
# TODO: this is temporary
|
||||
# need to export ggml symbols for MSVC, but too lazy ..
|
||||
add_executable(${TARGET} talk-llama.cpp llama.cpp ../common.cpp ../common-sdl.cpp ../../ggml.c ../../whisper.cpp)
|
||||
|
||||
target_include_directories(${TARGET} PRIVATE ${SDL2_INCLUDE_DIRS} ../../)
|
||||
target_link_libraries(${TARGET} PRIVATE ${SDL2_LIBRARIES} ${CMAKE_THREAD_LIBS_INIT})
|
||||
|
||||
include(DefaultTargetOptions)
|
||||
endif ()
|
@ -1,36 +0,0 @@
|
||||
# talk-llama
|
||||
|
||||
Talk with an LLaMA AI in your terminal
|
||||
|
||||
[Demo Talk](https://user-images.githubusercontent.com/1991296/228024237-848f998c-c334-46a6-bef8-3271590da83b.mp4)
|
||||
|
||||
## Building
|
||||
|
||||
The `talk-llama` tool depends on SDL2 library to capture audio from the microphone. You can build it like this:
|
||||
|
||||
```bash
|
||||
# Install SDL2 on Linux
|
||||
sudo apt-get install libsdl2-dev
|
||||
|
||||
# Install SDL2 on Mac OS
|
||||
brew install sdl2
|
||||
|
||||
# Build the "talk-llama" executable
|
||||
make talk-llama
|
||||
|
||||
# Run it
|
||||
./talk-llama -mw ./models/ggml-small.en.bin -ml ../llama.cpp/models/13B/ggml-model-q4_0.bin -p "Georgi" -t 8
|
||||
```
|
||||
|
||||
- The `-mw` argument specifies the Whisper model that you would like to use. Recommended `base` or `small` for real-time experience
|
||||
- The `-ml` argument specifies the LLaMA model that you would like to use. Read the instructions in https://github.com/ggerganov/llama.cpp for information about how to obtain a `ggml` compatible LLaMA model
|
||||
|
||||
## TTS
|
||||
|
||||
For best experience, this example needs a TTS tool to convert the generated text responses to voice.
|
||||
You can use any TTS engine that you would like - simply edit the [speak.sh](speak.sh) script to your needs.
|
||||
By default, it is configured to use MacOS's `say`, but you can use whatever you wish.
|
||||
|
||||
## Discussion
|
||||
|
||||
If you have any feedback, please let "us" know in the following discussion: https://github.com/ggerganov/whisper.cpp/discussions/672?converting=1
|
@ -1,23 +0,0 @@
|
||||
import sys
|
||||
import importlib.util
|
||||
|
||||
api_key = "" #Write your https://beta.elevenlabs.io api key here
|
||||
if not api_key:
|
||||
print("To use elevenlabs you have to register to https://beta.elevenlabs.io and add your elevenlabs api key to examples/talk-llama/eleven-labs.py")
|
||||
sys.exit()
|
||||
|
||||
if importlib.util.find_spec("elevenlabs") is None:
|
||||
print("elevenlabs library is not installed, you can install it to your enviroment using 'pip install elevenlabs'")
|
||||
sys.exit()
|
||||
|
||||
from elevenlabs import ElevenLabs
|
||||
eleven = ElevenLabs(api_key)
|
||||
|
||||
# Get a Voice object, by name or UUID
|
||||
voice = eleven.voices["Arnold"] #Possible Voices: Adam Antoni Arnold Bella Domi Elli Josh
|
||||
|
||||
# Generate the TTS
|
||||
audio = voice.generate(str(sys.argv[2:]))
|
||||
|
||||
# Save the TTS to a file
|
||||
audio.save("audio")
|
@ -1,433 +0,0 @@
|
||||
// Internal header to be included only by llama.cpp.
|
||||
// Contains wrappers around OS interfaces.
|
||||
|
||||
#ifndef LLAMA_UTIL_H
|
||||
#define LLAMA_UTIL_H
|
||||
|
||||
#include <cstdio>
|
||||
#include <cstdint>
|
||||
#include <cerrno>
|
||||
#include <cstring>
|
||||
#include <cstdarg>
|
||||
#include <cstdlib>
|
||||
#include <climits>
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#ifdef __has_include
|
||||
#if __has_include(<unistd.h>)
|
||||
#include <unistd.h>
|
||||
#if defined(_POSIX_MAPPED_FILES)
|
||||
#include <sys/mman.h>
|
||||
#endif
|
||||
#if defined(_POSIX_MEMLOCK_RANGE)
|
||||
#include <sys/resource.h>
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(_WIN32)
|
||||
#define WIN32_LEAN_AND_MEAN
|
||||
#ifndef NOMINMAX
|
||||
#define NOMINMAX
|
||||
#endif
|
||||
#include <windows.h>
|
||||
#include <io.h>
|
||||
#include <stdio.h> // for _fseeki64
|
||||
#endif
|
||||
|
||||
#define LLAMA_ASSERT(x) \
|
||||
do { \
|
||||
if (!(x)) { \
|
||||
fprintf(stderr, "LLAMA_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
|
||||
abort(); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#ifdef __GNUC__
|
||||
#ifdef __MINGW32__
|
||||
__attribute__((format(gnu_printf, 1, 2)))
|
||||
#else
|
||||
__attribute__((format(printf, 1, 2)))
|
||||
#endif
|
||||
#endif
|
||||
static std::string format(const char * fmt, ...) {
|
||||
va_list ap, ap2;
|
||||
va_start(ap, fmt);
|
||||
va_copy(ap2, ap);
|
||||
int size = vsnprintf(NULL, 0, fmt, ap);
|
||||
LLAMA_ASSERT(size >= 0 && size < INT_MAX);
|
||||
std::vector<char> buf(size + 1);
|
||||
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
|
||||
LLAMA_ASSERT(size2 == size);
|
||||
va_end(ap2);
|
||||
va_end(ap);
|
||||
return std::string(buf.data(), size);
|
||||
}
|
||||
|
||||
struct llama_file {
|
||||
// use FILE * so we don't have to re-open the file to mmap
|
||||
FILE * fp;
|
||||
size_t size;
|
||||
|
||||
llama_file(const char * fname, const char * mode) {
|
||||
fp = std::fopen(fname, mode);
|
||||
if (fp == NULL) {
|
||||
throw format("failed to open %s: %s", fname, std::strerror(errno));
|
||||
}
|
||||
seek(0, SEEK_END);
|
||||
size = tell();
|
||||
seek(0, SEEK_SET);
|
||||
}
|
||||
|
||||
size_t tell() const {
|
||||
#ifdef _WIN32
|
||||
__int64 ret = _ftelli64(fp);
|
||||
#else
|
||||
long ret = std::ftell(fp);
|
||||
#endif
|
||||
LLAMA_ASSERT(ret != -1); // this really shouldn't fail
|
||||
return (size_t) ret;
|
||||
}
|
||||
|
||||
void seek(size_t offset, int whence) {
|
||||
#ifdef _WIN32
|
||||
int ret = _fseeki64(fp, (__int64) offset, whence);
|
||||
#else
|
||||
int ret = std::fseek(fp, (long) offset, whence);
|
||||
#endif
|
||||
LLAMA_ASSERT(ret == 0); // same
|
||||
}
|
||||
|
||||
void read_raw(void * ptr, size_t size) {
|
||||
if (size == 0) {
|
||||
return;
|
||||
}
|
||||
errno = 0;
|
||||
std::size_t ret = std::fread(ptr, size, 1, fp);
|
||||
if (ferror(fp)) {
|
||||
throw format("read error: %s", strerror(errno));
|
||||
}
|
||||
if (ret != 1) {
|
||||
throw std::string("unexpectedly reached end of file");
|
||||
}
|
||||
}
|
||||
|
||||
std::uint32_t read_u32() {
|
||||
std::uint32_t ret;
|
||||
read_raw(&ret, sizeof(ret));
|
||||
return ret;
|
||||
}
|
||||
|
||||
std::string read_string(std::uint32_t len) {
|
||||
std::vector<char> chars(len);
|
||||
read_raw(chars.data(), len);
|
||||
return std::string(chars.data(), len);
|
||||
}
|
||||
|
||||
void write_raw(const void * ptr, size_t size) {
|
||||
if (size == 0) {
|
||||
return;
|
||||
}
|
||||
errno = 0;
|
||||
size_t ret = std::fwrite(ptr, size, 1, fp);
|
||||
if (ret != 1) {
|
||||
throw format("write error: %s", strerror(errno));
|
||||
}
|
||||
}
|
||||
|
||||
void write_u32(std::uint32_t val) {
|
||||
write_raw(&val, sizeof(val));
|
||||
}
|
||||
|
||||
~llama_file() {
|
||||
if (fp) {
|
||||
std::fclose(fp);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
#if defined(_WIN32)
|
||||
static std::string llama_format_win_err(DWORD err) {
|
||||
LPSTR buf;
|
||||
size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
|
||||
NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
|
||||
if (!size) {
|
||||
return "FormatMessageA failed";
|
||||
}
|
||||
std::string ret(buf, size);
|
||||
LocalFree(buf);
|
||||
return ret;
|
||||
}
|
||||
#endif
|
||||
|
||||
struct llama_mmap {
|
||||
void * addr;
|
||||
size_t size;
|
||||
|
||||
llama_mmap(const llama_mmap &) = delete;
|
||||
|
||||
#ifdef _POSIX_MAPPED_FILES
|
||||
static constexpr bool SUPPORTED = true;
|
||||
|
||||
llama_mmap(struct llama_file * file, bool prefetch = true) {
|
||||
size = file->size;
|
||||
int fd = fileno(file->fp);
|
||||
int flags = MAP_SHARED;
|
||||
#ifdef __linux__
|
||||
flags |= MAP_POPULATE;
|
||||
#endif
|
||||
addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
|
||||
if (addr == MAP_FAILED) {
|
||||
throw format("mmap failed: %s", strerror(errno));
|
||||
}
|
||||
|
||||
if (prefetch) {
|
||||
// Advise the kernel to preload the mapped memory
|
||||
if (madvise(addr, file->size, MADV_WILLNEED)) {
|
||||
fprintf(stderr, "warning: madvise(.., MADV_WILLNEED) failed: %s\n",
|
||||
strerror(errno));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
~llama_mmap() {
|
||||
munmap(addr, size);
|
||||
}
|
||||
#elif defined(_WIN32)
|
||||
static constexpr bool SUPPORTED = true;
|
||||
|
||||
llama_mmap(struct llama_file * file, bool prefetch = true) {
|
||||
size = file->size;
|
||||
|
||||
HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
|
||||
|
||||
HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
|
||||
DWORD error = GetLastError();
|
||||
|
||||
if (hMapping == NULL) {
|
||||
throw format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str());
|
||||
}
|
||||
|
||||
addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
|
||||
error = GetLastError();
|
||||
CloseHandle(hMapping);
|
||||
|
||||
if (addr == NULL) {
|
||||
throw format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str());
|
||||
}
|
||||
|
||||
#if _WIN32_WINNT >= _WIN32_WINNT_WIN8
|
||||
if (prefetch) {
|
||||
// Advise the kernel to preload the mapped memory
|
||||
WIN32_MEMORY_RANGE_ENTRY range;
|
||||
range.VirtualAddress = addr;
|
||||
range.NumberOfBytes = (SIZE_T)size;
|
||||
if (!PrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
|
||||
fprintf(stderr, "warning: PrefetchVirtualMemory failed: %s\n",
|
||||
llama_format_win_err(GetLastError()).c_str());
|
||||
}
|
||||
}
|
||||
#else
|
||||
#pragma message("warning: You are building for pre-Windows 8; prefetch not supported")
|
||||
#endif // _WIN32_WINNT >= _WIN32_WINNT_WIN8
|
||||
}
|
||||
|
||||
~llama_mmap() {
|
||||
if (!UnmapViewOfFile(addr)) {
|
||||
fprintf(stderr, "warning: UnmapViewOfFile failed: %s\n",
|
||||
llama_format_win_err(GetLastError()).c_str());
|
||||
}
|
||||
}
|
||||
#else
|
||||
static constexpr bool SUPPORTED = false;
|
||||
|
||||
llama_mmap(struct llama_file *) {
|
||||
throw std::string("mmap not supported");
|
||||
}
|
||||
#endif
|
||||
};
|
||||
|
||||
// Represents some region of memory being locked using mlock or VirtualLock;
|
||||
// will automatically unlock on destruction.
|
||||
struct llama_mlock {
|
||||
void * addr = NULL;
|
||||
size_t size = 0;
|
||||
bool failed_already = false;
|
||||
|
||||
llama_mlock() {}
|
||||
llama_mlock(const llama_mlock &) = delete;
|
||||
|
||||
~llama_mlock() {
|
||||
if (size) {
|
||||
raw_unlock(addr, size);
|
||||
}
|
||||
}
|
||||
|
||||
void init(void * addr) {
|
||||
LLAMA_ASSERT(this->addr == NULL && this->size == 0);
|
||||
this->addr = addr;
|
||||
}
|
||||
|
||||
void grow_to(size_t target_size) {
|
||||
LLAMA_ASSERT(addr);
|
||||
if (failed_already) {
|
||||
return;
|
||||
}
|
||||
size_t granularity = lock_granularity();
|
||||
target_size = (target_size + granularity - 1) & ~(granularity - 1);
|
||||
if (target_size > size) {
|
||||
if (raw_lock((uint8_t *) addr + size, target_size - size)) {
|
||||
size = target_size;
|
||||
} else {
|
||||
failed_already = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef _POSIX_MEMLOCK_RANGE
|
||||
static constexpr bool SUPPORTED = true;
|
||||
|
||||
size_t lock_granularity() {
|
||||
return (size_t) sysconf(_SC_PAGESIZE);
|
||||
}
|
||||
|
||||
#ifdef __APPLE__
|
||||
#define MLOCK_SUGGESTION \
|
||||
"Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
|
||||
"decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l).\n"
|
||||
#else
|
||||
#define MLOCK_SUGGESTION \
|
||||
"Try increasing RLIMIT_MLOCK ('ulimit -l' as root).\n"
|
||||
#endif
|
||||
|
||||
bool raw_lock(const void * addr, size_t size) {
|
||||
if (!mlock(addr, size)) {
|
||||
return true;
|
||||
} else {
|
||||
char* errmsg = std::strerror(errno);
|
||||
bool suggest = (errno == ENOMEM);
|
||||
|
||||
// Check if the resource limit is fine after all
|
||||
struct rlimit lock_limit;
|
||||
if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit))
|
||||
suggest = false;
|
||||
if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size))
|
||||
suggest = false;
|
||||
|
||||
fprintf(stderr, "warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
|
||||
size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
#undef MLOCK_SUGGESTION
|
||||
|
||||
void raw_unlock(void * addr, size_t size) {
|
||||
if (munlock(addr, size)) {
|
||||
fprintf(stderr, "warning: failed to munlock buffer: %s\n", std::strerror(errno));
|
||||
}
|
||||
}
|
||||
#elif defined(_WIN32)
|
||||
static constexpr bool SUPPORTED = true;
|
||||
|
||||
size_t lock_granularity() {
|
||||
SYSTEM_INFO si;
|
||||
GetSystemInfo(&si);
|
||||
return (size_t) si.dwPageSize;
|
||||
}
|
||||
|
||||
bool raw_lock(void * addr, size_t size) {
|
||||
for (int tries = 1; ; tries++) {
|
||||
if (VirtualLock(addr, size)) {
|
||||
return true;
|
||||
}
|
||||
if (tries == 2) {
|
||||
fprintf(stderr, "warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
|
||||
size, this->size, llama_format_win_err(GetLastError()).c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
// It failed but this was only the first try; increase the working
|
||||
// set size and try again.
|
||||
SIZE_T min_ws_size, max_ws_size;
|
||||
if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
|
||||
fprintf(stderr, "warning: GetProcessWorkingSetSize failed: %s\n",
|
||||
llama_format_win_err(GetLastError()).c_str());
|
||||
return false;
|
||||
}
|
||||
// Per MSDN: "The maximum number of pages that a process can lock
|
||||
// is equal to the number of pages in its minimum working set minus
|
||||
// a small overhead."
|
||||
// Hopefully a megabyte is enough overhead:
|
||||
size_t increment = size + 1048576;
|
||||
// The minimum must be <= the maximum, so we need to increase both:
|
||||
min_ws_size += increment;
|
||||
max_ws_size += increment;
|
||||
if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
|
||||
fprintf(stderr, "warning: SetProcessWorkingSetSize failed: %s\n",
|
||||
llama_format_win_err(GetLastError()).c_str());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void raw_unlock(void * addr, size_t size) {
|
||||
if (!VirtualUnlock(addr, size)) {
|
||||
fprintf(stderr, "warning: failed to VirtualUnlock buffer: %s\n",
|
||||
llama_format_win_err(GetLastError()).c_str());
|
||||
}
|
||||
}
|
||||
#else
|
||||
static constexpr bool SUPPORTED = false;
|
||||
|
||||
void raw_lock(const void * addr, size_t size) {
|
||||
fprintf(stderr, "warning: mlock not supported on this system\n");
|
||||
}
|
||||
|
||||
void raw_unlock(const void * addr, size_t size) {}
|
||||
#endif
|
||||
};
|
||||
|
||||
// Replacement for std::vector<uint8_t> that doesn't require zero-initialization.
|
||||
struct llama_buffer {
|
||||
uint8_t * addr = NULL;
|
||||
size_t size = 0;
|
||||
|
||||
void resize(size_t size) {
|
||||
delete[] addr;
|
||||
addr = new uint8_t[size];
|
||||
this->size = size;
|
||||
}
|
||||
|
||||
~llama_buffer() {
|
||||
delete[] addr;
|
||||
}
|
||||
};
|
||||
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
#include "ggml-cuda.h"
|
||||
struct llama_ctx_buffer {
|
||||
uint8_t * addr = NULL;
|
||||
size_t size = 0;
|
||||
|
||||
void resize(size_t size) {
|
||||
if (addr) {
|
||||
ggml_cuda_host_free(addr);
|
||||
}
|
||||
addr = (uint8_t *) ggml_cuda_host_malloc(size);
|
||||
this->size = size;
|
||||
}
|
||||
|
||||
~llama_ctx_buffer() {
|
||||
if (addr) {
|
||||
ggml_cuda_host_free(addr);
|
||||
}
|
||||
}
|
||||
};
|
||||
#else
|
||||
typedef llama_buffer llama_ctx_buffer;
|
||||
#endif
|
||||
|
||||
#endif
|
File diff suppressed because it is too large
Load Diff
@ -1,257 +0,0 @@
|
||||
#ifndef LLAMA_H
|
||||
#define LLAMA_H
|
||||
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
|
||||
#ifdef LLAMA_SHARED
|
||||
# if defined(_WIN32) && !defined(__MINGW32__)
|
||||
# ifdef LLAMA_BUILD
|
||||
# define LLAMA_API __declspec(dllexport)
|
||||
# else
|
||||
# define LLAMA_API __declspec(dllimport)
|
||||
# endif
|
||||
# else
|
||||
# define LLAMA_API __attribute__ ((visibility ("default")))
|
||||
# endif
|
||||
#else
|
||||
# define LLAMA_API
|
||||
#endif
|
||||
|
||||
#define LLAMA_FILE_VERSION 1
|
||||
#define LLAMA_FILE_MAGIC 0x67676a74 // 'ggjt' in hex
|
||||
#define LLAMA_FILE_MAGIC_UNVERSIONED 0x67676d6c // pre-versioned files
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
//
|
||||
// C interface
|
||||
//
|
||||
// TODO: show sample usage
|
||||
//
|
||||
|
||||
struct llama_context;
|
||||
|
||||
typedef int llama_token;
|
||||
|
||||
typedef struct llama_token_data {
|
||||
llama_token id; // token id
|
||||
float logit; // log-odds of the token
|
||||
float p; // probability of the token
|
||||
} llama_token_data;
|
||||
|
||||
typedef struct llama_token_data_array {
|
||||
llama_token_data * data;
|
||||
size_t size;
|
||||
bool sorted;
|
||||
} llama_token_data_array;
|
||||
|
||||
typedef void (*llama_progress_callback)(float progress, void *ctx);
|
||||
|
||||
struct llama_context_params {
|
||||
int n_ctx; // text context
|
||||
int n_parts; // -1 for default
|
||||
int seed; // RNG seed, 0 for random
|
||||
|
||||
bool f16_kv; // use fp16 for KV cache
|
||||
bool logits_all; // the llama_eval() call computes all logits, not just the last one
|
||||
bool vocab_only; // only load the vocabulary, no weights
|
||||
bool use_mmap; // use mmap if possible
|
||||
bool use_mlock; // force system to keep model in RAM
|
||||
bool embedding; // embedding mode only
|
||||
|
||||
// called with a progress value between 0 and 1, pass NULL to disable
|
||||
llama_progress_callback progress_callback;
|
||||
// context pointer passed to the progress callback
|
||||
void * progress_callback_user_data;
|
||||
};
|
||||
|
||||
// model file types
|
||||
enum llama_ftype {
|
||||
LLAMA_FTYPE_ALL_F32 = 0,
|
||||
LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
|
||||
LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // except 1d tensors
|
||||
// LLAMA_FTYPE_MOSTLY_Q4_3 (6) support has been removed
|
||||
LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
|
||||
};
|
||||
|
||||
LLAMA_API struct llama_context_params llama_context_default_params();
|
||||
|
||||
LLAMA_API bool llama_mmap_supported();
|
||||
LLAMA_API bool llama_mlock_supported();
|
||||
|
||||
// Various functions for loading a ggml llama model.
|
||||
// Allocate (almost) all memory needed for the model.
|
||||
// Return NULL on failure
|
||||
LLAMA_API struct llama_context * llama_init_from_file(
|
||||
const char * path_model,
|
||||
struct llama_context_params params);
|
||||
|
||||
// Frees all allocated memory
|
||||
LLAMA_API void llama_free(struct llama_context * ctx);
|
||||
|
||||
// TODO: not great API - very likely to change
|
||||
// Returns 0 on success
|
||||
// nthread - how many threads to use. If <=0, will use std::thread::hardware_concurrency(), else the number given
|
||||
LLAMA_API int llama_model_quantize(
|
||||
const char * fname_inp,
|
||||
const char * fname_out,
|
||||
enum llama_ftype ftype,
|
||||
int nthread);
|
||||
|
||||
// Apply a LoRA adapter to a loaded model
|
||||
// path_base_model is the path to a higher quality model to use as a base for
|
||||
// the layers modified by the adapter. Can be NULL to use the current loaded model.
|
||||
// The model needs to be reloaded before applying a new adapter, otherwise the adapter
|
||||
// will be applied on top of the previous one
|
||||
// Returns 0 on success
|
||||
LLAMA_API int llama_apply_lora_from_file(
|
||||
struct llama_context * ctx,
|
||||
const char * path_lora,
|
||||
const char * path_base_model,
|
||||
int n_threads);
|
||||
|
||||
// Returns the number of tokens in the KV cache
|
||||
LLAMA_API int llama_get_kv_cache_token_count(struct llama_context * ctx);
|
||||
|
||||
// Sets the current rng seed.
