Compare commits

..

209 Commits

Author SHA1 Message Date
05ce7476ae ggml-ci: update input env variables to GG_BUILD_ 2025-03-14 03:14:44 -05:00
f11de0e73c ggml-ci: add run.sh (#2877) 2025-03-14 09:29:55 +02:00
d5cc27ee4d examples : add dl to the list of libraries linked (#2875)
* examples : add dl to the list of libraries linked

This commit adds the dynamic linker library to the list of libraries
linked by the examples.

The motivation for this change is that when building the examples on
ubuntu 20.04, which uses GCC 9.4.0, the dynamic linker requires
explicit linking or the following error is generated:
```console
[ 64%] Linking CXX executable ../../bin/whisper-cli
cd /app/whisper.cpp/build/examples/cli && /usr/bin/cmake -E cmake_link_script CMakeFiles/whisper-cli.dir/link.txt --verbose=1
/usr/bin/c++  -O3 -DNDEBUG   CMakeFiles/whisper-cli.dir/cli.cpp.o  -o ../../bin/whisper-cli  -Wl,-rpath,/app/whisper.cpp/build/src:/app/whisper.cpp/build/ggml/src: ../libcommon.a ../../src/libwhisper.so.1.7.4 -pthread ../../ggml/src/libggml.so ../../ggml/src/libggml-cpu.so ../../ggml/src/libggml-base.so
/usr/bin/ld: ../libcommon.a(common-whisper.cpp.o): undefined reference to symbol 'dlclose@@GLIBC_2.2.5'
/usr/bin/ld: /lib/x86_64-linux-gnu/libdl.so.2: error adding symbols: DSO missing from command line
collect2: error: ld returned 1 exit status
make[2]: *** [examples/cli/CMakeFiles/whisper-cli.dir/build.make:89: bin/whisper-cli] Error 1
make[2]: Leaving directory '/app/whisper.cpp/build'
make[1]: *** [CMakeFiles/Makefile2:433: examples/cli/CMakeFiles/whisper-cli.dir/all] Error 2
make[1]: Leaving directory '/app/whisper.cpp/build'
make: *** [Makefile:130: all] Error 2
```

Resolves: https://github.com/ggerganov/whisper.cpp/issues/2854
2025-03-14 04:42:20 +01:00
5bb1d58c6a whisper: add xcframework build script (#2873)
* whisper: add xcframework build script

* added apple validation scripts

* fixed Readme

* validation script fix
2025-03-13 13:56:39 +01:00
7d14005717 objc : fix build, tmp remove GPU support, use C++17 2025-03-08 15:13:01 +02:00
4ffb8e3e4d cmake : fix ggml-config (ggml/0) 2025-03-08 15:13:01 +02:00
1d8d8ae55e sync : ggml 2025-03-08 15:13:01 +02:00
eebf6bc0bd ggml-cpu: faster AVX2 variant for IQ1_M (llama/12216) 2025-03-08 15:13:01 +02:00
dc8f423b40 metal : simplify kernel arguments using a struct (ggml/3229) (llama/12194)
* metal : refactor im2col parameters into a struct

* metal: Change im2col offset types from int32_t to uint64_t to support larger memory offsets

* metal : refactor sum_rows parameters into a struct

* metal : refactor soft_max parameters into a struct

* metal : refactor diag_mask_inf parameters into a struct

* metal : refactor ssm_conv parameters into a struct

* metal : refactor ssm_scan parameters into a struct

* metal : refactor get_rows parameters into a struct

* metal : refactor group_norm parameters into a struct

* metal : refactor conv_transpose_1d parameters into a struct

* metal : refactor upscale parameters into a struct

* metal : refactor pad parameters into a struct

* metal : refactor pad_reflect_1d parameters into a struct

* metal : refactor arange parameters into a struct

* metal : refactor timestep_embedding parameters into a struct

* metal : refactor argsort parameters into a struct

* metal : refactor leaky_relu parameters into a struct

* metal : refactor pool_2d parameters into a struct

* metal : fix trailing whitespace

---------

Co-authored-by: alexju <alexju@tencent.com>
2025-03-08 15:13:01 +02:00
548e7052f1 metal : fix default.metallib build (llama/12224)
This commit updates the custom command to build the default.metallib
file to use the correct path to ../ggml-common.h by using the variable
METALLIB_COMMON.

The motivation for this change is that currently when building and
specifying GGML_METAL_EMBED_LIBRARY=OFF the following error is
generated:
```console
[ 11%] Linking CXX shared library ../../bin/libggml.dylib
[ 11%] Built target ggml
make[2]: *** No rule to make target `ggml/src/ggml-metal/ggml-common.h', needed by `bin/default.metallib'.  Stop.
make[1]: *** [ggml/src/ggml-metal/CMakeFiles/ggml-metal-lib.dir/all] Error 2
```

With the above change the build could progress but there was a follow
on error about not being able to find the ggml-common.h file in
ggml-metal.metal where is was included as a relative path:
```console
[ 11%] Compiling Metal kernels
/Users/danbev/work/llama.cpp/build/bin/ggml-metal.metal:6:10: error: '../ggml-common.h' file not found, did you mean 'ggml-common.h'?
         ^~~~~~~~~~~~~~~~~~
         "ggml-common.h"
1 error generated.
```
Removing the relative path then allowed the build to complete
successfully.
2025-03-08 15:13:01 +02:00
a34cb73dc2 opencl: Noncontiguous norm, rms_norm, disable fp16 for some ops (llama/12217)
* opencl: support noncontiguous `norm`

* opencl: support noncontiguous `rms_norm`

* opencl: disable fp16 for `ADD`, `MUL`, `SCALE`, `RELU`, `GELU`, `SILU`, `CLAMP`
2025-03-08 15:13:01 +02:00
82f9496657 cmake : fix undefined reference errors for std::filesystem in ggml (#12092) (llama/12094)
Signed-off-by: Ray Lee <hburaylee@gmail.com>
Co-authored-by: Ray Lee <hburaylee@gmail.com>
2025-03-08 15:13:01 +02:00
e3c85e75bd CUDA: fix FA logic for PTX 7.0 and CC >= 7.5 (llama/12222) 2025-03-08 15:13:01 +02:00
b9eab73fa2 HIP/CUDA: set the paramerter value in maintain_cuda_graph instead of replaceing it. (llama/12209)
This avoids conflict with internal cuda/hip runtimes memory managment behavior.
2025-03-08 15:13:01 +02:00
76385c8311 opencl : fix buffer alignment (llama/12197)
Fix the following error:

```
ggml-alloc.c:99: not enough space in the buffer
ggml_tallocr_alloc: not enough space in the buffer to allocate blk.17.ffn_down.weight (needed 27525120, available 27521024)
```

which occurs when `ggml_backend_opencl_context::alignment` is larger
than `cl_ptr_base` (hard-coded to `0x1000`).

Also, fix `ggml_backend_opencl_context::alignment` was set to
`CL_DEVICE_MEM_BASE_ADDR_ALIGN` which was treated as bytes but the
value is reported in bits.
2025-03-08 15:13:01 +02:00
442cd1d2e7 opencl : fix ulong kernel args were set from int variables (llama/12174)
... which left garbage bits in the upper half of the kernel args. This
caused segmentation faults when running PoCL.
2025-03-08 15:13:01 +02:00
bc8cb97e02 opencl : fix profile-related errors (llama/12095)
Co-authored-by: ubuntu <ubuntu@localhost.localdomain>
2025-03-08 15:13:01 +02:00
8dcadf736b ggml-cpu: Faster IQ1 mul_mat_vec on AVX2 using BMI2 instructions (llama/12154)
* ggml-cpu: Faster IQ1 mul_mat_vec on AVX2 using BMI2 instructions

* cmake: Add GGML_BMI2 build option

* ggml: enable BMI2 on relevant CPU variants

* ggml-cpu: include BMI2 in backend score

* ggml-cpu: register BMI2 in ggml_backend_cpu_get_features

* ggml-cpu: add __BMI2__ define when using MSVC
2025-03-08 15:13:01 +02:00
93986b61e0 SYCL: Disable f16 Unary OPs as not supported by the kernels (llama/12201) 2025-03-08 15:13:01 +02:00
bd1a9e34c9 ggml : fix GGMLMetalClass ODR (llama/12200)
-- it might happen if ggml is loaded from 2 separate libraries since each one of them will expose the class. This is more of a guard since we want to use only Metal as embedded library and don't care about the other case.
2025-03-08 15:13:01 +02:00
cc03608e78 ggml : ggml_compute_forward_concat() for arbitrary tensor type (ggml/1118)
* ggml_compute_forward_concat() for arbitrary tensor type

* Check that tensors' type match

* ggml-cpu.c: check type of source tensors

* ggml-cpu.c: move tensor type check to ggml_compute_forward_concat()

* ggml.c: check concatenated tensor type

* Remove tensor type check from ggml_compute_forward_concat() in ggml-cpu.c

..., as it was moved to ggml.c.
2025-03-08 15:13:01 +02:00
54a54faee4 vulkan : sync (llama/0)
ggml-ci
2025-03-08 15:13:01 +02:00
96a92ecc4c ggml : portability fixes for VS 2017 (llama/12150)
* Add include files for std::min/max and std::toupper/tolower

* win32: move _USE_MATH_DEFINES before includes to ensure M_PI is defined

* Use GGML_RESTRICT instead of "restrict" keyword everywhere, and use "__restrict" in MSVC plain C mode

* win32: only use __restrict in MSVC if C11/C17 support is not enabled

---------

Co-authored-by: Marcus Groeber <Marcus.Groeber@cerence.com>
2025-03-08 15:13:01 +02:00
edd1d8686a HIP: implement FlashAttention via rocWMMA for CDNA and RDNA3+ (llama/12032)
Adds GGML_HIP_ROCWMMA_FATTN and rocwmma header check
Adds rocWMMA support to fattn-wmma-f16
2025-03-08 15:13:01 +02:00
dc6f4e7c05 ggml : fix kleidiai build (llama/12159)
The libggml API has changed, but this has not been updated.
2025-03-08 15:13:01 +02:00
74c85d154e SYCL: Move CPY kernels to a separate file and add few missing kernels (llama/12133)
* SYCL: refactor and move cpy kernels to a separate file

* Add few missing cpy kernels

* refactor and add debug logs
2025-03-08 15:13:01 +02:00
eb2d8b6ffd ggml-backend : keep paths in native string type when possible (llama/12144) 2025-03-08 15:13:01 +02:00
b442dcd598 CUDA: compress mode option and default to size (llama/12029)
cuda 12.8 added the option to specify stronger compression for binaries, so we now default to "size".
2025-03-08 15:13:01 +02:00
c98681e6d5 ggml : upgrade init_tensor API to return a ggml_status (llama/11854)
* Upgrade init_tensor API to return a ggml_status

To prepare for an 'abort-free' ggml
(ggml not to abort on OOMs but return a OOM status),
as agreeed with Diego in the ggml repo,
upgrade the init_tensor() and view_init() APIs
to return a ggml_status.

* misc fixes

---------

Co-authored-by: slaren <slarengh@gmail.com>
2025-03-08 15:13:01 +02:00
3bab804981 vulkan: add specific MMV kernels for IQ2 and IQ3 quants + optimizations (llama/11595)
* vulkan: implement specialized MMV kernels for IQ2 quantizations

* vulkan: add MMV kernels for IQ3 quants

* vulkan: Increase MMV batch size and unroll IQ LUT setup

* vulkan: fix init_iq_shmem for WG sizes larger than tables

* vulkan: common batch size for all I-quants
2025-03-08 15:13:01 +02:00
c927830a70 CUDA: fix logic for V100 + GGML_CUDA_FORCE_MMQ (llama/12098) 2025-03-08 15:13:01 +02:00
992b51b3d5 ggml: aarch64: implement SVE kernels for q2_k_q8_k vector dot (llama/12064)
* Added SVE Support for Q2_K Quantized Models

* Use 4-space indentation in the switch cases

* removed comments lines

* Remove the loop Retain the curly bracess for better understanding of code

* Remove the comment like added for q3_k_q8_k kernel

---------

Co-authored-by: vithulep <p.m.vithule1517@gmail.com>
2025-03-08 15:13:01 +02:00
2c882cbe4c CANN: Fix build error with GCC 13 (llama/11990)
Remove unused header file that causes compilation failure on ARM
platform with GCC 13.
2025-03-08 15:13:01 +02:00
Eve
1fbb119b1e vulkan: matmul dequantization improvements (llama/12015)
* faster dequant for old quants

* dont use unpack for iq4_nl

* vec2 unpack for q8
2025-03-08 15:13:01 +02:00
40dea850fd vulkan: improve im2col (llama/11826)
* vulkan: improve im2col performance
2025-03-08 15:13:01 +02:00
8255a830a8 cmake: Fix ggml backend dependencies and installation (llama/11818)
* Fix dependencies between ggml and backends

ggml backends link only to ggml-base and ggml links to all backends.

* Fix installation of ggml backends

Set up GNUInstallDirs before setting the installation directory of ggml backends
2025-03-08 15:13:01 +02:00
a0f76b2da7 vulkan: fix assertion when qy_needs_dequant (llama/12068)
Looks like a copy/paste bug from qx_needs_dequant.
2025-03-08 15:13:01 +02:00
394768c48b ggml-cpu: Fix build with sve (llama/12059)
* ggml-cpu: Fix build with sve

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* ggml-cpu: Remove unused variable in sve q3_k vec dot

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

---------

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
2025-03-08 15:13:01 +02:00
846e01b2c0 cuda: unary ops as float + de-duplicate (ggml/1130) 2025-03-08 15:13:01 +02:00
6ac8e6b2ce cuda/vulkan: specify fp32-only support for some operations in supports_op (ggml/1129)
* cuda: restrict SILU_BACK to fp32, since fp16 exceeds the desired test threshold

* vulkan: specify fp32-only support for certain ops (that are now tested for fp16 as well)

* f32 sigmoid in vulkan supports op

* Revert "f32 sigmoid in vulkan supports op"

This reverts commit c6f04b3c19bf4504c2776149c6d8cd84e0b48acb.
2025-03-08 15:13:01 +02:00
60d2ddebdf cuda/cpu: Increase support for fp16 unary operations (ggml/1125)
* Support fp16 unary operations in the CUDA backend

* cpu: increase fp16 support for unary operators in the CPU backend

* cuda: increase fp16 support for unary operators in the CUDA backend

* Add test cases for fp16 unary operators

* metal: update supports_op for unary operators that don't support fp16, to prevent test-backend-ops from failing

* metal: fix PR comments for unary op support after fp16 unary tests
2025-03-08 15:13:01 +02:00
2e180184a8 Told cmake to install ggml-cpp.h as a public header file. (ggml/1126)
It is used by Whisper talk-llama example.

Co-authored-by: Petter Reinholdtsen <pere@debian.org>
2025-03-08 15:13:01 +02:00
ef40950c4a common : more general m_audio_len update logic (#2855)
Co-authored-by: Ivy233 <wangjinrun@uniontech.com>
2025-03-07 10:10:03 +02:00
c774eec709 go : improve model download (#2756)
* Updated models download URL

* Updated list of models available

All of the high efficiency quantized models are rejected when trying to download. They exist on the server. Let's allow them.

* added path prefix for whisper-cli in message to user. The message is misleading if this script is called from another script in a different folder. So the message has to be fixed.

* undid download URL change I made earlier. Fixed filepath.Join(urlPath, model) bug.

* Undid download URL change I made earlier.

Seems that the old URL works but only when provided a model to download. Still doesn't explain why there's a different download URL that also works. Please elucidate in docs.

* Fixed URLForModel Function's bug

filepath.Join is designed for filesystem paths, and it uses backslashes (\) on Windows. URLs, however, require forward slashes (/), so the use of filepath.Join is inappropriate for constructing URLs.

The fmt.Sprintf function ensures that forward slashes are used.

* Fixed URL trailing / double slash bug

Ensure no double slash by trimming trailing '/' from srcUrl if present

* Fixed bad download URL, missing ggml prefix

Not sure if that was a bug I introduced but it was trying to download without the prefix.

* Added question before downloading all models. Added download size estimate

HEAD Requests:
Efficiently fetches file sizes without downloading the content.
Interactive Workflow:
Allows the user to make informed decisions about downloading all models.
Safe Defaults:
Aborts if the user does not explicitly confirm.

* Fixed Unbuffered channel warning.

warning in context.go : misuse of unbuffered os.Signal channel as argument to signal.

The warning indicates that the unbuffered channel used in signal.Notify in context.go may be misused. In Go, unbuffered channels can cause potential deadlocks if signals are sent faster than they are received.

* Fixed download size calculation, download URL prefix bug, added link to models URL for user.

The URL formatter was prepending the model name to the formatted model name in the URL

* Added logs and exes to gitignore

* Delete bindings/go/examples/go-model-download/go-model-download.exe

* Delete whisper_build.log
2025-03-07 10:03:51 +02:00
5b481a27a6 common : fix audio loading by miniaudio (#2862) 2025-03-04 19:05:21 +02:00
fc7b1ee521 fix: missing include common-whisper (#2858) 2025-03-02 20:55:11 +02:00
c42f67e2d2 ruby : follow audio library change (#2851)
* Enable CPU

* Follow audio lib change
2025-02-28 08:09:02 +02:00
339a1cba5d whisper : support GGML_BACKEND_DL (#2843)
* whisper : support GGML_BACKEND_DL

* fix DTW crash

* whisper.objc : fix build - add ggml-cpp.h

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-02-27 13:35:07 +01:00
c64f3e8ada common : separate whisper sources (#2846)
* common : separate whisper sources

* examples : add chrono

* examples : add more headers
2025-02-27 12:50:32 +02:00
9f83f67221 common : fix build min/max (#2845)
* common : try to fix build

* cont : try another fix
2025-02-27 10:39:13 +02:00
7d3da68f79 examples : use miniaudio for direct decoding flac, mp3, ogg and wav (#2759) 2025-02-27 09:06:54 +02:00
b5d21359c1 stream : stop on ^C when no audio is received (#2822)
Add check for ctrl-c in potentially endless loop while calling audio.get()
to receive sound.

Co-authored-by: Petter Reinholdtsen <pere@debian.org>
2025-02-27 08:59:51 +02:00
17addf7104 sync : ggml 2025-02-27 08:55:36 +02:00
cdaee8b4bd Support pure float16 add/sub/mul/div operations in the CUDA (and CPU) backend (ggml/1121)
* Support float16-to-float16 add/sub/mul/div operations in the CUDA backend

* Add fp16 support for add/sub/mul/div on the CPU backend

* Add test cases for fp16 add/sub/mul/div
2025-02-27 08:55:36 +02:00
4b60ff4f92 metal : copy kernels for quant to F32/F16 conversions (llama/12017)
metal: use dequantize_q templates

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-02-27 08:55:36 +02:00
b43b9d928c opencl: fix for small models (llama/11950)
* opencl: fix small shape gemv, remove unused extensions

* opencl: fix `transpose_16`, `dump_tensor`, enforce subgroup size

* opencl: fix for token length < 4

* opencl: use wave size of 64 for all Adreno GPUs

---------

Co-authored-by: Shawn Gu <quic_shawngu@quicinc.com>
Co-authored-by: Skyler Szot <quic_sszot@quicinc.com>
2025-02-27 08:55:36 +02:00
e3cb412a59 Optimize mul_mat for Q4_0 on Intel GPU (llama/12035)
* opt performance by reorder for Intel GPU

* detect hw type and save opt feature, and print opt feature

* correct name

* support optimize graph once when compute graph, record the opt status in tensor->extra, make CI passed

* add env variable GGML_SYCL_DISABLE_OPT for debug

* use syclex::architecture replace the custom hw define, update the guide for GGML_SYCL_DISABLE_OPT

* add performance data

* mv getrows functions to separeted files

* fix global variables

---------

Co-authored-by: arthw <14088817+arthw@users.noreply.github.com>
2025-02-27 08:55:36 +02:00
ac301a7d9b SYCL: Fix GGML_SYCL_DEBUG macro (llama/11995) 2025-02-27 08:55:36 +02:00
82e04e7670 ggml-cpu: Support s390x SIMD Instruction Set (llama/12019)
* ggml: add s390x ARCH_FLAGS for compilation

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: add SIMD for s390x using vector intrinsics

SIMD is activated for:
* ggml_vec_dot_f32
* ggml_vec_dot_f16
* ggml_vec_mad_f32
* ggml_vec_mad_f16
* ggml_vec_mad_f32_unroll
* ggml_vec_scale_f32
* ggml_vec_scale_f16

SIMD is NOT activated for:
* ggml_vec_dot_f16_unroll (pending bugfix)

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: fix missing escape character in GGML_F32x4_REDUCE

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: add temporary patch for GGML_F32_ARR and GGML_F16_ARR

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: fix s390x GGML_F32x4_REDUCE

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: full SIMD activation for F32,F16 s390x

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: add option to disable s390x VXE/VXE2

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: change vecintrin.h include to ggml-cpu-impl

* add __VXE__ and __VXE2__ macros

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* cmake: add s390x target detection for VX/VXE/VXE2

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: move s390x vector intrinsics to ggml-cpu-impl.h

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: s390x Q8_0 SIMD

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: correct documentation for Q8_0

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: s390x reduce code complexity Q8_0

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: s390x bugfix typo Q8_0

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: s390x SIMD activated for Q4_1

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: s390x inline vec_reve

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: s390x SIMD activation for Q4_0

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: add VXE backend feature

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: remove test.py

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: s390x SIMD activation for quantize_row_q8_0

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: s390x SIMD activation for quantize_row_q8_1

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: s390x SIMD activation for iq4_xs

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: bugfix iq4_xs

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: s390x SIMD activation for iq4_nl

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: add float, double, and long vector data type

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: clean up iq4_xs SIMD

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: fix improper use of restrict keyword

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: update warning message for ggml_vec_tbl

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: untested implementation of ggml_vec_dot_iq2_xxs_q8_K

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: update ggml_vec_dot_q4_1_q8_1 to use typedefs

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: switch to restrict for iq4_nl

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: slight dot product speed improvement for q4_1_q8_1

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: s390x SIMD activation for q6_K

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: add missing `_t` to ggml_int8x16x4_t

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: fix missing `_t` for ggml_vec_xl_s8x4

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: fix more missing `_t`

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: add unroll and prefetch to Q8_0

increase of 3.86% for prompt processing and 32.22% for token generation

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: patch Q8_0 to use proper vector sizes

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: optimise Q8_0 dot prod compute kernel further

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: add unroll and prefetch to Q4_1

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: refactor Q6_K variable naming for readability

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: fix Q6_K typos

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: s390x SIMD activation for Q5_K

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: fix wrong char*x16_t naming

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: Q5_K y0 wrong signness

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: fix Q5_K invalid uchar type

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: fix Q5_K invalid uchar type

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: s390x SIMD activation for Q4_K

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: fix Q4_K invalid vector intrinsics

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: simplify ggml_padd_s16 compute kernel

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: correct ggml-cpu vxe wording

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: change ggml_aligned_malloc alignment to 256

256 is the cache line size for s390x platforms

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: resolve pr merge via cherry-pick 225bbbf

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml : fix LoongArch compile error with 128-bit SIMD (llama/11701)

* ggml: resolve pr merge via cherry-pick 4571953

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: cmake remove fork when determining s390x machine type

thank you @ericcurtin

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

---------

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
Co-authored-by: Jinyang He <hejinyang@loongson.cn>
Co-authored-by: junchao-zhao <68935141+junchao-loongson@users.noreply.github.com>
2025-02-27 08:55:36 +02:00
38ac47cd4d CUDA: app option to compile without FlashAttention (llama/12025) 2025-02-27 08:55:36 +02:00
2d70cd36d7 CUDA: optimize FA for GQA + large batches (llama/12014) 2025-02-27 08:55:36 +02:00
98dab49b9a cuda: Add Q5_1, Q5_0, Q4_1 and Q4_0 to F32 conversion support. (llama/12000) 2025-02-27 08:55:36 +02:00
b1385e9aa9 CUDA: correct the lowest Maxwell supported by CUDA 12 (llama/11984)
* CUDA: correct the lowest Maxwell supported by CUDA 12

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-02-27 08:55:36 +02:00
48f5e893f5 MUSA: support ARM64 and enable dp4a .etc (llama/11843)
* MUSA:  support ARM64 and enable __dp4a .etc

* fix cross entropy loss op for musa

* update

* add cc info log for musa

* add comment for the MUSA .cc calculation block

---------

Co-authored-by: Bodhi Hu <huaishun.hu@mthreads.com>
2025-02-27 08:55:36 +02:00
dc21871fcb ggml-cpu: Add CPU backend support for KleidiAI library (llama/11390)
* ggml-cpu: Add CPU backend support for KleidiAI library

* Add environmental variable GGML_KLEIDIAI_SME

* Add support for multithread LHS conversion

* Switch kernel selection order to dotprod and i8mm

* updates for review comments

* More updates for review comments

* Reorganize and rename KleidiAI files

* Move ggml-cpu-traits.h to source file

* Update cmake for SME build and add alignment for SME

* Remove append GGML_USE_CPU_KLEIDIAI to the GGML_CDEF_PUBLIC list
2025-02-27 08:55:36 +02:00
64a430bc81 ggml: aarch64: implement SVE kernels for q3_K_q8_K vector dot (llama/11917)
* Added SVE Implementation for Q3_K Kernel in ggml-cpu-quants.c file

* Improved Formating of code in  ggml-cpu-quants.c file

* style : minor fixes

* style : less whitespaces

* style : ptr spaceing

---------

Co-authored-by: vithulep <p.m.vithule1517@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-02-27 08:55:36 +02:00
51a3580c79 CUDA: use async data loading for FlashAttention (llama/11894)
* CUDA: use async data loading for FlashAttention

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-02-27 08:55:36 +02:00
37a21dd43d vulkan: implement several ops relevant for ggml_opt (llama/11769)
* vulkan: support memset_tensor

* vulkan: support GGML_OP_SUM

* vulkan: implement GGML_OP_ARGMAX

* vulkan: implement GGML_OP_SUB

* vulkan: implement GGML_OP_COUNT_EQUAL

* vulkan: implement GGML_OP_OPT_STEP_ADAMW

* vulkan: fix check_results RWKV_WKV6 crash and memory leaks

* vulkan: implement GGML_OP_REPEAT_BACK

* tests: remove invalid test-backend-ops REPEAT_BACK tests

* vulkan: fix COUNT_EQUAL memset using a fillBuffer command
2025-02-27 08:55:36 +02:00
8a22a8b17f vulkan: support multi/vision rope, and noncontiguous rope (llama/11902) 2025-02-27 08:55:36 +02:00
fcbcad0c90 metal : fix the crash caused by the lack of residency set support on Intel Macs. (llama/11904) 2025-02-27 08:55:36 +02:00
4444db7360 metal : optimize dequant q6_K kernel (llama/11892) 2025-02-27 08:55:36 +02:00
a7fc1038ca repo : update links to new url (llama/11886)
* repo : update links to new url

ggml-ci

* cont : more urls

ggml-ci
2025-02-27 08:55:36 +02:00
1689aaf854 vulkan: initial support for IQ1_S and IQ1_M quantizations (llama/11528)
* vulkan: initial support for IQ1_S and IQ1_M quantizations

* vulkan: define MMV kernels for IQ1 quantizations

* devops: increase timeout of Vulkan tests again

* vulkan: simplify ifdef for init_iq_shmem
2025-02-27 08:55:36 +02:00
4b48fe449a opencl: Fix rope and softmax (llama/11833)
* opencl: fix `ROPE`

* opencl: fix `SOFT_MAX`

* Add fp16 variant

* opencl: enforce subgroup size for `soft_max`
2025-02-27 08:55:36 +02:00
47cc043e69 cuda : add ampere to the list of default architectures (llama/11870) 2025-02-27 08:55:36 +02:00
e3d9ffb98b ggml: optimize some vec dot functions for LoongArch ASX (llama/11842)
* Optimize ggml_vec_dot_q3_K_q8_K for LoongArch ASX

* Optimize ggml_vec_dot_q4_K_q8_K for LoongArch ASX

* Optimize ggml_vec_dot_q6_K_q8_K for LoongArch ASX

* Optimize ggml_vec_dot_q5_K_q8_K for LoongArch ASX

* Optimize ggml_vec_dot_q2_K_q8_K for LoongArch ASX

* Optimize mul_sum_i8_pairs_float for LoongArch ASX

* Optimize ggml_vec_dot_iq4_xs_q8_K for LoongArch ASX
2025-02-27 08:55:36 +02:00
Eve
e22d69839d vulkan: linux builds + small subgroup size fixes (llama/11767)
* mm subgroup size

* upload vulkan x86 builds
2025-02-27 08:55:36 +02:00
defe731263 llamafile: use member variable instead of constant for iq4nlt (llama/11780) 2025-02-27 08:55:36 +02:00
4e07957bf9 musa: bump MUSA SDK version to rc3.1.1 (llama/11822)
* musa: Update MUSA SDK version to rc3.1.1

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* musa: Remove workaround in PR #10042

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

---------

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-02-27 08:55:36 +02:00
d2c5154bb5 ggml-cpu : add chunking support to mul_mat_id (llama/11666)
* ggml-cpu : add chunking support to mul_mat_id

* allocate chunk counter in wdata
parallelize src1 quantization by column to allows parallelization even when there is only one row

* disable for arm

* cleanup

* better way to disable for arm

* fix uninitialized counter when using 1 thread only

* revert test-backend-ops changes
2025-02-27 08:55:36 +02:00
4fac43fe00 ggml : x2 speed for WASM by optimizing SIMD (llama/11453)
* ggml : x2 speed for WASM by optimizing SIMD

* fix bad merging

* rm trailing spaces

* rm redundant clamp

* better quantize_row_q8_K

Co-authored-by: camel-cdr <camel-cdr@protonmail.com>

* remove memset that causes buffer overflow
Co-authored-by: camel-cdr <camel-cdr@protonmail.com>

---------

Co-authored-by: camel-cdr <camel-cdr@protonmail.com>
2025-02-27 08:55:36 +02:00
3be9670f17 HIP: Remove GCN from list of devices that avoid MMQ (llama/11831) 2025-02-27 08:55:36 +02:00
86729fcd6d HIP: Switch to std::vector in rocblas version check (llama/11820) 2025-02-27 08:55:36 +02:00
7fbca6304e cleanup: fix compile warnings associated with gnu_printf (llama/11811) 2025-02-27 08:55:36 +02:00
d597f83e1a ggml : fix multi-threaded clamp_f32 (llama/11824)
* Bug fix for clamp_f32

When using tensors larger than 1d clamp operation does not work due to the restriction of returning if ith is not 0.

* Bug fix for clamp_f32

* Bug fix for clamp_f32
2025-02-27 08:55:36 +02:00
e5edcc6259 ggml-cpu: Fix duplicate MATMUL_INT8 (llama/11817)
Signed-off-by: Weizhao Ouyang <o451686892@gmail.com>
2025-02-27 08:55:36 +02:00
556f773d53 CUDA: fix CUDART_VERSION checks (llama/11821) 2025-02-27 08:55:36 +02:00
91d02de332 Fix #11802: Compile bug - RegQueryValueExA changed to RegQueryValueEx (llama/11803)
* Fix #11802: Compile bug - RegQueryValueExA changed to RegQueryValueEx

* Fix #11802: PR #11803 - keep RegQueryValueExA, remove TEXT macro, description needs to be ANSI string
2025-02-27 08:55:36 +02:00
1b67d72f87 CUDA: use arch list for compatibility check (llama/11775)
* CUDA: use arch list for feature availability check

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-02-27 08:55:36 +02:00
14d7c0368d fix: typos in documentation files (llama/11791)
* Update ggml.c

* Update arg.cpp

* Update speculative.h
2025-02-27 08:55:36 +02:00
db6e19188a vulkan: Make Vulkan optional at runtime (ggml/11493). (llama/11494)
Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
2025-02-27 08:55:36 +02:00
b4b063a5c9 vulkan: add environment variable GGML_VK_PREFER_HOST_MEMORY to avoid VRAM allocation (llama/11592) 2025-02-27 08:55:36 +02:00
930b739e7a vulkan: account for lookup tables when checking shared memory size (llama/11502) 2025-02-27 08:55:36 +02:00
5981352bb5 ggml: Fix data race in ggml threadpool (llama/11736)
After the barrier in last iteration is executed, still the loop termination
condition will be executed. However main thread can destroy the cgraph object
and its nodes already, then another thread will access it, but the thing is already gone.
Also trouble can happen when n_nodes == 0 or abort is called, but I'm not sure if the
prior situation is possible.

Last syncronization should be done after the loop to ensure the cgraph/cplan won't be
accessed after the main thread exits from the function.
2025-02-27 08:55:36 +02:00
7561da244e CUDA: fix min. version for movmatrix (llama/11751) 2025-02-27 08:55:36 +02:00
be83f342fb vulkan: print shared memory size (llama/11719) 2025-02-27 08:55:36 +02:00
fd369871f7 SYCL: remove XMX info from print devices (llama/11712) 2025-02-27 08:55:36 +02:00
bbd8364f5e ggml : optimize and build warning fix for LoongArch (llama/11709)
* ggml : optimize convert f32<->f16 for loongarch_asx

* ggml : optimize loongarch_asx extend i16,i8,u8 to i32,i16

* ggml : Fix warnings when run cpu CI locally on LoongArch
2025-02-27 08:55:36 +02:00
e4102440ef SYCL: Adjust support condition for norm operators (llama/11674)
SYCL does not support non contiguous tensors for norm operations
2025-02-27 08:55:36 +02:00
f8242ec483 ggml : fix LoongArch compile error with 128-bit SIMD (llama/11701) 2025-02-27 08:55:36 +02:00
ef51b4cba4 vulkan: optimize coopmat2 iq2/iq3 callbacks (llama/11521)
* vulkan: optimize coopmat2 iq2/iq3 callbacks

* build: trigger CI on GLSL compute shader changes
2025-02-27 08:55:36 +02:00
6f08b24146 vulkan: initial support for IQ4_XS quantization (llama/11501) 2025-02-27 08:55:36 +02:00
7c165d7fa8 vulkan: use smaller combined allocations to avoid fragmentation (llama/11551) 2025-02-27 08:55:36 +02:00
2f0cf44915 metal : avoid breaking build when metal API predates TARGET_OS_VISION (llama/11690)
Avoids breakage in nix flake build introduced by b0569130c5e9c671152c913d82803b7c2f014ff9
2025-02-27 08:55:36 +02:00
b9c972fd0d metal : adjust support conditions for norm operators (llama/11671)
cont #11659

ggml-ci
2025-02-27 08:55:36 +02:00
01c9aafbfd CUDA: support for mat. mul. with ne03 != ne13 (llama/11656) 2025-02-27 08:55:36 +02:00
bae6bbf487 CUDA: non-contiguous (RMS) norm support (llama/11659)
* CUDA: non-contiguous (RMS) norm support

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-02-27 08:55:36 +02:00
c310272fa0 HIP: force max threads per block to be 1024 (llama/11621)
Some old/vendor forked version of llvm still use 256. Explicitly set it to 1024 to align with upstream llvm.

Signed-off-by: fxzjshm <fxzjshm@163.com>
2025-02-27 08:55:36 +02:00
bd0b55dbe0 metal : use residency set for other platforms (llama/11648) 2025-02-27 08:55:36 +02:00
ba4645db2c rpc: fix known RCE in rpc-server (ggml/1103)
Add bounds checking in `rpc_server::copy_tensor` to prevent out-of-bounds writes
+ Check if  `(uint8_t *)dst->data + ggml_nbytes(src)` remains within the destination buffer’s allocated region.
2025-02-27 08:55:36 +02:00
dfc6ca62f3 stream : add beam size parameter(#2836)
* feat: Add beam size parameter to stream.cpp for beam search configuration

* feat: Add beam size parameter to whisper full params in stream example

* fix: Remove duplicate beam search size assignment in server.cpp
2025-02-25 11:39:33 +02:00
47e14c0529 whisper : restore big endian support (#2816)
* whisper : fix BYTESWAP whitespace

* whisper : make byteswap useable with C++17

* cmake : define WHISPER_BIG_ENDIAN for big-endian targets

* ci : fix (again) arm64 build fails

* docker : attempt fixing arm64 build on ci

* qemu v7.0.0-28

[imported from
https://github.com/ggml-org/llama.cpp
/commit/818a340ea8be55b3706e1772527cb8738e90a8c7
(#11895)]

---------

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
2025-02-25 11:38:13 +02:00
d682e15090 Fixes for Windows (#2790)
Fixes for Windows:

* MSVC default to utf-8 without BOM.
* Console output code page changed to utf-8.

---------

Co-authored-by: Judd <foldl@boxvest.com>
2025-02-06 15:37:21 +08:00
46d07b9c85 cmake : fix compile assumptions for power9/etc (#2777)
* Add small comment re: VSX to readme

Co-authored-by: midnight <midnight@example.com>
2025-02-05 14:41:10 +02:00
33ea03f131 authors : update 2025-02-04 13:03:40 +02:00
dbcc669e1a sync : ggml 2025-02-04 13:03:09 +02:00
16245b35e4 cmake: Add ability to pass in GGML_BUILD_NUMBER (ggml/1096)
This makes git as a dependency optional, and is useful in the case where
ggml is built not from git, but from a tarball, or a distribution source
package.

This conditional also affects GGML_BUILD_COMMIT. Nothing seems to be
using it, though, so there doesn't seem much value factor it out, or
even require it.
2025-02-04 13:03:03 +02:00
898c0cb9d1 readme : add maintenance roadmap 2025-02-04 10:50:10 +02:00
eb9e5032c4 ci : add stalebot 2025-02-04 09:30:20 +02:00
cadfc50eab node : add max_len params in node addon (#2760) 2025-02-03 22:49:06 +02:00
3f91832352 talk-llama : sync llama.cpp 2025-02-03 22:42:26 +02:00
cff8868b5f coreml : always convert to "neuralnetwork" (#2770) 2025-02-03 22:36:32 +02:00
90e3c5fc40 ci : more git 2025-02-03 22:00:57 +02:00
e0f4cef867 ci : install git 2025-02-03 22:00:57 +02:00
234460987e ci : use ubuntu-22.04 instead of ubuntu-latest 2025-02-03 22:00:57 +02:00
b8ab126343 cmake : sync cmake scripts 2025-02-03 22:00:57 +02:00
edc5d9267c sync : ggml 2025-02-03 22:00:57 +02:00
344b98a44f scripts : fix sync paths 2025-02-03 22:00:57 +02:00
dbeb7916b8 CUDA: fix Volta FlashAttention logic (llama/11615) 2025-02-03 22:00:57 +02:00
fad2806352 HIP: fix flash_attn_stream_k_fixup warning (llama/11604) 2025-02-03 22:00:57 +02:00
9906792ec3 CUDA/HIP: add support for selectable warp size to mmv (llama/11519)
CUDA/HIP: add support for selectable warp size to mmv
2025-02-03 22:00:57 +02:00
c49ee07ff4 HIP: add GGML_CUDA_CC_IS_* for amd familys as increasing cc archtectures for amd gpus are not supersets of eatch other (llama/11601)
This fixes a bug where RDNA1 gpus other than gfx1010 where not handled correctly
2025-02-03 22:00:57 +02:00
f8a831779e CUDA: use mma PTX instructions for FlashAttention (llama/11583)
* CUDA: use mma PTX instructions for FlashAttention

* __shfl_sync workaround for movmatrix

* add __shfl_sync to HIP

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-02-03 22:00:57 +02:00
85451e3612 ci: use sccache on windows instead of ccache (llama/11545)
* Use sccache on ci for windows

* Detect sccache in cmake
2025-02-03 22:00:57 +02:00
43c744ce8b HIP: require at least HIP 5.5 2025-02-03 22:00:57 +02:00
fc2e44490d HIP: Prepare reduction operators for wave 64 2025-02-03 22:00:57 +02:00
f41fdad200 CUDA/HIP: add warp_size to cuda_device_info 2025-02-03 22:00:57 +02:00
80fa576254 vulkan: implement initial support for IQ2 and IQ3 quantizations (llama/11360)
* vulkan: initial support for IQ3_S

* vulkan: initial support for IQ3_XXS

* vulkan: initial support for IQ2_XXS

* vulkan: initial support for IQ2_XS

* vulkan: optimize Q3_K by removing branches

* vulkan: implement dequantize variants for coopmat2

* vulkan: initial support for IQ2_S

* vulkan: vertically realign code

* port failing dequant callbacks from mul_mm

* Fix array length mismatches

* vulkan: avoid using workgroup size before it is referenced

* tests: increase timeout for Vulkan llvmpipe backend

---------

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
2025-02-03 22:00:57 +02:00
75e7d0585e vulkan: Catch pipeline creation failure and print an error message (llama/11436)
* vulkan: Catch pipeline creation failure and print an error message

Also, fix some warnings from my on-demand compile change.

* vulkan: fix pipeline creation logging
2025-02-03 22:00:57 +02:00
682a6f5f87 HIP: Supress transformation warning in softmax.cu
loops with bounds not known at compile time can not be unrolled.
when ncols_template == 0, the bounds of the loop are not constexpr, thus llvm cant unroll the loops here.
2025-02-03 22:00:57 +02:00
115716d109 HIP: Only call rocblas_initialize on rocblas versions with the multiple instantation bug (llama/11080)
This disables the workaround on rocblas fixed versions (>=4.0.0) to eliminate the runtime cost and unnecessary VRAM allocation of loading all tensile objects.
2025-02-03 22:00:57 +02:00
b2cfef655b cmake : don't fail on GGML_CPU=OFF (llama/11457) 2025-02-03 22:00:57 +02:00
22e3df0afa SYCL : SOFTMAX F16 mask support and other fixes (llama/11261)
Implemented ggml_sycl_op_soft_max() F16 src1(mask) support for which a pragma deprecation warning was added during #5021.
To do this, had to decouple it from ggml_sycl_op_flatten which always considered src1 to be of fp32 type(many OP functions are dependent on it).

* SYCL: SOFTMAX F16 mask support and other fixes

* test-backend-ops: Add F16 mask test cases
2025-02-03 22:00:57 +02:00
028511d349 AMD: parse the architecture as supplied by gcnArchName (llama/11244)
The value provided by minor doesn't include stepping for AMD, parse the value returned by gcnArchName instead to retrieve an accurate ID.
2025-02-03 22:00:57 +02:00
70c4038842 metal: Handle null returned from MTLCreateSystemDefaultDevice() (llama/11441)
This fixes segmentation fault error when running tests when no metal
devices are available (for example, when not linked with Core Graphics
framework or otherwise).
2025-02-03 22:00:57 +02:00
8639c003a9 metal : use residency sets (llama/11427)
* metal : use residency sets

ggml-ci

* metal : restore commandBufferWithUnretainedReferences calls [no ci]

* metal : release descriptors

ggml-ci

* metal : check env GGML_METAL_NO_RESIDENCY

ggml-ci

* metal : fix build + clean-up

ggml-ci
2025-02-03 22:00:57 +02:00
d5d831da65 cmake: add ggml find package (llama/11369)
* Add initial ggml cmake package

* Add build numbers to ggml find-package

* Expand variables with GGML_ prefix

* Guard against adding to cache variable twice

* Add git to msys2 workflow

* Handle ggml-cpu-* variants

* Link ggml/ggml-base libraries to their targets

* Replace main-cmake-pkg with simple-cmake-pkg

* Interface features require c_std_90

* Fix typo

* Removed unnecessary bracket from status message

* Update examples/simple-cmake-pkg/README.md

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update examples/simple-cmake-pkg/README.md

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-02-03 22:00:57 +02:00
7230a6e1c8 vulkan: compile shaders on-demand (llama/11406)
Reduce first-run startup time and memory consumption.

Should fix #11339.
2025-02-03 22:00:57 +02:00
a160fa0f3a Hip: disable VMM on hip as it seams that it dosent work in some configurations (llama/11420) 2025-02-03 22:00:57 +02:00
0282ad8fd1 hip : Add hipGraph and VMM support to ROCM (llama/11362)
* Add hipGraph support

* Enable VMM on rocm
2025-02-03 22:00:57 +02:00
9e467815d4 CUDA: fix FP16 cuBLAS GEMM (llama/11396) 2025-02-03 22:00:57 +02:00
727891d9bf rocBLAS: Avoid fp32->fp16->fp32 conversion on cdna (llama/11356) 2025-02-03 22:00:57 +02:00
c262dc80e2 CPU/CUDA: fix (GQA) mul mat back, add CUDA support (llama/11380) 2025-02-03 22:00:57 +02:00
30767b4c4e cmake : avoid -march=native when reproducible build is wanted (llama/11366)
See https://reproducible-builds.org/ for why this is good
and https://reproducible-builds.org/specs/source-date-epoch/
for the definition of this variable.

Without this patch, compiling on different machines produced different binaries, which made verification of results difficult.

Fixes: #11317

This patch was done while working on reproducible builds for openSUSE.
2025-02-03 22:00:57 +02:00
16eeb31933 Vulkan-run-test: fix mmq_wg_denoms (llama/11343)
There should be a copy-and-paste error here.

*mmq_wg_denoms should be used together with *warptile_mmq, instead of
wg_denoms.
2025-02-03 22:00:57 +02:00
ba523d5e22 vulkan: sort shaders for more deterministic binary (llama/11315)
Fixes #11306.
2025-02-03 22:00:57 +02:00
3736706139 vulkan: fix diag_mask_inf (llama/11323)
With robustbufferaccess disabled, this shader was showing OOB stores. There
is a bounds check in the code, but the workgrouop dimensions were reversed vs
CUDA and it was running the wrong number of threads. So fix the workgroup
dimensions and disable robustness for this pipeline.
2025-02-03 22:00:57 +02:00
58640aa456 rpc : better caching of the base buffer pointer (llama/11331)
There is no need to use map, just store the base pointer in the buffer
context.
2025-02-03 22:00:57 +02:00
5183a05e56 metal : fix out-of-bounds write (llama/11314)
ggml-ci
2025-02-03 22:00:57 +02:00
0dcada42d4 vulkan: fix coopmat2 validation failures (llama/11284)
mul mat and flash attention shaders were loading f32 types directly into
A/B matrices, which happens to work but is technically invalid usage.
For FA, we can load it as an Accumulator matrix and convert and this
is not in the inner loop and is cheap enough. For mul mat, it's more
efficient to do this conversion in a separate pass and have the input(s)
be f16.

coopmat2 requires SPIR-V 1.6 (related using to LocalSizeId). LocalSizeId
requires maintenance4 be enabled, and SPIR-V 1.6 requires Vulkan 1.3.
2025-02-03 22:00:57 +02:00
d507b4cebe SYCL: Introducing memory host pool (llama/11251)
* Implement host pool for matrix_info

Creating a new memory pool on the host to store memory location for
matrix_info needed to launch gemm_batch from oneMKL/oneMath.
Removing complex support in gemm_batch since it is not used in llama.cpp

* Remove unnecessary headers and cast

* Reorder member variable to avoid warning on initialization

* Formatting

* Remove unused variable

* Address PR review feedback - remove warning

---------

Signed-off-by: nscipione <nicolo.scipione@codeplay.com>
2025-02-03 22:00:57 +02:00
90171055f3 cmake : add sanitizer flags for llama.cpp (llama/11279)
* cmake : add sanitizer flags for llama.cpp

ggml-ci

* tests : fix compile warnings

ggml-ci

* cmake : move sanitizer flags to llama_add_compile_flags

ggml-ci

* cmake : move llama.cpp compile flags to top level lists

ggml-ci

* cmake : apply only sanitizer flags at top level

ggml-ci

* tests : fix gguf context use in same_tensor_data

* gguf-test: tensor data comparison

* dummy : trigger ggml-ci

* unicode : silence gcc warnings

ggml-ci

* ci : use sanitizer builds only in Debug mode

ggml-ci

* cmake : add status messages [no ci]

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-02-03 22:00:57 +02:00
668306ff2b vulkan: fix coopmat2 flash attention for non-contiguous inputs (llama/11281)
Add code similar to mul_mm_cm2 to force alignment of strides, to avoid
a performance regression.

Add noncontiguous FA tests in test-backend-ops.

Fixes #11268.
2025-02-03 22:00:57 +02:00
fdc21fc87b rpc : early register backend devices (llama/11262)
Early register RPC devices and do not propagate RPC specifics in the
llama model structures.

ref: #10609
2025-02-03 22:00:57 +02:00
7183a1eb72 vulkan: support copy from f32 to q4_0/q4_1/q5_0/q5_1/q8_0/iq4_nl (llama/11166)
* vulkan: support copy from f32 to q4_0/q4_1/q5_0/q5_1/q8_0/iq4_nl

Shaders are based on cpy.cu.

* vulkan: support copy from q4_0/q4_1/q5_0/q5_1/q8_0/iq4_nl to f32

* ggml: copy q->f32 assumes some contiguity in the destination
2025-02-03 22:00:57 +02:00
09f3c66648 vulkan: optimize coopmat2 q4_k/q5_k dequant functions. (llama/11206)
Do masking on whole dwords, fetch all scales at once.
2025-02-03 22:00:57 +02:00
62e2414620 vulkan: optimize coopmat2 q2_k dequant function (llama/11130) 2025-02-03 22:00:57 +02:00
de49024e49 CUDA: backwards pass for misc. ops, add tests (llama/11257)
* CUDA: backwards pass for misc. ops, add tests

* remove restrict from pointers
2025-02-03 22:00:57 +02:00
db6383094c ggml: aarch64: implement SVE kernels for q4_K_q8_K vector dot (llama/11227)
* Add SVE support for q4_K_q8_K

* Update ggml/src/ggml-cpu/ggml-cpu-quants.c

change to use K_SCALE_SIZE

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-02-03 22:00:57 +02:00
Eve
164f13c6a9 vulkan: scale caching for k quants + misc fixes (llama/11081)
* q6_k scale caching

* 16 bit unpack

* q4_k test (slow)

* revert it

* q3_k

* q2_k

* little stuff

* try precalculating products of a and q2_k scales

* Revert "try precalculating products of a and q2_k scales"

This reverts commit 65110b81f23f66331a50c6e889a7c1ab9470a86b.

* unpack should be u16, add vim swap to gitignore (about time)

* better q4_k scales

* q5_k

* better q6_k with separate paths for all threads and partial threads in use, plus some more optimizations

* q2_k better dequant

* q3_k optimizations

* q3_k use hmask simd from cpu avx version

* make the caches happy

* q3_k separate out calculation

* q2_k separate out

* little stuff

* use calc_superblock everywhere

* q2_k optimize scale calculation

* more barriers
2025-02-03 22:00:57 +02:00
02aa86230a fix: ggml: fix vulkan-shaders-gen build (llama/10448)
* fix: ggml: fix vulkan-shaders-gen build

The vulkan-shaders-gen target was not being built correctly
in case of cross-compilation.
Other outputs need to be built for the cross compile target,
but vulkan-shaders-gen needs to be built for the host.

* refactor: ggml: Improve vulkan-shaders-gen toolchain setup

- Add GGML_SHADERS_GEN_TOOLCHAIN CMake option.
- Auto-detect host toolchain if not set.

* refactor: ggml: Improve vulkan-shaders-gen toolchain setup

Use configure_file to generate host_toolchain.cmake from template

* fix: ggml: Fix compile error

Fix compile error not finding vulkan-shaders-gen

* fix: vulkan-shaders-gen build and path handling

Fix build issues with vulkan-shaders-gen:
- Add target dependency for correct build order
- Use CMAKE_HOST_SYSTEM_NAME for executable suffix
- Fix MSVC output directory in host toolchain
- Normalize path handling for cross-compilation

* fix: improve host compiler detection in vulkan shader build

Improve host compiler detection for vulkan shader generation:
- Add NO_CMAKE_FIND_ROOT_PATH to all compiler searches
- Consolidate compiler detection logic
- Fix Windows-specific MSVC detection
- Ensure correct compiler search in cross-compilation

* refactor: Simplify CMake function for detecting host compiler

Simplified the CMake function to improve the process of detecting the host compiler.

* fix: Remove unnecessary Vulkan library linkage in CMakeLists.txt

Since `vulkan-shader-gen.cpp` only requires the `glslc` executable
and not the Vulkan headers or libraries, CMakeLists.txt needs to
be corrected.
(See: ecc93d0558fc3ecb8a5af69d2ece02fae4710ade)

* refactor: Rename host_toolchain.cmake.in

- Rename host_toolchain.cmake.in to cmake/host-toolchain.cmake.in

* refactor: GGML_VULKAN_SHADERS_GEN_TOOLCHAIN

Rename the macro GGML_SHADERS_GEN_TOOLCHAIN to GGML_VULKAN_SHADERS_GEN_TOOLCHAIN
2025-02-03 22:00:57 +02:00
54a2ee648f RoPE: fix back, CUDA support for back + noncont. (llama/11240)
* RoPE: fix back, CUDA support for back + noncont.

* fix comments reg. non-cont. RoPE support [no-ci]
2025-02-03 22:00:57 +02:00
9700cfb0a3 SYCL: Add gated linear attention kernel (llama/11175)
* SYCL: Add Gated Linear attention kernel

* glahpp: add a space at the end of file

* gla: Put the barrier inside the main logic loop
2025-02-03 22:00:57 +02:00
8e0143e205 ggml : add option to not print stack on abort (ggml/1081)
* Add option to not print stack on abort

Add option/envvar to disable stack printing on abort.
Also link some unittests with Threads to fix link errors on
ubuntu/g++11.

* Update ggml/src/ggml.c

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-02-03 22:00:57 +02:00
f12559d590 ggml-cpu : fix ggml_graph_compute_thread did not terminate on abort. (ggml/1065)
some threads kept looping and failed to terminate properly after an abort during CPU execution.

Co-authored-by: issi <issi@gmail.com>
2025-02-03 22:00:57 +02:00
589b40810a ci : dummy commit to trigger CI 2025-02-03 16:32:48 +02:00
7ffcd05267 ruby : Make context accept initial parameters, API to retrieve a segment and more (#2749)
* Fix type signature for Whisper.log_set

* Use cache file for model when offline

* Extract ruby_whisper_transcribe() into a file

* Extract Whisper::Error

* Use FileList for ext/*.{c,cpp,h}

* Extract Whisper::Segment

* Extract Whisper::Model

* Extract Whisper::Params

* Extract Whisper::Context

* Extract log_callback function

* Write base code in C rather than C++

* Use chdir instead of Dir.chdir in Rakefile

* Define alloc func for Whisper::Model

* Define Whisper::Params' calback and user data reader

* Add test for Whisper::Params.new with keyword arguments

* Make Whisper::Params.new accept keyword arguments

* Update type signatures

* Update README

* Update CLEAN targets

* Fix document comment for Whisper::Params#new_segment_callback=

* Use macro to define params

* Fix dependency of build task

* Set Whisper.finalize_log_callback visibility to private

* Make Whisper::Context#full and full_parallel return self

* Add test for Whisper::Context#full_get_segment

* Add Whisper::Context#full_get_segment

* Update signatures

* Update README

* Fix signature

* Resplace #initialize with .new in signature file [skip ci]

* Fix potential overflow
2025-01-21 09:39:54 +02:00
7a423f1c00 whisper.objc : fix build and CI 2025-01-18 12:06:06 +02:00
99b011a9f5 talk-llama : sync llama.cpp 2025-01-14 10:38:01 +02:00
19d95f9f9a sync : ggml 2025-01-14 10:38:01 +02:00
d5ef1737d8 GGUF: C++ refactor, backend support, misc fixes (skip) (llama/11030)
ggml-ci
2025-01-14 10:38:01 +02:00
1deb41f0e7 ggml : add opencl backend (skip) (llama/10693)
---------

Co-authored-by: Skyler Szot <quic_sszot@quicinc.com>
Co-authored-by: Shangqing Gu <quic_shawngu@quicinc.com>
Co-authored-by: Alexander Angus <quic_aangus@quicinc.com>
Co-authored-by: Hongqiang Wang <quic_wangh@quicinc.com>
Co-authored-by: Max Krasnyansky <quic_maxk@quicinc.com>
2025-01-14 10:38:01 +02:00
2425caf4fd cuda : CUDA Graph Compute Function Refactor (precursor for performance improvements) (llama/11042)
* Refactor: Moves cuda graph executable update step to separate function.

* Refactor: Moves cuda graph update check to separate function.

* Refactor: Moves cuda graph maintenance (update or adjusting copy parameters) to separate function for improved readability.

* Fix: Adds missing reference to maintain_cuda_graph() definition.

* Refactor: Improves structure and abstractions by moving CUDA graph evaluation and capture to its own function.

* Refactor: Moves node graph checks and copy ops into individual function for improved readability.

* Refactor: Removes code permanently excluded from compilation to increase readability.

* Style: Adds missing newline

* Style: Consolidates several neighboring '#ifdef USE_CUDA_GRAPH' into a single one

* Refactor: Makes 'cuda_graph_update_required' a local variable

* remove double lines between functions

---------

Co-authored-by: slaren <slarengh@gmail.com>
2025-01-14 10:38:01 +02:00
a4b00bcaaf ggml : do not define GGML_USE_CUDA when building with GGML_BACKEND_DL (llama/11211)
Build fails when using HIP and GGML_BACKEND_DL:
```
/usr/bin/ld: ../ggml/src/libggml.so: undefined reference to `ggml_backend_cuda_reg'
collect2: error: ld returned 1 exit status
```
This patch fixes this.
2025-01-14 10:38:01 +02:00
cdb8aa2f2e Vulkan: Fix float16 use on devices without float16 support + fix subgroup_size_control validation error (llama/11161)
* Vulkan: Remove float16 use in shaders

* Fix validation error about subgroup_size_control extension
2025-01-14 10:38:01 +02:00
06209f6683 llama: add support for QRWKV6 model architecture (llama/11001)
llama: add support for QRWKV6 model architecture (llama/11001)

* WIP: Add support for RWKV6Qwen2

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* RWKV: Some graph simplification

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Add support for RWKV6Qwen2 with cpu and cuda GLA

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* RWKV6[QWEN2]: Concat lerp weights together to reduce cpu overhead

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix some typos

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* code format changes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix wkv test & add gla test

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix cuda warning

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update README.md

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update ggml/src/ggml-cuda/gla.cu

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Fix fused lerp weights loading with RWKV6

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* better sanity check skipping for QRWKV6 in llama-quant

thanks @compilade

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
Co-authored-by: compilade <git@compilade.net>

---------

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: compilade <git@compilade.net>
2025-01-14 10:38:01 +02:00
c3235bd81e SYCL: Refactor ggml_sycl_compute_forward (llama/11121)
* SYCL: refactor ggml_sycl_compute_forward

* SYCL: add back GGML_USED(dst) to ggml_sycl_cpy

* SYCL: add function name to noop debug

* SYCL: Some device info print refactoring and add details of XMX availability
2025-01-14 10:38:01 +02:00
262d0abc87 fix: add missing msg in static_assert (llama/11143)
Signed-off-by: hydai <z54981220@gmail.com>
2025-01-14 10:38:01 +02:00
124eec1664 llamafile : ppc64le MMA INT8 implementation (llama/10912)
This change upstreams llamafile's cpu matrix
multiplication kernels for ppc64le using MMA
builtins for quantised int8 datatype.

This change results in 10% - 70% improvement
in total speed(ie all tokens/total time), across
various batch sizes.

The patch is tested with Meta-Lllama-3-8B,
Mistral-7B, Llama-2-7B-chat-hf models on a
IBM POWER10 machine.

Signed-off-by: Amrita H S <amritahs@linux.vnet.ibm.com>
2025-01-14 10:38:01 +02:00
b08c3a88c8 Disable GL_KHR_cooperative_matrix Vulkan extension if not available. (llama/11117)
* Disable GL_KHR_cooperative_matrix Vulkan extension if not available.

* Perform Vulkan extensions checks in a more sensible order

* Remove unnecessary #ifdef directive
2025-01-14 10:38:01 +02:00
0afce25a69 fix: Vulkan shader gen binary path when Cross-compiling (llama/11096)
* fix: Vulkan shader gen binary path when cross compiling
2025-01-14 10:38:01 +02:00
acdbe58631 GGUF: C++ refactor, backend support, misc fixes (llama/11030)
* GGUF: C++ refactor, backend support, misc fixes

remove ggml_tensor.backend

update CODEOWNERS [no ci]

remove gguf_get_data from API

revise GGUF API data types
2025-01-14 10:38:01 +02:00
09fabffdf5 ggml-backend : only offload from host buffers (fix) (llama/11124) 2025-01-14 10:38:01 +02:00
3988d6396b ggml-backend : only offload from host buffers (llama/11120) 2025-01-14 10:38:01 +02:00
c8c63eeec0 rpc : code cleanup (llama/11107)
Remove duplicated macros, use GGML_LOG_ERROR for errors
2025-01-14 10:38:01 +02:00
abf7f24410 SYCL: Use get_multi_ptr instead of deprecated get_pointer in wkv6 (llama/11087)
* SYCL: Use get_multi_ptr instead of deprecated get_pointer in wkv6

* Revert "SYCL: Use get_multi_ptr instead of deprecated get_pointer in wkv6"

This reverts commit f62dc45f318e48d375e7734b34cbddee81deed52.

* Reland: Use get_multi_ptr instead of deprecated get_pointer in wkv6
2025-01-14 10:38:01 +02:00
341f5c28e6 CUDA: add BF16 support (llama/11093)
* CUDA: add BF16 support
2025-01-14 10:38:01 +02:00
5377099524 Vulkan: Add device-specific blacklist for coopmat for the AMD proprietary driver (llama/11074)
* Vulkan: Add device-specific blacklist for coopmat for the AMD proprietary driver

* Add (TM) to AMD name check
2025-01-14 10:38:01 +02:00
dcbb375779 Support for models with non-512-aligned tensors over RPC. (llama/11047)
* Added init tensor calling code

* Added get_alloc_size forwarding

* Cleaned up and improved type/error handling.

* fix: remove trailing whitespaces.

* Cleanup and use GGML error logging functions.

* Handle potentially dangerous edge cases.

* Apply suggestions from code review

Co-authored-by: Diego Devesa <slarengh@gmail.com>

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-01-14 10:38:01 +02:00
4334c71aed fix: Vulkan shader gen binary path (llama/11037) 2025-01-14 10:38:01 +02:00
e875a82473 ggml : allow loading backend with env variable (ggml/1059)
ref: #1058
2025-01-14 10:38:01 +02:00
507e230f1e scripts : sync opencl, gguf 2025-01-14 09:42:16 +02:00
eb68324c86 whisper : fix gpu device selection (#2728) 2025-01-13 13:11:37 +02:00
e940fbf283 server : fix build (#2718) 2025-01-13 08:57:33 +02:00
35d0e02c72 talk-llama : sync llama.cpp (#2709) 2025-01-13 08:55:48 +02:00
45d3faf961 server : generate unique tmp filenames (#2718)
#Summary

This Merge Request adds a mechanism to generate unique filenames for FFmpeg conversions in whisper_server.cpp. Previously, a single fixed filename was used (e.g., whisper-server-tmp.wav), which could result in unexpected file overwrites under certain circumstances. By generating a unique filename per request, any risk of overwriting temporary files is eliminated.

#Background / Motivation
	•	Problem: Relying on a static filename for temporary audio files may lead to overwrites if multiple operations occur simultaneously or if the same file name is reused.
	•	Goal: Dynamically generate unique filenames, ensuring each request or operation uses an isolated temporary file.
2025-01-13 08:55:21 +02:00
2ab2eb5110 whisper : add whisper_full_get_segment_no_speech_prob_from_state (#2716) 2025-01-09 16:21:07 +02:00
b82d305282 readme : add docker instructions (#2711)
I found the docker instructions to be useful in the README.md and the differences in docker variants such as ffmpeg and cuda support. However, this section was removed in v1.7.4 and I would vote to bring it back.