|
||||
LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, int seed);
|
||||
|
||||
// Returns the size in bytes of the state (rng, logits, embedding and kv_cache)
|
||||
LLAMA_API size_t llama_get_state_size(struct llama_context * ctx);
|
||||
|
||||
// Copies the state to the specified destination address.
|
||||
// Destination needs to have allocated enough memory.
|
||||
// Returns the number of bytes copied
|
||||
LLAMA_API size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dest);
|
||||
|
||||
// Set the state reading from the specified address
|
||||
// Returns the number of bytes read
|
||||
LLAMA_API size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src);
|
||||
|
||||
// Save/load session file
|
||||
LLAMA_API size_t llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out);
|
||||
LLAMA_API size_t llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count);
|
||||
|
||||
// Run the llama inference to obtain the logits and probabilities for the next token.
|
||||
// tokens + n_tokens is the provided batch of new tokens to process
|
||||
// n_past is the number of tokens to use from previous eval calls
|
||||
// Returns 0 on success
|
||||
LLAMA_API int llama_eval(
|
||||
struct llama_context * ctx,
|
||||
const llama_token * tokens,
|
||||
int n_tokens,
|
||||
int n_past,
|
||||
int n_threads);
|
||||
|
||||
// Convert the provided text into tokens.
|
||||
// The tokens pointer must be large enough to hold the resulting tokens.
|
||||
// Returns the number of tokens on success, no more than n_max_tokens
|
||||
// Returns a negative number on failure - the number of tokens that would have been returned
|
||||
// TODO: not sure if correct
|
||||
LLAMA_API int llama_tokenize(
|
||||
struct llama_context * ctx,
|
||||
const char * text,
|
||||
llama_token * tokens,
|
||||
int n_max_tokens,
|
||||
bool add_bos);
|
||||
|
||||
LLAMA_API int llama_n_vocab(struct llama_context * ctx);
|
||||
LLAMA_API int llama_n_ctx (struct llama_context * ctx);
|
||||
LLAMA_API int llama_n_embd (struct llama_context * ctx);
|
||||
|
||||
// Token logits obtained from the last call to llama_eval()
|
||||
// The logits for the last token are stored in the last row
|
||||
// Can be mutated in order to change the probabilities of the next token
|
||||
// Rows: n_tokens
|
||||
// Cols: n_vocab
|
||||
LLAMA_API float * llama_get_logits(struct llama_context * ctx);
|
||||
|
||||
// Get the embeddings for the input
|
||||
// shape: [n_embd] (1-dimensional)
|
||||
LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
|
||||
|
||||
// Token Id -> String. Uses the vocabulary in the provided context
|
||||
LLAMA_API const char * llama_token_to_str(struct llama_context * ctx, llama_token token);
|
||||
|
||||
// Special tokens
|
||||
LLAMA_API llama_token llama_token_bos();
|
||||
LLAMA_API llama_token llama_token_eos();
|
||||
LLAMA_API llama_token llama_token_nl();
|
||||
|
||||
// Sampling functions
|
||||
|
||||
/// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
|
||||
LLAMA_API void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, llama_token * last_tokens, size_t last_tokens_size, float penalty);
|
||||
|
||||
/// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
|
||||
LLAMA_API void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, llama_token * last_tokens, size_t last_tokens_size, float alpha_frequency, float alpha_presence);
|
||||
|
||||
/// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
|
||||
LLAMA_API void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates);
|
||||
|
||||
/// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
||||
LLAMA_API void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep = 1);
|
||||
|
||||
/// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
||||
LLAMA_API void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep = 1);
|
||||
|
||||
/// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
|
||||
LLAMA_API void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep = 1);
|
||||
|
||||
/// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
|
||||
LLAMA_API void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep = 1);
|
||||
LLAMA_API void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates, float temp);
|
||||
|
||||
/// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
|
||||
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
|
||||
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
|
||||
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
|
||||
/// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
|
||||
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
|
||||
LLAMA_API llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu);
|
||||
|
||||
/// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
|
||||
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
|
||||
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
|
||||
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
|
||||
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
|
||||
LLAMA_API llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu);
|
||||
|
||||
/// @details Selects the token with the highest probability.
|
||||
LLAMA_API llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates);
|
||||
|
||||
/// @details Randomly selects a token from the candidates based on their probabilities.
|
||||
LLAMA_API llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates);
|
||||
|
||||
// Performance information
|
||||
LLAMA_API void llama_print_timings(struct llama_context * ctx);
|
||||
LLAMA_API void llama_reset_timings(struct llama_context * ctx);
|
||||
|
||||
// Print system information
|
||||
LLAMA_API const char * llama_print_system_info(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
// Internal API to be implemented by llama.cpp and used by tests/benchmarks only
|
||||
#ifdef LLAMA_API_INTERNAL
|
||||
|
||||
#include <vector>
|
||||
#include <string>
|
||||
struct ggml_tensor;
|
||||
|
||||
std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx);
|
||||
|
||||
#endif
|
||||
|
||||
#endif // LLAMA_H
|
@ -1,23 +0,0 @@
|
||||
Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
||||
|
||||
### Instruction:
|
||||
|
||||
Write a text transcript of a never ending dialog, where {0} interacts with an AI assistant named {1}.
|
||||
{1} is helpful, kind, honest, friendly, good at writing and never fails to answer {0}’s requests immediately and with details and precision.
|
||||
There are no annotations like (30 seconds passed...) or (to himself), just what {0} and {1} say aloud to each other.
|
||||
The transcript only includes text, it does not include markup like HTML and Markdown.
|
||||
{1} responds with short and concise answers.
|
||||
|
||||
### Response:
|
||||
|
||||
{0}{4} Hello, {1}!
|
||||
{1}{4} Hello {0}! How may I help you today?
|
||||
{0}{4} What time is it?
|
||||
{1}{4} It is {2} o'clock.
|
||||
{0}{4} What year is it?
|
||||
{1}{4} We are in {3}.
|
||||
{0}{4} What is a cat?
|
||||
{1}{4} A cat is a domestic species of small carnivorous mammal. It is the only domesticated species in the family Felidae.
|
||||
{0}{4} Name a color.
|
||||
{1}{4} Blue
|
||||
{0}{4}
|
@ -1,21 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Usage:
|
||||
# speak.sh <voice_id> <text-to-speak>
|
||||
|
||||
# espeak
|
||||
# Mac OS: brew install espeak
|
||||
# Linux: apt-get install espeak
|
||||
#
|
||||
#espeak -v en-us+m$1 -s 225 -p 50 -a 200 -g 5 -k 5 "$2"
|
||||
|
||||
# for Mac
|
||||
say "$2"
|
||||
|
||||
# Eleven Labs
|
||||
# To use it, install the elevenlabs module from pip (pip install elevenlabs), register to https://beta.elevenlabs.io to get an api key and paste it in /examples/talk-llama/eleven-labs.py
|
||||
#
|
||||
#wd=$(dirname $0)
|
||||
#script=$wd/eleven-labs.py
|
||||
#python3 $script $1 "$2" >/dev/null 2>&1
|
||||
#ffplay -autoexit -nodisp -loglevel quiet -hide_banner -i ./audio.mp3 >/dev/null 2>&1
|
@ -1,576 +0,0 @@
|
||||
// Talk with AI
|
||||
//
|
||||
|
||||
#include "common.h"
|
||||
#include "common-sdl.h"
|
||||
#include "whisper.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <cassert>
|
||||
#include <cstdio>
|
||||
#include <fstream>
|
||||
#include <regex>
|
||||
#include <string>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
#include <regex>
|
||||
|
||||
std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::string & text, bool add_bos) {
|
||||
// initialize to prompt numer of chars, since n_tokens <= n_prompt_chars
|
||||
std::vector<llama_token> res(text.size() + (int)add_bos);
|
||||
int n = llama_tokenize(ctx, text.c_str(), res.data(), res.size(), add_bos);
|
||||
assert(n >= 0);
|
||||
res.resize(n);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
// command-line parameters
|
||||
struct whisper_params {
|
||||
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
||||
int32_t voice_ms = 10000;
|
||||
int32_t capture_id = -1;
|
||||
int32_t max_tokens = 32;
|
||||
int32_t audio_ctx = 0;
|
||||
|
||||
int32_t n_parts_llama = -1;
|
||||
|
||||
float vad_thold = 0.6f;
|
||||
float freq_thold = 100.0f;
|
||||
|
||||
bool speed_up = false;
|
||||
bool translate = false;
|
||||
bool print_special = false;
|
||||
bool print_energy = false;
|
||||
bool no_timestamps = true;
|
||||
bool verbose_prompt = false;
|
||||
|
||||
std::string person = "Georgi";
|
||||
std::string language = "en";
|
||||
std::string model_wsp = "models/ggml-base.en.bin";
|
||||
std::string model_llama = "models/ggml-llama-7B.bin";
|
||||
std::string speak = "./examples/talk-llama/speak.sh";
|
||||
std::string prompt = "";
|
||||
std::string fname_out;
|
||||
};
|
||||
|
||||
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
|
||||
|
||||
bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
for (int i = 1; i < argc; i++) {
|
||||
std::string arg = argv[i];
|
||||
|
||||
if (arg == "-h" || arg == "--help") {
|
||||
whisper_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
|
||||
else if (arg == "-vms" || arg == "--voice-ms") { params.voice_ms = std::stoi(argv[++i]); }
|
||||
else if (arg == "-c" || arg == "--capture") { params.capture_id = std::stoi(argv[++i]); }
|
||||
else if (arg == "-mt" || arg == "--max-tokens") { params.max_tokens = std::stoi(argv[++i]); }
|
||||
else if (arg == "-ac" || arg == "--audio-ctx") { params.audio_ctx = std::stoi(argv[++i]); }
|
||||
else if (arg == "-vth" || arg == "--vad-thold") { params.vad_thold = std::stof(argv[++i]); }
|
||||
else if (arg == "-fth" || arg == "--freq-thold") { params.freq_thold = std::stof(argv[++i]); }
|
||||
else if (arg == "--n-parts-llama") { params.n_parts_llama = std::stoi(argv[++i]); }
|
||||
else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; }
|
||||
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
|
||||
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
|
||||
else if (arg == "-pe" || arg == "--print-energy") { params.print_energy = true; }
|
||||
else if (arg == "--verbose-prompt") { params.verbose_prompt = true; }
|
||||
else if (arg == "-p" || arg == "--person") { params.person = argv[++i]; }
|
||||
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
|
||||
else if (arg == "-mw" || arg == "--model-whisper") { params.model_wsp = argv[++i]; }
|
||||
else if (arg == "-ml" || arg == "--model-llama") { params.model_llama = argv[++i]; }
|
||||
else if (arg == "-s" || arg == "--speak") { params.speak = argv[++i]; }
|
||||
else if (arg == "--prompt-file") {
|
||||
std::ifstream file(argv[++i]);
|
||||
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
|
||||
if (params.prompt.back() == '\n') {
|
||||
params.prompt.pop_back();
|
||||
}
|
||||
}
|
||||
else if (arg == "-f" || arg == "--file") { params.fname_out = argv[++i]; }
|
||||
else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
whisper_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & params) {
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "options:\n");
|
||||
fprintf(stderr, " -h, --help [default] show this help message and exit\n");
|
||||
fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads);
|
||||
fprintf(stderr, " -vms N, --voice-ms N [%-7d] voice duration in milliseconds\n", params.voice_ms);
|
||||
fprintf(stderr, " -c ID, --capture ID [%-7d] capture device ID\n", params.capture_id);
|
||||
fprintf(stderr, " -mt N, --max-tokens N [%-7d] maximum number of tokens per audio chunk\n", params.max_tokens);
|
||||
fprintf(stderr, " -ac N, --audio-ctx N [%-7d] audio context size (0 - all)\n", params.audio_ctx);
|
||||
fprintf(stderr, " -vth N, --vad-thold N [%-7.2f] voice activity detection threshold\n", params.vad_thold);
|
||||
fprintf(stderr, " -fth N, --freq-thold N [%-7.2f] high-pass frequency cutoff\n", params.freq_thold);
|
||||
fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
|
||||
fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
|
||||
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
|
||||
fprintf(stderr, " -pe, --print-energy [%-7s] print sound energy (for debugging)\n", params.print_energy ? "true" : "false");
|
||||
fprintf(stderr, " -p NAME, --person NAME [%-7s] person name (for prompt selection)\n", params.person.c_str());
|
||||
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str());
|
||||
fprintf(stderr, " -mw FILE, --model-whisper [%-7s] whisper model file\n", params.model_wsp.c_str());
|
||||
fprintf(stderr, " -ml FILE, --model-llama [%-7s] llama model file\n", params.model_llama.c_str());
|
||||
fprintf(stderr, " --n-parts-llama N [%-7d] num parts in llama model file\n", params.n_parts_llama);
|
||||
fprintf(stderr, " -s FILE, --speak TEXT [%-7s] command for TTS\n", params.speak.c_str());
|
||||
fprintf(stderr, " --prompt-file FNAME [%-7s] file with custom prompt to start dialog\n", "");
|
||||
fprintf(stderr, " --verbose-prompt [%-7s] print prompt at start\n", params.verbose_prompt ? "true" : "false");
|
||||
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] text output file name\n", params.fname_out.c_str());
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
std::string transcribe(
|
||||
whisper_context * ctx,
|
||||
const whisper_params & params,
|
||||
const std::vector<float> & pcmf32,
|
||||
const std::string prompt_text,
|
||||
float & prob,
|
||||
int64_t & t_ms) {
|
||||
const auto t_start = std::chrono::high_resolution_clock::now();
|
||||
|
||||
prob = 0.0f;
|
||||
t_ms = 0;
|
||||
|
||||
std::vector<whisper_token> prompt_tokens;
|
||||
|
||||
whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
|
||||
|
||||
prompt_tokens.resize(1024);
|
||||
prompt_tokens.resize(whisper_tokenize(ctx, prompt_text.c_str(), prompt_tokens.data(), prompt_tokens.size()));
|
||||
|
||||
wparams.print_progress = false;
|
||||
wparams.print_special = params.print_special;
|
||||
wparams.print_realtime = false;
|
||||
wparams.print_timestamps = !params.no_timestamps;
|
||||
wparams.translate = params.translate;
|
||||
wparams.no_context = true;
|
||||
wparams.single_segment = true;
|
||||
wparams.max_tokens = params.max_tokens;
|
||||
wparams.language = params.language.c_str();
|
||||
wparams.n_threads = params.n_threads;
|
||||
|
||||
wparams.prompt_tokens = prompt_tokens.empty() ? nullptr : prompt_tokens.data();
|
||||
wparams.prompt_n_tokens = prompt_tokens.empty() ? 0 : prompt_tokens.size();
|
||||
|
||||
wparams.audio_ctx = params.audio_ctx;
|
||||
wparams.speed_up = params.speed_up;
|
||||
|
||||
if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) {
|
||||
return "";
|
||||
}
|
||||
|
||||
int prob_n = 0;
|
||||
std::string result;
|
||||
|
||||
const int n_segments = whisper_full_n_segments(ctx);
|
||||
for (int i = 0; i < n_segments; ++i) {
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
|
||||
result += text;
|
||||
|
||||
const int n_tokens = whisper_full_n_tokens(ctx, i);
|
||||
for (int j = 0; j < n_tokens; ++j) {
|
||||
const auto token = whisper_full_get_token_data(ctx, i, j);
|
||||
|
||||
prob += token.p;
|
||||
++prob_n;
|
||||
}
|
||||
}
|
||||
|
||||
if (prob_n > 0) {
|
||||
prob /= prob_n;
|
||||
}
|
||||
|
||||
const auto t_end = std::chrono::high_resolution_clock::now();
|
||||
t_ms = std::chrono::duration_cast<std::chrono::milliseconds>(t_end - t_start).count();
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
const std::string k_prompt_whisper = R"(A conversation with a person called {1}.)";
|
||||
|
||||
const std::string k_prompt_llama = R"(Text transcript of a never ending dialog, where {0} interacts with an AI assistant named {1}.
|
||||
{1} is helpful, kind, honest, friendly, good at writing and never fails to answer {0}’s requests immediately and with details and precision.
|
||||
There are no annotations like (30 seconds passed...) or (to himself), just what {0} and {1} say aloud to each other.
|
||||
The transcript only includes text, it does not include markup like HTML and Markdown.
|
||||
{1} responds with short and concise answers.
|
||||
|
||||
{0}{4} Hello, {1}!
|
||||
{1}{4} Hello {0}! How may I help you today?
|
||||
{0}{4} What time is it?
|
||||
{1}{4} It is {2} o'clock.
|
||||
{0}{4} What year is it?
|
||||
{1}{4} We are in {3}.
|
||||
{0}{4} What is a cat?
|
||||
{1}{4} A cat is a domestic species of small carnivorous mammal. It is the only domesticated species in the family Felidae.
|
||||
{0}{4} Name a color.