This is a pull request to add that section back.
2025-01-07 13:20:51 +02:00
885e31368d docs: Fix main -> whisper-cli in download scripts (#2707) 2025-01-06 15:17:57 +02:00
328 changed files with 155598 additions and 34737 deletions

View File

@ -12,7 +12,7 @@ FROM ${BASE_CUDA_DEV_CONTAINER} as build
ARG CUDA_DOCKER_ARCH=all
RUN apt-get update && \
apt-get install -y build-essential git cmake libsdl2-dev wget
apt-get install -y build-essential git cmake libsdl2-dev wget git
WORKDIR /app

View File

@ -17,7 +17,7 @@ ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
ENV GGML_CUDA=1
RUN apt-get update && \
apt-get install -y build-essential libsdl2-dev wget cmake \
apt-get install -y build-essential libsdl2-dev wget cmake git \
&& rm -rf /var/lib/apt/lists/* /var/cache/apt/archives/*
# Ref: https://stackoverflow.com/a/53464012
@ -33,7 +33,7 @@ ENV LD_LIBRARY_PATH /usr/local/cuda-${CUDA_MAIN_VERSION}/compat:$LD_LIBRARY_PATH
WORKDIR /app
RUN apt-get update && \
apt-get install -y curl ffmpeg wget cmake \
apt-get install -y curl ffmpeg wget cmake git \
&& rm -rf /var/lib/apt/lists/* /var/cache/apt/archives/*
COPY --from=build /app /app

View File

@ -2,7 +2,7 @@ FROM ubuntu:22.04 AS build
WORKDIR /app
RUN apt-get update && \
apt-get install -y build-essential wget cmake \
apt-get install -y build-essential wget cmake git \
&& rm -rf /var/lib/apt/lists/* /var/cache/apt/archives/*
COPY .. .
@ -12,7 +12,7 @@ FROM ubuntu:22.04 AS runtime
WORKDIR /app
RUN apt-get update && \
apt-get install -y curl ffmpeg libsdl2-dev wget cmake \
apt-get install -y curl ffmpeg libsdl2-dev wget cmake git \
&& rm -rf /var/lib/apt/lists/* /var/cache/apt/archives/*
COPY --from=build /app /app

View File

@ -10,8 +10,8 @@ on:
- whisper.h
jobs:
ubuntu-latest:
runs-on: ubuntu-latest
ubuntu-22:
runs-on: ubuntu-22.04
steps:
- uses: actions/setup-go@v5
with:

View File

@ -19,7 +19,12 @@ on:
- ggml/**/*.m
- ggml/**/*.metal
- scripts/get-flags.mk
- examples/dr_wav.h
- examples/common.h
- examples/common.cpp
- examples/common-whisper.h
- examples/common-whisper.cpp
- examples/stb_vorbis.c
- examples/miniaudio.h
pull_request:
paths:
- bindings/ruby/**
@ -39,11 +44,16 @@ on:
- ggml/**/*.m
- ggml/**/*.metal
- scripts/get-flags.mk
- examples/dr_wav.h
- examples/common.h
- examples/common.cpp
- examples/common-whisper.h
- examples/common-whisper.cpp
- examples/stb_vorbis.c
- examples/miniaudio.h
jobs:
ubuntu-latest:
runs-on: ubuntu-latest
ubuntu-22:
runs-on: ubuntu-22.04
defaults:
run:
working-directory: bindings/ruby

View File

@ -16,8 +16,8 @@ env:
VCPKG_BINARY_SOURCES: "clear;x-gha,readwrite"
jobs:
ubuntu-latest:
runs-on: ubuntu-latest
ubuntu-22:
runs-on: ubuntu-22.04
strategy:
fail-fast: false
@ -38,12 +38,12 @@ jobs:
-w /workspace ${{ env.ubuntu_image }} /bin/sh -c '
set -e
apt update
apt install -y build-essential libsdl2-dev cmake
apt install -y build-essential libsdl2-dev cmake git
cmake -B build
cmake --build build --config Release -j $(nproc)'
ubuntu-latest-arm64:
runs-on: ubuntu-latest
ubuntu-22-arm64:
runs-on: ubuntu-22.04
strategy:
fail-fast: false
@ -64,12 +64,12 @@ jobs:
-w /workspace ${{ env.ubuntu_image }} /bin/sh -c '
set -e
apt update
apt install -y build-essential libsdl2-dev cmake
apt install -y build-essential libsdl2-dev cmake git
cmake -B build -DGGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=armv8-a
cmake --build build --config Release -j $(nproc)'
ubuntu-latest-arm-v7:
runs-on: ubuntu-latest
ubuntu-22-arm-v7:
runs-on: ubuntu-22.04
strategy:
fail-fast: false
@ -90,17 +90,28 @@ jobs:
-w /workspace ${{ env.ubuntu_image }} /bin/sh -c '
set -e
apt update
apt install -y build-essential libsdl2-dev cmake
apt install -y build-essential libsdl2-dev cmake git
cmake -B build -DGGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=armv7-a+fp
cmake --build build --config Release -j $(nproc)'
macOS-latest:
runs-on: macOS-latest
strategy:
matrix:
destination: ['generic/platform=macOS', 'generic/platform=iOS', 'generic/platform=tvOS']
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
with:
key: macOS-latest-swift
evict-old-files: 1d
- name: Dependencies
run: |
brew update
@ -108,8 +119,21 @@ jobs:
- name: Build
run: |
cmake -B build
cmake --build build --config Release
sysctl -a
cmake -B build -G Xcode \
-DGGML_METAL_USE_BF16=ON \
-DGGML_METAL_EMBED_LIBRARY=ON \
-DWHISPER_BUILD_EXAMPLES=OFF \
-DWHISPER_BUILD_TESTS=OFF \
-DWHISPER_BUILD_SERVER=OFF \
-DCMAKE_OSX_ARCHITECTURES="arm64;x86_64"
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu)
- name: xcodebuild for swift package
id: xcodebuild
run: |
./build-xcframework.sh
# freeBSD-latest:
# runs-on: macos-12
@ -129,8 +153,8 @@ jobs:
# cmake -B build
# cmake --build build --config Release
ubuntu-latest-gcc:
runs-on: ubuntu-latest
ubuntu-22-gcc:
runs-on: ubuntu-22.04
strategy:
fail-fast: false
@ -152,13 +176,13 @@ jobs:
-w /workspace ${{ env.ubuntu_image }} /bin/sh -c '
set -e
apt update
apt install -y build-essential cmake libsdl2-dev
apt install -y build-essential cmake libsdl2-dev git
cmake . -DWHISPER_SDL2=ON -DCMAKE_BUILD_TYPE=${{ matrix.build }}
make
ctest -L gh --output-on-failure'
ubuntu-latest-gcc-arm64:
runs-on: ubuntu-latest
ubuntu-22-gcc-arm64:
runs-on: ubuntu-22.04
strategy:
fail-fast: false
@ -180,13 +204,13 @@ jobs:
-w /workspace ${{ env.ubuntu_image }} /bin/sh -c '
set -e
apt update
apt install -y build-essential cmake libsdl2-dev
apt install -y build-essential cmake libsdl2-dev git
cmake . -DWHISPER_SDL2=ON -DCMAKE_BUILD_TYPE=${{ matrix.build }} -DGGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=armv8-a
make
ctest -L gh --output-on-failure'
ubuntu-latest-gcc-arm-v7:
runs-on: ubuntu-latest
ubuntu-22-gcc-arm-v7:
runs-on: ubuntu-22.04
strategy:
fail-fast: false
@ -208,13 +232,13 @@ jobs:
-w /workspace ${{ env.ubuntu_image }} /bin/sh -c '
set -e
apt update
apt install -y build-essential cmake libsdl2-dev
apt install -y build-essential cmake libsdl2-dev git
cmake . -DWHISPER_SDL2=ON -DCMAKE_BUILD_TYPE=${{ matrix.build }} -DGGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=armv7-a+fp
make
ctest -L gh --output-on-failure'
ubuntu-latest-clang:
runs-on: ubuntu-latest
ubuntu-22-clang:
runs-on: ubuntu-22.04
strategy:
fail-fast: false
@ -239,13 +263,13 @@ jobs:
-w /workspace ${{ env.ubuntu_image }} /bin/sh -c '
set -e
apt update
apt install -y clang build-essential cmake libsdl2-dev
apt install -y clang build-essential cmake libsdl2-dev git
cmake . -DWHISPER_SDL2=ON -DCMAKE_BUILD_TYPE=${{ matrix.build }} -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_COMPILER=clang
make
ctest -L gh --output-on-failure'
ubuntu-latest-gcc-sanitized:
runs-on: ubuntu-latest
ubuntu-22-gcc-sanitized:
runs-on: ubuntu-22.04
strategy:
fail-fast: false
@ -267,7 +291,7 @@ jobs:
-w /workspace ${{ env.ubuntu_image }} /bin/sh -c '
set -e
apt update
apt install -y build-essential cmake
apt install -y build-essential cmake git
cmake . -DCMAKE_BUILD_TYPE=Debug -DWHISPER_SANITIZE_${{ matrix.sanitizer }}=ON
make
ctest -L gh --output-on-failure'
@ -302,12 +326,12 @@ jobs:
shell: bash
run: |
sudo apt update
sudo apt install intel-oneapi-compiler-dpcpp-cpp
sudo apt install intel-oneapi-compiler-dpcpp-cpp git
- name: install oneAPI MKL library
shell: bash
run: |
sudo apt install intel-oneapi-mkl-devel
sudo apt install intel-oneapi-mkl-devel git
- name: Clone
id: checkout
@ -352,7 +376,7 @@ jobs:
shell: bash
run: |
sudo apt update
sudo apt install intel-oneapi-compiler-dpcpp-cpp
sudo apt install intel-oneapi-compiler-dpcpp-cpp git
- name: install oneAPI MKL library
shell: bash
@ -393,6 +417,7 @@ jobs:
msystem: ${{matrix.sys}}
install: >-
base-devel
git
mingw-w64-${{matrix.env}}-toolchain
mingw-w64-${{matrix.env}}-cmake
mingw-w64-${{matrix.env}}-SDL2
@ -584,7 +609,7 @@ jobs:
7z x sdl2.zip
echo "SDL2_DIR=${{ github.workspace }}\SDL2-${{ matrix.sdl2_ver }}\cmake" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "${{ github.workspace }}\SDL2-${{ matrix.sdl2_ver }}\cmake" > SDL2_PATH.txt
- name: Configure CMake
shell: cmd
run: |
@ -594,16 +619,16 @@ jobs:
-DCMAKE_CUDA_ARCHITECTURES=all ^
-DWHISPER_SDL2=${{ matrix.sdl2 }} ^
-DSDL2_DIR="%SDL2_DIR%"
- name: Build Project
shell: cmd
run: |
cd ./build
cmake --build . --config ${{ matrix.build }}
cmake --build . --config ${{ matrix.build }}
- name: Copy CUDA DLLs
run: |
Get-ChildItem "${{ steps.cuda-toolkit.outputs.CUDA_PATH }}/bin/" -Filter "*.dll" |
Get-ChildItem "${{ steps.cuda-toolkit.outputs.CUDA_PATH }}/bin/" -Filter "*.dll" |
Copy-Item -Destination "build/bin/${{ matrix.build }}"
- name: Copy SDL2.dll
@ -617,7 +642,7 @@ jobs:
path: build/bin/${{ matrix.build }}
emscripten:
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
strategy:
matrix:
@ -670,21 +695,20 @@ jobs:
-DCMAKE_OSX_DEPLOYMENT_TARGET=14.0 \
-DCMAKE_XCODE_ATTRIBUTE_DEVELOPMENT_TEAM=ggml
cmake --build . --config Release -j $(sysctl -n hw.logicalcpu) -- CODE_SIGNING_ALLOWED=NO
sudo cmake --install . --config Release
- name: xcodebuild for swift package
id: xcodebuild
run: |
xcodebuild -scheme whisper-Package -destination 'generic/platform=iOS'
./build-xcframework.sh
#- name: Build objc example
# run: xcodebuild -project examples/whisper.objc/whisper.objc.xcodeproj -scheme whisper.objc -configuration ${{ matrix.build }} -sdk iphoneos build
- name: Build objc example
run: xcodebuild -project examples/whisper.objc/whisper.objc.xcodeproj -scheme whisper.objc -configuration ${{ matrix.build }} -sdk iphoneos CODE_SIGN_IDENTITY="" CODE_SIGNING_REQUIRED=NO FRAMEWORK_FOLDER_PATH=./build-ios build
- name: Build swiftui example
run: xcodebuild -project examples/whisper.swiftui/whisper.swiftui.xcodeproj -scheme WhisperCppDemo -configuration ${{ matrix.build }} -sdk iphoneos CODE_SIGNING_REQUIRED=NO CODE_SIGN_IDENTITY= -destination 'generic/platform=iOS' build
run: xcodebuild -project examples/whisper.swiftui/whisper.swiftui.xcodeproj -scheme WhisperCppDemo -configuration ${{ matrix.build }} -sdk iphoneos CODE_SIGNING_REQUIRED=NO CODE_SIGN_IDENTITY= -destination 'generic/platform=iOS' FRAMEWORK_FOLDER_PATH=./build-ios build
android:
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
steps:
- name: Clone
@ -714,7 +738,7 @@ jobs:
# TODO: disable because of following fail: https://github.com/ggerganov/whisper.cpp/actions/runs/11019444420/job/30627193602
# android_java:
# runs-on: ubuntu-latest
# runs-on: ubuntu-22.04
#
# steps:
# - name: Clone
@ -783,7 +807,7 @@ jobs:
# PGP_PASSPHRASE: ${{ secrets.GPG_PASSPHRASE }}
quantize:
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
steps:
- name: Clone

View File

@ -11,7 +11,7 @@ jobs:
name: Push Docker image to Docker Hub
if: github.event.pull_request.draft == false
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
env:
COMMIT_SHA: ${{ github.sha }}
strategy:
@ -28,6 +28,8 @@ jobs:
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
with:
image: tonistiigi/binfmt:qemu-v7.0.0-28
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3

View File

@ -10,8 +10,8 @@ on:
- whisper.h
jobs:
addon_node-ubuntu-latest:
runs-on: ubuntu-latest
addon_node-ubuntu-22:
runs-on: ubuntu-22.04
strategy:
matrix:
node-version: [ 16.x, 18.x ]
@ -22,7 +22,7 @@ jobs:
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential
sudo apt-get install build-essential git
sudo apt-get install cmake
sudo apt-get install libsdl2-dev

2
.gitignore vendored
View File

@ -58,3 +58,5 @@ cmake-build-debug/
.cxx/
.gradle/
local.properties
.log
.exe

211
AUTHORS
View File

@ -1,34 +1,51 @@
# date: Tue Apr 9 20:27:03 EEST 2024
# date: Tue Feb 4 13:03:35 EET 2025
# this file is auto-generated by scripts/gen-authors.sh
0/0 <zero@imaskeleton.me>
0cc4m <picard12@live.de>
0xsourcecode <134374803+0xsourcecode@users.noreply.github.com>
65a <10104049+65a@users.noreply.github.com>
AIWintermuteAI <32562299+AIWintermuteAI@users.noreply.github.com>
AT <manyoso@users.noreply.github.com>
Aarni Koskela <akx@iki.fi>
Aaron Pham <29749331+aarnphm@users.noreply.github.com>
Aaron Taylor <aaron@exphat.com>
Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>
Abitofevrything <54505189+abitofevrything@users.noreply.github.com>
Adam Jones <domdomegg+git@gmail.com>
Adrien Gallouët <adrien@gallouet.fr>
Adrien Gallouët <angt@huggingface.co>
AfryMask <AfryMask@163.com>
Ahmad Bilal <ahmad.bilal@empglabs.com>
Ahmad Tameem <113388789+Tameem-10xE@users.noreply.github.com>
AidanBeltonS <87009434+AidanBeltonS@users.noreply.github.com>
AidanBeltonS <aidan.belton@codeplay.com>
Akarshan Biswas <akarshan.biswas@gmail.com>
Akarshan Biswas <akarshanbiswas@fedoraproject.org>
Akash Mahajan <akash7190@gmail.com>
Akash Mahajan <akashmjn@stanford.edu>
Al Hoang <3811822-hoanga@users.noreply.gitlab.com>
Alan <unknown>
Albert Jin <albert.jin@gmail.com>
Alberto Cabrera Pérez <alberto.cabrera@codeplay.com>
Alberto Cabrera Pérez <alberto.cabrera@intel.com>
Aleksander Andrzejewski <18704749+aleksanderandrzejewski@users.noreply.github.com>
Alex Azarov <alex@azarov.by>
Alex Bacart <13940752+alex-bacart@users.noreply.github.com>
Alex Evgrashin <aevgrashin@yandex.ru>
Alex O'Connell <35843486+acon96@users.noreply.github.com>
Alexandr Graschenkov <alexandr.graschenkov91@gmail.com>
Alexandru Mariuti <alex@mariuti.com>
Alexey Kharlamov <alexey@kharlamov.biz>
Alfredo Montesinos <alfredo.montesinos@g.austincc.edu>
Ali Alameh <ali.alameh@isae.edu.lb>
Alter <0x7c48@gmail.com>
Ananta Bastola <anantarajbastola@gmail.com>
Andreas Kieslinger <47689530+aendk@users.noreply.github.com>
Andreas Lubbe <git@lubbe.org>
Andreu Huguet <andreuhuguet@gmail.com>
Andrew Huynh <a5thuynh@gmail.com>
Andrew Minh Nguyen <40281306+amqdn@users.noreply.github.com>
Andrew S <andrews54757@gmail.com>
Andy Maloney <asmaloney@gmail.com>
Anton Kostin <masguit42@users.noreply.github.com>
@ -40,8 +57,11 @@ AustinMroz <austinmroz@utexas.edu>
Avik Sengupta <avik@sengupta.net>
Bader-eddine Ouaich <49657842+baderouaich@users.noreply.github.com>
Baffin Lee <baffinlee@gmail.com>
Ben Ashbaugh <ben.ashbaugh@intel.com>
Ben Nortier <bjnortier@gmail.com>
Benjamin Heiniger <benjamin.heiniger@bluewin.ch>
Bernhard M. Wiedemann <githubbmwprimary@lsmod.de>
Binozo <70137898+Binozo@users.noreply.github.com>
Bo-Yi Wu <appleboy.tw@gmail.com>
Boris Bliznioukov <blib@mail.com>
Borislav Stanimirov <b.stanimirov@abv.bg>
@ -49,47 +69,86 @@ Brad Murray <59848399+bradmurray-dt@users.noreply.github.com>
Brian Murray <brian@bmurray.ca>
CRD716 <crd716@gmail.com>
Canis Lupus <Canis-UK@users.noreply.github.com>
Carlos Zoido <mrgalleta@gmail.com>
Carolinabanana <140120812+Carolinabanana@users.noreply.github.com>
CarterLi999 <664681047@qq.com>
ChangSeok Oh <shivamidow@users.noreply.github.com>
Changyeon Kim <cyzero.kim@samsung.com>
Chaoqun <27287694+OpenWaygate@users.noreply.github.com>
Charles Xu <63788048+chaxu01@users.noreply.github.com>
Charles Xu <charles.xu@arm.com>
Chen Xi <xi2.chen@intel.com>
Chen Xi <xixichen08@foxmail.com>
Chenguang Li <87689256+noemotiovon@users.noreply.github.com>
Chia-Hsiang Cheng <88014292+garychia@users.noreply.github.com>
Chidi Williams <williamschidi1@gmail.com>
Chris Elrod <elrodc@gmail.com>
Christian <12550267+iceychris@users.noreply.github.com>
Christian Kastner <ckk@kvr.at>
Clifford Heath <clifford.heath@gmail.com>
Clint Herron <hanclinto@gmail.com>
Colin <github@whoisc.cc>
Conrad Kramer <conrad@conradkramer.com>
Corey Earwood <iamcgn+github@gmail.com>
CrispStrobe <154636388+CrispStrobe@users.noreply.github.com>
DAN™ <dranger003@gmail.com>
DGdev91 <DGdev91@users.noreply.github.com>
Damian Czaja <trojan295@protonmail.com>
Dan Johansson <164997844+eddnjjn@users.noreply.github.com>
Dan Johansson <dan.johansson@arm.com>
Daniel Bevenius <daniel.bevenius@gmail.com>
Daniel Valdivia <18384552+dvaldivia@users.noreply.github.com>
Daniel Ziegenberg <daniel@ziegenberg.at>
Daniele <57776841+daniandtheweb@users.noreply.github.com>
Dave <dave-fl@users.noreply.github.com>
Dave Airlie <airlied@gmail.com>
Dave Airlie <airlied@redhat.com>
Daven Sanassy <daven@vochlea.co.uk>
David <dnhkng@gmail.com>
David Thorpe <djt@mutablelogic.com>
DavidKorczynski <david@adalogics.com>
Davidson Francis <davidsondfgl@gmail.com>
Dener Stassun <denerstassun@gmail.com>
Dibakar Gope <dibakar.gope@arm.com>
Didzis Gosko <didzis@users.noreply.github.com>
Diego Devesa <slarengh@gmail.com>
Digipom <admin@digipom.com>
Dimo <dimo@ieee.org>
Djip007 <3705339+Djip007@users.noreply.github.com>
Djip007 <djip.perois@free.fr>
Dody Suria Wijaya <dodysw@gmail.com>
Dou Xinpeng <15529241576@163.com>
Dou Xinpeng <81913537+Dou-Git@users.noreply.github.com>
Dr. Tom Murphy VII Ph.D <499244+tom7@users.noreply.github.com>
Duncan McConnell <ddmcconnell4@gmail.com>
Egor Egorov <me@egorfine.com>
Elkana Bardugo <ttv200@gmail.com>
Emmanuel Schmidbauer <eschmidbauer@gmail.com>
Engininja2 <139037756+Engininja2@users.noreply.github.com>
Eric Curtin <ericcurtin17@gmail.com>
Eric Swanson <eswanson@alloscomp.com>
Eric Tendian <erictendian@gmail.com>
Eric Zhang <34133756+EZForever@users.noreply.github.com>
Erik Scholz <Green-Sky@users.noreply.github.com>
Evan Jones <evan.q.jones@gmail.com>
Evan Martin <evan.martin@gmail.com>
Eve <139727413+netrunnereve@users.noreply.github.com>
Evgeny Kuznetsov <evgeny@kuznetsov.md>
F1L1P <78918286+F1L1Pv2@users.noreply.github.com>
Faisal Zaghloul <quic_fzaghlou@quicinc.com>
Fangjun Kuang <csukuangfj@gmail.com>
Felix <stenbackfelix@gmail.com>
Finn Voorhees <finnvoorhees@gmail.com>
FirstTimeEZ <179362031+FirstTimeEZ@users.noreply.github.com>
FlippFuzz <41221030+FlippFuzz@users.noreply.github.com>
Frankie Robertson <frankier@users.noreply.github.com>
Gang Chen <goncha@gmail.com>
Gavin Cai <gavin1818@hotmail.com>
George Hindle <george@georgehindle.com>
Georgi Gerganov <ggerganov@gmail.com>
Gilad S <7817232+giladgd@users.noreply.github.com>
Gilad S <giladgd@users.noreply.github.com>
Gilad S. <7817232+giladgd@users.noreply.github.com>
GitAritron <103900385+GitAritron@users.noreply.github.com>
GiviMAD <GiviMAD@users.noreply.github.com>
Gleicon Moraes <gleicon@gmail.com>
@ -98,41 +157,66 @@ Guillaume Wenzek <gwenzek@users.noreply.github.com>
HY. Kelvin Lee <34256578+hykelvinlee42@users.noreply.github.com>
Halalaluyafail3 <55773281+Halalaluyafail3@users.noreply.github.com>
Hang <bebound@gmail.com>
Haus1 <haus.xda@gmail.com>
Herman Semenov <GermanAizek@yandex.ru>
HimariO <dsfhe49854@gmail.com>
Hong Bo PENG <penghb@cn.ibm.com>
Hrishikesh Barman <geekodour@users.noreply.github.com>
Hugo <hugo@whynothugo.nl>
Ian Bicking <ian@ianbicking.org>
Ian Bull <irbull@eclipsesource.com>
Ihar Hrachyshka <ihrachys@redhat.com>
Ikko Ashimine <eltociear@gmail.com>
Ikko Eltociear Ashimine <eltociear@gmail.com>
InconsolableCellist <23345188+InconsolableCellist@users.noreply.github.com>
Ismatulla Mansurov <47342870+sapoepsilon@users.noreply.github.com>
Ivan <nekotekina@gmail.com>
Ivan Filipov <159561759+vanaka11@users.noreply.github.com>
Ivan Gorin <ivangorin21@gmail.com>
Ivo von Putzer Reibegg <ivo.putzer@gmail.com>
JJ <103335846+computerscienceiscool@users.noreply.github.com>
Jack Mousseau <jmousseau@users.noreply.github.com>
JacobLinCool <jacoblincool@gmail.com>
Jakub Ráček <blizzcz@gmail.com>
Jared Van Bortel <jared@nomic.ai>
Jay Binks <jaybinks@gmail.com>
Jayant <jayantyadav202@gmail.com>
Jeff Bolz <jbolz@nvidia.com>
Jeroen Mostert <jeroen.mostert@cm.com>
Jhen-Jie Hong <developer@jhen.me>
Jhen-Jie Hong <iainst0409@gmail.com>
JidongZhang-THU <1119708529@qq.com>
Jo Liss <joliss42@gmail.com>
Joe Todd <joe.todd@codeplay.com>
Johan <jr.raffin@gmail.com>
Johannes Gäßler <johannesg@5d6.de>
John Balis <phobossystems@gmail.com>
JohnnyB <jboero@users.noreply.github.com>
Jonathan Soo <jcsoo@agora.com>
Jonno <1160532+razodactyl@users.noreply.github.com>
Joonas Pihlajamaa <joonas.pihlajamaa@iki.fi>
Jose <34888496+Jerry-Master@users.noreply.github.com>
Josh Bleecher Snyder <josharian@gmail.com>
Josscii <jossciiweiyi@gmail.com>
Judd <foldl@users.noreply.github.com>
Jumper775 <78500318+jumpers775@users.noreply.github.com>
Jun Hee Yoo <contact.jhyoo@gmail.com>
Junil Kim <logyourself@gmail.com>
Justina Cho <justcho5@gmail.com>
Justine Tunney <jtunney@gmail.com>
Justine Tunney <jtunney@mozilla.com>
KITAITI Makoto <KitaitiMakoto@gmail.com>
KP Kaiser <kirk@zothcorp.com>
Kamilake <exjang0@gmail.com>
Karol Kontny <82021046+kkontny@users.noreply.github.com>
Karthick <j.karthic2004@gmail.com>
Kartik Saranathan <278928+Kartiku@users.noreply.github.com>
Kasumi <90275229+kasumi-1@users.noreply.github.com>
Kawrakow <48489457+ikawrakow@users.noreply.github.com>
Kendrick Taylor <kendrick@circuitsix.com>
Kevin Brothaler <admin@digipom.com>
Kevin Gibbons <bakkot@gmail.com>
Konosuke Sakai <konosuke@konosuke.work>
Konstantin Zhuravlyov <konstantin.zhuravlyov@amd.com>
Kreijstal <rainb@tfwno.gf>
Kylin <56434533+KyL0N@users.noreply.github.com>
@ -147,56 +231,110 @@ Luis Herrera <herrera-luis@users.noreply.github.com>
Lukas Rist <glaslos@gmail.com>
M. A. Ali <73258591+MightyStud@users.noreply.github.com>
M. Eren Akbiyik <erenakbiyik@gmail.com>
Ma Mingfei <mingfei.ma@intel.com>
Maciek <maciek.mab122@gmail.com>
Mahesh Madhav <67384846+heshpdx@users.noreply.github.com>
Marcin Mielniczuk <marmistrz.dev@zoho.eu>
Mark Karpelès <MagicalTux@users.noreply.github.com>
Mark Zhuang <zhuangqiubin@gmail.com>
Markus Tavenrath <mtavenrath@users.noreply.github.com>
Martin Delille <martin@delille.org>
Martin Warnaar <martinwarnaar@gmail.com>
Masaya, Kato <62578291+msy-kato@users.noreply.github.com>
Matheus de Sousa <23645013+keyehzy@users.noreply.github.com>
Mathieu Baudier <mbaudier@argeo.org>
Mathijs de Bruin <mathijs@mathijsfietst.nl>
Matija Pevec <mightymatth@users.noreply.github.com>
Matt Stephenson <mstephenson6@users.noreply.github.com>
Max Krasnyansky <max.krasnyansky@gmail.com>
Max Krasnyansky <quic_maxk@quicinc.com>
Maximiliano Levi <8160966+maxilevi@users.noreply.github.com>
Meng, Hengyu <hengyu.meng@intel.com>
Mengqing Cao <cmq0113@163.com>
Michael Podvitskiy <podvitskiymichael@gmail.com>
Michael Rienstra <mrienstra@gmail.com>
Mikhail Grigorev <sleuthhound@gmail.com>
Mohammadreza Hendiani <hendiani.mohammadreza@gmail.com>
Mohit Agarwal <mohit@sdf.org>
Molly Sophia <mollysophia379@gmail.com>
Murilo Santana <mvrilo@gmail.com>
NETZkultur GmbH <mulholland@netzkultur.de>
Natsu <chino@hotococoa.moe>
Neil Chudleigh <nchudleigh@users.noreply.github.com>
Neo Zhang <14088817+arthw@users.noreply.github.com>
Neo Zhang Jianyu <jianyu.zhang@intel.com>
Neuman Vong <neuman.vong@gmail.com>
Nicholai Tukanov <nicholaitukanov@gmail.com>
Nicholas Albion <nalbion@yahoo.com>
Nico Bosshard <nico@bosshome.ch>
Nicolò Scipione <nicolo.scipione@codeplay.com>
Niels Mayer <Niels.Mayer@gmail.com>
Nikita Sarychev <42014488+sARY77@users.noreply.github.com>
Nikolaj Olsson <nikse.dk@gmail.com>
Okabintaro <103938900+Okabintaro@users.noreply.github.com>
Oleg Sidorov <me@whitebox.io>
Oleg Sidorov <oleg@sidorov.nl>
Olivier Chafik <ochafik@users.noreply.github.com>
Ondrej Kokes <ondrej.kokes@gmail.com>
Ouadie EL FAROUKI <ouadie.elfarouki@codeplay.com>
PAB <pierreantoine.bannier@gmail.com>
Paul Tsochantaris <ptsochantaris@icloud.com>
Pedro Probst <pprobst@insiberia.net>
Peng <hzp1024@qq.com>
Peter <peter277@users.noreply.github.com>
Philipp Zabel <philipp.zabel@gmail.com>
Philippe Normand <phil@base-art.net>
Philippe Normand <philn@igalia.com>
Plamen Minev <pacominev@gmail.com>
Prashant Vithule <119530321+Vithulep@users.noreply.github.com>
Przemysław Pawełczyk <przemoc@gmail.com>
Qianhe Chen <54462604+chenqianhe@users.noreply.github.com>
R0CKSTAR <xiaodong.ye@mthreads.com>
R0CKSTAR <yeahdongcn@gmail.com>
Radoslav Gerganov <rgerganov@gmail.com>
Radosław Gryta <radek.gryta@gmail.com>
Rahul Vadhyar <107788610+RahulVadhyar@users.noreply.github.com>
Raiya Araki <83504221+rai62@users.noreply.github.com>
Reinforce-II <fate@eastal.com>
Reinis Muiznieks <muiznieks.reinis@gmail.com>
RelatedTitle <r3latedtitle@gmail.com>
Rémy Oudompheng <oudomphe@phare.normalesup.org>
RhinoDevel <RhinoDevel@users.noreply.github.com>
Rich Jones <miserlou@gmail.com>
Robert Ormandi <52251610+ormandi@users.noreply.github.com>
Robin <robin.xw@hotmail.com>
Roddur Dasgupta <roddurd@gmail.com>
Roland Rabien <figbug@gmail.com>
Romain Biessy <romain.biessy@codeplay.com>
Ronsor <ronsor@ronsor.pw>
Rotem Dan <rotemdan@gmail.com>
Ryan Hitchman <hitchmanr@gmail.com>
Ryan Metcalfe <107415876+RyanMetcalfeInt8@users.noreply.github.com>
RyanChang <ftes90015@gmail.com>
SRHMorris <69468379+SRHMorris@users.noreply.github.com>
SXX <sxx1136965276@gmail.com>
Sacha Arbonel <sacha.arbonel@hotmail.fr>
Salman Faroz <stsfaroz@gmail.com>
Salvatore Mesoraca <s.mesoraca16@gmail.com>
Sam <49637763+Onlyartist9@users.noreply.github.com>
Sam Pullara <spullara@gmail.com>
Samuel Durante <44513615+samueldurantes@users.noreply.github.com>
Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Sandro Hanea <40202887+sandrohanea@users.noreply.github.com>
Sergio López <slp@redhat.com>
Sergio López <slp@sinrega.org>
Shanshan Shen <467638484@qq.com>
Shijie <821898965@qq.com>
Shupei Fan <dymarkfan@outlook.com>
Siddharth Ramakrishnan <srr2141@columbia.edu>
Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Simon Moisselin <simon.moisstoll@gmail.com>
Sindre Sorhus <sindresorhus@gmail.com>
Slava Primenko <primenko.s@gmail.com>
Srihari-mcw <96763064+Srihari-mcw@users.noreply.github.com>
Stavros Panakakis <53979866+Stavrospanakakis@users.noreply.github.com>
Stefan Sydow <s.sydow@heinlein-video.de>
Stefan Sydow <stefan@sydow.email>
Syahmi Azhar <prsyahmi@gmail.com>
Syed Jafri <syedjafri97@gmail.com>
Sơn Phan Trung <phantrungson17@gmail.com>
@ -205,37 +343,63 @@ Takeshi Inoue <inoue.takeshi@gmail.com>
Tamotsu Takahashi <ttakah+github@gmail.com>
Taras Glek <taras@thegp.com>
Tauseef Mohiuddin <35351464+tauseefmohammed2@users.noreply.github.com>
Thamster <Thamster@users.noreply.github.com>
Thijs Raymakers <thijs@raymakers.nl>
Thomas Fitzsimmons <fitzsim@fitzsim.org>
Tiago Fassoni <tiagofassoni@users.noreply.github.com>
Tienshiao Ma <tienshiao@tienshiao.org>
Tim Miller <drasticactions@users.noreply.github.com>
Timothy Cronin <40186632+4imothy@users.noreply.github.com>
Tobrun <tobrun.van.nuland@gmail.com>
Todd <taf2@users.noreply.github.com>
Toliver <teejae@gmail.com>
Tong Li <31761981+litongjava@users.noreply.github.com>
Tony Wasserka <4840017+neobrain@users.noreply.github.com>
Topping1 <78745143+Topping1@users.noreply.github.com>
Travis Cline <travis.cline@gmail.com>
UEXTM.com <84163508+uextm@users.noreply.github.com>
UsernamesLame <156965854+UsernamesLame@users.noreply.github.com>
Vadim Peretokin <vperetokin@hey.com>
Valentin Gosu <1454649+valenting@users.noreply.github.com>
Vin Misra <vinith@alum.mit.edu>
Vulcan <93451215+trholding@users.noreply.github.com>
WhiteOlivierus <36532695+WhiteOlivierus@users.noreply.github.com>
William Tambellini <william.tambellini@gmail.com>
William Tambellini <wtambellini@sdl.com>
Wilson Silva <wilson.dsigns@gmail.com>
Xiang (Kevin) Li <kevinli020508@gmail.com>
Xiao-Yong Jin <jinxiaoyong@gmail.com>
XiaotaoChen <chenxiaotao1234@gmail.com>
Xingchen Song(宋星辰) <xingchensong1996@163.com>
Xinpeng Dou <81913537+Dou-Git@users.noreply.github.com>
Xuan Son Nguyen <thichthat@gmail.com>
Yajing Tang <phillis@google.com>
Yang Shen <aplshenyang@gmail.com>
Yunès <jean.baptiste.yunes@free.fr>
Yuri Khrustalev <ykhrustalev@users.noreply.github.com>
Yusuf Redžić <48274562+redzic@users.noreply.github.com>
ZaBlazzingZephyrus <119159668+blazingzephyr@users.noreply.github.com>
Zhenwei Jin <109658203+kylo5aby@users.noreply.github.com>
Zhiyuan Li <lizhiyuan@uniartisan.com>
Zhiyuan Li <uniartisan2017@gmail.com>
Zigfrid Zvezdin <ziggerZZ@gmail.com>
Zollner <24618122+Zolliner@users.noreply.github.com>
a3sh <38979186+A3shTnT@users.noreply.github.com>
ag2s20150909 <19373730+ag2s20150909@users.noreply.github.com>
agray3 <agray3@users.noreply.github.com>
ai-at-home <149282006+ai-at-home@users.noreply.github.com>
aldorof <aldorof@users.noreply.github.com>
alonfaraj <alonfaraj@gmail.com>
amd-dwang <dong.wang@amd.com>
amritahs-ibm <amritahs@linux.vnet.ibm.com>
andypayne <apayne@gmail.com>
ardfork <134447697+ardfork@users.noreply.github.com>
arizhih <40765267+arizhih@users.noreply.github.com>
automaticcat <daogiatuank54@gmail.com>
bandoti <141645996+bandoti@users.noreply.github.com>
be-next <jerome.ramette@gmail.com>
bert hubert <bert@hubertnet.nl>
billyct <billy_allen@126.com>
bmwl <brian.marshall@tolko.com>
bobqianic <129547291+bobqianic@users.noreply.github.com>
bocytko <bocytko+github@gmail.com>
@ -248,7 +412,9 @@ byte-6174 <88070277+byte-6174@users.noreply.github.com>
cdosoftei <ciprian.dosoftei@gmail.com>
clach04 <Chris.Clark@actian.com>
compilade <113953597+compilade@users.noreply.github.com>
compilade <git@compilade.net>
conradg <conradjgodfrey@gmail.com>
crummyh <elijah@crums.us>
ddpasa <112642920+ddpasa@users.noreply.github.com>
denersc <denerstassun@gmail.com>
dscripka <dscripka@users.noreply.github.com>
@ -256,28 +422,55 @@ duthils <duthils@duthils.net>
ecneladis <ecneladis@users.noreply.github.com>
faker <nspyia2002@gmail.com>
fitzsim <fitzsim@fitzsim.org>
fj-y-saito <85871716+fj-y-saito@users.noreply.github.com>
fraxy-v <65565042+fraxy-v@users.noreply.github.com>
genevera (she/her) <genevera@users.noreply.github.com>
geniusnut <geniusnut@gmail.com>
gilbertgong <gilbert.gong@gmail.com>
gn64 <yukikaze.jp@gmail.com>
goldwaving <77494627+goldwaving@users.noreply.github.com>
greeshmay <greeshmay@gmail.com>
haopeng <657407891@qq.com>
hipudding <huafengchun@gmail.com>
hsinhoyeh <yhh92u@gmail.com>
hydai <z54981220@gmail.com>
iamthad <thadeus.j.fleming@gmail.com>
issixx <46835150+issixx@users.noreply.github.com>
james wolf <contractorwolf@hotmail.com>
jdomke <28772296+jdomke@users.noreply.github.com>
jettoblack <jettoblack@gmail.com>
jiez <373447296@qq.com>
joecryptotoo <80373433+joecryptotoo@users.noreply.github.com>
jorismertz <35079666+jorismertz@users.noreply.github.com>
junchao-loongson <68935141+junchao-loongson@users.noreply.github.com>
junkfood <69683722+JunkFood02@users.noreply.github.com>
jwijffels <jwijffels@bnosac.be>
k.h.lai <adrian.k.h.lai@outlook.com>
kamranjon <kamranjon@gmail.com>
katsu560 <katsu560oo-@docomo.ne.jp>
kennethge <57784063+kenneth-ge@users.noreply.github.com>
keyehzy <msamuel@aluno.puc-rio.br>
kunnis <kunnis@users.noreply.github.com>
l3utterfly <gc.pthzfoldr@gmail.com>
leejet <leejet714@gmail.com>
leo-pony <nengjunma@outlook.com>
lhez <quic_lih@quicinc.com>
litong <31761981+litongjava@users.noreply.github.com>
liuwei-git <14815172+liuwei-git@users.noreply.github.com>
lnyan <lkwq007@gmail.com>
luoyu-intel <yu.luo@intel.com>
m.bell <m.bell@techsmith.com>
mahorozte <41834471+mahorozte@users.noreply.github.com>
mashizora <30516315+mashizora@users.noreply.github.com>
matt23654 <matthew.webber@protonmail.com>
matteo <matteogeniaccio@yahoo.it>
mgrachten <maarten@grachten.eu>
mkiol <mkiol@users.noreply.github.com>
mky_coder <47767389+mkycoder@users.noreply.github.com>
novag <7754358+novag@users.noreply.github.com>
pajowu <pajowu@pajowu.de>
pengxin99 <pengxin.yuan@intel.com>
petterreinholdtsen <pere-github@hungry.com>
polarmoon <90010972+polarmoon@users.noreply.github.com>
rlapray <lapray.romain@gmail.com>
sandrohanea <40202887+sandrohanea@users.noreply.github.com>
@ -287,15 +480,31 @@ shikokuchuo <53399081+shikokuchuo@users.noreply.github.com>
slaren <slarengh@gmail.com>
slashlib <slashlib@users.noreply.github.com>
snadampal <87143774+snadampal@users.noreply.github.com>
someone13574 <81528246+someone13574@users.noreply.github.com>
st-gr <38470677+st-gr@users.noreply.github.com>
stduhpf <stephduh@live.fr>
stormofice <58337328+stormofice@users.noreply.github.com>
texmex76 <40733439+texmex76@users.noreply.github.com>
thefinaldegree <thefinaldegree@gmail.com>
thewh1teagle <61390950+thewh1teagle@users.noreply.github.com>
toboil-features <160222185+toboil-features@users.noreply.github.com>
trixirt <trix@redhat.com>
ulatekh <ulatekh@yahoo.com>
undef <undefdev@gmail.com>
uvos <devnull@uvos.xyz>
uvos <philipp@uvos.xyz>
valVk <valVk@users.noreply.github.com>
venkr <venkateshrameshkumar+1@gmail.com>
vicalloy <zbirder@gmail.com>
wangshuai09 <391746016@qq.com>
woachk <24752637+woachk@users.noreply.github.com>
xctan <axunlei@gmail.com>
xdrudis <xavierdrudis@yahoo.es>
yuri@FreeBSD <yuri@FreeBSD>
zhangjixiong <code.zjx@gmail.com>
zhentaoyu <zhentao.yu@intel.com>
zhouwg <6889919+zhouwg@users.noreply.github.com>
zhouwg <zhouwg2000@gmail.com>
谢乃闻 <sienaiwun@users.noreply.github.com>
布客飞龙 <562826179@qq.com>
Артём Земляк <azemlyak@smart-consulting.ru>

View File

@ -18,17 +18,6 @@ samples:
@wget --quiet --show-progress -O samples/mm1.wav https://cdn.openai.com/whisper/draft-20220913a/micro-machines.wav
@wget --quiet --show-progress -O samples/a13.mp3 https://upload.wikimedia.org/wikipedia/commons/transcoded/6/6f/Apollo13-wehaveaproblem.ogg/Apollo13-wehaveaproblem.ogg.mp3
@wget --quiet --show-progress -O samples/diffusion2023-07-03.flac https://archive.org/download/diffusion2023-07-03/diffusion2023-07-03.flac
@echo "Converting to 16-bit WAV ..."
@ffmpeg -loglevel -0 -y -i samples/gb0.ogg -ar 16000 -ac 1 -c:a pcm_s16le samples/gb0.wav
@ffmpeg -loglevel -0 -y -i samples/gb1.ogg -ar 16000 -ac 1 -c:a pcm_s16le samples/gb1.wav
@ffmpeg -loglevel -0 -y -i samples/hp0.ogg -ar 16000 -ac 1 -c:a pcm_s16le samples/hp0.wav
@rm samples/*.ogg
@ffmpeg -loglevel -0 -y -i samples/mm1.wav -ar 16000 -ac 1 -c:a pcm_s16le samples/mm0.wav
@rm samples/mm1.wav
@ffmpeg -loglevel -0 -y -i samples/a13.mp3 -ar 16000 -ac 1 -c:a pcm_s16le -ss 00:00:00 -to 00:00:30 samples/a13.wav
@rm samples/a13.mp3
@ffmpeg -loglevel -0 -y -i samples/diffusion2023-07-03.flac -ar 16000 -ac 1 -c:a pcm_s16le samples/diffusion2023-07-03.wav
@rm samples/diffusion2023-07-03.flac
#
# Models
@ -59,7 +48,7 @@ tiny.en tiny base.en base small.en small medium.en medium large-v1 large-v2 larg
@echo "Running $@ on all samples in ./samples ..."
@echo "==============================================="
@echo ""
@for f in samples/*.wav; do \
@for f in samples/*$(.flac .mp3 .ogg .wav); do \
echo "----------------------------------------------" ; \
echo "[+] Running $@ on $$f ... (run 'ffplay $$f' to listen)" ; \
echo "----------------------------------------------" ; \

View File

@ -1,19 +0,0 @@
// swift-tools-version:5.5
import PackageDescription
let package = Package(
name: "whisper",
platforms: [
.macOS(.v12),
.iOS(.v14),
.watchOS(.v4),
.tvOS(.v14)
],
products: [
.library(name: "whisper", targets: ["whisper"]),
],
targets: [
.systemLibrary(name: "whisper", pkgConfig: "whisper"),
]
)

View File

@ -7,6 +7,9 @@
[![Conan Center](https://shields.io/conan/v/whisper-cpp)](https://conan.io/center/whisper-cpp)
[![npm](https://img.shields.io/npm/v/whisper.cpp.svg)](https://www.npmjs.com/package/whisper.cpp/)
> [!NOTE]
> New maintenance roadmap: https://github.com/ggerganov/whisper.cpp/discussions/2788
Stable: [v1.7.4](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.7.4) / [Roadmap | F.A.Q.](https://github.com/ggerganov/whisper.cpp/discussions/126)
High-performance inference of [OpenAI's Whisper](https://github.com/openai/whisper) automatic speech recognition (ASR) model:
@ -14,7 +17,7 @@ High-performance inference of [OpenAI's Whisper](https://github.com/openai/whisp
- Plain C/C++ implementation without dependencies
- Apple Silicon first-class citizen - optimized via ARM NEON, Accelerate framework, Metal and [Core ML](#core-ml-support)
- AVX intrinsics support for x86 architectures
- VSX intrinsics support for POWER architectures
- [VSX intrinsics support for POWER architectures](#power-vsx-intrinsics)
- Mixed F16 / F32 precision
- [Integer quantization support](#quantization)
- Zero memory allocations at runtime
@ -136,6 +139,20 @@ make -j large-v3-turbo
| medium | 1.5 GiB | ~2.1 GB |
| large | 2.9 GiB | ~3.9 GB |
## POWER VSX Intrinsics
`whisper.cpp` supports POWER architectures and includes code which
significantly speeds operation on Linux running on POWER9/10, making it
capable of faster-than-realtime transcription on underclocked Raptor
Talos II. Ensure you have a BLAS package installed, and replace the
standard cmake setup with:
```bash
# build with GGML_BLAS defined
cmake -B build -DGGML_BLAS=1
cmake --build build --config Release
./build/bin/whisper-cli [ .. etc .. ]
## Quantization
`whisper.cpp` supports integer quantization of the Whisper `ggml` models.
@ -360,6 +377,38 @@ Run the inference examples as usual, for example:
- If you have trouble with Ascend NPU device, please create a issue with **[CANN]** prefix/tag.
- If you run successfully with your Ascend NPU device, please help update the table `Verified devices`.
## Docker
### Prerequisites
- Docker must be installed and running on your system.
- Create a folder to store big models & intermediate files (ex. /whisper/models)
### Images
We have two Docker images available for this project:
1. `ghcr.io/ggerganov/whisper.cpp:main`: This image includes the main executable file as well as `curl` and `ffmpeg`. (platforms: `linux/amd64`, `linux/arm64`)
2. `ghcr.io/ggerganov/whisper.cpp:main-cuda`: Same as `main` but compiled with CUDA support. (platforms: `linux/amd64`)
### Usage
```shell
# download model and persist it in a local folder
docker run -it --rm \
-v path/to/models:/models \
whisper.cpp:main "./models/download-ggml-model.sh base /models"
# transcribe an audio file
docker run -it --rm \
-v path/to/models:/models \
-v path/to/audios:/audios \
whisper.cpp:main "./main -m /models/ggml-base.bin -f /audios/jfk.wav"
# transcribe an audio file in samples folder
docker run -it --rm \
-v path/to/models:/models \
whisper.cpp:main "./main -m /models/ggml-base.bin -f ./samples/jfk.wav"
```
## Installing with Conan
You can install pre-built binaries for whisper.cpp or build it from source using [Conan](https://conan.io/). Use the following command:

View File

@ -1,5 +0,0 @@
module whisper [system] {
header "whisper.h"
link "whisper"
export *
}

View File

@ -1,4 +0,0 @@
#pragma once
#include <whisper.h>

View File

@ -9,22 +9,23 @@ import (
// ContextForSignal returns a context object which is cancelled when a signal
// is received. It returns nil if no signal parameter is provided
func ContextForSignal(signals ...os.Signal) context.Context {
if len(signals) == 0 {
return nil
}
if len(signals) == 0 {
return nil
}
ch := make(chan os.Signal)
ctx, cancel := context.WithCancel(context.Background())
ch := make(chan os.Signal, 1) // Buffered channel with space for 1 signal
ctx, cancel := context.WithCancel(context.Background())
// Send message on channel when signal received
signal.Notify(ch, signals...)
// Send message on channel when signal received
signal.Notify(ch, signals...)
// When any signal received, call cancel
go func() {
<-ch
cancel()
}()
// When any signal is received, call cancel
go func() {
<-ch
cancel()
}()
// Return success
return ctx
// Return success
return ctx
}

View File

@ -9,6 +9,7 @@ import (
"net/url"
"os"
"path/filepath"
"strings"
"syscall"
"time"
)
@ -17,14 +18,27 @@ import (
// CONSTANTS
const (
srcUrl = "https://huggingface.co/ggerganov/whisper.cpp/resolve/main" // The location of the models
srcExt = ".bin" // Filename extension
bufSize = 1024 * 64 // Size of the buffer used for downloading the model
srcUrl = "https://huggingface.co/ggerganov/whisper.cpp/resolve/main/" // The location of the models
srcExt = ".bin" // Filename extension
bufSize = 1024 * 64 // Size of the buffer used for downloading the model
)
var (
// The models which will be downloaded, if no model is specified as an argument
modelNames = []string{"ggml-tiny.en", "ggml-tiny", "ggml-base.en", "ggml-base", "ggml-small.en", "ggml-small", "ggml-medium.en", "ggml-medium", "ggml-large-v1", "ggml-large-v2", "ggml-large-v3", "large-v3-turbo"}
modelNames = []string{
"tiny", "tiny-q5_1", "tiny-q8_0",
"tiny.en", "tiny.en-q5_1", "tiny.en-q8_0",
"base", "base-q5_1", "base-q8_0",
"base.en", "base.en-q5_1", "base.en-q8_0",
"small", "small-q5_1", "small-q8_0",
"small.en", "small.en-q5_1", "small.en-q8_0",
"medium", "medium-q5_0", "medium-q8_0",
"medium.en", "medium.en-q5_0", "medium.en-q8_0",
"large-v1",
"large-v2", "large-v2-q5_0", "large-v2-q8_0",
"large-v3", "large-v3-q5_0",
"large-v3-turbo", "large-v3-turbo-q5_0", "large-v3-turbo-q8_0",
}
)
var (
@ -44,7 +58,25 @@ var (
func main() {
flag.Usage = func() {
name := filepath.Base(flag.CommandLine.Name())
fmt.Fprintf(flag.CommandLine.Output(), "Usage: %s [options] <model>\n\n", name)
fmt.Fprintf(flag.CommandLine.Output(), `
Usage: %s [options] [<model>...]
Options:
-out string Specify the output folder where models will be saved.
Default: Current working directory.
-timeout duration Set the maximum duration for downloading a model.
Example: 10m, 1h (default: 30m0s).
-quiet Suppress all output except errors.
Examples:
1. Download a specific model:
%s -out ./models tiny-q8_0
2. Download all models:
%s -out ./models
`, name, name, name)
flag.PrintDefaults()
}
flag.Parse()
@ -114,23 +146,87 @@ func GetOut() (string, error) {
// GetModels returns the list of models to download
func GetModels() []string {
if flag.NArg() == 0 {
return modelNames
} else {
return flag.Args()
fmt.Println("No model specified.")
fmt.Println("Preparing to download all models...")
// Calculate total download size
fmt.Println("Calculating total download size...")
totalSize, err := CalculateTotalDownloadSize(modelNames)
if err != nil {
fmt.Println("Error calculating download sizes:", err)
os.Exit(1)
}
fmt.Println("View available models: https://huggingface.co/ggerganov/whisper.cpp/tree/main")
fmt.Printf("Total download size: %.2f GB\n", float64(totalSize)/(1024*1024*1024))
fmt.Println("Would you like to download all models? (y/N)")
// Prompt for user input
var response string
fmt.Scanln(&response)
if response != "y" && response != "Y" {
fmt.Println("Aborting. Specify a model to download.")
os.Exit(0)
}
return modelNames // Return all models if confirmed
}
return flag.Args() // Return specific models if arguments are provided
}
func CalculateTotalDownloadSize(models []string) (int64, error) {
var totalSize int64
client := http.Client{}
for _, model := range models {
modelURL, err := URLForModel(model)
if err != nil {
return 0, err
}
// Issue a HEAD request to get the file size
req, err := http.NewRequest("HEAD", modelURL, nil)
if err != nil {
return 0, err
}
resp, err := client.Do(req)
if err != nil {
return 0, err
}
resp.Body.Close()
if resp.StatusCode != http.StatusOK {
fmt.Printf("Warning: Unable to fetch size for %s (HTTP %d)\n", model, resp.StatusCode)
continue
}
size := resp.ContentLength
totalSize += size
}
return totalSize, nil
}
// URLForModel returns the URL for the given model on huggingface.co
func URLForModel(model string) (string, error) {
// Ensure "ggml-" prefix is added only once
if !strings.HasPrefix(model, "ggml-") {
model = "ggml-" + model
}
// Ensure ".bin" extension is added only once
if filepath.Ext(model) != srcExt {
model += srcExt
}
// Parse the base URL
url, err := url.Parse(srcUrl)
if err != nil {
return "", err
} else {
url.Path = filepath.Join(url.Path, model)
}
// Ensure no trailing slash in the base URL
url.Path = fmt.Sprintf("%s/%s", strings.TrimSuffix(url.Path, "/"), model)
return url.String(), nil
}

View File

@ -24,14 +24,15 @@ require "whisper"
whisper = Whisper::Context.new("base")
params = Whisper::Params.new
params.language = "en"
params.offset = 10_000
params.duration = 60_000
params.max_text_tokens = 300
params.translate = true
params.print_timestamps = false
params.initial_prompt = "Initial prompt here."
params = Whisper::Params.new(
language: "en",
offset: 10_000,
duration: 60_000,
max_text_tokens: 300,
translate: true,
print_timestamps: false,
initial_prompt: "Initial prompt here."
)
whisper.transcribe("path/to/audio.wav", params) do |whole_text|
puts whole_text
@ -113,18 +114,18 @@ def format_time(time_ms)
"%02d:%02d:%02d.%03d" % [hour, min, sec, decimal_part]
end
whisper.transcribe("path/to/audio.wav", params)
whisper.each_segment.with_index do |segment, index|
line = "[%{nth}: %{st} --> %{ed}] %{text}" % {
nth: index + 1,
st: format_time(segment.start_time),
ed: format_time(segment.end_time),
text: segment.text
}
line << " (speaker turned)" if segment.speaker_next_turn?
puts line
end
whisper
.transcribe("path/to/audio.wav", params)
.each_segment.with_index do |segment, index|
line = "[%{nth}: %{st} --> %{ed}] %{text}" % {
nth: index + 1,
st: format_time(segment.start_time),
ed: format_time(segment.end_time),
text: segment.text
}
line << " (speaker turned)" if segment.speaker_next_turn?
puts line
end
```
@ -215,10 +216,11 @@ reader = WaveFile::Reader.new("path/to/audio.wav", WaveFile::Format.new(:mono, :
samples = reader.enum_for(:each_buffer).map(&:samples).flatten
whisper = Whisper::Context.new("base")
whisper.full(Whisper::Params.new, samples)
whisper.each_segment do |segment|
puts segment.text
end
whisper
.full(Whisper::Params.new, samples)
.each_segment do |segment|
puts segment.text
end
```
The second argument `samples` may be an array, an object with `length` and `each` method, or a MemoryView. If you can prepare audio data as C array and export it as a MemoryView, whispercpp accepts and works with it with zero copy.

View File

@ -18,9 +18,11 @@ EXTSOURCES.each do |src|
end
CLEAN.include SOURCES
CLEAN.include FileList["ext/*.o", "ext/*.metal", "ext/whisper.{so,bundle,dll}"]
CLEAN.include FileList["ext/**/*.o", "ext/**/*.metal", "ext/**/*.tmp", "ext/whisper.{so,bundle,dll}"]
task build: ["ext/Makefile", "ext/ruby_whisper.h", "ext/ruby_whisper.cpp", "whispercpp.gemspec"]
SRC = FileList["ext/*.{c,cpp,h}"]
task build: SOURCES
directory "pkg"
CLOBBER.include "pkg"
@ -29,14 +31,14 @@ LIB_NAME = "whisper".ext(RbConfig::CONFIG["DLEXT"])
SO_FILE = File.join("ext", LIB_NAME)
LIB_FILE = File.join("lib", LIB_NAME)
file "ext/Makefile" => ["ext/extconf.rb", "ext/ruby_whisper.h", "ext/ruby_whisper.cpp"] + SOURCES do |t|
Dir.chdir "ext" do
file "ext/Makefile" => SRC + ["ext/extconf.rb"] + SOURCES do |t|
chdir "ext" do
ruby "extconf.rb"
end
end
file SO_FILE => "ext/Makefile" do |t|
Dir.chdir "ext" do
chdir "ext" do
sh "make"
end
end
@ -54,7 +56,7 @@ end
TEST_MEMORY_VIEW = "tests/jfk_reader/jfk_reader.#{RbConfig::CONFIG['DLEXT']}"
file TEST_MEMORY_VIEW => "tests/jfk_reader/jfk_reader.c" do |t|
Dir.chdir "tests/jfk_reader" do
chdir "tests/jfk_reader" do
ruby "extconf.rb"
sh "make"
end

View File

@ -4,10 +4,8 @@ whisper.bundle
whisper.dll
scripts/get-flags.mk
*.o
*.c
*.cpp
*.h
*.m
*.metal
!ruby_whisper.cpp
!ruby_whisper.h
/*/**/*.c
/*/**/*.cpp
/*/**/*.h
/*/**/*.m
/*/**/*.metal

View File

@ -35,7 +35,7 @@ if $GGML_METAL
$GGML_METAL_EMBED_LIBRARY = true
end
$MK_CPPFLAGS = '-Iggml/include -Iggml/src -Iggml/src/ggml-cpu -Iinclude -Isrc -Iexamples'
$MK_CPPFLAGS = '-Iggml/include -Iggml/src -Iggml/src/ggml-cpu -Iinclude -Isrc -Iexamples -DGGML_USE_CPU'
$MK_CFLAGS = '-std=c11 -fPIC'
$MK_CXXFLAGS = '-std=c++17 -fPIC'
$MK_NVCCFLAGS = '-std=c++17'
@ -171,10 +171,19 @@ $OBJ_GGML <<
'ggml/src/ggml-cpu/ggml-cpu-traits.o'
$OBJ_WHISPER <<
'src/whisper.o'
'src/whisper.o' <<
'examples/common.o' <<
'examples/common-whisper.o'
$objs = $OBJ_GGML + $OBJ_WHISPER + $OBJ_COMMON + $OBJ_SDL
$objs << "ruby_whisper.o"
$objs <<
"ruby_whisper.o" <<
"ruby_whisper_context.o" <<
"ruby_whisper_transcribe.o" <<
"ruby_whisper_params.o" <<
"ruby_whisper_error.o" <<
"ruby_whisper_segment.o" <<
"ruby_whisper_model.o"
$CPPFLAGS = "#{$MK_CPPFLAGS} #{$CPPFLAGS}"
$CFLAGS = "#{$CPPFLAGS} #{$MK_CFLAGS} #{$GF_CFLAGS} #{$CFLAGS}"

View File

@ -0,0 +1,164 @@
#include <ruby.h>
#include <ruby/memory_view.h>
#include "ruby_whisper.h"
VALUE mWhisper;
VALUE cContext;
VALUE cParams;
VALUE eError;
VALUE cSegment;
VALUE cModel;
ID id_to_s;
ID id_call;
ID id___method__;
ID id_to_enum;
ID id_length;
ID id_next;
ID id_new;
ID id_to_path;
ID id_URI;
ID id_pre_converted_models;
static bool is_log_callback_finalized = false;
// High level API
extern VALUE ruby_whisper_segment_allocate(VALUE klass);
extern void init_ruby_whisper_context(VALUE *mWhisper);
extern void init_ruby_whisper_params(VALUE *mWhisper);
extern void init_ruby_whisper_error(VALUE *mWhisper);
extern void init_ruby_whisper_segment(VALUE *mWhisper, VALUE *cSegment);
extern void init_ruby_whisper_model(VALUE *mWhisper);
extern void register_callbacks(ruby_whisper_params *rwp, VALUE *context);
/*
* call-seq:
* lang_max_id -> Integer
*/
static VALUE ruby_whisper_s_lang_max_id(VALUE self) {
return INT2NUM(whisper_lang_max_id());
}
/*
* call-seq:
* lang_id(lang_name) -> Integer
*/
static VALUE ruby_whisper_s_lang_id(VALUE self, VALUE lang) {
const char * lang_str = StringValueCStr(lang);
const int id = whisper_lang_id(lang_str);
if (-1 == id) {
rb_raise(rb_eArgError, "language not found: %s", lang_str);
}
return INT2NUM(id);
}
/*
* call-seq:
* lang_str(lang_id) -> String
*/
static VALUE ruby_whisper_s_lang_str(VALUE self, VALUE id) {
const int lang_id = NUM2INT(id);
const char * str = whisper_lang_str(lang_id);
if (NULL == str) {
rb_raise(rb_eIndexError, "id %d outside of language id", lang_id);
}
return rb_str_new2(str);
}
/*
* call-seq:
* lang_str(lang_id) -> String
*/
static VALUE ruby_whisper_s_lang_str_full(VALUE self, VALUE id) {
const int lang_id = NUM2INT(id);
const char * str_full = whisper_lang_str_full(lang_id);
if (NULL == str_full) {
rb_raise(rb_eIndexError, "id %d outside of language id", lang_id);
}
return rb_str_new2(str_full);
}
static VALUE ruby_whisper_s_finalize_log_callback(VALUE self, VALUE id) {
is_log_callback_finalized = true;
return Qnil;
}
static void
ruby_whisper_log_callback(enum ggml_log_level level, const char * buffer, void * user_data) {
if (is_log_callback_finalized) {
return;
}
VALUE log_callback = rb_iv_get(mWhisper, "log_callback");
VALUE udata = rb_iv_get(mWhisper, "user_data");
rb_funcall(log_callback, id_call, 3, INT2NUM(level), rb_str_new2(buffer), udata);
}
/*
* call-seq:
* log_set ->(level, buffer, user_data) { ... }, user_data -> nil
*/
static VALUE ruby_whisper_s_log_set(VALUE self, VALUE log_callback, VALUE user_data) {
VALUE old_callback = rb_iv_get(self, "log_callback");
if (!NIL_P(old_callback)) {
rb_undefine_finalizer(old_callback);
}
rb_iv_set(self, "log_callback", log_callback);
rb_iv_set(self, "user_data", user_data);
VALUE finalize_log_callback = rb_funcall(mWhisper, rb_intern("method"), 1, rb_str_new2("finalize_log_callback"));
rb_define_finalizer(log_callback, finalize_log_callback);
whisper_log_set(ruby_whisper_log_callback, NULL);
return Qnil;
}
static void rb_whisper_model_mark(ruby_whisper_model *rwm) {
rb_gc_mark(rwm->context);
}
static VALUE ruby_whisper_model_allocate(VALUE klass) {
ruby_whisper_model *rwm;
rwm = ALLOC(ruby_whisper_model);
return Data_Wrap_Struct(klass, rb_whisper_model_mark, RUBY_DEFAULT_FREE, rwm);
}
void Init_whisper() {
id_to_s = rb_intern("to_s");
id_call = rb_intern("call");
id___method__ = rb_intern("__method__");
id_to_enum = rb_intern("to_enum");
id_length = rb_intern("length");
id_next = rb_intern("next");
id_new = rb_intern("new");
id_to_path = rb_intern("to_path");
id_URI = rb_intern("URI");
id_pre_converted_models = rb_intern("pre_converted_models");
mWhisper = rb_define_module("Whisper");
rb_define_const(mWhisper, "LOG_LEVEL_NONE", INT2NUM(GGML_LOG_LEVEL_NONE));
rb_define_const(mWhisper, "LOG_LEVEL_INFO", INT2NUM(GGML_LOG_LEVEL_INFO));
rb_define_const(mWhisper, "LOG_LEVEL_WARN", INT2NUM(GGML_LOG_LEVEL_WARN));
rb_define_const(mWhisper, "LOG_LEVEL_ERROR", INT2NUM(GGML_LOG_LEVEL_ERROR));
rb_define_const(mWhisper, "LOG_LEVEL_DEBUG", INT2NUM(GGML_LOG_LEVEL_DEBUG));
rb_define_const(mWhisper, "LOG_LEVEL_CONT", INT2NUM(GGML_LOG_LEVEL_CONT));
rb_define_singleton_method(mWhisper, "lang_max_id", ruby_whisper_s_lang_max_id, 0);
rb_define_singleton_method(mWhisper, "lang_id", ruby_whisper_s_lang_id, 1);
rb_define_singleton_method(mWhisper, "lang_str", ruby_whisper_s_lang_str, 1);
rb_define_singleton_method(mWhisper, "lang_str_full", ruby_whisper_s_lang_str_full, 1);
rb_define_singleton_method(mWhisper, "log_set", ruby_whisper_s_log_set, 2);
rb_define_private_method(rb_singleton_class(mWhisper), "finalize_log_callback", ruby_whisper_s_finalize_log_callback, 1);
init_ruby_whisper_context(&mWhisper);
init_ruby_whisper_params(&mWhisper);
init_ruby_whisper_error(&mWhisper);
init_ruby_whisper_segment(&mWhisper, &cContext);
init_ruby_whisper_model(&mWhisper);
rb_require("whisper/model/uri");
}

File diff suppressed because it is too large Load Diff

View File

@ -22,4 +22,13 @@ typedef struct {
ruby_whisper_callback_container *abort_callback_container;
} ruby_whisper_params;
typedef struct {
VALUE context;
int index;
} ruby_whisper_segment;
typedef struct {
VALUE context;
} ruby_whisper_model;
#endif

View File

@ -0,0 +1,613 @@
#include <ruby.h>
#include <ruby/memory_view.h>
#include "ruby_whisper.h"
extern ID id_to_s;
extern ID id___method__;
extern ID id_to_enum;
extern ID id_length;
extern ID id_next;
extern ID id_new;
extern ID id_to_path;
extern ID id_URI;
extern ID id_pre_converted_models;
extern VALUE cContext;
extern VALUE eError;
extern VALUE cModel;
extern VALUE ruby_whisper_transcribe(int argc, VALUE *argv, VALUE self);
extern VALUE rb_whisper_model_initialize(VALUE context);
extern VALUE rb_whisper_segment_initialize(VALUE context, int index);
extern void register_callbacks(ruby_whisper_params *rwp, VALUE *context);
static void
ruby_whisper_free(ruby_whisper *rw)
{
if (rw->context) {
whisper_free(rw->context);
rw->context = NULL;
}
}
void
rb_whisper_mark(ruby_whisper *rw)
{
// call rb_gc_mark on any ruby references in rw
}
void
rb_whisper_free(ruby_whisper *rw)
{
ruby_whisper_free(rw);
free(rw);
}
static VALUE
ruby_whisper_allocate(VALUE klass)
{
ruby_whisper *rw;
rw = ALLOC(ruby_whisper);
rw->context = NULL;
return Data_Wrap_Struct(klass, rb_whisper_mark, rb_whisper_free, rw);
}
/*
* call-seq:
* new("base.en") -> Whisper::Context
* new("path/to/model.bin") -> Whisper::Context
* new(Whisper::Model::URI.new("https://example.net/uri/of/model.bin")) -> Whisper::Context
*/
static VALUE
ruby_whisper_initialize(int argc, VALUE *argv, VALUE self)
{
ruby_whisper *rw;
VALUE whisper_model_file_path;
// TODO: we can support init from buffer here too maybe another ruby object to expose
rb_scan_args(argc, argv, "01", &whisper_model_file_path);
Data_Get_Struct(self, ruby_whisper, rw);
VALUE pre_converted_models = rb_funcall(cModel, id_pre_converted_models, 0);
VALUE pre_converted_model = rb_hash_aref(pre_converted_models, whisper_model_file_path);
if (!NIL_P(pre_converted_model)) {
whisper_model_file_path = pre_converted_model;
}
if (TYPE(whisper_model_file_path) == T_STRING) {
const char * whisper_model_file_path_str = StringValueCStr(whisper_model_file_path);
if (strncmp("http://", whisper_model_file_path_str, 7) == 0 || strncmp("https://", whisper_model_file_path_str, 8) == 0) {
VALUE uri_class = rb_const_get(cModel, id_URI);
whisper_model_file_path = rb_class_new_instance(1, &whisper_model_file_path, uri_class);
}
}
if (rb_obj_is_kind_of(whisper_model_file_path, rb_path2class("URI::HTTP"))) {
VALUE uri_class = rb_const_get(cModel, id_URI);
whisper_model_file_path = rb_class_new_instance(1, &whisper_model_file_path, uri_class);
}
if (rb_respond_to(whisper_model_file_path, id_to_path)) {
whisper_model_file_path = rb_funcall(whisper_model_file_path, id_to_path, 0);
}
if (!rb_respond_to(whisper_model_file_path, id_to_s)) {
rb_raise(rb_eRuntimeError, "Expected file path to model to initialize Whisper::Context");
}
rw->context = whisper_init_from_file_with_params(StringValueCStr(whisper_model_file_path), whisper_context_default_params());
if (rw->context == NULL) {
rb_raise(rb_eRuntimeError, "error: failed to initialize whisper context");
}
return self;
}
/*
* call-seq:
* model_n_vocab -> Integer
*/
VALUE ruby_whisper_model_n_vocab(VALUE self)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
return INT2NUM(whisper_model_n_vocab(rw->context));
}
/*
* call-seq:
* model_n_audio_ctx -> Integer
*/
VALUE ruby_whisper_model_n_audio_ctx(VALUE self)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
return INT2NUM(whisper_model_n_audio_ctx(rw->context));
}
/*
* call-seq:
* model_n_audio_state -> Integer
*/
VALUE ruby_whisper_model_n_audio_state(VALUE self)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
return INT2NUM(whisper_model_n_audio_state(rw->context));
}
/*
* call-seq:
* model_n_audio_head -> Integer
*/
VALUE ruby_whisper_model_n_audio_head(VALUE self)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
return INT2NUM(whisper_model_n_audio_head(rw->context));
}
/*
* call-seq:
* model_n_audio_layer -> Integer
*/
VALUE ruby_whisper_model_n_audio_layer(VALUE self)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
return INT2NUM(whisper_model_n_audio_layer(rw->context));
}
/*
* call-seq:
* model_n_text_ctx -> Integer
*/
VALUE ruby_whisper_model_n_text_ctx(VALUE self)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
return INT2NUM(whisper_model_n_text_ctx(rw->context));
}
/*
* call-seq:
* model_n_text_state -> Integer
*/
VALUE ruby_whisper_model_n_text_state(VALUE self)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
return INT2NUM(whisper_model_n_text_state(rw->context));
}
/*
* call-seq:
* model_n_text_head -> Integer
*/
VALUE ruby_whisper_model_n_text_head(VALUE self)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
return INT2NUM(whisper_model_n_text_head(rw->context));
}
/*
* call-seq:
* model_n_text_layer -> Integer
*/
VALUE ruby_whisper_model_n_text_layer(VALUE self)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
return INT2NUM(whisper_model_n_text_layer(rw->context));
}
/*
* call-seq:
* model_n_mels -> Integer
*/
VALUE ruby_whisper_model_n_mels(VALUE self)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
return INT2NUM(whisper_model_n_mels(rw->context));
}
/*
* call-seq:
* model_ftype -> Integer
*/
VALUE ruby_whisper_model_ftype(VALUE self)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
return INT2NUM(whisper_model_ftype(rw->context));
}
/*
* call-seq:
* model_type -> String
*/
VALUE ruby_whisper_model_type(VALUE self)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
return rb_str_new2(whisper_model_type_readable(rw->context));
}
/*
* Run the entire model: PCM -> log mel spectrogram -> encoder -> decoder -> text
* Not thread safe for same context
* Uses the specified decoding strategy to obtain the text.
*
* call-seq:
* full(params, samples, n_samples) -> nil
* full(params, samples) -> nil
*
* The second argument +samples+ must be an array of samples, respond to :length, or be a MemoryView of an array of float. It must be 32 bit float PCM audio data.
*/
VALUE ruby_whisper_full(int argc, VALUE *argv, VALUE self)
{
if (argc < 2 || argc > 3) {
rb_raise(rb_eArgError, "wrong number of arguments (given %d, expected 2..3)", argc);
}
ruby_whisper *rw;
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper, rw);
VALUE params = argv[0];
Data_Get_Struct(params, ruby_whisper_params, rwp);
VALUE samples = argv[1];
int n_samples;
rb_memory_view_t view;
const bool memory_view_available_p = rb_memory_view_available_p(samples);
if (argc == 3) {
n_samples = NUM2INT(argv[2]);
if (TYPE(samples) == T_ARRAY) {
if (RARRAY_LEN(samples) < n_samples) {
rb_raise(rb_eArgError, "samples length %ld is less than n_samples %d", RARRAY_LEN(samples), n_samples);
}
}
// Should check when samples.respond_to?(:length)?
} else {
if (TYPE(samples) == T_ARRAY) {
n_samples = RARRAY_LEN(samples);
} else if (memory_view_available_p) {
if (!rb_memory_view_get(samples, &view, RUBY_MEMORY_VIEW_SIMPLE)) {
view.obj = Qnil;
rb_raise(rb_eArgError, "unable to get a memory view");
}
n_samples = view.byte_size / view.item_size;
} else if (rb_respond_to(samples, id_length)) {
n_samples = NUM2INT(rb_funcall(samples, id_length, 0));
} else {
rb_raise(rb_eArgError, "samples must respond to :length or be a MemoryView of an array of flaot when n_samples is not given");
}
}
float * c_samples = (float *)malloc(n_samples * sizeof(float));
if (memory_view_available_p) {
c_samples = (float *)view.data;
} else {
if (TYPE(samples) == T_ARRAY) {
for (int i = 0; i < n_samples; i++) {
c_samples[i] = RFLOAT_VALUE(rb_ary_entry(samples, i));
}
} else {
// TODO: use rb_block_call
VALUE iter = rb_funcall(samples, id_to_enum, 1, rb_str_new2("each"));
for (int i = 0; i < n_samples; i++) {
// TODO: check if iter is exhausted and raise ArgumentError appropriately
VALUE sample = rb_funcall(iter, id_next, 0);
c_samples[i] = RFLOAT_VALUE(sample);
}
}
}
register_callbacks(rwp, &self);
const int result = whisper_full(rw->context, rwp->params, c_samples, n_samples);
if (0 == result) {
return self;
} else {
rb_exc_raise(rb_funcall(eError, id_new, 1, result));
}
}
/*
* Split the input audio in chunks and process each chunk separately using whisper_full_with_state()
* Result is stored in the default state of the context
* Not thread safe if executed in parallel on the same context.
* It seems this approach can offer some speedup in some cases.
* However, the transcription accuracy can be worse at the beginning and end of each chunk.
*
* call-seq:
* full_parallel(params, samples) -> nil
* full_parallel(params, samples, n_samples) -> nil
* full_parallel(params, samples, n_samples, n_processors) -> nil
* full_parallel(params, samples, nil, n_processors) -> nil
*/
static VALUE
ruby_whisper_full_parallel(int argc, VALUE *argv,VALUE self)
{
if (argc < 2 || argc > 4) {
rb_raise(rb_eArgError, "wrong number of arguments (given %d, expected 2..3)", argc);
}
ruby_whisper *rw;
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper, rw);
VALUE params = argv[0];
Data_Get_Struct(params, ruby_whisper_params, rwp);
VALUE samples = argv[1];
int n_samples;
int n_processors;
rb_memory_view_t view;
const bool memory_view_available_p = rb_memory_view_available_p(samples);
switch (argc) {
case 2:
n_processors = 1;
break;
case 3:
n_processors = 1;
break;
case 4:
n_processors = NUM2INT(argv[3]);
break;
}
if (argc >= 3 && !NIL_P(argv[2])) {
n_samples = NUM2INT(argv[2]);
if (TYPE(samples) == T_ARRAY) {
if (RARRAY_LEN(samples) < n_samples) {
rb_raise(rb_eArgError, "samples length %ld is less than n_samples %d", RARRAY_LEN(samples), n_samples);
}
}
// Should check when samples.respond_to?(:length)?
} else if (memory_view_available_p) {
if (!rb_memory_view_get(samples, &view, RUBY_MEMORY_VIEW_SIMPLE)) {
view.obj = Qnil;
rb_raise(rb_eArgError, "unable to get a memory view");
}
n_samples = view.byte_size / view.item_size;
} else {
if (TYPE(samples) == T_ARRAY) {
n_samples = RARRAY_LEN(samples);
} else if (rb_respond_to(samples, id_length)) {
n_samples = NUM2INT(rb_funcall(samples, id_length, 0));
} else {
rb_raise(rb_eArgError, "samples must respond to :length or be a MemoryView of an array of flaot when n_samples is not given");
}
}
float * c_samples = (float *)malloc(n_samples * sizeof(float));
if (memory_view_available_p) {
c_samples = (float *)view.data;
} else {
if (TYPE(samples) == T_ARRAY) {
for (int i = 0; i < n_samples; i++) {
c_samples[i] = RFLOAT_VALUE(rb_ary_entry(samples, i));
}
} else {
// FIXME: use rb_block_call
VALUE iter = rb_funcall(samples, id_to_enum, 1, rb_str_new2("each"));
for (int i = 0; i < n_samples; i++) {
// TODO: check if iter is exhausted and raise ArgumentError
VALUE sample = rb_funcall(iter, id_next, 0);
c_samples[i] = RFLOAT_VALUE(sample);
}
}
}
register_callbacks(rwp, &self);
const int result = whisper_full_parallel(rw->context, rwp->params, c_samples, n_samples, n_processors);
if (0 == result) {
return self;
} else {
rb_exc_raise(rb_funcall(eError, id_new, 1, result));
}
}
/*
* Number of segments.
*
* call-seq:
* full_n_segments -> Integer
*/
static VALUE
ruby_whisper_full_n_segments(VALUE self)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
return INT2NUM(whisper_full_n_segments(rw->context));
}
/*
* Language ID, which can be converted to string by Whisper.lang_str and Whisper.lang_str_full.
*
* call-seq:
* full_lang_id -> Integer
*/
static VALUE
ruby_whisper_full_lang_id(VALUE self)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
return INT2NUM(whisper_full_lang_id(rw->context));
}
static int ruby_whisper_full_check_segment_index(const ruby_whisper * rw, const VALUE i_segment)
{
const int c_i_segment = NUM2INT(i_segment);
if (c_i_segment < 0 || c_i_segment >= whisper_full_n_segments(rw->context)) {
rb_raise(rb_eIndexError, "segment index %d out of range", c_i_segment);
}
return c_i_segment;
}
/*
* Start time of a segment indexed by +segment_index+ in centiseconds (10 times milliseconds).
*
* full_get_segment_t0(3) # => 1668 (16680 ms)
*
* call-seq:
* full_get_segment_t0(segment_index) -> Integer
*/
static VALUE
ruby_whisper_full_get_segment_t0(VALUE self, VALUE i_segment)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
const int c_i_segment = ruby_whisper_full_check_segment_index(rw, i_segment);
const int64_t t0 = whisper_full_get_segment_t0(rw->context, c_i_segment);
return INT2NUM(t0);
}
/*
* End time of a segment indexed by +segment_index+ in centiseconds (10 times milliseconds).
*
* full_get_segment_t1(3) # => 1668 (16680 ms)
*
* call-seq:
* full_get_segment_t1(segment_index) -> Integer
*/
static VALUE
ruby_whisper_full_get_segment_t1(VALUE self, VALUE i_segment)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
const int c_i_segment = ruby_whisper_full_check_segment_index(rw, i_segment);
const int64_t t1 = whisper_full_get_segment_t1(rw->context, c_i_segment);
return INT2NUM(t1);
}
/*
* Whether the next segment indexed by +segment_index+ is predicated as a speaker turn.
*
* full_get_segment_speacker_turn_next(3) # => true
*
* call-seq:
* full_get_segment_speacker_turn_next(segment_index) -> bool
*/
static VALUE
ruby_whisper_full_get_segment_speaker_turn_next(VALUE self, VALUE i_segment)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
const int c_i_segment = ruby_whisper_full_check_segment_index(rw, i_segment);
const bool speaker_turn_next = whisper_full_get_segment_speaker_turn_next(rw->context, c_i_segment);
return speaker_turn_next ? Qtrue : Qfalse;
}
/*
* Text of a segment indexed by +segment_index+.
*
* full_get_segment_text(3) # => "ask not what your country can do for you, ..."
*
* call-seq:
* full_get_segment_text(segment_index) -> String
*/
static VALUE
ruby_whisper_full_get_segment_text(VALUE self, VALUE i_segment)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
const int c_i_segment = ruby_whisper_full_check_segment_index(rw, i_segment);
const char * text = whisper_full_get_segment_text(rw->context, c_i_segment);
return rb_str_new2(text);
}
/*
* call-seq:
* full_get_segment_no_speech_prob(segment_index) -> Float
*/
static VALUE
ruby_whisper_full_get_segment_no_speech_prob(VALUE self, VALUE i_segment)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
const int c_i_segment = ruby_whisper_full_check_segment_index(rw, i_segment);
const float no_speech_prob = whisper_full_get_segment_no_speech_prob(rw->context, c_i_segment);
return DBL2NUM(no_speech_prob);
}
// High level API
static VALUE
ruby_whisper_full_get_segment(VALUE self, VALUE i_segment)
{
return rb_whisper_segment_initialize(self, NUM2INT(i_segment));
}
/*
* Yields each Whisper::Segment:
*
* whisper.transcribe("path/to/audio.wav", params)
* whisper.each_segment do |segment|
* puts segment.text
* end
*
* Returns an Enumerator if no block given:
*
* whisper.transcribe("path/to/audio.wav", params)
* enum = whisper.each_segment
* enum.to_a # => [#<Whisper::Segment>, ...]
*
* call-seq:
* each_segment {|segment| ... }
* each_segment -> Enumerator
*/
static VALUE
ruby_whisper_each_segment(VALUE self)
{
if (!rb_block_given_p()) {
const VALUE method_name = rb_funcall(self, id___method__, 0);
return rb_funcall(self, id_to_enum, 1, method_name);
}
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
const int n_segments = whisper_full_n_segments(rw->context);
for (int i = 0; i < n_segments; ++i) {
rb_yield(rb_whisper_segment_initialize(self, i));
}
return self;
}
/*
* call-seq:
* model -> Whisper::Model
*/
static VALUE
ruby_whisper_get_model(VALUE self)
{
return rb_whisper_model_initialize(self);
}
void
init_ruby_whisper_context(VALUE *mWhisper)
{
cContext = rb_define_class_under(*mWhisper, "Context", rb_cObject);
rb_define_alloc_func(cContext, ruby_whisper_allocate);
rb_define_method(cContext, "initialize", ruby_whisper_initialize, -1);
rb_define_method(cContext, "transcribe", ruby_whisper_transcribe, -1);
rb_define_method(cContext, "model_n_vocab", ruby_whisper_model_n_vocab, 0);
rb_define_method(cContext, "model_n_audio_ctx", ruby_whisper_model_n_audio_ctx, 0);
rb_define_method(cContext, "model_n_audio_state", ruby_whisper_model_n_audio_state, 0);
rb_define_method(cContext, "model_n_audio_head", ruby_whisper_model_n_audio_head, 0);
rb_define_method(cContext, "model_n_audio_layer", ruby_whisper_model_n_audio_layer, 0);
rb_define_method(cContext, "model_n_text_ctx", ruby_whisper_model_n_text_ctx, 0);
rb_define_method(cContext, "model_n_text_state", ruby_whisper_model_n_text_state, 0);
rb_define_method(cContext, "model_n_text_head", ruby_whisper_model_n_text_head, 0);
rb_define_method(cContext, "model_n_text_layer", ruby_whisper_model_n_text_layer, 0);
rb_define_method(cContext, "model_n_mels", ruby_whisper_model_n_mels, 0);
rb_define_method(cContext, "model_ftype", ruby_whisper_model_ftype, 0);
rb_define_method(cContext, "model_type", ruby_whisper_model_type, 0);
rb_define_method(cContext, "full_n_segments", ruby_whisper_full_n_segments, 0);
rb_define_method(cContext, "full_lang_id", ruby_whisper_full_lang_id, 0);
rb_define_method(cContext, "full_get_segment_t0", ruby_whisper_full_get_segment_t0, 1);
rb_define_method(cContext, "full_get_segment_t1", ruby_whisper_full_get_segment_t1, 1);
rb_define_method(cContext, "full_get_segment_speaker_turn_next", ruby_whisper_full_get_segment_speaker_turn_next, 1);
rb_define_method(cContext, "full_get_segment_text", ruby_whisper_full_get_segment_text, 1);
rb_define_method(cContext, "full_get_segment_no_speech_prob", ruby_whisper_full_get_segment_no_speech_prob, 1);
rb_define_method(cContext, "full", ruby_whisper_full, -1);
rb_define_method(cContext, "full_parallel", ruby_whisper_full_parallel, -1);
// High leve
rb_define_method(cContext, "full_get_segment", ruby_whisper_full_get_segment, 1);
rb_define_method(cContext, "each_segment", ruby_whisper_each_segment, 0);
rb_define_method(cContext, "model", ruby_whisper_get_model, 0);
}

View File

@ -0,0 +1,52 @@
#include <ruby.h>
extern VALUE eError;
VALUE ruby_whisper_error_initialize(VALUE self, VALUE code)
{
const int c_code = NUM2INT(code);
const char *raw_message;
switch (c_code) {
case -2:
raw_message = "failed to compute log mel spectrogram";
break;
case -3:
raw_message = "failed to auto-detect language";
break;
case -4:
raw_message = "too many decoders requested";
break;
case -5:
raw_message = "audio_ctx is larger than the maximum allowed";
break;
case -6:
raw_message = "failed to encode";
break;
case -7:
raw_message = "whisper_kv_cache_init() failed for self-attention cache";
break;
case -8:
raw_message = "failed to decode";
break;
case -9:
raw_message = "failed to decode";
break;
default:
raw_message = "unknown error";
break;
}
const VALUE message = rb_str_new2(raw_message);
rb_call_super(1, &message);
rb_iv_set(self, "@code", code);
return self;
}
void
init_ruby_whisper_error(VALUE *mWhisper)
{
eError = rb_define_class_under(*mWhisper, "Error", rb_eStandardError);
rb_define_attr(eError, "code", true, false);
rb_define_method(eError, "initialize", ruby_whisper_error_initialize, 1);
}

View File

@ -0,0 +1,210 @@
#include <ruby.h>
#include "ruby_whisper.h"
extern VALUE cModel;
static void rb_whisper_model_mark(ruby_whisper_model *rwm) {
rb_gc_mark(rwm->context);
}
static VALUE ruby_whisper_model_allocate(VALUE klass) {
ruby_whisper_model *rwm;
rwm = ALLOC(ruby_whisper_model);
return Data_Wrap_Struct(klass, rb_whisper_model_mark, RUBY_DEFAULT_FREE, rwm);
}
VALUE rb_whisper_model_initialize(VALUE context) {
ruby_whisper_model *rwm;
const VALUE model = ruby_whisper_model_allocate(cModel);
Data_Get_Struct(model, ruby_whisper_model, rwm);
rwm->context = context;
return model;
};
/*
* call-seq:
* n_vocab -> Integer
*/
static VALUE
ruby_whisper_model_n_vocab(VALUE self)
{
ruby_whisper_model *rwm;
Data_Get_Struct(self, ruby_whisper_model, rwm);
ruby_whisper *rw;
Data_Get_Struct(rwm->context, ruby_whisper, rw);
return INT2NUM(whisper_model_n_vocab(rw->context));
}
/*
* call-seq:
* n_audio_ctx -> Integer
*/
static VALUE
ruby_whisper_model_n_audio_ctx(VALUE self)
{
ruby_whisper_model *rwm;
Data_Get_Struct(self, ruby_whisper_model, rwm);
ruby_whisper *rw;
Data_Get_Struct(rwm->context, ruby_whisper, rw);
return INT2NUM(whisper_model_n_audio_ctx(rw->context));
}
/*
* call-seq:
* n_audio_state -> Integer
*/
static VALUE
ruby_whisper_model_n_audio_state(VALUE self)
{
ruby_whisper_model *rwm;
Data_Get_Struct(self, ruby_whisper_model, rwm);
ruby_whisper *rw;
Data_Get_Struct(rwm->context, ruby_whisper, rw);
return INT2NUM(whisper_model_n_audio_state(rw->context));
}
/*
* call-seq:
* n_audio_head -> Integer
*/
static VALUE
ruby_whisper_model_n_audio_head(VALUE self)
{
ruby_whisper_model *rwm;
Data_Get_Struct(self, ruby_whisper_model, rwm);
ruby_whisper *rw;
Data_Get_Struct(rwm->context, ruby_whisper, rw);
return INT2NUM(whisper_model_n_audio_head(rw->context));
}
/*
* call-seq:
* n_audio_layer -> Integer
*/
static VALUE
ruby_whisper_model_n_audio_layer(VALUE self)
{
ruby_whisper_model *rwm;
Data_Get_Struct(self, ruby_whisper_model, rwm);
ruby_whisper *rw;
Data_Get_Struct(rwm->context, ruby_whisper, rw);
return INT2NUM(whisper_model_n_audio_layer(rw->context));
}
/*
* call-seq:
* n_text_ctx -> Integer
*/
static VALUE
ruby_whisper_model_n_text_ctx(VALUE self)
{
ruby_whisper_model *rwm;
Data_Get_Struct(self, ruby_whisper_model, rwm);
ruby_whisper *rw;
Data_Get_Struct(rwm->context, ruby_whisper, rw);
return INT2NUM(whisper_model_n_text_ctx(rw->context));
}
/*
* call-seq:
* n_text_state -> Integer
*/
static VALUE
ruby_whisper_model_n_text_state(VALUE self)
{
ruby_whisper_model *rwm;
Data_Get_Struct(self, ruby_whisper_model, rwm);
ruby_whisper *rw;
Data_Get_Struct(rwm->context, ruby_whisper, rw);
return INT2NUM(whisper_model_n_text_state(rw->context));
}
/*
* call-seq:
* n_text_head -> Integer
*/
static VALUE
ruby_whisper_model_n_text_head(VALUE self)
{
ruby_whisper_model *rwm;
Data_Get_Struct(self, ruby_whisper_model, rwm);
ruby_whisper *rw;
Data_Get_Struct(rwm->context, ruby_whisper, rw);
return INT2NUM(whisper_model_n_text_head(rw->context));
}
/*
* call-seq:
* n_text_layer -> Integer
*/
static VALUE
ruby_whisper_model_n_text_layer(VALUE self)
{
ruby_whisper_model *rwm;
Data_Get_Struct(self, ruby_whisper_model, rwm);
ruby_whisper *rw;
Data_Get_Struct(rwm->context, ruby_whisper, rw);
return INT2NUM(whisper_model_n_text_layer(rw->context));
}
/*
* call-seq:
* n_mels -> Integer
*/
static VALUE
ruby_whisper_model_n_mels(VALUE self)
{
ruby_whisper_model *rwm;
Data_Get_Struct(self, ruby_whisper_model, rwm);
ruby_whisper *rw;
Data_Get_Struct(rwm->context, ruby_whisper, rw);
return INT2NUM(whisper_model_n_mels(rw->context));
}
/*
* call-seq:
* ftype -> Integer
*/
static VALUE
ruby_whisper_model_ftype(VALUE self)
{
ruby_whisper_model *rwm;
Data_Get_Struct(self, ruby_whisper_model, rwm);
ruby_whisper *rw;
Data_Get_Struct(rwm->context, ruby_whisper, rw);
return INT2NUM(whisper_model_ftype(rw->context));
}
/*
* call-seq:
* type -> String
*/
static VALUE
ruby_whisper_model_type(VALUE self)
{
ruby_whisper_model *rwm;
Data_Get_Struct(self, ruby_whisper_model, rwm);
ruby_whisper *rw;
Data_Get_Struct(rwm->context, ruby_whisper, rw);
return rb_str_new2(whisper_model_type_readable(rw->context));
}
void
init_ruby_whisper_model(VALUE *mWhisper)
{
cModel = rb_define_class_under(*mWhisper, "Model", rb_cObject);
rb_define_alloc_func(cModel, ruby_whisper_model_allocate);
rb_define_method(cModel, "n_vocab", ruby_whisper_model_n_vocab, 0);
rb_define_method(cModel, "n_audio_ctx", ruby_whisper_model_n_audio_ctx, 0);
rb_define_method(cModel, "n_audio_state", ruby_whisper_model_n_audio_state, 0);
rb_define_method(cModel, "n_audio_head", ruby_whisper_model_n_audio_head, 0);
rb_define_method(cModel, "n_audio_layer", ruby_whisper_model_n_audio_layer, 0);
rb_define_method(cModel, "n_text_ctx", ruby_whisper_model_n_text_ctx, 0);
rb_define_method(cModel, "n_text_state", ruby_whisper_model_n_text_state, 0);
rb_define_method(cModel, "n_text_head", ruby_whisper_model_n_text_head, 0);
rb_define_method(cModel, "n_text_layer", ruby_whisper_model_n_text_layer, 0);
rb_define_method(cModel, "n_mels", ruby_whisper_model_n_mels, 0);
rb_define_method(cModel, "ftype", ruby_whisper_model_ftype, 0);
rb_define_method(cModel, "type", ruby_whisper_model_type, 0);
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,123 @@
#include <ruby.h>
#include "ruby_whisper.h"
extern VALUE cSegment;
static void
rb_whisper_segment_mark(ruby_whisper_segment *rws)
{
rb_gc_mark(rws->context);
}
VALUE
ruby_whisper_segment_allocate(VALUE klass)
{
ruby_whisper_segment *rws;
rws = ALLOC(ruby_whisper_segment);
return Data_Wrap_Struct(klass, rb_whisper_segment_mark, RUBY_DEFAULT_FREE, rws);
}
VALUE
rb_whisper_segment_initialize(VALUE context, int index)
{
ruby_whisper_segment *rws;
const VALUE segment = ruby_whisper_segment_allocate(cSegment);
Data_Get_Struct(segment, ruby_whisper_segment, rws);
rws->context = context;
rws->index = index;
return segment;
};
/*
* Start time in milliseconds.
*
* call-seq:
* start_time -> Integer
*/
static VALUE
ruby_whisper_segment_get_start_time(VALUE self)
{
ruby_whisper_segment *rws;
Data_Get_Struct(self, ruby_whisper_segment, rws);
ruby_whisper *rw;
Data_Get_Struct(rws->context, ruby_whisper, rw);
const int64_t t0 = whisper_full_get_segment_t0(rw->context, rws->index);
// able to multiply 10 without overflow because to_timestamp() in whisper.cpp does it
return INT2NUM(t0 * 10);
}
/*
* End time in milliseconds.
*
* call-seq:
* end_time -> Integer
*/
static VALUE
ruby_whisper_segment_get_end_time(VALUE self)
{
ruby_whisper_segment *rws;
Data_Get_Struct(self, ruby_whisper_segment, rws);
ruby_whisper *rw;
Data_Get_Struct(rws->context, ruby_whisper, rw);
const int64_t t1 = whisper_full_get_segment_t1(rw->context, rws->index);
// able to multiply 10 without overflow because to_timestamp() in whisper.cpp does it
return INT2NUM(t1 * 10);
}
/*
* Whether the next segment is predicted as a speaker turn.
*
* call-seq:
* speaker_turn_next? -> bool
*/
static VALUE
ruby_whisper_segment_get_speaker_turn_next(VALUE self)
{
ruby_whisper_segment *rws;
Data_Get_Struct(self, ruby_whisper_segment, rws);
ruby_whisper *rw;
Data_Get_Struct(rws->context, ruby_whisper, rw);
return whisper_full_get_segment_speaker_turn_next(rw->context, rws->index) ? Qtrue : Qfalse;
}
/*
* call-seq:
* text -> String
*/
static VALUE
ruby_whisper_segment_get_text(VALUE self)
{
ruby_whisper_segment *rws;
Data_Get_Struct(self, ruby_whisper_segment, rws);
ruby_whisper *rw;
Data_Get_Struct(rws->context, ruby_whisper, rw);
const char * text = whisper_full_get_segment_text(rw->context, rws->index);
return rb_str_new2(text);
}
/*
* call-seq:
* no_speech_prob -> Float
*/
static VALUE
ruby_whisper_segment_get_no_speech_prob(VALUE self)
{
ruby_whisper_segment *rws;
Data_Get_Struct(self, ruby_whisper_segment, rws);
ruby_whisper *rw;
Data_Get_Struct(rws->context, ruby_whisper, rw);
return DBL2NUM(whisper_full_get_segment_no_speech_prob(rw->context, rws->index));
}
void
init_ruby_whisper_segment(VALUE *mWhisper, VALUE *cContext)
{
cSegment = rb_define_class_under(*mWhisper, "Segment", rb_cObject);
rb_define_alloc_func(cSegment, ruby_whisper_segment_allocate);
rb_define_method(cSegment, "start_time", ruby_whisper_segment_get_start_time, 0);
rb_define_method(cSegment, "end_time", ruby_whisper_segment_get_end_time, 0);
rb_define_method(cSegment, "speaker_next_turn?", ruby_whisper_segment_get_speaker_turn_next, 0);
rb_define_method(cSegment, "text", ruby_whisper_segment_get_text, 0);
rb_define_method(cSegment, "no_speech_prob", ruby_whisper_segment_get_no_speech_prob, 0);
}

View File

@ -0,0 +1,83 @@
#include <ruby.h>
#include "ruby_whisper.h"
#include "common-whisper.h"
#include <string>
#include <vector>
#ifdef __cplusplus
extern "C" {
#endif
extern ID id_to_s;
extern ID id_call;
extern void
register_callbacks(ruby_whisper_params * rwp, VALUE * self);
/*
* transcribe a single file
* can emit to a block results
*
* params = Whisper::Params.new
* params.duration = 60_000
* whisper.transcribe "path/to/audio.wav", params do |text|
* puts text
* end
*
* call-seq:
* transcribe(path_to_audio, params) {|text| ...}
**/
VALUE
ruby_whisper_transcribe(int argc, VALUE *argv, VALUE self) {
ruby_whisper *rw;
ruby_whisper_params *rwp;
VALUE wave_file_path, blk, params;
rb_scan_args(argc, argv, "02&", &wave_file_path, &params, &blk);
Data_Get_Struct(self, ruby_whisper, rw);
Data_Get_Struct(params, ruby_whisper_params, rwp);
if (!rb_respond_to(wave_file_path, id_to_s)) {
rb_raise(rb_eRuntimeError, "Expected file path to wave file");
}
std::string fname_inp = StringValueCStr(wave_file_path);
std::vector<float> pcmf32; // mono-channel F32 PCM
std::vector<std::vector<float>> pcmf32s; // stereo-channel F32 PCM
if (!read_audio_data(fname_inp, pcmf32, pcmf32s, rwp->diarize)) {
fprintf(stderr, "error: failed to open '%s' as WAV file\n", fname_inp.c_str());
return self;
}
{
static bool is_aborted = false; // NOTE: this should be atomic to avoid data race
rwp->params.encoder_begin_callback = [](struct whisper_context * /*ctx*/, struct whisper_state * /*state*/, void * user_data) {
bool is_aborted = *(bool*)user_data;
return !is_aborted;
};
rwp->params.encoder_begin_callback_user_data = &is_aborted;
}
register_callbacks(rwp, &self);
if (whisper_full_parallel(rw->context, rwp->params, pcmf32.data(), pcmf32.size(), 1) != 0) {
fprintf(stderr, "failed to process audio\n");
return self;
}
const int n_segments = whisper_full_n_segments(rw->context);
VALUE output = rb_str_new2("");
for (int i = 0; i < n_segments; ++i) {
const char * text = whisper_full_get_segment_text(rw->context, i);
output = rb_str_concat(output, rb_str_new2(text));
}
VALUE idCall = id_call;
if (blk != Qnil) {
rb_funcall(blk, idCall, 1, output);
}
return self;
}
#ifdef __cplusplus
}
#endif

View File

@ -65,6 +65,13 @@ module Whisper
end
end
end
rescue => err
if cache_path.exist?
warn err
# Use cache file
else
raise
end
end
def download(response)

View File

@ -20,13 +20,12 @@ module Whisper
def self.lang_id: (string name) -> Integer
def self.lang_str: (Integer id) -> String
def self.lang_str_full: (Integer id) -> String
def self.log_set=: (log_callback) -> log_callback
def self.finalize_log_callback: (void) -> void # Second argument of ObjectSpace.define_finalizer
def self.log_set: (log_callback, Object? user_data) -> log_callback
class Context
def initialize: (string | _ToPath | ::URI::HTTP ) -> void
def transcribe: (string, Params) -> void
| (string, Params) { (String) -> void } -> void
def self.new: (string | _ToPath | ::URI::HTTP) -> instance
def transcribe: (string, Params) -> self
| (string, Params) { (String) -> void } -> self
def model_n_vocab: () -> Integer
def model_n_audio_ctx: () -> Integer
def model_n_audio_state: () -> Integer
@ -35,6 +34,10 @@ module Whisper
def model_n_mels: () -> Integer
def model_ftype: () -> Integer
def model_type: () -> String
def each_segment: { (Segment) -> void } -> void
| () -> Enumerator[Segment]
def model: () -> Model
def full_get_segment: (Integer nth) -> Segment
def full_n_segments: () -> Integer
def full_lang_id: () -> Integer
def full_get_segment_t0: (Integer) -> Integer
@ -42,18 +45,46 @@ module Whisper
def full_get_segment_speaker_turn_next: (Integer) -> (true | false)
def full_get_segment_text: (Integer) -> String
def full_get_segment_no_speech_prob: (Integer) -> Float
def full: (Params, Array[Float], ?Integer) -> void
| (Params, _Samples, ?Integer) -> void
def full_parallel: (Params, Array[Float], ?Integer) -> void
| (Params, _Samples, ?Integer) -> void
| (Params, _Samples, ?Integer?, Integer) -> void
def each_segment: { (Segment) -> void } -> void
| () -> Enumerator[Segment]
def model: () -> Model
def full: (Params, Array[Float] samples, ?Integer n_samples) -> self
| (Params, _Samples, ?Integer n_samples) -> self
def full_parallel: (Params, Array[Float], ?Integer n_samples) -> self
| (Params, _Samples, ?Integer n_samples) -> self
| (Params, _Samples, ?Integer? n_samples, Integer n_processors) -> self
end
class Params
def initialize: () -> void
def self.new: (
?language: string,
?translate: boolish,
?no_context: boolish,
?single_segment: boolish,
?print_special: boolish,
?print_progress: boolish,
?print_realtime: boolish,
?print_timestamps: boolish,
?suppress_blank: boolish,
?suppress_nst: boolish,
?token_timestamps: boolish,
?split_on_word: boolish,
?initial_prompt: string | nil,
?diarize: boolish,
?offset: Integer,
?duration: Integer,
?max_text_tokens: Integer,
?temperature: Float,
?max_initial_ts: Float,
?length_penalty: Float,
?temperature_inc: Float,
?entropy_thold: Float,
?logprob_thold: Float,
?no_speech_thold: Float,
?new_segment_callback: new_segment_callback,
?new_segment_callback_user_data: Object,
?progress_callback: progress_callback,
?progress_callback_user_data: Object,
?abort_callback: abort_callback,
?abort_callback_user_data: Object
) -> instance
def language=: (String) -> String # TODO: Enumerate lang names
def language: () -> String
def translate=: (boolish) -> boolish
@ -79,7 +110,7 @@ module Whisper
def split_on_word=: (boolish) -> boolish
def split_on_word: () -> (true | false)
def initial_prompt=: (_ToS) -> _ToS
def initial_prompt: () -> String
def initial_prompt: () -> (String | nil)
def diarize=: (boolish) -> boolish
def diarize: () -> (true | false)
def offset=: (Integer) -> Integer
@ -103,19 +134,25 @@ module Whisper
def no_speech_thold=: (Float) -> Float
def no_speech_thold: () -> Float
def new_segment_callback=: (new_segment_callback) -> new_segment_callback
def new_segment_callback: () -> (new_segment_callback | nil)
def new_segment_callback_user_data=: (Object) -> Object
def new_segment_callback_user_data: () -> Object
def progress_callback=: (progress_callback) -> progress_callback
def progress_callback: () -> (progress_callback | nil)
def progress_callback_user_data=: (Object) -> Object
def progress_callback_user_data: () -> Object
def abort_callback=: (abort_callback) -> abort_callback
def abort_callback: () -> (abort_callback | nil)
def abort_callback_user_data=: (Object) -> Object
def abort_callback_user_data: () -> Object
def on_new_segment: { (Segment) -> void } -> void
def on_progress: { (Integer) -> void } -> void
def abort_on: { (Object) -> boolish } -> void
def on_progress: { (Integer progress) -> void } -> void
def abort_on: { (Object user_data) -> boolish } -> void
end
class Model
def self.pre_converted_models: () -> Hash[String, Model::URI]
def initialize: () -> void
def self.new: () -> instance
def n_vocab: () -> Integer
def n_audio_ctx: () -> Integer
def n_audio_state: () -> Integer
@ -130,14 +167,13 @@ module Whisper
def type: () -> String
class URI
def initialize: (string | ::URI::HTTP) -> void
def self.new: (string | ::URI::HTTP) -> self
def to_path: -> String
def clear_cache: -> void
end
end
class Segment
def initialize: () -> void
def start_time: () -> Integer
def end_time: () -> Integer
def speaker_next_turn?: () -> (true | false)
@ -148,6 +184,6 @@ module Whisper
class Error < StandardError
attr_reader code: Integer
def initialize: (Integer) -> void
def self.new: (Integer code) -> instance
end
end

View File

@ -1,6 +1,39 @@
require_relative "helper"
class TestParams < TestBase
PARAM_NAMES = [
:language,
:translate,
:no_context,
:single_segment,
:print_special,
:print_progress,
:print_realtime,
:print_timestamps,
:suppress_blank,
:suppress_nst,
:token_timestamps,
:split_on_word,
:initial_prompt,
:diarize,
:offset,
:duration,
:max_text_tokens,
:temperature,
:max_initial_ts,
:length_penalty,
:temperature_inc,
:entropy_thold,
:logprob_thold,
:no_speech_thold,
:new_segment_callback,
:new_segment_callback_user_data,
:progress_callback,
:progress_callback_user_data,
:abort_callback,
:abort_callback_user_data,
]
def setup
@params = Whisper::Params.new
end
@ -157,4 +190,57 @@ class TestParams < TestBase
@params.no_speech_thold = 0.2
assert_in_delta 0.2, @params.no_speech_thold
end
def test_new_with_kw_args
params = Whisper::Params.new(language: "es")
assert_equal "es", params.language
assert_equal 1.0, params.max_initial_ts
end
def test_new_with_kw_args_non_existent
assert_raise ArgumentError do
Whisper::Params.new(non_existent: "value")
end
end
def test_new_with_kw_args_wrong_type
assert_raise TypeError do
Whisper::Params.new(language: 3)
end
end
data(PARAM_NAMES.collect {|param| [param, param]}.to_h)
def test_new_with_kw_args_default_values(param)
default_value = @params.send(param)
value = case [param, default_value]
in [*, true | false]
!default_value
in [*, Integer | Float]
default_value + 1
in [:language, *]
"es"
in [:initial_prompt, *]
"Initial prompt"
in [/_callback\Z/, *]
proc {}
in [/_user_data\Z/, *]
Object.new
end
params = Whisper::Params.new(param => value)
if Float === value
assert_in_delta value, params.send(param)
else
assert_equal value, params.send(param)
end
PARAM_NAMES.reject {|name| name == param}.each do |name|
expected = @params.send(name)
actual = params.send(name)
if Float === expected
assert_in_delta expected, actual
else
assert_equal expected, actual
end
end
end
end

View File

@ -29,6 +29,12 @@ class TestWhisper < TestBase
assert_equal 0, whisper.full_lang_id
end
def test_full_get_segment
segment = whisper.full_get_segment(0)
assert_equal 0, segment.start_time
assert_match /ask not what your country can do for you, ask what you can do for your country/, segment.text
end
def test_full_get_segment_t0
assert_equal 0, whisper.full_get_segment_t0(0)
assert_raise IndexError do

519
build-xcframework.sh Executable file
View File

@ -0,0 +1,519 @@
#!/bin/bash
#
# Options
IOS_MIN_OS_VERSION=16.4
MACOS_MIN_OS_VERSION=13.3
VISIONOS_MIN_OS_VERSION=1.0
TVOS_MIN_OS_VERSION=16.4
BUILD_SHARED_LIBS=OFF
WHISPER_BUILD_EXAMPLES=OFF
WHISPER_BUILD_TESTS=OFF
WHISPER_BUILD_SERVER=OFF
GGML_METAL=ON
GGML_METAL_EMBED_LIBRARY=ON
GGML_BLAS_DEFAULT=ON
GGML_METAL_USE_BF16=ON
GGML_OPENMP=OFF
COMMON_C_FLAGS="-Wno-macro-redefined -Wno-shorten-64-to-32 -Wno-unused-command-line-argument -g"
COMMON_CXX_FLAGS="-Wno-macro-redefined -Wno-shorten-64-to-32 -Wno-unused-command-line-argument -g"
# Common options for all builds
COMMON_CMAKE_ARGS=(
-DCMAKE_XCODE_ATTRIBUTE_CODE_SIGNING_REQUIRED=NO
-DCMAKE_XCODE_ATTRIBUTE_CODE_SIGN_IDENTITY=""
-DCMAKE_XCODE_ATTRIBUTE_CODE_SIGNING_ALLOWED=NO
-DCMAKE_XCODE_ATTRIBUTE_DEBUG_INFORMATION_FORMAT="dwarf-with-dsym"
-DCMAKE_XCODE_ATTRIBUTE_GCC_GENERATE_DEBUGGING_SYMBOLS=YES
-DCMAKE_XCODE_ATTRIBUTE_COPY_PHASE_STRIP=NO
-DCMAKE_XCODE_ATTRIBUTE_STRIP_INSTALLED_PRODUCT=NO
-DCMAKE_XCODE_ATTRIBUTE_DEVELOPMENT_TEAM=ggml
-DBUILD_SHARED_LIBS=${BUILD_SHARED_LIBS}
-DWHISPER_BUILD_EXAMPLES=${WHISPER_BUILD_EXAMPLES}
-DWHISPER_BUILD_TESTS=${WHISPER_BUILD_TESTS}
-DWHISPER_BUILD_SERVER=${WHISPER_BUILD_SERVER}
-DGGML_METAL_EMBED_LIBRARY=${GGML_METAL_EMBED_LIBRARY}
-DGGML_BLAS_DEFAULT=${GGML_BLAS_DEFAULT}
-DGGML_METAL=${GGML_METAL}
-DGGML_METAL_USE_BF16=${GGML_METAL_USE_BF16}
-DGGML_NATIVE=OFF
-DGGML_OPENMP=${GGML_OPENMP}
)
check_required_tool() {
local tool=$1
local install_message=$2
if ! command -v $tool &> /dev/null; then
echo "Error: $tool is required but not found."
echo "$install_message"
exit 1
fi
}
echo "Checking for required tools..."
check_required_tool "cmake" "Please install CMake 3.28.0 or later (brew install cmake)"
check_required_tool "xcodebuild" "Please install Xcode and Xcode Command Line Tools (xcode-select --install)"
check_required_tool "libtool" "Please install libtool which should be available with Xcode Command Line Tools (CLT). Make sure Xcode CLT is installed (xcode-select --install)"
check_required_tool "dsymutil" "Please install Xcode and Xcode Command Line Tools (xcode-select --install)"
set -e
## Clean up previous builds
rm -rf build-apple
rm -rf build-ios-sim
rm -rf build-ios-device
rm -rf build-macos
rm -rf build-visionos
rm -rf build-visionos-sim
rm -rf build-tvos-sim
rm -rf build-tvos-device
# Setup the xcframework build directory structure
setup_framework_structure() {
local build_dir=$1
local min_os_version=$2
local platform=$3 # "ios", "macos", "visionos", or "tvos"
local framework_name="whisper"
echo "Creating ${platform}-style framework structure for ${build_dir}"
if [[ "$platform" == "macos" ]]; then
# macOS versioned structure uses versioned directories
mkdir -p ${build_dir}/framework/${framework_name}.framework/Versions/A/Headers
mkdir -p ${build_dir}/framework/${framework_name}.framework/Versions/A/Modules
mkdir -p ${build_dir}/framework/${framework_name}.framework/Versions/A/Resources
# Create symbolic links
ln -sf A ${build_dir}/framework/${framework_name}.framework/Versions/Current
ln -sf Versions/Current/Headers ${build_dir}/framework/${framework_name}.framework/Headers
ln -sf Versions/Current/Modules ${build_dir}/framework/${framework_name}.framework/Modules
ln -sf Versions/Current/Resources ${build_dir}/framework/${framework_name}.framework/Resources
ln -sf Versions/Current/${framework_name} ${build_dir}/framework/${framework_name}.framework/${framework_name}
# Set header and module paths
local header_path=${build_dir}/framework/${framework_name}.framework/Versions/A/Headers/
local module_path=${build_dir}/framework/${framework_name}.framework/Versions/A/Modules/
else
# iOS/VisionOS/tvOS use a flat structure
mkdir -p ${build_dir}/framework/${framework_name}.framework/Headers
mkdir -p ${build_dir}/framework/${framework_name}.framework/Modules
# Remove any existing structure to ensure clean build
rm -rf ${build_dir}/framework/${framework_name}.framework/Versions
# Set header and module paths
local header_path=${build_dir}/framework/${framework_name}.framework/Headers/
local module_path=${build_dir}/framework/${framework_name}.framework/Modules/
fi
# Copy all required headers (common for all platforms)
cp include/whisper.h ${header_path}