|
||||
{1}{4} Blue
|
||||
{0}{4})";
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
whisper_params params;
|
||||
|
||||
if (whisper_params_parse(argc, argv, params) == false) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (whisper_lang_id(params.language.c_str()) == -1) {
|
||||
fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str());
|
||||
whisper_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
|
||||
// whisper init
|
||||
|
||||
struct whisper_context * ctx_wsp = whisper_init_from_file(params.model_wsp.c_str());
|
||||
|
||||
// llama init
|
||||
|
||||
auto lparams = llama_context_default_params();
|
||||
|
||||
// tune these to your liking
|
||||
lparams.n_ctx = 2048;
|
||||
lparams.seed = 1;
|
||||
lparams.f16_kv = true;
|
||||
lparams.n_parts = params.n_parts_llama;
|
||||
|
||||
struct llama_context * ctx_llama = llama_init_from_file(params.model_llama.c_str(), lparams);
|
||||
|
||||
// print some info about the processing
|
||||
{
|
||||
fprintf(stderr, "\n");
|
||||
|
||||
if (!whisper_is_multilingual(ctx_wsp)) {
|
||||
if (params.language != "en" || params.translate) {
|
||||
params.language = "en";
|
||||
params.translate = false;
|
||||
fprintf(stderr, "%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__);
|
||||
}
|
||||
}
|
||||
fprintf(stderr, "%s: processing, %d threads, lang = %s, task = %s, timestamps = %d ...\n",
|
||||
__func__,
|
||||
params.n_threads,
|
||||
params.language.c_str(),
|
||||
params.translate ? "translate" : "transcribe",
|
||||
params.no_timestamps ? 0 : 1);
|
||||
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
|
||||
// init audio
|
||||
|
||||
audio_async audio(30*1000);
|
||||
if (!audio.init(params.capture_id, WHISPER_SAMPLE_RATE)) {
|
||||
fprintf(stderr, "%s: audio.init() failed!\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
audio.resume();
|
||||
|
||||
int n_iter = 0;
|
||||
|
||||
bool is_running = true;
|
||||
bool force_speak = false;
|
||||
|
||||
float prob0 = 0.0f;
|
||||
|
||||
const std::string chat_symb = ":";
|
||||
const std::string bot_name = "LLaMA";
|
||||
|
||||
std::vector<float> pcmf32_cur;
|
||||
std::vector<float> pcmf32_prompt;
|
||||
|
||||
const std::string prompt_whisper = ::replace(k_prompt_whisper, "{1}", bot_name);
|
||||
|
||||
// construct the initial prompt for LLaMA inference
|
||||
std::string prompt_llama = params.prompt.empty() ? k_prompt_llama : params.prompt;
|
||||
|
||||
// need to have leading ' '
|
||||
prompt_llama.insert(0, 1, ' ');
|
||||
|
||||
prompt_llama = ::replace(prompt_llama, "{0}", params.person);
|
||||
prompt_llama = ::replace(prompt_llama, "{1}", bot_name);
|
||||
|
||||
{
|
||||
// get time string
|
||||
std::string time_str;
|
||||
{
|
||||
time_t t = time(0);
|
||||
struct tm * now = localtime(&t);
|
||||
char buf[128];
|
||||
strftime(buf, sizeof(buf), "%H:%M", now);
|
||||
time_str = buf;
|
||||
}
|
||||
prompt_llama = ::replace(prompt_llama, "{2}", time_str);
|
||||
}
|
||||
|
||||
{
|
||||
// get year string
|
||||
std::string year_str;
|
||||
{
|
||||
time_t t = time(0);
|
||||
struct tm * now = localtime(&t);
|
||||
char buf[128];
|
||||
strftime(buf, sizeof(buf), "%Y", now);
|
||||
year_str = buf;
|
||||
}
|
||||
prompt_llama = ::replace(prompt_llama, "{3}", year_str);
|
||||
}
|
||||
|
||||
prompt_llama = ::replace(prompt_llama, "{4}", chat_symb);
|
||||
|
||||
// evaluate the initial prompt
|
||||
|
||||
auto embd_inp = ::llama_tokenize(ctx_llama, prompt_llama, true);
|
||||
|
||||
printf("\n");
|
||||
printf("%s : initializing - please wait ...\n", __func__);
|
||||
|
||||
if (llama_eval(ctx_llama, embd_inp.data(), embd_inp.size(), 0, params.n_threads)) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (params.verbose_prompt) {
|
||||
fprintf(stdout, "\n");
|
||||
fprintf(stdout, "%s", prompt_llama.c_str());
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
printf("%s : done! start speaking in the microphone\n", __func__);
|
||||
printf("\n");
|
||||
printf("%s%s", params.person.c_str(), chat_symb.c_str());
|
||||
fflush(stdout);
|
||||
|
||||
// clear audio buffer
|
||||
audio.clear();
|
||||
|
||||
// text inference variables
|
||||
const int voice_id = 2;
|
||||
const int n_keep = embd_inp.size();
|
||||
const int n_ctx = llama_n_ctx(ctx_llama);
|
||||
|
||||
int n_past = n_keep;
|
||||
int n_prev = 64; // TODO arg
|
||||
|
||||
std::vector<llama_token> embd;
|
||||
|
||||
// reverse prompts for detecting when it's time to stop speaking
|
||||
std::vector<std::string> antiprompts = {
|
||||
params.person + chat_symb,
|
||||
};
|
||||
|
||||
// main loop
|
||||
while (is_running) {
|
||||
// handle Ctrl + C
|
||||
is_running = sdl_poll_events();
|
||||
|
||||
if (!is_running) {
|
||||
break;
|
||||
}
|
||||
|
||||
// delay
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(100));
|
||||
|
||||
int64_t t_ms = 0;
|
||||
|
||||
{
|
||||
audio.get(2000, pcmf32_cur);
|
||||
|
||||
if (::vad_simple(pcmf32_cur, WHISPER_SAMPLE_RATE, 1250, params.vad_thold, params.freq_thold, params.print_energy) || force_speak) {
|
||||
//fprintf(stdout, "%s: Speech detected! Processing ...\n", __func__);
|
||||
|
||||
audio.get(params.voice_ms, pcmf32_cur);
|
||||
|
||||
std::string text_heard;
|
||||
|
||||
if (!force_speak) {
|
||||
text_heard = ::trim(::transcribe(ctx_wsp, params, pcmf32_cur, prompt_whisper, prob0, t_ms));
|
||||
}
|
||||
|
||||
// remove text between brackets using regex
|
||||
{
|
||||
std::regex re("\\[.*?\\]");
|
||||
text_heard = std::regex_replace(text_heard, re, "");
|
||||
}
|
||||
|
||||
// remove text between brackets using regex
|
||||
{
|
||||
std::regex re("\\(.*?\\)");
|
||||
text_heard = std::regex_replace(text_heard, re, "");
|
||||
}
|
||||
|
||||
// remove all characters, except for letters, numbers, punctuation and ':', '\'', '-', ' '
|
||||
text_heard = std::regex_replace(text_heard, std::regex("[^a-zA-Z0-9\\.,\\?!\\s\\:\\'\\-]"), "");
|
||||
|
||||
// take first line
|
||||
text_heard = text_heard.substr(0, text_heard.find_first_of('\n'));
|
||||
|
||||
// remove leading and trailing whitespace
|
||||
text_heard = std::regex_replace(text_heard, std::regex("^\\s+"), "");
|
||||
text_heard = std::regex_replace(text_heard, std::regex("\\s+$"), "");
|
||||
|
||||
const std::vector<llama_token> tokens = llama_tokenize(ctx_llama, text_heard.c_str(), false);
|
||||
|
||||
if (text_heard.empty() || tokens.empty() || force_speak) {
|
||||
//fprintf(stdout, "%s: Heard nothing, skipping ...\n", __func__);
|
||||
audio.clear();
|
||||
|
||||
continue;
|
||||
}
|
||||
|
||||
force_speak = false;
|
||||
|
||||
text_heard.insert(0, 1, ' ');
|
||||
text_heard += "\n" + bot_name + chat_symb;
|
||||
fprintf(stdout, "%s%s%s", "\033[1m", text_heard.c_str(), "\033[0m");
|
||||
fflush(stdout);
|
||||
|
||||
embd = ::llama_tokenize(ctx_llama, text_heard, false);
|
||||
|
||||
// text inference
|
||||
bool done = false;
|
||||
std::string text_to_speak;
|
||||
while (true) {
|
||||
// predict
|
||||
if (embd.size() > 0) {
|
||||
if (n_past + (int) embd.size() > n_ctx) {
|
||||
n_past = n_keep;
|
||||
|
||||
// insert n_left/2 tokens at the start of embd from last_n_tokens
|
||||
embd.insert(embd.begin(), embd_inp.begin() + embd_inp.size() - n_prev, embd_inp.end());
|
||||
|
||||
//printf("\n---\n");
|
||||
//printf("resetting: '");
|
||||
//for (int i = 0; i < (int) embd.size(); i++) {
|
||||
// printf("%s", llama_token_to_str(ctx_llama, embd[i]));
|
||||
//}
|
||||
//printf("'\n");
|
||||
//printf("\n---\n");
|
||||
}
|
||||
|
||||
if (llama_eval(ctx_llama, embd.data(), embd.size(), n_past, params.n_threads)) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
//printf("n_iter = %d, n_past = %d, n_ctx = %d, n_keep = %d, n_prev = %d, embd.size() = %d\n", n_iter, n_past, n_ctx, n_keep, n_prev, (int) embd.size());
|
||||
|
||||
embd_inp.insert(embd_inp.end(), embd.begin(), embd.end());
|
||||
n_past += embd.size();
|
||||
embd.clear();
|
||||
|
||||
if (done) break;
|
||||
|
||||
{
|
||||
// out of user input, sample next token
|
||||
const float top_k = 5;
|
||||
const float top_p = 0.80f;
|
||||
const float temp = 0.30f;
|
||||
const float repeat_penalty = 1.1764f;
|
||||
|
||||
const int repeat_last_n = 256;
|
||||
|
||||
llama_token id = 0;
|
||||
|
||||
{
|
||||
auto logits = llama_get_logits(ctx_llama);
|
||||
auto n_vocab = llama_n_vocab(ctx_llama);
|
||||
|
||||
logits[llama_token_eos()] = 0;
|
||||
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(n_vocab);
|
||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
||||
}
|
||||
|
||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||
|
||||
// apply repeat penalty
|
||||
const float nl_logit = logits[llama_token_nl()];
|
||||
|
||||
llama_sample_repetition_penalty(ctx_llama, &candidates_p,
|
||||
embd_inp.data() + std::max(0, n_past - repeat_last_n),
|
||||
repeat_last_n, repeat_penalty);
|
||||
|
||||
logits[llama_token_nl()] = nl_logit;
|
||||
|
||||
if (temp <= 0) {
|
||||
// Greedy sampling
|
||||
id = llama_sample_token_greedy(ctx_llama, &candidates_p);
|
||||
} else {
|
||||
// Temperature sampling
|
||||
llama_sample_top_k(ctx_llama, &candidates_p, top_k);
|
||||
llama_sample_top_p(ctx_llama, &candidates_p, top_p);
|
||||
llama_sample_temperature(ctx_llama, &candidates_p, temp);
|
||||
id = llama_sample_token(ctx_llama, &candidates_p);
|
||||
}
|
||||
}
|
||||
|
||||
if (id != llama_token_eos()) {
|
||||
// add it to the context
|
||||
embd.push_back(id);
|
||||
|
||||
text_to_speak += llama_token_to_str(ctx_llama, id);
|
||||
|
||||
printf("%s", llama_token_to_str(ctx_llama, id));
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
std::string last_output;
|
||||
for (int i = embd_inp.size() - 16; i < (int) embd_inp.size(); i++) {
|
||||
last_output += llama_token_to_str(ctx_llama, embd_inp[i]);
|
||||
}
|
||||
last_output += llama_token_to_str(ctx_llama, embd[0]);
|
||||
|
||||
for (std::string & antiprompt : antiprompts) {
|
||||
if (last_output.find(antiprompt.c_str(), last_output.length() - antiprompt.length(), antiprompt.length()) != std::string::npos) {
|
||||
done = true;
|
||||
text_to_speak = ::replace(text_to_speak, antiprompt, "");
|
||||
fflush(stdout);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
is_running = sdl_poll_events();
|
||||
|
||||
if (!is_running) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
text_to_speak = ::replace(text_to_speak, "\"", "");
|
||||
system((params.speak + " " + std::to_string(voice_id) + " \"" + text_to_speak + "\"").c_str());
|
||||
|
||||
audio.clear();
|
||||
|
||||
++n_iter;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
audio.pause();
|
||||
|
||||
whisper_print_timings(ctx_wsp);
|
||||
whisper_free(ctx_wsp);
|
||||
|
||||
llama_print_timings(ctx_llama);
|
||||
llama_free(ctx_llama);
|
||||
|
||||
return 0;
|
||||
}
|
@ -13,7 +13,6 @@ include(DefaultTargetOptions)
|
||||
|
||||
target_link_libraries(${TARGET} PRIVATE
|
||||
whisper
|
||||
common
|
||||
)
|
||||
|
||||
unset(EXTRA_FLAGS)
|
||||
|
@ -1,6 +1,4 @@
|
||||
#include "ggml.h"
|
||||
#include "common-ggml.h"
|
||||
|
||||
#include "gpt-2.h"
|
||||
|
||||
#include <cmath>
|
||||
@ -16,6 +14,150 @@
|
||||
|
||||
/////////////////////// GPT-2 BEGIN /////////////////////////
|
||||
|
||||
//
|
||||
// Vocab utils
|
||||
//
|
||||
|
||||
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text) {
|
||||
std::vector<std::string> words;
|
||||
|
||||
// first split the text into words
|
||||
{
|
||||
std::string str = text;
|
||||
std::string pat = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)";
|
||||
|
||||
std::regex re(pat);
|
||||
std::smatch m;
|
||||
|
||||
while (std::regex_search(str, m, re)) {
|
||||
for (auto x : m) {
|
||||
words.push_back(x);
|
||||
}
|
||||
str = m.suffix();
|
||||
}
|
||||
}
|
||||
|
||||
// find the longest tokens that form the words:
|
||||
std::vector<gpt_vocab::id> tokens;
|
||||
for (const auto & word : words) {
|
||||
if (word.size() == 0) continue;
|
||||
|
||||
int i = 0;
|
||||
int n = word.size();
|
||||
while (i < n) {
|
||||
int j = n;
|
||||
while (j > i) {
|
||||
auto it = vocab.token_to_id.find(word.substr(i, j-i));
|
||||
if (it != vocab.token_to_id.end()) {
|
||||
tokens.push_back(it->second);
|
||||
i = j;
|
||||
break;
|
||||
}
|
||||
--j;
|
||||
}
|
||||
if (i == n) {
|
||||
break;
|
||||
}
|
||||
if (j == i) {
|
||||
auto sub = word.substr(i, 1);
|
||||
if (vocab.token_to_id.find(sub) != vocab.token_to_id.end()) {
|
||||
tokens.push_back(vocab.token_to_id.at(sub));
|
||||
} else {
|
||||
fprintf(stderr, "%s: unknown token '%s'\n", __func__, sub.data());
|
||||
}
|
||||
++i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return tokens;
|
||||
}
|
||||
|
||||
gpt_vocab::id gpt_sample_top_k_top_p(
|
||||
const gpt_vocab & vocab,
|
||||
const float * logits,
|
||||
int top_k,
|
||||
double top_p,
|
||||
double temp,
|
||||
std::mt19937 & rng) {
|
||||
int n_logits = vocab.id_to_token.size();
|
||||
|
||||
std::vector<std::pair<double, gpt_vocab::id>> logits_id;
|
||||
logits_id.reserve(n_logits);
|
||||
|
||||
for (int i = 0; i < n_logits; i++) {
|
||||
logits_id.push_back(std::make_pair(logits[i], i));
|
||||
}
|
||||
|
||||
// find the top K tokens
|
||||
std::partial_sort(
|
||||
logits_id.begin(),
|
||||
logits_id.begin() + top_k, logits_id.end(),
|
||||
[](const std::pair<double, gpt_vocab::id> & a, const std::pair<double, gpt_vocab::id> & b) {
|
||||
return a.first > b.first;
|
||||
});
|
||||
|
||||
logits_id.resize(top_k);
|
||||
|
||||
// normalize
|
||||
{
|
||||
double sum = 0.0f;
|
||||
for (int i = 0; i < (int)logits_id.size(); i++) {
|
||||
sum += logits_id[i].first;
|
||||
}
|
||||
|
||||
sum = 1.0/sum;
|
||||
for (int i = 0; i < (int)logits_id.size(); i++) {
|
||||
logits_id[i].first *= sum;
|
||||
}
|
||||
}
|
||||
|
||||
if (top_p < 1.0f) {
|
||||
{
|
||||
double cumsum = 0.0f;
|
||||
for (int i = 0; i < top_k; i++) {
|
||||
cumsum += logits_id[i].first;
|
||||
if (cumsum >= top_p) {
|
||||
logits_id.resize(i+1);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// normalize again
|
||||
{
|
||||
double sum = 0.0f;
|
||||
for (int i = 0; i < (int)logits_id.size(); i++) {
|
||||
sum += logits_id[i].first;
|
||||
}
|
||||
|
||||
sum = 1.0/sum;
|
||||
for (int i = 0; i < (int)logits_id.size(); i++) {
|
||||
logits_id[i].first *= sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//printf("\n");
|
||||
//for (int i = 0; i < (int)logits_id.size(); i++) {
|
||||
// printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), logits_id[i].first);
|
||||
//}
|
||||
//exit(0);
|
||||
|
||||
// sample from the obtained distribution
|
||||
std::vector<double> probs;
|
||||
probs.reserve(logits_id.size());
|
||||
|
||||
for (int i = 0; i < (int) logits_id.size(); i++) {
|
||||
probs.push_back(logits_id[i].first);
|
||||
}
|
||||
|
||||
std::discrete_distribution<> dist(probs.begin(), probs.end());
|
||||
int idx = dist(rng);
|
||||
|
||||
return logits_id[idx].second;
|
||||
}
|
||||
|
||||
// default hparams (GPT-2 117M)
|
||||
struct gpt2_hparams {
|
||||
int32_t n_vocab = 50257;
|
||||
@ -23,7 +165,7 @@ struct gpt2_hparams {
|
||||
int32_t n_embd = 768;
|
||||
int32_t n_head = 12;
|
||||
int32_t n_layer = 12;
|
||||
int32_t ftype = 1;
|
||||
int32_t f16 = 1;
|
||||
};
|
||||
|
||||
struct gpt2_layer {
|
||||
@ -45,7 +187,7 @@ struct gpt2_layer {
|
||||
struct ggml_tensor * c_mlp_fc_w;
|
||||
struct ggml_tensor * c_mlp_fc_b;
|
||||
|
||||
struct ggml_tensor * c_mlp_proj_w;
|
||||
struct ggml_tensor * c_mlp_proj_w_trans; // transposed for efficiency
|
||||
struct ggml_tensor * c_mlp_proj_b;
|
||||
};
|
||||
|
||||
@ -56,9 +198,8 @@ struct gpt2_model {
|
||||
struct ggml_tensor * ln_f_g;
|
||||
struct ggml_tensor * ln_f_b;
|
||||
|
||||
struct ggml_tensor * wte; // position embedding
|
||||
struct ggml_tensor * wpe; // token embedding
|
||||
struct ggml_tensor * lm_head; // language model head
|
||||
struct ggml_tensor * wte; // position embedding
|
||||
struct ggml_tensor * wpe; // token embedding
|
||||
|
||||
std::vector<gpt2_layer> layers;
|
||||
|
||||
@ -100,14 +241,14 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
|
||||
fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd));
|
||||
fin.read((char *) &hparams.n_head, sizeof(hparams.n_head));
|
||||
fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
|
||||
fin.read((char *) &hparams.ftype, sizeof(hparams.ftype));
|
||||
fin.read((char *) &hparams.f16, sizeof(hparams.f16));
|
||||
|
||||
printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
|
||||
printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
|
||||
printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
|
||||
printf("%s: n_head = %d\n", __func__, hparams.n_head);
|
||||
printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
|
||||
printf("%s: ftype = %d\n", __func__, hparams.ftype);
|
||||
printf("%s: f16 = %d\n", __func__, hparams.f16);
|
||||
}
|
||||
|
||||
// load vocab
|
||||
@ -134,14 +275,9 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
|
||||
}
|
||||
}
|
||||
|
||||
// for the big tensors, we have the option to store the data in 16-bit floats or quantized
|
||||
// for the big tensors, we have the option to store the data in 16-bit floats
|
||||
// in order to save memory and also to speed up the computation
|
||||
ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype) (model.hparams.ftype));
|
||||
if (wtype == GGML_TYPE_COUNT) {
|
||||
fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n",
|
||||
__func__, fname.c_str(), model.hparams.ftype);
|
||||
return false;
|
||||
}
|
||||
const ggml_type wtype = model.hparams.f16 ? GGML_TYPE_F16 : GGML_TYPE_F32;
|
||||
|
||||
auto & ctx = model.ctx;
|
||||
|
||||
@ -155,33 +291,32 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
|
||||
const int n_ctx = hparams.n_ctx;
|
||||
const int n_vocab = hparams.n_vocab;
|
||||
|
||||
ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_g
|
||||
ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_b
|
||||
ctx_size += n_embd*ggml_type_size(GGML_TYPE_F32); // ln_f_g
|
||||
ctx_size += n_embd*ggml_type_size(GGML_TYPE_F32); // ln_f_b
|
||||
|
||||
ctx_size += n_vocab*n_embd*ggml_type_sizef(wtype); // wte
|
||||
ctx_size += n_ctx*n_embd*ggml_type_sizef(GGML_TYPE_F32); // wpe
|
||||
ctx_size += n_vocab*n_embd*ggml_type_sizef(wtype); // lm_head
|
||||
ctx_size += n_vocab*n_embd*ggml_type_size(wtype); // wte
|
||||
ctx_size += n_ctx*n_embd*ggml_type_size(GGML_TYPE_F32); // wpe
|
||||
|
||||
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_g
|
||||
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_b
|
||||
ctx_size += n_layer*(n_embd*ggml_type_size(GGML_TYPE_F32)); // ln_1_g
|
||||
ctx_size += n_layer*(n_embd*ggml_type_size(GGML_TYPE_F32)); // ln_1_b
|
||||
|
||||
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_2_g
|
||||
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_2_b
|
||||
ctx_size += n_layer*(n_embd*ggml_type_size(GGML_TYPE_F32)); // ln_2_g
|
||||
ctx_size += n_layer*(n_embd*ggml_type_size(GGML_TYPE_F32)); // ln_2_b
|
||||
|
||||
ctx_size += n_layer*(3*n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_attn_w
|
||||
ctx_size += n_layer*( 3*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_attn_attn_b
|
||||
ctx_size += n_layer*(3*n_embd*n_embd*ggml_type_size(wtype)); // c_attn_attn_w
|
||||
ctx_size += n_layer*( 3*n_embd*ggml_type_size(GGML_TYPE_F32)); // c_attn_attn_b
|
||||
|
||||
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_proj_w
|
||||
ctx_size += n_layer*( n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_attn_proj_b
|
||||
ctx_size += n_layer*(n_embd*n_embd*ggml_type_size(wtype)); // c_attn_proj_w
|
||||
ctx_size += n_layer*( n_embd*ggml_type_size(GGML_TYPE_F32)); // c_attn_proj_b
|
||||
|
||||
ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype)); // c_mlp_fc_w
|
||||
ctx_size += n_layer*( 4*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_fc_b
|
||||
ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_size(wtype)); // c_mlp_fc_w
|
||||
ctx_size += n_layer*( 4*n_embd*ggml_type_size(GGML_TYPE_F32)); // c_mlp_fc_b
|
||||
|
||||
ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype)); // c_mlp_proj_w
|
||||
ctx_size += n_layer*( n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_proj_b
|
||||
ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_size(wtype)); // c_mlp_proj_w
|
||||
ctx_size += n_layer*( n_embd*ggml_type_size(GGML_TYPE_F32)); // c_mlp_proj_b
|
||||
|
||||
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_k
|
||||
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_v
|
||||
ctx_size += n_ctx*n_layer*n_embd*ggml_type_size(GGML_TYPE_F32); // memory_k
|
||||
ctx_size += n_ctx*n_layer*n_embd*ggml_type_size(GGML_TYPE_F32); // memory_v
|
||||
|
||||
ctx_size += (6 + 12*n_layer)*256; // object overhead
|
||||
|
||||
@ -190,11 +325,9 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
|
||||
|
||||
// create the ggml context
|
||||
{
|
||||
struct ggml_init_params params = {
|
||||
.mem_size = ctx_size,
|
||||
.mem_buffer = NULL,
|
||||
.no_alloc = false,
|
||||
};
|
||||
struct ggml_init_params params;
|
||||
params.mem_size = ctx_size;
|
||||
params.mem_buffer = NULL;
|
||||
|
||||
model.ctx = ggml_init(params);
|
||||
if (!model.ctx) {
|
||||
@ -217,38 +350,36 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
|
||||
model.ln_f_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
model.ln_f_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
|
||||
model.wte = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
|
||||
model.wpe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ctx);
|
||||
model.lm_head = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
|
||||
model.wte = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
|
||||
model.wpe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ctx);
|
||||
|
||||
// map by name
|
||||
model.tensors["model/ln_f/g"] = model.ln_f_g;
|
||||
model.tensors["model/ln_f/b"] = model.ln_f_b;
|
||||
|
||||
model.tensors["model/wte"] = model.wte;
|
||||
model.tensors["model/wpe"] = model.wpe;
|
||||
model.tensors["model/lm_head"] = model.lm_head;
|
||||
model.tensors["model/wte"] = model.wte;
|
||||
model.tensors["model/wpe"] = model.wpe;
|
||||
|
||||
for (int i = 0; i < n_layer; ++i) {
|
||||
auto & layer = model.layers[i];
|
||||
|
||||
layer.ln_1_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
layer.ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
layer.ln_1_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
layer.ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
|
||||
layer.ln_2_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
layer.ln_2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
layer.ln_2_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
layer.ln_2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
|
||||
layer.c_attn_attn_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 3*n_embd);
|
||||
layer.c_attn_attn_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 3*n_embd);
|
||||
layer.c_attn_attn_w = ggml_new_tensor_2d(ctx, wtype, 3*n_embd, n_embd);
|
||||
layer.c_attn_attn_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 3*n_embd);
|
||||
|
||||
layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
|
||||
layer.c_attn_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
|
||||
layer.c_attn_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
|
||||
layer.c_mlp_fc_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 4*n_embd);
|
||||
layer.c_mlp_fc_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_embd);
|
||||
layer.c_mlp_fc_w = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd);
|
||||
layer.c_mlp_fc_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_embd);
|
||||
|
||||
layer.c_mlp_proj_w = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd);
|
||||
layer.c_mlp_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
layer.c_mlp_proj_w_trans = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd);
|
||||
layer.c_mlp_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
|
||||
// map by name
|
||||
model.tensors["model/h" + std::to_string(i) + "/ln_1/g"] = layer.ln_1_g;
|
||||
@ -266,7 +397,7 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
|
||||
model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/w"] = layer.c_mlp_fc_w;
|
||||
model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/b"] = layer.c_mlp_fc_b;
|
||||
|
||||
model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/w"] = layer.c_mlp_proj_w;
|
||||
model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/w"] = layer.c_mlp_proj_w_trans;
|
||||
model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/b"] = layer.c_mlp_proj_b;
|
||||
}
|
||||
}
|
||||
@ -294,16 +425,14 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
|
||||
{
|
||||
size_t total_size = 0;
|
||||
|
||||
bool has_lm_head = false;
|
||||
|
||||
while (true) {
|
||||
int32_t n_dims;
|
||||
int32_t length;
|
||||
int32_t ttype;
|
||||
int32_t ftype;
|
||||
|
||||
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
|
||||
fin.read(reinterpret_cast<char *>(&length), sizeof(length));
|
||||
fin.read(reinterpret_cast<char *>(&ttype), sizeof(ttype));
|
||||
fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
|
||||
|
||||
if (fin.eof()) {
|
||||
break;
|
||||
@ -332,18 +461,13 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
|
||||
|
||||
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
|
||||
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
|
||||
__func__, name.data(), (int) tensor->ne[0], (int) tensor->ne[1], ne[0], ne[1]);
|
||||
__func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]);
|
||||
return false;
|
||||
}
|
||||
|
||||
// for debugging
|
||||
if (0) {
|
||||
printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.data(), ne[0], ne[1], ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor)/1024.0/1024.0, ggml_nbytes(tensor));
|
||||
}
|
||||
const size_t bpe = (ftype == 0) ? sizeof(float) : sizeof(ggml_fp16_t);
|
||||
|
||||
const size_t bpe = ggml_type_size(ggml_type(ttype));
|
||||
|
||||
if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
|
||||
if (nelements*bpe != ggml_nbytes(tensor)) {
|
||||
fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
|
||||
__func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
|
||||
return false;
|
||||
@ -351,15 +475,7 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
|
||||
|
||||
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
|
||||
|
||||
// GPT-2 models share the WTE tensor as the LM head
|
||||
if (name == "model/wte" && has_lm_head == false) {
|
||||
memcpy(model.lm_head->data, tensor->data, ggml_nbytes(tensor));
|
||||
}
|
||||
|
||||
if (name == "model/lm_head") {
|
||||
has_lm_head = true;
|
||||
}
|
||||
|
||||
//printf("%24s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
|
||||
total_size += ggml_nbytes(tensor);
|
||||
}
|
||||
|
||||
@ -377,7 +493,7 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
|
||||
// - n_threads: number of threads to use
|
||||
// - n_past: the context size so far
|
||||
// - embd_inp: the embeddings of the tokens in the context
|
||||
// - embd_w: the predicted logits for the next token
|
||||
// - embd_w: the predicted probabilities of the next token
|
||||
//
|
||||
bool gpt2_eval(
|
||||
const gpt2_model & model,
|
||||
@ -396,12 +512,12 @@ bool gpt2_eval(
|
||||
const int n_head = hparams.n_head;
|
||||
const int n_vocab = hparams.n_vocab;
|
||||
|
||||
static size_t buf_size = 512u*1024*1024;
|
||||
static size_t buf_size = 640u*1024*1024;
|
||||
static void * buf = malloc(buf_size);
|
||||
|
||||
if (mem_per_token > 0 && mem_per_token*N > buf_size) {
|
||||
const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead
|
||||
//printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new);
|
||||
printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new);
|
||||
|
||||
// reallocate
|
||||
buf_size = buf_size_new;
|
||||
@ -412,14 +528,13 @@ bool gpt2_eval(
|
||||
}
|
||||
}
|
||||
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size =*/ buf_size,
|
||||
/*.mem_buffer =*/ buf,
|
||||
/*.no_alloc =*/ false,
|
||||
};
|
||||
struct ggml_init_params params;
|
||||
params.mem_size = buf_size;
|
||||
params.mem_buffer = buf;
|
||||
|
||||
struct ggml_context * ctx0 = ggml_init(params);
|
||||
struct ggml_cgraph gf = {};
|
||||
|
||||
struct ggml_cgraph gf = { };
|
||||
gf.n_threads = n_threads;
|
||||
|
||||
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
||||
@ -463,7 +578,7 @@ bool gpt2_eval(
|
||||
// [2304, N]
|
||||
{
|
||||
cur = ggml_mul_mat(ctx0,
|
||||
model.layers[il].c_attn_attn_w,
|
||||
ggml_transpose(ctx0, model.layers[il].c_attn_attn_w),
|
||||
cur);
|
||||
|
||||
cur = ggml_add(ctx0,
|
||||
@ -539,13 +654,11 @@ bool gpt2_eval(
|
||||
// V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()
|
||||
// [n_past + N, 64, 12]
|
||||
struct ggml_tensor * V_trans =
|
||||
ggml_cpy(ctx0,
|
||||
ggml_permute(ctx0,
|
||||
ggml_reshape_3d(ctx0,
|
||||
ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd),
|
||||
n_embd/n_head, n_head, n_past + N),
|
||||
1, 2, 0, 3),
|
||||
ggml_new_tensor_3d(ctx0, model.memory_v->type, n_past + N, n_embd/n_head, n_head));
|
||||
ggml_permute(ctx0,
|
||||
ggml_reshape_3d(ctx0,
|
||||
ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd),
|
||||
n_embd/n_head, n_head, n_past + N),
|
||||
1, 2, 0, 3);
|
||||
|
||||
// KQV = transpose(V) * KQ_soft_max
|
||||
// [64, N, 12]
|
||||
@ -572,7 +685,7 @@ bool gpt2_eval(
|
||||
// [768, N]
|
||||
{
|
||||
cur = ggml_mul_mat(ctx0,
|
||||
model.layers[il].c_attn_proj_w,
|
||||
ggml_transpose(ctx0, model.layers[il].c_attn_proj_w),
|
||||
cur);
|
||||
|
||||
cur = ggml_add(ctx0,
|
||||
@ -609,7 +722,7 @@ bool gpt2_eval(
|
||||
// cur = fc_w*cur + fc_b
|
||||
// [3072, N]
|
||||
cur = ggml_mul_mat(ctx0,
|
||||
model.layers[il].c_mlp_fc_w,
|
||||
ggml_transpose(ctx0, model.layers[il].c_mlp_fc_w),
|
||||
cur);
|
||||
|
||||
cur = ggml_add(ctx0,
|
||||
@ -629,7 +742,7 @@ bool gpt2_eval(
|
||||
// cur = proj_w*cur + proj_b
|
||||
// [768, N]
|
||||
cur = ggml_mul_mat(ctx0,
|
||||
model.layers[il].c_mlp_proj_w,
|
||||
model.layers[il].c_mlp_proj_w_trans,
|
||||
cur);
|
||||
|
||||
cur = ggml_add(ctx0,
|
||||
@ -656,12 +769,12 @@ bool gpt2_eval(
|
||||
}
|
||||
|
||||
// inpL = WTE * inpL
|
||||
// [ 768, 50257] - model.lm_head
|
||||
// [ 768, 50257] - model.wte
|
||||
// [ 768, N] - inpL
|
||||
inpL = ggml_mul_mat(ctx0, model.lm_head, inpL);
|
||||
inpL = ggml_mul_mat(ctx0, model.wte, inpL);
|
||||
|
||||
// logits -> probs
|
||||
//inpL = ggml_soft_max(ctx0, inpL);
|
||||
inpL = ggml_soft_max(ctx0, inpL);
|
||||
|
||||
// run the computation
|
||||
ggml_build_forward_expand(&gf, inpL);
|
||||
@ -675,7 +788,7 @@ bool gpt2_eval(
|
||||
//embd_w.resize(n_vocab*N);
|
||||
//memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
|
||||
|
||||
// return result just for the last token
|
||||
// return result for just the last token
|
||||
embd_w.resize(n_vocab);
|
||||
memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
|
||||
|
||||
@ -712,7 +825,7 @@ Me too.