cp ggml/include/ggml.h ${header_path}
cp ggml/include/ggml-alloc.h ${header_path}
cp ggml/include/ggml-backend.h ${header_path}
cp ggml/include/ggml-metal.h ${header_path}
cp ggml/include/ggml-cpu.h ${header_path}
cp ggml/include/ggml-blas.h ${header_path}
cp ggml/include/gguf.h ${header_path}
# Create module map (common for all platforms)
cat > ${module_path}module.modulemap << EOF
framework module whisper {
header "whisper.h"
header "ggml.h"
header "ggml-alloc.h"
header "ggml-backend.h"
header "ggml-metal.h"
header "ggml-cpu.h"
header "ggml-blas.h"
header "gguf.h"
link "c++"
link framework "Accelerate"
link framework "Metal"
link framework "Foundation"
export *
}
EOF
# Platform-specific settings for Info.plist
local platform_name=""
local sdk_name=""
local supported_platform=""
case "$platform" in
"ios")
platform_name="iphoneos"
sdk_name="iphoneos${min_os_version}"
supported_platform="iPhoneOS"
local plist_path="${build_dir}/framework/${framework_name}.framework/Info.plist"
local device_family=' <key>UIDeviceFamily</key>
<array>
<integer>1</integer>
<integer>2</integer>
</array>'
;;
"macos")
platform_name="macosx"
sdk_name="macosx${min_os_version}"
supported_platform="MacOSX"
local plist_path="${build_dir}/framework/${framework_name}.framework/Versions/A/Resources/Info.plist"
local device_family=""
;;
"visionos")
platform_name="xros"
sdk_name="xros${min_os_version}"
supported_platform="XRPlatform"
local plist_path="${build_dir}/framework/${framework_name}.framework/Info.plist"
local device_family=""
;;
"tvos")
platform_name="appletvos"
sdk_name="appletvos${min_os_version}"
supported_platform="AppleTVOS"
local plist_path="${build_dir}/framework/${framework_name}.framework/Info.plist"
local device_family=' <key>UIDeviceFamily</key>
<array>
<integer>3</integer>
</array>'
;;
esac
# Create Info.plist
cat > ${plist_path} << EOF
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>CFBundleDevelopmentRegion</key>
<string>en</string>
<key>CFBundleExecutable</key>
<string>whisper</string>
<key>CFBundleIdentifier</key>
<string>org.ggml.whisper</string>
<key>CFBundleInfoDictionaryVersion</key>
<string>6.0</string>
<key>CFBundleName</key>
<string>whisper</string>
<key>CFBundlePackageType</key>
<string>FMWK</string>
<key>CFBundleShortVersionString</key>
<string>1.0</string>
<key>CFBundleVersion</key>
<string>1</string>
<key>MinimumOSVersion</key>
<string>${min_os_version}</string>
<key>CFBundleSupportedPlatforms</key>
<array>
<string>${supported_platform}</string>
</array>${device_family}
<key>DTPlatformName</key>
<string>${platform_name}</string>
<key>DTSDKName</key>
<string>${sdk_name}</string>
</dict>
</plist>
EOF
}
# Create dynamic libraries from static libraries.
combine_static_libraries() {
local build_dir="$1"
local release_dir="$2"
local platform="$3" # "ios", "macos", "visionos", or "tvos"
local is_simulator="$4"
local base_dir="$(pwd)"
local framework_name="whisper"
# Determine output path based on platform
local output_lib=""
if [[ "$platform" == "macos" ]]; then
# macOS uses versioned structure
output_lib="${build_dir}/framework/${framework_name}.framework/Versions/A/${framework_name}"
else
# iOS, visionOS, and tvOS use a directory flat structure
output_lib="${build_dir}/framework/${framework_name}.framework/${framework_name}"
fi
local libs=(
"${base_dir}/${build_dir}/src/${release_dir}/libwhisper.a"
"${base_dir}/${build_dir}/ggml/src/${release_dir}/libggml.a"
"${base_dir}/${build_dir}/ggml/src/${release_dir}/libggml-base.a"
"${base_dir}/${build_dir}/ggml/src/${release_dir}/libggml-cpu.a"
"${base_dir}/${build_dir}/ggml/src/ggml-metal/${release_dir}/libggml-metal.a"
"${base_dir}/${build_dir}/ggml/src/ggml-blas/${release_dir}/libggml-blas.a"
)
# Create temporary directory for processing
local temp_dir="${base_dir}/${build_dir}/temp"
mkdir -p "${temp_dir}"
# Since we have multiple architectures libtool will find object files that do not
# match the target architecture. We suppress these warnings.
libtool -static -o "${temp_dir}/combined.a" "${libs[@]}" 2> /dev/null
# Determine SDK, architectures, and install_name based on platform and simulator flag.
local sdk=""
local archs=""
local min_version_flag=""
local install_name=""
case "$platform" in
"ios")
if [[ "$is_simulator" == "true" ]]; then
sdk="iphonesimulator"
archs="arm64 x86_64"
min_version_flag="-mios-simulator-version-min=${IOS_MIN_OS_VERSION}"
else
sdk="iphoneos"
archs="arm64"
min_version_flag="-mios-version-min=${IOS_MIN_OS_VERSION}"
fi
install_name="@rpath/whisper.framework/whisper"
;;
"macos")
sdk="macosx"
archs="arm64 x86_64"
min_version_flag="-mmacosx-version-min=${MACOS_MIN_OS_VERSION}"
install_name="@rpath/whisper.framework/Versions/Current/whisper"
;;
"visionos")
if [[ "$is_simulator" == "true" ]]; then
sdk="xrsimulator"
archs="arm64 x86_64"
min_version_flag="-mtargetos=xros${VISIONOS_MIN_OS_VERSION}-simulator"
else
sdk="xros"
archs="arm64"
min_version_flag="-mtargetos=xros${VISIONOS_MIN_OS_VERSION}"
fi
# Use flat structure for visionOS, same as iOS
install_name="@rpath/whisper.framework/whisper"
;;
"tvos")
if [[ "$is_simulator" == "true" ]]; then
sdk="appletvsimulator"
archs="arm64 x86_64"
min_version_flag="-mtvos-simulator-version-min=${TVOS_MIN_OS_VERSION}"
else
sdk="appletvos"
archs="arm64"
min_version_flag="-mtvos-version-min=${TVOS_MIN_OS_VERSION}"
fi
install_name="@rpath/whisper.framework/whisper"
;;
esac
# Build architecture flags
local arch_flags=""
for arch in $archs; do
arch_flags+=" -arch $arch"
done
# Create dynamic library
echo "Creating dynamic library for ${platform}."
xcrun -sdk $sdk clang++ -dynamiclib \
-isysroot $(xcrun --sdk $sdk --show-sdk-path) \
$arch_flags \
$min_version_flag \
-Wl,-force_load,"${temp_dir}/combined.a" \
-framework Foundation -framework Metal -framework Accelerate \
-install_name "$install_name" \
-o "${base_dir}/${output_lib}"
# Platform-specific post-processing for device builds
if [[ "$is_simulator" == "false" ]]; then
if command -v vtool &>/dev/null; then
case "$platform" in
"ios")
echo "Marking binary as a framework binary for iOS..."
vtool -set-build-version ios ${IOS_MIN_OS_VERSION} ${IOS_MIN_OS_VERSION} -replace \
-output "${base_dir}/${output_lib}" "${base_dir}/${output_lib}"
;;
"visionos")
echo "Marking binary as a framework binary for visionOS..."
vtool -set-build-version xros ${VISIONOS_MIN_OS_VERSION} ${VISIONOS_MIN_OS_VERSION} -replace \
-output "${base_dir}/${output_lib}" "${base_dir}/${output_lib}"
;;
"tvos")
echo "Marking binary as a framework binary for tvOS..."
vtool -set-build-version tvos ${TVOS_MIN_OS_VERSION} ${TVOS_MIN_OS_VERSION} -replace \
-output "${base_dir}/${output_lib}" "${base_dir}/${output_lib}"
;;
esac
else
echo "Warning: vtool not found. Binary may not pass App Store validation."
fi
fi
echo "Creating properly formatted dSYM..."
# Create a separate directory for dSYMs for all platforms
mkdir -p "${base_dir}/${build_dir}/dSYMs"
# iOS and visionOS style dSYM (flat structure)
if [[ "$platform" == "ios" || "$platform" == "visionos" || "$platform" == "tvos" ]]; then
# Generate dSYM in the dSYMs directory
xcrun dsymutil "${base_dir}/${output_lib}" -o "${base_dir}/${build_dir}/dSYMs/whisper.dSYM"
# Create a copy of the binary that will be stripped
cp "${base_dir}/${output_lib}" "${temp_dir}/binary_to_strip"
# Strip debug symbols from the copy
xcrun strip -S "${temp_dir}/binary_to_strip" -o "${temp_dir}/stripped_lib"
# Replace the original with the stripped version
mv "${temp_dir}/stripped_lib" "${base_dir}/${output_lib}"
else
# macOS style dSYM
# First strip debug info to a separate file
xcrun strip -S "${base_dir}/${output_lib}" -o "${temp_dir}/stripped_lib"
# Generate dSYM in the dSYMs directory
xcrun dsymutil "${base_dir}/${output_lib}" -o "${base_dir}/${build_dir}/dSYMs/whisper.dSYM"
# Replace original binary with stripped version
mv "${temp_dir}/stripped_lib" "${base_dir}/${output_lib}"
fi
# Remove any automatically generated dSYM files in the framework structure as they will
# otherwise case Invalid Bundle Structure validation errors.
if [ -d "${base_dir}/${output_lib}.dSYM" ]; then
echo "Removing generated dSYM file in framework structure: ${base_dir}/${output_lib}.dSYM"
rm -rf "${base_dir}/${output_lib}.dSYM"
fi
# Clean up
rm -rf "${temp_dir}"
}
echo "Building for iOS simulator..."
cmake -B build-ios-sim -G Xcode \
"${COMMON_CMAKE_ARGS[@]}" \
-DCMAKE_OSX_DEPLOYMENT_TARGET=${IOS_MIN_OS_VERSION} \
-DIOS=ON \
-DCMAKE_SYSTEM_NAME=iOS \
-DCMAKE_OSX_SYSROOT=iphonesimulator \
-DCMAKE_OSX_ARCHITECTURES="arm64;x86_64" \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=iphonesimulator \
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
-S .
cmake --build build-ios-sim --config Release -- -quiet
echo "Building for iOS devices..."
cmake -B build-ios-device -G Xcode \
"${COMMON_CMAKE_ARGS[@]}" \
-DCMAKE_OSX_DEPLOYMENT_TARGET=${IOS_MIN_OS_VERSION} \
-DCMAKE_OSX_SYSROOT=iphoneos \
-DCMAKE_OSX_ARCHITECTURES="arm64" \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=iphoneos \
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
-S .
cmake --build build-ios-device --config Release -- -quiet
echo "Building for macOS..."
cmake -B build-macos -G Xcode \
"${COMMON_CMAKE_ARGS[@]}" \
-DCMAKE_OSX_DEPLOYMENT_TARGET=${MACOS_MIN_OS_VERSION} \
-DCMAKE_OSX_ARCHITECTURES="arm64;x86_64" \
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
-S .
cmake --build build-macos --config Release -- -quiet
echo "Building for visionOS..."
cmake -B build-visionos -G Xcode \
"${COMMON_CMAKE_ARGS[@]}" \
-DCMAKE_OSX_DEPLOYMENT_TARGET=${VISIONOS_MIN_OS_VERSION} \
-DCMAKE_OSX_ARCHITECTURES="arm64" \
-DCMAKE_SYSTEM_NAME=visionOS \
-DCMAKE_OSX_SYSROOT=xros \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=xros \
-DCMAKE_C_FLAGS="-D_XOPEN_SOURCE=700 -Du_int=unsigned\ int -Du_char=unsigned\ char -Du_short=unsigned\ short ${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="-D_XOPEN_SOURCE=700 -Du_int=unsigned\ int -Du_char=unsigned\ char -Du_short=unsigned\ short ${COMMON_CXX_FLAGS}" \
-S .
cmake --build build-visionos --config Release -- -quiet
echo "Building for visionOS simulator..."
cmake -B build-visionos-sim -G Xcode \
"${COMMON_CMAKE_ARGS[@]}" \
-DCMAKE_OSX_DEPLOYMENT_TARGET=${VISIONOS_MIN_OS_VERSION} \
-DCMAKE_OSX_ARCHITECTURES="arm64;x86_64" \
-DCMAKE_SYSTEM_NAME=visionOS \
-DCMAKE_OSX_SYSROOT=xrsimulator \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=xrsimulator \
-DCMAKE_C_FLAGS="-D_XOPEN_SOURCE=700 -Du_int=unsigned\ int -Du_char=unsigned\ char -Du_short=unsigned\ short ${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="-D_XOPEN_SOURCE=700 -Du_int=unsigned\ int -Du_char=unsigned\ char -Du_short=unsigned\ short ${COMMON_CXX_FLAGS}" \
-S .
cmake --build build-visionos-sim --config Release -- -quiet
# Add tvOS builds (might need the same u_int definitions as watchOS and visionOS)
echo "Building for tvOS simulator..."
cmake -B build-tvos-sim -G Xcode \
"${COMMON_CMAKE_ARGS[@]}" \
-DCMAKE_OSX_DEPLOYMENT_TARGET=${TVOS_MIN_OS_VERSION} \
-DCMAKE_SYSTEM_NAME=tvOS \
-DCMAKE_OSX_SYSROOT=appletvsimulator \
-DCMAKE_OSX_ARCHITECTURES="arm64;x86_64" \
-DGGML_METAL=ON \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=appletvsimulator \
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
-S .
cmake --build build-tvos-sim --config Release -- -quiet
echo "Building for tvOS devices..."
cmake -B build-tvos-device -G Xcode \
"${COMMON_CMAKE_ARGS[@]}" \
-DCMAKE_OSX_DEPLOYMENT_TARGET=${TVOS_MIN_OS_VERSION} \
-DCMAKE_SYSTEM_NAME=tvOS \
-DCMAKE_OSX_SYSROOT=appletvos \
-DCMAKE_OSX_ARCHITECTURES="arm64" \
-DGGML_METAL=ON \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=appletvos \
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
-S .
cmake --build build-tvos-device --config Release -- -quiet
# Setup frameworks and copy binaries and headers
echo "Setting up framework structures..."
setup_framework_structure "build-ios-sim" ${IOS_MIN_OS_VERSION} "ios"
setup_framework_structure "build-ios-device" ${IOS_MIN_OS_VERSION} "ios"
setup_framework_structure "build-macos" ${MACOS_MIN_OS_VERSION} "macos"
setup_framework_structure "build-visionos" ${VISIONOS_MIN_OS_VERSION} "visionos"
setup_framework_structure "build-visionos-sim" ${VISIONOS_MIN_OS_VERSION} "visionos"
setup_framework_structure "build-tvos-sim" ${TVOS_MIN_OS_VERSION} "tvos"
setup_framework_structure "build-tvos-device" ${TVOS_MIN_OS_VERSION} "tvos"
# Create dynamic libraries from static libraries
echo "Creating dynamic libraries from static libraries..."
combine_static_libraries "build-ios-sim" "Release-iphonesimulator" "ios" "true"
combine_static_libraries "build-ios-device" "Release-iphoneos" "ios" "false"
combine_static_libraries "build-macos" "Release" "macos" "false"
combine_static_libraries "build-visionos" "Release-xros" "visionos" "false"
combine_static_libraries "build-visionos-sim" "Release-xrsimulator" "visionos" "true"
combine_static_libraries "build-tvos-sim" "Release-appletvsimulator" "tvos" "true"
combine_static_libraries "build-tvos-device" "Release-appletvos" "tvos" "false"
# Create XCFramework with correct debug symbols paths
echo "Creating XCFramework..."
xcodebuild -create-xcframework \
-framework $(pwd)/build-ios-sim/framework/whisper.framework \
-debug-symbols $(pwd)/build-ios-sim/dSYMs/whisper.dSYM \
-framework $(pwd)/build-ios-device/framework/whisper.framework \
-debug-symbols $(pwd)/build-ios-device/dSYMs/whisper.dSYM \
-framework $(pwd)/build-macos/framework/whisper.framework \
-debug-symbols $(pwd)/build-macos/dSYMS/whisper.dSYM \
-framework $(pwd)/build-visionos/framework/whisper.framework \
-debug-symbols $(pwd)/build-visionos/dSYMs/whisper.dSYM \
-framework $(pwd)/build-visionos-sim/framework/whisper.framework \
-debug-symbols $(pwd)/build-visionos-sim/dSYMs/whisper.dSYM \
-framework $(pwd)/build-tvos-device/framework/whisper.framework \
-debug-symbols $(pwd)/build-tvos-device/dSYMs/whisper.dSYM \
-framework $(pwd)/build-tvos-sim/framework/whisper.framework \
-debug-symbols $(pwd)/build-tvos-sim/dSYMs/whisper.dSYM \
-output $(pwd)/build-apple/whisper.xcframework

41
ci/README.md Normal file
View File

@ -0,0 +1,41 @@
# CI
In addition to [Github Actions](https://github.com/ggerganov/whisper.cpp/actions) `whisper.cpp` uses a custom CI framework:
https://github.com/ggml-org/ci
It monitors the `master` branch for new commits and runs the
[ci/run.sh](https://github.com/ggerganov/whisper.cpp/blob/master/ci/run.sh) script on dedicated cloud instances. This allows us
to execute heavier workloads compared to just using Github Actions. Also with time, the cloud instances will be scaled
to cover various hardware architectures, including GPU and Apple Silicon instances.
Collaborators can optionally trigger the CI run by adding the `ggml-ci` keyword to their commit message.
Only the branches of this repo are monitored for this keyword.
It is a good practice, before publishing changes to execute the full CI locally on your machine:
```bash
mkdir tmp
# CPU-only build
bash ./ci/run.sh ./tmp/results ./tmp/mnt
# with CUDA support
GG_BUILD_CUDA=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
```
## Environment Variables
The CI script supports several environment variables to control the build:
| Variable | Description |
|----------|-------------|
| `GG_BUILD_CUDA` | Enable NVIDIA CUDA GPU acceleration |
| `GG_BUILD_SYCL` | Enable Intel SYCL acceleration |
| `GG_BUILD_VULKAN` | Enable Vulkan GPU acceleration |
| `GG_BUILD_METAL` | Enable Metal acceleration on Apple Silicon |
| `GG_BUILD_BLAS` | Enable BLAS CPU acceleration |
| `GG_BUILD_OPENVINO` | Enable OpenVINO support |
| `GG_BUILD_COREML` | Enable Core ML support for Apple Neural Engine |
| `GG_BUILD_LOW_PERF` | Limit tests for low-performance hardware |
| `GG_BUILD_TEST_MODELS` | Comma-separated list of models to test (e.g. "tiny.en,tiny,base,medium", defaults to all models unless `GG_BUILD_LOW_PERF` is set) |

333
ci/run.sh Normal file
View File

@ -0,0 +1,333 @@
#!/bin/bash
#
# sample usage:
#
# mkdir tmp
#
# # CPU-only build
# bash ./ci/run.sh ./tmp/results ./tmp/mnt
#
# # with CUDA support
# GG_BUILD_CUDA=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
#
if [ -z "$2" ]; then
echo "usage: $0 <output-dir> <mnt-dir>"
exit 1
fi
mkdir -p "$1"
mkdir -p "$2"
OUT=$(realpath "$1")
MNT=$(realpath "$2")
rm -f "$OUT/*.log"
rm -f "$OUT/*.exit"
rm -f "$OUT/*.md"
sd=`dirname $0`
cd $sd/../
SRC=`pwd`
ALL_MODELS=( "tiny.en" "tiny" "base.en" "base" "small.en" "small" "medium.en" "medium" "large-v1" "large-v2" "large-v3" "large-v3-turbo" )
BENCH_N_THREADS=4
BENCH_ENCODER_ONLY=0
BENCH_FLASH_ATTN=0
# check for user-specified models first. if not specified, use fast models
if [ ! -z ${GG_BUILD_TEST_MODELS} ]; then
IFS=',' read -r -a MODELS <<< "${GG_BUILD_TEST_MODELS}"
else
if [ ! -z ${GG_BUILD_LOW_PERF} ]; then
MODELS=( "tiny" "base" "small" )
else
MODELS=("${ALL_MODELS[@]}")
fi
fi
CMAKE_EXTRA="-DWHISPER_FATAL_WARNINGS=ON"
if [ ! -z ${GG_BUILD_CUDA} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_CUDA=ON -DCMAKE_CUDA_ARCHITECTURES=native"
fi
if [ ! -z ${GG_BUILD_SYCL} ]; then
if [ -z ${ONEAPI_ROOT} ]; then
echo "Not detected ONEAPI_ROOT, please install oneAPI base toolkit and enable it by:"
echo "source /opt/intel/oneapi/setvars.sh"
exit 1
fi
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON"
fi
if [ ! -z ${GG_BUILD_OPENVINO} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DWHISPER_OPENVINO=ON"
fi
if [ ! -z ${GG_BUILD_METAL} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_METAL=ON"
fi
if [ ! -z ${GG_BUILD_VULKAN} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_VULKAN=ON"
fi
if [ ! -z ${GG_BUILD_BLAS} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_BLAS=ON"
fi
if [ ! -z ${GG_BUILD_COREML} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DWHISPER_COREML=ON"
fi
## helpers
# download a file if it does not exist or if it is outdated
function gg_wget {
local out=$1
local url=$2
local cwd=`pwd`
mkdir -p $out
cd $out
# should not re-download if file is the same
wget -nv -N $url
cd $cwd
}
function gg_download_model {
local model_name=$1
local model_file="$MNT/models/ggml-${model_name}.bin"
if [ ! -f ${model_file} ]; then
local cwd=`pwd`
mkdir -p "$MNT/models"
cd "$MNT/models"
bash "$cwd/models/download-ggml-model.sh" ${model_name} .
cd "$cwd"
fi
}
function gg_printf {
printf -- "$@" >> $OUT/README.md
}
# Helper function to check command exit status
function gg_check_last_command_status {
local exit_file=$1
local command_name=$2
local exit_status=$?
echo "$exit_status" > "$exit_file"
if [ $exit_status -ne 0 ]; then
echo "Error: Command $command_name failed with exit status $exit_status"
return 1
fi
return 0
}
# Usage: gg_run <test_name> [additional_args...]
#
# Parameters:
# test_name - Name of the test to run (calls gg_run_<test_name>)
# additional_args - Any additional arguments to pass to the test function (first argument is appended to the log filename)
function gg_run {
ci=$1
if [ $# -gt 1 ]; then
ci="${ci}_${2}"
fi
set -o pipefail
set -x
gg_run_$1 "$@" | tee $OUT/$ci.log
cur=$?
echo "$cur" > $OUT/$ci.exit
set +x
set +o pipefail
gg_sum_$1 "$@"
ret=$((ret | cur))
}
function gg_check_build_requirements {
if ! command -v cmake &> /dev/null; then
gg_printf 'cmake not found, please install'
fi
if ! command -v make &> /dev/null; then
gg_printf 'make not found, please install'
fi
}
## ci
function gg_run_ctest {
mode=$2
cd ${SRC}
rm -rf build-ci-${mode} && mkdir build-ci-${mode} && cd build-ci-${mode}
set -e
gg_check_build_requirements
(time cmake -DCMAKE_BUILD_TYPE=${mode} ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
(time ctest --output-on-failure -L main -E test-opt ) 2>&1 | tee -a $OUT/${ci}-ctest.log
set +e
}
function gg_sum_ctest {
mode=$2
gg_printf '### %s\n\n' "${ci}"
gg_printf 'Runs ctest in '${mode}' mode\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '```\n'
gg_printf '%s\n' "$(cat $OUT/${ci}-ctest.log)"
gg_printf '```\n'
}
function gg_run_bench {
cd ${SRC}
# set flash attention flag if enabled
fattn=""
if [ "$BENCH_FLASH_ATTN" -eq 1 ]; then
fattn="-fa"
fi
# run memcpy benchmark if not encoder-only mode
if [ "$BENCH_ENCODER_ONLY" -eq 0 ]; then
echo "Running memcpy benchmark"
(time ./build-ci-release/bin/whisper-bench -w 1 -t $BENCH_N_THREADS 2>&1) | tee -a $OUT/${ci}-memcpy.log
gg_check_last_command_status "$OUT/${ci}-memcpy.exit" "memcpy benchmark"
echo "Running ggml_mul_mat benchmark with $BENCH_N_THREADS threads"
(time ./build-ci-release/bin/whisper-bench -w 2 -t $BENCH_N_THREADS 2>&1) | tee -a $OUT/${ci}-mul_mat.log
gg_check_last_command_status "$OUT/${ci}-mul_mat.exit" "ggml_mul_mat benchmark"
fi
echo "Running benchmark for all models"
# generate header for the benchmark table
{
printf "| %16s | %13s | %3s | %3s | %7s | %7s | %7s | %7s | %7s |\n" "Config" "Model" "Th" "FA" "Enc." "Dec." "Bch5" "PP" "Commit"
printf "| %16s | %13s | %3s | %3s | %7s | %7s | %7s | %7s | %7s |\n" "---" "---" "---" "---" "---" "---" "---" "---" "---"
} | tee -a $OUT/${ci}-models-table.log
# run benchmark for each model
for model in "${MODELS[@]}"; do
echo "Benchmarking model: $model"
# run the benchmark and capture output
output=$(./build-ci-release/bin/whisper-bench -m $MNT/models/ggml-$model.bin -t $BENCH_N_THREADS $fattn 2>&1)
ret=$?
# save the raw output
echo "$output" > $OUT/${ci}-bench-$model.log
if [ $ret -eq 0 ]; then
# parse the benchmark results
encode_time=$(echo "$output" | grep "encode time" | awk '{print $11}')
decode_time=$(echo "$output" | grep "decode time" | awk '{print $11}')
batchd_time=$(echo "$output" | grep "batchd time" | awk '{print $11}')
prompt_time=$(echo "$output" | grep "prompt time" | awk '{print $11}')
system_info=$(echo "$output" | grep "system_info")
actual_threads=$(echo "$output" | grep "system_info" | awk '{print $4}')
# determine configuration
config=""
if [[ $system_info == *"AVX2 = 1"* ]]; then
config="$config AVX2"
fi
if [[ $system_info == *"NEON = 1"* ]]; then
config="$config NEON"
fi
if [[ $system_info == *"BLAS = 1"* ]]; then
config="$config BLAS"
fi
if [[ $system_info == *"COREML = 1"* ]]; then
config="$config COREML"
fi
if [[ $system_info == *"CUDA = 1"* ]]; then
config="$config CUDA"
fi
if [[ $system_info == *"METAL = 1"* ]]; then
config="$config METAL"
fi
# get commit hash
commit=$(git rev-parse --short HEAD)
# add row to benchmark table
printf "| %16s | %13s | %3s | %3s | %7s | %7s | %7s | %7s | %7s |\n" \
"$config" "$model" "$actual_threads" "$BENCH_FLASH_ATTN" "$encode_time" "$decode_time" "$batchd_time" "$prompt_time" "$commit" \
| tee -a $OUT/${ci}-models-table.log
else
echo "Benchmark failed for model: $model" | tee -a $OUT/${ci}-bench-errors.log
fi
done
}
function gg_sum_bench {
gg_printf '### %s\n\n' "${ci}"
gg_printf 'Whisper Benchmark Results\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
# show memcpy and ggml_mul_mat benchmark results if available
if [ "$BENCH_ENCODER_ONLY" -eq 0 ]; then
if [ -f "$OUT/${ci}-memcpy.log" ]; then
gg_printf '#### memcpy Benchmark\n\n'
gg_printf '```\n%s\n```\n\n' "$(cat $OUT/${ci}-memcpy.log)"
fi
if [ -f "$OUT/${ci}-mul_mat.log" ]; then
gg_printf '#### ggml_mul_mat Benchmark\n\n'
gg_printf '```\n%s\n```\n\n' "$(cat $OUT/${ci}-mul_mat.log)"
fi
fi
# show model benchmark results
gg_printf '#### Model Benchmarks\n\n'
if [ -f "$OUT/${ci}-models-table.log" ]; then
gg_printf '%s\n\n' "$(cat $OUT/${ci}-models-table.log)"
else
gg_printf 'No model benchmark results available.\n\n'
fi
# show any errors that occurred
if [ -f "$OUT/${ci}-bench-errors.log" ]; then
gg_printf '#### Benchmark Errors\n\n'
gg_printf '```\n%s\n```\n\n' "$(cat $OUT/${ci}-bench-errors.log)"
fi
}
ret=0
for model in "${MODELS[@]}"; do
test $ret -eq 0 && gg_download_model ${model}
done
test $ret -eq 0 && gg_run ctest debug
test $ret -eq 0 && gg_run ctest release
test $ret -eq 0 && gg_run bench
exit $ret

28
close-issue.yml Normal file
View File

@ -0,0 +1,28 @@
name: Close inactive issues
on:
schedule:
- cron: "42 0 * * *"
# Fine-grant permission
# https://docs.github.com/en/actions/security-for-github-actions/security-guides/automatic-token-authentication#modifying-the-permissions-for-the-github_token
permissions:
issues: write
jobs:
close-issues:
runs-on: ubuntu-latest
permissions:
issues: write
pull-requests: write
steps:
- uses: actions/stale@v5
with:
exempt-issue-labels: "refactor,help wanted,good first issue,research,bug,roadmap"
days-before-issue-stale: 30
days-before-issue-close: 14
stale-issue-label: "stale"
close-issue-message: "This issue was closed because it has been inactive for 14 days since being marked as stale."
days-before-pr-stale: -1
days-before-pr-close: -1
operations-per-run: 10000
repo-token: ${{ secrets.GITHUB_TOKEN }}

View File

@ -42,6 +42,8 @@ endif()
if(MSVC)
set(BUILD_COMPILER "${CMAKE_C_COMPILER_ID} ${CMAKE_C_COMPILER_VERSION}")
set(BUILD_TARGET ${CMAKE_VS_PLATFORM_NAME})
add_compile_options("$<$<COMPILE_LANGUAGE:C>:/utf-8>")
add_compile_options("$<$<COMPILE_LANGUAGE:CXX>:/utf-8>")
else()
execute_process(
COMMAND sh -c "$@ --version | head -1" _ ${CMAKE_C_COMPILER}

View File

@ -14,10 +14,6 @@ if (WHISPER_SDL2)
message(STATUS "SDL2_LIBRARIES = ${SDL2_LIBRARIES}")
endif()
if (WHISPER_CLBLAST)
find_package(CLBlast REQUIRED)
endif()
# common
set(TARGET common)
@ -56,6 +52,8 @@ add_library(${TARGET} STATIC
common.cpp
common-ggml.h
common-ggml.cpp
common-whisper.h
common-whisper.cpp
grammar-parser.h
grammar-parser.cpp
${COMMON_SOURCES_FFMPEG}
@ -63,7 +61,7 @@ add_library(${TARGET} STATIC
include(DefaultTargetOptions)
target_link_libraries(${TARGET} PRIVATE whisper ${COMMON_EXTRA_LIBS})
target_link_libraries(${TARGET} PRIVATE whisper ${COMMON_EXTRA_LIBS} ${CMAKE_DL_LIBS})
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
set_target_properties(${TARGET} PROPERTIES FOLDER "libs")

View File

@ -1,5 +1,6 @@
#include "napi.h"
#include "common.h"
#include "common-whisper.h"
#include "whisper.h"
@ -171,8 +172,8 @@ int run(whisper_params &params, std::vector<std::vector<std::string>> &result) {
// read the input audio file if params.pcmf32 is not provided
if (params.pcmf32.empty()) {
if (!::read_wav(fname_inp, pcmf32, pcmf32s, params.diarize)) {
fprintf(stderr, "error: failed to read WAV file '%s'\n", fname_inp.c_str());
if (!::read_audio_data(fname_inp, pcmf32, pcmf32s, params.diarize)) {
fprintf(stderr, "error: failed to read audio file '%s'\n", fname_inp.c_str());
continue;
}
} else {
@ -330,6 +331,7 @@ Napi::Value whisper(const Napi::CallbackInfo& info) {
bool no_timestamps = whisper_params.Get("no_timestamps").As<Napi::Boolean>();
int32_t audio_ctx = whisper_params.Get("audio_ctx").As<Napi::Number>();
bool comma_in_time = whisper_params.Get("comma_in_time").As<Napi::Boolean>();
int32_t max_len = whisper_params.Get("max_len").As<Napi::Number>();
Napi::Value pcmf32Value = whisper_params.Get("pcmf32");
std::vector<float> pcmf32_vec;
@ -352,6 +354,7 @@ Napi::Value whisper(const Napi::CallbackInfo& info) {
params.audio_ctx = audio_ctx;
params.pcmf32 = pcmf32_vec;
params.comma_in_time = comma_in_time;
params.max_len = max_len;
Napi::Function callback = info[1].As<Napi::Function>();
Worker* worker = new Worker(callback, params);

View File

@ -18,6 +18,7 @@ const whisperParams = {
translate: true,
no_timestamps: false,
audio_ctx: 0,
max_len: 0,
};
const arguments = process.argv.slice(2);

View File

@ -50,11 +50,11 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads);
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
fprintf(stderr, " -w N, --what N [%-7d] what to benchmark:\n", params.what);
fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU\n", params.use_gpu ? "false" : "true");
fprintf(stderr, " -fa, --flash-attn [%-7s] enable flash attention\n", params.flash_attn ? "true" : "false");
fprintf(stderr, " %-7s 0 - whisper\n", "");
fprintf(stderr, " %-7s 1 - memcpy\n", "");
fprintf(stderr, " %-7s 2 - ggml_mul_mat\n", "");
fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU\n", params.use_gpu ? "false" : "true");
fprintf(stderr, " -fa, --flash-attn [%-7s] enable flash attention\n", params.flash_attn ? "true" : "false");
fprintf(stderr, "\n");
}

View File

@ -1,4 +1,5 @@
#include "common.h"
#include "common-whisper.h"
#include "whisper.h"
#include "grammar-parser.h"
@ -6,12 +7,16 @@
#include <cmath>
#include <fstream>
#include <cstdio>
#include <regex>
#include <string>
#include <thread>
#include <vector>
#include <cstring>
#if defined(_WIN32)
#define NOMINMAX
#include <windows.h>
#endif
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
@ -194,7 +199,8 @@ static bool whisper_params_parse(int argc, char ** argv, whisper_params & params
static void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & params) {
fprintf(stderr, "\n");
fprintf(stderr, "usage: %s [options] file0.wav file1.wav ...\n", argv[0]);
fprintf(stderr, "usage: %s [options] file0 file1 ...\n", argv[0]);
fprintf(stderr, "supported audio formats: flac, mp3, ogg, wav\n");
fprintf(stderr, "\n");
fprintf(stderr, "options:\n");
fprintf(stderr, " -h, --help [default] show this help message and exit\n");
@ -239,7 +245,7 @@ static void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params
fprintf(stderr, " -dl, --detect-language [%-7s] exit after automatically detecting language\n", params.detect_language ? "true" : "false");
fprintf(stderr, " --prompt PROMPT [%-7s] initial prompt (max n_text_ctx/2 tokens)\n", params.prompt.c_str());
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] input WAV file path\n", "");
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] input audio file path\n", "");
fprintf(stderr, " -oved D, --ov-e-device DNAME [%-7s] the OpenVINO device used for encode inference\n", params.openvino_encode_device.c_str());
fprintf(stderr, " -dtw MODEL --dtw MODEL [%-7s] compute token-level timestamps\n", params.dtw.c_str());
fprintf(stderr, " -ls, --log-score [%-7s] log best decoder scores of tokens\n", params.log_score?"true":"false");
@ -916,6 +922,13 @@ static bool output_lrc(struct whisper_context * ctx, const char * fname, const w
static void cb_log_disable(enum ggml_log_level , const char * , void * ) { }
int main(int argc, char ** argv) {
#if defined(_WIN32)
// Set the console output code page to UTF-8, while command line arguments
// are still encoded in the system's code page. In this way, we can print
// non-ASCII characters to the console, and access files with non-ASCII paths.
SetConsoleOutputCP(CP_UTF8);
#endif
whisper_params params;
// If the only argument starts with "@", read arguments line-by-line
@ -1057,8 +1070,8 @@ int main(int argc, char ** argv) {
std::vector<float> pcmf32; // mono-channel F32 PCM
std::vector<std::vector<float>> pcmf32s; // stereo-channel F32 PCM
if (!::read_wav(fname_inp, pcmf32, pcmf32s, params.diarize)) {
fprintf(stderr, "error: failed to read WAV file '%s'\n", fname_inp.c_str());
if (!::read_audio_data(fname_inp, pcmf32, pcmf32s, params.diarize)) {
fprintf(stderr, "error: failed to read audio file '%s'\n", fname_inp.c_str());
continue;
}

View File

@ -11,16 +11,15 @@
#include "whisper.h"
#include "grammar-parser.h"
#include <sstream>
#include <cassert>
#include <algorithm>
#include <chrono>
#include <cstdio>
#include <fstream>
#include <mutex>
#include <regex>
#include <map>
#include <sstream>
#include <string>
#include <thread>
#include <vector>
#include <map>
// command-line parameters
struct whisper_params {

View File

@ -159,15 +159,11 @@ void audio_async::callback(uint8_t * stream, int len) {
memcpy(&m_audio[m_audio_pos], stream, n0 * sizeof(float));
memcpy(&m_audio[0], stream + n0 * sizeof(float), (n_samples - n0) * sizeof(float));
m_audio_pos = (m_audio_pos + n_samples) % m_audio.size();
m_audio_len = m_audio.size();
} else {
memcpy(&m_audio[m_audio_pos], stream, n_samples * sizeof(float));
m_audio_pos = (m_audio_pos + n_samples) % m_audio.size();
m_audio_len = std::min(m_audio_len + n_samples, m_audio.size());
}
m_audio_pos = (m_audio_pos + n_samples) % m_audio.size();
m_audio_len = std::min(m_audio_len + n_samples, m_audio.size());
}
}

172
examples/common-whisper.cpp Normal file
View File

@ -0,0 +1,172 @@
#define _USE_MATH_DEFINES // for M_PI
#include "common-whisper.h"
#include "common.h"
#include "whisper.h"
// third-party utilities
// use your favorite implementations
#define STB_VORBIS_HEADER_ONLY
#include "stb_vorbis.c" /* Enables Vorbis decoding. */
#ifdef _WIN32
#ifndef NOMINMAX
#define NOMINMAX
#endif
#endif
#define MA_NO_DEVICE_IO
#define MA_NO_THREADING
#define MA_NO_ENCODING
#define MA_NO_GENERATION
#define MA_NO_RESOURCE_MANAGER
#define MA_NO_NODE_GRAPH
#define MINIAUDIO_IMPLEMENTATION
#include "miniaudio.h"
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
#ifdef _WIN32
#include <fcntl.h>
#include <io.h>
#endif
#include <cstring>
#include <fstream>
#ifdef WHISPER_FFMPEG
// as implemented in ffmpeg_trancode.cpp only embedded in common lib if whisper built with ffmpeg support
extern bool ffmpeg_decode_audio(const std::string & ifname, std::vector<uint8_t> & wav_data);
#endif
bool read_audio_data(const std::string & fname, std::vector<float>& pcmf32, std::vector<std::vector<float>>& pcmf32s, bool stereo) {
std::vector<uint8_t> audio_data; // used for pipe input from stdin or ffmpeg decoding output
ma_result result;
ma_decoder_config decoder_config;
ma_decoder decoder;
decoder_config = ma_decoder_config_init(ma_format_f32, stereo ? 2 : 1, WHISPER_SAMPLE_RATE);
if (fname == "-") {
#ifdef _WIN32
_setmode(_fileno(stdin), _O_BINARY);
#endif
uint8_t buf[1024];
while (true)
{
const size_t n = fread(buf, 1, sizeof(buf), stdin);
if (n == 0) {
break;
}
audio_data.insert(audio_data.end(), buf, buf + n);
}
if ((result = ma_decoder_init_memory(audio_data.data(), audio_data.size(), &decoder_config, &decoder)) != MA_SUCCESS) {
fprintf(stderr, "Error: failed to open audio data from stdin (%s)\n", ma_result_description(result));
return false;
}
fprintf(stderr, "%s: read %zu bytes from stdin\n", __func__, audio_data.size());
}
else if (((result = ma_decoder_init_file(fname.c_str(), &decoder_config, &decoder)) != MA_SUCCESS)) {
#if defined(WHISPER_FFMPEG)
if (ffmpeg_decode_audio(fname, audio_data) != 0) {
fprintf(stderr, "error: failed to ffmpeg decode '%s'\n", fname.c_str());
return false;
}
if ((result = ma_decoder_init_memory(audio_data.data(), audio_data.size(), &decoder_config, &decoder)) != MA_SUCCESS) {
fprintf(stderr, "error: failed to read audio data as wav (%s)\n", ma_result_description(result));
return false;
}
#else
if ((result = ma_decoder_init_memory(fname.c_str(), fname.size(), &decoder_config, &decoder)) != MA_SUCCESS) {
fprintf(stderr, "error: failed to read audio data as wav (%s)\n", ma_result_description(result));
return false;
}
#endif
}
ma_uint64 frame_count;
ma_uint64 frames_read;
if ((result = ma_decoder_get_length_in_pcm_frames(&decoder, &frame_count)) != MA_SUCCESS) {
fprintf(stderr, "error: failed to retrieve the length of the audio data (%s)\n", ma_result_description(result));
return false;
}
pcmf32.resize(stereo ? frame_count*2 : frame_count);
if ((result = ma_decoder_read_pcm_frames(&decoder, pcmf32.data(), frame_count, &frames_read)) != MA_SUCCESS) {
fprintf(stderr, "error: failed to read the frames of the audio data (%s)\n", ma_result_description(result));
return false;
}
if (stereo) {
pcmf32s.resize(2);
pcmf32s[0].resize(frame_count);
pcmf32s[1].resize(frame_count);
for (uint64_t i = 0; i < frame_count; i++) {
pcmf32s[0][i] = pcmf32[2*i];
pcmf32s[1][i] = pcmf32[2*i + 1];
}
}
ma_decoder_uninit(&decoder);
return true;
}
// 500 -> 00:05.000
// 6000 -> 01:00.000
std::string to_timestamp(int64_t t, bool comma) {
int64_t msec = t * 10;
int64_t hr = msec / (1000 * 60 * 60);
msec = msec - hr * (1000 * 60 * 60);
int64_t min = msec / (1000 * 60);
msec = msec - min * (1000 * 60);
int64_t sec = msec / 1000;
msec = msec - sec * 1000;
char buf[32];
snprintf(buf, sizeof(buf), "%02d:%02d:%02d%s%03d", (int) hr, (int) min, (int) sec, comma ? "," : ".", (int) msec);
return std::string(buf);
}
int timestamp_to_sample(int64_t t, int n_samples, int whisper_sample_rate) {
return std::max(0, std::min((int) n_samples - 1, (int) ((t*whisper_sample_rate)/100)));
}
bool speak_with_file(const std::string & command, const std::string & text, const std::string & path, int voice_id) {
std::ofstream speak_file(path.c_str());
if (speak_file.fail()) {
fprintf(stderr, "%s: failed to open speak_file\n", __func__);
return false;
} else {
speak_file.write(text.c_str(), text.size());
speak_file.close();
int ret = system((command + " " + std::to_string(voice_id) + " " + path).c_str());
if (ret != 0) {
fprintf(stderr, "%s: failed to speak\n", __func__);
return false;
}
}
return true;
}
#undef STB_VORBIS_HEADER_ONLY
#include "stb_vorbis.c"

24
examples/common-whisper.h Normal file
View File

@ -0,0 +1,24 @@
#pragma once
#include <string>
#include <vector>
#include <cstdint>
// Read WAV audio file and store the PCM data into pcmf32
// fname can be a buffer of WAV data instead of a filename
// The sample rate of the audio must be equal to COMMON_SAMPLE_RATE
// If stereo flag is set and the audio has 2 channels, the pcmf32s will contain 2 channel PCM
bool read_audio_data(
const std::string & fname,
std::vector<float> & pcmf32,
std::vector<std::vector<float>> & pcmf32s,
bool stereo);
// convert timestamp to string, 6000 -> 01:00.000
std::string to_timestamp(int64_t t, bool comma = false);
// given a timestamp get the sample
int timestamp_to_sample(int64_t t, int n_samples, int whisper_sample_rate);
// write text to file, and call system("command voice_id file")
bool speak_with_file(const std::string & command, const std::string & text, const std::string & path, int voice_id);

View File

@ -2,33 +2,18 @@
#include "common.h"
// third-party utilities
// use your favorite implementations
#define DR_WAV_IMPLEMENTATION
#include "dr_wav.h"
#include <cmath>
#include <codecvt>
#include <cstring>
#include <fstream>
#include <regex>
#include <locale>
#include <codecvt>
#include <regex>
#include <sstream>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
#ifdef _WIN32
#include <fcntl.h>
#include <io.h>
#endif
#ifdef WHISPER_FFMPEG
// as implemented in ffmpeg_trancode.cpp only embedded in common lib if whisper built with ffmpeg support
extern bool ffmpeg_decode_audio(const std::string & ifname, std::vector<uint8_t> & wav_data);
#endif
// Function to check if the next argument exists
static std::string get_next_arg(int& i, int argc, char** argv, const std::string& flag, gpt_params& params) {
if (i + 1 < argc && argv[i + 1][0] != '-') {
@ -624,129 +609,6 @@ gpt_vocab::id gpt_sample_top_k_top_p_repeat(
}
bool is_wav_buffer(const std::string buf) {
// RIFF ref: https://en.wikipedia.org/wiki/Resource_Interchange_File_Format
// WAV ref: https://www.mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/WAVE.html
if (buf.size() < 12 || buf.substr(0, 4) != "RIFF" || buf.substr(8, 4) != "WAVE") {
return false;
}
uint32_t chunk_size = *reinterpret_cast<const uint32_t*>(buf.data() + 4);
if (chunk_size + 8 != buf.size()) {
return false;
}
return true;
}
bool read_wav(const std::string & fname, std::vector<float>& pcmf32, std::vector<std::vector<float>>& pcmf32s, bool stereo) {
drwav wav;
std::vector<uint8_t> wav_data; // used for pipe input from stdin or ffmpeg decoding output
if (fname == "-") {
{
#ifdef _WIN32
_setmode(_fileno(stdin), _O_BINARY);
#endif
uint8_t buf[1024];
while (true)
{
const size_t n = fread(buf, 1, sizeof(buf), stdin);
if (n == 0) {
break;
}
wav_data.insert(wav_data.end(), buf, buf + n);
}
}
if (drwav_init_memory(&wav, wav_data.data(), wav_data.size(), nullptr) == false) {
fprintf(stderr, "error: failed to open WAV file from stdin\n");
return false;
}
fprintf(stderr, "%s: read %zu bytes from stdin\n", __func__, wav_data.size());
}
else if (is_wav_buffer(fname)) {
if (drwav_init_memory(&wav, fname.c_str(), fname.size(), nullptr) == false) {
fprintf(stderr, "error: failed to open WAV file from fname buffer\n");
return false;
}
}
else if (drwav_init_file(&wav, fname.c_str(), nullptr) == false) {
#if defined(WHISPER_FFMPEG)
if (ffmpeg_decode_audio(fname, wav_data) != 0) {
fprintf(stderr, "error: failed to ffmpeg decode '%s' \n", fname.c_str());
return false;
}
if (drwav_init_memory(&wav, wav_data.data(), wav_data.size(), nullptr) == false) {
fprintf(stderr, "error: failed to read wav data as wav \n");
return false;
}
#else
fprintf(stderr, "error: failed to open '%s' as WAV file\n", fname.c_str());
return false;
#endif
}
if (wav.channels != 1 && wav.channels != 2) {
fprintf(stderr, "%s: WAV file '%s' must be mono or stereo\n", __func__, fname.c_str());
drwav_uninit(&wav);
return false;
}
if (stereo && wav.channels != 2) {
fprintf(stderr, "%s: WAV file '%s' must be stereo for diarization\n", __func__, fname.c_str());
drwav_uninit(&wav);
return false;
}
if (wav.sampleRate != COMMON_SAMPLE_RATE) {
fprintf(stderr, "%s: WAV file '%s' must be %i kHz\n", __func__, fname.c_str(), COMMON_SAMPLE_RATE/1000);
drwav_uninit(&wav);
return false;
}
if (wav.bitsPerSample != 16) {
fprintf(stderr, "%s: WAV file '%s' must be 16-bit\n", __func__, fname.c_str());
drwav_uninit(&wav);
return false;
}
const uint64_t n = wav_data.empty() ? wav.totalPCMFrameCount : wav_data.size()/(wav.channels*wav.bitsPerSample/8);
std::vector<int16_t> pcm16;
pcm16.resize(n*wav.channels);
drwav_read_pcm_frames_s16(&wav, n, pcm16.data());
drwav_uninit(&wav);
// convert to mono, float
pcmf32.resize(n);
if (wav.channels == 1) {
for (uint64_t i = 0; i < n; i++) {
pcmf32[i] = float(pcm16[i])/32768.0f;
}
} else {
for (uint64_t i = 0; i < n; i++) {
pcmf32[i] = float(pcm16[2*i] + pcm16[2*i + 1])/65536.0f;
}
}
if (stereo) {
// convert to stereo, float
pcmf32s.resize(2);
pcmf32s[0].resize(n);
pcmf32s[1].resize(n);
for (uint64_t i = 0; i < n; i++) {
pcmf32s[0][i] = float(pcm16[2*i])/32768.0f;
pcmf32s[1][i] = float(pcm16[2*i + 1])/32768.0f;
}
}
return true;
}
void high_pass_filter(std::vector<float> & data, float cutoff, float sample_rate) {
const float rc = 1.0f / (2.0f * M_PI * cutoff);
const float dt = 1.0f / sample_rate;
@ -822,90 +684,7 @@ float similarity(const std::string & s0, const std::string & s1) {
return 1.0f - (dist / std::max(s0.size(), s1.size()));
}
bool sam_params_parse(int argc, char ** argv, sam_params & params) {
for (int i = 1; i < argc; i++) {
std::string arg = argv[i];
if (arg == "-s" || arg == "--seed") {
params.seed = std::stoi(argv[++i]);
} else if (arg == "-t" || arg == "--threads") {
params.n_threads = std::stoi(argv[++i]);
} else if (arg == "-m" || arg == "--model") {
params.model = argv[++i];
} else if (arg == "-i" || arg == "--inp") {
params.fname_inp = argv[++i];
} else if (arg == "-o" || arg == "--out") {
params.fname_out = argv[++i];
} else if (arg == "-h" || arg == "--help") {
sam_print_usage(argc, argv, params);
exit(0);
} else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
sam_print_usage(argc, argv, params);
exit(0);
}
}
return true;
}
void sam_print_usage(int /*argc*/, char ** argv, const sam_params & params) {
fprintf(stderr, "usage: %s [options]\n", argv[0]);
fprintf(stderr, "\n");
fprintf(stderr, "options:\n");
fprintf(stderr, " -h, --help show this help message and exit\n");
fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n");
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
fprintf(stderr, " -m FNAME, --model FNAME\n");
fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
fprintf(stderr, " -i FNAME, --inp FNAME\n");
fprintf(stderr, " input file (default: %s)\n", params.fname_inp.c_str());
fprintf(stderr, " -o FNAME, --out FNAME\n");
fprintf(stderr, " output file (default: %s)\n", params.fname_out.c_str());
fprintf(stderr, "\n");
}
// 500 -> 00:05.000
// 6000 -> 01:00.000
std::string to_timestamp(int64_t t, bool comma) {
int64_t msec = t * 10;
int64_t hr = msec / (1000 * 60 * 60);
msec = msec - hr * (1000 * 60 * 60);
int64_t min = msec / (1000 * 60);
msec = msec - min * (1000 * 60);
int64_t sec = msec / 1000;
msec = msec - sec * 1000;
char buf[32];
snprintf(buf, sizeof(buf), "%02d:%02d:%02d%s%03d", (int) hr, (int) min, (int) sec, comma ? "," : ".", (int) msec);
return std::string(buf);
}
int timestamp_to_sample(int64_t t, int n_samples, int whisper_sample_rate) {
return std::max(0, std::min((int) n_samples - 1, (int) ((t*whisper_sample_rate)/100)));
}
bool is_file_exist(const char *fileName)
{
std::ifstream infile(fileName);
bool is_file_exist(const char * filename) {
std::ifstream infile(filename);
return infile.good();
}
bool speak_with_file(const std::string & command, const std::string & text, const std::string & path, int voice_id)
{
std::ofstream speak_file(path.c_str());
if (speak_file.fail()) {
fprintf(stderr, "%s: failed to open speak_file\n", __func__);
return false;
} else {
speak_file.write(text.c_str(), text.size());
speak_file.close();
int ret = system((command + " " + std::to_string(voice_id) + " " + path).c_str());
if (ret != 0) {
fprintf(stderr, "%s: failed to speak\n", __func__);
return false;
}
}
return true;
}

View File

@ -11,8 +11,6 @@
#include <fstream>
#include <sstream>
#define COMMON_SAMPLE_RATE 16000
//
// GPT CLI argument parsing
//
@ -136,19 +134,6 @@ gpt_vocab::id gpt_sample_top_k_top_p_repeat(
// Audio utils
//
// Check if a buffer is a WAV audio file
bool is_wav_buffer(const std::string buf);
// Read WAV audio file and store the PCM data into pcmf32
// fname can be a buffer of WAV data instead of a filename
// The sample rate of the audio must be equal to COMMON_SAMPLE_RATE
// If stereo flag is set and the audio has 2 channels, the pcmf32s will contain 2 channel PCM
bool read_wav(
const std::string & fname,
std::vector<float> & pcmf32,
std::vector<std::vector<float>> & pcmf32s,
bool stereo);
// Write PCM data into WAV audio file
class wav_writer {
private:
@ -266,23 +251,6 @@ bool vad_simple(
// compute similarity between two strings using Levenshtein distance
float similarity(const std::string & s0, const std::string & s1);
//
// SAM argument parsing
//
struct sam_params {
int32_t seed = -1; // RNG seed
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
std::string model = "models/sam-vit-b/ggml-model-f16.bin"; // model path
std::string fname_inp = "img.jpg";
std::string fname_out = "img.out";
};
bool sam_params_parse(int argc, char ** argv, sam_params & params);
void sam_print_usage(int argc, char ** argv, const sam_params & params);
//
// Terminal utils
//
@ -330,14 +298,5 @@ const std::vector<std::string> k_colors = {
// Other utils
//
// convert timestamp to string, 6000 -> 01:00.000
std::string to_timestamp(int64_t t, bool comma = false);
// given a timestamp get the sample
int timestamp_to_sample(int64_t t, int n_samples, int whisper_sample_rate);
// check if file exists using ifstream
bool is_file_exist(const char *fileName);
// write text to file, and call system("command voice_id file")
bool speak_with_file(const std::string & command, const std::string & text, const std::string & path, int voice_id);
bool is_file_exist(const char * filename);

File diff suppressed because it is too large Load Diff

View File

@ -41,20 +41,17 @@ fi
# record some raw audio
sox -d rec.wav
# resample to 16kHz
ffmpeg -y -i ./rec.wav -ar 16000 -ac 1 -c:a pcm_s16le ./rec16.wav > /dev/null 2>&1
# run Whisper
echo "Processing ..."
${executable} -m models/ggml-base.en.bin rec16.wav -owts > /dev/null 2>&1
${executable} -m models/ggml-base.en.bin rec.wav -owts > /dev/null 2>&1
# generate Karaoke video
echo "Generating video ..."
source rec16.wav.wts > /dev/null 2>&1
source rec.wav.wts > /dev/null 2>&1
# play the video
echo "Playing ./rec16.wav.mp4 ..."
ffplay -loglevel 0 -autoexit ./rec16.wav.mp4
ffplay -loglevel 0 -autoexit ./rec.wav.mp4
echo "Done"
exit 0

View File

@ -3,14 +3,15 @@
#include "whisper.h"
#include "json.hpp"
#include <iostream>
#include <cassert>
#include <chrono>
#include <cstdio>
#include <deque>
#include <iostream>
#include <set>
#include <string>
#include <thread>
#include <vector>
#include <deque>
#include <set>
using json = nlohmann::json;

93468
examples/miniaudio.h Normal file

File diff suppressed because it is too large Load Diff

View File

@ -1,17 +1,18 @@
#include "common.h"
#include "common-whisper.h"
#include "whisper.h"
#include "httplib.h"
#include "json.hpp"
#include <chrono>
#include <cmath>
#include <fstream>
#include <cstdio>
#include <fstream>
#include <sstream>
#include <string>
#include <thread>
#include <vector>
#include <cstring>
#include <sstream>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
@ -223,6 +224,24 @@ void check_ffmpeg_availibility() {
}
}
std::string generate_temp_filename(const std::string &prefix, const std::string &extension) {
auto now = std::chrono::system_clock::now();
auto now_time_t = std::chrono::system_clock::to_time_t(now);
static std::mt19937 rng{std::random_device{}()};
std::uniform_int_distribution<long long> dist(0, 1e9);
std::stringstream ss;
ss << prefix
<< "-"
<< std::put_time(std::localtime(&now_time_t), "%Y%m%d-%H%M%S")
<< "-"
<< dist(rng)
<< extension;
return ss.str();
}
bool convert_to_wav(const std::string & temp_filename, std::string & error_resp) {
std::ostringstream cmd_stream;
std::string converted_filename_temp = temp_filename + "_temp.wav";
@ -692,9 +711,7 @@ int main(int argc, char ** argv) {
if (sparams.ffmpeg_converter) {
// if file is not wav, convert to wav
// write to temporary file
//const std::string temp_filename_base = std::tmpnam(nullptr);
const std::string temp_filename_base = "whisper-server-tmp"; // TODO: this is a hack, remove when the mutext is removed
const std::string temp_filename = temp_filename_base + ".wav";
const std::string temp_filename = generate_temp_filename("whisper-server", ".wav");
std::ofstream temp_file{temp_filename, std::ios::binary};
temp_file << audio_file.content;
temp_file.close();
@ -706,8 +723,8 @@ int main(int argc, char ** argv) {
return;
}
// read wav content into pcmf32
if (!::read_wav(temp_filename, pcmf32, pcmf32s, params.diarize))
// read audio content into pcmf32
if (!::read_audio_data(temp_filename, pcmf32, pcmf32s, params.diarize))
{
fprintf(stderr, "error: failed to read WAV file '%s'\n", temp_filename.c_str());
const std::string error_resp = "{\"error\":\"failed to read WAV file\"}";
@ -718,10 +735,10 @@ int main(int argc, char ** argv) {
// remove temp file
std::remove(temp_filename.c_str());
} else {
if (!::read_wav(audio_file.content, pcmf32, pcmf32s, params.diarize))
if (!::read_audio_data(audio_file.content, pcmf32, pcmf32s, params.diarize))
{
fprintf(stderr, "error: failed to read WAV file\n");
const std::string error_resp = "{\"error\":\"failed to read WAV file\"}";
fprintf(stderr, "error: failed to read audio data\n");
const std::string error_resp = "{\"error\":\"failed to read audio data\"}";
res.set_content(error_resp, "application/json");
return;
}

5584
examples/stb_vorbis.c Normal file

File diff suppressed because it is too large Load Diff

View File

@ -4,15 +4,15 @@
//
#include "common-sdl.h"
#include "common.h"
#include "common-whisper.h"
#include "whisper.h"
#include <cassert>
#include <chrono>
#include <cstdio>
#include <fstream>
#include <string>
#include <thread>
#include <vector>
#include <fstream>
// command-line parameters
struct whisper_params {
@ -23,6 +23,7 @@ struct whisper_params {
int32_t capture_id = -1;
int32_t max_tokens = 32;
int32_t audio_ctx = 0;
int32_t beam_size = -1;
float vad_thold = 0.6f;
float freq_thold = 100.0f;
@ -59,6 +60,7 @@ static bool whisper_params_parse(int argc, char ** argv, whisper_params & params
else if (arg == "-c" || arg == "--capture") { params.capture_id = std::stoi(argv[++i]); }
else if (arg == "-mt" || arg == "--max-tokens") { params.max_tokens = std::stoi(argv[++i]); }
else if (arg == "-ac" || arg == "--audio-ctx") { params.audio_ctx = std::stoi(argv[++i]); }
else if (arg == "-bs" || arg == "--beam-size") { params.beam_size = std::stoi(argv[++i]); }
else if (arg == "-vth" || arg == "--vad-thold") { params.vad_thold = std::stof(argv[++i]); }
else if (arg == "-fth" || arg == "--freq-thold") { params.freq_thold = std::stof(argv[++i]); }
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
@ -96,6 +98,7 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, " -c ID, --capture ID [%-7d] capture device ID\n", params.capture_id);
fprintf(stderr, " -mt N, --max-tokens N [%-7d] maximum number of tokens per audio chunk\n", params.max_tokens);
fprintf(stderr, " -ac N, --audio-ctx N [%-7d] audio context size (0 - all)\n", params.audio_ctx);
fprintf(stderr, " -bs N, --beam-size N [%-7d] beam size for beam search\n", params.beam_size);
fprintf(stderr, " -vth N, --vad-thold N [%-7.2f] voice activity detection threshold\n", params.vad_thold);
fprintf(stderr, " -fth N, --freq-thold N [%-7.2f] high-pass frequency cutoff\n", params.freq_thold);
fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
@ -241,6 +244,11 @@ int main(int argc, char ** argv) {
if (!use_vad) {
while (true) {
// handle Ctrl + C
is_running = sdl_poll_events();
if (!is_running) {
break;
}
audio.get(params.step_ms, pcmf32_new);
if ((int) pcmf32_new.size() > 2*n_samples_step) {
@ -298,7 +306,7 @@ int main(int argc, char ** argv) {
// run the inference
{
whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
whisper_full_params wparams = whisper_full_default_params(params.beam_size > 1 ? WHISPER_SAMPLING_BEAM_SEARCH : WHISPER_SAMPLING_GREEDY);
wparams.print_progress = false;
wparams.print_special = params.print_special;
@ -309,6 +317,7 @@ int main(int argc, char ** argv) {
wparams.max_tokens = params.max_tokens;
wparams.language = params.language.c_str();
wparams.n_threads = params.n_threads;
wparams.beam_search.beam_size = params.beam_size;
wparams.audio_ctx = params.audio_ctx;

View File

@ -1,18 +1,31 @@
if (WHISPER_SDL2)
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(TARGET whisper-talk-llama)
add_executable(${TARGET} talk-llama.cpp
llama.cpp
llama-vocab.cpp
llama-adapter.cpp
llama-arch.cpp
llama-batch.cpp
llama-chat.cpp
llama-context.cpp
llama-cparams.cpp
llama-grammar.cpp
llama-hparams.cpp
llama-impl.cpp
llama-kv-cache.cpp
llama-mmap.cpp
llama-model-loader.cpp
llama-model.cpp
llama-quant.cpp
llama-sampling.cpp
llama-vocab.cpp
unicode.cpp
unicode-data.cpp)
target_include_directories(${TARGET} PRIVATE ${SDL2_INCLUDE_DIRS})
if (WHISPER_CLBLAST)
set(CLBLAST_LIBNAME clblast)
endif ()
target_link_libraries(${TARGET} PRIVATE common common-sdl whisper ${SDL2_LIBRARIES} ${CLBLAST_LIBNAME} ${CMAKE_THREAD_LIBS_INIT})
target_link_libraries(${TARGET} PRIVATE common common-sdl whisper ${SDL2_LIBRARIES} ${CMAKE_THREAD_LIBS_INIT})
if(WIN32)
# It requires Windows 8.1 or later for PrefetchVirtualMemory

View File

@ -0,0 +1,347 @@
#include "llama-adapter.h"
#include "llama-impl.h"
#include "llama-mmap.h"
#include "llama-model.h"
#include <algorithm>
#include <map>
#include <cassert>
#include <stdexcept>
// vec
struct ggml_tensor * llama_adapter_cvec::tensor_for(int il) const {
if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
return nullptr;
}
return tensors[il];
}
struct ggml_tensor * llama_adapter_cvec::apply_to(struct ggml_context * ctx, struct ggml_tensor * cur, int il) const {
ggml_tensor * layer_dir = tensor_for(il);
if (layer_dir != nullptr) {
cur = ggml_add(ctx, cur, layer_dir);
}
return cur;
}
bool llama_adapter_cvec::init(const llama_model & model) {
const auto & hparams = model.hparams;
GGML_ASSERT(tensors.empty());
GGML_ASSERT(ctxs.empty());
GGML_ASSERT(bufs.empty());
// create a context for each buffer type
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
auto it = ctx_map.find(buft);
if (it == ctx_map.end()) {
struct ggml_init_params params = {
/*.mem_size =*/ hparams.n_layer*ggml_tensor_overhead(),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
ggml_context * ctx = ggml_init(params);
if (!ctx) {
return nullptr;
}
ctx_map[buft] = ctx;
ctxs.emplace_back(ctx);
return ctx;
}
return it->second;
};
// make tensors
tensors.reserve(hparams.n_layer);
tensors.push_back(nullptr); // there's never a tensor for layer 0
for (size_t il = 1; il < hparams.n_layer; il++) {
ggml_backend_buffer_type_t buft = model.select_buft(il);
ggml_context * ctx = ctx_for_buft(buft);
if (!ctx) {
LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
return false;
}
ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd);
tensors.push_back(tensor);
}
// allocate tensors / buffers and zero
bufs.reserve(ctx_map.size());
for (auto it : ctx_map) {
ggml_backend_buffer_type_t buft = it.first;
ggml_context * ctx = it.second;
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
if (!buf) {
LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
return false;
}
ggml_backend_buffer_clear(buf, 0);
bufs.emplace_back(buf);
}
return true;
}
int32_t llama_adapter_cvec::apply(
const llama_model & model,
const float * data,
size_t len,
int32_t n_embd,
int32_t il_start,
int32_t il_end) {
const auto & hparams = model.hparams;
if (data == nullptr) {
// disable the current control vector (but leave allocated for later)
layer_start = -1;
layer_end = -1;
return 0;
}
if (n_embd != (int) hparams.n_embd) {
LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
return 1;
}
if (tensors.empty()) {
if (!init(model)) {
return 1;
}
}
layer_start = il_start;
layer_end = il_end;
for (size_t il = 1; il < hparams.n_layer; il++) {
assert(tensors[il] != nullptr);
const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
if (off + n_embd <= len) {
ggml_backend_tensor_set(tensors[il], data + off, 0, n_embd * ggml_element_size(tensors[il]));
}
}
return 0;
}
// lora
llama_adapter_lora_weight * llama_adapter_lora::get_weight(struct ggml_tensor * w) {
const std::string name(w->name);
const auto pos = ab_map.find(name);
if (pos != ab_map.end()) {
return &pos->second;
}
return nullptr;
}
static void llama_adapter_lora_init_impl(struct llama_model & model, const char * path_lora, struct llama_adapter_lora & adapter) {
LLAMA_LOG_INFO("%s: loading lora adapter from '%s' ...\n", __func__, path_lora);
ggml_context * ctx_init;
struct gguf_init_params meta_gguf_params = {
/* .no_alloc = */ true,
/* .ctx = */ &ctx_init,
};
gguf_context_ptr ctx_gguf { gguf_init_from_file(path_lora, meta_gguf_params) };
if (!ctx_gguf) {
throw std::runtime_error("failed to load lora adapter file from " + std::string(path_lora));
}
ggml_context_ptr ctx { ctx_init };
// check metadata
{
auto get_kv_str = [&](const std::string & key) -> std::string {
int id = gguf_find_key(ctx_gguf.get(), key.c_str());
return id < 0 ? "" : std::string(gguf_get_val_str(ctx_gguf.get(), id));
};
auto get_kv_f32 = [&](const std::string & key) -> float {
int id = gguf_find_key(ctx_gguf.get(), key.c_str());
return id < 0 ? 0.0f : gguf_get_val_f32(ctx_gguf.get(), id);
};
LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
auto general_type = get_kv_str(llm_kv(LLM_KV_GENERAL_TYPE));
if (general_type != "adapter") {
throw std::runtime_error("expect general.type to be 'adapter', but got: " + general_type);
}
auto general_arch_str = get_kv_str(llm_kv(LLM_KV_GENERAL_ARCHITECTURE));
auto general_arch = llm_arch_from_string(general_arch_str);
if (general_arch != model.arch) {
throw std::runtime_error("model arch and LoRA arch mismatch");
}
auto adapter_type = get_kv_str(llm_kv(LLM_KV_ADAPTER_TYPE));
if (adapter_type != "lora") {
throw std::runtime_error("expect adapter.type to be 'lora', but got: " + adapter_type);
}
adapter.alpha = get_kv_f32(llm_kv(LLM_KV_ADAPTER_LORA_ALPHA));
}
int n_tensors = gguf_get_n_tensors(ctx_gguf.get());
// contexts for each buffer type
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
auto it = ctx_map.find(buft);
if (it == ctx_map.end()) {
// add a new context
struct ggml_init_params params = {