|
||||
int32_t n_threads = std::min(N_THREAD, (int) std::thread::hardware_concurrency());
|
||||
|
||||
// sampling parameters
|
||||
int32_t top_k = 5;
|
||||
int32_t top_k = 40;
|
||||
float top_p = 0.9f;
|
||||
float temp = 1.0f;
|
||||
};
|
||||
@ -720,15 +833,14 @@ Me too.
|
||||
struct gpt2_context * gpt2_init(const char * path_model) {
|
||||
gpt2_context * ctx = new gpt2_context;
|
||||
|
||||
ctx->rng = std::mt19937(time(nullptr));
|
||||
ctx->rng = std::mt19937(time(NULL));
|
||||
|
||||
// load the model
|
||||
{
|
||||
const int64_t t_start_us = ggml_time_us();
|
||||
|
||||
if (!gpt2_model_load(path_model, ctx->model, ctx->vocab)) {
|
||||
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, path_model);
|
||||
delete ctx;
|
||||
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, "gpt-2.bin");
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
@ -772,9 +884,9 @@ std::string gpt2_gen_text(gpt2_context * ctx, const char * text, int max_tokens)
|
||||
|
||||
std::string result;
|
||||
|
||||
for (int i = embd.size(); i < (int) embd_inp.size() + n_predict; i++) {
|
||||
for (int i = embd.size(); i < embd_inp.size() + n_predict; i++) {
|
||||
// predict
|
||||
if (!embd.empty()) {
|
||||
if (embd.size() > 0) {
|
||||
if (!gpt2_eval(ctx->model, ctx->n_threads, n_past, embd, embd_w, mem_per_token)) {
|
||||
printf("gpt-2: failed to generate text\n");
|
||||
return "";
|
||||
@ -801,7 +913,10 @@ std::string gpt2_gen_text(gpt2_context * ctx, const char * text, int max_tokens)
|
||||
result += ctx->vocab.id_to_token[embd[0]];
|
||||
|
||||
// end of text token
|
||||
if (embd.back() == 50256) {
|
||||
if (embd.back() == 50256 ||
|
||||
ctx->vocab.id_to_token[embd.back()] == "." ||
|
||||
ctx->vocab.id_to_token[embd.back()] == "!" ||
|
||||
ctx->vocab.id_to_token[embd.back()] == "?") {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
@ -2,12 +2,18 @@
|
||||
|
||||
// TODO: Change to C-style API and move to ./examples for easy reuse.
|
||||
|
||||
#include "common.h"
|
||||
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <string>
|
||||
|
||||
struct gpt_vocab {
|
||||
using id = int32_t;
|
||||
using token = std::string;
|
||||
|
||||
std::map<token, id> token_to_id;
|
||||
std::map<id, token> id_to_token;
|
||||
};
|
||||
|
||||
struct gpt2_context;
|
||||
|
||||
struct gpt2_context * gpt2_init(const char * path_model);
|
||||
|
@ -44,15 +44,6 @@
|
||||
|
||||
<br><br>
|
||||
|
||||
<b>More examples:</b>
|
||||
<a href="https://whisper.ggerganov.com/">main</a> |
|
||||
<a href="https://whisper.ggerganov.com/bench">bench</a> |
|
||||
<a href="https://whisper.ggerganov.com/stream">stream</a> |
|
||||
<a href="https://whisper.ggerganov.com/command">command</a> |
|
||||
<a href="https://whisper.ggerganov.com/talk">talk</a> |
|
||||
|
||||
<br><br>
|
||||
|
||||
<hr>
|
||||
|
||||
Select the models you would like to use and click the "Start" button to begin the conversation
|
||||
@ -63,10 +54,6 @@
|
||||
Whisper model: <span id="model-whisper-status"></span>
|
||||
<button id="fetch-whisper-tiny-en" onclick="loadWhisper('tiny.en')">tiny.en (75 MB)</button>
|
||||
<button id="fetch-whisper-base-en" onclick="loadWhisper('base.en')">base.en (142 MB)</button>
|
||||
<br><br>
|
||||
Quantized models:<br><br>
|
||||
<button id="fetch-whisper-tiny-en-q5_1" onclick="loadWhisper('tiny-en-q5_1')">tiny.en (Q5_1, 31 MB)</button>
|
||||
<button id="fetch-whisper-base-en-q5_1" onclick="loadWhisper('base-en-q5_1')">base.en (Q5_1, 57 MB)</button>
|
||||
<span id="fetch-whisper-progress"></span>
|
||||
|
||||
<!--
|
||||
@ -279,17 +266,11 @@
|
||||
let urls = {
|
||||
'tiny.en': 'https://whisper.ggerganov.com/ggml-model-whisper-tiny.en.bin',
|
||||
'base.en': 'https://whisper.ggerganov.com/ggml-model-whisper-base.en.bin',
|
||||
|
||||
'tiny-en-q5_1': 'https://whisper.ggerganov.com/ggml-model-whisper-tiny.en-q5_1.bin',
|
||||
'base-en-q5_1': 'https://whisper.ggerganov.com/ggml-model-whisper-base.en-q5_1.bin',
|
||||
};
|
||||
|
||||
let sizes = {
|
||||
'tiny.en': 75,
|
||||
'base.en': 142,
|
||||
|
||||
'tiny-en-q5_1': 31,
|
||||
'base-en-q5_1': 57,
|
||||
};
|
||||
|
||||
let url = urls[model];
|
||||
@ -300,10 +281,6 @@
|
||||
|
||||
document.getElementById('fetch-whisper-tiny-en').style.display = 'none';
|
||||
document.getElementById('fetch-whisper-base-en').style.display = 'none';
|
||||
|
||||
document.getElementById('fetch-whisper-tiny-en-q5_1').style.display = 'none';
|
||||
document.getElementById('fetch-whisper-base-en-q5_1').style.display = 'none';
|
||||
|
||||
document.getElementById('model-whisper-status').innerHTML = 'loading "' + model + '" ... ';
|
||||
|
||||
cbProgress = function(p) {
|
||||
@ -315,10 +292,6 @@
|
||||
var el;
|
||||
el = document.getElementById('fetch-whisper-tiny-en'); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-base-en'); if (el) el.style.display = 'inline-block';
|
||||
|
||||
el = document.getElementById('fetch-whisper-tiny-en-q5_1'); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-base-en-q5_1'); if (el) el.style.display = 'inline-block';
|
||||
|
||||
el = document.getElementById('model-whisper-status'); if (el) el.innerHTML = '';
|
||||
};
|
||||
|
||||
|
2
examples/talk/.gitignore
vendored
2
examples/talk/.gitignore
vendored
@ -1 +1 @@
|
||||
audio.mp3
|
||||
eleven-labs.py
|
||||
|
@ -1,8 +1,16 @@
|
||||
if (WHISPER_SDL2)
|
||||
if (WHISPER_SUPPORT_SDL2)
|
||||
# talk
|
||||
set(TARGET talk)
|
||||
add_executable(${TARGET} talk.cpp gpt-2.cpp)
|
||||
target_link_libraries(${TARGET} PRIVATE common common-sdl whisper ${CMAKE_THREAD_LIBS_INIT})
|
||||
#add_executable(${TARGET} talk.cpp gpt-2.cpp)
|
||||
#target_include_directories(${TARGET} PRIVATE ${SDL2_INCLUDE_DIRS})
|
||||
#target_link_libraries(${TARGET} PRIVATE whisper ${SDL2_LIBRARIES} ${CMAKE_THREAD_LIBS_INIT})
|
||||
|
||||
# TODO: this is temporary
|
||||
# need to export ggml symbols for MSVC, but too lazy ..
|
||||
add_executable(${TARGET} talk.cpp gpt-2.cpp ../common.cpp ../common-sdl.cpp ../../ggml.c ../../whisper.cpp)
|
||||
|
||||
include(DefaultTargetOptions)
|
||||
|
||||
target_include_directories(${TARGET} PRIVATE ${SDL2_INCLUDE_DIRS} ../../)
|
||||
target_link_libraries(${TARGET} PRIVATE ${SDL2_LIBRARIES} ${CMAKE_THREAD_LIBS_INIT})
|
||||
endif ()
|
||||
|
@ -1,23 +0,0 @@
|
||||
import sys
|
||||
import importlib.util
|
||||
|
||||
api_key = "" #Write your https://beta.elevenlabs.io api key here
|
||||
if not api_key:
|
||||
print("To use elevenlabs you have to register to https://beta.elevenlabs.io and add your elevenlabs api key to examples/talk/eleven-labs.py")
|
||||
sys.exit()
|
||||
|
||||
if importlib.util.find_spec("elevenlabs") is None:
|
||||
print("elevenlabs library is not installed, you can install it to your enviroment using 'pip install elevenlabs'")
|
||||
sys.exit()
|
||||
|
||||
from elevenlabs import ElevenLabs
|
||||
eleven = ElevenLabs(api_key)
|
||||
|
||||
# Get a Voice object, by name or UUID
|
||||
voice = eleven.voices["Arnold"] #Possible Voices: Adam Antoni Arnold Bella Domi Elli Josh
|
||||
|
||||
# Generate the TTS
|
||||
audio = voice.generate(str(sys.argv[2:]))
|
||||
|
||||
# Save the TTS to a file
|
||||
audio.save("audio")
|
@ -1,6 +1,4 @@
|
||||
#include "ggml.h"
|
||||
#include "common-ggml.h"
|
||||
|
||||
#include "gpt-2.h"
|
||||
|
||||
#include <cmath>
|
||||
@ -16,6 +14,150 @@
|
||||
|
||||
/////////////////////// GPT-2 BEGIN /////////////////////////
|
||||
|
||||
//
|
||||
// Vocab utils
|
||||
//
|
||||
|
||||
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text) {
|
||||
std::vector<std::string> words;
|
||||
|
||||
// first split the text into words
|
||||
{
|
||||
std::string str = text;
|
||||
std::string pat = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)";
|
||||
|
||||
std::regex re(pat);
|
||||
std::smatch m;
|
||||
|
||||
while (std::regex_search(str, m, re)) {
|
||||
for (auto x : m) {
|
||||
words.push_back(x);
|
||||
}
|
||||
str = m.suffix();
|
||||
}
|
||||
}
|
||||
|
||||
// find the longest tokens that form the words:
|
||||
std::vector<gpt_vocab::id> tokens;
|
||||
for (const auto & word : words) {
|
||||
if (word.empty()) continue;
|
||||
|
||||
int i = 0;
|
||||
int n = word.size();
|
||||
while (i < n) {
|
||||
int j = n;
|
||||
while (j > i) {
|
||||
auto it = vocab.token_to_id.find(word.substr(i, j-i));
|
||||
if (it != vocab.token_to_id.end()) {
|
||||
tokens.push_back(it->second);
|
||||
i = j;
|
||||
break;
|
||||
}
|
||||
--j;
|
||||
}
|
||||
if (i == n) {
|
||||
break;
|
||||
}
|
||||
if (j == i) {
|
||||
auto sub = word.substr(i, 1);
|
||||
if (vocab.token_to_id.find(sub) != vocab.token_to_id.end()) {
|
||||
tokens.push_back(vocab.token_to_id.at(sub));
|
||||
} else {
|
||||
fprintf(stderr, "%s: unknown token '%s'\n", __func__, sub.data());
|
||||
}
|
||||
++i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return tokens;
|
||||
}
|
||||
|
||||
gpt_vocab::id gpt_sample_top_k_top_p(
|
||||
const gpt_vocab & vocab,
|
||||
const float * logits,
|
||||
int top_k,
|
||||
double top_p,
|
||||
double /*temp*/,
|
||||
std::mt19937 & rng) {
|
||||
int n_logits = vocab.id_to_token.size();
|
||||
|
||||
std::vector<std::pair<double, gpt_vocab::id>> logits_id;
|
||||
logits_id.reserve(n_logits);
|
||||
|
||||
for (int i = 0; i < n_logits; i++) {
|
||||
logits_id.emplace_back(logits[i], i);
|
||||
}
|
||||
|
||||
// find the top K tokens
|
||||
std::partial_sort(
|
||||
logits_id.begin(),
|
||||
logits_id.begin() + top_k, logits_id.end(),
|
||||
[](const std::pair<double, gpt_vocab::id> & a, const std::pair<double, gpt_vocab::id> & b) {
|
||||
return a.first > b.first;
|
||||
});
|
||||
|
||||
logits_id.resize(top_k);
|
||||
|
||||
// normalize
|
||||
{
|
||||
double sum = 0.0f;
|
||||
for (int i = 0; i < (int)logits_id.size(); i++) {
|
||||
sum += logits_id[i].first;
|
||||
}
|
||||
|
||||
sum = 1.0/sum;
|
||||
for (int i = 0; i < (int)logits_id.size(); i++) {
|
||||
logits_id[i].first *= sum;
|
||||
}
|
||||
}
|
||||
|
||||
if (top_p < 1.0f) {
|
||||
{
|
||||
double cumsum = 0.0f;
|
||||
for (int i = 0; i < top_k; i++) {
|
||||
cumsum += logits_id[i].first;
|
||||
if (cumsum >= top_p) {
|
||||
logits_id.resize(i+1);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// normalize again
|
||||
{
|
||||
double sum = 0.0f;
|
||||
for (int i = 0; i < (int)logits_id.size(); i++) {
|
||||
sum += logits_id[i].first;
|
||||
}
|
||||
|
||||
sum = 1.0/sum;
|
||||
for (int i = 0; i < (int)logits_id.size(); i++) {
|
||||
logits_id[i].first *= sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//printf("\n");
|
||||
//for (int i = 0; i < (int) logits_id.size(); i++) {
|
||||
// printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), logits_id[i].first);
|
||||
//}
|
||||
//exit(0);
|
||||
|
||||
// sample from the obtained distribution
|
||||
std::vector<double> probs;
|
||||
probs.reserve(logits_id.size());
|
||||
|
||||
for (int i = 0; i < (int) logits_id.size(); i++) {
|
||||
probs.push_back(logits_id[i].first);
|
||||
}
|
||||
|
||||
std::discrete_distribution<> dist(probs.begin(), probs.end());
|
||||
int idx = dist(rng);
|
||||
|
||||
return logits_id[idx].second;
|
||||
}
|
||||
|
||||
// default hparams (GPT-2 117M)
|
||||
struct gpt2_hparams {
|
||||
int32_t n_vocab = 50257;
|
||||
@ -23,7 +165,7 @@ struct gpt2_hparams {
|
||||
int32_t n_embd = 768;
|
||||
int32_t n_head = 12;
|
||||
int32_t n_layer = 12;
|
||||
int32_t ftype = 1;
|
||||
int32_t f16 = 1;
|
||||
};
|
||||
|
||||
struct gpt2_layer {
|
||||
@ -45,7 +187,7 @@ struct gpt2_layer {
|
||||
struct ggml_tensor * c_mlp_fc_w;
|
||||
struct ggml_tensor * c_mlp_fc_b;
|
||||
|
||||
struct ggml_tensor * c_mlp_proj_w;
|
||||
struct ggml_tensor * c_mlp_proj_w_trans; // transposed for efficiency
|
||||
struct ggml_tensor * c_mlp_proj_b;
|
||||
};
|
||||
|
||||
@ -56,9 +198,8 @@ struct gpt2_model {
|
||||
struct ggml_tensor * ln_f_g;
|
||||
struct ggml_tensor * ln_f_b;
|
||||
|
||||
struct ggml_tensor * wte; // position embedding
|
||||
struct ggml_tensor * wpe; // token embedding
|
||||
struct ggml_tensor * lm_head; // language model head
|
||||
struct ggml_tensor * wte; // position embedding
|
||||
struct ggml_tensor * wpe; // token embedding
|
||||
|
||||
std::vector<gpt2_layer> layers;
|
||||
|
||||
@ -100,14 +241,14 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
|
||||
fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd));
|
||||
fin.read((char *) &hparams.n_head, sizeof(hparams.n_head));
|
||||
fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
|
||||
fin.read((char *) &hparams.ftype, sizeof(hparams.ftype));
|
||||
fin.read((char *) &hparams.f16, sizeof(hparams.f16));
|
||||
|
||||
printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
|
||||
printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
|
||||
printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
|
||||
printf("%s: n_head = %d\n", __func__, hparams.n_head);
|
||||
printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
|
||||
printf("%s: ftype = %d\n", __func__, hparams.ftype);
|
||||
printf("%s: f16 = %d\n", __func__, hparams.f16);
|
||||
}
|
||||
|
||||
// load vocab
|
||||
@ -127,21 +268,16 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
|
||||
fin.read((char *) &len, sizeof(len));
|
||||
|
||||
word.resize(len);
|
||||
fin.read((char *) word.data(), len);
|
||||
fin.read((char *) &word[0], len);
|
||||
|
||||
vocab.token_to_id[word] = i;
|
||||
vocab.id_to_token[i] = word;
|
||||
}
|
||||
}
|
||||
|
||||
// for the big tensors, we have the option to store the data in 16-bit floats or quantized
|
||||
// for the big tensors, we have the option to store the data in 16-bit floats
|
||||
// in order to save memory and also to speed up the computation
|
||||
ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype) (model.hparams.ftype));
|
||||
if (wtype == GGML_TYPE_COUNT) {
|
||||
fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n",
|
||||
__func__, fname.c_str(), model.hparams.ftype);
|
||||
return false;
|
||||
}
|
||||
const ggml_type wtype = model.hparams.f16 ? GGML_TYPE_F16 : GGML_TYPE_F32;
|
||||
|
||||
auto & ctx = model.ctx;
|
||||
|
||||
@ -155,33 +291,32 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
|
||||
const int n_ctx = hparams.n_ctx;
|
||||
const int n_vocab = hparams.n_vocab;
|
||||
|
||||
ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_g
|
||||
ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_b
|
||||
ctx_size += n_embd*ggml_type_size(GGML_TYPE_F32); // ln_f_g
|
||||
ctx_size += n_embd*ggml_type_size(GGML_TYPE_F32); // ln_f_b
|
||||
|
||||
ctx_size += n_vocab*n_embd*ggml_type_sizef(wtype); // wte
|
||||
ctx_size += n_ctx*n_embd*ggml_type_sizef(GGML_TYPE_F32); // wpe
|
||||
ctx_size += n_vocab*n_embd*ggml_type_sizef(wtype); // lm_head
|
||||
ctx_size += n_vocab*n_embd*ggml_type_size(wtype); // wte
|
||||
ctx_size += n_ctx*n_embd*ggml_type_size(GGML_TYPE_F32); // wpe
|
||||
|
||||
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_g
|
||||
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_b
|
||||
ctx_size += n_layer*(n_embd*ggml_type_size(GGML_TYPE_F32)); // ln_1_g
|
||||
ctx_size += n_layer*(n_embd*ggml_type_size(GGML_TYPE_F32)); // ln_1_b
|
||||
|
||||
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_2_g
|
||||
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_2_b
|
||||
ctx_size += n_layer*(n_embd*ggml_type_size(GGML_TYPE_F32)); // ln_2_g
|
||||
ctx_size += n_layer*(n_embd*ggml_type_size(GGML_TYPE_F32)); // ln_2_b
|
||||
|
||||
ctx_size += n_layer*(3*n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_attn_w
|
||||
ctx_size += n_layer*( 3*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_attn_attn_b
|
||||
ctx_size += n_layer*(3*n_embd*n_embd*ggml_type_size(wtype)); // c_attn_attn_w
|
||||
ctx_size += n_layer*( 3*n_embd*ggml_type_size(GGML_TYPE_F32)); // c_attn_attn_b
|
||||
|
||||
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_proj_w
|
||||
ctx_size += n_layer*( n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_attn_proj_b
|
||||
ctx_size += n_layer*(n_embd*n_embd*ggml_type_size(wtype)); // c_attn_proj_w
|
||||
ctx_size += n_layer*( n_embd*ggml_type_size(GGML_TYPE_F32)); // c_attn_proj_b
|
||||
|
||||
ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype)); // c_mlp_fc_w
|
||||
ctx_size += n_layer*( 4*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_fc_b
|
||||
ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_size(wtype)); // c_mlp_fc_w
|
||||
ctx_size += n_layer*( 4*n_embd*ggml_type_size(GGML_TYPE_F32)); // c_mlp_fc_b
|
||||
|
||||
ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype)); // c_mlp_proj_w
|
||||
ctx_size += n_layer*( n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_proj_b
|
||||
ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_size(wtype)); // c_mlp_proj_w
|
||||
ctx_size += n_layer*( n_embd*ggml_type_size(GGML_TYPE_F32)); // c_mlp_proj_b
|
||||
|
||||
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_k
|
||||
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_v
|
||||
ctx_size += n_ctx*n_layer*n_embd*ggml_type_size(GGML_TYPE_F32); // memory_k
|
||||
ctx_size += n_ctx*n_layer*n_embd*ggml_type_size(GGML_TYPE_F32); // memory_v
|
||||
|
||||
ctx_size += (6 + 12*n_layer)*256; // object overhead
|
||||
|
||||
@ -190,11 +325,9 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
|
||||
|
||||
// create the ggml context
|
||||
{
|
||||
struct ggml_init_params params = {
|
||||
.mem_size = ctx_size,
|
||||
.mem_buffer = NULL,
|
||||
.no_alloc = false,
|
||||
};
|
||||
struct ggml_init_params params;
|
||||
params.mem_size = ctx_size;
|
||||
params.mem_buffer = nullptr;
|
||||
|
||||
model.ctx = ggml_init(params);
|
||||
if (!model.ctx) {
|
||||
@ -217,38 +350,36 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
|
||||
model.ln_f_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
model.ln_f_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
|
||||
model.wte = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
|
||||
model.wpe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ctx);
|
||||
model.lm_head = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
|
||||
model.wte = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
|
||||
model.wpe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ctx);
|
||||
|
||||
// map by name
|
||||
model.tensors["model/ln_f/g"] = model.ln_f_g;
|
||||
model.tensors["model/ln_f/b"] = model.ln_f_b;
|
||||
|
||||
model.tensors["model/wte"] = model.wte;
|
||||
model.tensors["model/wpe"] = model.wpe;
|
||||
model.tensors["model/lm_head"] = model.lm_head;
|
||||
model.tensors["model/wte"] = model.wte;
|
||||
model.tensors["model/wpe"] = model.wpe;
|
||||
|
||||
for (int i = 0; i < n_layer; ++i) {
|
||||
auto & layer = model.layers[i];
|
||||
|
||||
layer.ln_1_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
layer.ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
layer.ln_1_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
layer.ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
|
||||
layer.ln_2_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
layer.ln_2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
layer.ln_2_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
layer.ln_2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
|
||||
layer.c_attn_attn_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 3*n_embd);
|
||||
layer.c_attn_attn_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 3*n_embd);
|
||||
layer.c_attn_attn_w = ggml_new_tensor_2d(ctx, wtype, 3*n_embd, n_embd);
|
||||
layer.c_attn_attn_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 3*n_embd);
|
||||
|
||||
layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
|
||||
layer.c_attn_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
|
||||
layer.c_attn_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
|
||||
layer.c_mlp_fc_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 4*n_embd);
|
||||
layer.c_mlp_fc_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_embd);
|
||||
layer.c_mlp_fc_w = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd);
|
||||
layer.c_mlp_fc_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_embd);
|
||||
|
||||
layer.c_mlp_proj_w = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd);
|
||||
layer.c_mlp_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
layer.c_mlp_proj_w_trans = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd);
|
||||
layer.c_mlp_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
|
||||
// map by name
|
||||
model.tensors["model/h" + std::to_string(i) + "/ln_1/g"] = layer.ln_1_g;
|
||||
@ -266,7 +397,7 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
|
||||
model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/w"] = layer.c_mlp_fc_w;
|
||||
model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/b"] = layer.c_mlp_fc_b;
|
||||
|
||||
model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/w"] = layer.c_mlp_proj_w;
|
||||
model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/w"] = layer.c_mlp_proj_w_trans;
|
||||
model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/b"] = layer.c_mlp_proj_b;
|
||||
}
|
||||
}
|
||||
@ -294,16 +425,14 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
|
||||
{
|
||||
size_t total_size = 0;
|
||||
|
||||
bool has_lm_head = false;
|
||||
|
||||
while (true) {
|
||||
int32_t n_dims;
|
||||
int32_t length;
|
||||
int32_t ttype;
|
||||
int32_t ftype;
|
||||
|
||||
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
|
||||
fin.read(reinterpret_cast<char *>(&length), sizeof(length));
|
||||
fin.read(reinterpret_cast<char *>(&ttype), sizeof(ttype));
|
||||
fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
|
||||
|
||||
if (fin.eof()) {
|
||||
break;
|
||||
@ -319,7 +448,7 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
|
||||
std::string name(length, 0);
|
||||
fin.read(&name[0], length);
|
||||
|
||||
if (model.tensors.find(name.data()) == model.tensors.end()) {
|
||||
if (model.tensors.find(name) == model.tensors.end()) {
|
||||
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
|
||||
return false;
|
||||
}
|
||||
@ -332,18 +461,13 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
|
||||
|
||||
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
|
||||
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
|
||||
__func__, name.data(), (int) tensor->ne[0], (int) tensor->ne[1], ne[0], ne[1]);
|
||||
__func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]);
|
||||
return false;
|
||||
}
|
||||
|
||||
// for debugging
|
||||
if (0) {
|
||||
printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.data(), ne[0], ne[1], ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor)/1024.0/1024.0, ggml_nbytes(tensor));
|
||||
}
|
||||
const size_t bpe = (ftype == 0) ? sizeof(float) : sizeof(ggml_fp16_t);
|
||||
|
||||
const size_t bpe = ggml_type_size(ggml_type(ttype));
|
||||
|
||||
if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
|
||||
if (nelements*bpe != ggml_nbytes(tensor)) {
|
||||
fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
|
||||
__func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
|
||||
return false;
|
||||
@ -351,15 +475,7 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
|
||||
|
||||
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
|
||||
|
||||
// GPT-2 models share the WTE tensor as the LM head
|
||||
if (name == "model/wte" && has_lm_head == false) {
|
||||
memcpy(model.lm_head->data, tensor->data, ggml_nbytes(tensor));
|
||||
}
|
||||
|
||||
if (name == "model/lm_head") {
|
||||
has_lm_head = true;
|
||||
}
|
||||
|
||||
//printf("%24s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
|
||||
total_size += ggml_nbytes(tensor);
|
||||
}
|
||||
|
||||
@ -377,7 +493,7 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
|
||||
// - n_threads: number of threads to use
|
||||
// - n_past: the context size so far
|
||||
// - embd_inp: the embeddings of the tokens in the context
|
||||
// - embd_w: the predicted logits for the next token
|
||||
// - embd_w: the predicted probabilities of the next token
|
||||
//
|
||||
bool gpt2_eval(
|
||||
const gpt2_model & model,
|
||||
@ -396,12 +512,12 @@ bool gpt2_eval(
|
||||
const int n_head = hparams.n_head;
|
||||
const int n_vocab = hparams.n_vocab;
|
||||
|
||||
static size_t buf_size = 512u*1024*1024;
|
||||
static size_t buf_size = 5640ull*1024*1024;
|
||||
static void * buf = malloc(buf_size);
|
||||
|
||||
if (mem_per_token > 0 && mem_per_token*N > buf_size) {
|
||||
const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead
|
||||
//printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new);
|
||||
printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new);
|
||||
|
||||
// reallocate
|
||||
buf_size = buf_size_new;
|
||||
@ -412,14 +528,13 @@ bool gpt2_eval(
|
||||
}
|
||||
}
|
||||
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size =*/ buf_size,
|
||||
/*.mem_buffer =*/ buf,
|
||||
/*.no_alloc =*/ false,
|
||||
};
|
||||
struct ggml_init_params params;
|
||||
params.mem_size = buf_size;
|
||||
params.mem_buffer = buf;
|
||||
|
||||
struct ggml_context * ctx0 = ggml_init(params);
|
||||
struct ggml_cgraph gf = {};
|
||||
|
||||
struct ggml_cgraph gf = { };
|
||||
gf.n_threads = n_threads;
|
||||
|
||||
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
||||
@ -463,7 +578,7 @@ bool gpt2_eval(
|
||||
// [2304, N]
|
||||
{
|
||||
cur = ggml_mul_mat(ctx0,
|
||||
model.layers[il].c_attn_attn_w,
|
||||
ggml_transpose(ctx0, model.layers[il].c_attn_attn_w),
|
||||
cur);
|
||||
|
||||
cur = ggml_add(ctx0,
|
||||
@ -539,13 +654,11 @@ bool gpt2_eval(
|
||||
// V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()
|
||||
// [n_past + N, 64, 12]
|
||||
struct ggml_tensor * V_trans =
|
||||
ggml_cpy(ctx0,
|
||||
ggml_permute(ctx0,
|
||||
ggml_reshape_3d(ctx0,
|
||||
ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd),
|
||||
n_embd/n_head, n_head, n_past + N),
|
||||
1, 2, 0, 3),
|
||||
ggml_new_tensor_3d(ctx0, model.memory_v->type, n_past + N, n_embd/n_head, n_head));
|
||||
ggml_permute(ctx0,
|
||||
ggml_reshape_3d(ctx0,
|
||||
ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd),
|
||||
n_embd/n_head, n_head, n_past + N),
|
||||
1, 2, 0, 3);
|
||||
|
||||
// KQV = transpose(V) * KQ_soft_max
|
||||
// [64, N, 12]
|
||||
@ -572,7 +685,7 @@ bool gpt2_eval(
|
||||
// [768, N]
|
||||
{
|
||||
cur = ggml_mul_mat(ctx0,
|
||||
model.layers[il].c_attn_proj_w,
|
||||
ggml_transpose(ctx0, model.layers[il].c_attn_proj_w),
|
||||
cur);
|
||||
|
||||
cur = ggml_add(ctx0,
|
||||
@ -609,7 +722,7 @@ bool gpt2_eval(
|
||||
// cur = fc_w*cur + fc_b
|
||||
// [3072, N]
|
||||
cur = ggml_mul_mat(ctx0,
|
||||
model.layers[il].c_mlp_fc_w,
|
||||
ggml_transpose(ctx0, model.layers[il].c_mlp_fc_w),
|
||||
cur);
|
||||
|
||||
cur = ggml_add(ctx0,
|
||||
@ -629,7 +742,7 @@ bool gpt2_eval(
|
||||
// cur = proj_w*cur + proj_b
|
||||
// [768, N]
|
||||
cur = ggml_mul_mat(ctx0,
|
||||
model.layers[il].c_mlp_proj_w,
|
||||
model.layers[il].c_mlp_proj_w_trans,
|
||||
cur);
|
||||
|
||||
cur = ggml_add(ctx0,
|
||||
@ -656,12 +769,12 @@ bool gpt2_eval(
|
||||
}
|
||||
|
||||
// inpL = WTE * inpL
|
||||
// [ 768, 50257] - model.lm_head
|
||||
// [ 768, 50257] - model.wte
|
||||
// [ 768, N] - inpL
|
||||
inpL = ggml_mul_mat(ctx0, model.lm_head, inpL);
|
||||
inpL = ggml_mul_mat(ctx0, model.wte, inpL);
|
||||
|
||||
// logits -> probs
|
||||
//inpL = ggml_soft_max(ctx0, inpL);
|
||||
inpL = ggml_soft_max(ctx0, inpL);
|
||||
|
||||
// run the computation
|
||||
ggml_build_forward_expand(&gf, inpL);
|
||||
@ -675,7 +788,7 @@ bool gpt2_eval(
|
||||
//embd_w.resize(n_vocab*N);
|
||||
//memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
|
||||
|
||||
// return result just for the last token
|
||||
// return result for just the last token
|
||||
embd_w.resize(n_vocab);
|
||||
memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
|
||||
|
||||
|
@ -2,12 +2,18 @@
|
||||
|
||||
// TODO: Change to C-style API and move to ./examples for easy reuse.
|
||||
|
||||
#include "common.h"
|
||||
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <string>
|
||||
|
||||
struct gpt_vocab {
|
||||
using id = int32_t;
|
||||
using token = std::string;
|
||||
|
||||
std::map<token, id> token_to_id;
|
||||
std::map<id, token> id_to_token;
|
||||
};
|
||||
|
||||
struct gpt2_context;
|
||||
|
||||
struct gpt2_context * gpt2_init(const char * path_model);
|
||||
|
@ -7,13 +7,9 @@
|
||||
# Mac OS: brew install espeak
|
||||
# Linux: apt-get install espeak
|
||||
#
|
||||
#espeak -v en-us+m$1 -s 175 -p 50 -a 200 -g 5 -k 5 "$2"
|
||||
|
||||
# Mac OS "say" command
|
||||
say "$2"
|
||||
espeak -v en-us+m$1 -s 175 -p 50 -a 200 -g 5 -k 5 "$2"
|
||||
|
||||
# Eleven Labs
|
||||
# To use it, install the elevenlabs module from pip (pip install elevenlabs), register to https://beta.elevenlabs.io to get an api key and paste it in /examples/talk/eleven-labs.py
|
||||
#
|
||||
#wd=$(dirname $0)
|
||||
#script=$wd/eleven-labs.py
|
||||
|
@ -9,6 +9,4 @@ To use:
|
||||
5. Select the "release" active build variant, and use Android Studio to run and deploy to your device.
|
||||
[^1]: I recommend the tiny or base models for running on an Android device.
|
||||
|
||||
(PS: Do not move this android project folder individually to other folders, because this android project folder depends on the files of the whole project.)
|
||||
|
||||
<img width="300" alt="image" src="https://user-images.githubusercontent.com/1670775/221613663-a17bf770-27ef-45ab-9a46-a5f99ba65d2a.jpg">
|
||||
|
@ -1,18 +1,15 @@
|
||||
A sample SwiftUI app using [whisper.cpp](https://github.com/ggerganov/whisper.cpp/) to do voice-to-text transcriptions.
|
||||
See also: [whisper.objc](https://github.com/ggerganov/whisper.cpp/tree/master/examples/whisper.objc).
|
||||
|
||||
**Usage**:
|
||||
To use:
|
||||
|
||||
1. Select a model from the [whisper.cpp repository](https://github.com/ggerganov/whisper.cpp/tree/master/models).[^1]
|
||||
2. Add the model to `whisper.swiftui.demo/Resources/models` **via Xcode**.
|
||||
2. Add the model to "whisper.swiftui.demo/Resources/models" via Xcode.
|
||||
3. Select a sample audio file (for example, [jfk.wav](https://github.com/ggerganov/whisper.cpp/raw/master/samples/jfk.wav)).
|
||||
4. Add the sample audio file to `whisper.swiftui.demo/Resources/samples` **via Xcode**.
|
||||
4. Add the model to "whisper.swiftui.demo/Resources/samples" via Xcode.
|
||||
5. Select the "Release" [^2] build configuration under "Run", then deploy and run to your device.
|
||||
|
||||
**Note:** Pay attention to the folder path: `whisper.swiftui.demo/Resources/models` is the appropriate directory to place resources whilst `whisper.swiftui.demo/Models` is related to actual code.
|
||||
|
||||
[^1]: I recommend the tiny, base or small models for running on an iOS device.
|
||||
|
||||
[^2]: The `Release` build can boost performance of transcription. In this project, it also added `-O3 -DNDEBUG` to `Other C Flags`, but adding flags to app proj is not ideal in real world (applies to all C/C++ files), consider splitting xcodeproj in workspace in your own project.