/*.mem_size =*/ n_tensors*ggml_tensor_overhead(),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
ggml_context * buft_ctx = ggml_init(params);
if (!buft_ctx) {
return nullptr;
}
ctx_map[buft] = buft_ctx;
adapter.ctxs.emplace_back(buft_ctx);
return buft_ctx;
};
return it->second;
};
// bundle lora_a and lora_b into pairs
std::map<std::string, llama_adapter_lora_weight> ab_map;
auto str_endswith = [](const std::string & str, const std::string & suffix) {
return str.size() >= suffix.size() && str.compare(str.size()-suffix.size(), suffix.size(), suffix) == 0;
};
for (ggml_tensor * cur = ggml_get_first_tensor(ctx.get()); cur; cur = ggml_get_next_tensor(ctx.get(), cur)) {
std::string name(cur->name);
if (str_endswith(name, ".lora_a")) {
replace_all(name, ".lora_a", "");
if (ab_map.find(name) == ab_map.end()) {
ab_map[name] = llama_adapter_lora_weight(cur, nullptr);
} else {
ab_map[name].a = cur;
}
} else if (str_endswith(name, ".lora_b")) {
replace_all(name, ".lora_b", "");
if (ab_map.find(name) == ab_map.end()) {
ab_map[name] = llama_adapter_lora_weight(nullptr, cur);
} else {
ab_map[name].b = cur;
}
} else if (str_endswith(name, "_norm.weight")) {
// TODO: add support for norm vector
// for now, we don't really care because most adapters still work fine without it
continue;
} else {
throw std::runtime_error("LoRA tensor '" + name + "' has unexpected suffix");
}
}
// add tensors
for (auto & it : ab_map) {
const std::string & name = it.first;
llama_adapter_lora_weight & w = it.second;
bool is_token_embd = str_endswith(name, "token_embd.weight");
if (!w.a || !w.b) {
throw std::runtime_error("LoRA tensor pair for '" + name + "' is missing one component");
}
// device buft and device ctx
const auto * model_tensor = model.get_tensor(name.c_str());
if (!model_tensor) {
throw std::runtime_error("LoRA tensor '" + name + "' does not exist in base model (hint: maybe wrong base model?)");
}
struct ggml_context * dev_ctx = ctx_for_buft(ggml_backend_buffer_get_type(model_tensor->buffer));
// validate tensor shape
if (is_token_embd) {
// expect B to be non-transposed, A and B are flipped; see llm_build_inp_embd()
if (model_tensor->ne[0] != w.b->ne[1] || model_tensor->ne[1] != w.a->ne[1]) {
throw std::runtime_error("tensor '" + name + "' has incorrect shape (hint: maybe wrong base model?)");
}
} else {
if (model_tensor->ne[0] != w.a->ne[0] || model_tensor->ne[1] != w.b->ne[1]) {
throw std::runtime_error("tensor '" + name + "' has incorrect shape (hint: maybe wrong base model?)");
}
if (w.a->ne[1] != w.b->ne[0]) {
throw std::runtime_error("lora_a tensor is not transposed (hint: adapter from \"finetune\" example is no longer supported)");
}
}
// save tensor to adapter
struct ggml_tensor * tensor_a = ggml_dup_tensor(dev_ctx, w.a);
struct ggml_tensor * tensor_b = ggml_dup_tensor(dev_ctx, w.b);
ggml_set_name(tensor_a, w.a->name);
ggml_set_name(tensor_b, w.b->name);
adapter.ab_map[name] = llama_adapter_lora_weight(tensor_a, tensor_b);
}
// allocate tensors / buffers and zero
{
adapter.ctxs.reserve(ctx_map.size());
adapter.bufs.reserve(ctx_map.size());
for (auto & it : ctx_map) {
ggml_backend_buffer_type_t buft = it.first;
ggml_context * ctx_dev = it.second;
ggml_backend_buffer_ptr buf { ggml_backend_alloc_ctx_tensors_from_buft(ctx_dev, buft) };
if (!buf) {
throw std::runtime_error("failed to allocate buffer for lora adapter\n");
}
LLAMA_LOG_INFO("%s: %10s LoRA buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf.get()), ggml_backend_buffer_get_size(buf.get())/1024.0/1024.0);
adapter.bufs.emplace_back(std::move(buf));
}
}
// set tensor data
{
llama_file gguf_file(path_lora, "rb");
std::vector<uint8_t> read_buf;
auto set_tensor = [&](struct ggml_tensor * orig, struct ggml_tensor * dev) {
size_t offs = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), gguf_find_tensor(ctx_gguf.get(), orig->name));
size_t size = ggml_nbytes(orig);
read_buf.resize(size);
gguf_file.seek(offs, SEEK_SET);
gguf_file.read_raw(read_buf.data(), size);
ggml_backend_tensor_set(dev, read_buf.data(), 0, size);
};
for (auto & it : adapter.ab_map) {
auto orig = ab_map[it.first];
auto dev = it.second;
set_tensor(orig.a, dev.a);
set_tensor(orig.b, dev.b);
}
}
LLAMA_LOG_INFO("%s: loaded %zu tensors from lora file\n", __func__, adapter.ab_map.size()*2);
}
struct llama_adapter_lora * llama_adapter_lora_init(struct llama_model * model, const char * path_lora) {
struct llama_adapter_lora * adapter = new llama_adapter_lora();
try {
llama_adapter_lora_init_impl(*model, path_lora, *adapter);
return adapter;
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
delete adapter;
}
return nullptr;
}
void llama_adapter_lora_free(struct llama_adapter_lora * adapter) {
delete adapter;
}

View File

@ -0,0 +1,74 @@
#pragma once
#include "llama.h"
#include "ggml-cpp.h"
#include <string>
#include <unordered_map>
#include <vector>
// TODO: pimpl
//
// llama_adapter_cvec
//
struct llama_adapter_cvec {
struct ggml_tensor * tensor_for(int il) const;
struct ggml_tensor * apply_to(struct ggml_context * ctx, struct ggml_tensor * cur, int il) const;
int32_t apply(
const llama_model & model,
const float * data,
size_t len,
int32_t n_embd,
int32_t il_start,
int32_t il_end);
private:
bool init(const llama_model & model);
int32_t layer_start = -1;
int32_t layer_end = -1;
std::vector<ggml_context_ptr> ctxs;
std::vector<ggml_backend_buffer_ptr> bufs;
std::vector<struct ggml_tensor *> tensors; // per layer
};
//
// llama_adapter_lora
//
struct llama_adapter_lora_weight {
struct ggml_tensor * a = nullptr;
struct ggml_tensor * b = nullptr;
// get actual scale based on rank and alpha
float get_scale(float alpha, float adapter_scale) const {
const float rank = (float) b->ne[0];
const float scale = alpha ? adapter_scale * alpha / rank : adapter_scale;
return scale;
}
llama_adapter_lora_weight() = default;
llama_adapter_lora_weight(struct ggml_tensor * a, struct ggml_tensor * b) : a(a), b(b) {}
};
struct llama_adapter_lora {
// map tensor name to lora_a_b
std::unordered_map<std::string, struct llama_adapter_lora_weight> ab_map;
std::vector<ggml_context_ptr> ctxs;
std::vector<ggml_backend_buffer_ptr> bufs;
float alpha;
llama_adapter_lora() = default;
~llama_adapter_lora() = default;
llama_adapter_lora_weight * get_weight(struct ggml_tensor * w);
};

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,402 @@
#pragma once
#include "ggml.h" // ggml_op
#include <string>
//
// gguf constants (sync with gguf.py)
//
enum llm_arch {
LLM_ARCH_LLAMA,
LLM_ARCH_DECI,
LLM_ARCH_FALCON,
LLM_ARCH_BAICHUAN,
LLM_ARCH_GROK,
LLM_ARCH_GPT2,
LLM_ARCH_GPTJ,
LLM_ARCH_GPTNEOX,
LLM_ARCH_MPT,
LLM_ARCH_STARCODER,
LLM_ARCH_REFACT,
LLM_ARCH_BERT,
LLM_ARCH_NOMIC_BERT,
LLM_ARCH_JINA_BERT_V2,
LLM_ARCH_BLOOM,
LLM_ARCH_STABLELM,
LLM_ARCH_QWEN,
LLM_ARCH_QWEN2,
LLM_ARCH_QWEN2MOE,
LLM_ARCH_QWEN2VL,
LLM_ARCH_PHI2,
LLM_ARCH_PHI3,
LLM_ARCH_PHIMOE,
LLM_ARCH_PLAMO,
LLM_ARCH_CODESHELL,
LLM_ARCH_ORION,
LLM_ARCH_INTERNLM2,
LLM_ARCH_MINICPM,
LLM_ARCH_MINICPM3,
LLM_ARCH_GEMMA,
LLM_ARCH_GEMMA2,
LLM_ARCH_STARCODER2,
LLM_ARCH_MAMBA,
LLM_ARCH_XVERSE,
LLM_ARCH_COMMAND_R,
LLM_ARCH_COHERE2,
LLM_ARCH_DBRX,
LLM_ARCH_OLMO,
LLM_ARCH_OLMO2,
LLM_ARCH_OLMOE,
LLM_ARCH_OPENELM,
LLM_ARCH_ARCTIC,
LLM_ARCH_DEEPSEEK,
LLM_ARCH_DEEPSEEK2,
LLM_ARCH_CHATGLM,
LLM_ARCH_BITNET,
LLM_ARCH_T5,
LLM_ARCH_T5ENCODER,
LLM_ARCH_JAIS,
LLM_ARCH_NEMOTRON,
LLM_ARCH_EXAONE,
LLM_ARCH_RWKV6,
LLM_ARCH_RWKV6QWEN2,
LLM_ARCH_GRANITE,
LLM_ARCH_GRANITE_MOE,
LLM_ARCH_CHAMELEON,
LLM_ARCH_WAVTOKENIZER_DEC,
LLM_ARCH_UNKNOWN,
};
enum llm_kv {
LLM_KV_GENERAL_TYPE,
LLM_KV_GENERAL_ARCHITECTURE,
LLM_KV_GENERAL_QUANTIZATION_VERSION,
LLM_KV_GENERAL_ALIGNMENT,
LLM_KV_GENERAL_NAME,
LLM_KV_GENERAL_AUTHOR,
LLM_KV_GENERAL_VERSION,
LLM_KV_GENERAL_URL,
LLM_KV_GENERAL_DESCRIPTION,
LLM_KV_GENERAL_LICENSE,
LLM_KV_GENERAL_SOURCE_URL,
LLM_KV_GENERAL_SOURCE_HF_REPO,
LLM_KV_VOCAB_SIZE,
LLM_KV_CONTEXT_LENGTH,
LLM_KV_EMBEDDING_LENGTH,
LLM_KV_FEATURES_LENGTH,
LLM_KV_BLOCK_COUNT,
LLM_KV_LEADING_DENSE_BLOCK_COUNT,
LLM_KV_FEED_FORWARD_LENGTH,
LLM_KV_EXPERT_FEED_FORWARD_LENGTH,
LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH,
LLM_KV_USE_PARALLEL_RESIDUAL,
LLM_KV_TENSOR_DATA_LAYOUT,
LLM_KV_EXPERT_COUNT,
LLM_KV_EXPERT_USED_COUNT,
LLM_KV_EXPERT_SHARED_COUNT,
LLM_KV_EXPERT_WEIGHTS_SCALE,
LLM_KV_EXPERT_WEIGHTS_NORM,
LLM_KV_EXPERT_GATING_FUNC,
LLM_KV_POOLING_TYPE,
LLM_KV_LOGIT_SCALE,
LLM_KV_DECODER_START_TOKEN_ID,
LLM_KV_ATTN_LOGIT_SOFTCAPPING,
LLM_KV_FINAL_LOGIT_SOFTCAPPING,
LLM_KV_SWIN_NORM,
LLM_KV_RESCALE_EVERY_N_LAYERS,
LLM_KV_TIME_MIX_EXTRA_DIM,
LLM_KV_TIME_DECAY_EXTRA_DIM,
LLM_KV_RESIDUAL_SCALE,
LLM_KV_EMBEDDING_SCALE,
LLM_KV_TOKEN_SHIFT_COUNT,
LLM_KV_ATTENTION_HEAD_COUNT,
LLM_KV_ATTENTION_HEAD_COUNT_KV,
LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
LLM_KV_ATTENTION_CLAMP_KQV,
LLM_KV_ATTENTION_KEY_LENGTH,
LLM_KV_ATTENTION_VALUE_LENGTH,
LLM_KV_ATTENTION_LAYERNORM_EPS,
LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
LLM_KV_ATTENTION_GROUPNORM_EPS,
LLM_KV_ATTENTION_GROUPNORM_GROUPS,
LLM_KV_ATTENTION_CAUSAL,
LLM_KV_ATTENTION_Q_LORA_RANK,
LLM_KV_ATTENTION_KV_LORA_RANK,
LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT,
LLM_KV_ATTENTION_SLIDING_WINDOW,
LLM_KV_ATTENTION_SCALE,
LLM_KV_ROPE_DIMENSION_COUNT,
LLM_KV_ROPE_DIMENSION_SECTIONS,
LLM_KV_ROPE_FREQ_BASE,
LLM_KV_ROPE_SCALE_LINEAR,
LLM_KV_ROPE_SCALING_TYPE,
LLM_KV_ROPE_SCALING_FACTOR,
LLM_KV_ROPE_SCALING_ATTN_FACTOR,
LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,
LLM_KV_ROPE_SCALING_FINETUNED,
LLM_KV_ROPE_SCALING_YARN_LOG_MUL,
LLM_KV_SPLIT_NO,
LLM_KV_SPLIT_COUNT,
LLM_KV_SPLIT_TENSORS_COUNT,
LLM_KV_SSM_INNER_SIZE,
LLM_KV_SSM_CONV_KERNEL,
LLM_KV_SSM_STATE_SIZE,
LLM_KV_SSM_TIME_STEP_RANK,
LLM_KV_SSM_DT_B_C_RMS,
LLM_KV_WKV_HEAD_SIZE,
LLM_KV_TOKENIZER_MODEL,
LLM_KV_TOKENIZER_PRE,
LLM_KV_TOKENIZER_LIST,
LLM_KV_TOKENIZER_TOKEN_TYPE,
LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT,
LLM_KV_TOKENIZER_SCORES,
LLM_KV_TOKENIZER_MERGES,
LLM_KV_TOKENIZER_BOS_ID,
LLM_KV_TOKENIZER_EOS_ID,
LLM_KV_TOKENIZER_EOT_ID,
LLM_KV_TOKENIZER_EOM_ID,
LLM_KV_TOKENIZER_UNK_ID,
LLM_KV_TOKENIZER_SEP_ID,
LLM_KV_TOKENIZER_PAD_ID,
LLM_KV_TOKENIZER_CLS_ID,
LLM_KV_TOKENIZER_MASK_ID,
LLM_KV_TOKENIZER_ADD_BOS,
LLM_KV_TOKENIZER_ADD_EOS,
LLM_KV_TOKENIZER_ADD_PREFIX,
LLM_KV_TOKENIZER_REMOVE_EXTRA_WS,
LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP,
LLM_KV_TOKENIZER_HF_JSON,
LLM_KV_TOKENIZER_RWKV,
LLM_KV_TOKENIZER_CHAT_TEMPLATE,
LLM_KV_TOKENIZER_CHAT_TEMPLATE_N,
LLM_KV_TOKENIZER_FIM_PRE_ID,
LLM_KV_TOKENIZER_FIM_SUF_ID,
LLM_KV_TOKENIZER_FIM_MID_ID,
LLM_KV_TOKENIZER_FIM_PAD_ID,
LLM_KV_TOKENIZER_FIM_REP_ID,
LLM_KV_TOKENIZER_FIM_SEP_ID,
LLM_KV_ADAPTER_TYPE,
LLM_KV_ADAPTER_LORA_ALPHA,
LLM_KV_POSNET_EMBEDDING_LENGTH,
LLM_KV_POSNET_BLOCK_COUNT,
LLM_KV_CONVNEXT_EMBEDDING_LENGTH,
LLM_KV_CONVNEXT_BLOCK_COUNT,
// deprecated:
LLM_KV_TOKENIZER_PREFIX_ID,
LLM_KV_TOKENIZER_SUFFIX_ID,
LLM_KV_TOKENIZER_MIDDLE_ID,
};
enum llm_tensor {
LLM_TENSOR_TOKEN_EMBD,
LLM_TENSOR_TOKEN_EMBD_NORM,
LLM_TENSOR_TOKEN_TYPES,
LLM_TENSOR_POS_EMBD,
LLM_TENSOR_OUTPUT,
LLM_TENSOR_OUTPUT_NORM,
LLM_TENSOR_ROPE_FREQS,
LLM_TENSOR_ROPE_FACTORS_LONG,
LLM_TENSOR_ROPE_FACTORS_SHORT,
LLM_TENSOR_ATTN_Q,
LLM_TENSOR_ATTN_K,
LLM_TENSOR_ATTN_V,
LLM_TENSOR_ATTN_QKV,
LLM_TENSOR_ATTN_OUT,
LLM_TENSOR_ATTN_NORM,
LLM_TENSOR_ATTN_NORM_2,
LLM_TENSOR_ATTN_OUT_NORM,
LLM_TENSOR_ATTN_POST_NORM,
LLM_TENSOR_ATTN_ROT_EMBD,
LLM_TENSOR_FFN_GATE_INP,
LLM_TENSOR_FFN_GATE_INP_SHEXP,
LLM_TENSOR_FFN_NORM,
LLM_TENSOR_FFN_POST_NORM,
LLM_TENSOR_FFN_GATE,
LLM_TENSOR_FFN_DOWN,
LLM_TENSOR_FFN_UP,
LLM_TENSOR_FFN_ACT,
LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility
LLM_TENSOR_FFN_GATE_EXP,
LLM_TENSOR_FFN_UP_EXP,
LLM_TENSOR_FFN_NORM_EXPS,
LLM_TENSOR_FFN_DOWN_EXPS, // merged experts
LLM_TENSOR_FFN_GATE_EXPS,
LLM_TENSOR_FFN_UP_EXPS,
LLM_TENSOR_FFN_DOWN_SHEXP,
LLM_TENSOR_FFN_GATE_SHEXP,
LLM_TENSOR_FFN_UP_SHEXP,
LLM_TENSOR_FFN_EXP_PROBS_B,
LLM_TENSOR_ATTN_Q_NORM,
LLM_TENSOR_ATTN_K_NORM,
LLM_TENSOR_LAYER_OUT_NORM,
LLM_TENSOR_SSM_IN,
LLM_TENSOR_SSM_CONV1D,
LLM_TENSOR_SSM_X,
LLM_TENSOR_SSM_DT,
LLM_TENSOR_SSM_A,
LLM_TENSOR_SSM_D,
LLM_TENSOR_SSM_OUT,
LLM_TENSOR_TIME_MIX_W1,
LLM_TENSOR_TIME_MIX_W2,
LLM_TENSOR_TIME_MIX_LERP_X,
LLM_TENSOR_TIME_MIX_LERP_W,
LLM_TENSOR_TIME_MIX_LERP_K,
LLM_TENSOR_TIME_MIX_LERP_V,
LLM_TENSOR_TIME_MIX_LERP_R,
LLM_TENSOR_TIME_MIX_LERP_G,
LLM_TENSOR_TIME_MIX_LERP_FUSED,
LLM_TENSOR_TIME_MIX_FIRST,
LLM_TENSOR_TIME_MIX_DECAY,
LLM_TENSOR_TIME_MIX_DECAY_W1,
LLM_TENSOR_TIME_MIX_DECAY_W2,
LLM_TENSOR_TIME_MIX_KEY,
LLM_TENSOR_TIME_MIX_VALUE,
LLM_TENSOR_TIME_MIX_RECEPTANCE,
LLM_TENSOR_TIME_MIX_GATE,
LLM_TENSOR_TIME_MIX_LN,
LLM_TENSOR_TIME_MIX_OUTPUT,
LLM_TENSOR_CHANNEL_MIX_LERP_K,
LLM_TENSOR_CHANNEL_MIX_LERP_R,
LLM_TENSOR_CHANNEL_MIX_KEY,
LLM_TENSOR_CHANNEL_MIX_RECEPTANCE,
LLM_TENSOR_CHANNEL_MIX_VALUE,
LLM_TENSOR_ATTN_Q_A,
LLM_TENSOR_ATTN_Q_B,
LLM_TENSOR_ATTN_KV_A_MQA,
LLM_TENSOR_ATTN_KV_B,
LLM_TENSOR_ATTN_Q_A_NORM,
LLM_TENSOR_ATTN_KV_A_NORM,
LLM_TENSOR_ATTN_SUB_NORM,
LLM_TENSOR_FFN_SUB_NORM,
LLM_TENSOR_DEC_ATTN_NORM,
LLM_TENSOR_DEC_ATTN_Q,
LLM_TENSOR_DEC_ATTN_K,
LLM_TENSOR_DEC_ATTN_V,
LLM_TENSOR_DEC_ATTN_OUT,
LLM_TENSOR_DEC_ATTN_REL_B,
LLM_TENSOR_DEC_CROSS_ATTN_NORM,
LLM_TENSOR_DEC_CROSS_ATTN_Q,
LLM_TENSOR_DEC_CROSS_ATTN_K,
LLM_TENSOR_DEC_CROSS_ATTN_V,
LLM_TENSOR_DEC_CROSS_ATTN_OUT,
LLM_TENSOR_DEC_CROSS_ATTN_REL_B,
LLM_TENSOR_DEC_FFN_NORM,
LLM_TENSOR_DEC_FFN_GATE,
LLM_TENSOR_DEC_FFN_DOWN,
LLM_TENSOR_DEC_FFN_UP,
LLM_TENSOR_DEC_OUTPUT_NORM,
LLM_TENSOR_ENC_ATTN_NORM,
LLM_TENSOR_ENC_ATTN_Q,
LLM_TENSOR_ENC_ATTN_K,
LLM_TENSOR_ENC_ATTN_V,
LLM_TENSOR_ENC_ATTN_OUT,
LLM_TENSOR_ENC_ATTN_REL_B,
LLM_TENSOR_ENC_FFN_NORM,
LLM_TENSOR_ENC_FFN_GATE,
LLM_TENSOR_ENC_FFN_DOWN,
LLM_TENSOR_ENC_FFN_UP,
LLM_TENSOR_ENC_OUTPUT_NORM,
LLM_TENSOR_CLS,
LLM_TENSOR_CLS_OUT,
LLM_TENSOR_CONV1D,
LLM_TENSOR_CONVNEXT_DW,
LLM_TENSOR_CONVNEXT_NORM,
LLM_TENSOR_CONVNEXT_PW1,
LLM_TENSOR_CONVNEXT_PW2,
LLM_TENSOR_CONVNEXT_GAMMA,
LLM_TENSOR_POS_NET_CONV1,
LLM_TENSOR_POS_NET_CONV2,
LLM_TENSOR_POS_NET_NORM,
LLM_TENSOR_POS_NET_NORM1,
LLM_TENSOR_POS_NET_NORM2,
LLM_TENSOR_POS_NET_ATTN_NORM,
LLM_TENSOR_POS_NET_ATTN_Q,
LLM_TENSOR_POS_NET_ATTN_K,
LLM_TENSOR_POS_NET_ATTN_V,
LLM_TENSOR_POS_NET_ATTN_OUT,
};
enum llm_tensor_layer {
LLM_TENSOR_LAYER_INPUT,
LLM_TENSOR_LAYER_REPEATING,
LLM_TENSOR_LAYER_OUTPUT,
};
struct LLM_KV {
LLM_KV(llm_arch arch, const char * suffix = nullptr);
llm_arch arch;
const char * suffix;
std::string operator()(llm_kv kv) const;
};
// helper to handle gguf constants
// usage:
//
// const auto tn = LLM_TN(LLM_ARCH_LLAMA);
//
// std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
// std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
// std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
//
struct LLM_TN_IMPL {
const llm_arch arch;
const llm_tensor tensor;
const char * const suffix;
const int bid;
const int xid;
std::string str() const;
operator std::string() const {
return str();
}
friend bool operator==(const std::string & str, const LLM_TN_IMPL & tn) {
return str == tn.str();
}
friend bool operator!=(const std::string & str, const LLM_TN_IMPL & tn) {
return str != tn.str();
}
};
struct LLM_TN {
LLM_TN(llm_arch arch) : arch(arch) {}
llm_arch arch;
LLM_TN_IMPL operator()(llm_tensor tensor, const char * suffix, int bid = -1, int xid = -1) const {
return { arch, tensor, suffix, bid, xid };
}
LLM_TN_IMPL operator()(llm_tensor tensor, int bid = -1, int xid = -1) const {
return { arch, tensor, nullptr, bid, xid };
}
};
struct llm_tensor_info {
llm_tensor_layer layer;
ggml_op op;
};
const char * llm_arch_name(llm_arch arch);
llm_arch llm_arch_from_string(const std::string & name);
const llm_tensor_info & llm_tensor_info_for(llm_tensor tensor);

View File

@ -0,0 +1,368 @@
#include "llama-batch.h"
#include <cstring>
#include <algorithm>
llama_ubatch llama_sbatch::reserve_ubatch(size_t n_ubatch, bool has_embd) {
// clear empty sequences
// the previous ubatch is assumed to be gone,
// so nothing should refer to values in these sequences anymore.
for (size_t i = seq.size(); i-- > 0;) {
if (seq[i].length == 0) {
seq.pop_back();
} else {
break;
}
}
ubatch_token.resize(!has_embd ? n_ubatch : 0);
ubatch_embd.resize(has_embd ? n_embd * n_ubatch : 0);
ubatch_pos.resize(n_ubatch);
ubatch_n_seq_id.resize(n_ubatch);
ubatch_seq_id.resize(n_ubatch);
ubatch_output.resize(n_ubatch);
llama_ubatch ubatch = {
/*equal_seqs =*/ true,
/*n_tokens =*/ 0,
/*n_seq_tokens =*/ 0,
/*n_seqs =*/ 0,
/*token =*/ !has_embd ? ubatch_token.data() : nullptr,
/*embd =*/ has_embd ? ubatch_embd.data() : nullptr,
/*pos =*/ ubatch_pos.data(),
/*n_seq_id =*/ ubatch_n_seq_id.data(),
/*seq_id =*/ ubatch_seq_id.data(),
/*output =*/ ubatch_output.data(),
};
return ubatch;
}
void llama_sbatch::add_seq_to_ubatch(llama_ubatch & ubatch, llama_sbatch_seq & seq, size_t length) {
GGML_ASSERT(batch != nullptr);
GGML_ASSERT(length <= seq.length);
// Can only add sequences of equal lengths to a batch,
// otherwise it isn't clear to which sequence a token belongs
GGML_ASSERT(seq.n_seq_id == 0 || ubatch.n_seqs == 0 || length == (size_t) ubatch.n_tokens / ubatch.n_seqs);
GGML_ASSERT((seq.n_seq_id != 0) == ubatch.equal_seqs);
// NOTE: loops are separated for cache-friendliness
if (batch->token) {
if (ubatch.equal_seqs) {
for (size_t i = 0; i < length; ++i) {
ubatch.token[ubatch.n_tokens + i] = batch->token[ids[seq.offset + i]];
}
} else {
// simple split
ubatch.token = batch->token + seq.offset;
}
} else {
ubatch.token = nullptr;
}
if (batch->embd) {
if (ubatch.equal_seqs) {
for (size_t i = 0; i < length; ++i) {
memcpy(
ubatch.embd + (n_embd * (ubatch.n_tokens + i)),
batch->embd + (n_embd * ids[seq.offset + i]),
n_embd * sizeof(float)
);
}
} else {
// simple split
ubatch.embd = batch->embd + (n_embd * seq.offset);
}
} else {
ubatch.embd = nullptr;
}
if (ubatch.equal_seqs) {
for (size_t i = 0; i < length; ++i) {
ubatch.pos[ubatch.n_tokens + i] = batch->pos[ids[seq.offset + i]];
}
} else {
// simple split
ubatch.pos = batch->pos + seq.offset;
}
if (ubatch.equal_seqs) {
ubatch.n_seq_id[ubatch.n_seqs] = seq.n_seq_id;
if (seq.seq_id) {
ubatch.seq_id[ubatch.n_seqs] = seq.seq_id;
}
} else {
// simple split
if (batch->n_seq_id) {
ubatch.n_seq_id = batch->n_seq_id + seq.offset;
} else {
for (size_t i = 0; i < length; ++i) {
ubatch.n_seq_id[ubatch.n_seqs + i] = 1;
}
}
if (batch->seq_id) {
ubatch.seq_id = batch->seq_id + seq.offset;
}
}
if (logits_all) {
for (size_t i = 0; i < length; ++i) {
ubatch.output[ubatch.n_tokens + i] = 1;
out_ids.push_back(ids[seq.offset + i]);
}
} else if (batch->logits) {
if (ubatch.equal_seqs) {
for (size_t i = 0; i < length; ++i) {
size_t id = ids[seq.offset + i];
int8_t is_output = batch->logits[id];
ubatch.output[ubatch.n_tokens + i] = is_output;
if (is_output) { out_ids.push_back(id); }
}
} else {
// simple split
ubatch.output = batch->logits + seq.offset;
for (size_t i = 0; i < length; ++i) {
if (ubatch.output[i] != 0) { out_ids.push_back(seq.offset + i); }
}
}
} else {
// only get last output
for (size_t i = 0; i < length; ++i) {
size_t id = ids[seq.offset + i];
int8_t is_last = id == ids.size() - 1;
ubatch.output[ubatch.n_tokens + i] = is_last;
if (is_last) { out_ids.push_back(id); }
}
}
if (ubatch.n_tokens == 0 && ubatch.n_seqs == 0) {
ubatch.n_seq_tokens = ubatch.equal_seqs ? length : 1;
}
ubatch.n_tokens += length;
ubatch.n_seqs += ubatch.equal_seqs ? 1 : length; // virtual sequences for simple splits
seq.offset += length;
seq.length -= length;
n_tokens -= length;
GGML_ASSERT(ubatch.n_tokens == ubatch.n_seq_tokens * ubatch.n_seqs);
}
llama_ubatch llama_sbatch::split_simple(size_t n_ubatch) {
n_ubatch = n_tokens < n_ubatch ? n_tokens : n_ubatch;
llama_ubatch ubatch = reserve_ubatch(n_ubatch, /* has_embd */ batch->embd != nullptr);
ubatch.equal_seqs = false;
if (!seq.empty()) {
llama_sbatch_seq & s = seq[0];
size_t length = s.length < n_ubatch ? s.length : n_ubatch;
GGML_ASSERT(seq.size() == 1 && s.n_seq_id == 0); // don't mix with other splits
add_seq_to_ubatch(ubatch, s, length);
}
return ubatch;
}
llama_ubatch llama_sbatch::split_equal(size_t n_ubatch) {
n_ubatch = n_tokens < n_ubatch ? n_tokens : n_ubatch;
llama_ubatch ubatch = reserve_ubatch(n_ubatch, /* has_embd */ batch->embd != nullptr);
if (!seq.empty()) {
size_t length = 0;
size_t n_tokens_in_ubatch = 0;
GGML_ASSERT(seq[0].n_seq_id > 0); // should not be mixed with simple splits
// smallest first, because it's easier to split this way;
// starting from the end to pop in constant time.
for (size_t i = seq.size(); i-- > 0;) {
llama_sbatch_seq & s = seq[i];
GGML_ASSERT(s.length > 0);
if (length == 0) {
length = s.length < n_ubatch ? s.length : n_ubatch;
}
add_seq_to_ubatch(ubatch, s, length);
n_tokens_in_ubatch += length;
// shared prompts can't be mixed with any of their sequences,
// so it's safer to compute them in their own ubatch
if (s.n_seq_id > 1) { break; }
// stop when there isn't enough space for another sequence
if (length + n_tokens_in_ubatch > n_ubatch) { break; }
}
}
return ubatch;
}
llama_ubatch llama_sbatch::split_seq(size_t n_ubatch) {
n_ubatch = n_tokens < n_ubatch ? n_tokens : n_ubatch;
llama_ubatch ubatch = reserve_ubatch(n_ubatch, /* has_embd */ batch->embd != nullptr);
if (!seq.empty()) {
llama_sbatch_seq & s = seq[seq.size() - 1];
size_t length = s.length < n_ubatch ? s.length : n_ubatch;
GGML_ASSERT(s.n_seq_id > 0); // should not be mixed with simple splits
add_seq_to_ubatch(ubatch, s, length);
}
return ubatch;
}
void llama_sbatch::from_batch(const llama_batch & batch, size_t n_embd, bool simple_split, bool logits_all) {
GGML_ASSERT(batch.n_tokens >= 0);
this->batch = &batch;
this->n_embd = n_embd;
this->logits_all = logits_all;
n_tokens = batch.n_tokens;
ids.resize(n_tokens);
out_ids.clear();
// TODO: reserve out_ids and seq
for (size_t i = 0; i < n_tokens; ++i) {
ids[i] = i;
}
if (simple_split) {
seq.resize(1);
llama_sbatch_seq & s = seq[0];
s.n_seq_id = 0;
s.seq_id = nullptr;
s.offset = 0;
s.length = n_tokens;
return;
}
std::sort(ids.begin(), ids.end(),
[&batch](size_t a, size_t b) {
int32_t n_seq_a = batch.n_seq_id ? batch.n_seq_id[a] : 1;
int32_t n_seq_b = batch.n_seq_id ? batch.n_seq_id[b] : 1;
// sort by seq_id, then by pos
if (n_seq_a == n_seq_b) {
if (batch.seq_id) {
for (int32_t i = 0; i < n_seq_a; ++i) {
llama_seq_id seq_id_a = batch.seq_id[a][i];
llama_seq_id seq_id_b = batch.seq_id[b][i];
// smaller seq_ids go first
if (seq_id_a != seq_id_b) {
return seq_id_a < seq_id_b;
}
}
}
// when all else is equal, sort by pos
if (batch.pos) {
return batch.pos[a] < batch.pos[b];
}
// no pos, sort by id
return a < b;
}
// shared prompts go first
return n_seq_a > n_seq_b;
}
);
// init seq
llama_sbatch_seq * last_seq = nullptr;
for (size_t i = 0; i < n_tokens; ++i) {
const size_t bi = ids[i];
const int32_t n_seqs = batch.n_seq_id[bi];
llama_seq_id * seq_ids = batch.seq_id[bi];
if (last_seq != nullptr) {
bool same = n_seqs == last_seq->n_seq_id;
for (int32_t j = 0; same && j < n_seqs; ++j) {
if (seq_ids[j] != last_seq->seq_id[j]) {
same = false;
}
}
if (same) {
last_seq->length += 1;
continue;
}
}
llama_sbatch_seq new_seq = {n_seqs, seq_ids, i, 1};
seq.push_back(new_seq);
last_seq = &seq.back();
}
// keep shared prompts first at the end, then sort by length descending.
std::sort(seq.begin(), seq.end(),
[](llama_sbatch_seq & a, llama_sbatch_seq & b) {
if (a.n_seq_id == b.n_seq_id) {
return a.length > b.length;
}
return a.n_seq_id < b.n_seq_id;
}
);
}
llama_batch_allocr::llama_batch_allocr(struct llama_batch in_batch, llama_pos p0) {
batch = in_batch;
GGML_ASSERT(batch.n_tokens > 0);
if (!batch.pos) {
pos.resize(batch.n_tokens);
for (int32_t i = 0; i < batch.n_tokens; i++) {
pos[i] = i + p0;
}
batch.pos = pos.data();
}
if (!batch.n_seq_id) {
n_seq_id.resize(batch.n_tokens);
for (int32_t i = 0; i < batch.n_tokens; i++) {
n_seq_id[i] = seq_id_0.size();
}
batch.n_seq_id = n_seq_id.data();
}
if (!batch.seq_id) {
seq_id.resize(batch.n_tokens + 1);
seq_id[batch.n_tokens] = NULL;
for (int32_t i = 0; i < batch.n_tokens; i++) {
seq_id[i] = seq_id_0.data();
}
batch.seq_id = seq_id.data();
}
if (!batch.logits) {
logits.resize(batch.n_tokens);
logits[logits.size() - 1] = true;
batch.logits = logits.data();
}
}
//
// interface implementation
//
struct llama_batch llama_batch_get_one(
llama_token * tokens,
int32_t n_tokens) {
return {
/*n_tokens =*/ n_tokens,
/*tokens =*/ tokens,
/*embd =*/ nullptr,
/*pos =*/ nullptr,
/*n_seq_id =*/ nullptr,
/*seq_id =*/ nullptr,
/*logits =*/ nullptr,
};
}
struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_t n_seq_max) {
llama_batch batch = {
/*n_tokens =*/ 0,
/*tokens =*/ nullptr,
/*embd =*/ nullptr,
/*pos =*/ nullptr,
/*n_seq_id =*/ nullptr,
/*seq_id =*/ nullptr,
/*logits =*/ nullptr,
};
if (embd) {
batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
} else {
batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
}
batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens_alloc);
batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens_alloc);
batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * (n_tokens_alloc + 1));
for (int i = 0; i < n_tokens_alloc; ++i) {
batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
}
batch.seq_id[n_tokens_alloc] = nullptr;
batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens_alloc);
return batch;
}
void llama_batch_free(struct llama_batch batch) {
if (batch.token) free(batch.token);
if (batch.embd) free(batch.embd);
if (batch.pos) free(batch.pos);
if (batch.n_seq_id) free(batch.n_seq_id);
if (batch.seq_id) {
for (int i = 0; batch.seq_id[i] != nullptr; ++i) {
free(batch.seq_id[i]);
}
free(batch.seq_id);
}
if (batch.logits) free(batch.logits);
}

View File

@ -0,0 +1,88 @@
#pragma once
#include "llama.h"
#include <array>
#include <vector>
// very similar to llama_batch,
// but has more metadata about sequences
struct llama_ubatch {
bool equal_seqs;
// TODO: whole_seqs for embeddings?
uint32_t n_tokens; // total tokens (n_seq_tokens * n_seqs)
uint32_t n_seq_tokens; // tokens per sequence
uint32_t n_seqs;
llama_token * token; // [n_tokens]
float * embd; // [n_embd, n_tokens]
llama_pos * pos; // [n_tokens]
int32_t * n_seq_id; // [n_seqs]
llama_seq_id ** seq_id; // [n_seqs]
int8_t * output; // [n_tokens]
};
struct llama_sbatch_seq {
int32_t n_seq_id;
llama_seq_id * seq_id;
size_t offset;
size_t length;
};
// sequence-length-aware batch splitting
struct llama_sbatch {
// tokens left in this batch
size_t n_tokens;
size_t n_embd;
bool logits_all; // TODO: remove once lctx.logits_all is removed too
// sorted indices into the batch
std::vector<size_t> ids;
// batch indices of the output
std::vector<size_t> out_ids;
std::vector<llama_sbatch_seq> seq;
const llama_batch * batch = nullptr;
// buffers for the ubatch
std::vector<llama_token> ubatch_token;
std::vector<float> ubatch_embd;
std::vector<llama_pos> ubatch_pos;
std::vector<int32_t> ubatch_n_seq_id;
std::vector<llama_seq_id *> ubatch_seq_id;
std::vector<int8_t> ubatch_output;
llama_ubatch reserve_ubatch(size_t n_ubatch, bool has_embd = false);
void add_seq_to_ubatch(llama_ubatch & ubatch, llama_sbatch_seq & seq, size_t length);
// simple split, unknown number of sequences of unequal lengths
llama_ubatch split_simple(size_t n_ubatch);
// make batches of equal-length sequences
llama_ubatch split_equal(size_t n_ubatch);
// sequence-wise split
llama_ubatch split_seq(size_t n_ubatch);
void from_batch(const llama_batch & batch, size_t n_embd, bool simple_split = false, bool logits_all = false);
};
// temporary allocate memory for the input batch if needed
struct llama_batch_allocr {
struct llama_batch batch;
std::array<llama_seq_id, 1> seq_id_0 = { 0 }; // default sequence id
std::vector<llama_pos> pos;
std::vector<int32_t> n_seq_id;
std::vector<llama_seq_id *> seq_id;
std::vector<int8_t> logits;
// optionally fulfill the batch returned by llama_batch_get_one
llama_batch_allocr(struct llama_batch in_batch, llama_pos p0);
};

View File

@ -0,0 +1,587 @@
#include "llama-chat.h"
#include "llama.h"
#include <map>
#include <sstream>
#if __cplusplus >= 202000L
#define LU8(x) (const char*)(u8##x)
#else
#define LU8(x) u8##x
#endif
// trim whitespace from the beginning and end of a string
static std::string trim(const std::string & str) {
size_t start = 0;
size_t end = str.size();
while (start < end && isspace(str[start])) {
start += 1;
}
while (end > start && isspace(str[end - 1])) {
end -= 1;
}
return str.substr(start, end - start);
}
static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
{ "chatml", LLM_CHAT_TEMPLATE_CHATML },
{ "llama2", LLM_CHAT_TEMPLATE_LLAMA_2 },
{ "llama2-sys", LLM_CHAT_TEMPLATE_LLAMA_2_SYS },
{ "llama2-sys-bos", LLM_CHAT_TEMPLATE_LLAMA_2_SYS_BOS },
{ "llama2-sys-strip", LLM_CHAT_TEMPLATE_LLAMA_2_SYS_STRIP },
{ "mistral-v1", LLM_CHAT_TEMPLATE_MISTRAL_V1 },
{ "mistral-v3", LLM_CHAT_TEMPLATE_MISTRAL_V3 },
{ "mistral-v3-tekken", LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN },
{ "mistral-v7", LLM_CHAT_TEMPLATE_MISTRAL_V7 },
{ "phi3", LLM_CHAT_TEMPLATE_PHI_3 },
{ "phi4", LLM_CHAT_TEMPLATE_PHI_4 },
{ "falcon3", LLM_CHAT_TEMPLATE_FALCON_3 },
{ "zephyr", LLM_CHAT_TEMPLATE_ZEPHYR },
{ "monarch", LLM_CHAT_TEMPLATE_MONARCH },
{ "gemma", LLM_CHAT_TEMPLATE_GEMMA },
{ "orion", LLM_CHAT_TEMPLATE_ORION },
{ "openchat", LLM_CHAT_TEMPLATE_OPENCHAT },
{ "vicuna", LLM_CHAT_TEMPLATE_VICUNA },
{ "vicuna-orca", LLM_CHAT_TEMPLATE_VICUNA_ORCA },
{ "deepseek", LLM_CHAT_TEMPLATE_DEEPSEEK },
{ "deepseek2", LLM_CHAT_TEMPLATE_DEEPSEEK_2 },
{ "deepseek3", LLM_CHAT_TEMPLATE_DEEPSEEK_3 },
{ "command-r", LLM_CHAT_TEMPLATE_COMMAND_R },
{ "llama3", LLM_CHAT_TEMPLATE_LLAMA_3 },
{ "chatglm3", LLM_CHAT_TEMPLATE_CHATGML_3 },
{ "chatglm4", LLM_CHAT_TEMPLATE_CHATGML_4 },
{ "glmedge", LLM_CHAT_TEMPLATE_GLMEDGE },
{ "minicpm", LLM_CHAT_TEMPLATE_MINICPM },
{ "exaone3", LLM_CHAT_TEMPLATE_EXAONE_3 },
{ "rwkv-world", LLM_CHAT_TEMPLATE_RWKV_WORLD },
{ "granite", LLM_CHAT_TEMPLATE_GRANITE },
{ "gigachat", LLM_CHAT_TEMPLATE_GIGACHAT },
{ "megrez", LLM_CHAT_TEMPLATE_MEGREZ },
};
llm_chat_template llm_chat_template_from_str(const std::string & name) {
return LLM_CHAT_TEMPLATES.at(name);
}
llm_chat_template llm_chat_detect_template(const std::string & tmpl) {
try {
return llm_chat_template_from_str(tmpl);
} catch (const std::out_of_range &) {
// ignore
}
auto tmpl_contains = [&tmpl](const char * haystack) -> bool {
return tmpl.find(haystack) != std::string::npos;
};
if (tmpl_contains("<|im_start|>")) {
return tmpl_contains("<|im_sep|>")
? LLM_CHAT_TEMPLATE_PHI_4
: LLM_CHAT_TEMPLATE_CHATML;
} else if (tmpl.find("mistral") == 0 || tmpl_contains("[INST]")) {
if (tmpl_contains("[SYSTEM_PROMPT]")) {
return LLM_CHAT_TEMPLATE_MISTRAL_V7;
} else if (
// catches official 'v1' template
tmpl_contains("' [INST] ' + system_message")
// catches official 'v3' and 'v3-tekken' templates
|| tmpl_contains("[AVAILABLE_TOOLS]")
) {
// Official mistral 'v1', 'v3' and 'v3-tekken' templates
// See: https://github.com/mistralai/cookbook/blob/main/concept-deep-dive/tokenization/chat_templates.md
// See: https://github.com/mistralai/cookbook/blob/main/concept-deep-dive/tokenization/templates.md
if (tmpl_contains(" [INST]")) {
return LLM_CHAT_TEMPLATE_MISTRAL_V1;
} else if (tmpl_contains("\"[INST]\"")) {
return LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN;
}
return LLM_CHAT_TEMPLATE_MISTRAL_V3;
} else {
// llama2 template and its variants
// [variant] support system message
// See: https://huggingface.co/blog/llama2#how-to-prompt-llama-2
bool support_system_message = tmpl_contains("<<SYS>>");
bool add_bos_inside_history = tmpl_contains("bos_token + '[INST]");
bool strip_message = tmpl_contains("content.strip()");
if (strip_message) {
return LLM_CHAT_TEMPLATE_LLAMA_2_SYS_STRIP;
} else if (add_bos_inside_history) {
return LLM_CHAT_TEMPLATE_LLAMA_2_SYS_BOS;
} else if (support_system_message) {
return LLM_CHAT_TEMPLATE_LLAMA_2_SYS;
} else {
return LLM_CHAT_TEMPLATE_LLAMA_2;
}
}
} else if (tmpl_contains("<|assistant|>") && tmpl_contains("<|end|>")) {
return LLM_CHAT_TEMPLATE_PHI_3;
} else if (tmpl_contains("<|assistant|>") && tmpl_contains("<|user|>")) {
return tmpl_contains("</s>") ? LLM_CHAT_TEMPLATE_FALCON_3 : LLM_CHAT_TEMPLATE_GLMEDGE;
} else if (tmpl_contains("<|user|>") && tmpl_contains("<|endoftext|>")) {
return LLM_CHAT_TEMPLATE_ZEPHYR;
} else if (tmpl_contains("bos_token + message['role']")) {
return LLM_CHAT_TEMPLATE_MONARCH;
} else if (tmpl_contains("<start_of_turn>")) {
return LLM_CHAT_TEMPLATE_GEMMA;
} else if (tmpl_contains("'\\n\\nAssistant: ' + eos_token")) {
// OrionStarAI/Orion-14B-Chat
return LLM_CHAT_TEMPLATE_ORION;
} else if (tmpl_contains("GPT4 Correct ")) {
// openchat/openchat-3.5-0106
return LLM_CHAT_TEMPLATE_OPENCHAT;
} else if (tmpl_contains("USER: ") && tmpl_contains("ASSISTANT: ")) {
// eachadea/vicuna-13b-1.1 (and Orca variant)
if (tmpl_contains("SYSTEM: ")) {
return LLM_CHAT_TEMPLATE_VICUNA_ORCA;
}
return LLM_CHAT_TEMPLATE_VICUNA;
} else if (tmpl_contains("### Instruction:") && tmpl_contains("<|EOT|>")) {
// deepseek-ai/deepseek-coder-33b-instruct
return LLM_CHAT_TEMPLATE_DEEPSEEK;
} else if (tmpl_contains("<|START_OF_TURN_TOKEN|>") && tmpl_contains("<|USER_TOKEN|>")) {
// CohereForAI/c4ai-command-r-plus
return LLM_CHAT_TEMPLATE_COMMAND_R;
} else if (tmpl_contains("<|start_header_id|>") && tmpl_contains("<|end_header_id|>")) {
return LLM_CHAT_TEMPLATE_LLAMA_3;
} else if (tmpl_contains("[gMASK]sop")) {
// chatglm3-6b
return LLM_CHAT_TEMPLATE_CHATGML_3;
} else if (tmpl_contains("[gMASK]<sop>")) {
return LLM_CHAT_TEMPLATE_CHATGML_4;
} else if (tmpl_contains(LU8("<用户>"))) {
// MiniCPM-3B-OpenHermes-2.5-v2-GGUF
return LLM_CHAT_TEMPLATE_MINICPM;
} else if (tmpl_contains("'Assistant: ' + message['content'] + eos_token")) {
return LLM_CHAT_TEMPLATE_DEEPSEEK_2;
} else if (tmpl_contains(LU8("<Assistant>")) && tmpl_contains(LU8("<User>")) && tmpl_contains(LU8("<end▁of▁sentence>"))) {
return LLM_CHAT_TEMPLATE_DEEPSEEK_3;
} else if (tmpl_contains("[|system|]") && tmpl_contains("[|assistant|]") && tmpl_contains("[|endofturn|]")) {
// ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct/discussions/8#66bae61b1893d14ee8ed85bb
// EXAONE-3.0-7.8B-Instruct
return LLM_CHAT_TEMPLATE_EXAONE_3;
} else if (tmpl_contains("rwkv-world")) {
return LLM_CHAT_TEMPLATE_RWKV_WORLD;
} else if (tmpl_contains("<|start_of_role|>")) {
return LLM_CHAT_TEMPLATE_GRANITE;
} else if (tmpl_contains("message['role'] + additional_special_tokens[0] + message['content'] + additional_special_tokens[1]")) {
return LLM_CHAT_TEMPLATE_GIGACHAT;
} else if (tmpl_contains("<|role_start|>")) {
return LLM_CHAT_TEMPLATE_MEGREZ;
}
return LLM_CHAT_TEMPLATE_UNKNOWN;
}
// Simple version of "llama_apply_chat_template" that only works with strings
// This function uses heuristic checks to determine commonly used template. It is not a jinja parser.
int32_t llm_chat_apply_template(
llm_chat_template tmpl,
const std::vector<const llama_chat_message *> & chat,
std::string & dest, bool add_ass) {
// Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527
std::stringstream ss;
if (tmpl == LLM_CHAT_TEMPLATE_CHATML) {
// chatml template
for (auto message : chat) {
ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n";
}
if (add_ass) {
ss << "<|im_start|>assistant\n";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V7) {
// Official mistral 'v7' template
// See: https://huggingface.co/mistralai/Mistral-Large-Instruct-2411#basic-instruct-template-v7
for (auto message : chat) {
std::string role(message->role);
std::string content(message->content);
if (role == "system") {
ss << "[SYSTEM_PROMPT] " << content << "[/SYSTEM_PROMPT]";
} else if (role == "user") {
ss << "[INST] " << content << "[/INST]";
}
else {
ss << " " << content << "</s>";
}
}
} else if (tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V1
|| tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V3
|| tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN) {
// See: https://github.com/mistralai/cookbook/blob/main/concept-deep-dive/tokenization/chat_templates.md
// See: https://github.com/mistralai/cookbook/blob/main/concept-deep-dive/tokenization/templates.md
std::string leading_space = tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V1 ? " " : "";
std::string trailing_space = tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN ? "" : " ";
bool trim_assistant_message = tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V3;
bool is_inside_turn = false;
for (auto message : chat) {
if (!is_inside_turn) {
ss << leading_space << "[INST]" << trailing_space;
is_inside_turn = true;
}
std::string role(message->role);
std::string content(message->content);
if (role == "system") {
ss << content << "\n\n";
} else if (role == "user") {
ss << content << leading_space << "[/INST]";
} else {
ss << trailing_space << (trim_assistant_message ? trim(content) : content) << "</s>";
is_inside_turn = false;
}
}
} else if (
tmpl == LLM_CHAT_TEMPLATE_LLAMA_2
|| tmpl == LLM_CHAT_TEMPLATE_LLAMA_2_SYS
|| tmpl == LLM_CHAT_TEMPLATE_LLAMA_2_SYS_BOS
|| tmpl == LLM_CHAT_TEMPLATE_LLAMA_2_SYS_STRIP) {
// llama2 template and its variants
// [variant] support system message
// See: https://huggingface.co/blog/llama2#how-to-prompt-llama-2
bool support_system_message = tmpl != LLM_CHAT_TEMPLATE_LLAMA_2;
// [variant] add BOS inside history
bool add_bos_inside_history = tmpl == LLM_CHAT_TEMPLATE_LLAMA_2_SYS_BOS;
// [variant] trim spaces from the input message
bool strip_message = tmpl == LLM_CHAT_TEMPLATE_LLAMA_2_SYS_STRIP;
// construct the prompt
bool is_inside_turn = true; // skip BOS at the beginning
ss << "[INST] ";
for (auto message : chat) {
std::string content = strip_message ? trim(message->content) : message->content;
std::string role(message->role);
if (!is_inside_turn) {
is_inside_turn = true;
ss << (add_bos_inside_history ? "<s>[INST] " : "[INST] ");
}
if (role == "system") {
if (support_system_message) {
ss << "<<SYS>>\n" << content << "\n<</SYS>>\n\n";
} else {
// if the model does not support system message, we still include it in the first message, but without <<SYS>>
ss << content << "\n";
}
} else if (role == "user") {
ss << content << " [/INST]";
} else {
ss << content << "</s>";
is_inside_turn = false;
}
}
} else if (tmpl == LLM_CHAT_TEMPLATE_PHI_3) {
// Phi 3
for (auto message : chat) {
std::string role(message->role);
ss << "<|" << role << "|>\n" << message->content << "<|end|>\n";
}
if (add_ass) {
ss << "<|assistant|>\n";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_PHI_4) {
// chatml template
for (auto message : chat) {
ss << "<|im_start|>" << message->role << "<|im_sep|>" << message->content << "<|im_end|>";
}
if (add_ass) {
ss << "<|im_start|>assistant<|im_sep|>";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_FALCON_3) {
// Falcon 3
for (auto message : chat) {
std::string role(message->role);
ss << "<|" << role << "|>\n" << message->content << "\n";
}
if (add_ass) {
ss << "<|assistant|>\n";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_ZEPHYR) {
// zephyr template
for (auto message : chat) {
ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n";
}
if (add_ass) {
ss << "<|assistant|>\n";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_MONARCH) {
// mlabonne/AlphaMonarch-7B template (the <s> is included inside history)
for (auto message : chat) {
std::string bos = (message == chat.front()) ? "" : "<s>"; // skip BOS for first message
ss << bos << message->role << "\n" << message->content << "</s>\n";
}
if (add_ass) {
ss << "<s>assistant\n";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_GEMMA) {
// google/gemma-7b-it
std::string system_prompt = "";
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
// there is no system message for gemma, but we will merge it with user prompt, so nothing is broken
system_prompt = trim(message->content);
continue;
}
// in gemma, "assistant" is "model"
role = role == "assistant" ? "model" : message->role;
ss << "<start_of_turn>" << role << "\n";
if (!system_prompt.empty() && role != "model") {
ss << system_prompt << "\n\n";
system_prompt = "";
}
ss << trim(message->content) << "<end_of_turn>\n";
}
if (add_ass) {
ss << "<start_of_turn>model\n";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_ORION) {
// OrionStarAI/Orion-14B-Chat
std::string system_prompt = "";
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
// there is no system message support, we will merge it with user prompt
system_prompt = message->content;
continue;
} else if (role == "user") {
ss << "Human: ";
if (!system_prompt.empty()) {
ss << system_prompt << "\n\n";
system_prompt = "";
}
ss << message->content << "\n\nAssistant: </s>";
} else {
ss << message->content << "</s>";
}
}
} else if (tmpl == LLM_CHAT_TEMPLATE_OPENCHAT) {
// openchat/openchat-3.5-0106,
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
ss << message->content << "<|end_of_turn|>";
} else {
role[0] = toupper(role[0]);
ss << "GPT4 Correct " << role << ": " << message->content << "<|end_of_turn|>";
}
}
if (add_ass) {
ss << "GPT4 Correct Assistant:";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_VICUNA || tmpl == LLM_CHAT_TEMPLATE_VICUNA_ORCA) {
// eachadea/vicuna-13b-1.1 (and Orca variant)
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
// Orca-Vicuna variant uses a system prefix
if (tmpl == LLM_CHAT_TEMPLATE_VICUNA_ORCA) {
ss << "SYSTEM: " << message->content << "\n";
} else {
ss << message->content << "\n\n";
}
} else if (role == "user") {
ss << "USER: " << message->content << "\n";
} else if (role == "assistant") {
ss << "ASSISTANT: " << message->content << "</s>\n";
}
}
if (add_ass) {
ss << "ASSISTANT:";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_DEEPSEEK) {
// deepseek-ai/deepseek-coder-33b-instruct
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
ss << message->content;
} else if (role == "user") {
ss << "### Instruction:\n" << message->content << "\n";
} else if (role == "assistant") {
ss << "### Response:\n" << message->content << "\n<|EOT|>\n";
}
}
if (add_ass) {
ss << "### Response:\n";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_COMMAND_R) {
// CohereForAI/c4ai-command-r-plus
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
ss << "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
} else if (role == "user") {
ss << "<|START_OF_TURN_TOKEN|><|USER_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
} else if (role == "assistant") {
ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
}
}
if (add_ass) {
ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_LLAMA_3) {
// Llama 3
for (auto message : chat) {
std::string role(message->role);
ss << "<|start_header_id|>" << role << "<|end_header_id|>\n\n" << trim(message->content) << "<|eot_id|>";
}
if (add_ass) {
ss << "<|start_header_id|>assistant<|end_header_id|>\n\n";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_CHATGML_3) {
// chatglm3-6b
ss << "[gMASK]" << "sop";
for (auto message : chat) {
std::string role(message->role);
ss << "<|" << role << "|>" << "\n " << message->content;
}
if (add_ass) {
ss << "<|assistant|>";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_CHATGML_4) {
ss << "[gMASK]" << "<sop>";
for (auto message : chat) {
std::string role(message->role);
ss << "<|" << role << "|>" << "\n" << message->content;
}
if (add_ass) {
ss << "<|assistant|>";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_GLMEDGE) {
for (auto message : chat) {
std::string role(message->role);
ss << "<|" << role << "|>" << "\n" << message->content;
}
if (add_ass) {
ss << "<|assistant|>";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_MINICPM) {
// MiniCPM-3B-OpenHermes-2.5-v2-GGUF
for (auto message : chat) {
std::string role(message->role);
if (role == "user") {
ss << LU8("<用户>");
ss << trim(message->content);
ss << "<AI>";
} else {
ss << trim(message->content);
}
}
} else if (tmpl == LLM_CHAT_TEMPLATE_DEEPSEEK_2) {
// DeepSeek-V2
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
ss << message->content << "\n\n";
} else if (role == "user") {
ss << "User: " << message->content << "\n\n";
} else if (role == "assistant") {
ss << "Assistant: " << message->content << LU8("<end▁of▁sentence>");
}
}
if (add_ass) {
ss << "Assistant:";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_DEEPSEEK_3) {
// DeepSeek-V3
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
ss << message->content << "\n\n";
} else if (role == "user") {
ss << LU8("<User>") << message->content;
} else if (role == "assistant") {
ss << LU8("<Assistant>") << message->content << LU8("<end▁of▁sentence>");
}
}
if (add_ass) {
ss << LU8("<Assistant>");
}
} else if (tmpl == LLM_CHAT_TEMPLATE_EXAONE_3) {
// ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct/discussions/8#66bae61b1893d14ee8ed85bb
// EXAONE-3.0-7.8B-Instruct
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
ss << "[|system|]" << trim(message->content) << "[|endofturn|]\n";
} else if (role == "user") {
ss << "[|user|]" << trim(message->content) << "\n";
} else if (role == "assistant") {
ss << "[|assistant|]" << trim(message->content) << "[|endofturn|]\n";
}
}
if (add_ass) {
ss << "[|assistant|]";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_RWKV_WORLD) {
// this template requires the model to have "\n\n" as EOT token
for (auto message : chat) {
std::string role(message->role);
if (role == "user") {
ss << "User: " << message->content << "\n\nAssistant:";
} else {
ss << message->content << "\n\n";
}
}
} else if (tmpl == LLM_CHAT_TEMPLATE_GRANITE) {
// IBM Granite template
for (const auto & message : chat) {
std::string role(message->role);
ss << "<|start_of_role|>" << role << "<|end_of_role|>";
if (role == "assistant_tool_call") {
ss << "<|tool_call|>";
}
ss << message->content << "<|end_of_text|>\n";
}
if (add_ass) {
ss << "<|start_of_role|>assistant<|end_of_role|>\n";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_GIGACHAT) {
// GigaChat template
bool has_system = !chat.empty() && std::string(chat[0]->role) == "system";
// Handle system message if present
if (has_system) {
ss << "<s>" << chat[0]->content << "<|message_sep|>";
} else {
ss << "<s>";
}
// Process remaining messages
for (size_t i = has_system ? 1 : 0; i < chat.size(); i++) {
std::string role(chat[i]->role);
if (role == "user") {
ss << "user<|role_sep|>" << chat[i]->content << "<|message_sep|>"
<< "available functions<|role_sep|>[]<|message_sep|>";
} else if (role == "assistant") {
ss << "assistant<|role_sep|>" << chat[i]->content << "<|message_sep|>";
}
}
// Add generation prompt if needed
if (add_ass) {
ss << "assistant<|role_sep|>";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_MEGREZ) {
// Megrez template
for (auto message : chat) {
std::string role(message->role);
ss << "<|role_start|>" << role << "<|role_end|>" << message->content << "<|turn_end|>";
}
if (add_ass) {
ss << "<|role_start|>assistant<|role_end|>";
}
} else {
// template not supported
return -1;
}
dest = ss.str();
return dest.size();
}
// public interface
int32_t llama_chat_builtin_templates(const char ** output, size_t len) {
auto it = LLM_CHAT_TEMPLATES.begin();
for (size_t i = 0; i < std::min(len, LLM_CHAT_TEMPLATES.size()); i++) {
output[i] = it->first.c_str();
std::advance(it, 1);
}
return (int32_t) LLM_CHAT_TEMPLATES.size();
}

View File

@ -0,0 +1,53 @@
#pragma once
#include <string>
#include <vector>
#include <cstdint>
enum llm_chat_template {
LLM_CHAT_TEMPLATE_CHATML,
LLM_CHAT_TEMPLATE_LLAMA_2,
LLM_CHAT_TEMPLATE_LLAMA_2_SYS,
LLM_CHAT_TEMPLATE_LLAMA_2_SYS_BOS,
LLM_CHAT_TEMPLATE_LLAMA_2_SYS_STRIP,
LLM_CHAT_TEMPLATE_MISTRAL_V1,
LLM_CHAT_TEMPLATE_MISTRAL_V3,
LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN,
LLM_CHAT_TEMPLATE_MISTRAL_V7,
LLM_CHAT_TEMPLATE_PHI_3,
LLM_CHAT_TEMPLATE_PHI_4,
LLM_CHAT_TEMPLATE_FALCON_3,
LLM_CHAT_TEMPLATE_ZEPHYR,
LLM_CHAT_TEMPLATE_MONARCH,
LLM_CHAT_TEMPLATE_GEMMA,
LLM_CHAT_TEMPLATE_ORION,
LLM_CHAT_TEMPLATE_OPENCHAT,
LLM_CHAT_TEMPLATE_VICUNA,
LLM_CHAT_TEMPLATE_VICUNA_ORCA,
LLM_CHAT_TEMPLATE_DEEPSEEK,
LLM_CHAT_TEMPLATE_DEEPSEEK_2,
LLM_CHAT_TEMPLATE_DEEPSEEK_3,
LLM_CHAT_TEMPLATE_COMMAND_R,
LLM_CHAT_TEMPLATE_LLAMA_3,
LLM_CHAT_TEMPLATE_CHATGML_3,
LLM_CHAT_TEMPLATE_CHATGML_4,
LLM_CHAT_TEMPLATE_GLMEDGE,
LLM_CHAT_TEMPLATE_MINICPM,
LLM_CHAT_TEMPLATE_EXAONE_3,
LLM_CHAT_TEMPLATE_RWKV_WORLD,
LLM_CHAT_TEMPLATE_GRANITE,
LLM_CHAT_TEMPLATE_GIGACHAT,
LLM_CHAT_TEMPLATE_MEGREZ,
LLM_CHAT_TEMPLATE_UNKNOWN,
};
struct llama_chat_message;
llm_chat_template llm_chat_template_from_str(const std::string & name);
llm_chat_template llm_chat_detect_template(const std::string & tmpl);
int32_t llm_chat_apply_template(
llm_chat_template tmpl,
const std::vector<const llama_chat_message *> & chat,
std::string & dest, bool add_ass);

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,128 @@
#pragma once
#include "llama.h"
#include "llama-batch.h"
#include "llama-cparams.h"
#include "llama-model.h"
#include "llama-kv-cache.h"
#include "llama-adapter.h"
#include "ggml-cpp.h"
#include <map>
#include <unordered_map>
#include <vector>
#include <set>
struct llama_context {
llama_context(const llama_model & model)
: model(model)
, t_start_us(model.t_start_us)
, t_load_us(model.t_load_us) {}
const struct llama_model & model;
struct llama_cparams cparams;
struct llama_sbatch sbatch; // TODO: revisit if needed
struct llama_kv_cache kv_self;
struct llama_adapter_cvec cvec;
std::unordered_map<struct llama_adapter_lora *, float> lora;
std::vector<ggml_backend_ptr> backends;
std::vector<std::pair<ggml_backend_t, ggml_backend_set_n_threads_t>> set_n_threads_fns;
ggml_backend_t backend_cpu = nullptr;
ggml_threadpool_t threadpool = nullptr;
ggml_threadpool_t threadpool_batch = nullptr;
bool has_evaluated_once = false;
mutable int64_t t_start_us;
mutable int64_t t_load_us;
mutable int64_t t_p_eval_us = 0;
mutable int64_t t_eval_us = 0;
mutable int64_t t_compute_start_us = 0;
mutable int64_t n_queued_tokens = 0;
mutable int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
mutable int32_t n_eval = 0; // number of eval calls
// host buffer for the model output (logits and embeddings)
ggml_backend_buffer_ptr buf_output;
// decode output (2-dimensional array: [n_outputs][n_vocab])
size_t logits_size = 0; // capacity (of floats) for logits
float * logits = nullptr;
std::vector<int32_t> output_ids; // map batch token positions to ids of the logits and embd buffers
size_t output_size = 0; // capacity (of tokens positions) for the output buffers
int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch
bool logits_all = false;
// embeddings output (2-dimensional array: [n_outputs][n_embd])
// populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
size_t embd_size = 0; // capacity (of floats) for embeddings
float * embd = nullptr;
// sequence embeddings output (map of [n_embd] vectors)
// populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
std::map<llama_seq_id, std::vector<float>> embd_seq;
// whether we are computing encoder output or decoder output
bool is_encoding = false;
// TODO: find a better way to accommodate mutli-dimension position encoding methods
// number of position id each token get, 1 for each token in most cases.
// when using m-rope, it will be 3 position ids per token to representing 3 dimension coordinate.
int n_pos_per_token = 1;
// output of the encoder part of the encoder-decoder models
std::vector<float> embd_enc;
std::vector<std::set<llama_seq_id>> seq_ids_enc;
// memory buffers used to evaluate the model
std::vector<uint8_t> buf_compute_meta;
ggml_backend_sched_ptr sched;
ggml_abort_callback abort_callback = nullptr;
void * abort_callback_data = nullptr;
// input tensors
struct ggml_tensor * inp_tokens; // I32 [n_batch]
struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch]
struct ggml_tensor * inp_pos; // I32 [n_batch]
struct ggml_tensor * inp_out_ids; // I32 [n_outputs]
struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch]
struct ggml_tensor * inp_KQ_mask_swa; // F32 [kv_size, n_batch]
struct ggml_tensor * inp_K_shift; // I32 [kv_size]
struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch]
struct ggml_tensor * inp_cls; // I32 [n_batch]
struct ggml_tensor * inp_s_copy; // I32 [kv_size]
struct ggml_tensor * inp_s_mask; // F32 [1, n_kv]
struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch]
struct ggml_tensor * inp_pos_bucket; // I32 [n_batch|n_kv, n_batch]
struct ggml_tensor * inp_embd_enc; // F32 [n_embd, n_outputs_enc]
struct ggml_tensor * inp_KQ_mask_cross; // F32 [n_outputs_enc, n_batch]
};
// TODO: make these methods of llama_context
void llama_set_k_shift(struct llama_context & lctx);
void llama_set_s_copy(struct llama_context & lctx);
void llama_set_inputs(llama_context & lctx, const llama_ubatch & ubatch);
// Make sure enough space is available for outputs.
// Returns max number of outputs for which space was reserved.
size_t llama_output_reserve(struct llama_context & lctx, size_t n_outputs);
// make the outputs have the same order they had in the user-provided batch
void llama_output_reorder(struct llama_context & ctx);
// For internal test use
// TODO: remove
const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(struct llama_context * ctx);

View File

@ -0,0 +1 @@
#include "llama-cparams.h"

View File

@ -0,0 +1,37 @@
#pragma once
#include "llama.h"
#include <cstdint>
struct llama_cparams {
uint32_t n_ctx; // context size used during inference
uint32_t n_batch;
uint32_t n_ubatch;
uint32_t n_seq_max;
int n_threads; // number of threads to use for generation
int n_threads_batch; // number of threads to use for batch processing
float rope_freq_base;
float rope_freq_scale;
uint32_t n_ctx_orig_yarn;
// These hyperparameters are not exposed in GGUF, because all
// existing YaRN models use the same values for them.
float yarn_ext_factor;
float yarn_attn_factor;
float yarn_beta_fast;
float yarn_beta_slow;
float defrag_thold;
bool embeddings;
bool causal_attn;
bool offload_kqv;
bool flash_attn;
bool no_perf;
enum llama_pooling_type pooling_type;
ggml_backend_sched_eval_callback cb_eval;
void * cb_eval_user_data;
};

View File

@ -1,5 +1,6 @@
#include "llama-grammar.h"
#include "llama-impl.h"
#include "llama-vocab.h"
#include "llama-sampling.h"
@ -559,7 +560,7 @@ bool llama_grammar_parser::parse(const char * src) {
}
}
} catch (const std::exception & err) {
fprintf(stderr, "%s: error parsing grammar: %s\n", __func__, err.what());
fprintf(stderr, "%s: error parsing grammar: %s\n\n%s\n", __func__, err.what(), src);
rules.clear();
return false;
}
@ -822,15 +823,11 @@ llama_grammar_stacks & llama_grammar_get_stacks(struct llama_grammar * grammar)
return grammar->stacks;
}
void llama_grammar_accept(
const llama_grammar_rules & rules,
const llama_grammar_stacks & stacks,
const uint32_t chr,
llama_grammar_stacks & stacks_new) {
stacks_new.clear();
stacks_new.reserve(stacks.size());
void llama_grammar_accept(struct llama_grammar * grammar, uint32_t chr) {
llama_grammar_stacks stacks_new;
stacks_new.reserve(grammar->stacks.size());
for (const auto & stack : stacks) {
for (const auto & stack : grammar->stacks) {
if (stack.empty()) {
continue;
}
@ -844,9 +841,11 @@ void llama_grammar_accept(
if (!llama_grammar_is_end_of_sequence(pos)) {
new_stack.push_back(pos);
}
llama_grammar_advance_stack(rules, new_stack, stacks_new);
llama_grammar_advance_stack(grammar->rules, new_stack, stacks_new);
}
}
grammar->stacks = std::move(stacks_new);
}
llama_grammar_candidates llama_grammar_reject_candidates_for_stack(
@ -961,10 +960,28 @@ struct llama_grammar * llama_grammar_init_impl(
// Important: vec_rules has to be moved here, not copied, because stacks contains
// pointers to elements of vec_rules. If vec_rules were copied into llama_grammar
// then the pointers would be invalidated when the local vec_rules goes out of scope.
return new llama_grammar { vocab, std::move(vec_rules), std::move(stacks), {}, };
return new llama_grammar {
vocab,
std::move(vec_rules),
std::move(stacks),
/* .partial_utf8 = */ {},
/* .lazy =*/ false,
/* .awaiting_trigger = */ false,
/* .trigger_buffer = */ "",
/* .trigger_tokens = */ {},
/* .trigger_words = */ {},
};
}
struct llama_grammar * llama_grammar_init_impl(const struct llama_vocab * vocab, const char * grammar_str, const char * grammar_root) {
struct llama_grammar * llama_grammar_init_impl(
const struct llama_vocab * vocab,
const char * grammar_str,
const char * grammar_root,
bool lazy,
const char ** trigger_words,
size_t num_trigger_words,
const llama_token * trigger_tokens,
size_t num_trigger_tokens) {
llama_grammar_parser parser;
// if there is a grammar, parse it
@ -1036,10 +1053,31 @@ struct llama_grammar * llama_grammar_init_impl(const struct llama_vocab * vocab,
}
} while (true);
std::vector<llama_token> vec_trigger_tokens;
std::vector<std::string> vec_trigger_words;
for (size_t i = 0; i < num_trigger_tokens; i++) {
GGML_ASSERT(trigger_tokens != nullptr);
vec_trigger_tokens.push_back(trigger_tokens[i]);
}
for (size_t i = 0; i < num_trigger_words; i++) {
GGML_ASSERT(trigger_words != nullptr);
vec_trigger_words.push_back(trigger_words[i]);
}
// Important: vec_rules has to be moved here, not copied, because stacks contains
// pointers to elements of vec_rules. If vec_rules were copied into llama_grammar
// then the pointers would be invalidated when the local vec_rules goes out of scope.
return new llama_grammar { vocab, std::move(vec_rules), std::move(stacks), {}, };
return new llama_grammar {
vocab,
std::move(vec_rules),
std::move(stacks),
/* .partial_utf8 = */ {},
/* .lazy = */ lazy,
/* .awaiting_trigger = */ lazy,
/* .trigger_buffer = */ "",
std::move(vec_trigger_tokens),
std::move(vec_trigger_words),
};
}
void llama_grammar_free_impl(struct llama_grammar * grammar) {
@ -1051,7 +1089,17 @@ void llama_grammar_free_impl(struct llama_grammar * grammar) {
}
struct llama_grammar * llama_grammar_clone_impl(const struct llama_grammar & grammar) {
llama_grammar * result = new llama_grammar { grammar.vocab, grammar.rules, grammar.stacks, grammar.partial_utf8, };
llama_grammar * result = new llama_grammar {
grammar.vocab,
grammar.rules,
grammar.stacks,
grammar.partial_utf8,
grammar.lazy,
grammar.awaiting_trigger,
grammar.trigger_buffer,
grammar.trigger_tokens,
grammar.trigger_words,
};
// redirect elements in stacks to point to new rules
for (size_t is = 0; is < result->stacks.size(); is++) {
@ -1059,7 +1107,7 @@ struct llama_grammar * llama_grammar_clone_impl(const struct llama_grammar & gra
for (size_t ir0 = 0; ir0 < grammar.rules.size(); ir0++) {
for (size_t ir1 = 0; ir1 < grammar.rules[ir0].size(); ir1++) {
if (grammar.stacks[is][ie] == &grammar.rules[ir0][ir1]) {
result->stacks[is][ie] = &result->rules[ir0][ir1];
result->stacks[is][ie] = &result->rules[ir0][ir1];
}
}
}
@ -1072,6 +1120,10 @@ struct llama_grammar * llama_grammar_clone_impl(const struct llama_grammar & gra
void llama_grammar_apply_impl(const struct llama_grammar & grammar, llama_token_data_array * cur_p) {
GGML_ASSERT(grammar.vocab != nullptr);
if (grammar.awaiting_trigger) {
return;
}
bool allow_eog = false;
for (const auto & stack : grammar.stacks) {
if (stack.empty()) {
@ -1088,9 +1140,9 @@ void llama_grammar_apply_impl(const struct llama_grammar & grammar, llama_token_
for (size_t i = 0; i < cur_p->size; ++i) {
const llama_token id = cur_p->data[i].id;
const std::string & piece = grammar.vocab->cache_token_to_piece.at(id);
const std::string & piece = grammar.vocab->token_to_piece(id);
if (llama_token_is_eog_impl(*grammar.vocab, id)) {
if (grammar.vocab->is_eog(id)) {
if (!allow_eog) {
cur_p->data[i].logit = -INFINITY;
}
@ -1111,7 +1163,35 @@ void llama_grammar_apply_impl(const struct llama_grammar & grammar, llama_token_
void llama_grammar_accept_impl(struct llama_grammar & grammar, llama_token token) {
GGML_ASSERT(grammar.vocab != nullptr);