|
||||
|
||||

|
||||
|
@ -31,9 +31,9 @@ endif()
|
||||
set_target_properties(${TARGET} PROPERTIES LINK_FLAGS " \
|
||||
--bind \
|
||||
-s USE_PTHREADS=1 \
|
||||
-s PTHREAD_POOL_SIZE_STRICT=0 \
|
||||
-s INITIAL_MEMORY=2000MB \
|
||||
-s TOTAL_MEMORY=2000MB \
|
||||
-s PTHREAD_POOL_SIZE=8 \
|
||||
-s INITIAL_MEMORY=1500MB \
|
||||
-s TOTAL_MEMORY=1500MB \
|
||||
-s FORCE_FILESYSTEM=1 \
|
||||
-s EXPORTED_RUNTIME_METHODS=\"['print', 'printErr', 'ccall', 'cwrap']\" \
|
||||
${EXTRA_FLAGS} \
|
||||
|
@ -10,12 +10,6 @@ std::thread g_worker;
|
||||
|
||||
std::vector<struct whisper_context *> g_contexts(4, nullptr);
|
||||
|
||||
static inline int mpow2(int n) {
|
||||
int p = 1;
|
||||
while (p <= n) p *= 2;
|
||||
return p/2;
|
||||
}
|
||||
|
||||
EMSCRIPTEN_BINDINGS(whisper) {
|
||||
emscripten::function("init", emscripten::optional_override([](const std::string & path_model) {
|
||||
if (g_worker.joinable()) {
|
||||
@ -49,7 +43,7 @@ EMSCRIPTEN_BINDINGS(whisper) {
|
||||
}
|
||||
}));
|
||||
|
||||
emscripten::function("full_default", emscripten::optional_override([](size_t index, const emscripten::val & audio, const std::string & lang, int nthreads, bool translate) {
|
||||
emscripten::function("full_default", emscripten::optional_override([](size_t index, const emscripten::val & audio, const std::string & lang, bool translate) {
|
||||
if (g_worker.joinable()) {
|
||||
g_worker.join();
|
||||
}
|
||||
@ -72,7 +66,7 @@ EMSCRIPTEN_BINDINGS(whisper) {
|
||||
params.print_special = false;
|
||||
params.translate = translate;
|
||||
params.language = whisper_is_multilingual(g_contexts[index]) ? lang.c_str() : "en";
|
||||
params.n_threads = std::min(nthreads, std::min(16, mpow2(std::thread::hardware_concurrency())));
|
||||
params.n_threads = std::min(8, (int) std::thread::hardware_concurrency());
|
||||
params.offset_ms = 0;
|
||||
|
||||
std::vector<float> pcmf32;
|
||||
|
@ -40,42 +40,21 @@
|
||||
|
||||
Note that the computation is quite heavy and may take a few seconds to complete.<br>
|
||||
The transcription results will be displayed in the text area below.<br><br>
|
||||
<b>Important:</b>
|
||||
<ul>
|
||||
<li>your browser must support WASM SIMD instructions for this to work</li>
|
||||
<li>Firefox cannot load files larger than 256 MB - use Chrome instead</li>
|
||||
</ul>
|
||||
<b>Important: your browser must support WASM SIMD instructions for this to work.</b>
|
||||
|
||||
<b>More examples:</b>
|
||||
<a href="https://whisper.ggerganov.com/">main</a> |
|
||||
<a href="https://whisper.ggerganov.com/bench">bench</a> |
|
||||
<a href="https://whisper.ggerganov.com/stream">stream</a> |
|
||||
<a href="https://whisper.ggerganov.com/command">command</a> |
|
||||
<a href="https://whisper.ggerganov.com/talk">talk</a> |
|
||||
|
||||
<hr>
|
||||
<br><br><hr>
|
||||
|
||||
<div id="model">
|
||||
Whisper models: <span id="model-whisper-status"></span><br><br>
|
||||
Whisper model: <span id="model-whisper-status"></span>
|
||||
<button id="fetch-whisper-tiny-en" onclick="loadWhisper('tiny.en')">tiny.en (75 MB)</button>
|
||||
<button id="fetch-whisper-tiny" onclick="loadWhisper('tiny')">tiny (75 MB)</button>
|
||||
<button id="fetch-whisper-base-en" onclick="loadWhisper('base.en')">base.en (142 MB)</button>
|
||||
<button id="fetch-whisper-base" onclick="loadWhisper('base')">base (142 MB)</button>
|
||||
<button id="fetch-whisper-small-en" onclick="loadWhisper('small.en')">small.en (466 MB)</button>
|
||||
<button id="fetch-whisper-small" onclick="loadWhisper('small')">small (466 MB)</button>
|
||||
<input type="file" id="whisper-file" name="file" onchange="loadFile(event, 'whisper.bin')" />
|
||||
<br><br>
|
||||
Quantized models:<br><br>
|
||||
<button id="fetch-whisper-tiny-en-q5_1" onclick="loadWhisper('tiny-en-q5_1')">tiny.en (Q5_1, 31 MB)</button>
|
||||
<button id="fetch-whisper-tiny-q5_1" onclick="loadWhisper('tiny-q5_1')">tiny (Q5_1, 31 MB)</button>
|
||||
<button id="fetch-whisper-base-en-q5_1" onclick="loadWhisper('base-en-q5_1')">base.en (Q5_1, 57 MB)</button>
|
||||
<button id="fetch-whisper-base-q5_1" onclick="loadWhisper('base-q5_1')">base (Q5_1, 57 MB)</button>
|
||||
<button id="fetch-whisper-small-en-q5_1" onclick="loadWhisper('small-en-q5_1')">small.en (Q5_1, 182 MB)</button>
|
||||
<button id="fetch-whisper-small-q5_1" onclick="loadWhisper('small-q5_1')">small (Q5_1, 182 MB)</button><br>
|
||||
<button id="fetch-whisper-medium-en-q5_0" onclick="loadWhisper('medium-en-q5_0')">medium.en (Q5_0, 515 MB)</button>
|
||||
<button id="fetch-whisper-medium-q5_0" onclick="loadWhisper('medium-q5_0')">medium (Q5_0, 515 MB)</button>
|
||||
<button id="fetch-whisper-large-q5_0" onclick="loadWhisper('large-q5_0')">large (Q5_0, 1030 MB)</button>
|
||||
<span id="fetch-whisper-progress"></span>
|
||||
|
||||
<input type="file" id="whisper-file" name="file" onchange="loadFile(event, 'whisper.bin')" />
|
||||
</div>
|
||||
|
||||
<br>
|
||||
@ -182,12 +161,6 @@
|
||||
<option value="yi">Yiddish</option>
|
||||
</select>
|
||||
</td>
|
||||
<!-- Slider to select number of threads between 1 and 16 -->
|
||||
<td>
|
||||
Threads:
|
||||
<input type="range" id="threads" name="threads" min="1" max="16" value="8" onchange="changeThreads(this.value)" />
|
||||
<span id="threads-value">8</span>
|
||||
</td>
|
||||
<td>
|
||||
<button onclick="onProcess(false);">Transcribe</button>
|
||||
</td>
|
||||
@ -290,13 +263,11 @@
|
||||
|
||||
Module.FS_createDataFile("/", fname, buf, true, true);
|
||||
|
||||
//model_whisper = fname;
|
||||
model_whisper = fname;
|
||||
|
||||
document.getElementById('model-whisper-status').innerHTML = 'loaded "' + model_whisper + '"!';
|
||||
|
||||
printTextarea('storeFS: stored model: ' + fname + ' size: ' + buf.length);
|
||||
|
||||
document.getElementById('model').innerHTML = 'Model fetched: ' + model_whisper;
|
||||
}
|
||||
|
||||
function loadFile(event, fname) {
|
||||
@ -321,17 +292,6 @@
|
||||
document.getElementById('fetch-whisper-tiny' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-base' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-small' ).style.display = 'none';
|
||||
|
||||
document.getElementById('fetch-whisper-tiny-en-q5_1' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-tiny-q5_1' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-base-en-q5_1' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-base-q5_1' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-small-en-q5_1' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-small-q5_1' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-medium-en-q5_0').style.display = 'none';
|
||||
document.getElementById('fetch-whisper-medium-q5_0' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-large-q5_0' ).style.display = 'none';
|
||||
|
||||
document.getElementById('whisper-file' ).style.display = 'none';
|
||||
document.getElementById('model-whisper-status' ).innerHTML = 'loaded model: ' + file.name;
|
||||
}
|
||||
@ -344,16 +304,6 @@
|
||||
'base': 'https://whisper.ggerganov.com/ggml-model-whisper-base.bin',
|
||||
'small.en': 'https://whisper.ggerganov.com/ggml-model-whisper-small.en.bin',
|
||||
'small': 'https://whisper.ggerganov.com/ggml-model-whisper-small.bin',
|
||||
|
||||
'tiny-en-q5_1': 'https://whisper.ggerganov.com/ggml-model-whisper-tiny.en-q5_1.bin',
|
||||
'tiny-q5_1': 'https://whisper.ggerganov.com/ggml-model-whisper-tiny-q5_1.bin',
|
||||
'base-en-q5_1': 'https://whisper.ggerganov.com/ggml-model-whisper-base.en-q5_1.bin',
|
||||
'base-q5_1': 'https://whisper.ggerganov.com/ggml-model-whisper-base-q5_1.bin',
|
||||
'small-en-q5_1': 'https://whisper.ggerganov.com/ggml-model-whisper-small.en-q5_1.bin',
|
||||
'small-q5_1': 'https://whisper.ggerganov.com/ggml-model-whisper-small-q5_1.bin',
|
||||
'medium-en-q5_0':'https://whisper.ggerganov.com/ggml-model-whisper-medium.en-q5_0.bin',
|
||||
'medium-q5_0': 'https://whisper.ggerganov.com/ggml-model-whisper-medium-q5_0.bin',
|
||||
'large-q5_0': 'https://whisper.ggerganov.com/ggml-model-whisper-large-q5_0.bin',
|
||||
};
|
||||
|
||||
let sizes = {
|
||||
@ -363,16 +313,6 @@
|
||||
'base': 142,
|
||||
'small.en': 466,
|
||||
'small': 466,
|
||||
|
||||
'tiny-en-q5_1': 31,
|
||||
'tiny-q5_1': 31,
|
||||
'base-en-q5_1': 57,
|
||||
'base-q5_1': 57,
|
||||
'small-en-q5_1': 182,
|
||||
'small-q5_1': 182,
|
||||
'medium-en-q5_0': 515,
|
||||
'medium-q5_0': 515,
|
||||
'large-q5_0': 1030,
|
||||
};
|
||||
|
||||
let url = urls[model];
|
||||
@ -387,19 +327,8 @@
|
||||
document.getElementById('fetch-whisper-tiny' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-base' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-small' ).style.display = 'none';
|
||||
|
||||
document.getElementById('fetch-whisper-tiny-en-q5_1' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-tiny-q5_1' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-base-en-q5_1' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-base-q5_1' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-small-en-q5_1' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-small-q5_1' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-medium-en-q5_0').style.display = 'none';
|
||||
document.getElementById('fetch-whisper-medium-q5_0' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-large-q5_0' ).style.display = 'none';
|
||||
|
||||
document.getElementById('whisper-file' ).style.display = 'none';
|
||||
document.getElementById('model-whisper-status').innerHTML = 'loading model: ' + model;
|
||||
document.getElementById('whisper-file' ).style.display = 'none';
|
||||
document.getElementById('model-whisper-status' ).innerHTML = 'loading model: ' + model;
|
||||
|
||||
cbProgress = function(p) {
|
||||
let el = document.getElementById('fetch-whisper-progress');
|
||||
@ -408,26 +337,14 @@
|
||||
|
||||
cbCancel = function() {
|
||||
var el;
|
||||
|
||||
el = document.getElementById('fetch-whisper-tiny-en' ); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-base-en' ); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-small-en'); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-tiny' ); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-base' ); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-small' ); if (el) el.style.display = 'inline-block';
|
||||
|
||||
el = document.getElementById('fetch-whisper-tiny-en-q5_1' ); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-tiny-q5_1' ); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-base-en-q5_1' ); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-base-q5_1' ); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-small-en-q5_1' ); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-small-q5_1' ); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-medium-en-q5_0'); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-medium-q5_0' ); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-large-q5_0' ); if (el) el.style.display = 'inline-block';
|
||||
|
||||
el = document.getElementById('whisper-file' ); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('model-whisper-status'); if (el) el.innerHTML = '';
|
||||
el = document.getElementById('whisper-file' ); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('model-whisper-status' ); if (el) el.innerHTML = '';
|
||||
};
|
||||
|
||||
loadRemote(url, dst, size_mb, cbProgress, storeFS, cbCancel, printTextarea);
|
||||
@ -437,8 +354,7 @@
|
||||
// audio file
|
||||
//
|
||||
|
||||
const kMaxAudio_s = 30*60;
|
||||
const kMaxRecording_s = 2*60;
|
||||
const kMaxAudio_s = 120;
|
||||
const kSampleRate = 16000;
|
||||
|
||||
window.AudioContext = window.AudioContext || window.webkitAudioContext;
|
||||
@ -507,7 +423,7 @@
|
||||
doRecording = false;
|
||||
}
|
||||
|
||||
// record up to kMaxRecording_s seconds of audio from the microphone
|
||||
// record up to kMaxAudio_s seconds of audio from the microphone
|
||||
// check if doRecording is false every 1000 ms and stop recording if so
|
||||
// update progress information
|
||||
function startRecording() {
|
||||
@ -563,9 +479,9 @@
|
||||
printTextarea('js: audio recorded, size: ' + audio.length);
|
||||
|
||||
// truncate to first 30 seconds
|
||||
if (audio.length > kMaxRecording_s*kSampleRate) {
|
||||
audio = audio.slice(0, kMaxRecording_s*kSampleRate);
|
||||
printTextarea('js: truncated audio to first ' + kMaxRecording_s + ' seconds');
|
||||
if (audio.length > kMaxAudio_s*kSampleRate) {
|
||||
audio = audio.slice(0, kMaxAudio_s*kSampleRate);
|
||||
printTextarea('js: truncated audio to first ' + kMaxAudio_s + ' seconds');
|
||||
}
|
||||
setAudio(audio);
|
||||
});
|
||||
@ -593,31 +509,24 @@
|
||||
});
|
||||
}
|
||||
|
||||
document.getElementById('progress-bar').style.width = (100*(Date.now() - startTime)/1000/kMaxRecording_s) + '%';
|
||||
document.getElementById('progress-text').innerHTML = (100*(Date.now() - startTime)/1000/kMaxRecording_s).toFixed(0) + '%';
|
||||
document.getElementById('progress-bar').style.width = (100*(Date.now() - startTime)/1000/kMaxAudio_s) + '%';
|
||||
document.getElementById('progress-text').innerHTML = (100*(Date.now() - startTime)/1000/kMaxAudio_s).toFixed(0) + '%';
|
||||
}, 1000);
|
||||
|
||||
printTextarea('js: recording ...');
|
||||
|
||||
setTimeout(function() {
|
||||
if (doRecording) {
|
||||
printTextarea('js: recording stopped after ' + kMaxRecording_s + ' seconds');
|
||||
printTextarea('js: recording stopped after ' + kMaxAudio_s + ' seconds');
|
||||
stopRecording();
|
||||
}
|
||||
}, kMaxRecording_s*1000);
|
||||
}, kMaxAudio_s*1000);
|
||||
}
|
||||
|
||||
//
|
||||
// transcribe
|
||||
//
|
||||
|
||||
var nthreads = 8;
|
||||
|
||||
function changeThreads(value) {
|
||||
nthreads = value;
|
||||
document.getElementById('threads-value').innerHTML = nthreads;
|
||||
}
|
||||
|
||||
function onProcess(translate) {
|
||||
if (!instance) {
|
||||
instance = Module.init('whisper.bin');
|
||||
@ -644,7 +553,7 @@
|
||||
printTextarea('');
|
||||
|
||||
setTimeout(function() {
|
||||
var ret = Module.full_default(instance, audio, document.getElementById('language').value, nthreads, translate);
|
||||
var ret = Module.full_default(instance, audio, document.getElementById('language').value, translate);
|
||||
console.log('js: full_default returned: ' + ret);
|
||||
if (ret) {
|
||||
printTextarea("js: whisper returned: " + ret);
|
||||
|
@ -64,10 +64,6 @@ for model in "${models[@]}"; do
|
||||
config="$config BLAS"
|
||||
fi
|
||||
|
||||
if [[ $system_info == *"COREML = 1"* ]]; then
|
||||
config="$config COREML"
|
||||
fi
|
||||
|
||||
commit=$(git rev-parse --short HEAD)
|
||||
|
||||
printf "| <todo> | <todo> | $config | $model | $n_threads | $load_time | $encode_time | $commit |\n"
|
||||
|
@ -1,45 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
printf "Usage: $0 <upload>"
|
||||
|
||||
if [ $# -ne 1 ]; then
|
||||
printf "\nError: Invalid number of arguments\n"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
qtype0="q5_0"
|
||||
qtype1="q5_1"
|
||||
upload="$1"
|
||||
|
||||
cd `dirname $0`
|
||||
cd ../
|
||||
|
||||
./quantize ./models/ggml-tiny.en.bin ./models/ggml-tiny.en-${qtype1}.bin ${qtype1}
|
||||
./quantize ./models/ggml-tiny.bin ./models/ggml-tiny-${qtype1}.bin ${qtype1}
|
||||
|
||||
./quantize ./models/ggml-base.en.bin ./models/ggml-base.en-${qtype1}.bin ${qtype1}
|
||||
./quantize ./models/ggml-base.bin ./models/ggml-base-${qtype1}.bin ${qtype1}
|
||||
|
||||
./quantize ./models/ggml-small.en.bin ./models/ggml-small.en-${qtype1}.bin ${qtype1}
|
||||
./quantize ./models/ggml-small.bin ./models/ggml-small-${qtype1}.bin ${qtype1}
|
||||
|
||||
./quantize ./models/ggml-medium.en.bin ./models/ggml-medium.en-${qtype0}.bin ${qtype0}
|
||||
./quantize ./models/ggml-medium.bin ./models/ggml-medium-${qtype0}.bin ${qtype0}
|
||||
|
||||
./quantize ./models/ggml-large.bin ./models/ggml-large-${qtype0}.bin ${qtype0}
|
||||
|
||||
if [ "$upload" == "1" ]; then
|
||||
scp ./models/ggml-tiny.en-${qtype1}.bin root@linode0:/mnt/Data/ggml/ggml-model-whisper-tiny.en-${qtype1}.bin
|
||||
scp ./models/ggml-tiny-${qtype1}.bin root@linode0:/mnt/Data/ggml/ggml-model-whisper-tiny-${qtype1}.bin
|
||||
|
||||
scp ./models/ggml-base.en-${qtype1}.bin root@linode0:/mnt/Data/ggml/ggml-model-whisper-base.en-${qtype1}.bin
|
||||
scp ./models/ggml-base-${qtype1}.bin root@linode0:/mnt/Data/ggml/ggml-model-whisper-base-${qtype1}.bin
|
||||
|
||||
scp ./models/ggml-small.en-${qtype1}.bin root@linode0:/mnt/Data/ggml/ggml-model-whisper-small.en-${qtype1}.bin
|
||||
scp ./models/ggml-small-${qtype1}.bin root@linode0:/mnt/Data/ggml/ggml-model-whisper-small-${qtype1}.bin
|
||||
|
||||
scp ./models/ggml-medium.en-${qtype0}.bin root@linode0:/mnt/Data/ggml/ggml-model-whisper-medium.en-${qtype0}.bin
|
||||
scp ./models/ggml-medium-${qtype0}.bin root@linode0:/mnt/Data/ggml/ggml-model-whisper-medium-${qtype0}.bin
|
||||
|
||||
scp ./models/ggml-large-${qtype0}.bin root@linode0:/mnt/Data/ggml/ggml-model-whisper-large-${qtype0}.bin
|
||||
fi
|
@ -1,10 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
cp -rpv ../ggml/src/ggml.c ./ggml.c
|
||||
cp -rpv ../ggml/src/ggml-cuda.cu ./ggml-cuda.cu
|
||||
cp -rpv ../ggml/src/ggml-cuda.h ./ggml-cuda.h
|
||||
cp -rpv ../ggml/include/ggml/ggml.h ./ggml.h
|
||||
cp -rpv ../ggml/examples/common.h ./examples/common.h
|
||||
cp -rpv ../ggml/examples/common.cpp ./examples/common.cpp
|
||||
cp -rpv ../ggml/examples/common-ggml.h ./examples/common-ggml.h
|
||||
cp -rpv ../ggml/examples/common-ggml.cpp ./examples/common-ggml.cpp
|
365
ggml-cuda.cu
365
ggml-cuda.cu
@ -1,365 +0,0 @@
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
#include <cuda_fp16.h>
|
||||
#include <atomic>
|
||||
#include "ggml-cuda.h"
|
||||
|
||||
typedef uint16_t ggml_fp16_t;
|
||||
static_assert(sizeof(__half) == sizeof(ggml_fp16_t), "wrong fp16 size");
|
||||
|
||||
#define QK4_0 32
|
||||
typedef struct {
|
||||
float d; // delta
|
||||
uint8_t qs[QK4_0 / 2]; // nibbles / quants
|
||||
} block_q4_0;
|
||||
static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
|
||||
|
||||
#define QK4_1 32
|
||||
typedef struct {
|
||||
float d; // delta
|
||||
float m; // min
|
||||
uint8_t qs[QK4_1 / 2]; // nibbles / quants
|
||||
} block_q4_1;
|
||||
static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding");
|
||||
|
||||
#define QK4_2 16
|
||||
typedef struct {
|
||||
__half d; // delta
|
||||
uint8_t qs[QK4_2 / 2]; // nibbles / quants
|
||||
} block_q4_2;
|
||||
static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding");
|
||||
|
||||
#define QK5_0 32
|
||||
typedef struct {
|
||||
__half d; // delta
|
||||
uint8_t qh[4]; // 5-th bit of quants
|
||||
uint8_t qs[QK5_0 / 2]; // nibbles / quants
|
||||
} block_q5_0;
|
||||
static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
|
||||
|
||||
#define QK5_1 32
|
||||
typedef struct {
|
||||
__half d; // delta
|
||||
__half m; // min
|
||||
uint32_t qh; // 5-th bit of quants
|
||||
uint8_t qs[QK5_1 / 2]; // nibbles / quants
|
||||
} block_q5_1;
|
||||
static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
|
||||
|
||||
#define QK8_0 32
|
||||
typedef struct {
|
||||
float d; // delta
|
||||
int8_t qs[QK8_0]; // quants
|
||||
} block_q8_0;
|
||||
static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
|
||||
|
||||
static __global__ void dequantize_block_q4_0(const void * vx, float * y) {
|
||||
const block_q4_0 * x = (const block_q4_0 *) vx;
|
||||
|
||||
const int i = blockIdx.x;
|
||||
|
||||
const float d = x[i].d;
|
||||
|
||||
const uint8_t * pp = x[i].qs;
|
||||
|
||||
for (int l = 0; l < QK4_0; l += 2) {
|
||||
const uint8_t vi = pp[l/2];
|
||||
|
||||
const int8_t vi0 = vi & 0xf;
|
||||
const int8_t vi1 = vi >> 4;
|
||||
|
||||
const float v0 = (vi0 - 8)*d;
|
||||
const float v1 = (vi1 - 8)*d;
|
||||
|
||||
y[i*QK4_0 + l + 0] = v0;
|
||||
y[i*QK4_0 + l + 1] = v1;
|
||||
}
|
||||
}
|
||||
|
||||
static __global__ void dequantize_block_q4_1(const void * vx, float * y) {
|
||||
const block_q4_1 * x = (const block_q4_1 *) vx;
|
||||
|
||||
const int i = blockIdx.x;
|
||||
|
||||
const float d = x[i].d;
|
||||
const float m = x[i].m;
|
||||
|
||||
const uint8_t * pp = x[i].qs;
|
||||
|
||||
for (int l = 0; l < QK4_1; l += 2) {
|
||||
const uint8_t vi = pp[l/2];
|
||||
|
||||
const int8_t vi0 = vi & 0xf;
|
||||
const int8_t vi1 = vi >> 4;
|
||||
|
||||
const float v0 = vi0*d + m;
|
||||
const float v1 = vi1*d + m;
|
||||
|
||||
y[i*QK4_1 + l + 0] = v0;
|
||||
y[i*QK4_1 + l + 1] = v1;
|
||||
}
|
||||
}
|
||||
|
||||
static __global__ void dequantize_block_q4_2(const void * vx, float * y) {
|
||||
const block_q4_2 * x = (const block_q4_2 *) vx;
|
||||
|
||||
const int i = blockIdx.x;
|
||||
|
||||
const float d = x[i].d;
|
||||
|
||||
const uint8_t * pp = x[i].qs;
|
||||
|
||||
for (int l = 0; l < QK4_2; l += 2) {
|
||||
const uint8_t vi = pp[l/2];
|
||||
|
||||
const int8_t vi0 = vi & 0xf;
|
||||
const int8_t vi1 = vi >> 4;
|
||||
|
||||
const float v0 = (vi0 - 8)*d;
|
||||
const float v1 = (vi1 - 8)*d;
|
||||
|
||||
y[i*QK4_2 + l + 0] = v0;
|
||||
y[i*QK4_2 + l + 1] = v1;