if (llama_token_is_eog_impl(*grammar.vocab, token)) {
const auto & piece = grammar.vocab->token_to_piece(token);
if (grammar.awaiting_trigger) {
if (std::find(grammar.trigger_tokens.begin(), grammar.trigger_tokens.end(), token) != grammar.trigger_tokens.end()) {
grammar.awaiting_trigger = false;
grammar.trigger_buffer.clear();
llama_grammar_accept_str(grammar, piece);
LLAMA_LOG_DEBUG("Grammar triggered on token %u (`%s`)", token, piece.c_str());
return;
} else {
// TODO: consider a smarter incremental substring search algorithm (store last position to search from).
grammar.trigger_buffer += piece;
for (const auto & word : grammar.trigger_words) {
auto pos = grammar.trigger_buffer.find(word);
if (pos != std::string::npos) {
grammar.awaiting_trigger = false;
auto constrained_str = grammar.trigger_buffer.substr(pos);
grammar.trigger_buffer.clear();
llama_grammar_accept_str(grammar, constrained_str);
LLAMA_LOG_DEBUG("Grammar triggered on word `%s`", word.c_str());
return;
}
}
LLAMA_LOG_DEBUG("Grammar still awaiting trigger after token %d (`%s`) (buffer: `%s`)\n", token, piece.c_str(), grammar.trigger_buffer.c_str());
return;
}
}
if (grammar.vocab->is_eog(token)) {
for (const auto & stack : grammar.stacks) {
if (stack.empty()) {
return;
@ -1120,19 +1200,20 @@ void llama_grammar_accept_impl(struct llama_grammar & grammar, llama_token token
GGML_ABORT("fatal error");
}
const std::string & piece = grammar.vocab->cache_token_to_piece.at(token);
llama_grammar_accept_str(grammar, piece);
}
void llama_grammar_accept_str(struct llama_grammar & grammar, const std::string & piece) {
// Note terminating 0 in decoded string
const auto decoded = decode_utf8(piece, grammar.partial_utf8);
const auto & code_points = decoded.first;
llama_grammar_stacks stacks_new;
for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
llama_grammar_accept(grammar.rules, grammar.stacks, *it, stacks_new);
grammar.stacks = std::move(stacks_new);
llama_grammar_accept(&grammar, *it);
}
grammar.partial_utf8 = decoded.second;
GGML_ASSERT(!grammar.stacks.empty());
if (grammar.stacks.empty()) {
throw std::runtime_error("Unexpected empty grammar stack after accepting piece: " + piece);
}
}

View File

@ -1,8 +1,10 @@
#pragma once
#include "llama-impl.h"
#include "llama.h"
#include <map>
#include <string>
#include <vector>
struct llama_vocab;
@ -58,6 +60,7 @@ using llama_grammar_rules = std::vector<llama_grammar_rule>;
using llama_grammar_stacks = std::vector<llama_grammar_stack>;
using llama_grammar_candidates = std::vector<llama_grammar_candidate>;
// TODO: remove, needed for tests atm
const llama_grammar_rules & llama_grammar_get_rules (const struct llama_grammar * grammar);
llama_grammar_stacks & llama_grammar_get_stacks( struct llama_grammar * grammar);
@ -65,11 +68,7 @@ const llama_grammar_rules & llama_grammar_get_rules (const struct llama_grammar
// be positioned at a character range (see `llama_grammar_advance_stack`), and
// produces the N possible stacks if the given char is accepted at those
// positions
void llama_grammar_accept(
const llama_grammar_rules & rules,
const llama_grammar_stacks & stacks,
uint32_t chr,
llama_grammar_stacks & stacks_new);
void llama_grammar_accept(struct llama_grammar * grammar, uint32_t chr);
std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
const llama_grammar_rules & rules,
@ -115,6 +114,15 @@ struct llama_grammar {
// buffer for partially generated UTF-8 sequence from accepted tokens
llama_partial_utf8 partial_utf8;
// lazy grammars wait for trigger words or tokens before constraining the sampling.
// we still ahve trigger_tokens for non-lazy grammars to force printing of special trigger tokens.
// (useful e.g. for tool_choice=required)
bool lazy = false;
bool awaiting_trigger = false; // Initialized to true for lazy grammars only
std::string trigger_buffer; // Output buffered by lazy grammar. Will be cleared once trigger is found.
std::vector<llama_token> trigger_tokens; // Tokens that trigger a lazy grammar, or tokens to force printing of (even if special).
std::vector<std::string> trigger_words;
};
//
@ -128,7 +136,15 @@ struct llama_grammar * llama_grammar_init_impl(
size_t n_rules,
size_t start_rule_index);
struct llama_grammar * llama_grammar_init_impl(const struct llama_vocab * vocab, const char * grammar_str, const char * grammar_root);
struct llama_grammar * llama_grammar_init_impl(
const struct llama_vocab * vocab,
const char * grammar_str,
const char * grammar_root,
bool lazy,
const char ** trigger_words,
size_t num_trigger_words,
const llama_token * trigger_tokens,
size_t num_trigger_tokens);
void llama_grammar_free_impl(struct llama_grammar * grammar);
@ -142,3 +158,7 @@ void llama_grammar_apply_impl(
void llama_grammar_accept_impl(
struct llama_grammar & grammar,
llama_token token);
void llama_grammar_accept_str(
struct llama_grammar & grammar,
const std::string & piece);

View File

@ -0,0 +1,71 @@
#include "llama-hparams.h"
#include "ggml.h"
uint32_t llama_hparams::n_head(uint32_t il) const {
if (il < n_layer) {
return n_head_arr[il];
}
GGML_ABORT("fatal error");
}
uint32_t llama_hparams::n_head_kv(uint32_t il) const {
if (il < n_layer) {
return n_head_kv_arr[il];
}
GGML_ABORT("fatal error");
}
uint32_t llama_hparams::n_ff(uint32_t il) const {
if (il < n_layer) {
return n_ff_arr[il];
}
GGML_ABORT("fatal error");
}
uint32_t llama_hparams::n_gqa(uint32_t il) const {
const uint32_t n_head = this->n_head(il);
const uint32_t n_head_kv = this->n_head_kv(il);
if (n_head_kv == 0) {
return 0;
}
return n_head/n_head_kv;
}
uint32_t llama_hparams::n_embd_k_gqa(uint32_t il) const {
const uint32_t n_head_kv = this->n_head_kv(il);
return n_embd_head_k * n_head_kv;
}
uint32_t llama_hparams::n_embd_v_gqa(uint32_t il) const {
const uint32_t n_head_kv = this->n_head_kv(il);
return n_embd_head_v * n_head_kv;
}
uint32_t llama_hparams::n_embd_k_s() const {
if (wkv_head_size != 0) {
// for RWKV models
return token_shift_count * n_embd;
}
// TODO: maybe support other convolution strides than 1
// NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
}
uint32_t llama_hparams::n_embd_v_s() const {
if (wkv_head_size != 0) {
// corresponds to RWKV's wkv_states size
return n_embd * wkv_head_size;
}
// corresponds to Mamba's ssm_states size
return ssm_d_state * ssm_d_inner;
}

View File

@ -0,0 +1,139 @@
#pragma once
#include "llama.h"
#include <array>
// bump if necessary
#define LLAMA_MAX_LAYERS 512
#define LLAMA_MAX_EXPERTS 256 // DeepSeekV3
enum llama_expert_gating_func_type {
LLAMA_EXPERT_GATING_FUNC_TYPE_NONE = 0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX = 1,
LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID = 2,
};
struct llama_hparams_posnet {
uint32_t n_embd;
uint32_t n_layer;
};
struct llama_hparams_convnext {
uint32_t n_embd;
uint32_t n_layer;
};
struct llama_hparams {
bool vocab_only;
bool rope_finetuned;
bool use_par_res;
bool swin_norm;
uint32_t n_ctx_train; // context size the model was trained on
uint32_t n_embd;
uint32_t n_embd_features = 0;
uint32_t n_layer;
uint32_t n_rot;
uint32_t n_swa = 0; // sliding window attention (SWA)
uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
uint32_t n_expert = 0;
uint32_t n_expert_used = 0;
uint32_t n_rel_attn_bkts = 0;
// for WavTokenizer
struct llama_hparams_posnet posnet;
struct llama_hparams_convnext convnext;
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_arr;
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_kv_arr;
std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
uint32_t n_layer_dense_lead = 0;
uint32_t n_lora_q = 0;
uint32_t n_lora_kv = 0;
uint32_t n_ff_exp = 0;
uint32_t n_ff_shexp = 0;
uint32_t n_expert_shared = 0;
uint32_t n_norm_groups = 0;
float expert_weights_scale = 0.0;
bool expert_weights_norm = false;
uint32_t expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_NONE;
float f_norm_eps;
float f_norm_rms_eps;
float f_norm_group_eps;
float f_attn_logit_softcapping = 50.0f;
float f_final_logit_softcapping = 30.0f;
// for RWKV
uint32_t rescale_every_n_layers = 0;
uint32_t time_mix_extra_dim = 0;
uint32_t time_decay_extra_dim = 0;
uint32_t wkv_head_size = 0;
uint32_t token_shift_count = 2;
float rope_attn_factor = 1.0f;
float rope_freq_base_train;
float rope_freq_scale_train;
uint32_t n_ctx_orig_yarn;
float rope_yarn_log_mul;
std::array<int, 4> rope_sections;
// for State Space Models
uint32_t ssm_d_conv = 0;
uint32_t ssm_d_inner = 0;
uint32_t ssm_d_state = 0;
uint32_t ssm_dt_rank = 0;
bool ssm_dt_b_c_rms = false;
float f_clamp_kqv = 0.0f;
float f_max_alibi_bias = 0.0f;
float f_logit_scale = 0.0f;
// Additional scale factors (Granite/Granite MoE)
float f_residual_scale = 0.0f;
float f_embedding_scale = 0.0f;
float f_attention_scale = 0.0f;
bool causal_attn = true;
bool use_alibi = false;
bool attn_soft_cap = false;
// needed by encoder-decoder models (e.g. T5, FLAN-T5)
// ref: https://github.com/ggerganov/llama.cpp/pull/8141
llama_token dec_start_token_id = LLAMA_TOKEN_NULL;
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
uint32_t n_head(uint32_t il = 0) const;
uint32_t n_head_kv(uint32_t il = 0) const;
uint32_t n_ff(uint32_t il = 0) const;
uint32_t n_gqa(uint32_t il = 0) const;
// dimension of key embeddings across all k-v heads
uint32_t n_embd_k_gqa(uint32_t il = 0) const;
// dimension of value embeddings across all k-v heads
uint32_t n_embd_v_gqa(uint32_t il = 0) const;
// dimension of the rolling state embeddings
// corresponds to Mamba's conv_states size or RWKV's token_shift states size
uint32_t n_embd_k_s() const;
// dimension of the recurrent state embeddings
uint32_t n_embd_v_s() const;
};
static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");

View File

@ -0,0 +1,167 @@
#include "llama-impl.h"
#include "gguf.h"
#include "llama.h"
#include <cinttypes>
#include <climits>
#include <cstdarg>
#include <cstring>
#include <vector>
#include <sstream>
struct llama_logger_state {
ggml_log_callback log_callback = llama_log_callback_default;
void * log_callback_user_data = nullptr;
};
static llama_logger_state g_logger_state;
time_meas::time_meas(int64_t & t_acc, bool disable) : t_start_us(disable ? -1 : ggml_time_us()), t_acc(t_acc) {}
time_meas::~time_meas() {
if (t_start_us >= 0) {
t_acc += ggml_time_us() - t_start_us;
}
}
void llama_log_set(ggml_log_callback log_callback, void * user_data) {
ggml_log_set(log_callback, user_data);
g_logger_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
g_logger_state.log_callback_user_data = user_data;
}
static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
va_list args_copy;
va_copy(args_copy, args);
char buffer[128];
int len = vsnprintf(buffer, 128, format, args);
if (len < 128) {
g_logger_state.log_callback(level, buffer, g_logger_state.log_callback_user_data);
} else {
char * buffer2 = new char[len + 1];
vsnprintf(buffer2, len + 1, format, args_copy);
buffer2[len] = 0;
g_logger_state.log_callback(level, buffer2, g_logger_state.log_callback_user_data);
delete[] buffer2;
}
va_end(args_copy);
}
void llama_log_internal(ggml_log_level level, const char * format, ...) {
va_list args;
va_start(args, format);
llama_log_internal_v(level, format, args);
va_end(args);
}
void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
(void) level;
(void) user_data;
fputs(text, stderr);
fflush(stderr);
}
void replace_all(std::string & s, const std::string & search, const std::string & replace) {
if (search.empty()) {
return;
}
std::string builder;
builder.reserve(s.length());
size_t pos = 0;
size_t last_pos = 0;
while ((pos = s.find(search, last_pos)) != std::string::npos) {
builder.append(s, last_pos, pos - last_pos);
builder.append(replace);
last_pos = pos + search.length();
}
builder.append(s, last_pos, std::string::npos);
s = std::move(builder);
}
std::string format(const char * fmt, ...) {
va_list ap;
va_list ap2;
va_start(ap, fmt);
va_copy(ap2, ap);
int size = vsnprintf(NULL, 0, fmt, ap);
GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
std::vector<char> buf(size + 1);
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
GGML_ASSERT(size2 == size);
va_end(ap2);
va_end(ap);
return std::string(buf.data(), size);
}
std::string llama_format_tensor_shape(const std::vector<int64_t> & ne) {
char buf[256];
snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0));
for (size_t i = 1; i < ne.size(); i++) {
snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i));
}
return buf;
}
std::string llama_format_tensor_shape(const struct ggml_tensor * t) {
char buf[256];
snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]);
}
return buf;
}
static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
switch (type) {
case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
default: return format("unknown type %d", type);
}
}
std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
switch (type) {
case GGUF_TYPE_STRING:
return gguf_get_val_str(ctx_gguf, i);
case GGUF_TYPE_ARRAY:
{
const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
int arr_n = gguf_get_arr_n(ctx_gguf, i);
const void * data = arr_type == GGUF_TYPE_STRING ? nullptr : gguf_get_arr_data(ctx_gguf, i);
std::stringstream ss;
ss << "[";
for (int j = 0; j < arr_n; j++) {
if (arr_type == GGUF_TYPE_STRING) {
std::string val = gguf_get_arr_str(ctx_gguf, i, j);
// escape quotes
replace_all(val, "\\", "\\\\");
replace_all(val, "\"", "\\\"");
ss << '"' << val << '"';
} else if (arr_type == GGUF_TYPE_ARRAY) {
ss << "???";
} else {
ss << gguf_data_to_str(arr_type, data, j);
}
if (j < arr_n - 1) {
ss << ", ";
}
}
ss << "]";
return ss.str();
}
default:
return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
}
}

View File

@ -1,10 +1,9 @@
#pragma once
#include "llama.h"
#include "ggml.h" // for ggml_log_level
#include <string>
#include <vector>
#include <stdexcept>
#ifdef __GNUC__
#ifdef __MINGW32__
@ -35,147 +34,28 @@ void llama_log_callback_default(ggml_log_level level, const char * text, void *
// helpers
//
struct time_meas {
time_meas(int64_t & t_acc, bool disable = false) : t_start_us(disable ? -1 : ggml_time_us()), t_acc(t_acc) {}
template <typename T>
struct no_init {
T value;
no_init() { /* do nothing */ }
};
~time_meas() {
if (t_start_us >= 0) {
t_acc += ggml_time_us() - t_start_us;
}
}
struct time_meas {
time_meas(int64_t & t_acc, bool disable = false);
~time_meas();
const int64_t t_start_us;
int64_t & t_acc;
};
static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
if (search.empty()) {
return;
}
std::string builder;
builder.reserve(s.length());
size_t pos = 0;
size_t last_pos = 0;
while ((pos = s.find(search, last_pos)) != std::string::npos) {
builder.append(s, last_pos, pos - last_pos);
builder.append(replace);
last_pos = pos + search.length();
}
builder.append(s, last_pos, std::string::npos);
s = std::move(builder);
}
void replace_all(std::string & s, const std::string & search, const std::string & replace);
const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
struct llama_context * ctx
);
// TODO: rename to llama_format ?
LLAMA_ATTRIBUTE_FORMAT(1, 2)
std::string format(const char * fmt, ...);
// the ring buffer works similarly to std::deque, but with a fixed capacity
template<typename T>
struct ring_buffer {
ring_buffer(size_t cap) : capacity(cap), data(cap) {}
std::string llama_format_tensor_shape(const std::vector<int64_t> & ne);
std::string llama_format_tensor_shape(const struct ggml_tensor * t);
T & front() {
if (sz == 0) {
throw std::runtime_error("ring buffer is empty");
}
return data[first];
}
const T & front() const {
if (sz == 0) {
throw std::runtime_error("ring buffer is empty");
}
return data[first];
}
T & back() {
if (sz == 0) {
throw std::runtime_error("ring buffer is empty");
}
return data[pos];
}
const T & back() const {
if (sz == 0) {
throw std::runtime_error("ring buffer is empty");
}
return data[pos];
}
void push_back(const T & value) {
if (capacity == 0) {
throw std::runtime_error("ring buffer: capacity is zero");
}
if (sz == capacity) {
// advance the start when buffer is full
first = (first + 1) % capacity;
} else {
sz++;
}
data[pos] = value;
pos = (pos + 1) % capacity;
}
T pop_front() {
if (sz == 0) {
throw std::runtime_error("ring buffer is empty");
}
T value = data[first];
first = (first + 1) % capacity;
sz--;
return value;
}
//T & operator[](size_t i) {
// if (i >= sz) {
// throw std::runtime_error("ring buffer: index out of bounds");
// }
// return data[(first + i) % capacity];
//}
//const T & at(size_t i) const {
// if (i >= sz) {
// throw std::runtime_error("ring buffer: index out of bounds");
// }
// return data[(first + i) % capacity];
//}
const T & rat(size_t i) const {
if (i >= sz) {
throw std::runtime_error("ring buffer: index out of bounds");
}
return data[(first + sz - i - 1) % capacity];
}
std::vector<T> to_vector() const {
std::vector<T> result;
result.reserve(sz);
for (size_t i = 0; i < sz; i++) {
result.push_back(data[(first + i) % capacity]);
}
return result;
}
void clear() {
// here only reset the status of the buffer
sz = 0;
first = 0;
pos = 0;
}
bool empty() const {
return sz == 0;
}
size_t size() const {
return sz;
}
size_t capacity = 0;
size_t sz = 0;
size_t first = 0;
size_t pos = 0;
std::vector<T> data;
};
std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i);

View File

@ -0,0 +1,718 @@
#include "llama-kv-cache.h"
#include "llama-impl.h"
#include "llama-batch.h"
#include "llama-cparams.h"
#include "llama-model.h"
#include <algorithm>
#include <limits>
#include <map>
static const llama_kv_cache_slot_info llama_kv_cache_slot_info_failed{false};
uint32_t llama_kv_cache_get_padding(const struct llama_cparams & cparams) {
// the FA kernels require padding to avoid extra runtime boundary checks
return cparams.flash_attn ? 256u : 32u;
}
bool llama_kv_cache_init(
struct llama_kv_cache & cache,
const llama_model & model,
const llama_cparams & cparams,
ggml_type type_k,
ggml_type type_v,
uint32_t kv_size,
bool offload) {
const struct llama_hparams & hparams = model.hparams;
const int32_t n_layer = hparams.n_layer;
cache.has_shift = false;
cache.recurrent = llama_model_is_recurrent(&model);
cache.v_trans = !cache.recurrent && !cparams.flash_attn;
cache.can_shift = !cache.recurrent && model.arch != LLM_ARCH_DEEPSEEK2; // not supported due to MLA
LLAMA_LOG_INFO("%s: kv_size = %d, offload = %d, type_k = '%s', type_v = '%s', n_layer = %d, can_shift = %d\n",
__func__, kv_size, offload, ggml_type_name(type_k), ggml_type_name(type_v), n_layer, cache.can_shift);
cache.head = 0;
cache.size = kv_size;
cache.used = 0;
cache.type_k = type_k;
cache.type_v = type_v;
cache.cells.clear();
cache.cells.resize(kv_size);
// create a context for each buffer type
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
auto it = ctx_map.find(buft);
if (it == ctx_map.end()) {
struct ggml_init_params params = {
/*.mem_size =*/ size_t(2u*n_layer*ggml_tensor_overhead()),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
ggml_context * ctx = ggml_init(params);
if (!ctx) {
return nullptr;
}
ctx_map[buft] = ctx;
cache.ctxs.emplace_back(ctx);
return ctx;
}
return it->second;
};
cache.k_l.reserve(n_layer);
cache.v_l.reserve(n_layer);
for (int i = 0; i < n_layer; i++) {
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s();
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s();
LLAMA_LOG_DEBUG("%s: layer %d: n_embd_k_gqa = %d, n_embd_v_gqa = %d\n", __func__, i, n_embd_k_gqa, n_embd_v_gqa);
ggml_backend_buffer_type_t buft;
if (offload) {
auto * dev = model.dev_layer(i);
buft = ggml_backend_dev_buffer_type(dev);
} else {
buft = ggml_backend_cpu_buffer_type();
}
ggml_context * ctx = ctx_for_buft(buft);
if (!ctx) {
LLAMA_LOG_ERROR("%s: failed to create ggml context for kv cache\n", __func__);
return false;
}
ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
ggml_format_name(k, "cache_k_l%d", i);
ggml_format_name(v, "cache_v_l%d", i);
cache.k_l.push_back(k);
cache.v_l.push_back(v);
}
// allocate tensors and initialize the buffers to avoid NaNs in the padding
for (auto it : ctx_map) {
auto * buft = it.first;
auto * ctx = it.second;
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
if (!buf) {
LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__);
return false;
}
ggml_backend_buffer_clear(buf, 0);
LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
cache.bufs.emplace_back(buf);
}
return true;
}
struct llama_kv_cache_slot_info llama_kv_cache_find_slot(
struct llama_kv_cache & cache,
const struct llama_ubatch & ubatch) {
const uint32_t n_tokens = ubatch.n_tokens;
const uint32_t n_seqs = ubatch.n_seqs;
const uint32_t n_seq_tokens = ubatch.n_seq_tokens;
if (cache.recurrent) {
// For recurrent state architectures (like Mamba or RWKV),
// each cache cell can store the state for a whole sequence.
// A slot should be always be contiguous.
// can only process batches with an equal number of new tokens in each sequence
GGML_ASSERT(ubatch.equal_seqs);
int32_t min = cache.size - 1;
int32_t max = 0;
// everything should fit if all seq_ids are smaller than the max
for (uint32_t s = 0; s < n_seqs; ++s) {
const uint32_t n_seq_id = ubatch.n_seq_id[s];
for (uint32_t j = 0; j < n_seq_id; ++j) {
const llama_seq_id seq_id = ubatch.seq_id[s][j];
if (seq_id < 0 || (uint32_t) seq_id >= cache.size) {
// too big seq_id
// TODO: would it be possible to resize the cache instead?
LLAMA_LOG_ERROR("%s: seq_id=%d >= n_seq_max=%d Try using a bigger --parallel value\n", __func__, seq_id, cache.size);
return llama_kv_cache_slot_info_failed;
}
if (j > 0) {
llama_kv_cell & seq = cache.cells[seq_id];
if (seq.tail >= 0) {
llama_kv_cell & cell = cache.cells[seq.tail];
// clear cells from seq_ids that become shared
// (should not normally happen, but let's handle it anyway)
cell.seq_id.erase(seq_id);
seq.tail = -1;
if (cell.seq_id.empty()) {
cell.pos = -1;
cell.src = -1;
cache.used -= 1;
}
}
}
}
}
#ifndef NDEBUG
{
std::vector<int32_t> tails_verif;
tails_verif.assign(cache.size, -1);
for (uint32_t i = 0; i < cache.size; ++i) {
llama_kv_cell & cell = cache.cells[i];
for (llama_seq_id seq_id : cell.seq_id) {
if (tails_verif[seq_id] != -1) {
LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tails_verif[seq_id]);
}
tails_verif[seq_id] = i;
}
}
for (uint32_t i = 0; i < cache.size; ++i) {
if (tails_verif[i] != cache.cells[i].tail) {
LLAMA_LOG_ERROR("%s: wrong tail for seq_id %d, (%d instead of %d)\n", __func__, i, cache.cells[i].tail, tails_verif[i]);
}
}
}
#endif
// find next empty cell
uint32_t next_empty_cell = cache.head;
for (uint32_t i = 0; i < cache.size; ++i) {
if (next_empty_cell >= cache.size) { next_empty_cell -= cache.size; }
llama_kv_cell & cell = cache.cells[next_empty_cell];
if (cell.is_empty()) { break; }
next_empty_cell += 1;
}
// find usable cell range
for (uint32_t s = 0; s < n_seqs; ++s) {
const llama_seq_id seq_id = ubatch.seq_id[s][0];
llama_kv_cell & seq_meta = cache.cells[seq_id];
bool has_cell = false;
if (seq_meta.tail >= 0) {
llama_kv_cell & cell = cache.cells[seq_meta.tail];
GGML_ASSERT(cell.has_seq_id(seq_id));
// does this seq_id "own" the cell?
if (cell.seq_id.size() == 1) { has_cell = true; }
}
if (!has_cell) {
llama_kv_cell & empty_cell = cache.cells[next_empty_cell];
GGML_ASSERT(empty_cell.is_empty());
// copy old tail into the empty cell
if (seq_meta.tail >= 0) {
llama_kv_cell & orig_cell = cache.cells[seq_meta.tail];
empty_cell.pos = orig_cell.pos;
empty_cell.src = orig_cell.src;
orig_cell.seq_id.erase(seq_id);
empty_cell.seq_id.insert(seq_id); // will be overwritten
}
seq_meta.tail = next_empty_cell;
// find next empty cell
if (s + 1 < n_seqs) {
next_empty_cell += 1;
for (uint32_t i = 0; i < cache.size; ++i) {
if (next_empty_cell >= cache.size) { next_empty_cell -= cache.size; }
llama_kv_cell & cell = cache.cells[next_empty_cell];
if (cell.is_empty()) { break; }
next_empty_cell += 1;
}
}
}
if (min > seq_meta.tail) { min = seq_meta.tail; }
if (max < seq_meta.tail) { max = seq_meta.tail; }
}
// gather and re-order
for (uint32_t s = 0; s < n_seqs; ++s) {
int32_t dst_id = s + min;
int32_t src_id = cache.cells[ubatch.seq_id[s][0]].tail;
if (dst_id != src_id) {
llama_kv_cell & dst_cell = cache.cells[dst_id];
llama_kv_cell & src_cell = cache.cells[src_id];
std::swap(dst_cell.pos, src_cell.pos);
std::swap(dst_cell.src, src_cell.src);
std::swap(dst_cell.seq_id, src_cell.seq_id);
// swap tails (assuming they NEVER overlap)
for (const llama_seq_id seq_id : src_cell.seq_id) {
cache.cells[seq_id].tail = src_id;
}
for (const llama_seq_id seq_id : dst_cell.seq_id) {
cache.cells[seq_id].tail = dst_id;
}
}
}
// update the pos of the used seqs
for (uint32_t s = 0; s < n_seqs; ++s) {
const llama_pos last_pos = ubatch.pos[n_seq_tokens * s + n_seq_tokens - 1];
int32_t cell_id = s + min;
llama_kv_cell & cell = cache.cells[cell_id];
if (cell.pos >= 0 && last_pos != cell.pos + (llama_pos) n_seq_tokens) {
// What should happen when the pos backtracks or skips a value?
// Clearing the state mid-batch would require special-casing which isn't done.
LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d with %u new tokens\n",
__func__, last_pos, cell.pos, ubatch.seq_id[s][0], n_seq_tokens);
}
cell.pos = last_pos;
cell.seq_id.clear();
for (int32_t j = 0; j < ubatch.n_seq_id[s]; ++j) {
const llama_seq_id seq_id = ubatch.seq_id[s][j];
cell.seq_id.insert(seq_id);
cache.cells[seq_id].tail = cell_id;
}
}
// allow getting the range of used cells, from head to head + n
cache.head = min;
cache.n = max - min + 1;
cache.used = std::count_if(cache.cells.begin(), cache.cells.end(),
[](const llama_kv_cell& cell){ return !cell.is_empty(); });
// sanity check
return llama_kv_cache_slot_info(cache.n >= n_seqs);
}
// otherwise, one cell per token.
if (n_tokens > cache.size) {
LLAMA_LOG_ERROR("%s: n_tokens=%d > cache.size=%d\n", __func__, n_tokens, cache.size);
return llama_kv_cache_slot_info_failed;
}
uint32_t n_tested = 0;
while (true) {
if (cache.head + n_tokens > cache.size) {
n_tested += cache.size - cache.head;
cache.head = 0;
continue;
}
bool found = true;
for (uint32_t i = 0; i < n_tokens; i++) {
if (cache.cells[cache.head + i].pos >= 0) {
found = false;
cache.head += i + 1;
n_tested += i + 1;
break;
}
}
if (found) {
break;
}
if (n_tested >= cache.size) {
//LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
return llama_kv_cache_slot_info_failed;
}
}
for (uint32_t s = 0; s < n_seqs; s++) {
for (uint32_t i = 0; i < n_seq_tokens; ++i) {
uint32_t k = s*n_seq_tokens + i;
cache.cells[cache.head + k].pos = ubatch.pos[k];
for (int32_t j = 0; j < ubatch.n_seq_id[s]; j++) {
cache.cells[cache.head + k].seq_id.insert(ubatch.seq_id[s][j]);
}
}
}
cache.used += n_tokens;
return llama_kv_cache_slot_info(cache.head, cache.head + n_tokens);
}
uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
for (uint32_t i = cache.size; i > 0; --i) {
const llama_kv_cell & cell = cache.cells[i - 1];
if (cell.pos >= 0 && !cell.is_empty()) {
return i;
}
}
return 0;
}
void llama_kv_cache_clear(struct llama_kv_cache & cache) {
for (int32_t i = 0; i < (int32_t) cache.size; ++i) {
cache.cells[i].pos = -1;
cache.cells[i].seq_id.clear();
cache.cells[i].src = -1;
cache.cells[i].tail = -1;
}
cache.head = 0;
cache.used = 0;
for (auto & buf : cache.bufs) {
ggml_backend_buffer_clear(buf.get(), 0);
}
}
bool llama_kv_cache_seq_rm(
struct llama_kv_cache & cache,
llama_seq_id seq_id,
llama_pos p0,
llama_pos p1) {
uint32_t new_head = cache.size;
if (p0 < 0) p0 = 0;
if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
// models like Mamba or RWKV can't have a state partially erased
if (cache.recurrent) {
if (seq_id >= (int64_t) cache.size) {
// could be fatal
return false;
}
if (0 <= seq_id) {
int32_t & tail_id = cache.cells[seq_id].tail;
if (tail_id >= 0) {
const llama_kv_cell & cell = cache.cells[tail_id];
// partial intersection is invalid
if ((0 < p0 && p0 <= cell.pos) || (0 < p1 && p1 <= cell.pos)) {
return false;
}
// invalidate tails which will be cleared
if (p0 <= cell.pos && cell.pos < p1) {
tail_id = -1;
}
}
} else {
// seq_id is negative, then the range should include everything or nothing
if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
return false;
}
}
}
for (uint32_t i = 0; i < cache.size; ++i) {
if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
if (seq_id < 0) {
cache.cells[i].seq_id.clear();
} else if (cache.cells[i].has_seq_id(seq_id)) {
cache.cells[i].seq_id.erase(seq_id);
} else {
continue;
}
if (cache.cells[i].is_empty()) {
// keep count of the number of used cells
if (cache.cells[i].pos >= 0) cache.used--;
cache.cells[i].pos = -1;
cache.cells[i].src = -1;
if (new_head == cache.size) new_head = i;
}
}
}
// If we freed up a slot, set head to it so searching can start there.
if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
return true;
}
void llama_kv_cache_seq_cp(
struct llama_kv_cache & cache,
llama_seq_id seq_id_src,
llama_seq_id seq_id_dst,
llama_pos p0,
llama_pos p1) {
if (p0 < 0) p0 = 0;
if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
if (cache.recurrent) {
if ((uint32_t) seq_id_dst < cache.size && (uint32_t) seq_id_src < cache.size) {
llama_kv_cell & tail_src = cache.cells[seq_id_src];
llama_kv_cell & tail_dst = cache.cells[seq_id_dst];
if (tail_dst.tail >= 0) {
// clear destination seq_id if it wasn't empty
llama_kv_cell & cell_dst = cache.cells[tail_dst.tail];
cell_dst.seq_id.erase(seq_id_dst);
tail_dst.tail = -1;
if (cell_dst.seq_id.empty()) {
cell_dst.pos = -1;
cell_dst.delta = -1;
cell_dst.src = -1;
cache.used -= 1;
}
}
if (tail_src.tail >= 0) {
llama_kv_cell & cell_src = cache.cells[tail_src.tail];
cell_src.seq_id.insert(seq_id_dst);
tail_dst.tail = tail_src.tail;
}
}
return;
}
// otherwise, this is the KV cache of a Transformer-like model
cache.head = 0;
for (uint32_t i = 0; i < cache.size; ++i) {
if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
cache.cells[i].seq_id.insert(seq_id_dst);
}
}
}
void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) {
uint32_t new_head = cache.size;
for (uint32_t i = 0; i < cache.size; ++i) {
if (cache.recurrent && (llama_seq_id) i != seq_id) {
cache.cells[i].tail = -1;
}
if (!cache.cells[i].has_seq_id(seq_id)) {
if (cache.cells[i].pos >= 0) cache.used--;
cache.cells[i].pos = -1;
cache.cells[i].src = -1;
cache.cells[i].seq_id.clear();
if (new_head == cache.size) new_head = i;
} else {
cache.cells[i].seq_id.clear();
cache.cells[i].seq_id.insert(seq_id);
}
}
// If we freed up a slot, set head to it so searching can start there.
if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
}
void llama_kv_cache_seq_add(
struct llama_kv_cache & cache,
llama_seq_id seq_id,
llama_pos p0,
llama_pos p1,
llama_pos delta) {
uint32_t new_head = cache.size;
if (p0 < 0) p0 = 0;
if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
// If there is no range then return early to avoid looping over the cache.
if (p0 == p1) return;
if (cache.recurrent) {
// for Mamba-like or RWKV models, only the pos needs to be shifted
if (0 <= seq_id && seq_id < (int64_t) cache.size) {
const int32_t tail_id = cache.cells[seq_id].tail;
if (tail_id >= 0) {
llama_kv_cell & cell = cache.cells[tail_id];
if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
cell.pos += delta;
}
}
}
return;
}
for (uint32_t i = 0; i < cache.size; ++i) {
if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
cache.has_shift = true;
cache.cells[i].pos += delta;
cache.cells[i].delta += delta;
if (cache.cells[i].pos < 0) {
if (!cache.cells[i].is_empty()) {
cache.used--;
}
cache.cells[i].pos = -1;
cache.cells[i].seq_id.clear();
if (new_head == cache.size) {
new_head = i;
}
}
}
}
// If we freed up a slot, set head to it so searching can start there.
// Otherwise we just start the next search from the beginning.
cache.head = new_head != cache.size ? new_head : 0;
}
void llama_kv_cache_seq_div(
struct llama_kv_cache & cache,
llama_seq_id seq_id,
llama_pos p0,
llama_pos p1,
int d) {
if (p0 < 0) p0 = 0;
if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
// If there is no range then return early to avoid looping over the cache.
if (p0 == p1) return;
if (cache.recurrent) {
// for Mamba-like or RWKV models, only the pos needs to be changed
if (0 <= seq_id && seq_id < (int64_t) cache.size) {
const int32_t tail_id = cache.cells[seq_id].tail;
if (tail_id >= 0) {
llama_kv_cell & cell = cache.cells[tail_id];
if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
cell.pos /= d;
}
}
}
return;
}
for (uint32_t i = 0; i < cache.size; ++i) {
if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
cache.has_shift = true;
{
llama_pos p_old = cache.cells[i].pos;
cache.cells[i].pos /= d;
cache.cells[i].delta += cache.cells[i].pos - p_old;
}
}
}
}
llama_pos llama_kv_cache_seq_pos_max(struct llama_kv_cache & cache, llama_seq_id seq_id) {
llama_pos result = 0;
for (uint32_t i = 0; i < cache.size; ++i) {
if (cache.cells[i].has_seq_id(seq_id)) {
result = std::max(result, cache.cells[i].pos);
}
}
return result;
}
void llama_kv_cache_defrag(struct llama_kv_cache & cache) {
if (!cache.recurrent) {
cache.do_defrag = true;
}
}
int32_t llama_get_kv_cache_token_count(const struct llama_kv_cache & kv) {
int result = 0;
for (uint32_t i = 0; i < kv.size; i++) {
result += kv.cells[i].seq_id.size();
}
return result;
}
int32_t llama_get_kv_cache_used_cells(const struct llama_kv_cache & kv) {
return kv.used;
}
bool llama_kv_cache_can_shift(const struct llama_kv_cache & kv) {
return kv.can_shift;
}
//
// kv cache view
//
struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_kv_cache & kv, int32_t n_seq_max) {
struct llama_kv_cache_view result = {
/*.n_cells = */ 0,
/*.n_seq_max = */ n_seq_max,
/*.token_count = */ 0,
/*.used_cells = */ llama_get_kv_cache_used_cells(kv),
/*.max_contiguous = */ 0,
/*.max_contiguous_idx = */ -1,
/*.cells = */ nullptr,
/*.cells_sequences = */ nullptr,
};
return result;
}
void llama_kv_cache_view_free(struct llama_kv_cache_view * view) {
if (view->cells != nullptr) {
free(view->cells);
view->cells = nullptr;
}
if (view->cells_sequences != nullptr) {
free(view->cells_sequences);
view->cells_sequences = nullptr;
}
}
void llama_kv_cache_view_update(struct llama_kv_cache_view * view, const struct llama_kv_cache & kv) {
if (uint32_t(view->n_cells) < kv.size || view->cells == nullptr) {
view->n_cells = int32_t(kv.size);
void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells);
GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
view->cells = (struct llama_kv_cache_view_cell *)p;
p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells);
GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
view->cells_sequences = (llama_seq_id *)p;
}
const std::vector<llama_kv_cell> & kv_cells = kv.cells;
llama_kv_cache_view_cell * c_curr = view->cells;
llama_seq_id * cs_curr = view->cells_sequences;
int32_t used_cells = 0;
int32_t token_count = 0;
int32_t curr_contig_idx = -1;
uint32_t max_contig = 0;
int32_t max_contig_idx = -1;
for (int32_t i = 0; i < int32_t(kv.size); i++, c_curr++, cs_curr += view->n_seq_max) {
const size_t curr_size = kv_cells[i].seq_id.size();
token_count += curr_size;
c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;
if (curr_size > 0) {
if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
max_contig = i - curr_contig_idx;
max_contig_idx = curr_contig_idx;
}
curr_contig_idx = -1;
} else if (curr_contig_idx < 0) {
curr_contig_idx = i;
}
int seq_idx = 0;
for (const llama_seq_id it : kv_cells[i].seq_id) {
if (seq_idx >= view->n_seq_max) {
break;
}
cs_curr[seq_idx] = it;
seq_idx++;
}
if (seq_idx != 0) {
used_cells++;
}
for (; seq_idx < view->n_seq_max; seq_idx++) {
cs_curr[seq_idx] = -1;
}
}
if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
max_contig_idx = curr_contig_idx;
max_contig = kv_cells.size() - curr_contig_idx;
}
view->max_contiguous = max_contig;
view->max_contiguous_idx = max_contig_idx;
view->token_count = token_count;
view->used_cells = used_cells;
if (uint32_t(used_cells) != kv.used) {
LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
__func__, kv.used, used_cells);
}
}

View File

@ -0,0 +1,218 @@
#pragma once
#include "llama.h"
#include "ggml-cpp.h"
#include <set>
#include <vector>
struct llama_kv_cell {
llama_pos pos = -1;
llama_pos delta = 0;
int32_t src = -1; // used by recurrent state models to copy states
int32_t tail = -1;
std::set<llama_seq_id> seq_id;
bool has_seq_id(const llama_seq_id & id) const {
return seq_id.find(id) != seq_id.end();
}
bool is_empty() const {
return seq_id.empty();
}
bool is_same_seq(const llama_kv_cell & other) const {
return seq_id == other.seq_id;
}
};
// ring-buffer of cached KV data
struct llama_kv_cache {
bool has_shift = false;
bool do_defrag = false;
bool recurrent = false; // with recurrent state models, a cell can hold the state for more than one past token
bool v_trans = true; // the value tensor is transposed
bool can_shift = false;
// Note: The value of head isn't only used to optimize searching
// for a free KV slot. llama_decode_internal also uses it, so it
// cannot be freely changed after a slot has been allocated.
uint32_t head = 0;
uint32_t size = 0;
uint32_t used = 0; // used cells (i.e. at least one seq_id)
// computed before each graph build
uint32_t n = 0;
ggml_type type_k = GGML_TYPE_F16;
ggml_type type_v = GGML_TYPE_F16;
std::vector<llama_kv_cell> cells;
std::vector<struct ggml_tensor *> k_l; // per layer
std::vector<struct ggml_tensor *> v_l;
std::vector<ggml_context_ptr> ctxs;
std::vector<ggml_backend_buffer_ptr> bufs;
size_t total_size() const {
size_t size = 0;
for (const auto & buf : bufs) {
size += ggml_backend_buffer_get_size(buf.get());
}
return size;
}
// TODO: better data structures to reduce the cost of this operation
llama_pos max_pos() const {
llama_pos max_pos = -1;
for (const auto & cell : cells) {
max_pos = std::max(max_pos, cell.pos);
}
return max_pos;
}
};
// a structure holds information about the slot found in llama_kv_cache_find_slot
struct llama_kv_cache_slot_info {
std::pair<uint32_t, uint32_t> boundaries; // slot boundaries [begin, end)
bool found = false; // the slot was found
explicit llama_kv_cache_slot_info(bool found_) : found{found_} {}
llama_kv_cache_slot_info(uint32_t begin, uint32_t end) : boundaries{begin, end}, found{true} {}
operator bool() const { return found; }
};
// TODO: maybe not needed
uint32_t llama_kv_cache_get_padding(const struct llama_cparams & cparams);
bool llama_kv_cache_init(
struct llama_kv_cache & cache,
const llama_model & model,
const llama_cparams & cparams,
ggml_type type_k,
ggml_type type_v,
uint32_t kv_size,
bool offload);
// find an empty slot of size "n_tokens" in the cache
// updates the cache head
// returns a structure holding information about the slot found
// Note: On success, it's important that cache.head points
// to the first cell of the slot.
struct llama_kv_cache_slot_info llama_kv_cache_find_slot(
struct llama_kv_cache & cache,
const struct llama_ubatch & batch);
// find how many cells are currently in use
uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache);
void llama_kv_cache_clear(struct llama_kv_cache & cache);
bool llama_kv_cache_seq_rm(
struct llama_kv_cache & cache,
llama_seq_id seq_id,
llama_pos p0,
llama_pos p1);
void llama_kv_cache_seq_cp(
struct llama_kv_cache & cache,
llama_seq_id seq_id_src,
llama_seq_id seq_id_dst,
llama_pos p0,
llama_pos p1);
void llama_kv_cache_seq_keep(
struct llama_kv_cache & cache,
llama_seq_id seq_id);
void llama_kv_cache_seq_add(
struct llama_kv_cache & cache,
llama_seq_id seq_id,
llama_pos p0,
llama_pos p1,
llama_pos delta);
void llama_kv_cache_seq_div(
struct llama_kv_cache & cache,
llama_seq_id seq_id,
llama_pos p0,
llama_pos p1,
int d);
llama_pos llama_kv_cache_seq_pos_max(
struct llama_kv_cache & cache,
llama_seq_id seq_id);
void llama_kv_cache_defrag(struct llama_kv_cache & cache);
int32_t llama_get_kv_cache_token_count(const struct llama_kv_cache & kv);
int32_t llama_get_kv_cache_used_cells(const struct llama_kv_cache & kv);
bool llama_kv_cache_can_shift(const struct llama_kv_cache & kv);
//
// kv cache view
//
struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_kv_cache & kv, int32_t n_seq_max);
void llama_kv_cache_view_update(struct llama_kv_cache_view * view, const struct llama_kv_cache & kv);
//
// kv cache restore
//
// saves the kv_cache state for future recovery.
// used to rollback llama_kv_cache_find_slot changes.
struct llama_kv_slot_restorer {
struct llama_kv_cache_state {
uint32_t head = 0;
uint32_t n = 0;
} old_state;
// for non-recurrent models only
// list of slots to restore
std::vector<std::pair<uint32_t, uint32_t>> slot_boundaries;
bool do_restore = false;
explicit llama_kv_slot_restorer(const struct llama_kv_cache & cache) {
old_state.head = cache.head;
old_state.n = cache.n;
}
// saves a slot information for future restoration
void save(const struct llama_kv_cache_slot_info & slot) {
if (slot) {
do_restore = true;
if (slot.boundaries.first != slot.boundaries.second) {
slot_boundaries.push_back(slot.boundaries);
}
}
}
// must be explicitly called to restore the kv_cache state
// and rollback changes from all llama_kv_cache_find_slot calls
void restore(struct llama_kv_cache & cache) {
if (do_restore) {
cache.head = old_state.head;
cache.n = old_state.n;
if (cache.recurrent) { // recurrent models like Mamba or RWKV can't have a state partially erased
llama_kv_cache_seq_rm(cache, -1, -1, -1);
} else {
for (auto & slot : slot_boundaries) {
llama_kv_cache_seq_rm(cache, -1, slot.first, slot.second);
}
}
}
}
};

View File

@ -0,0 +1,590 @@
#include "llama-mmap.h"
#include "llama-impl.h"
#include "ggml.h"
#include <cstring>
#include <climits>
#include <stdexcept>
#include <cerrno>
#ifdef __has_include
#if __has_include(<unistd.h>)
#include <unistd.h>
#if defined(_POSIX_MAPPED_FILES)
#include <sys/mman.h>
#include <fcntl.h>
#endif
#if defined(_POSIX_MEMLOCK_RANGE)
#include <sys/resource.h>
#endif
#endif
#endif
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#ifndef PATH_MAX
#define PATH_MAX MAX_PATH
#endif
#include <io.h>
#endif
// TODO: consider moving to llama-impl.h if needed in more places
#if defined(_WIN32)
static std::string llama_format_win_err(DWORD err) {
LPSTR buf;
size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
if (!size) {
return "FormatMessageA failed";
}
std::string ret(buf, size);
LocalFree(buf);
return ret;
}
#endif
// llama_file
struct llama_file::impl {
#if defined(_WIN32)
HANDLE fp_win32;
std::string GetErrorMessageWin32(DWORD error_code) const {
std::string ret;
LPSTR lpMsgBuf = NULL;
DWORD bufLen = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
NULL, error_code, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&lpMsgBuf, 0, NULL);
if (!bufLen) {
ret = format("Win32 error code: %lx", error_code);
} else {
ret = lpMsgBuf;
LocalFree(lpMsgBuf);
}
return ret;
}
impl(const char * fname, const char * mode) {
fp = ggml_fopen(fname, mode);
if (fp == NULL) {
throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
}
fp_win32 = (HANDLE) _get_osfhandle(_fileno(fp));
seek(0, SEEK_END);
size = tell();
seek(0, SEEK_SET);
}
size_t tell() const {
LARGE_INTEGER li;
li.QuadPart = 0;
BOOL ret = SetFilePointerEx(fp_win32, li, &li, FILE_CURRENT);
if (!ret) {
throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
}
return li.QuadPart;
}
void seek(size_t offset, int whence) const {
static_assert(SEEK_SET == FILE_BEGIN, "SEEK_SET != FILE_BEGIN");
static_assert(SEEK_CUR == FILE_CURRENT, "SEEK_CUR != FILE_CURRENT");
static_assert(SEEK_END == FILE_END, "SEEK_END != FILE_END");
LARGE_INTEGER li;
li.QuadPart = offset;
BOOL ret = SetFilePointerEx(fp_win32, li, NULL, whence);
if (!ret) {
throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
}
}
void read_raw(void * ptr, size_t len) const {
size_t bytes_read = 0;
while (bytes_read < len) {
size_t chunk_size = std::min<size_t>(len - bytes_read, 64*1024*1024);
DWORD chunk_read = 0;
BOOL result = ReadFile(fp_win32, reinterpret_cast<char*>(ptr) + bytes_read, chunk_size, &chunk_read, NULL);
if (!result) {
throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
}
if (chunk_read < chunk_size || chunk_read == 0) {
throw std::runtime_error("unexpectedly reached end of file");
}
bytes_read += chunk_read;
}
}
uint32_t read_u32() const {
uint32_t val;
read_raw(&val, sizeof(val));
return val;
}
void write_raw(const void * ptr, size_t len) const {
size_t bytes_written = 0;
while (bytes_written < len) {
size_t chunk_size = std::min<size_t>(len - bytes_written, 64*1024*1024);
DWORD chunk_written = 0;
BOOL result = WriteFile(fp_win32, reinterpret_cast<char const*>(ptr) + bytes_written, chunk_size, &chunk_written, NULL);
if (!result) {
throw std::runtime_error(format("write error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
}
if (chunk_written < chunk_size || chunk_written == 0) {
throw std::runtime_error("unexpectedly failed to write bytes");
}
bytes_written += chunk_written;
}
}
void write_u32(uint32_t val) const {
write_raw(&val, sizeof(val));
}
~impl() {
if (fp) {
std::fclose(fp);
}
}
#else
impl(const char * fname, const char * mode) {
fp = ggml_fopen(fname, mode);
if (fp == NULL) {
throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
}
seek(0, SEEK_END);
size = tell();
seek(0, SEEK_SET);
}
size_t tell() const {
// TODO: this ifdef is never true?
#ifdef _WIN32
__int64 ret = _ftelli64(fp);
#else
long ret = std::ftell(fp);
#endif
if (ret == -1) {
throw std::runtime_error(format("ftell error: %s", strerror(errno)));
}
return (size_t) ret;
}
void seek(size_t offset, int whence) const {
// TODO: this ifdef is never true?
#ifdef _WIN32
int ret = _fseeki64(fp, (__int64) offset, whence);
#else
int ret = std::fseek(fp, (long) offset, whence);
#endif
if (ret != 0) {
throw std::runtime_error(format("seek error: %s", strerror(errno)));
}
}
void read_raw(void * ptr, size_t len) const {
if (len == 0) {
return;
}
errno = 0;
std::size_t ret = std::fread(ptr, len, 1, fp);
if (ferror(fp)) {
throw std::runtime_error(format("read error: %s", strerror(errno)));
}
if (ret != 1) {
throw std::runtime_error("unexpectedly reached end of file");
}
}
uint32_t read_u32() const {
uint32_t ret;
read_raw(&ret, sizeof(ret));
return ret;
}
void write_raw(const void * ptr, size_t len) const {
if (len == 0) {
return;
}
errno = 0;
size_t ret = std::fwrite(ptr, len, 1, fp);
if (ret != 1) {
throw std::runtime_error(format("write error: %s", strerror(errno)));
}
}
void write_u32(uint32_t val) const {
write_raw(&val, sizeof(val));
}
~impl() {
if (fp) {
std::fclose(fp);
}
}
#endif
FILE * fp;
size_t size;
};
llama_file::llama_file(const char * fname, const char * mode) : pimpl(std::make_unique<impl>(fname, mode)) {}
llama_file::~llama_file() = default;
size_t llama_file::tell() const { return pimpl->tell(); }
size_t llama_file::size() const { return pimpl->size; }
int llama_file::file_id() const {
#ifdef _WIN32
return _fileno(pimpl->fp);
#else
#if defined(fileno)
return fileno(pimpl->fp);
#else
return ::fileno(pimpl->fp);
#endif
#endif
}
void llama_file::seek(size_t offset, int whence) const { pimpl->seek(offset, whence); }
void llama_file::read_raw(void * ptr, size_t len) const { pimpl->read_raw(ptr, len); }
uint32_t llama_file::read_u32() const { return pimpl->read_u32(); }
void llama_file::write_raw(const void * ptr, size_t len) const { pimpl->write_raw(ptr, len); }
void llama_file::write_u32(uint32_t val) const { pimpl->write_u32(val); }
// llama_mmap
struct llama_mmap::impl {
#ifdef _POSIX_MAPPED_FILES
std::vector<std::pair<size_t, size_t>> mapped_fragments;
impl(struct llama_file * file, size_t prefetch, bool numa) {
size = file->size();
int fd = file->file_id();
int flags = MAP_SHARED;
if (numa) { prefetch = 0; }
#ifdef __linux__
if (posix_fadvise(fd, 0, 0, POSIX_FADV_SEQUENTIAL)) {
LLAMA_LOG_WARN("warning: posix_fadvise(.., POSIX_FADV_SEQUENTIAL) failed: %s\n",
strerror(errno));
}
if (prefetch) { flags |= MAP_POPULATE; }
#endif
addr = mmap(NULL, file->size(), PROT_READ, flags, fd, 0);
if (addr == MAP_FAILED) {
throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
}
if (prefetch > 0) {
if (posix_madvise(addr, std::min(file->size(), prefetch), POSIX_MADV_WILLNEED)) {
LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
strerror(errno));
}
}
if (numa) {
if (posix_madvise(addr, file->size(), POSIX_MADV_RANDOM)) {
LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
strerror(errno));
}
}
mapped_fragments.emplace_back(0, file->size());
}
static void align_range(size_t * first, size_t * last, size_t page_size) {
size_t offset_in_page = *first & (page_size - 1);
size_t offset_to_page = offset_in_page == 0 ? 0 : page_size - offset_in_page;
*first += offset_to_page;
*last = *last & ~(page_size - 1);
if (*last <= *first) {
*last = *first;
}
}
void unmap_fragment(size_t first, size_t last) {
int page_size = sysconf(_SC_PAGESIZE);
align_range(&first, &last, page_size);
size_t len = last - first;
if (len == 0) {
return;
}
GGML_ASSERT(first % page_size == 0);
GGML_ASSERT(last % page_size == 0);
GGML_ASSERT(last > first);
void * next_page_start = (uint8_t *) addr + first;
if (munmap(next_page_start, len)) {
LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
}
std::vector<std::pair<size_t, size_t>> new_mapped_fragments;
for (const auto & frag : mapped_fragments) {
if (frag.first < first && frag.second > last) {
new_mapped_fragments.emplace_back(frag.first, first);
new_mapped_fragments.emplace_back(last, frag.second);
} else if (frag.first < first && frag.second > first) {
new_mapped_fragments.emplace_back(frag.first, first);
} else if (frag.first < last && frag.second > last) {
new_mapped_fragments.emplace_back(last, frag.second);
} else if (frag.first >= first && frag.second <= last) {
} else {
new_mapped_fragments.push_back(frag);
}
}
mapped_fragments = std::move(new_mapped_fragments);
}
~impl() {
for (const auto & frag : mapped_fragments) {
if (munmap((char *) addr + frag.first, frag.second - frag.first)) {
LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
}
}
}
#elif defined(_WIN32)
impl(struct llama_file * file, size_t prefetch, bool numa) {
GGML_UNUSED(numa);
size = file->size();
HANDLE hFile = (HANDLE) _get_osfhandle(file->file_id());
HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
if (hMapping == NULL) {
DWORD error = GetLastError();
throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
}
addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
DWORD error = GetLastError();
CloseHandle(hMapping);
if (addr == NULL) {
throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
}
if (prefetch > 0) {
#if _WIN32_WINNT >= 0x602
BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
pPrefetchVirtualMemory = (decltype(pPrefetchVirtualMemory))(void *) GetProcAddress(hKernel32, "PrefetchVirtualMemory");
if (pPrefetchVirtualMemory) {
WIN32_MEMORY_RANGE_ENTRY range;
range.VirtualAddress = addr;
range.NumberOfBytes = (SIZE_T) std::min(size, prefetch);
if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
LLAMA_LOG_WARN("warning: PrefetchVirtualMemory failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
}
}
#else
throw std::runtime_error("PrefetchVirtualMemory unavailable");
#endif
}
}
void unmap_fragment(size_t first, size_t last) {
GGML_UNUSED(first);
GGML_UNUSED(last);
}
~impl() {
if (!UnmapViewOfFile(addr)) {
LLAMA_LOG_WARN("warning: UnmapViewOfFile failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
}
}
#else
impl(struct llama_file * file, size_t prefetch, bool numa) {
GGML_UNUSED(file);
GGML_UNUSED(prefetch);
GGML_UNUSED(numa);
throw std::runtime_error("mmap not supported");
}
void unmap_fragment(size_t first, size_t last) {
GGML_UNUSED(first);
GGML_UNUSED(last);
throw std::runtime_error("mmap not supported");
}
#endif
void * addr;
size_t size;
};
llama_mmap::llama_mmap(struct llama_file * file, size_t prefetch, bool numa) : pimpl(std::make_unique<impl>(file, prefetch, numa)) {}
llama_mmap::~llama_mmap() = default;
size_t llama_mmap::size() const { return pimpl->size; }
void * llama_mmap::addr() const { return pimpl->addr; }
void llama_mmap::unmap_fragment(size_t first, size_t last) { pimpl->unmap_fragment(first, last); }
#if defined(_POSIX_MEMLOCK_RANGE) || defined(_WIN32)
const bool llama_mmap::SUPPORTED = true;
#else
const bool llama_mmap::SUPPORTED = false;
#endif
// llama_mlock
struct llama_mlock::impl {
#ifdef _POSIX_MEMLOCK_RANGE
static size_t lock_granularity() {
return (size_t) sysconf(_SC_PAGESIZE);
}
bool raw_lock(const void * addr, size_t size) const {
if (!mlock(addr, size)) {
return true;
}
#ifdef __APPLE__
#define MLOCK_SUGGESTION \
"Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
"decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MEMLOCK (ulimit -l).\n"
#else
#define MLOCK_SUGGESTION \
"Try increasing RLIMIT_MEMLOCK ('ulimit -l' as root).\n"
#endif
char* errmsg = std::strerror(errno);
bool suggest = (errno == ENOMEM);
struct rlimit lock_limit;
if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
suggest = false;
}
if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
suggest = false;
}
LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
return false;
}
static void raw_unlock(void * addr, size_t size) {
if (munlock(addr, size)) {
LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno));
}
}
#elif defined(_WIN32)
static size_t lock_granularity() {
SYSTEM_INFO si;
GetSystemInfo(&si);
return (size_t) si.dwPageSize;
}
bool raw_lock(void * ptr, size_t len) const {
for (int tries = 1; ; tries++) {
if (VirtualLock(ptr, len)) {
return true;
}
if (tries == 2) {
LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
len, size, llama_format_win_err(GetLastError()).c_str());
return false;
}
SIZE_T min_ws_size, max_ws_size;
if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
return false;
}
size_t increment = len + 1048576;
min_ws_size += increment;
max_ws_size += increment;
if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
return false;
}
}
}
static void raw_unlock(void * ptr, size_t len) {
if (!VirtualUnlock(ptr, len)) {
LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n",
llama_format_win_err(GetLastError()).c_str());
}
}
#else
static size_t lock_granularity() {
return (size_t) 65536;
}
bool raw_lock(const void * addr, size_t len) const {
LLAMA_LOG_WARN("warning: mlock not supported on this system\n");
return false;
}
static void raw_unlock(const void * addr, size_t len) {}
#endif
impl() : addr(NULL), size(0), failed_already(false) {}
void init(void * ptr) {
GGML_ASSERT(addr == NULL && size == 0);
addr = ptr;
}
void grow_to(size_t target_size) {
GGML_ASSERT(addr);
if (failed_already) {
return;
}
size_t granularity = lock_granularity();
target_size = (target_size + granularity - 1) & ~(granularity - 1);
if (target_size > size) {
if (raw_lock((uint8_t *) addr + size, target_size - size)) {
size = target_size;
} else {
failed_already = true;
}
}
}
void * addr;
size_t size;
bool failed_already;
};
llama_mlock::llama_mlock() : pimpl(std::make_unique<impl>()) {}
llama_mlock::~llama_mlock() = default;
void llama_mlock::init(void * ptr) { pimpl->init(ptr); }
void llama_mlock::grow_to(size_t target_size) { pimpl->grow_to(target_size); }
#if defined(_POSIX_MEMLOCK_RANGE) || defined(_WIN32)
const bool llama_mlock::SUPPORTED = true;
#else
const bool llama_mlock::SUPPORTED = false;
#endif
size_t llama_path_max() {
return PATH_MAX;
}

View File

@ -0,0 +1,67 @@
#pragma once
#include <memory>
#include <vector>
struct llama_file;
struct llama_mmap;
struct llama_mlock;
using llama_files = std::vector<std::unique_ptr<llama_file>>;
using llama_mmaps = std::vector<std::unique_ptr<llama_mmap>>;
using llama_mlocks = std::vector<std::unique_ptr<llama_mlock>>;
struct llama_file {
llama_file(const char * fname, const char * mode);
~llama_file();
size_t tell() const;
size_t size() const;
int file_id() const; // fileno overload
void seek(size_t offset, int whence) const;
void read_raw(void * ptr, size_t len) const;
uint32_t read_u32() const;
void write_raw(const void * ptr, size_t len) const;
void write_u32(uint32_t val) const;
private:
struct impl;
std::unique_ptr<impl> pimpl;
};
struct llama_mmap {
llama_mmap(const llama_mmap &) = delete;
llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false);
~llama_mmap();
size_t size() const;
void * addr() const;
void unmap_fragment(size_t first, size_t last);
static const bool SUPPORTED;
private:
struct impl;
std::unique_ptr<impl> pimpl;
};
struct llama_mlock {
llama_mlock();
~llama_mlock();
void init(void * ptr);
void grow_to(size_t target_size);
static const bool SUPPORTED;
private:
struct impl;
std::unique_ptr<impl> pimpl;
};
size_t llama_path_max();

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,167 @@
#pragma once
#include "llama.h"
#include "llama-impl.h"
#include "llama-arch.h"
#include "llama-mmap.h"
#include "ggml-cpp.h"
#include <cstddef>
#include <map>
#include <stdexcept>
#include <unordered_map>
using llama_buf_map = std::unordered_map<uint32_t, ggml_backend_buffer_t>;
enum llama_fver {
GGUF_FILE_VERSION_V1 = 1,
GGUF_FILE_VERSION_V2 = 2,
GGUF_FILE_VERSION_V3 = 3,
};
const char * llama_file_version_name(llama_fver version);
struct llama_model_loader {
// Holds information on a model weight
struct llama_tensor_weight {
uint16_t idx; // source file index
size_t offs; // tensor data offset in the original file
ggml_tensor * tensor;
llama_tensor_weight(const llama_file * file, uint16_t idx, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
const int tensor_idx = gguf_find_tensor(gguf_ctx, ggml_get_name(tensor));
if (tensor_idx < 0) {
throw std::runtime_error(format("tensor '%s' not found in the model", ggml_get_name(tensor)));
}
offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx);
if (offs + ggml_nbytes(tensor) < offs || offs + ggml_nbytes(tensor) > file->size()) {
throw std::runtime_error(format("tensor '%s' data is not within the file bounds, model is corrupted or incomplete", ggml_get_name(tensor)));
}
}
};
// custom comparator to sort weights more nicely by layer
struct weight_name_comparer {
bool operator()(const std::string & a, const std::string & b) const {
int a_layer = -1;
int b_layer = -1;
sscanf(a.c_str(), "blk.%d.", &a_layer);
sscanf(b.c_str(), "blk.%d.", &b_layer);
if (a_layer != b_layer) {
return a_layer < b_layer;
}
return a < b;
}
};
static const int TENSOR_NOT_REQUIRED = 1;
static const int TENSOR_DUPLICATED = 2;
int n_kv = 0;
int n_tensors = 0;
int n_created = 0;
uint64_t n_elements = 0;
size_t n_bytes = 0;
bool use_mmap = false;
bool check_tensors;
llama_files files;
llama_ftype ftype;
llama_fver fver;
llama_mmaps mappings;
std::map<std::string, struct llama_tensor_weight, weight_name_comparer> weights_map;
std::unordered_map<std::string, struct llama_model_kv_override> kv_overrides;
gguf_context_ptr meta;
std::vector<ggml_context_ptr> contexts;
std::string arch_name;
LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
size_t size_done = 0;
size_t size_data = 0;
std::vector<std::pair<size_t, size_t>> mmaps_used;
llama_model_loader(
const std::string & fname,
std::vector<std::string> & splits, // optional, only need if the split does not follow naming scheme
bool use_mmap,
bool check_tensors,
const struct llama_model_kv_override * param_overrides_p);
template<typename T>
typename std::enable_if<std::is_integral<T>::value, bool>::type
get_arr_n(const std::string & key, T & result, bool required = true);
template<typename T>
typename std::enable_if<std::is_integral<T>::value, bool>::type
get_arr_n(enum llm_kv kid, T & result, bool required = true);
template<typename T>
bool get_arr(const std::string & key, std::vector<T> & result, bool required = true);
template<typename T, size_t N_MAX>
bool get_arr(const std::string & key, std::array<T, N_MAX> & result, bool required = true);
template<typename T>
bool get_arr(enum llm_kv kid, T & result, bool required = true);
template<typename T>
bool get_key(const std::string & key, T & result, bool required = true);
template<typename T>
bool get_key(enum llm_kv kid, T & result, bool required = true);
template<typename T, size_t N_MAX>
bool get_key_or_arr(const std::string & key, std::array<T, N_MAX> & result, uint32_t n, bool required = true);
template<typename T>
bool get_key_or_arr(enum llm_kv kid, T & result, uint32_t n, bool required = true);
std::string get_arch_name() const;
enum llm_arch get_arch() const;
const llama_tensor_weight * get_weight(const char * name) const;
const llama_tensor_weight & require_weight(const char * name) const;
struct ggml_tensor * get_tensor_meta(const char * name) const;
struct ggml_tensor * require_tensor_meta(const std::string & name) const;
const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector<int64_t> & ne, bool required) const;
struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::initializer_list<int64_t> & ne, int flags = 0);
struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::initializer_list<int64_t> & ne, size_t offset, bool required = true);
void done_getting_tensors() const;
void init_mappings(bool prefetch = true, llama_mlocks * mlock_mmaps = nullptr);
void get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const;
// for backwards compatibility, does not support ggml-backend
void load_data_for(struct ggml_tensor * cur) const;
// Returns false if cancelled by progress_callback
bool load_all_data(
struct ggml_context * ctx,
llama_buf_map & bufs,
llama_mlocks * lmlocks,
llama_progress_callback progress_callback,
void * progress_callback_user_data);
std::string ftype_name() const;
void print_info() const;
};

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,370 @@
#pragma once
#include "llama.h"
#include "llama-arch.h"
#include "llama-hparams.h"
#include "llama-vocab.h"
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
struct llama_model_loader;
// available models
enum llm_type {
LLM_TYPE_UNKNOWN,
LLM_TYPE_14M,
LLM_TYPE_17M,
LLM_TYPE_22M,
LLM_TYPE_33M,
LLM_TYPE_60M,
LLM_TYPE_70M,
LLM_TYPE_80M,
LLM_TYPE_109M,
LLM_TYPE_137M,
LLM_TYPE_160M,
LLM_TYPE_220M,
LLM_TYPE_250M,
LLM_TYPE_270M,
LLM_TYPE_335M,
LLM_TYPE_410M,
LLM_TYPE_450M,
LLM_TYPE_770M,
LLM_TYPE_780M,
LLM_TYPE_0_5B,
LLM_TYPE_1B,
LLM_TYPE_1_3B,
LLM_TYPE_1_4B,
LLM_TYPE_1_5B,
LLM_TYPE_1_6B,
LLM_TYPE_2B,
LLM_TYPE_2_8B,
LLM_TYPE_3B,
LLM_TYPE_4B,
LLM_TYPE_6B,
LLM_TYPE_6_9B,
LLM_TYPE_7B,
LLM_TYPE_8B,
LLM_TYPE_9B,
LLM_TYPE_11B,
LLM_TYPE_12B,
LLM_TYPE_13B,
LLM_TYPE_14B,
LLM_TYPE_15B,
LLM_TYPE_16B,
LLM_TYPE_20B,
LLM_TYPE_30B,
LLM_TYPE_32B,
LLM_TYPE_34B,
LLM_TYPE_35B,
LLM_TYPE_40B,
LLM_TYPE_65B,
LLM_TYPE_70B,
LLM_TYPE_236B,
LLM_TYPE_314B,
LLM_TYPE_671B,
LLM_TYPE_SMALL,
LLM_TYPE_MEDIUM,
LLM_TYPE_LARGE,
LLM_TYPE_XL,
LLM_TYPE_A1_7B,
LLM_TYPE_A2_7B,
LLM_TYPE_8x7B,
LLM_TYPE_8x22B,
LLM_TYPE_16x12B,
LLM_TYPE_16x3_8B,
LLM_TYPE_10B_128x3_66B,
LLM_TYPE_57B_A14B,
LLM_TYPE_27B,
};
struct llama_layer_posnet {
// resnet
struct ggml_tensor * norm1 = nullptr;
struct ggml_tensor * norm1_b = nullptr;
struct ggml_tensor * conv1 = nullptr;
struct ggml_tensor * conv1_b = nullptr;
struct ggml_tensor * norm2 = nullptr;
struct ggml_tensor * norm2_b = nullptr;
struct ggml_tensor * conv2 = nullptr;
struct ggml_tensor * conv2_b = nullptr;
// attention
struct ggml_tensor * attn_norm = nullptr;
struct ggml_tensor * attn_norm_b = nullptr;
struct ggml_tensor * attn_q = nullptr;
struct ggml_tensor * attn_q_b = nullptr;
struct ggml_tensor * attn_k = nullptr;
struct ggml_tensor * attn_k_b = nullptr;
struct ggml_tensor * attn_v = nullptr;
struct ggml_tensor * attn_v_b = nullptr;
struct ggml_tensor * attn_o = nullptr;
struct ggml_tensor * attn_o_b = nullptr;
// normalize
struct ggml_tensor * norm = nullptr;
struct ggml_tensor * norm_b = nullptr;
};
struct llama_layer_convnext {
struct ggml_tensor * dw = nullptr;
struct ggml_tensor * dw_b = nullptr;
struct ggml_tensor * norm = nullptr;
struct ggml_tensor * norm_b = nullptr;
struct ggml_tensor * pw1 = nullptr;
struct ggml_tensor * pw1_b = nullptr;
struct ggml_tensor * pw2 = nullptr;
struct ggml_tensor * pw2_b = nullptr;
struct ggml_tensor * gamma = nullptr;
};
struct llama_layer {
// normalization
struct ggml_tensor * attn_norm = nullptr;
struct ggml_tensor * attn_norm_b = nullptr;
struct ggml_tensor * attn_norm_2 = nullptr;
struct ggml_tensor * attn_norm_2_b = nullptr;
struct ggml_tensor * attn_q_norm = nullptr;
struct ggml_tensor * attn_q_norm_b = nullptr;
struct ggml_tensor * attn_k_norm = nullptr;
struct ggml_tensor * attn_k_norm_b = nullptr;
struct ggml_tensor * attn_out_norm = nullptr;
struct ggml_tensor * attn_out_norm_b = nullptr;
struct ggml_tensor * attn_q_a_norm = nullptr;
struct ggml_tensor * attn_kv_a_norm = nullptr;
struct ggml_tensor * attn_sub_norm = nullptr;
struct ggml_tensor * attn_post_norm = nullptr;
struct ggml_tensor * ffn_sub_norm = nullptr;
struct ggml_tensor * attn_norm_cross = nullptr;
struct ggml_tensor * attn_norm_enc = nullptr;
// attention
struct ggml_tensor * wq = nullptr;
struct ggml_tensor * wk = nullptr;
struct ggml_tensor * wv = nullptr;
struct ggml_tensor * wo = nullptr;
struct ggml_tensor * wqkv = nullptr;
struct ggml_tensor * wq_a = nullptr;
struct ggml_tensor * wq_b = nullptr;
struct ggml_tensor * wkv_a_mqa = nullptr;
struct ggml_tensor * wkv_b = nullptr;
struct ggml_tensor * wq_cross = nullptr;
struct ggml_tensor * wk_cross = nullptr;
struct ggml_tensor * wv_cross = nullptr;
struct ggml_tensor * wo_cross = nullptr;
struct ggml_tensor * wq_enc = nullptr;
struct ggml_tensor * wk_enc = nullptr;
struct ggml_tensor * wv_enc = nullptr;
struct ggml_tensor * wo_enc = nullptr;
// attention bias
struct ggml_tensor * bq = nullptr;
struct ggml_tensor * bk = nullptr;
struct ggml_tensor * bv = nullptr;
struct ggml_tensor * bo = nullptr;
struct ggml_tensor * bqkv = nullptr;
// relative position bias
struct ggml_tensor * attn_rel_b = nullptr;
struct ggml_tensor * attn_rel_b_enc = nullptr;
struct ggml_tensor * attn_rel_b_cross = nullptr;
// normalization
struct ggml_tensor * ffn_norm = nullptr;
struct ggml_tensor * ffn_norm_b = nullptr;
struct ggml_tensor * ffn_post_norm = nullptr;
struct ggml_tensor * layer_out_norm = nullptr;
struct ggml_tensor * layer_out_norm_b = nullptr;
struct ggml_tensor * ffn_norm_exps = nullptr;
struct ggml_tensor * ffn_norm_enc = nullptr;
// ff
struct ggml_tensor * ffn_gate = nullptr; // w1
struct ggml_tensor * ffn_down = nullptr; // w2
struct ggml_tensor * ffn_up = nullptr; // w3
struct ggml_tensor * ffn_gate_enc = nullptr;
struct ggml_tensor * ffn_down_enc = nullptr;
struct ggml_tensor * ffn_up_enc = nullptr;
// ff MoE
struct ggml_tensor * ffn_gate_inp = nullptr;
struct ggml_tensor * ffn_gate_exps = nullptr;
struct ggml_tensor * ffn_down_exps = nullptr;
struct ggml_tensor * ffn_up_exps = nullptr;
// ff shared expert (shexp)
struct ggml_tensor * ffn_gate_inp_shexp = nullptr;
struct ggml_tensor * ffn_gate_shexp = nullptr;
struct ggml_tensor * ffn_down_shexp = nullptr;
struct ggml_tensor * ffn_up_shexp = nullptr;
// ff bias
struct ggml_tensor * ffn_gate_b = nullptr;
struct ggml_tensor * ffn_down_b = nullptr; // b2
struct ggml_tensor * ffn_up_b = nullptr; // b3
struct ggml_tensor * ffn_act = nullptr;
struct ggml_tensor * ffn_exp_probs_b = nullptr;
// mamba proj
struct ggml_tensor * ssm_in = nullptr;
struct ggml_tensor * ssm_x = nullptr;
struct ggml_tensor * ssm_dt = nullptr;
struct ggml_tensor * ssm_out = nullptr;
// mamba
struct ggml_tensor * ssm_conv1d = nullptr;
struct ggml_tensor * ssm_a = nullptr;
struct ggml_tensor * ssm_d = nullptr;
// mamba bias
struct ggml_tensor * ssm_conv1d_b = nullptr;
struct ggml_tensor * ssm_dt_b = nullptr;
// rwkv
struct ggml_tensor * time_mix_w1 = nullptr;
struct ggml_tensor * time_mix_w2 = nullptr;
struct ggml_tensor * time_mix_lerp_x = nullptr;
struct ggml_tensor * time_mix_lerp_w = nullptr;
struct ggml_tensor * time_mix_lerp_k = nullptr;
struct ggml_tensor * time_mix_lerp_v = nullptr;
struct ggml_tensor * time_mix_lerp_r = nullptr;
struct ggml_tensor * time_mix_lerp_g = nullptr;
struct ggml_tensor * time_mix_lerp_fused = nullptr;
struct ggml_tensor * time_mix_first = nullptr;
struct ggml_tensor * time_mix_decay = nullptr;
struct ggml_tensor * time_mix_decay_w1 = nullptr;
struct ggml_tensor * time_mix_decay_w2 = nullptr;
struct ggml_tensor * time_mix_key = nullptr;
struct ggml_tensor * time_mix_key_b = nullptr;
struct ggml_tensor * time_mix_value = nullptr;
struct ggml_tensor * time_mix_value_b = nullptr;
struct ggml_tensor * time_mix_receptance = nullptr;
struct ggml_tensor * time_mix_receptance_b = nullptr;
struct ggml_tensor * time_mix_gate = nullptr;
struct ggml_tensor * time_mix_ln = nullptr;
struct ggml_tensor * time_mix_ln_b = nullptr;
struct ggml_tensor * time_mix_output = nullptr;
struct ggml_tensor * channel_mix_lerp_k = nullptr;
struct ggml_tensor * channel_mix_lerp_r = nullptr;
struct ggml_tensor * channel_mix_key = nullptr;
struct ggml_tensor * channel_mix_receptance = nullptr;
struct ggml_tensor * channel_mix_value = nullptr;
// long rope factors
struct ggml_tensor * rope_long = nullptr;
struct ggml_tensor * rope_short = nullptr;
struct ggml_tensor * rope_freqs = nullptr;
// bitnet scale
struct ggml_tensor * wq_scale = nullptr;
struct ggml_tensor * wk_scale = nullptr;
struct ggml_tensor * wv_scale = nullptr;
struct ggml_tensor * wo_scale = nullptr;
struct ggml_tensor * ffn_gate_scale = nullptr;
struct ggml_tensor * ffn_up_scale = nullptr;
struct ggml_tensor * ffn_down_scale = nullptr;
struct llama_layer_posnet posnet;
struct llama_layer_convnext convnext;
};
struct llama_model {
llm_type type = LLM_TYPE_UNKNOWN;
llm_arch arch = LLM_ARCH_UNKNOWN;
std::string name = "n/a";
llama_hparams hparams = {};
llama_vocab vocab;
struct ggml_tensor * tok_embd = nullptr;
struct ggml_tensor * type_embd = nullptr;
struct ggml_tensor * pos_embd = nullptr;
struct ggml_tensor * tok_norm = nullptr;
struct ggml_tensor * tok_norm_b = nullptr;
struct ggml_tensor * output_norm = nullptr;
struct ggml_tensor * output_norm_b = nullptr;
struct ggml_tensor * output = nullptr;
struct ggml_tensor * output_b = nullptr;
struct ggml_tensor * output_norm_enc = nullptr;
// classifier
struct ggml_tensor * cls = nullptr;
struct ggml_tensor * cls_b = nullptr;
struct ggml_tensor * cls_out = nullptr;
struct ggml_tensor * cls_out_b = nullptr;
struct ggml_tensor * conv1d = nullptr;
struct ggml_tensor * conv1d_b = nullptr;
std::vector<llama_layer> layers;
llama_model_params params;
// gguf metadata
std::unordered_map<std::string, std::string> gguf_kv;
// list of devices used in this model
std::vector<ggml_backend_dev_t> devices;
// for quantize-stats only
std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
int64_t t_load_us = 0;
int64_t t_start_us = 0;
explicit llama_model(const struct llama_model_params & params);
~llama_model();
void load_stats (llama_model_loader & ml);
void load_arch (llama_model_loader & ml);
void load_hparams(llama_model_loader & ml);
void load_vocab (llama_model_loader & ml);
bool load_tensors(llama_model_loader & ml); // returns false if cancelled by progress_callback
std::string arch_name() const;
std::string type_name() const;
std::string desc() const;
size_t size() const;
size_t max_nodes() const;
size_t n_devices() const;
// total number of parameters in the model
uint64_t n_elements() const;
void print_info() const;
ggml_backend_dev_t dev_layer(int il) const;
ggml_backend_dev_t dev_output() const;
ggml_backend_buffer_type_t select_buft(int il) const;
const struct ggml_tensor * get_tensor(const char * name) const;
private:
struct impl;
std::unique_ptr<impl> pimpl;
};
const char * llm_type_name(llm_type type);

View File

@ -0,0 +1,934 @@
#include "llama-quant.h"
#include "llama-impl.h"
#include "llama-model.h"
#include "llama-model-loader.h"
#include <algorithm>
#include <cmath>
#include <cstring>
#include <cinttypes>
#include <fstream>
#include <mutex>
#include <thread>
#include <unordered_map>
static void zeros(std::ofstream & file, size_t n) {
char zero = 0;
for (size_t i = 0; i < n; ++i) {
file.write(&zero, 1);
}
}
struct quantize_state_impl {
const llama_model & model;
const llama_model_quantize_params * params;
int n_attention_wv = 0;
int n_ffn_down = 0;
int n_ffn_gate = 0;
int n_ffn_up = 0;
int i_attention_wv = 0;
int i_ffn_down = 0;
int i_ffn_gate = 0;
int i_ffn_up = 0;
int n_k_quantized = 0;
int n_fallback = 0;
bool has_imatrix = false;
// used to figure out if a model shares tok_embd with the output weight
bool has_output = false;
quantize_state_impl(const llama_model & model, const llama_model_quantize_params * params)
: model(model)
, params(params)
{}
};
static void llama_tensor_dequantize_impl(
struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
const size_t nelements, const int nthread
) {
if (output.size() < nelements) {
output.resize(nelements);
}
float * f32_output = (float *) output.data();
const ggml_type_traits * qtype = ggml_get_type_traits(tensor->type);
if (ggml_is_quantized(tensor->type)) {
if (qtype->to_float == NULL) {
throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
}
} else if (tensor->type != GGML_TYPE_F16 &&
tensor->type != GGML_TYPE_BF16) {
throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
}
if (nthread < 2) {
if (tensor->type == GGML_TYPE_F16) {
ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
} else if (tensor->type == GGML_TYPE_BF16) {
ggml_bf16_to_fp32_row((ggml_bf16_t *)tensor->data, f32_output, nelements);
} else if (ggml_is_quantized(tensor->type)) {
qtype->to_float(tensor->data, f32_output, nelements);
} else {
GGML_ABORT("fatal error"); // unreachable
}
return;
}
size_t block_size;
if (tensor->type == GGML_TYPE_F16 ||
tensor->type == GGML_TYPE_BF16) {
block_size = 1;
} else {
block_size = (size_t)ggml_blck_size(tensor->type);
}
size_t block_size_bytes = ggml_type_size(tensor->type);
GGML_ASSERT(nelements % block_size == 0);
size_t nblocks = nelements / block_size;
size_t blocks_per_thread = nblocks / nthread;
size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
size_t in_buff_offs = 0;
size_t out_buff_offs = 0;
for (int tnum = 0; tnum < nthread; tnum++) {
size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
size_t thr_elems = thr_blocks * block_size; // number of elements for this thread
size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
if (typ == GGML_TYPE_F16) {
ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
} else if (typ == GGML_TYPE_BF16) {
ggml_bf16_to_fp32_row((ggml_bf16_t *)inbuf, outbuf, nels);
} else {
qtype->to_float(inbuf, outbuf, nels);
}
};
workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
in_buff_offs += thr_block_bytes;
out_buff_offs += thr_elems;
}
for (auto & w : workers) { w.join(); }
workers.clear();
}
static ggml_type llama_tensor_get_type(quantize_state_impl & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
const std::string name = ggml_get_name(tensor);
// TODO: avoid hardcoded tensor names - use the TN_* constants
const llm_arch arch = qs.model.arch;
const auto tn = LLM_TN(arch);
auto use_more_bits = [](int i_layer, int n_layers) -> bool {
return i_layer < n_layers/8 || i_layer >= 7*n_layers/8 || (i_layer - n_layers/8)%3 == 2;
};
const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) {
if (n_expert > 1) {
// Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but occasionally randomly
// sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
// for getting the current layer as I initially thought, and we need to resort to parsing the
// tensor name.
if (sscanf(name, "blk.%d.", &i_layer) != 1) {
throw std::runtime_error(format("Failed to determine layer for tensor %s", name));
}
if (i_layer < 0 || i_layer >= n_layer) {
throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer));
}
}
return std::make_pair(i_layer, n_layer);
};
// for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings
// with the quantization of the output tensor
if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) {
if (qs.params->output_tensor_type < GGML_TYPE_COUNT) {
new_type = qs.params->output_tensor_type;
} else {
const int64_t nx = tensor->ne[0];
const int64_t qk_k = ggml_blck_size(new_type);
if (arch == LLM_ARCH_FALCON || nx % qk_k != 0) {
new_type = GGML_TYPE_Q8_0;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ||
ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
new_type = GGML_TYPE_Q5_K;
}
else if (new_type != GGML_TYPE_Q8_0) {
new_type = GGML_TYPE_Q6_K;
}
}
} else if (name == "token_embd.weight") {
if (qs.params->token_embedding_type < GGML_TYPE_COUNT) {
new_type = qs.params->token_embedding_type;
} else {
if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
new_type = GGML_TYPE_Q2_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
new_type = GGML_TYPE_IQ3_S;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
new_type = GGML_TYPE_IQ3_S;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_TQ1_0 || ftype == LLAMA_FTYPE_MOSTLY_TQ2_0) {
new_type = GGML_TYPE_Q4_K;
}
}
} else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
if (name.find("attn_v.weight") != std::string::npos) {
if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
++qs.i_attention_wv;
}
else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) {
new_type = GGML_TYPE_Q4_K;
}
else if (name.find("ffn_down") != std::string::npos) {
if (qs.i_ffn_down < qs.n_ffn_down/8) {
new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
}
++qs.i_ffn_down;
}
else if (name.find("attn_output.weight") != std::string::npos) {
if (qs.model.hparams.n_expert == 8) {
new_type = GGML_TYPE_Q5_K;
} else {
if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS;
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S;
}
}
} else if (name.find("attn_v.weight") != std::string::npos) {
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) {
new_type = GGML_TYPE_Q4_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS;
}
else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 4) {
new_type = GGML_TYPE_Q4_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
new_type = GGML_TYPE_Q4_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) {
new_type = GGML_TYPE_Q5_K;
}
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
if (qs.model.type == LLM_TYPE_70B) {
// In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
// 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
// nearly negligible increase in model size by quantizing this tensor with more bits:
if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
}
if (qs.model.hparams.n_expert == 8) {
// for the 8-expert model, bumping this to Q8_0 trades just ~128MB
// TODO: explore better strategies
new_type = GGML_TYPE_Q8_0;
}
++qs.i_attention_wv;
} else if (name.find("attn_k.weight") != std::string::npos) {
if (qs.model.hparams.n_expert == 8) {
// for the 8-expert model, bumping this to Q8_0 trades just ~128MB
// TODO: explore better strategies
new_type = GGML_TYPE_Q8_0;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
new_type = GGML_TYPE_IQ3_XXS;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
new_type = GGML_TYPE_IQ2_S;
}
} else if (name.find("attn_q.weight") != std::string::npos) {
if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
new_type = GGML_TYPE_IQ3_XXS;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
new_type = GGML_TYPE_IQ2_S;
}
} else if (name.find("ffn_down") != std::string::npos) {
auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str());
int i_layer = info.first, n_layer = info.second;
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) {
if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) {
new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
: arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
: GGML_TYPE_Q3_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 ||
(qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) {
new_type = GGML_TYPE_Q4_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
if (arch == LLM_ARCH_FALCON) {
new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
} else {
if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
}
}
else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) {
new_type = GGML_TYPE_Q5_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
new_type = GGML_TYPE_Q5_K;
}
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0)
&& qs.has_imatrix && i_layer < n_layer/8) {
// Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0.
// We only do it when an imatrix is provided because a) we want to make sure that one can always get the
// same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix.
new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1;
}
++qs.i_ffn_down;
} else if (name.find("attn_output.weight") != std::string::npos) {
if (arch != LLM_ARCH_FALCON) {
if (qs.model.hparams.n_expert == 8) {
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL ||
ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S ||
ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) {
new_type = GGML_TYPE_Q5_K;
}
} else {
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M ) new_type = GGML_TYPE_Q4_K;
}
} else {
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
}
}
else if (name.find("attn_qkv.weight") != std::string::npos) {
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
new_type = GGML_TYPE_Q4_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
}
else if (name.find("ffn_gate") != std::string::npos) {
auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str());
int i_layer = info.first, n_layer = info.second;
if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
new_type = GGML_TYPE_IQ3_XXS;
}
++qs.i_ffn_gate;
}
else if (name.find("ffn_up") != std::string::npos) {
auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str());
int i_layer = info.first, n_layer = info.second;
if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
new_type = GGML_TYPE_IQ3_XXS;
}
++qs.i_ffn_up;
}
// if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
//}
// IK: let's remove this, else Q2_K is almost the same as Q3_K_S
//else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) {
// if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
//}
// This can be used to reduce the size of the Q5_K_S model.
// The associated PPL increase is fully in line with the size reduction
//else {
// if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
//}
bool convert_incompatible_tensor = false;
{
const int64_t nx = tensor->ne[0];
const int64_t ny = tensor->ne[1];
const int64_t qk_k = ggml_blck_size(new_type);
if (nx % qk_k != 0) {
LLAMA_LOG_WARN("\n\n%s : tensor cols %" PRId64 " x %" PRId64 " are not divisible by %" PRId64 ", required for %s", __func__, nx, ny, qk_k, ggml_type_name(new_type));
convert_incompatible_tensor = true;
} else {
++qs.n_k_quantized;
}
}
if (convert_incompatible_tensor) {
switch (new_type) {
case GGML_TYPE_TQ1_0:
case GGML_TYPE_TQ2_0: new_type = GGML_TYPE_Q4_0; break; // TODO: use a symmetric type instead
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ2_S:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ1_M:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break;
case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break;
case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break;
default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
}
if (tensor->ne[0] % ggml_blck_size(new_type) != 0) {
new_type = GGML_TYPE_F16;
}
LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
++qs.n_fallback;
}
return new_type;
}
static size_t llama_tensor_quantize_impl(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
if (nthread < 2) {
// single-thread
size_t new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
if (!ggml_validate_row_data(new_type, new_data, new_size)) {
throw std::runtime_error("quantized data validation failed");
}
return new_size;
}
std::mutex mutex;
int64_t counter = 0;
size_t new_size = 0;
bool valid = true;
auto compute = [&mutex, &counter, &new_size, &valid, new_type, f32_data, new_data, chunk_size,
nrows, n_per_row, imatrix]() {
const int64_t nrows_per_chunk = chunk_size / n_per_row;
size_t local_size = 0;
while (true) {
std::unique_lock<std::mutex> lock(mutex);
int64_t first_row = counter; counter += nrows_per_chunk;
if (first_row >= nrows) {
if (local_size > 0) {
new_size += local_size;
}
break;
}
lock.unlock();
const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk);
size_t this_size = ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix);
local_size += this_size;
// validate the quantized data
const size_t row_size = ggml_row_size(new_type, n_per_row);
void * this_data = (char *) new_data + first_row * row_size;
if (!ggml_validate_row_data(new_type, this_data, this_size)) {
std::unique_lock<std::mutex> lock(mutex);
valid = false;
break;
}
}
};
for (int it = 0; it < nthread - 1; ++it) {
workers.emplace_back(compute);
}
compute();
for (auto & w : workers) { w.join(); }
workers.clear();
if (!valid) {
throw std::runtime_error("quantized data validation failed");
}
return new_size;
}
static void llama_model_quantize_impl(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
ggml_type default_type;
llama_ftype ftype = params->ftype;
switch (params->ftype) {
case LLAMA_FTYPE_MOSTLY_Q4_0: default_type = GGML_TYPE_Q4_0; break;
case LLAMA_FTYPE_MOSTLY_Q4_1: default_type = GGML_TYPE_Q4_1; break;
case LLAMA_FTYPE_MOSTLY_Q5_0: default_type = GGML_TYPE_Q5_0; break;
case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break;
case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break;
case LLAMA_FTYPE_MOSTLY_F16: default_type = GGML_TYPE_F16; break;
case LLAMA_FTYPE_MOSTLY_BF16: default_type = GGML_TYPE_BF16; break;
case LLAMA_FTYPE_ALL_F32: default_type = GGML_TYPE_F32; break;
// K-quants
case LLAMA_FTYPE_MOSTLY_Q2_K_S:
case LLAMA_FTYPE_MOSTLY_Q2_K: default_type = GGML_TYPE_Q2_K; break;
case LLAMA_FTYPE_MOSTLY_IQ3_XS: default_type = GGML_TYPE_IQ3_S; break;
case LLAMA_FTYPE_MOSTLY_Q3_K_S:
case LLAMA_FTYPE_MOSTLY_Q3_K_M:
case LLAMA_FTYPE_MOSTLY_Q3_K_L: default_type = GGML_TYPE_Q3_K; break;
case LLAMA_FTYPE_MOSTLY_Q4_K_S:
case LLAMA_FTYPE_MOSTLY_Q4_K_M: default_type = GGML_TYPE_Q4_K; break;
case LLAMA_FTYPE_MOSTLY_Q5_K_S:
case LLAMA_FTYPE_MOSTLY_Q5_K_M: default_type = GGML_TYPE_Q5_K; break;
case LLAMA_FTYPE_MOSTLY_Q6_K: default_type = GGML_TYPE_Q6_K; break;
case LLAMA_FTYPE_MOSTLY_TQ1_0: default_type = GGML_TYPE_TQ1_0; break;
case LLAMA_FTYPE_MOSTLY_TQ2_0: default_type = GGML_TYPE_TQ2_0; break;
case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break;
case LLAMA_FTYPE_MOSTLY_IQ2_XS: default_type = GGML_TYPE_IQ2_XS; break;
case LLAMA_FTYPE_MOSTLY_IQ2_S: default_type = GGML_TYPE_IQ2_XS; break;
case LLAMA_FTYPE_MOSTLY_IQ2_M: default_type = GGML_TYPE_IQ2_S; break;
case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break;
case LLAMA_FTYPE_MOSTLY_IQ1_S: default_type = GGML_TYPE_IQ1_S; break;
case LLAMA_FTYPE_MOSTLY_IQ1_M: default_type = GGML_TYPE_IQ1_M; break;
case LLAMA_FTYPE_MOSTLY_IQ4_NL: default_type = GGML_TYPE_IQ4_NL; break;
case LLAMA_FTYPE_MOSTLY_IQ4_XS: default_type = GGML_TYPE_IQ4_XS; break;
case LLAMA_FTYPE_MOSTLY_IQ3_S: default_type = GGML_TYPE_IQ3_S; break;
case LLAMA_FTYPE_MOSTLY_IQ3_M: default_type = GGML_TYPE_IQ3_S; break;
default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
}
int nthread = params->nthread;
if (nthread <= 0) {
nthread = std::thread::hardware_concurrency();
}
// mmap consistently increases speed Linux, and also increases speed on Windows with
// hot cache. It may cause a slowdown on macOS, possibly related to free memory.
#if defined(__linux__) || defined(_WIN32)
constexpr bool use_mmap = true;
#else
constexpr bool use_mmap = false;
#endif
llama_model_kv_override * kv_overrides = nullptr;
if (params->kv_overrides) {
auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
kv_overrides = v->data();
}
std::vector<std::string> splits = {};
llama_model_loader ml(fname_inp, splits, use_mmap, /*check_tensors*/ true, kv_overrides);
ml.init_mappings(false); // no prefetching
llama_model model(llama_model_default_params());
model.load_arch (ml);
model.load_hparams(ml);
model.load_stats (ml);
struct quantize_state_impl qs(model, params);
if (params->only_copy) {
ftype = ml.ftype;
}
const std::unordered_map<std::string, std::vector<float>> * imatrix_data = nullptr;
if (params->imatrix) {
imatrix_data = static_cast<const std::unordered_map<std::string, std::vector<float>>*>(params->imatrix);
if (imatrix_data) {
LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size()));
qs.has_imatrix = true;
// check imatrix for nans or infs
for (const auto & kv : *imatrix_data) {
for (float f : kv.second) {
if (!std::isfinite(f)) {
throw std::runtime_error(format("imatrix contains non-finite value %f\n", f));
}
}
}
}
}
const size_t align = GGUF_DEFAULT_ALIGNMENT;
gguf_context_ptr ctx_out { gguf_init_empty() };
// copy the KV pairs from the input file
gguf_set_kv (ctx_out.get(), ml.meta.get());
gguf_set_val_u32(ctx_out.get(), "general.quantization_version", GGML_QNT_VERSION); // TODO: use LLM_KV
gguf_set_val_u32(ctx_out.get(), "general.file_type", ftype); // TODO: use LLM_KV
// Remove split metadata
gguf_remove_key(ctx_out.get(), ml.llm_kv(LLM_KV_SPLIT_NO).c_str());
gguf_remove_key(ctx_out.get(), ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str());
gguf_remove_key(ctx_out.get(), ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str());
if (params->kv_overrides) {
const std::vector<llama_model_kv_override> & overrides = *(const std::vector<llama_model_kv_override> *)params->kv_overrides;
for (const auto & o : overrides) {
if (o.key[0] == 0) break;
if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) {
gguf_set_val_f32(ctx_out.get(), o.key, o.val_f64);
} else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
gguf_set_val_i32(ctx_out.get(), o.key, o.val_i64);
} else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
gguf_set_val_bool(ctx_out.get(), o.key, o.val_bool);
} else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_STR) {
gguf_set_val_str(ctx_out.get(), o.key, o.val_str);
} else {
LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key);
}
}
}
// make a list of weights
std::vector<const llama_model_loader::llama_tensor_weight *> tensors;
tensors.reserve(ml.weights_map.size());
for (const auto & it : ml.weights_map) {
tensors.push_back(&it.second);
}
// keep_split requires that the weights are sorted by split index
if (params->keep_split) {
std::sort(tensors.begin(), tensors.end(), [](const llama_model_loader::llama_tensor_weight * a, const llama_model_loader::llama_tensor_weight * b) {
if (a->idx == b->idx) {
return a->offs < b->offs;
}
return a->idx < b->idx;
});
}
for (const auto * it : tensors) {
const struct ggml_tensor * tensor = it->tensor;
const std::string name = ggml_get_name(tensor);
// TODO: avoid hardcoded tensor names - use the TN_* constants
if (name.find("attn_v.weight") != std::string::npos ||
name.find("attn_qkv.weight") != std::string::npos ||
name.find("attn_kv_b.weight")!= std::string::npos) {
++qs.n_attention_wv;
} else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
qs.has_output = true;
}
}
qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
// sanity checks for models that have attention layers
if (qs.n_attention_wv != 0)
{
const auto & n_head_kv_iter = model.hparams.n_head_kv_arr.begin();
// attention layers have a non-zero number of kv heads
int32_t n_attn_layer = model.hparams.n_layer - std::count(n_head_kv_iter, n_head_kv_iter + model.hparams.n_layer, 0);
if (llama_model_has_encoder(&model)) {
n_attn_layer *= 3;
}
GGML_ASSERT((qs.n_attention_wv == n_attn_layer) && "n_attention_wv is unexpected");
}
size_t total_size_org = 0;
size_t total_size_new = 0;
std::vector<std::thread> workers;
workers.reserve(nthread);
int idx = 0;
std::vector<no_init<uint8_t>> read_data;
std::vector<no_init<uint8_t>> work;
std::vector<no_init<float>> f32_conv_buf;
uint16_t n_split = 1;
// Assume split index is continuous
if (params->keep_split) {
for (const auto * it : tensors) {
n_split = std::max(uint16_t(it->idx + 1), n_split);
}
}
std::vector<gguf_context_ptr> ctx_outs(n_split);
ctx_outs[0] = std::move(ctx_out);
// populate the original tensors so we get an initial meta data
for (const auto * it : tensors) {
uint16_t i_split = params->keep_split ? it->idx : 0;
struct ggml_tensor * tensor = it->tensor;
if (!ctx_outs[i_split]) {
ctx_outs[i_split].reset(gguf_init_empty());
}
gguf_add_tensor(ctx_outs[i_split].get(), tensor);
}
// Set split info if needed
if (n_split > 1) {
for (size_t i = 0; i < ctx_outs.size(); ++i) {
gguf_set_val_u16(ctx_outs[i].get(), ml.llm_kv(LLM_KV_SPLIT_NO).c_str(), i);
gguf_set_val_u16(ctx_outs[i].get(), ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str(), n_split);
gguf_set_val_i32(ctx_outs[i].get(), ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str(), ml.n_tensors);
}
}
int cur_split = -1;
std::ofstream fout;
auto close_ofstream = [&]() {
// Write metadata and close file handler
if (fout.is_open()) {
fout.seekp(0);
std::vector<uint8_t> data(gguf_get_meta_size(ctx_outs[cur_split].get()));
gguf_get_meta_data(ctx_outs[cur_split].get(), data.data());
fout.write((const char *) data.data(), data.size());
fout.close();
}
};
auto new_ofstream = [&](int index) {
cur_split = index;
GGML_ASSERT(ctx_outs[cur_split] && "Find uninitialized gguf_context");
std::string fname = fname_out;
if (params->keep_split) {
std::vector<char> split_path(llama_path_max(), 0);
llama_split_path(split_path.data(), split_path.size(), fname_out.c_str(), cur_split, n_split);
fname = std::string(split_path.data());
}
fout = std::ofstream(fname, std::ios::binary);
fout.exceptions(std::ofstream::failbit); // fail fast on write errors
const size_t meta_size = gguf_get_meta_size(ctx_outs[cur_split].get());
// placeholder for the meta data
::zeros(fout, meta_size);
};
const auto tn = LLM_TN(model.arch);
new_ofstream(0);
for (const auto * it : tensors) {
const auto & weight = *it;
struct ggml_tensor * tensor = weight.tensor;
if (weight.idx != cur_split && params->keep_split) {
close_ofstream();
new_ofstream(weight.idx);
}
const std::string name = ggml_get_name(tensor);
if (!ml.use_mmap) {
if (read_data.size() < ggml_nbytes(tensor)) {
read_data.resize(ggml_nbytes(tensor));
}
tensor->data = read_data.data();
}
ml.load_data_for(tensor);
LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
++idx, ml.n_tensors,
ggml_get_name(tensor),
llama_format_tensor_shape(tensor).c_str(),
ggml_type_name(tensor->type));
// This used to be a regex, but <regex> has an extreme cost to compile times.
bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
// quantize only 2D and 3D tensors (experts)
quantize &= (ggml_n_dims(tensor) >= 2);
// do not quantize norm tensors
quantize &= name.find("_norm.weight") == std::string::npos;
quantize &= params->quantize_output_tensor || name != "output.weight";
quantize &= !params->only_copy;
// do not quantize expert gating tensors
// NOTE: can't use LLM_TN here because the layer number is not known
quantize &= name.find("ffn_gate_inp.weight") == std::string::npos;
// do not quantize positional embeddings and token types (BERT)
quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight");
quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight");
// do not quantize Mamba's small yet 2D weights
// NOTE: can't use LLM_TN here because the layer number is not known
quantize &= name.find("ssm_conv1d.weight") == std::string::npos;
// do not quantize RWKV's time_mix_first tensors
quantize &= name.find("time_mix_first.weight") == std::string::npos;
quantize &= name.find("time_mix_w1.weight") == std::string::npos;
quantize &= name.find("time_mix_w2.weight") == std::string::npos;
quantize &= name.find("time_mix_decay_w1.weight") == std::string::npos;
quantize &= name.find("time_mix_decay_w2.weight") == std::string::npos;
quantize &= name.find("time_mix_lerp_fused.weight") == std::string::npos;
// do not quantize relative position bias (T5)
quantize &= name.find("attn_rel_b.weight") == std::string::npos;
enum ggml_type new_type;
void * new_data;
size_t new_size;
if (quantize) {
new_type = default_type;
// get more optimal quantization type based on the tensor shape, layer, etc.
if (!params->pure && ggml_is_quantized(default_type)) {
new_type = llama_tensor_get_type(qs, new_type, tensor, ftype);
}
if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) {
new_type = params->token_embedding_type;
}
if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) {
new_type = params->output_tensor_type;
}
// If we've decided to quantize to the same type the tensor is already
// in then there's nothing to do.
quantize = tensor->type != new_type;
}
if (!quantize) {
new_type = tensor->type;
new_data = tensor->data;
new_size = ggml_nbytes(tensor);
LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
} else {
const int64_t nelements = ggml_nelements(tensor);
const float * imatrix = nullptr;
if (imatrix_data) {
auto it = imatrix_data->find(tensor->name);
if (it == imatrix_data->end()) {
LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name);
} else {
if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) {
imatrix = it->second.data();
} else {
LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__,
int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name);
// this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix
// this is a significant error and it may be good idea to abort the process if this happens,
// since many people will miss the error and not realize that most of the model is being quantized without an imatrix
// tok_embd should be ignored in this case, since it always causes this warning
if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s",
int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name));
}
}
}
}
if ((new_type == GGML_TYPE_IQ2_XXS ||
new_type == GGML_TYPE_IQ2_XS ||
new_type == GGML_TYPE_IQ2_S ||
new_type == GGML_TYPE_IQ1_S ||
(new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight")) ||
(new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
LLAMA_LOG_ERROR("\n\n============================================================\n");
LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name);
LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n");
LLAMA_LOG_ERROR("============================================================\n\n");
throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name));
}
float * f32_data;
if (tensor->type == GGML_TYPE_F32) {
f32_data = (float *) tensor->data;
} else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
} else {
llama_tensor_dequantize_impl(tensor, f32_conv_buf, workers, nelements, nthread);
f32_data = (float *) f32_conv_buf.data();
}
LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type));
fflush(stdout);
if (work.size() < (size_t)nelements * 4) {
work.resize(nelements * 4); // upper bound on size
}
new_data = work.data();
const int64_t n_per_row = tensor->ne[0];
const int64_t nrows = tensor->ne[1];
static const int64_t min_chunk_size = 32 * 512;
const int64_t chunk_size = (n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row));
const int64_t nelements_matrix = tensor->ne[0] * tensor->ne[1];
const int64_t nchunk = (nelements_matrix + chunk_size - 1)/chunk_size;
const int64_t nthread_use = nthread > 1 ? std::max((int64_t)1, std::min((int64_t)nthread, nchunk)) : 1;
// quantize each expert separately since they have different importance matrices
new_size = 0;
for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) {
const float * f32_data_03 = f32_data + i03 * nelements_matrix;
void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows;
const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr;
new_size += llama_tensor_quantize_impl(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use);
}
LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
}
total_size_org += ggml_nbytes(tensor);
total_size_new += new_size;
// update the gguf meta data as we go
gguf_set_tensor_type(ctx_outs[cur_split].get(), name.c_str(), new_type);
GGML_ASSERT(gguf_get_tensor_size(ctx_outs[cur_split].get(), gguf_find_tensor(ctx_outs[cur_split].get(), name.c_str())) == new_size);
gguf_set_tensor_data(ctx_outs[cur_split].get(), name.c_str(), new_data);
// write tensor data + padding
fout.write((const char *) new_data, new_size);
zeros(fout, GGML_PAD(new_size, align) - new_size);
}
close_ofstream();
LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
if (qs.n_fallback > 0) {
LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) required fallback quantization\n",
__func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
}
}
//
// interface implementation
//
struct llama_model_quantize_params llama_model_quantize_default_params() {
struct llama_model_quantize_params result = {
/*.nthread =*/ 0,
/*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
/*.output_tensor_type =*/ GGML_TYPE_COUNT,
/*.token_embedding_type =*/ GGML_TYPE_COUNT,
/*.allow_requantize =*/ false,
/*.quantize_output_tensor =*/ true,
/*.only_copy =*/ false,
/*.pure =*/ false,
/*.keep_split =*/ false,
/*.imatrix =*/ nullptr,
/*.kv_overrides =*/ nullptr,
};
return result;
}
uint32_t llama_model_quantize(
const char * fname_inp,
const char * fname_out,
const llama_model_quantize_params * params) {
try {
llama_model_quantize_impl(fname_inp, fname_out, params);
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
return 1;
}
return 0;
}

View File

@ -0,0 +1 @@
#pragma once

View File

@ -1,5 +1,6 @@
#include "llama-sampling.h"
#include "llama-impl.h"
#include "llama-vocab.h"
#include "llama-grammar.h"
@ -14,6 +15,118 @@
#include <numeric>
#include <random>
#include <unordered_map>
#include <stdexcept>
// the ring buffer works similarly to std::deque, but with a fixed capacity
template<typename T>
struct ring_buffer {
ring_buffer(size_t cap) : capacity(cap), data(cap) {}
T & front() {
if (sz == 0) {
throw std::runtime_error("ring buffer is empty");
}
return data[first];
}
const T & front() const {
if (sz == 0) {
throw std::runtime_error("ring buffer is empty");
}
return data[first];
}
T & back() {
if (sz == 0) {
throw std::runtime_error("ring buffer is empty");
}
return data[pos];
}
const T & back() const {
if (sz == 0) {
throw std::runtime_error("ring buffer is empty");
}
return data[pos];
}
void push_back(const T & value) {
if (capacity == 0) {
throw std::runtime_error("ring buffer: capacity is zero");
}
if (sz == capacity) {
// advance the start when buffer is full
first = (first + 1) % capacity;
} else {
sz++;
}
data[pos] = value;
pos = (pos + 1) % capacity;
}
T pop_front() {
if (sz == 0) {
throw std::runtime_error("ring buffer is empty");
}
T value = data[first];
first = (first + 1) % capacity;
sz--;
return value;
}
//T & operator[](size_t i) {
// if (i >= sz) {
// throw std::runtime_error("ring buffer: index out of bounds");
// }
// return data[(first + i) % capacity];
//}
//const T & at(size_t i) const {
// if (i >= sz) {
// throw std::runtime_error("ring buffer: index out of bounds");
// }
// return data[(first + i) % capacity];
//}
const T & rat(size_t i) const {
if (i >= sz) {
throw std::runtime_error("ring buffer: index out of bounds");
}
return data[(first + sz - i - 1) % capacity];
}
std::vector<T> to_vector() const {
std::vector<T> result;
result.reserve(sz);
for (size_t i = 0; i < sz; i++) {
result.push_back(data[(first + i) % capacity]);
}
return result;
}
void clear() {
// here only reset the status of the buffer
sz = 0;
first = 0;
pos = 0;
}
bool empty() const {
return sz == 0;
}
size_t size() const {
return sz;
}
size_t capacity = 0;
size_t sz = 0;
size_t first = 0;
size_t pos = 0;
std::vector<T> data;
};
static int llama_sample_dist(llama_token_data_array * cur_p, std::mt19937 & rng) {
// iterator for the probabilities
@ -144,7 +257,7 @@ static void llama_sampler_top_k_impl(llama_token_data_array * cur_p, int32_t k)
for (int i = 0; i < (int)cur_p->size; ++i) {
const float val = cur_p->data[i].logit;
int ib = int(bucket_scale * val + bucket_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
ib = std::max(0, std::min(nbuckets-1, ib));
ib = std::max(0, std::min(nbuckets - 1, ib));
bucket_idx[i] = ib;
++histo[ib];
}
@ -167,13 +280,13 @@ static void llama_sampler_top_k_impl(llama_token_data_array * cur_p, int32_t k)
for (int i = 0; i < (int)cur_p->size; ++i) {
int j = bucket_idx[i];
if (j >= ib) {
*bucket_ptrs[nbuckets-1-j]++ = cur_p->data[i];
*bucket_ptrs[nbuckets - 1 - j]++ = cur_p->data[i];
}
}
ptr = tmp_tokens.data();
int ndone = 0;
for (int j = nbuckets-1; j > ib; --j) {
for (int j = nbuckets - 1; j > ib; --j) {
std::sort(ptr, ptr + histo[j], comp);
ptr += histo[j];
ndone += histo[j];
@ -258,7 +371,10 @@ void llama_sampler_free(struct llama_sampler * smpl) {
llama_token llama_sampler_sample(struct llama_sampler * smpl, struct llama_context * ctx, int32_t idx) {
const auto * logits = llama_get_logits_ith(ctx, idx);
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
const llama_model * model = llama_get_model(ctx);
const llama_vocab * vocab = llama_model_get_vocab(model);
const int n_vocab = llama_vocab_n_tokens(vocab);
// TODO: do not allocate each time
std::vector<llama_token_data> cur;
@ -1317,13 +1433,30 @@ static void llama_sampler_grammar_apply(struct llama_sampler * smpl, llama_token
}
}
// Fwd declare to break reset --> init_impl --> llama_sampler_grammar_i --> reset cycle.
static struct llama_sampler * llama_sampler_init_grammar_impl(
const struct llama_vocab * vocab,
const char * grammar_str,
const char * grammar_root,
bool lazy,
const char ** trigger_words,
size_t num_trigger_words,
const llama_token * trigger_tokens,
size_t num_trigger_tokens);
static void llama_sampler_grammar_reset(struct llama_sampler * smpl) {
auto * ctx = (llama_sampler_grammar *) smpl->ctx;
if (!ctx->grammar) {
return;
}
auto * grammar_new = llama_grammar_init_impl(ctx->grammar->vocab, ctx->grammar_str.c_str(), ctx->grammar_root.c_str());
std::vector<const char *> trigger_words;
for (auto & word : ctx->grammar->trigger_words) {
trigger_words.push_back(word.c_str());
}
auto * grammar_new = llama_grammar_init_impl(ctx->grammar->vocab, ctx->grammar_str.c_str(), ctx->grammar_root.c_str(),
ctx->grammar->lazy, trigger_words.data(), trigger_words.size(),
ctx->grammar->trigger_tokens.data(), ctx->grammar->trigger_tokens.size());
llama_grammar_free_impl(ctx->grammar);
ctx->grammar = grammar_new;
@ -1332,7 +1465,7 @@ static void llama_sampler_grammar_reset(struct llama_sampler * smpl) {
static struct llama_sampler * llama_sampler_grammar_clone(const struct llama_sampler * smpl) {
const auto * ctx = (const llama_sampler_grammar *) smpl->ctx;
auto * result = llama_sampler_init_grammar_impl(*ctx->vocab, nullptr, nullptr);
auto * result = llama_sampler_init_grammar_impl(ctx->vocab, nullptr, nullptr, false, nullptr, 0, nullptr, 0);
// copy the state
{
@ -1368,19 +1501,27 @@ static struct llama_sampler_i llama_sampler_grammar_i = {
/* .free = */ llama_sampler_grammar_free,
};
struct llama_sampler * llama_sampler_init_grammar_impl(const struct llama_vocab & vocab, const char * grammar_str, const char * grammar_root) {
static struct llama_sampler * llama_sampler_init_grammar_impl(
const struct llama_vocab * vocab,
const char * grammar_str,
const char * grammar_root,
bool lazy,
const char ** trigger_words,
size_t num_trigger_words,
const llama_token * trigger_tokens,
size_t num_trigger_tokens) {
auto * ctx = new llama_sampler_grammar;
if (grammar_str != nullptr && grammar_str[0] != '\0') {
*ctx = {
/* .vocab = */ &vocab,
/* .vocab = */ vocab,
/* .grammar_str = */ grammar_str,
/* .grammar_root = */ grammar_root,
/* .grammar = */ llama_grammar_init_impl(&vocab, grammar_str, grammar_root),
/* .grammar = */ llama_grammar_init_impl(vocab, grammar_str, grammar_root, lazy, trigger_words, num_trigger_words, trigger_tokens, num_trigger_tokens),
};
} else {
*ctx = {
/* .vocab = */ &vocab,
/* .vocab = */ vocab,
/* .grammar_str = */ {},
/* .grammar_root = */ {},
/* .grammar = */ nullptr,
@ -1393,6 +1534,24 @@ struct llama_sampler * llama_sampler_init_grammar_impl(const struct llama_vocab
};
}
struct llama_sampler * llama_sampler_init_grammar(
const struct llama_vocab * vocab,
const char * grammar_str,
const char * grammar_root) {
return llama_sampler_init_grammar_impl(vocab, grammar_str, grammar_root, /* lazy= */ false, nullptr, 0, nullptr, 0);
}
struct llama_sampler * llama_sampler_init_grammar_lazy(
const struct llama_vocab * vocab,
const char * grammar_str,
const char * grammar_root,
const char ** trigger_words,
size_t num_trigger_words,
const llama_token * trigger_tokens,
size_t num_trigger_tokens) {
return llama_sampler_init_grammar_impl(vocab, grammar_str, grammar_root, /* lazy= */ true, trigger_words, num_trigger_words, trigger_tokens, num_trigger_tokens);
}
// penalties
struct llama_sampler_penalties {
@ -1550,8 +1709,8 @@ struct llama_sampler_dry {
// Ported from Koboldcpp, original PR: https://github.com/LostRuins/koboldcpp/pull/982 (Original author: pi6am)
static void get_overlapping_token_sequences(const llama_vocab & vocab, const std::string& str, std::unordered_multimap<llama_token, std::vector<llama_token>>& token_sequences, int max_tail_len = -1) {
for (llama_token token_id = 0; token_id < (llama_token)vocab.n_vocab; token_id++) {
std::string word = llama_detokenize(vocab, {token_id}, true);
for (llama_token token_id = 0; token_id < (llama_token) vocab.n_tokens(); token_id++) {
std::string word = vocab.detokenize({token_id}, true);
if (word.find(str) != std::string::npos) {
token_sequences.emplace(token_id, std::vector<llama_token>());
} else {
@ -1568,7 +1727,7 @@ static void get_overlapping_token_sequences(const llama_vocab & vocab, const std
}
}
if (match) {
std::vector<llama_token> tokenization = llama_tokenize_internal(vocab, str.substr(i), false, false);
std::vector<llama_token> tokenization = vocab.tokenize(str.substr(i), false, false);
if (max_tail_len >= 0 && tokenization.size() > (size_t)max_tail_len) {
tokenization.resize(max_tail_len);
}
@ -1719,7 +1878,7 @@ static void llama_sampler_dry_apply(struct llama_sampler * smpl, llama_token_dat
ctx->dry_repeat_count[last - k] = std::min(n, rep_limit);
if (n > 0) {
lt = k;
rt = k+n-1;
rt = k + n - 1;
}
} else {
// If k is inside the current Z-box, consider two cases.
@ -1824,7 +1983,7 @@ static struct llama_sampler * llama_sampler_dry_clone(const struct llama_sampler
llama_vocab dummy_vocab;
// dummy vocab is passed because it is only needed for raw sequence breaker processing, which we have already done and will simply be copying
auto * result = llama_sampler_init_dry_impl(dummy_vocab, ctx->total_context_size, ctx->dry_multiplier, ctx->dry_base, ctx->dry_allowed_length, ctx->dry_penalty_last_n, NULL, 0);
auto * result = llama_sampler_init_dry(&dummy_vocab, ctx->total_context_size, ctx->dry_multiplier, ctx->dry_base, ctx->dry_allowed_length, ctx->dry_penalty_last_n, NULL, 0);
// Copy the state, including the processed breakers
{
@ -1851,7 +2010,7 @@ static struct llama_sampler_i llama_sampler_dry_i = {
/* .free = */ llama_sampler_dry_free,
};
struct llama_sampler * llama_sampler_init_dry_impl(const struct llama_vocab & vocab, int32_t context_size, float dry_multiplier, float dry_base, int32_t dry_allowed_length, int32_t dry_penalty_last_n, const char** seq_breakers, size_t num_breakers) {
struct llama_sampler * llama_sampler_init_dry(const struct llama_vocab * vocab, int32_t context_size, float dry_multiplier, float dry_base, int32_t dry_allowed_length, int32_t dry_penalty_last_n, const char** seq_breakers, size_t num_breakers) {
int32_t effective_dry_penalty_last_n = (dry_penalty_last_n == -1) ? context_size : std::max(dry_penalty_last_n, 0);
std::unordered_multimap<llama_token, std::vector<llama_token>> processed_breakers;
const int MAX_CHAR_LEN = 40;
@ -1878,7 +2037,7 @@ struct llama_sampler * llama_sampler_init_dry_impl(const struct llama_vocab & vo
sequence_break.resize(MAX_CHAR_LEN);
}
get_overlapping_token_sequences(vocab, sequence_break, processed_breakers, MAX_SEQ_LEN);
get_overlapping_token_sequences(*vocab, sequence_break, processed_breakers, MAX_SEQ_LEN);
}
}
@ -1901,7 +2060,7 @@ struct llama_sampler * llama_sampler_init_dry_impl(const struct llama_vocab & vo
// wrapper for test-sampling.cpp
struct llama_sampler * llama_sampler_init_dry_testing(int32_t context_size, float dry_multiplier, float dry_base, int32_t dry_allowed_length, int32_t dry_penalty_last_n, const std::vector<std::vector<llama_token>>& seq_breakers) {
llama_vocab dummy_vocab;
auto * result = llama_sampler_init_dry_impl(dummy_vocab, context_size, dry_multiplier, dry_base, dry_allowed_length, dry_penalty_last_n, NULL, 0);
auto * result = llama_sampler_init_dry(&dummy_vocab, context_size, dry_multiplier, dry_base, dry_allowed_length, dry_penalty_last_n, NULL, 0);
auto * ctx = (llama_sampler_dry *) result->ctx;
// Process the token-based sequence breakers
@ -2040,7 +2199,7 @@ static void llama_sampler_infill_apply(struct llama_sampler * smpl, llama_token_
float p_eog_sum = 0.0f;
for (size_t i = 0; i < cur_p->size; ++i) {
if (llama_token_is_eog_impl(*ctx->vocab, cur_p->data[i].id)) {
if (ctx->vocab->is_eog(cur_p->data[i].id)) {
p_eog_sum += cur_p->data[i].p;
} else {
p_txt_sum += cur_p->data[i].p;
@ -2062,7 +2221,7 @@ static void llama_sampler_infill_apply(struct llama_sampler * smpl, llama_token_
float p_sum = 0.0f;
for (size_t i = 0; i < size_org; ++i) {
if (llama_token_is_eog_impl(*ctx->vocab, cur_p->data[i].id)) {
if (ctx->vocab->is_eog(cur_p->data[i].id)) {
p_sum += cur_p->data[i].p;
cur_p->data[cur_p->size++] = cur_p->data[i];
@ -2090,17 +2249,17 @@ static void llama_sampler_infill_apply(struct llama_sampler * smpl, llama_token_
continue;
}
int len0 = llama_token_to_piece_impl(*ctx->vocab, cur_p->data[i0].id, ctx->buf0.data(), ctx->buf0.size(), 0, false);
int len0 = ctx->vocab->token_to_piece(cur_p->data[i0].id, ctx->buf0.data(), ctx->buf0.size(), 0, false);
if (len0 < 0) {
ctx->buf0.resize(len0);
len0 = llama_token_to_piece_impl(*ctx->vocab, cur_p->data[i0].id, ctx->buf0.data(), ctx->buf0.size(), 0, false);
len0 = ctx->vocab->token_to_piece(cur_p->data[i0].id, ctx->buf0.data(), ctx->buf0.size(), 0, false);
assert(len0 > 0);
}
int len1 = llama_token_to_piece_impl(*ctx->vocab, cur_p->data[i1].id, ctx->buf1.data(), ctx->buf1.size(), 0, false);
int len1 = ctx->vocab->token_to_piece(cur_p->data[i1].id, ctx->buf1.data(), ctx->buf1.size(), 0, false);
if (len1 < 0) {
ctx->buf1.resize(len1);
len1 = llama_token_to_piece_impl(*ctx->vocab, cur_p->data[i1].id, ctx->buf1.data(), ctx->buf1.size(), 0, false);
len1 = ctx->vocab->token_to_piece(cur_p->data[i1].id, ctx->buf1.data(), ctx->buf1.size(), 0, false);
assert(len1 > 0);
}
@ -2135,7 +2294,7 @@ static void llama_sampler_infill_apply(struct llama_sampler * smpl, llama_token_
LOG_DBG_CUR("%s: n_combined = %zu, applying thold = %.3f\n", __func__, n_combined, thold);
for (size_t i = 0; i < size_org; ++i) {
const bool is_eog = llama_token_is_eog_impl(*ctx->vocab, cur_p->data[i].id);
const bool is_eog = ctx->vocab->is_eog(cur_p->data[i].id);
if (cur_p->data[i].p < thold && !is_eog) {
continue;
@ -2156,7 +2315,7 @@ static void llama_sampler_infill_apply(struct llama_sampler * smpl, llama_token_
// if no non-EOG tokens are left -> reduce cur_p to single EOT token
if (n_non_eog == 0) {
cur_p->size = 1;
cur_p->data[0].id = llama_token_eot_impl(*ctx->vocab);
cur_p->data[0].id = ctx->vocab->token_eot();
cur_p->data[0].logit = 1.0f;
return;
@ -2178,7 +2337,7 @@ static void llama_sampler_infill_apply(struct llama_sampler * smpl, llama_token_
LOG_DBG_CUR("%s: applying thold = %.3f\n", __func__, thold);
for (size_t i = 0; i < size_org; ++i) {
const bool is_eog = llama_token_is_eog_impl(*ctx->vocab, cur_p->data[i].id);
const bool is_eog = ctx->vocab->is_eog(cur_p->data[i].id);
if (cur_p->data[i].p < thold && !is_eog) {
continue;
@ -2201,7 +2360,7 @@ static void llama_sampler_infill_apply(struct llama_sampler * smpl, llama_token_
static struct llama_sampler * llama_sampler_infill_clone(const struct llama_sampler * smpl) {
const auto * ctx = (const llama_sampler_infill *) smpl->ctx;
return llama_sampler_init_infill_impl(*ctx->vocab);
return llama_sampler_init_infill(ctx->vocab);
}
static void llama_sampler_infill_free(struct llama_sampler * smpl) {
@ -2217,14 +2376,13 @@ static struct llama_sampler_i llama_sampler_infill_i = {
/* .free = */ llama_sampler_infill_free,
};
struct llama_sampler * llama_sampler_init_infill_impl(
const struct llama_vocab & vocab) {
struct llama_sampler * llama_sampler_init_infill(const struct llama_vocab * vocab) {
return new llama_sampler {
/* .iface = */ &llama_sampler_infill_i,
/* .ctx = */ new llama_sampler_infill {
/* .vocab = */ &vocab,
/* .buf0 = */ std::vector<char>(512),
/* .buf1 = */ std::vector<char>(512),
/* .vocab = */ vocab,
/* .buf0 = */ std::vector<char>(512),
/* .buf1 = */ std::vector<char>(512),
},
};
}

View File

@ -2,7 +2,9 @@
// TODO: rename llama-sampling.h/.cpp to llama-sampler.h/.cpp ?
#include "llama-grammar.h"
#include "llama.h"
#include <vector>
struct llama_vocab;
struct llama_grammar;
@ -21,24 +23,6 @@ struct llama_sampler_chain {
mutable int32_t n_sample;
};
struct llama_sampler * llama_sampler_init_grammar_impl(
const struct llama_vocab & vocab,
const char * grammar_str,
const char * grammar_root);
struct llama_sampler * llama_sampler_init_infill_impl(
const struct llama_vocab & vocab);
struct llama_sampler * llama_sampler_init_dry_impl(
const struct llama_vocab & vocab,
int32_t context_size,
float dry_multiplier,
float dry_base,
int32_t dry_allowed_length,
int32_t dry_penalty_last_n,
const char ** seq_breakers,
size_t num_breakers);
struct llama_sampler * llama_sampler_init_dry_testing(
int32_t context_size,
float dry_multiplier,

File diff suppressed because it is too large Load Diff

View File

@ -1,170 +1,125 @@
#pragma once
#include "llama-impl.h"
#include "llama.h"
#include <string>
#include <vector>
#include <unordered_map>
#include <map>
#include <set>
#include <memory>
struct llm_tokenizer;
struct LLM_KV;
struct llama_model_loader;
struct llama_vocab {
using id = llama_token;
using token = std::string;
using tattr = llama_token_attr;
struct token_data {
token text;
float score;
tattr attr;
std::string text;
float score;
llama_token_attr attr;
};
uint32_t n_vocab = 0; // TODO: not great because has to keep in sync with hparams.n_vocab
enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
enum llama_vocab_pre_type type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
int max_token_len = 0; // used for optimizing longest token search
std::unordered_map<token, id> token_to_id;
std::vector<token_data> id_to_token;
std::vector<id> cache_special_tokens;
std::vector<token> cache_token_to_piece; // llama_token_to_piece(special = true);
std::map<std::pair<std::string, std::string>, int> bpe_ranks;
// default LLaMA special tokens
// TODO: should we set all of these to LLAMA_TOKEN_NULL?
id special_bos_id = 1;
id special_eos_id = 2;
id special_eot_id = LLAMA_TOKEN_NULL;
id special_eom_id = LLAMA_TOKEN_NULL;
id special_unk_id = 0;
id special_sep_id = LLAMA_TOKEN_NULL;
id special_pad_id = LLAMA_TOKEN_NULL;
id special_cls_id = LLAMA_TOKEN_NULL;
id special_mask_id = LLAMA_TOKEN_NULL;
id linefeed_id = 13;
// fim tokens
id special_fim_pre_id = LLAMA_TOKEN_NULL;
id special_fim_suf_id = LLAMA_TOKEN_NULL;
id special_fim_mid_id = LLAMA_TOKEN_NULL;
id special_fim_pad_id = LLAMA_TOKEN_NULL;
id special_fim_rep_id = LLAMA_TOKEN_NULL; // repo
id special_fim_sep_id = LLAMA_TOKEN_NULL; // file separator
// set of all tokens that cause "end of generation"
std::set<id> special_eog_ids;
// tokenizer flags
bool tokenizer_add_space_prefix = false;
bool tokenizer_add_bos = false;