|
||||
}
|
||||
}
|
||||
|
||||
static __global__ void dequantize_block_q5_0(const void * vx, float * y) {
|
||||
const block_q5_0 * x = (const block_q5_0 *) vx;
|
||||
|
||||
const int i = blockIdx.x;
|
||||
|
||||
const float d = x[i].d;
|
||||
|
||||
const uint8_t * pp = x[i].qs;
|
||||
|
||||
uint32_t qh;
|
||||
memcpy(&qh, x[i].qh, sizeof(qh));
|
||||
|
||||
for (int l = 0; l < QK5_0; l += 2) {
|
||||
const uint8_t vi = pp[l/2];
|
||||
|
||||
const int8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4;
|
||||
const int8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4;
|
||||
|
||||
const int8_t vi0 = ((vi & 0xf) | vh0);
|
||||
const int8_t vi1 = ((vi >> 4) | vh1);
|
||||
|
||||
const float v0 = (vi0 - 16)*d;
|
||||
const float v1 = (vi1 - 16)*d;
|
||||
|
||||
y[i*QK5_0 + l + 0] = v0;
|
||||
y[i*QK5_0 + l + 1] = v1;
|
||||
}
|
||||
}
|
||||
|
||||
static __global__ void dequantize_block_q5_1(const void * vx, float * y) {
|
||||
const block_q5_1 * x = (const block_q5_1 *) vx;
|
||||
|
||||
const int i = blockIdx.x;
|
||||
|
||||
const float d = x[i].d;
|
||||
const float m = x[i].m;
|
||||
|
||||
const uint8_t * pp = x[i].qs;
|
||||
|
||||
const uint32_t qh = x[i].qh;
|
||||
|
||||
for (int l = 0; l < QK5_1; l += 2) {
|
||||
const uint8_t vi = pp[l/2];
|
||||
|
||||
const int8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4;
|
||||
const int8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4;
|
||||
|
||||
const int8_t vi0 = (vi & 0xf) | vh0;
|
||||
const int8_t vi1 = (vi >> 4) | vh1;
|
||||
|
||||
const float v0 = vi0*d + m;
|
||||
const float v1 = vi1*d + m;
|
||||
|
||||
y[i*QK5_1 + l + 0] = v0;
|
||||
y[i*QK5_1 + l + 1] = v1;
|
||||
}
|
||||
}
|
||||
|
||||
static __global__ void dequantize_block_q8_0(const void * vx, float * y) {
|
||||
const block_q8_0 * x = (const block_q8_0 *) vx;
|
||||
|
||||
const int i = blockIdx.x;
|
||||
|
||||
const float d = x[i].d;
|
||||
|
||||
const int8_t * pp = x[i].qs;
|
||||
|
||||
for (int l = 0; l < QK8_0; l++) {
|
||||
const int8_t vi = pp[l];
|
||||
|
||||
y[i*QK8_0 + l] = vi*d;
|
||||
}
|
||||
}
|
||||
|
||||
void dequantize_row_q4_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
|
||||
const int nb = k / QK4_0;
|
||||
dequantize_block_q4_0<<<nb, 1, 0, stream>>>(vx, y);
|
||||
}
|
||||
|
||||
void dequantize_row_q4_1_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
|
||||
const int nb = k / QK4_1;
|
||||
dequantize_block_q4_1<<<nb, 1, 0, stream>>>(vx, y);
|
||||
}
|
||||
|
||||
void dequantize_row_q4_2_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
|
||||
const int nb = k / QK4_2;
|
||||
dequantize_block_q4_2<<<nb, 1, 0, stream>>>(vx, y);
|
||||
}
|
||||
|
||||
void dequantize_row_q5_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
|
||||
const int nb = k / QK5_0;
|
||||
dequantize_block_q5_0<<<nb, 1, 0, stream>>>(vx, y);
|
||||
}
|
||||
|
||||
void dequantize_row_q5_1_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
|
||||
const int nb = k / QK5_1;
|
||||
dequantize_block_q5_1<<<nb, 1, 0, stream>>>(vx, y);
|
||||
}
|
||||
|
||||
void dequantize_row_q8_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
|
||||
const int nb = k / QK8_0;
|
||||
dequantize_block_q8_0<<<nb, 1, 0, stream>>>(vx, y);
|
||||
}
|
||||
|
||||
dequantize_row_q_cuda_t ggml_get_dequantize_row_q_cuda(ggml_type type) {
|
||||
switch (type) {
|
||||
case GGML_TYPE_Q4_0:
|
||||
return dequantize_row_q4_0_cuda;
|
||||
case GGML_TYPE_Q4_1:
|
||||
return dequantize_row_q4_1_cuda;
|
||||
case GGML_TYPE_Q4_2:
|
||||
return dequantize_row_q4_2_cuda;
|
||||
case GGML_TYPE_Q5_0:
|
||||
return dequantize_row_q5_0_cuda;
|
||||
case GGML_TYPE_Q5_1:
|
||||
return dequantize_row_q5_1_cuda;
|
||||
case GGML_TYPE_Q8_0:
|
||||
return dequantize_row_q8_0_cuda;
|
||||
default:
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
// buffer pool for cuda
|
||||
#define MAX_CUDA_BUFFERS 16
|
||||
|
||||
struct scoped_spin_lock {
|
||||
std::atomic_flag& lock;
|
||||
scoped_spin_lock(std::atomic_flag& lock) : lock(lock) {
|
||||
while (lock.test_and_set(std::memory_order_acquire)) {
|
||||
; // spin
|
||||
}
|
||||
}
|
||||
~scoped_spin_lock() {
|
||||
lock.clear(std::memory_order_release);
|
||||
}
|
||||
scoped_spin_lock(const scoped_spin_lock&) = delete;
|
||||
scoped_spin_lock& operator=(const scoped_spin_lock&) = delete;
|
||||
};
|
||||
|
||||
struct cuda_buffer {
|
||||
void * ptr = nullptr;
|
||||
size_t size = 0;
|
||||
};
|
||||
|
||||
static cuda_buffer g_cuda_buffer_pool[MAX_CUDA_BUFFERS];
|
||||
static std::atomic_flag g_cuda_pool_lock = ATOMIC_FLAG_INIT;
|
||||
|
||||
void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
|
||||
scoped_spin_lock lock(g_cuda_pool_lock);
|
||||
|
||||
for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
|
||||
cuda_buffer& b = g_cuda_buffer_pool[i];
|
||||
if (b.size >= size && b.ptr != nullptr) {
|
||||
void * ptr = b.ptr;
|
||||
*actual_size = b.size;
|
||||
b.ptr = nullptr;
|
||||
b.size = 0;
|
||||
return ptr;
|
||||
}
|
||||
}
|
||||
void * ptr;
|
||||
CUDA_CHECK(cudaMalloc((void **) &ptr, size));
|
||||
*actual_size = size;
|
||||
return ptr;
|
||||
}
|
||||
|
||||
void ggml_cuda_pool_free(void * ptr, size_t size) {
|
||||
scoped_spin_lock lock(g_cuda_pool_lock);
|
||||
|
||||
for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
|
||||
cuda_buffer& b = g_cuda_buffer_pool[i];
|
||||
if (b.ptr == nullptr) {
|
||||
b.ptr = ptr;
|
||||
b.size = size;
|
||||
return;
|
||||
}
|
||||
}
|
||||
fprintf(stderr, "WARNING: cuda buffer pool full, increase MAX_CUDA_BUFFERS\n");
|
||||
CUDA_CHECK(cudaFree(ptr));
|
||||
}
|
||||
|
||||
cublasHandle_t g_cublasH = nullptr;
|
||||
cudaStream_t g_cudaStream = nullptr;
|
||||
cudaStream_t g_cudaStream2 = nullptr;
|
||||
cudaEvent_t g_cudaEvent = nullptr;
|
||||
|
||||
void ggml_init_cublas() {
|
||||
if (g_cublasH == nullptr) {
|
||||
// create cublas handle, bind a stream
|
||||
CUBLAS_CHECK(cublasCreate(&g_cublasH));
|
||||
CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStream, cudaStreamNonBlocking));
|
||||
CUBLAS_CHECK(cublasSetStream(g_cublasH, g_cudaStream));
|
||||
|
||||
// create additional stream and event for synchronization
|
||||
CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStream2, cudaStreamNonBlocking));
|
||||
CUDA_CHECK(cudaEventCreateWithFlags(&g_cudaEvent, cudaEventDisableTiming));
|
||||
|
||||
// configure logging to stdout
|
||||
// CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, NULL));
|
||||
}
|
||||
}
|
||||
|
||||
cudaError_t ggml_cuda_h2d_tensor_2d(void * dst, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cudaStream_t stream) {
|
||||
const uint64_t ne0 = src->ne[0];
|
||||
const uint64_t ne1 = src->ne[1];
|
||||
const uint64_t nb0 = src->nb[0];
|
||||
const uint64_t nb1 = src->nb[1];
|
||||
const uint64_t nb2 = src->nb[2];
|
||||
const uint64_t nb3 = src->nb[3];
|
||||
const enum ggml_type type = src->type;
|
||||
const size_t ts = ggml_type_size(type);
|
||||
const size_t bs = ggml_blck_size(type);
|
||||
|
||||
const void * x = (const void *) ((const char *) src->data + i2*nb2 + i3*nb3);
|
||||
if (nb0 == ts && nb1 == ts*ne0/bs) {
|
||||
return cudaMemcpyAsync(dst, x, ne1*nb1, cudaMemcpyHostToDevice, stream);
|
||||
} else if (nb0 == ts) {
|
||||
return cudaMemcpy2DAsync(dst, ts*ne0/bs, x, nb1, ts*ne0/bs, ne1, cudaMemcpyHostToDevice, stream);
|
||||
} else {
|
||||
for (uint64_t i1 = 0; i1 < ne1; i1++) {
|
||||
const void * rx = (const void *) ((const char *) x + i1*nb1);
|
||||
void * rd = (void *) ((char *) dst + i1*ts*ne0/bs);
|
||||
// pretend the row is a matrix with cols=1
|
||||
cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, cudaMemcpyHostToDevice, stream);
|
||||
if (r != cudaSuccess) return r;
|
||||
}
|
||||
return cudaSuccess;
|
||||
}
|
||||
}
|
||||
|
||||
void * ggml_cuda_host_malloc(size_t size) {
|
||||
void * ptr;
|
||||
CUDA_CHECK(cudaMallocHost((void **) &ptr, size));
|
||||
return ptr;
|
||||
}
|
||||
|
||||
void ggml_cuda_host_free(void * ptr) {
|
||||
CUDA_CHECK(cudaFreeHost(ptr));
|
||||
}
|
54
ggml-cuda.h
54
ggml-cuda.h
@ -1,54 +0,0 @@
|
||||
#include <cublas_v2.h>
|
||||
#include <cuda_runtime.h>
|
||||
#include "ggml.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define CUDA_CHECK(err) \
|
||||
do { \
|
||||
cudaError_t err_ = (err); \
|
||||
if (err_ != cudaSuccess) { \
|
||||
fprintf(stderr, "CUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \
|
||||
cudaGetErrorString(err_)); \
|
||||
exit(1); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#define CUBLAS_CHECK(err) \
|
||||
do { \
|
||||
cublasStatus_t err_ = (err); \
|
||||
if (err_ != CUBLAS_STATUS_SUCCESS) { \
|
||||
fprintf(stderr, "cuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__); \
|
||||
exit(1); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
extern cublasHandle_t g_cublasH;
|
||||
extern cudaStream_t g_cudaStream;
|
||||
extern cudaStream_t g_cudaStream2;
|
||||
extern cudaEvent_t g_cudaEvent;
|
||||
|
||||
void ggml_init_cublas(void);
|
||||
void * ggml_cuda_host_malloc(size_t size);
|
||||
void ggml_cuda_host_free(void * ptr);
|
||||
|
||||
void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size);
|
||||
void ggml_cuda_pool_free(void * ptr, size_t size);
|
||||
|
||||
void dequantize_row_q4_0_cuda(const void * vx, float * y, int k, cudaStream_t stream);
|
||||
void dequantize_row_q4_1_cuda(const void * vx, float * y, int k, cudaStream_t stream);
|
||||
void dequantize_row_q4_2_cuda(const void * vx, float * y, int k, cudaStream_t stream);
|
||||
void dequantize_row_q5_0_cuda(const void * vx, float * y, int k, cudaStream_t stream);
|
||||
void dequantize_row_q5_1_cuda(const void * vx, float * y, int k, cudaStream_t stream);
|
||||
void dequantize_row_q8_0_cuda(const void * vx, float * y, int k, cudaStream_t stream);
|
||||
|
||||
cudaError_t ggml_cuda_h2d_tensor_2d(void * dst, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cudaStream_t stream);
|
||||
|
||||
typedef void (*dequantize_row_q_cuda_t)(const void * x, float * y, int k, cudaStream_t stream);
|
||||
dequantize_row_q_cuda_t ggml_get_dequantize_row_q_cuda(enum ggml_type type);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
@ -23,7 +23,6 @@ import json
|
||||
import code
|
||||
import torch
|
||||
import numpy as np
|
||||
from pathlib import Path
|
||||
|
||||
from transformers import WhisperForConditionalGeneration
|
||||
|
||||
@ -76,13 +75,16 @@ if len(sys.argv) < 4:
|
||||
print("Usage: convert-h5-to-ggml.py dir_model path-to-whisper-repo dir-output [use-f32]\n")
|
||||
sys.exit(1)
|
||||
|
||||
dir_model = Path(sys.argv[1])
|
||||
dir_whisper = Path(sys.argv[2])
|
||||
dir_out = Path(sys.argv[3])
|
||||
dir_model = sys.argv[1]
|
||||
dir_whisper = sys.argv[2]
|
||||
dir_out = sys.argv[3]
|
||||
|
||||
encoder = json.load((dir_model / "vocab.json").open("r", encoding="utf8"))
|
||||
encoder_added = json.load((dir_model / "added_tokens.json").open( "r", encoding="utf8"))
|
||||
hparams = json.load((dir_model / "config.json").open("r", encoding="utf8") )
|
||||
with open(dir_model + "/vocab.json", "r", encoding="utf8") as f:
|
||||
encoder = json.load(f)
|
||||
with open(dir_model + "/added_tokens.json", "r", encoding="utf8") as f:
|
||||
encoder_added = json.load(f)
|
||||
with open(dir_model + "/config.json", "r", encoding="utf8") as f:
|
||||
hparams = json.load(f)
|
||||
|
||||
model = WhisperForConditionalGeneration.from_pretrained(dir_model)
|
||||
|
||||
@ -94,15 +96,16 @@ with np.load(os.path.join(dir_whisper, "whisper/assets", "mel_filters.npz")) as
|
||||
|
||||
dir_tokenizer = dir_model
|
||||
|
||||
fname_out = dir_out / "ggml-model.bin"
|
||||
fname_out = dir_out + "/ggml-model.bin"
|
||||
|
||||
tokens = json.load(open(dir_tokenizer / "vocab.json", "r", encoding="utf8"))
|
||||
with open(dir_tokenizer + "/vocab.json", "r", encoding="utf8") as f:
|
||||
tokens = json.load(f)
|
||||
|
||||
# use 16-bit or 32-bit floats
|
||||
use_f16 = True
|
||||
if len(sys.argv) > 4:
|
||||
use_f16 = False
|
||||
fname_out = dir_out / "ggml-model-f32.bin"
|
||||
fname_out = dir_out + "/ggml-model-f32.bin"
|
||||
|
||||
fout = open(fname_out, "wb")
|
||||
|
||||
@ -168,9 +171,10 @@ for name in list_vars.keys():
|
||||
data = data.astype(np.float16)
|
||||
|
||||
# reshape conv bias from [n] to [n, 1]
|
||||
if name in ["encoder.conv1.bias", "encoder.conv2.bias"]:
|
||||
if name == "encoder.conv1.bias" or \
|
||||
name == "encoder.conv2.bias":
|
||||
data = data.reshape(data.shape[0], 1)
|
||||
print(" Reshaped variable: " , name , " to shape: ", data.shape)
|
||||
print(" Reshaped variable: " + name + " to shape: ", data.shape)
|
||||
|
||||
n_dims = len(data.shape)
|
||||
print(name, n_dims, data.shape)
|
||||
@ -178,7 +182,7 @@ for name in list_vars.keys():
|
||||
# looks like the whisper models are in f16 by default
|
||||
# so we need to convert the small tensors to f32 until we fully support f16 in ggml
|
||||
# ftype == 0 -> float32, ftype == 1 -> float16
|
||||
ftype = 1
|
||||
ftype = 1;
|
||||
if use_f16:
|
||||
if n_dims < 2 or \
|
||||
name == "encoder.conv1.bias" or \
|
||||
@ -193,16 +197,16 @@ for name in list_vars.keys():
|
||||
ftype = 0
|
||||
|
||||
# header
|
||||
str_ = name.encode('utf-8')
|
||||
fout.write(struct.pack("iii", n_dims, len(str_), ftype))
|
||||
str = name.encode('utf-8')
|
||||
fout.write(struct.pack("iii", n_dims, len(str), ftype))
|
||||
for i in range(n_dims):
|
||||
fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
|
||||
fout.write(str_)
|
||||
fout.write(str);
|
||||
|
||||
# data
|
||||
data.tofile(fout)
|
||||
|
||||
fout.close()
|
||||
|
||||
print("Done. Output file: " , fname_out)
|
||||
print("Done. Output file: " + fname_out)
|
||||
print("")
|
||||
|
@ -39,8 +39,7 @@ import json
|
||||
import code
|
||||
import torch
|
||||
import numpy as np
|
||||
import base64
|
||||
from pathlib import Path
|
||||
|
||||
#from transformers import GPTJForCausalLM
|
||||
#from transformers import GPT2TokenizerFast
|
||||
|
||||
@ -194,17 +193,17 @@ if len(sys.argv) < 4:
|
||||
print("Usage: convert-pt-to-ggml.py model.pt path-to-whisper-repo dir-output [use-f32]\n")
|
||||
sys.exit(1)
|
||||
|
||||
fname_inp = Path(sys.argv[1])
|
||||
dir_whisper = Path(sys.argv[2])
|
||||
dir_out = Path(sys.argv[3])
|
||||
fname_inp = sys.argv[1]
|
||||
dir_whisper = sys.argv[2]
|
||||
dir_out = sys.argv[3]
|
||||
|
||||
# try to load PyTorch binary data
|
||||
try:
|
||||
model_bytes = open(fname_inp, "rb").read()
|
||||
with io.BytesIO(model_bytes) as fp:
|
||||
checkpoint = torch.load(fp, map_location="cpu")
|
||||
except Exception:
|
||||
print("Error: failed to load PyTorch model file:" , fname_inp)
|
||||
except:
|
||||
print("Error: failed to load PyTorch model file: %s" % fname_inp)
|
||||
sys.exit(1)
|
||||
|
||||
hparams = checkpoint["dims"]
|
||||
@ -218,29 +217,33 @@ list_vars = checkpoint["model_state_dict"]
|
||||
|
||||
# load mel filters
|
||||
n_mels = hparams["n_mels"]
|
||||
with np.load(dir_whisper / "whisper" / "assets" / "mel_filters.npz") as f:
|
||||
with np.load(os.path.join(dir_whisper, "whisper/assets", "mel_filters.npz")) as f:
|
||||
filters = torch.from_numpy(f[f"mel_{n_mels}"])
|
||||
#print (filters)
|
||||
|
||||
#code.interact(local=locals())
|
||||
|
||||
multilingual = hparams["n_vocab"] == 51865
|
||||
tokenizer = dir_whisper / "whisper" / "assets" / (multilingual and "multilingual.tiktoken" or "gpt2.tiktoken")
|
||||
dir_tokenizer = os.path.join(dir_whisper, "whisper/assets", multilingual and "multilingual" or "gpt2")
|
||||
|
||||
#tokenizer = build_tokenizer(dir_whisper, multilingual and "multilingual" or "gpt2")
|
||||
#print(tokenizer)
|
||||
#print(tokenizer.name_or_path)
|
||||
#print(len(tokenizer.additional_special_tokens))
|
||||
|
||||
# output in the same directory as the model
|
||||
fname_out = dir_out / "ggml-model.bin"
|
||||
fname_out = dir_out + "/ggml-model.bin"
|
||||
|
||||
with open(tokenizer, "rb") as f:
|
||||
contents = f.read()
|
||||
tokens = {base64.b64decode(token): int(rank) for token, rank in (line.split() for line in contents.splitlines() if line)}
|
||||
with open(dir_tokenizer + "/vocab.json", "r", encoding="utf8") as f:
|
||||
tokens = json.load(f)
|
||||
|
||||
# use 16-bit or 32-bit floats
|
||||
use_f16 = True
|
||||
if len(sys.argv) > 4:
|
||||
use_f16 = False
|
||||
fname_out = dir_out / "ggml-model-f32.bin"
|
||||
fname_out = dir_out + "/ggml-model-f32.bin"
|
||||
|
||||
fout = fname_out.open("wb")
|
||||
fout = open(fname_out, "wb")
|
||||
|
||||
fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
|
||||
fout.write(struct.pack("i", hparams["n_vocab"]))
|
||||
@ -268,24 +271,26 @@ byte_decoder = {v:k for k, v in byte_encoder.items()}
|
||||
fout.write(struct.pack("i", len(tokens)))
|
||||
|
||||
for key in tokens:
|
||||
fout.write(struct.pack("i", len(key)))
|
||||
fout.write(key)
|
||||
text = bytearray([byte_decoder[c] for c in key])
|
||||
fout.write(struct.pack("i", len(text)))
|
||||
fout.write(text)
|
||||
|
||||
for name in list_vars.keys():
|
||||
data = list_vars[name].squeeze().numpy()
|
||||
print("Processing variable: " , name , " with shape: ", data.shape)
|
||||
print("Processing variable: " + name + " with shape: ", data.shape)
|
||||
|
||||
# reshape conv bias from [n] to [n, 1]
|
||||
if name in ["encoder.conv1.bias", "encoder.conv2.bias"]:
|
||||
if name == "encoder.conv1.bias" or \
|
||||
name == "encoder.conv2.bias":
|
||||
data = data.reshape(data.shape[0], 1)
|
||||
print(f" Reshaped variable: {name} to shape: ", data.shape)
|
||||
print(" Reshaped variable: " + name + " to shape: ", data.shape)
|
||||
|
||||
n_dims = len(data.shape)
|
||||
n_dims = len(data.shape);
|
||||
|
||||
# looks like the whisper models are in f16 by default
|
||||
# so we need to convert the small tensors to f32 until we fully support f16 in ggml
|
||||
# ftype == 0 -> float32, ftype == 1 -> float16
|
||||
ftype = 1
|
||||
ftype = 1;
|
||||
if use_f16:
|
||||
if n_dims < 2 or \
|
||||
name == "encoder.conv1.bias" or \
|
||||
@ -306,16 +311,16 @@ for name in list_vars.keys():
|
||||
# data = data.transpose()
|
||||
|
||||
# header
|
||||
str_ = name.encode('utf-8')
|
||||
fout.write(struct.pack("iii", n_dims, len(str_), ftype))
|
||||
str = name.encode('utf-8')
|
||||
fout.write(struct.pack("iii", n_dims, len(str), ftype))
|
||||
for i in range(n_dims):
|
||||
fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
|
||||
fout.write(str_)
|
||||
fout.write(str);
|
||||
|
||||
# data
|
||||
data.tofile(fout)
|
||||
|
||||
fout.close()
|
||||
|
||||
print("Done. Output file: " , fname_out)
|
||||
print("Done. Output file: " + fname_out)
|
||||
print("")
|
||||
|
@ -1,331 +0,0 @@
|
||||
import argparse
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import coremltools as ct
|
||||
|
||||
from torch import Tensor
|
||||
from torch import nn
|
||||
from typing import Dict
|
||||
from typing import Optional
|
||||
from ane_transformers.reference.layer_norm import LayerNormANE as LayerNormANEBase
|
||||
from coremltools.models.neural_network.quantization_utils import quantize_weights
|
||||
from whisper.model import Whisper, AudioEncoder, TextDecoder, ResidualAttentionBlock, MultiHeadAttention, ModelDimensions
|
||||
from whisper import load_model
|
||||
|
||||
# Use for changing dim of input in encoder and decoder embeddings
|
||||
def linear_to_conv2d_map(state_dict, prefix, local_metadata, strict,
|
||||
missing_keys, unexpected_keys, error_msgs):
|
||||
"""
|
||||
Unsqueeze twice to map nn.Linear weights to nn.Conv2d weights
|
||||
"""
|
||||
for k in state_dict:
|
||||
is_attention = all(substr in k for substr in ['attn', '.weight'])
|
||||
is_mlp = any(k.endswith(s) for s in ['mlp.0.weight', 'mlp.2.weight'])
|
||||
|
||||
if (is_attention or is_mlp) and len(state_dict[k].shape) == 2:
|
||||
state_dict[k] = state_dict[k][:, :, None, None]
|
||||
|
||||
|
||||
def correct_for_bias_scale_order_inversion(state_dict, prefix, local_metadata,
|
||||
strict, missing_keys,
|
||||
unexpected_keys, error_msgs):
|
||||
state_dict[prefix + 'bias'] = state_dict[prefix + 'bias'] / state_dict[prefix + 'weight']
|
||||
return state_dict
|
||||
|
||||
class LayerNormANE(LayerNormANEBase):
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self._register_load_state_dict_pre_hook(
|
||||
correct_for_bias_scale_order_inversion)
|
||||
|
||||
class MultiHeadAttentionANE(MultiHeadAttention):
|
||||
def __init__(self, n_state: int, n_head: int):
|
||||
super().__init__(n_state, n_head)
|
||||
self.query = nn.Conv2d(n_state, n_state, kernel_size=1)
|
||||
self.key = nn.Conv2d(n_state, n_state, kernel_size=1, bias=False)
|
||||
self.value = nn.Conv2d(n_state, n_state, kernel_size=1)
|
||||
self.out = nn.Conv2d(n_state, n_state, kernel_size=1)
|
||||
|
||||
def forward(self,
|
||||
x: Tensor,
|
||||
xa: Optional[Tensor] = None,
|
||||
mask: Optional[Tensor] = None,
|
||||
kv_cache: Optional[dict] = None):
|
||||
|
||||
q = self.query(x)
|
||||
|
||||
if kv_cache is None or xa is None or self.key not in kv_cache:
|
||||
# hooks, if installed (i.e. kv_cache is not None), will prepend the cached kv tensors;
|
||||
# otherwise, perform key/value projections for self- or cross-attention as usual.
|
||||
k = self.key(x if xa is None else xa)
|
||||
v = self.value(x if xa is None else xa)
|
||||
|
||||
else:
|
||||
# for cross-attention, calculate keys and values once and reuse in subsequent calls.
|
||||
k = kv_cache[self.key]
|
||||
v = kv_cache[self.value]
|
||||
|
||||
wv, qk = self.qkv_attention_ane(q, k, v, mask)
|
||||
|
||||
return self.out(wv), qk
|
||||
|
||||
def qkv_attention_ane(self, q: Tensor, k: Tensor, v: Tensor, mask: Optional[Tensor] = None):
|
||||
|
||||
_, dim, _, seqlen = q.size()
|
||||
|
||||
dim_per_head = dim // self.n_head
|
||||
|
||||
scale = float(dim_per_head)**-0.5
|
||||
|
||||
q = q * scale
|
||||
|
||||
mh_q = q.split(dim_per_head, dim=1)
|
||||
mh_k = k.transpose(1,3).split(dim_per_head, dim=3)
|
||||
mh_v = v.split(dim_per_head, dim=1)
|
||||
|
||||
mh_qk = [
|
||||
torch.einsum('bchq,bkhc->bkhq', [qi, ki])
|
||||
for qi, ki in zip(mh_q, mh_k)
|
||||
] # (batch_size, max_seq_length, 1, max_seq_length) * n_heads
|
||||
|
||||
if mask is not None:
|
||||
for head_idx in range(self.n_head):
|
||||
mh_qk[head_idx] = mh_qk[head_idx] + mask[:, :seqlen, :, :seqlen]
|
||||
|
||||
attn_weights = [aw.softmax(dim=1) for aw in mh_qk] # (batch_size, max_seq_length, 1, max_seq_length) * n_heads
|
||||
attn = [torch.einsum('bkhq,bchk->bchq', wi, vi) for wi, vi in zip(attn_weights, mh_v)] # (batch_size, dim_per_head, 1, max_seq_length) * n_heads
|
||||
attn = torch.cat(attn, dim=1) # (batch_size, dim, 1, max_seq_length)
|
||||
|
||||
return attn, torch.cat(mh_qk, dim=1).float().detach()
|
||||
|
||||
|
||||
class ResidualAttentionBlockANE(ResidualAttentionBlock):
|
||||
def __init__(self, n_state: int, n_head: int, cross_attention: bool = False):
|
||||
super().__init__(n_state, n_head, cross_attention)
|
||||
self.attn = MultiHeadAttentionANE(n_state, n_head)
|
||||
self.attn_ln = LayerNormANE(n_state)
|
||||
self.cross_attn = MultiHeadAttentionANE(n_state, n_head) if cross_attention else None
|
||||
self.cross_attn_ln = LayerNormANE(n_state) if cross_attention else None
|
||||
|
||||
n_mlp = n_state * 4
|
||||
self.mlp = nn.Sequential(
|
||||
nn.Conv2d(n_state, n_mlp, kernel_size=1),
|
||||
nn.GELU(),
|
||||
nn.Conv2d(n_mlp, n_state, kernel_size=1)
|
||||
)
|
||||
self.mlp_ln = LayerNormANE(n_state)
|
||||
|
||||
|
||||
class AudioEncoderANE(AudioEncoder):
|
||||
def __init__(self, n_mels: int, n_ctx: int, n_state: int, n_head: int, n_layer: int):
|
||||
super().__init__(n_mels, n_ctx, n_state, n_head, n_layer)
|
||||
|
||||
self.blocks = nn.ModuleList(
|
||||
[ResidualAttentionBlockANE(n_state, n_head) for _ in range(n_layer)]
|
||||
)
|
||||
self.ln_post = LayerNormANE(n_state)
|
||||
|
||||
def forward(self, x: Tensor):
|
||||
"""
|
||||
x : torch.Tensor, shape = (batch_size, n_mels, n_ctx)
|
||||
the mel spectrogram of the audio
|
||||
"""
|
||||
x = F.gelu(self.conv1(x))
|
||||
x = F.gelu(self.conv2(x))
|
||||
|
||||
assert x.shape[1:] == self.positional_embedding.shape[::-1], "incorrect audio shape"
|
||||
|
||||
# Add positional embedding and add dummy dim for ANE
|
||||
x = (x + self.positional_embedding.transpose(0,1)).to(x.dtype).unsqueeze(2)
|
||||
|
||||
for block in self.blocks:
|
||||
x = block(x)
|
||||
|
||||
x = self.ln_post(x)
|
||||
|
||||
# """
|
||||
# TODO:
|
||||
# I think we need to transpose the result here to make it fit whisper.cpp memory order.
|
||||
# However, even doing this, the results are still wrong. Kind of less wrong compared to
|
||||
# not transposing, but still wrong.
|
||||
|
||||
# Also, I don't know why the original OpenAI implementation does not need to transpose
|
||||
|
||||
# transpose to (batch_size, n_ctx, n_state)
|
||||
# x : torch.Tensor, shape = (batch_size, n_state, 1, n_ctx)
|
||||
|
||||
# """
|
||||
# x = x.transpose(1,3)
|
||||
|
||||
return x
|
||||
|
||||
class TextDecoderANE(TextDecoder):
|
||||
|
||||
def __init__(self, n_vocab: int, n_ctx: int, n_state: int, n_head: int, n_layer: int):
|
||||
super().__init__(n_vocab, n_ctx, n_state, n_head, n_layer)
|
||||
|
||||
self.blocks= nn.ModuleList(
|
||||
[ResidualAttentionBlockANE(n_state, n_head, cross_attention=True) for _ in range(n_layer)]
|
||||
)
|
||||
self.ln= LayerNormANE(n_state)
|
||||
|
||||
def forward(self, x: Tensor, xa: Tensor, kv_cache: Optional[dict] = None):
|
||||
"""
|
||||
x : torch.LongTensor, shape = (batch_size, <= n_ctx)
|
||||
the text tokens
|
||||
xa : torch.Tensor, shape = (batch_size, n_mels, n_audio_ctx)
|
||||
the encoded audio features to be attended on
|
||||
"""
|
||||
offset = next(iter(kv_cache.values())).shape[3] if kv_cache else 0
|
||||
x = self.token_embedding(x) + self.positional_embedding[offset : offset + x.shape[-1]]
|
||||
x = x.to(xa.dtype)
|
||||
|
||||
# Reformat for ANE
|
||||
mask = self.mask[None, None, :, :].permute(0,3,1,2)
|
||||
x = x.transpose(1,2).unsqueeze(2)
|
||||
|
||||
for block in self.blocks:
|
||||
x = block(x, xa, mask=mask, kv_cache=kv_cache)
|
||||
|
||||
x = self.ln(x)
|
||||
|
||||
# Reformat back from ANE
|
||||
x = x.permute(0,2,3,1).squeeze(0)
|
||||
|
||||
# ANE can only load tensors with dim size of at most 16,384 - whisper uses 51,864 (en) or 51,865 (multi-lang) tokens so we need to compute in chunks
|
||||
if self.token_embedding.weight.shape[0] == 51865:
|
||||
# split in 11 chunks - 4715 each
|
||||
splits = self.token_embedding.weight.split(self.token_embedding.weight.shape[0]//11, dim=0)
|
||||
logits = torch.cat([torch.einsum('bid,jd->bij', x, split) for split in splits]).view(*x.shape[:2], -1)
|
||||
else:
|
||||
# split in 12 chunks - 4322 each
|
||||
assert(self.token_embedding.weight.shape[0] == 51864)
|
||||
splits = self.token_embedding.weight.split(self.token_embedding.weight.shape[0]//12, dim=0)
|
||||
logits = torch.cat([torch.einsum('bid,jd->bij', x, split) for split in splits]).view(*x.shape[:2], -1)
|
||||
|
||||
return logits
|
||||
|
||||
class WhisperANE(Whisper):
|
||||
def __init__(self, dims: ModelDimensions):
|
||||
super().__init__(dims)
|
||||
|
||||
self.encoder = AudioEncoderANE(
|
||||
self.dims.n_mels,
|
||||
self.dims.n_audio_ctx,
|
||||
self.dims.n_audio_state,
|
||||
self.dims.n_audio_head,
|
||||
self.dims.n_audio_layer,
|
||||
)
|
||||
self.decoder = TextDecoderANE(
|
||||
self.dims.n_vocab,
|
||||
self.dims.n_text_ctx,
|
||||
self.dims.n_text_state,
|
||||
self.dims.n_text_head,
|
||||
self.dims.n_text_layer,
|
||||
)
|
||||
|
||||
self._register_load_state_dict_pre_hook(linear_to_conv2d_map)
|
||||
|
||||
def forward(self, mel: torch.Tensor, tokens: torch.Tensor) -> Dict[str, torch.Tensor]:
|
||||
return self.decoder(tokens, self.encoder(mel))
|
||||
|
||||
def install_kv_cache_hooks(self, cache: Optional[dict] = None):
|
||||
cache = {**cache} if cache is not None else {}
|
||||
hooks = []
|
||||
|
||||
def save_to_cache(module, _, output):
|
||||
if module not in cache or output.shape[3] > self.decoder.positional_embedding.shape[0]:
|
||||
cache[module] = output # save as-is, for the first token or cross attention
|
||||
else:
|
||||
cache[module] = torch.cat([cache[module], output], dim=3).detach()
|
||||
return cache[module]
|
||||
|
||||
def install_hooks(layer: nn.Module):
|
||||
if isinstance(layer, MultiHeadAttentionANE):
|
||||
hooks.append(layer.key.register_forward_hook(save_to_cache))
|
||||
hooks.append(layer.value.register_forward_hook(save_to_cache))
|
||||
|
||||
self.decoder.apply(install_hooks)
|
||||
return cache, hooks
|
||||
|
||||
def convert_encoder(hparams, model, quantize=False):
|
||||
model.eval()
|
||||
|
||||
input_shape = (1, 80, 3000)
|
||||
input_data = torch.randn(input_shape)
|
||||
traced_model = torch.jit.trace(model, input_data)
|
||||
|
||||
model = ct.convert(
|
||||
traced_model,
|
||||
convert_to=None if quantize else "mlprogram", # convert will fail if weights are quantized, not sure why
|
||||
inputs=[ct.TensorType(name="logmel_data", shape=input_shape)],
|
||||
outputs=[ct.TensorType(name="output")],
|
||||
compute_units=ct.ComputeUnit.ALL
|
||||
)
|
||||
|
||||
if quantize:
|
||||
model = quantize_weights(model, nbits=16)
|
||||
|
||||
return model
|
||||
|
||||
def convert_decoder(hparams, model, quantize=False):
|
||||
model.eval()
|
||||
|
||||
tokens_shape = (1, 1)
|
||||
audio_shape = (1, hparams.n_audio_state, 1, 1500)
|
||||
|
||||
audio_data = torch.randn(audio_shape)
|
||||
token_data = torch.randint(50257, tokens_shape).long()
|
||||
traced_model = torch.jit.trace(model, (token_data, audio_data))
|
||||
|
||||
model = ct.convert(
|
||||
traced_model,
|
||||
convert_to=None if quantize else "mlprogram", # convert will fail if weights are quantized, not sure why
|
||||
inputs=[
|
||||
ct.TensorType(name="token_data", shape=tokens_shape, dtype=int),
|
||||
ct.TensorType(name="audio_data", shape=audio_shape)
|
||||
]
|
||||
)
|
||||
|
||||
if quantize:
|
||||
model = quantize_weights(model, nbits=16)
|
||||
|
||||
return model
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--model", type=str, help="model to convert (e.g. tiny, tiny.en, base, base.en, small, small.en, medium, medium.en, large)", required=True)
|
||||
parser.add_argument("--encoder-only", type=bool, help="only convert encoder", default=False)
|
||||
parser.add_argument("--quantize", type=bool, help="quantize weights to F16", default=False)
|
||||
parser.add_argument("--optimize-ane", type=bool, help="optimize for ANE execution (currently broken)", default=False)
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.model not in ["tiny", "tiny.en", "base", "base.en", "small", "small.en", "medium", "medium.en", "large"]:
|
||||
raise ValueError("Invalid model name")
|
||||
|
||||
whisper = load_model(args.model).cpu()
|
||||
hparams = whisper.dims
|
||||
print(hparams)
|
||||
|
||||
if args.optimize_ane:
|
||||
whisperANE = WhisperANE(hparams).eval()
|
||||
whisperANE.load_state_dict(whisper.state_dict())
|
||||
|
||||
encoder = whisperANE.encoder
|
||||
decoder = whisperANE.decoder
|
||||
else:
|
||||
encoder = whisper.encoder
|
||||
decoder = whisper.decoder
|
||||
|
||||
# Convert encoder
|
||||
encoder = convert_encoder(hparams, encoder, quantize=args.quantize)
|
||||
encoder.save(f"models/coreml-encoder-{args.model}.mlpackage")
|
||||
|
||||
if args.encoder_only is False:
|
||||
# Convert decoder
|
||||
decoder = convert_decoder(hparams, decoder, quantize=args.quantize)
|
||||
decoder.save(f"models/coreml-decoder-{args.model}.mlpackage")
|
||||
|
||||
print("done converting")
|
@ -12,7 +12,7 @@ pfx="resolve/main/ggml"
|
||||
# get the path of this script
|
||||
function get_script_path() {
|
||||
if [ -x "$(command -v realpath)" ]; then
|
||||
echo "$(dirname "$(realpath "$0")")"
|
||||
echo "$(dirname $(realpath $0))"
|
||||
else
|
||||
local ret="$(cd -- "$(dirname "$0")" >/dev/null 2>&1 ; pwd -P)"
|
||||
echo "$ret"
|
||||
|
@ -1,29 +0,0 @@
|
||||
#!/bin/bash
|
||||
#
|
||||
# This generates:
|
||||
# - coreml/whisper-encoder-impl.h and coreml/whisper-encoder-impl.m
|
||||
# - coreml/whisper-decoder-impl.h and coreml/whisper-decoder-impl.m
|
||||
#
|
||||
|
||||
wd=$(dirname "$0")
|
||||
cd "$wd/../"
|
||||
|
||||
python3 models/convert-whisper-to-coreml.py --model tiny.en
|
||||
|
||||
mv -v models/coreml-encoder-tiny.en.mlpackage models/whisper-encoder-impl.mlpackage
|
||||
xcrun coremlc generate models/whisper-encoder-impl.mlpackage coreml/
|
||||
mv coreml/whisper_encoder_impl.h coreml/whisper-encoder-impl.h
|
||||
mv coreml/whisper_encoder_impl.m coreml/whisper-encoder-impl.m
|
||||
sed -i '' 's/whisper_encoder_impl\.h/whisper-encoder-impl.h/g' coreml/whisper-encoder-impl.m
|
||||
sed -i '' 's/whisper_encoder_impl\.m/whisper-encoder-impl.m/g' coreml/whisper-encoder-impl.m
|
||||
sed -i '' 's/whisper_encoder_impl\.h/whisper-encoder-impl.h/g' coreml/whisper-encoder-impl.h
|
||||
|
||||
mv -v models/coreml-decoder-tiny.en.mlpackage models/whisper-decoder-impl.mlpackage
|
||||
xcrun coremlc generate models/whisper-decoder-impl.mlpackage coreml/
|
||||
mv coreml/whisper_decoder_impl.h coreml/whisper-decoder-impl.h
|
||||
mv coreml/whisper_decoder_impl.m coreml/whisper-decoder-impl.m
|
||||
sed -i '' 's/whisper_decoder_impl\.h/whisper-decoder-impl.h/g' coreml/whisper-decoder-impl.m
|
||||
sed -i '' 's/whisper_decoder_impl\.m/whisper-decoder-impl.m/g' coreml/whisper-decoder-impl.m
|
||||
sed -i '' 's/whisper_decoder_impl\.h/whisper-decoder-impl.h/g' coreml/whisper-decoder-impl.h
|
||||
|
||||
rm -rfv models/whisper-encoder-impl.mlpackage models/whisper-decoder-impl.mlpackage
|
@ -1,25 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Usage: ./generate-coreml-model.sh <model-name>
|
||||
if [ $# -eq 0 ]
|
||||
then
|
||||
echo "No model name supplied"
|
||||
echo "Usage: ./generate-coreml-model.sh <model-name>"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
mname="$1"
|
||||
|
||||
wd=$(dirname "$0")
|
||||
cd "$wd/../"
|
||||
|
||||
python3 models/convert-whisper-to-coreml.py --model $mname --encoder-only True
|
||||
|
||||
xcrun coremlc compile models/coreml-encoder-${mname}.mlpackage models/
|
||||
rm -rf models/ggml-${mname}-encoder.mlmodelc
|
||||
mv -v models/coreml-encoder-${mname}.mlmodelc models/ggml-${mname}-encoder.mlmodelc
|
||||
|
||||
# TODO: decoder (sometime in the future maybe)
|
||||
#xcrun coremlc compile models/whisper-decoder-${mname}.mlpackage models/
|
||||
#rm -rf models/ggml-${mname}-decoder.mlmodelc
|
||||
#mv -v models/coreml_decoder_${mname}.mlmodelc models/ggml-${mname}-decoder.mlmodelc
|
@ -13,7 +13,7 @@
|
||||
#
|
||||
# Usage:
|
||||
#
|
||||
# ./tests/run-tests.sh <model_name> [threads]
|
||||
# ./tests/run-tests.sh <model_name>
|
||||
#
|
||||
|
||||
cd `dirname $0`
|
||||
@ -32,7 +32,7 @@ function list_models {
|
||||
}
|
||||
|
||||
if [ $# -eq 0 ]; then
|
||||
printf "Usage: $0 [model] [threads]\n\n"
|
||||
printf "Usage: $0 [model]\n\n"
|
||||
printf "No model specified. Aborting\n"
|
||||
list_models
|
||||
exit 1
|
||||
@ -41,11 +41,6 @@ fi
|
||||
model=$1
|
||||
main="../main"
|
||||
|
||||
threads=""
|
||||
if [ $# -eq 2 ]; then
|
||||
threads="-t $2"
|
||||
fi
|
||||
|
||||
if [ ! -f ../models/ggml-$model.bin ]; then
|
||||
printf "Model $model not found. Aborting\n"
|
||||
list_models
|
||||
@ -110,7 +105,7 @@ function run_lang() {
|
||||
fi
|
||||
fi
|
||||
|
||||
$main -m ../models/ggml-$model.bin $threads -f $fname_dst -l $lang -otxt 2> /dev/null
|
||||
$main -m ../models/ggml-$model.bin -f $fname_dst -l $lang -otxt 2> /dev/null
|
||||
|
||||
git diff --no-index --word-diff=color --word-diff-regex=. $lang-$i-ref.txt $fname_dst.txt
|
||||
|
||||
|
1475
whisper.cpp
1475
whisper.cpp
File diff suppressed because it is too large
Load Diff
14
whisper.h
14
whisper.h
@ -226,7 +226,7 @@ extern "C" {
|
||||
// Make sure to call whisper_pcm_to_mel() or whisper_set_mel() first
|
||||
// Returns the top language id or negative on failure
|
||||
// If not null, fills the lang_probs array with the probabilities of all languages
|
||||
// The array must be whisper_lang_max_id() + 1 in size
|
||||
// The array must be whispe_lang_max_id() + 1 in size
|
||||
// ref: https://github.com/openai/whisper/blob/main/whisper/decoding.py#L18-L69
|
||||
WHISPER_API int whisper_lang_auto_detect(
|
||||
struct whisper_context * ctx,
|
||||
@ -258,7 +258,7 @@ extern "C" {
|
||||
WHISPER_API int whisper_model_n_text_head (struct whisper_context * ctx);
|
||||
WHISPER_API int whisper_model_n_text_layer (struct whisper_context * ctx);
|
||||
WHISPER_API int whisper_model_n_mels (struct whisper_context * ctx);
|
||||
WHISPER_API int whisper_model_ftype (struct whisper_context * ctx);
|
||||
WHISPER_API int whisper_model_f16 (struct whisper_context * ctx);
|
||||
WHISPER_API int whisper_model_type (struct whisper_context * ctx);
|
||||
|
||||
// Token logits obtained from the last call to whisper_decode()
|
||||
@ -297,7 +297,7 @@ extern "C" {
|
||||
|
||||
// Available sampling strategies
|
||||
enum whisper_sampling_strategy {
|
||||
WHISPER_SAMPLING_GREEDY, // similar to OpenAI's GreedyDecoder
|
||||
WHISPER_SAMPLING_GREEDY, // similar to OpenAI's GreefyDecoder
|
||||
WHISPER_SAMPLING_BEAM_SEARCH, // similar to OpenAI's BeamSearchDecoder
|
||||
};
|
||||
|
||||
@ -306,9 +306,6 @@ extern "C" {
|
||||
// Use the whisper_full_...() functions to obtain the text segments
|
||||
typedef void (*whisper_new_segment_callback)(struct whisper_context * ctx, struct whisper_state * state, int n_new, void * user_data);
|
||||
|
||||
// Progress callback
|
||||
typedef void (*whisper_progress_callback)(struct whisper_context * ctx, struct whisper_state * state, int progress, void * user_data);
|
||||
|
||||
// Encoder begin callback
|
||||
// If not NULL, called before the encoder starts
|
||||
// If it returns false, the computation is aborted
|
||||
@ -359,7 +356,6 @@ extern "C" {
|
||||
|
||||
// tokens to provide to the whisper decoder as initial prompt
|
||||
// these are prepended to any existing text context from a previous call
|
||||
const char * initial_prompt;
|
||||
const whisper_token * prompt_tokens;
|
||||
int prompt_n_tokens;
|
||||
|
||||
@ -395,10 +391,6 @@ extern "C" {
|
||||
whisper_new_segment_callback new_segment_callback;
|
||||
void * new_segment_callback_user_data;
|
||||
|
||||
// called on each progress update
|
||||
whisper_progress_callback progress_callback;
|
||||
void * progress_callback_user_data;
|
||||
|
||||
// called each time before the encoder starts
|
||||
whisper_encoder_begin_callback encoder_begin_callback;
|
||||
void * encoder_begin_callback_user_data;
|
||||
|
Reference in New Issue
Block a user