bool tokenizer_add_eos = false;
bool tokenizer_ignore_merges = false;
bool tokenizer_clean_spaces = false; // clean_up_tokenization_spaces
bool tokenizer_remove_extra_whitespaces = false;
bool tokenizer_escape_whitespaces = true;
bool tokenizer_treat_whitespace_as_suffix = false;
std::vector<char> precompiled_charsmap;
llm_tokenizer * tokenizer = nullptr;
llama_vocab() = default;
llama_vocab();
~llama_vocab();
void load(llama_model_loader & ml, const LLM_KV & kv);
enum llama_vocab_type get_type() const;
enum llama_vocab_pre_type get_pre_type() const;
uint32_t n_tokens() const;
uint32_t n_token_types() const;
std::string type_name() const;
bool is_normal (llama_token id) const;
bool is_unknown (llama_token id) const;
bool is_control (llama_token id) const;
bool is_byte (llama_token id) const;
bool is_user_defined(llama_token id) const;
bool is_unused (llama_token id) const;
bool is_eog (llama_token id) const;
uint8_t token_to_byte(llama_token id) const;
llama_token byte_to_token(uint8_t ch) const;
llama_token text_to_token(const std::string & text) const;
const token_data & get_token_data(llama_token id) const;
const char * token_get_text (llama_token id) const;
float token_get_score(llama_token id) const;
llama_token_attr token_get_attr (llama_token id) const;
llama_token token_bos() const;
llama_token token_eos() const;
llama_token token_eot() const;
llama_token token_eom() const;
llama_token token_unk() const;
llama_token token_sep() const;
llama_token token_nl () const;
llama_token token_pad() const;
llama_token token_prefix() const;
llama_token token_middle() const;
llama_token token_suffix() const;
llama_token token_fim_pre() const;
llama_token token_fim_suf() const;
llama_token token_fim_mid() const;
llama_token token_fim_pad() const;
llama_token token_fim_rep() const;
llama_token token_fim_sep() const;
bool get_add_space_prefix () const;
bool get_add_bos () const;
bool get_add_eos () const;
bool get_ignore_merges () const;
bool get_clean_spaces () const;
bool get_remove_extra_whitespaces () const;
bool get_escape_whitespaces () const;
bool get_treat_whitespace_as_suffix() const;
int max_token_len() const;
int find_bpe_rank(const std::string & token_left, const std::string & token_right) const;
void init_tokenizer();
int32_t tokenize(
const char * text,
int32_t text_len,
llama_token * tokens,
int32_t n_tokens_max,
bool add_special,
bool parse_special) const;
std::vector<llama_token> tokenize(
const std::string & raw_text,
bool add_special,
bool parse_special = false) const;
// does not write null-terminator to buf
int32_t token_to_piece(
llama_token token,
char * buf,
int32_t length,
int32_t lstrip,
bool special) const;
// use cached data
const std::string & token_to_piece(llama_token token) const;
int32_t detokenize(
const llama_token * tokens,
int32_t n_tokens,
char * text,
int32_t text_len_max,
bool remove_special,
bool unparse_special) const;
std::string detokenize(
const std::vector<llama_token> & tokens,
bool special) const;
void print_info() const;
private:
struct impl;
std::unique_ptr<impl> pimpl;
};
//
// internal API
//
// TODO: rename to llama_tokenize_impl
// TODO: This should probably be in llama.h
std::vector<llama_vocab::id> llama_tokenize_internal(
const llama_vocab & vocab,
std::string raw_text,
bool add_special,
bool parse_special = false);
// TODO: move the API below as member functions of llama_vocab
llama_token llama_byte_to_token_impl(const llama_vocab & vocab, uint8_t ch);
const char * llama_token_get_text_impl(const struct llama_vocab & vocab, llama_token token);
float llama_token_get_score_impl(const struct llama_vocab & vocab, llama_token token);
llama_token_attr llama_token_get_attr_impl(const struct llama_vocab & vocab, llama_token token);
bool llama_token_is_eog_impl(const struct llama_vocab & vocab, llama_token token);
bool llama_token_is_control_impl(const struct llama_vocab & vocab, llama_token token);
llama_token llama_token_bos_impl(const struct llama_vocab & vocab);
llama_token llama_token_eos_impl(const struct llama_vocab & vocab);
llama_token llama_token_eot_impl(const struct llama_vocab & vocab);
llama_token llama_token_eom_impl(const struct llama_vocab & vocab);
llama_token llama_token_cls_impl(const struct llama_vocab & vocab);
llama_token llama_token_sep_impl(const struct llama_vocab & vocab);
llama_token llama_token_nl_impl (const struct llama_vocab & vocab);
llama_token llama_token_pad_impl(const struct llama_vocab & vocab);
llama_token llama_token_prefix_impl(const struct llama_vocab & vocab);
llama_token llama_token_middle_impl(const struct llama_vocab & vocab);
llama_token llama_token_suffix_impl(const struct llama_vocab & vocab);
llama_token llama_token_fim_pre_impl(const struct llama_vocab & vocab);
llama_token llama_token_fim_suf_impl(const struct llama_vocab & vocab);
llama_token llama_token_fim_mid_impl(const struct llama_vocab & vocab);
llama_token llama_token_fim_pad_impl(const struct llama_vocab & vocab);
llama_token llama_token_fim_rep_impl(const struct llama_vocab & vocab);
llama_token llama_token_fim_sep_impl(const struct llama_vocab & vocab);
bool llama_add_bos_token_impl(const struct llama_vocab & vocab);
bool llama_add_eos_token_impl(const struct llama_vocab & vocab);
int32_t llama_tokenize_impl(
const struct llama_vocab & vocab,
const char * text,
int32_t text_len,
llama_token * tokens,
int32_t n_tokens_max,
bool add_special,
bool parse_special);
// does not write null-terminator to buf
int32_t llama_token_to_piece_impl(
const struct llama_vocab & vocab,
llama_token token,
char * buf,
int32_t length,
int32_t lstrip,
bool special);
// check if token0 is contained as a prefix in token1
bool llama_token_is_prefix_impl(
const struct llama_vocab & vocab,
llama_token token0,
llama_token token1);
int32_t llama_detokenize_impl(
const struct llama_vocab & vocab,
const llama_token * tokens,
int32_t n_tokens,
char * text,
int32_t text_len_max,
bool remove_special,
bool unparse_special);
std::string llama_detokenize(
const struct llama_vocab & vocab,
const std::vector<llama_token> & tokens,
bool special);

File diff suppressed because it is too large Load Diff

View File

@ -34,7 +34,6 @@
#define LLAMA_DEFAULT_SEED 0xFFFFFFFF
// TODO: use everywhere in the implementation
#define LLAMA_TOKEN_NULL -1
#define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
@ -57,7 +56,7 @@ extern "C" {
// TODO: show sample usage
//
// struct llama_vocab; // TODO: add in the future
struct llama_vocab;
struct llama_model;
struct llama_context;
struct llama_sampler;
@ -105,6 +104,7 @@ extern "C" {
LLAMA_VOCAB_PRE_TYPE_EXAONE = 25,
LLAMA_VOCAB_PRE_TYPE_CHAMELEON = 26,
LLAMA_VOCAB_PRE_TYPE_MINERVA = 27,
LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM = 28,
};
enum llama_rope_type {
@ -288,9 +288,6 @@ extern "C" {
// proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
const float * tensor_split;
// comma separated list of RPC servers to use for offloading
const char * rpc_servers;
// Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
// If the provided progress_callback returns true, model loading continues.
// If it returns false, model loading is immediately aborted.
@ -385,7 +382,7 @@ extern "C" {
} llama_chat_message;
// lora adapter
struct llama_lora_adapter;
struct llama_adapter_lora;
// Helpers for getting default parameters
// TODO: update API to start accepting pointers to params structs (https://github.com/ggerganov/llama.cpp/discussions/9172)
@ -399,30 +396,53 @@ extern "C" {
// Call once at the start of the program
LLAMA_API void llama_backend_init(void);
// Call once at the end of the program - currently only used for MPI
LLAMA_API void llama_backend_free(void);
//optional:
LLAMA_API void llama_numa_init(enum ggml_numa_strategy numa);
// Optional: an auto threadpool gets created in ggml if not passed explicitly
LLAMA_API void llama_attach_threadpool(
struct llama_context * ctx,
ggml_threadpool_t threadpool,
ggml_threadpool_t threadpool_batch);
struct llama_context * ctx,
ggml_threadpool_t threadpool,
ggml_threadpool_t threadpool_batch);
LLAMA_API void llama_detach_threadpool(struct llama_context * ctx);
// Call once at the end of the program - currently only used for MPI
LLAMA_API void llama_backend_free(void);
DEPRECATED(LLAMA_API struct llama_model * llama_load_model_from_file(
const char * path_model,
struct llama_model_params params),
"use llama_model_load_from_file instead");
LLAMA_API struct llama_model * llama_load_model_from_file(
// Load the model from a file
// If the file is split into multiple parts, the file name must follow this pattern: <name>-%05d-of-%05d.gguf
// If the split file name does not follow this pattern, use llama_model_load_from_splits
LLAMA_API struct llama_model * llama_model_load_from_file(
const char * path_model,
struct llama_model_params params);
LLAMA_API void llama_free_model(struct llama_model * model);
// Load the model from multiple splits (support custom naming scheme)
// The paths must be in the correct order
LLAMA_API struct llama_model * llama_model_load_from_splits(
const char ** paths,
size_t n_paths,
struct llama_model_params params);
// TODO: rename to llama_init_from_model
LLAMA_API struct llama_context * llama_new_context_with_model(
DEPRECATED(LLAMA_API void llama_free_model(struct llama_model * model),
"use llama_model_free instead");
LLAMA_API void llama_model_free(struct llama_model * model);
LLAMA_API struct llama_context * llama_init_from_model(
struct llama_model * model,
struct llama_context_params params);
DEPRECATED(LLAMA_API struct llama_context * llama_new_context_with_model(
struct llama_model * model,
struct llama_context_params params),
"use llama_init_from_model instead");
// Frees all allocated memory
LLAMA_API void llama_free(struct llama_context * ctx);
@ -440,20 +460,30 @@ extern "C" {
LLAMA_API uint32_t llama_n_ubatch (const struct llama_context * ctx);
LLAMA_API uint32_t llama_n_seq_max (const struct llama_context * ctx);
LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
LLAMA_API int32_t llama_n_layer (const struct llama_model * model);
LLAMA_API int32_t llama_n_head (const struct llama_model * model);
DEPRECATED(LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model), "use llama_model_n_ctx_train instead");
DEPRECATED(LLAMA_API int32_t llama_n_embd (const struct llama_model * model), "use llama_model_n_embd instead");
DEPRECATED(LLAMA_API int32_t llama_n_layer (const struct llama_model * model), "use llama_model_n_layer instead");
DEPRECATED(LLAMA_API int32_t llama_n_head (const struct llama_model * model), "use llama_model_n_head instead");
LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
DEPRECATED(LLAMA_API int32_t llama_n_vocab (const struct llama_vocab * vocab), "use llama_vocab_n_tokens instead");
LLAMA_API enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx);
LLAMA_API enum llama_vocab_type llama_vocab_type (const struct llama_model * model);
LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);
LLAMA_API const struct llama_model * llama_get_model (const struct llama_context * ctx);
LLAMA_API enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx);
LLAMA_API const struct llama_vocab * llama_model_get_vocab(const struct llama_model * model);
LLAMA_API enum llama_rope_type llama_model_rope_type(const struct llama_model * model);
LLAMA_API int32_t llama_model_n_ctx_train(const struct llama_model * model);
LLAMA_API int32_t llama_model_n_embd (const struct llama_model * model);
LLAMA_API int32_t llama_model_n_layer (const struct llama_model * model);
LLAMA_API int32_t llama_model_n_head (const struct llama_model * model);
// Get the model's RoPE frequency scaling factor
LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
LLAMA_API float llama_model_rope_freq_scale_train(const struct llama_model * model);
LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_vocab * vocab);
LLAMA_API int32_t llama_vocab_n_tokens(const struct llama_vocab * vocab);
// Functions to access the model's GGUF metadata scalar values
// - The functions return the length of the string on success, or -1 on failure
@ -479,12 +509,13 @@ extern "C" {
// Returns the total size of all the tensors in the model in bytes
LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
// Get the default chat template. Returns nullptr if not available
// If name is NULL, returns the default chat template
LLAMA_API const char * llama_model_chat_template(const struct llama_model * model, const char * name);
// Returns the total number of parameters in the model
LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
// Get a llama model tensor
LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);
// Returns true if the model contains an encoder that requires llama_encode() call
LLAMA_API bool llama_model_has_encoder(const struct llama_model * model);
@ -504,32 +535,36 @@ extern "C" {
const char * fname_out,
const llama_model_quantize_params * params);
//
// Adapters
//
// Load a LoRA adapter from file
// The loaded adapter will be associated to the given model, and will be free when the model is deleted
LLAMA_API struct llama_lora_adapter * llama_lora_adapter_init(
LLAMA_API struct llama_adapter_lora * llama_adapter_lora_init(
struct llama_model * model,
const char * path_lora);
// Manually free a LoRA adapter
// Note: loaded adapters will be free when the associated model is deleted
LLAMA_API void llama_adapter_lora_free(struct llama_adapter_lora * adapter);
// The following functions operate on a llama_context, hence the naming: llama_verb_...
// Add a loaded LoRA adapter to given context
// This will not modify model's weight
LLAMA_API int32_t llama_lora_adapter_set(
LLAMA_API int32_t llama_set_adapter_lora(
struct llama_context * ctx,
struct llama_lora_adapter * adapter,
struct llama_adapter_lora * adapter,
float scale);
// Remove a specific LoRA adapter from given context
// Return -1 if the adapter is not present in the context
LLAMA_API int32_t llama_lora_adapter_remove(
LLAMA_API int32_t llama_rm_adapter_lora(
struct llama_context * ctx,
struct llama_lora_adapter * adapter);
struct llama_adapter_lora * adapter);
// Remove all LoRA adapters from given context
LLAMA_API void llama_lora_adapter_clear(
struct llama_context * ctx);
// Manually free a LoRA adapter
// Note: loaded adapters will be free when the associated model is deleted
LLAMA_API void llama_lora_adapter_free(struct llama_lora_adapter * adapter);
LLAMA_API void llama_clear_adapter_lora(struct llama_context * ctx);
// Apply a loaded control vector to a llama_context, or if data is NULL, clear
// the currently loaded vector.
@ -537,8 +572,8 @@ extern "C" {
// to an n_embd x n_layers buffer starting from layer 1.
// il_start and il_end are the layer range the vector should apply to (both inclusive)
// See llama_control_vector_load in common to load a control vector.
LLAMA_API int32_t llama_control_vector_apply(
struct llama_context * lctx,
LLAMA_API int32_t llama_apply_adapter_cvec(
struct llama_context * ctx,
const float * data,
size_t len,
int32_t n_embd,
@ -549,6 +584,8 @@ extern "C" {
// KV cache
//
// TODO: remove llama_kv_cache_view_* API
// Information associated with an individual cell in the KV cache view.
struct llama_kv_cache_view_cell {
// The position for this cell. Takes KV cache shifts into account.
@ -595,8 +632,11 @@ extern "C" {
LLAMA_API void llama_kv_cache_view_free(struct llama_kv_cache_view * view);
// Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes)
// TODO: change signature to llama_kv_cache_view_update(struct llama_kv_cache_view * view, const struct llama_context * ctx)
LLAMA_API void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view);
///
// Returns the number of tokens in the KV cache (slow, use only for debug)
// If a KV cell has multiple sequences assigned to it, it will be counted multiple times
LLAMA_API int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx);
@ -666,6 +706,9 @@ extern "C" {
struct llama_context * ctx,
llama_seq_id seq_id);
// TODO: the llama_kv_cache_defrag and llama_kv_cache_update API tightly couples llama_context with llama_kv_cache
// how to avoid this?
// Defragment the KV cache
// This will be applied:
// - lazily on next llama_decode()
@ -886,41 +929,60 @@ extern "C" {
// Vocab
//
LLAMA_API const char * llama_token_get_text(const struct llama_model * model, llama_token token);
LLAMA_API const char * llama_vocab_get_text(const struct llama_vocab * vocab, llama_token token);
LLAMA_API float llama_token_get_score(const struct llama_model * model, llama_token token);
LLAMA_API float llama_vocab_get_score(const struct llama_vocab * vocab, llama_token token);
LLAMA_API enum llama_token_attr llama_token_get_attr(const struct llama_model * model, llama_token token);
LLAMA_API enum llama_token_attr llama_vocab_get_attr(const struct llama_vocab * vocab, llama_token token);
// Check if the token is supposed to end generation (end-of-generation, eg. EOS, EOT, etc.)
LLAMA_API bool llama_token_is_eog(const struct llama_model * model, llama_token token);
LLAMA_API bool llama_vocab_is_eog(const struct llama_vocab * vocab, llama_token token);
// Identify if Token Id is a control token or a render-able token
LLAMA_API bool llama_token_is_control(const struct llama_model * model, llama_token token);
LLAMA_API bool llama_vocab_is_control(const struct llama_vocab * vocab, llama_token token);
// Special tokens
LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
LLAMA_API llama_token llama_token_eot(const struct llama_model * model); // end-of-turn
LLAMA_API llama_token llama_token_cls(const struct llama_model * model); // classification
LLAMA_API llama_token llama_token_sep(const struct llama_model * model); // sentence separator
LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
LLAMA_API llama_token llama_token_pad(const struct llama_model * model); // padding
LLAMA_API llama_token llama_vocab_bos(const struct llama_vocab * vocab); // beginning-of-sentence
LLAMA_API llama_token llama_vocab_eos(const struct llama_vocab * vocab); // end-of-sentence
LLAMA_API llama_token llama_vocab_eot(const struct llama_vocab * vocab); // end-of-turn
LLAMA_API llama_token llama_vocab_sep(const struct llama_vocab * vocab); // sentence separator
LLAMA_API llama_token llama_vocab_nl (const struct llama_vocab * vocab); // next-line
LLAMA_API llama_token llama_vocab_pad(const struct llama_vocab * vocab); // padding
LLAMA_API bool llama_add_bos_token(const struct llama_model * model);
LLAMA_API bool llama_add_eos_token(const struct llama_model * model);
LLAMA_API bool llama_vocab_get_add_bos(const struct llama_vocab * vocab);
LLAMA_API bool llama_vocab_get_add_eos(const struct llama_vocab * vocab);
// infill tokens
DEPRECATED(LLAMA_API llama_token llama_token_prefix(const struct llama_model * model), "use llama_token_fim_pre instead");
DEPRECATED(LLAMA_API llama_token llama_token_middle(const struct llama_model * model), "use llama_token_fim_mid instead");
DEPRECATED(LLAMA_API llama_token llama_token_suffix(const struct llama_model * model), "use llama_token_fim_suf instead");
LLAMA_API llama_token llama_vocab_fim_pre(const struct llama_vocab * vocab);
LLAMA_API llama_token llama_vocab_fim_suf(const struct llama_vocab * vocab);
LLAMA_API llama_token llama_vocab_fim_mid(const struct llama_vocab * vocab);
LLAMA_API llama_token llama_vocab_fim_pad(const struct llama_vocab * vocab);
LLAMA_API llama_token llama_vocab_fim_rep(const struct llama_vocab * vocab);
LLAMA_API llama_token llama_vocab_fim_sep(const struct llama_vocab * vocab);
LLAMA_API llama_token llama_token_fim_pre(const struct llama_model * model);
LLAMA_API llama_token llama_token_fim_suf(const struct llama_model * model);
LLAMA_API llama_token llama_token_fim_mid(const struct llama_model * model);
LLAMA_API llama_token llama_token_fim_pad(const struct llama_model * model);
LLAMA_API llama_token llama_token_fim_rep(const struct llama_model * model);
LLAMA_API llama_token llama_token_fim_sep(const struct llama_model * model);
DEPRECATED(LLAMA_API const char * llama_token_get_text(const struct llama_vocab * vocab, llama_token token), "use llama_vocab_get_text instead");
DEPRECATED(LLAMA_API float llama_token_get_score(const struct llama_vocab * vocab, llama_token token), "use llama_vocab_get_score instead");
DEPRECATED(LLAMA_API enum llama_token_attr llama_token_get_attr(const struct llama_vocab * vocab, llama_token token), "use llama_vocab_get_attr instead");
DEPRECATED(LLAMA_API bool llama_token_is_eog(const struct llama_vocab * vocab, llama_token token), "use llama_vocab_is_eog instead");
DEPRECATED(LLAMA_API bool llama_token_is_control(const struct llama_vocab * vocab, llama_token token), "use llama_vocab_is_control instead");
DEPRECATED(LLAMA_API llama_token llama_token_bos(const struct llama_vocab * vocab), "use llama_vocab_bos instead");
DEPRECATED(LLAMA_API llama_token llama_token_eos(const struct llama_vocab * vocab), "use llama_vocab_eos instead");
DEPRECATED(LLAMA_API llama_token llama_token_eot(const struct llama_vocab * vocab), "use llama_vocab_eot instead");
DEPRECATED(LLAMA_API llama_token llama_token_cls(const struct llama_vocab * vocab), "use llama_vocab_cls instead");
DEPRECATED(LLAMA_API llama_token llama_token_sep(const struct llama_vocab * vocab), "use llama_vocab_sep instead");
DEPRECATED(LLAMA_API llama_token llama_token_nl (const struct llama_vocab * vocab), "use llama_vocab_nl instead");
DEPRECATED(LLAMA_API llama_token llama_token_pad(const struct llama_vocab * vocab), "use llama_vocab_pad instead");
DEPRECATED(LLAMA_API bool llama_add_bos_token(const struct llama_vocab * vocab), "use llama_vocab_get_add_bos instead");
DEPRECATED(LLAMA_API bool llama_add_eos_token(const struct llama_vocab * vocab), "use llama_vocab_get_add_eos instead");
DEPRECATED(LLAMA_API llama_token llama_token_fim_pre(const struct llama_vocab * vocab), "use llama_vocab_fim_pre instead");
DEPRECATED(LLAMA_API llama_token llama_token_fim_suf(const struct llama_vocab * vocab), "use llama_vocab_fim_suf instead");
DEPRECATED(LLAMA_API llama_token llama_token_fim_mid(const struct llama_vocab * vocab), "use llama_vocab_fim_mid instead");
DEPRECATED(LLAMA_API llama_token llama_token_fim_pad(const struct llama_vocab * vocab), "use llama_vocab_fim_pad instead");
DEPRECATED(LLAMA_API llama_token llama_token_fim_rep(const struct llama_vocab * vocab), "use llama_vocab_fim_rep instead");
DEPRECATED(LLAMA_API llama_token llama_token_fim_sep(const struct llama_vocab * vocab), "use llama_vocab_fim_sep instead");
// CLS is equivalent to BOS
DEPRECATED(LLAMA_API llama_token llama_vocab_cls(const struct llama_vocab * vocab), // classification
"use llama_vocab_bos instead");
//
// Tokenization
@ -936,7 +998,7 @@ extern "C" {
/// @param parse_special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated
/// as plaintext. Does not insert a leading space.
LLAMA_API int32_t llama_tokenize(
const struct llama_model * model,
const struct llama_vocab * vocab,
const char * text,
int32_t text_len,
llama_token * tokens,
@ -950,7 +1012,7 @@ extern "C" {
// User can skip up to 'lstrip' leading spaces before copying (useful when encoding/decoding multiple tokens with 'add_space_prefix')
// @param special If true, special tokens are rendered in the output.
LLAMA_API int32_t llama_token_to_piece(
const struct llama_model * model,
const struct llama_vocab * vocab,
llama_token token,
char * buf,
int32_t length,
@ -964,7 +1026,7 @@ extern "C" {
/// @param remove_special Allow to remove BOS and EOS tokens if model is configured to do so.
/// @param unparse_special If true, special tokens are rendered in the output.
LLAMA_API int32_t llama_detokenize(
const struct llama_model * model,
const struct llama_vocab * vocab,
const llama_token * tokens,
int32_t n_tokens,
char * text,
@ -987,7 +1049,6 @@ extern "C" {
/// @param length The size of the allocated buffer
/// @return The total number of bytes of the formatted prompt. If is it larger than the size of buffer, you may need to re-alloc it and then re-apply the template.
LLAMA_API int32_t llama_chat_apply_template(
const struct llama_model * model,
const char * tmpl,
const struct llama_chat_message * chat,
size_t n_msg,
@ -1035,7 +1096,6 @@ extern "C" {
// llama_sampler_free(smpl);
//
// TODO: In the future, llama_sampler will be utilized to offload the sampling to the backends (e.g. GPU).
// TODO: in the future, the entire sampling API that uses llama_model should start using llama_vocab
//
typedef void * llama_sampler_context_t;
@ -1135,10 +1195,22 @@ extern "C" {
float eta);
LLAMA_API struct llama_sampler * llama_sampler_init_grammar(
const struct llama_model * model,
const struct llama_vocab * vocab,
const char * grammar_str,
const char * grammar_root);
/// @details Lazy grammar sampler, introduced in https://github.com/ggerganov/llama.cpp/pull/9639
/// @param trigger_words A list of words that will trigger the grammar sampler. This may be updated to a loose regex syntax (w/ ^) in a near future.
/// @param trigger_tokens A list of tokens that will trigger the grammar sampler.
LLAMA_API struct llama_sampler * llama_sampler_init_grammar_lazy(
const struct llama_vocab * vocab,
const char * grammar_str,
const char * grammar_root,
const char ** trigger_words,
size_t num_trigger_words,
const llama_token * trigger_tokens,
size_t num_trigger_tokens);
/// NOTE: Avoid using on the full vocabulary as searching for repeated tokens can become slow. For example, apply top-k or top-p sampling first.
LLAMA_API struct llama_sampler * llama_sampler_init_penalties(
int32_t penalty_last_n, // last n tokens to penalize (0 = disable penalty, -1 = context size)
@ -1147,8 +1219,9 @@ extern "C" {
float penalty_present); // 0.0 = disabled
/// @details DRY sampler, designed by p-e-w, as described in: https://github.com/oobabooga/text-generation-webui/pull/5677, porting Koboldcpp implementation authored by pi6am: https://github.com/LostRuins/koboldcpp/pull/982
LLAMA_API struct llama_sampler * llama_sampler_init_dry(
const struct llama_model * model,
LLAMA_API struct llama_sampler * llama_sampler_init_dry(
const struct llama_vocab * vocab,
int32_t n_ctx_train,
float dry_multiplier,
float dry_base,
int32_t dry_allowed_length,
@ -1182,7 +1255,7 @@ extern "C" {
// 3. discard non-EOG tokens with low prob
// 4. if no tokens are left -> pick EOT
//
LLAMA_API struct llama_sampler * llama_sampler_init_infill(const struct llama_model * model);
LLAMA_API struct llama_sampler * llama_sampler_init_infill(const struct llama_vocab * vocab);
// Returns the seed used by the sampler if applicable, LLAMA_DEFAULT_SEED otherwise
LLAMA_API uint32_t llama_sampler_get_seed(const struct llama_sampler * smpl);

View File

@ -3,29 +3,31 @@
#include "common-sdl.h"
#include "common.h"
#include "common-whisper.h"
#include "whisper.h"
#include "llama.h"
#include <cassert>
#include <chrono>
#include <cstdio>
#include <fstream>
#include <regex>
#include <regex>
#include <sstream>
#include <string>
#include <thread>
#include <vector>
#include <regex>
#include <sstream>
static std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::string & text, bool add_bos) {
auto * model = llama_get_model(ctx);
const llama_model * model = llama_get_model(ctx);
const llama_vocab * vocab = llama_model_get_vocab(model);
// upper limit for the number of tokens
int n_tokens = text.length() + add_bos;
std::vector<llama_token> result(n_tokens);
n_tokens = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos, false);
n_tokens = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_bos, false);
if (n_tokens < 0) {
result.resize(-n_tokens);
int check = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos, false);
int check = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_bos, false);
GGML_ASSERT(check == -n_tokens);
} else {
result.resize(n_tokens);
@ -34,11 +36,14 @@ static std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const
}
static std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) {
const llama_model * model = llama_get_model(ctx);
const llama_vocab * vocab = llama_model_get_vocab(model);
std::vector<char> result(8, 0);
const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), 0, false);
const int n_tokens = llama_token_to_piece(vocab, token, result.data(), result.size(), 0, false);
if (n_tokens < 0) {
result.resize(-n_tokens);
int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), 0, false);
int check = llama_token_to_piece(vocab, token, result.data(), result.size(), 0, false);
GGML_ASSERT(check == -n_tokens);
} else {
result.resize(n_tokens);
@ -304,12 +309,14 @@ int main(int argc, char ** argv) {
lmparams.n_gpu_layers = params.n_gpu_layers;
}
struct llama_model * model_llama = llama_load_model_from_file(params.model_llama.c_str(), lmparams);
struct llama_model * model_llama = llama_model_load_from_file(params.model_llama.c_str(), lmparams);
if (!model_llama) {
fprintf(stderr, "No llama.cpp model specified. Please provide using -ml <modelfile>\n");
return 1;
}
const llama_vocab * vocab_llama = llama_model_get_vocab(model_llama);
llama_context_params lcparams = llama_context_default_params();
// tune these to your liking
@ -317,7 +324,7 @@ int main(int argc, char ** argv) {
lcparams.n_threads = params.n_threads;
lcparams.flash_attn = params.flash_attn;
struct llama_context * ctx_llama = llama_new_context_with_model(model_llama, lcparams);
struct llama_context * ctx_llama = llama_init_from_model(model_llama, lcparams);
// print some info about the processing
{
@ -727,7 +734,7 @@ int main(int argc, char ** argv) {
const llama_token id = llama_sampler_sample(smpl, ctx_llama, -1);
if (id != llama_token_eos(model_llama)) {
if (id != llama_vocab_eos(vocab_llama)) {
// add it to the context
embd.push_back(id);

View File

@ -7,18 +7,17 @@
#include <algorithm>
#include <cassert>
#include <codecvt>
#include <cstddef>
#include <cstdint>
#include <locale>
#include <map>
#include <regex>
#include <stdexcept>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#include <locale>
#include <codecvt>
size_t unicode_len_utf8(char src) {
const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
@ -667,18 +666,24 @@ std::vector<std::string> unicode_regex_split(const std::string & text, const std
{ "\\p{N}", unicode_cpt_flags::NUMBER },
{ "\\p{L}", unicode_cpt_flags::LETTER },
{ "\\p{P}", unicode_cpt_flags::PUNCTUATION },
{ "\\p{M}", unicode_cpt_flags::ACCENT_MARK },
{ "\\p{S}", unicode_cpt_flags::SYMBOL },
};
static const std::map<int, int> k_ucat_cpt = {
{ unicode_cpt_flags::NUMBER, 0xD1 },
{ unicode_cpt_flags::LETTER, 0xD2 },
{ unicode_cpt_flags::PUNCTUATION, 0xD3 },
{ unicode_cpt_flags::ACCENT_MARK, 0xD4 },
{ unicode_cpt_flags::SYMBOL, 0xD5 },
};
static const std::map<int, std::string> k_ucat_map = {
{ unicode_cpt_flags::NUMBER, "\x30-\x39" }, // 0-9
{ unicode_cpt_flags::LETTER, "\x41-\x5A\x61-\x7A" }, // A-Za-z
{ unicode_cpt_flags::PUNCTUATION, "\x21-\x23\x25-\x2A\x2C-\x2F\x3A-\x3B\x3F-\x40\\\x5B-\\\x5D\x5F\\\x7B\\\x7D" }, // !-#%-*,-/:-;?-@\[-\]_\{\}
{ unicode_cpt_flags::ACCENT_MARK, "" }, // no sub-128 codepoints
{ unicode_cpt_flags::SYMBOL, "\\\x24\\\x2B\x3C-\x3E\x5E\x60\\\x7C" }, // $+<=>^`|
};
// compute collapsed codepoints only if needed by at least one regex

View File

@ -2,7 +2,7 @@
#include "Chessboard.h"
#include "grammar-parser.h"
#include "common.h"
#include <thread>
#include <chrono>
WChess::WChess(whisper_context * ctx,
const whisper_full_params & wparams,

View File

@ -7,9 +7,7 @@
objects = {
/* Begin PBXBuildFile section */
18133C802C64E342005CEAAC /* ggml-aarch64.c in Sources */ = {isa = PBXBuildFile; fileRef = 18133C7F2C64E342005CEAAC /* ggml-aarch64.c */; };
1844471A2AB211A2007D6BFE /* ggml-alloc.c in Sources */ = {isa = PBXBuildFile; fileRef = 184447182AB211A2007D6BFE /* ggml-alloc.c */; };
1844471C2AB21655007D6BFE /* ggml-metal.m in Sources */ = {isa = PBXBuildFile; fileRef = 1844471B2AB21655007D6BFE /* ggml-metal.m */; settings = {COMPILER_FLAGS = "-framework Foundation -framework Metal -framework MetalKit -fno-objc-arc"; }; };
18627C7B29052BDF00BD2A04 /* AppDelegate.m in Sources */ = {isa = PBXBuildFile; fileRef = 18627C7A29052BDF00BD2A04 /* AppDelegate.m */; };
18627C7E29052BDF00BD2A04 /* SceneDelegate.m in Sources */ = {isa = PBXBuildFile; fileRef = 18627C7D29052BDF00BD2A04 /* SceneDelegate.m */; };
18627C8129052BDF00BD2A04 /* ViewController.m in Sources */ = {isa = PBXBuildFile; fileRef = 18627C8029052BDF00BD2A04 /* ViewController.m */; };
@ -20,16 +18,16 @@
18627C9429052C4900BD2A04 /* whisper.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 18627C9329052C4900BD2A04 /* whisper.cpp */; settings = {COMPILER_FLAGS = "-DWHISPER_USE_COREML -DWHISPER_COREML_ALLOW_FALLBACK -DGGML_USE_METAL"; }; };
18627C9629052C5800BD2A04 /* ggml.c in Sources */ = {isa = PBXBuildFile; fileRef = 18627C9529052C5800BD2A04 /* ggml.c */; settings = {COMPILER_FLAGS = "-DGGML_USE_ACCELERATE -DGGML_USE_METAL"; }; };
18627C9B29052CFF00BD2A04 /* ggml-base.en.bin in Resources */ = {isa = PBXBuildFile; fileRef = 18627C9A29052CFF00BD2A04 /* ggml-base.en.bin */; };
18A276062C2A98A5001C8D37 /* ggml-metal.metal in Copy Files */ = {isa = PBXBuildFile; fileRef = 1844471D2AB2195F007D6BFE /* ggml-metal.metal */; };
18A2760B2C2A9B43001C8D37 /* ggml-metal.metal in Resources */ = {isa = PBXBuildFile; fileRef = 1844471D2AB2195F007D6BFE /* ggml-metal.metal */; };
18ABE15A2AF556340044A204 /* ggml-backend.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 18ABE1572AF556340044A204 /* ggml-backend.cpp */; };
18ABE15B2AF556340044A204 /* ggml-quants.c in Sources */ = {isa = PBXBuildFile; fileRef = 18ABE1592AF556340044A204 /* ggml-quants.c */; };
18E864A92CE73C1E0094B8B3 /* ggml-cpu.c in Sources */ = {isa = PBXBuildFile; fileRef = 18E864A82CE73C1E0094B8B3 /* ggml-cpu.c */; };
18F8C0BC2CEDF4DC00CAD607 /* ggml-threading.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 18F8C0BB2CEDF4DC00CAD607 /* ggml-threading.cpp */; };
18F8C0BE2CEDF50700CAD607 /* ggml-cpu.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 18F8C0BD2CEDF50700CAD607 /* ggml-cpu.cpp */; };
18F8C0C42CEDF52700CAD607 /* ggml-cpu-aarch64.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 18F8C0C02CEDF52700CAD607 /* ggml-cpu-aarch64.cpp */; };
18F8C0C42CEDF52700CAD607 /* ggml-cpu-aarch64.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 18F8C0C02CEDF52700CAD607 /* ggml-cpu-aarch64.cpp */; settings = {COMPILER_FLAGS = "-x c++"; }; };
18F8C0C52CEDF52700CAD607 /* ggml-cpu-quants.c in Sources */ = {isa = PBXBuildFile; fileRef = 18F8C0C32CEDF52700CAD607 /* ggml-cpu-quants.c */; };
18F8C0C72CEDF7AB00CAD607 /* ggml-backend-reg.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 18F8C0C62CEDF7AB00CAD607 /* ggml-backend-reg.cpp */; };
433188B82D3A187C00E3FE79 /* gguf.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 433188B72D3A187C00E3FE79 /* gguf.cpp */; };
437B63E22D36280C002A49EC /* ggml-cpu-traits.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 437B63E12D36280C002A49EC /* ggml-cpu-traits.cpp */; };
7FE3424B2A0C3FA20015A058 /* whisper-encoder-impl.m in Sources */ = {isa = PBXBuildFile; fileRef = 7FE342452A0C3FA20015A058 /* whisper-encoder-impl.m */; };
7FE3424C2A0C3FA20015A058 /* whisper-encoder.mm in Sources */ = {isa = PBXBuildFile; fileRef = 7FE342472A0C3FA20015A058 /* whisper-encoder.mm */; };
7FE3424D2A0C3FA20015A058 /* whisper-decoder-impl.m in Sources */ = {isa = PBXBuildFile; fileRef = 7FE3424A2A0C3FA20015A058 /* whisper-decoder-impl.m */; };
@ -43,7 +41,6 @@
dstPath = "";
dstSubfolderSpec = 7;
files = (
18A276062C2A98A5001C8D37 /* ggml-metal.metal in Copy Files */,
);
name = "Copy Files";
runOnlyForDeploymentPostprocessing = 0;
@ -51,12 +48,8 @@
/* End PBXCopyFilesBuildPhase section */
/* Begin PBXFileReference section */
18133C7E2C64E342005CEAAC /* ggml-aarch64.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-aarch64.h"; path = "../../../ggml/src/ggml-aarch64.h"; sourceTree = "<group>"; };
18133C7F2C64E342005CEAAC /* ggml-aarch64.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; name = "ggml-aarch64.c"; path = "../../../ggml/src/ggml-aarch64.c"; sourceTree = "<group>"; };
184447182AB211A2007D6BFE /* ggml-alloc.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; name = "ggml-alloc.c"; path = "../../../ggml/src/ggml-alloc.c"; sourceTree = "<group>"; };
184447192AB211A2007D6BFE /* ggml-alloc.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-alloc.h"; path = "../../../ggml/include/ggml-alloc.h"; sourceTree = "<group>"; };
1844471B2AB21655007D6BFE /* ggml-metal.m */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.objc; name = "ggml-metal.m"; path = "../../../ggml/src/ggml-metal/ggml-metal.m"; sourceTree = "<group>"; };
1844471D2AB2195F007D6BFE /* ggml-metal.metal */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.metal; name = "ggml-metal.metal"; path = "../../../ggml/src/ggml-metal/ggml-metal.metal"; sourceTree = "<group>"; };
18627C7629052BDF00BD2A04 /* whisper.objc.app */ = {isa = PBXFileReference; explicitFileType = wrapper.application; includeInIndex = 0; path = whisper.objc.app; sourceTree = BUILT_PRODUCTS_DIR; };
18627C7929052BDF00BD2A04 /* AppDelegate.h */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.h; path = AppDelegate.h; sourceTree = "<group>"; };
18627C7A29052BDF00BD2A04 /* AppDelegate.m */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.objc; path = AppDelegate.m; sourceTree = "<group>"; };
@ -74,7 +67,6 @@
18627C9529052C5800BD2A04 /* ggml.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; name = ggml.c; path = ../../../ggml/src/ggml.c; sourceTree = "<group>"; };
18627C9729052C6600BD2A04 /* ggml.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = ggml.h; path = ../../../ggml/include/ggml.h; sourceTree = "<group>"; };
18627C9A29052CFF00BD2A04 /* ggml-base.en.bin */ = {isa = PBXFileReference; lastKnownFileType = archive.macbinary; name = "ggml-base.en.bin"; path = "../../../models/ggml-base.en.bin"; sourceTree = "<group>"; };
18A275FE2C2A94DE001C8D37 /* ggml-metal.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-metal.h"; path = "../../../ggml/include/ggml-metal.h"; sourceTree = "<group>"; };
18A275FF2C2A9563001C8D37 /* ggml-common.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-common.h"; path = "../../../ggml/src/ggml-common.h"; sourceTree = "<group>"; };
18ABE1542AF556340044A204 /* ggml-quants.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-quants.h"; path = "../../../ggml/src/ggml-quants.h"; sourceTree = "<group>"; };
18ABE1552AF556340044A204 /* ggml-backend.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-backend.h"; path = "../../../ggml/include/ggml-backend.h"; sourceTree = "<group>"; };
@ -82,6 +74,7 @@
18ABE1572AF556340044A204 /* ggml-backend.cpp */ = {isa = PBXFileReference; explicitFileType = sourcecode.cpp.cpp; fileEncoding = 4; name = "ggml-backend.cpp"; path = "../../../ggml/src/ggml-backend.cpp"; sourceTree = "<group>"; };
18ABE1582AF556340044A204 /* ggml-impl.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-impl.h"; path = "../../../ggml/src/ggml-impl.h"; sourceTree = "<group>"; };
18ABE1592AF556340044A204 /* ggml-quants.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; name = "ggml-quants.c"; path = "../../../ggml/src/ggml-quants.c"; sourceTree = "<group>"; };
18B07DCB2D70411100B3B87C /* ggml-cpp.h */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.h; name = "ggml-cpp.h"; path = "../../../ggml/include/ggml-cpp.h"; sourceTree = "<group>"; };
18E864A82CE73C1E0094B8B3 /* ggml-cpu.c */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.c; name = "ggml-cpu.c"; path = "../../../ggml/src/ggml-cpu/ggml-cpu.c"; sourceTree = "<group>"; };
18E864AA2CE73C580094B8B3 /* ggml-cpu.h */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.h; name = "ggml-cpu.h"; path = "../../../ggml/include/ggml-cpu.h"; sourceTree = "<group>"; };
18F8C0BA2CEDF4DC00CAD607 /* ggml-threading.h */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.h; name = "ggml-threading.h"; path = "../../../ggml/src/ggml-threading.h"; sourceTree = "<group>"; };
@ -93,6 +86,10 @@
18F8C0C22CEDF52700CAD607 /* ggml-cpu-quants.h */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.h; name = "ggml-cpu-quants.h"; path = "../../../ggml/src/ggml-cpu/ggml-cpu-quants.h"; sourceTree = "<group>"; };
18F8C0C32CEDF52700CAD607 /* ggml-cpu-quants.c */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.c; name = "ggml-cpu-quants.c"; path = "../../../ggml/src/ggml-cpu/ggml-cpu-quants.c"; sourceTree = "<group>"; };
18F8C0C62CEDF7AB00CAD607 /* ggml-backend-reg.cpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.cpp; name = "ggml-backend-reg.cpp"; path = "../../../ggml/src/ggml-backend-reg.cpp"; sourceTree = "<group>"; };
433188B72D3A187C00E3FE79 /* gguf.cpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.cpp; name = gguf.cpp; path = ../../../ggml/src/gguf.cpp; sourceTree = "<group>"; };
433188B92D3A18A400E3FE79 /* gguf.h */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.h; name = gguf.h; path = ../../../ggml/include/gguf.h; sourceTree = "<group>"; };
437B63E02D36280C002A49EC /* ggml-cpu-traits.h */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.h; name = "ggml-cpu-traits.h"; path = "../../../ggml/src/ggml-cpu/ggml-cpu-traits.h"; sourceTree = "<group>"; };
437B63E12D36280C002A49EC /* ggml-cpu-traits.cpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.cpp; name = "ggml-cpu-traits.cpp"; path = "../../../ggml/src/ggml-cpu/ggml-cpu-traits.cpp"; sourceTree = "<group>"; };
7FE342452A0C3FA20015A058 /* whisper-encoder-impl.m */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.objc; path = "whisper-encoder-impl.m"; sourceTree = "<group>"; };
7FE342462A0C3FA20015A058 /* whisper-encoder.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = "whisper-encoder.h"; sourceTree = "<group>"; };
7FE342472A0C3FA20015A058 /* whisper-encoder.mm */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.objcpp; path = "whisper-encoder.mm"; sourceTree = "<group>"; };
@ -132,10 +129,15 @@
18627C7829052BDF00BD2A04 /* whisper.objc */ = {
isa = PBXGroup;
children = (
18B07DCB2D70411100B3B87C /* ggml-cpp.h */,
433188B92D3A18A400E3FE79 /* gguf.h */,
433188B72D3A187C00E3FE79 /* gguf.cpp */,
18F8C0C62CEDF7AB00CAD607 /* ggml-backend-reg.cpp */,
18F8C0BF2CEDF52700CAD607 /* ggml-cpu-aarch64.h */,
18F8C0C02CEDF52700CAD607 /* ggml-cpu-aarch64.cpp */,
18F8C0C12CEDF52700CAD607 /* ggml-cpu-impl.h */,
437B63E02D36280C002A49EC /* ggml-cpu-traits.h */,
437B63E12D36280C002A49EC /* ggml-cpu-traits.cpp */,
18F8C0C22CEDF52700CAD607 /* ggml-cpu-quants.h */,
18F8C0C32CEDF52700CAD607 /* ggml-cpu-quants.c */,
18F8C0BD2CEDF50700CAD607 /* ggml-cpu.cpp */,
@ -143,18 +145,13 @@
18F8C0BB2CEDF4DC00CAD607 /* ggml-threading.cpp */,
18E864AA2CE73C580094B8B3 /* ggml-cpu.h */,
18E864A82CE73C1E0094B8B3 /* ggml-cpu.c */,
18133C7F2C64E342005CEAAC /* ggml-aarch64.c */,
18133C7E2C64E342005CEAAC /* ggml-aarch64.h */,
18A275FF2C2A9563001C8D37 /* ggml-common.h */,
18A275FE2C2A94DE001C8D37 /* ggml-metal.h */,
18ABE1562AF556340044A204 /* ggml-backend-impl.h */,
18ABE1572AF556340044A204 /* ggml-backend.cpp */,
18ABE1552AF556340044A204 /* ggml-backend.h */,
18ABE1582AF556340044A204 /* ggml-impl.h */,
18ABE1592AF556340044A204 /* ggml-quants.c */,
18ABE1542AF556340044A204 /* ggml-quants.h */,
1844471D2AB2195F007D6BFE /* ggml-metal.metal */,
1844471B2AB21655007D6BFE /* ggml-metal.m */,
184447182AB211A2007D6BFE /* ggml-alloc.c */,
184447192AB211A2007D6BFE /* ggml-alloc.h */,
7FE3424E2A0C418A0015A058 /* ggml-base.en-encoder.mlmodelc */,
@ -251,7 +248,6 @@
isa = PBXResourcesBuildPhase;
buildActionMask = 2147483647;
files = (
18A2760B2C2A9B43001C8D37 /* ggml-metal.metal in Resources */,
18627C8929052BE000BD2A04 /* LaunchScreen.storyboard in Resources */,
7FE3424F2A0C418A0015A058 /* ggml-base.en-encoder.mlmodelc in Resources */,
18627C8629052BE000BD2A04 /* Assets.xcassets in Resources */,
@ -269,9 +265,9 @@
files = (
18627C8129052BDF00BD2A04 /* ViewController.m in Sources */,
18ABE15B2AF556340044A204 /* ggml-quants.c in Sources */,
18133C802C64E342005CEAAC /* ggml-aarch64.c in Sources */,
7FE3424C2A0C3FA20015A058 /* whisper-encoder.mm in Sources */,
18627C9429052C4900BD2A04 /* whisper.cpp in Sources */,
437B63E22D36280C002A49EC /* ggml-cpu-traits.cpp in Sources */,
18627C9629052C5800BD2A04 /* ggml.c in Sources */,
18627C7B29052BDF00BD2A04 /* AppDelegate.m in Sources */,
7FE3424D2A0C3FA20015A058 /* whisper-decoder-impl.m in Sources */,
@ -284,8 +280,8 @@
18ABE15A2AF556340044A204 /* ggml-backend.cpp in Sources */,
18627C8C29052BE000BD2A04 /* main.m in Sources */,
18627C7E29052BDF00BD2A04 /* SceneDelegate.m in Sources */,
433188B82D3A187C00E3FE79 /* gguf.cpp in Sources */,
18F8C0BC2CEDF4DC00CAD607 /* ggml-threading.cpp in Sources */,
1844471C2AB21655007D6BFE /* ggml-metal.m in Sources */,
7FE3424B2A0C3FA20015A058 /* whisper-encoder-impl.m in Sources */,
);
runOnlyForDeploymentPostprocessing = 0;
@ -435,6 +431,7 @@
buildSettings = {
ASSETCATALOG_COMPILER_APPICON_NAME = AppIcon;
ASSETCATALOG_COMPILER_GLOBAL_ACCENT_COLOR_NAME = AccentColor;
CLANG_CXX_LANGUAGE_STANDARD = "c++17";
CODE_SIGN_STYLE = Automatic;
CURRENT_PROJECT_VERSION = 1;
DEVELOPMENT_TEAM = P8JZH34X63;
@ -465,6 +462,7 @@
buildSettings = {
ASSETCATALOG_COMPILER_APPICON_NAME = AppIcon;
ASSETCATALOG_COMPILER_GLOBAL_ACCENT_COLOR_NAME = AccentColor;
CLANG_CXX_LANGUAGE_STANDARD = "c++17";
CODE_SIGN_STYLE = Automatic;
CURRENT_PROJECT_VERSION = 1;
DEVELOPMENT_TEAM = P8JZH34X63;

View File

@ -1,7 +1,29 @@
# whisper.cpp/examples/whisper.swiftui
A sample SwiftUI app using [whisper.cpp](https://github.com/ggerganov/whisper.cpp/) to do voice-to-text transcriptions.
See also: [whisper.objc](https://github.com/ggerganov/whisper.cpp/tree/master/examples/whisper.objc).
**Usage**:
### Building
First whisper.cpp need to be built and a XCFramework needs to be created. This can be done by running
the following script from the whisper.cpp project root:
```console
$ ./build-xcframework.sh
```
Note: if you get the error "iphoneos is not an iOS SDK" then you probably need to run this command first:
```console
sudo xcode-select -switch /Applications/Xcode.app/Contents/Developer
```
Open `whisper.swiftui.xcodeproj` project in Xcode and you should be able to build and run the app on
a simulator or a real device.
To use the framework with a different project, the XCFramework can be added to the project by
adding `build-apple/whisper.xcframework` by dragging and dropping it into the project navigator, or
by manually selecting the framework in the "Frameworks, Libraries, and Embedded Content" section
of the project settings.
### Usage
1. Select a model from the [whisper.cpp repository](https://github.com/ggerganov/whisper.cpp/tree/master/models).[^1]
2. Add the model to `whisper.swiftui.demo/Resources/models` **via Xcode**.

View File

@ -17,11 +17,26 @@
0AAC5D9F29539CD0003032C3 /* Assets.xcassets in Resources */ = {isa = PBXBuildFile; fileRef = 0AAC5D9E29539CD0003032C3 /* Assets.xcassets */; };
0AAC5DCE2953A05C003032C3 /* WhisperState.swift in Sources */ = {isa = PBXBuildFile; fileRef = 0AAC5DCD2953A05C003032C3 /* WhisperState.swift */; };
0AAC5DD12953A394003032C3 /* LibWhisper.swift in Sources */ = {isa = PBXBuildFile; fileRef = 0AAC5DD02953A394003032C3 /* LibWhisper.swift */; };
5B3454FF2D8178F80005A3BC /* whisper.xcframework in Frameworks */ = {isa = PBXBuildFile; fileRef = 5B3454FE2D8178F80005A3BC /* whisper.xcframework */; };
5B3455002D8178F80005A3BC /* whisper.xcframework in Embed Frameworks */ = {isa = PBXBuildFile; fileRef = 5B3454FE2D8178F80005A3BC /* whisper.xcframework */; settings = {ATTRIBUTES = (CodeSignOnCopy, RemoveHeadersOnCopy, ); }; };
7F79E0EE2CE0A78000ACD7BF /* DownloadButton.swift in Sources */ = {isa = PBXBuildFile; fileRef = 7F79E0ED2CE0A78000ACD7BF /* DownloadButton.swift */; };
7F79E0F02CE0C6F700ACD7BF /* Model.swift in Sources */ = {isa = PBXBuildFile; fileRef = 7F79E0EF2CE0C6F700ACD7BF /* Model.swift */; };
E3F92DC52AFA8E3800A6A9D4 /* whisper in Frameworks */ = {isa = PBXBuildFile; productRef = E3F92DC42AFA8E3800A6A9D4 /* whisper */; };
/* End PBXBuildFile section */
/* Begin PBXCopyFilesBuildPhase section */
5B3455012D8178F80005A3BC /* Embed Frameworks */ = {
isa = PBXCopyFilesBuildPhase;
buildActionMask = 2147483647;
dstPath = "";
dstSubfolderSpec = 10;
files = (
5B3455002D8178F80005A3BC /* whisper.xcframework in Embed Frameworks */,
);
name = "Embed Frameworks";
runOnlyForDeploymentPostprocessing = 0;
};
/* End PBXCopyFilesBuildPhase section */
/* Begin PBXFileReference section */
0A8E48FF2954B3F100704C1B /* README.md */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = net.daringfireball.markdown; path = README.md; sourceTree = "<group>"; };
0AA751462953AC2E001EE061 /* samples */ = {isa = PBXFileReference; lastKnownFileType = folder; path = samples; sourceTree = "<group>"; };
@ -35,9 +50,9 @@
0AAC5DA029539CD0003032C3 /* WhisperCppDemo.entitlements */ = {isa = PBXFileReference; lastKnownFileType = text.plist.entitlements; path = WhisperCppDemo.entitlements; sourceTree = "<group>"; };
0AAC5DCD2953A05C003032C3 /* WhisperState.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = WhisperState.swift; sourceTree = "<group>"; };
0AAC5DD02953A394003032C3 /* LibWhisper.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = LibWhisper.swift; sourceTree = "<group>"; };
5B3454FE2D8178F80005A3BC /* whisper.xcframework */ = {isa = PBXFileReference; lastKnownFileType = wrapper.xcframework; name = whisper.xcframework; path = "../../build-apple/whisper.xcframework"; sourceTree = "<group>"; };
7F79E0ED2CE0A78000ACD7BF /* DownloadButton.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = DownloadButton.swift; sourceTree = "<group>"; };
7F79E0EF2CE0C6F700ACD7BF /* Model.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = Model.swift; sourceTree = "<group>"; };
E3F92DC22AFA8DD800A6A9D4 /* whisper.cpp */ = {isa = PBXFileReference; lastKnownFileType = wrapper; name = whisper.cpp; path = ../..; sourceTree = "<group>"; };
/* End PBXFileReference section */
/* Begin PBXFrameworksBuildPhase section */
@ -45,7 +60,7 @@
isa = PBXFrameworksBuildPhase;
buildActionMask = 2147483647;
files = (
E3F92DC52AFA8E3800A6A9D4 /* whisper in Frameworks */,
5B3454FF2D8178F80005A3BC /* whisper.xcframework in Frameworks */,
);
runOnlyForDeploymentPostprocessing = 0;
};
@ -82,7 +97,6 @@
0AAC5D8E29539CCF003032C3 = {
isa = PBXGroup;
children = (
E3F92DC22AFA8DD800A6A9D4 /* whisper.cpp */,
0A8E48FF2954B3F100704C1B /* README.md */,
0AAC5DCF2953A36C003032C3 /* whisper.cpp.swift */,
0AAC5D9929539CCF003032C3 /* whisper.swiftui.demo */,
@ -141,6 +155,7 @@
E3F92DC32AFA8E3800A6A9D4 /* Frameworks */ = {
isa = PBXGroup;
children = (
5B3454FE2D8178F80005A3BC /* whisper.xcframework */,
);
name = Frameworks;
sourceTree = "<group>";
@ -155,6 +170,7 @@
0AAC5D9329539CCF003032C3 /* Sources */,
0AAC5D9429539CCF003032C3 /* Frameworks */,
0AAC5D9529539CCF003032C3 /* Resources */,
5B3455012D8178F80005A3BC /* Embed Frameworks */,
);
buildRules = (
);
@ -162,7 +178,6 @@
);
name = whisper.swiftui;
packageProductDependencies = (
E3F92DC42AFA8E3800A6A9D4 /* whisper */,
);
productName = WhisperCppDemo;
productReference = 0AAC5D9729539CCF003032C3 /* whisper.swiftui.app */;
@ -456,13 +471,6 @@
defaultConfigurationName = Release;
};
/* End XCConfigurationList section */
/* Begin XCSwiftPackageProductDependency section */
E3F92DC42AFA8E3800A6A9D4 /* whisper */ = {
isa = XCSwiftPackageProductDependency;
productName = whisper;
};
/* End XCSwiftPackageProductDependency section */
};
rootObject = 0AAC5D8F29539CCF003032C3 /* Project object */;
}

View File

@ -58,7 +58,8 @@ else()
set(GGML_BLAS_VENDOR_DEFAULT "Generic")
endif()
if (CMAKE_CROSSCOMPILING)
if (CMAKE_CROSSCOMPILING OR DEFINED ENV{SOURCE_DATE_EPOCH})
message(STATUS "Setting GGML_NATIVE_DEFAULT to OFF")
set(GGML_NATIVE_DEFAULT OFF)
else()
set(GGML_NATIVE_DEFAULT ON)
@ -101,9 +102,11 @@ endif()
option(GGML_CPU_HBM "ggml: use memkind for CPU HBM" OFF)
option(GGML_CPU_AARCH64 "ggml: use runtime weight conversion of Q4_0 to Q4_X_X" ON)
option(GGML_CPU_KLEIDIAI "ggml: use KleidiAI optimized kernels if applicable" OFF)
option(GGML_AVX "ggml: enable AVX" ${INS_ENB})
option(GGML_AVX_VNNI "ggml: enable AVX-VNNI" OFF)
option(GGML_AVX2 "ggml: enable AVX2" ${INS_ENB})
option(GGML_BMI2 "ggml: enable BMI2" ${INS_ENB})
option(GGML_AVX512 "ggml: enable AVX512F" OFF)
option(GGML_AVX512_VBMI "ggml: enable AVX512-VBMI" OFF)
option(GGML_AVX512_VNNI "ggml: enable AVX512-VNNI" OFF)
@ -120,6 +123,7 @@ endif()
option(GGML_LASX "ggml: enable lasx" ON)
option(GGML_LSX "ggml: enable lsx" ON)
option(GGML_RVV "ggml: enable rvv" ON)
option(GGML_VXE "ggml: enable vxe" ON)
option(GGML_CPU_ALL_VARIANTS "ggml: build all variants of the CPU backend (requires GGML_BACKEND_DL)" OFF)
set(GGML_CPU_ARM_ARCH "" CACHE STRING "ggml: CPU architecture for ARM")
@ -149,10 +153,17 @@ set (GGML_CUDA_PEER_MAX_BATCH_SIZE "128" CACHE STRING
"ggml: max. batch size for using peer access")
option(GGML_CUDA_NO_PEER_COPY "ggml: do not use peer to peer copies" OFF)
option(GGML_CUDA_NO_VMM "ggml: do not try to use CUDA VMM" OFF)
option(GGML_CUDA_FA "ggml: compile ggml FlashAttention CUDA kernels" ON)
option(GGML_CUDA_FA_ALL_QUANTS "ggml: compile all quants for FlashAttention" OFF)
option(GGML_CUDA_GRAPHS "ggml: use CUDA graphs (llama.cpp only)" ${GGML_CUDA_GRAPHS_DEFAULT})
set (GGML_CUDA_COMPRESSION_MODE "size" CACHE STRING
"ggml: cuda link binary compression mode; requires cuda 12.8+")
set_property(CACHE GGML_CUDA_COMPRESSION_MODE PROPERTY STRINGS "none;speed;balance;size")
option(GGML_HIP "ggml: use HIP" OFF)
option(GGML_HIP_GRAPHS "ggml: use HIP graph, experimental, slow" OFF)
option(GGML_HIP_NO_VMM "ggml: do not try to use HIP VMM" ON)
option(GGML_HIP_ROCWMMA_FATTN "ggml: enable rocWMMA for FlashAttention" OFF)
option(GGML_HIP_UMA "ggml: use HIP unified memory architecture" OFF)
option(GGML_VULKAN "ggml: use Vulkan" OFF)
option(GGML_VULKAN_CHECK_RESULTS "ggml: run Vulkan op checks" OFF)
@ -185,6 +196,9 @@ option(GGML_OPENCL_PROFILING "ggml: use OpenCL profiling (increas
option(GGML_OPENCL_EMBED_KERNELS "ggml: embed kernels" ON)
option(GGML_OPENCL_USE_ADRENO_KERNELS "ggml: use optimized kernels for Adreno" ON)
# toolchain for vulkan-shaders-gen
set (GGML_VULKAN_SHADERS_GEN_TOOLCHAIN "" CACHE FILEPATH "ggml: toolchain file for vulkan-shaders-gen")
# extra artifacts
option(GGML_BUILD_TESTS "ggml: build tests" ${GGML_STANDALONE})
option(GGML_BUILD_EXAMPLES "ggml: build examples" ${GGML_STANDALONE})
@ -203,6 +217,8 @@ set(THREADS_PREFER_PTHREAD_FLAG ON)
find_package(Threads REQUIRED)
include(GNUInstallDirs)
#
# build the library
#
@ -226,7 +242,6 @@ endif ()
# install
#
include(GNUInstallDirs)
include(CMakePackageConfigHelpers)
# all public headers
@ -237,13 +252,15 @@ set(GGML_PUBLIC_HEADERS
include/ggml-backend.h
include/ggml-blas.h
include/ggml-cann.h
include/ggml-cpp.h
include/ggml-cuda.h
include/ggml-kompute.h
include/ggml-opt.h
include/ggml-metal.h
include/ggml-rpc.h
include/ggml-sycl.h
include/ggml-vulkan.h)
include/ggml-vulkan.h
include/gguf.h)
set_target_properties(ggml PROPERTIES PUBLIC_HEADER "${GGML_PUBLIC_HEADERS}")
#if (GGML_METAL)
@ -260,3 +277,77 @@ if (GGML_STANDALONE)
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/ggml.pc
DESTINATION share/pkgconfig)
endif()
#
# Create CMake package
#
# Generate version info based on git commit.
if(NOT DEFINED GGML_BUILD_NUMBER)
find_program(GIT_EXE NAMES git git.exe REQUIRED NO_CMAKE_FIND_ROOT_PATH)
execute_process(COMMAND ${GIT_EXE} rev-list --count HEAD
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
OUTPUT_VARIABLE GGML_BUILD_NUMBER
OUTPUT_STRIP_TRAILING_WHITESPACE
)
if(GGML_BUILD_NUMBER EQUAL 1)
message(WARNING "GGML build version fixed at 1 likely due to a shallow clone.")
endif()
execute_process(COMMAND ${GIT_EXE} rev-parse --short HEAD
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
OUTPUT_VARIABLE GGML_BUILD_COMMIT
OUTPUT_STRIP_TRAILING_WHITESPACE
)
endif()
# Capture variables prefixed with GGML_.
set(variable_set_statements
"
####### Expanded from @GGML_VARIABLES_EXPANED@ by configure_package_config_file() #######
####### Any changes to this file will be overwritten by the next CMake run #######
")
set(GGML_SHARED_LIB ${BUILD_SHARED_LIBS})
get_cmake_property(all_variables VARIABLES)
foreach(variable_name IN LISTS all_variables)
if(variable_name MATCHES "^GGML_")
string(REPLACE ";" "\\;"
variable_value "${${variable_name}}")
set(variable_set_statements
"${variable_set_statements}set(${variable_name} \"${variable_value}\")\n")
endif()
endforeach()
set(GGML_VARIABLES_EXPANDED ${variable_set_statements})
# Create the CMake package and set install location.
set(GGML_INSTALL_VERSION 0.0.${GGML_BUILD_NUMBER})
set(GGML_INCLUDE_INSTALL_DIR ${CMAKE_INSTALL_INCLUDEDIR} CACHE PATH "Location of header files")
set(GGML_LIB_INSTALL_DIR ${CMAKE_INSTALL_LIBDIR} CACHE PATH "Location of library files")
set(GGML_BIN_INSTALL_DIR ${CMAKE_INSTALL_BINDIR} CACHE PATH "Location of binary files")
configure_package_config_file(
${CMAKE_CURRENT_SOURCE_DIR}/cmake/ggml-config.cmake.in
${CMAKE_CURRENT_BINARY_DIR}/ggml-config.cmake
INSTALL_DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/ggml
PATH_VARS GGML_INCLUDE_INSTALL_DIR
GGML_LIB_INSTALL_DIR
GGML_BIN_INSTALL_DIR)
write_basic_package_version_file(
${CMAKE_CURRENT_BINARY_DIR}/ggml-version.cmake
VERSION ${GGML_INSTALL_VERSION}
COMPATIBILITY SameMajorVersion)
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/ggml-config.cmake
${CMAKE_CURRENT_BINARY_DIR}/ggml-version.cmake
DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/ggml)

View File

@ -0,0 +1,54 @@
# Add new build types
# ReleaseGG - Release with enabled asserts
SET(CMAKE_CXX_FLAGS_RELEASEGG
"-O3"
CACHE STRING "Flags used by the c++ compiler during release builds with enabled asserts."
FORCE )
SET(CMAKE_C_FLAGS_RELEASEGG
"-O3"
CACHE STRING "Flags used by the compiler during release builds with enabled asserts."
FORCE )
SET(CMAKE_EXE_LINKER_FLAGS_RELEASEGG
""
CACHE STRING "Flags used for linking binaries during release builds with enabled asserts."
FORCE )
SET(CMAKE_SHARED_LINKER_FLAGS_RELEASEGG
""
CACHE STRING "Flags used by the shared libraries linker during release builds with enabled asserts."
FORCE )
MARK_AS_ADVANCED(
CMAKE_CXX_FLAGS_RELEASEGG
CMAKE_C_FLAGS_RELEASEGG
CMAKE_EXE_LINKER_FLAGS_RELEASEGG
CMAKE_SHARED_LINKER_FLAGS_RELEASEGG )
# RelWithDebInfoGG - RelWithDebInfo with enabled asserts
SET(CMAKE_CXX_FLAGS_RELWITHDEBINFOGG
"-O2 -g"
CACHE STRING "Flags used by the c++ compiler during release builds with debug symbols and enabled asserts."
FORCE )
SET(CMAKE_C_FLAGS_RELWITHDEBINFOGG
"-O2 -g"
CACHE STRING "Flags used by the compiler during release builds with debug symbols and enabled asserts."
FORCE )
SET(CMAKE_EXE_LINKER_FLAGS_RELWITHDEBINFOGG
""
CACHE STRING "Flags used for linking binaries during release builds with debug symbols and enabled asserts."
FORCE )
SET(CMAKE_SHARED_LINKER_FLAGS_RELWITHDEBINFOGG
""
CACHE STRING "Flags used by the shared libraries linker during release builds with debug symbols and enabled asserts."
FORCE )
MARK_AS_ADVANCED(
CMAKE_CXX_FLAGS_RELWITHDEBINFOGG
CMAKE_C_FLAGS_RELWITHDEBINFOGG
CMAKE_EXE_LINKER_FLAGS_RELWITHDEBINFOGG
CMAKE_SHARED_LINKER_FLAGS_RELWITHDEBINFOGG )
if (NOT XCODE AND NOT MSVC AND NOT CMAKE_BUILD_TYPE)
set(CMAKE_BUILD_TYPE Release CACHE STRING "Build type" FORCE)
set_property(CACHE CMAKE_BUILD_TYPE PROPERTY STRINGS "Debug" "Release" "MinSizeRel" "RelWithDebInfo" "ReleaseGG" "RelWithDebInfoGG")
endif()

Some files were not shown because too many files have changed in this diff Show More