Compare commits

..

42 Commits

Author SHA1 Message Date
7219c55dcd Correct PATH 2022-10-10 21:07:30 +05:30
9aa46f92dc Check for uvicorn and set the PATH env variable before checking 2022-10-10 21:04:23 +05:30
199fa4a0f5 Don't check for ldm, since it doesn't register in the pkgutils 2022-10-10 20:59:43 +05:30
c91348dae7 Print traceback when printing a fatal message 2022-10-10 20:20:53 +05:30
b47ff071da 4.6.0.66 opencv-python for mac 2022-10-10 20:17:05 +05:30
0d921eacb6 4.6.0.66 opencv-python 2022-10-10 20:16:29 +05:30
e1718c45e1 Use opencv-python==4.6.0 2022-10-10 20:15:30 +05:30
1c5352203d Try moving the environment.yaml to the sd folder before installing 2022-10-10 20:12:02 +05:30
e521b350ca Activate the project env dir in the dev console 2022-10-10 20:06:26 +05:30
e9ddef6992 Typo while checking the OS name 2022-10-10 20:02:19 +05:30
1d4a835e4a Run the SD install command inside the SD repo folder 2022-10-10 19:58:56 +05:30
3cf7a984fd Convert bytes to str in the output of run 2022-10-10 19:50:43 +05:30
a6913dfe29 Rename dev console scripts 2022-10-10 19:38:41 +05:30
1f7c7909c2 Initial port of the entire installation process; Switched 0.0.0.0 to localhost default; Skip color correction in GFPGAN via a patch 2022-10-10 19:35:33 +05:30
0e15c48d04 Just run the symlinks 2022-10-04 20:00:59 +05:30
a3e5931fd6 Project root check in dev script 2022-10-04 19:57:35 +05:30
0e3766838f Typo 2022-10-04 19:52:11 +05:30
f17a00092a Don't use git clone's exit status; Remove package overrides in env yaml 2022-10-04 19:48:34 +05:30
724e101edc Merge branch 'installer_new' of github.com:cmdr2/stable-diffusion-ui into installer_new 2022-10-04 19:21:23 +05:30
0b1968c017 Task to install Stable Diffusion's environment 2022-10-04 19:21:14 +05:30
be3a52d703 Make the start script executable 2022-10-04 16:34:59 +05:30
7468aa5a4f Re-organize the script files, to allow overwriting the main script file with an auto-update without freaking out the shell 2022-10-04 16:33:54 +05:30
889fd98577 Newline doesn't work in linux echo 2022-10-04 16:21:57 +05:30
9de91d3021 Open bash conditionally in the dev console on unix 2022-10-04 16:06:14 +05:30
f20014660d Enter to continue on linux 2022-10-04 15:46:31 +05:30
add533d0da Incorrect newline character 2022-10-04 15:45:52 +05:30
a5f5113e9a Typo in bash case 2022-10-04 15:44:15 +05:30
c72e1f0943 Execute permissions for the unix scripts 2022-10-04 15:39:33 +05:30
e282b2864f Installer v2.5 for {linux,mac}_{x64,arm64}; Include the micromamba binaries for them 2022-10-04 15:33:36 +05:30
abcab9bce5 Preserve an error log if the installation failed; Include the starting timestamp in the log 2022-10-04 14:48:16 +05:30
2174788514 Use git fetch for getting the latest SD commits 2022-10-04 14:36:20 +05:30
ecda0d5b05 Pull before checking out a commit for SD 2022-10-04 14:31:40 +05:30
55bd8a34d7 Typo in detachedHead suppress command 2022-10-04 13:53:14 +05:30
65c667cc37 Suppress detachedHead warnings 2022-10-04 13:52:01 +05:30
582b594789 Developer console which shows an activated mamba environment; A script to enable developer mode and auto-create the symlinks 2022-10-04 13:48:56 +05:30
19a868b2df Installer v2.5 now checks out stable diffusion and applies patches 2022-10-04 12:27:36 +05:30
9e07228a90 Revert update 2022-10-03 23:31:46 +05:30
85f8141968 Update test 2022-10-03 23:31:14 +05:30
b9646a8a94 Unnecessary quotes 2022-10-03 23:30:00 +05:30
3a7e4390eb Start cmd 2022-10-03 23:26:15 +05:30
d07279c266 Installer files for v2.5 2022-10-03 23:05:10 +05:30
c10411c506 Initial files for installer v2.5 2022-10-03 22:58:36 +05:30
155 changed files with 4463 additions and 24062 deletions

2
.gitignore vendored
View File

@ -1,5 +1,3 @@
__pycache__
installer
installer.tar
dist
.idea/*

View File

@ -1,27 +0,0 @@
jquery-confirm
==============
https://craftpip.github.io/jquery-confirm/
jquery-confirm is licensed under the MIT license:
The MIT License (MIT)
Copyright (c) 2019 Boniface Pereira
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -1,83 +0,0 @@
# What's new?
## v2.5
### Major Changes
- **Nearly twice as fast** - significantly faster speed of image generation. We're now pretty close to automatic1111's speed. Code contributions are welcome to make our project even faster: https://github.com/easydiffusion/sdkit/#is-it-fast
- **Full support for Stable Diffusion 2.1** - supports loading v1.4 or v2.0 or v2.1 models seamlessly. No need to enable "Test SD2", and no need to add `sd2_` to your SD 2.0 model file names.
- **Memory optimized Stable Diffusion 2.1** - you can now use 768x768 models for SD 2.1, with the same low VRAM optimizations that we've always had for SD 1.4.
- **6 new samplers!** - explore the new samplers, some of which can generate great images in less than 10 inference steps!
- **Model Merging** - You can now merge two models (`.ckpt` or `.safetensors`) and output `.ckpt` or `.safetensors` models, optionally in `fp16` precision. Details: https://github.com/cmdr2/stable-diffusion-ui/wiki/Model-Merging
- **Fast loading/unloading of VAEs** - No longer needs to reload the entire Stable Diffusion model, each time you change the VAE
- **Database of known models** - automatically picks the right configuration for known models. E.g. we automatically detect and apply "v" parameterization (required for some SD 2.0 models), and "fp32" attention precision (required for some SD 2.1 models).
- **Color correction for img2img** - an option to preserve the color profile (histogram) of the initial image. This is especially useful if you're getting red-tinted images after inpainting/masking.
- **Three GPU Memory Usage Settings** - `High` (fastest, maximum VRAM usage), `Balanced` (default - almost as fast, significantly lower VRAM usage), `Low` (slowest, very low VRAM usage). The `Low` setting is applied automatically for GPUs with less than 4 GB of VRAM.
- **Save metadata as JSON** - You can now save the metadata files as either text or json files (choose in the Settings tab).
- **Major rewrite of the code** - Most of the codebase has been reorganized and rewritten, to make it more manageable and easier for new developers to contribute features. We've separated our core engine into a new project called `sdkit`, which allows anyone to easily integrate Stable Diffusion (and related modules like GFPGAN etc) into their programming projects (via a simple `pip install sdkit`): https://github.com/easydiffusion/sdkit/
- **Name change** - Last, and probably the least, the UI is now called "Easy Diffusion". It indicates the focus of this project - an easy way for people to play with Stable Diffusion.
Our focus continues to remain on an easy installation experience, and an easy user-interface. While still remaining pretty powerful, in terms of features and speed.
## v2.4
### Major Changes
- **Allow reordering the task queue** (by dragging and dropping tasks). Thanks @madrang
- **Automatic scanning for malicious model files** - using `picklescan`, and support for `safetensor` model format. Thanks @JeLuf
- **Image Editor** - for drawing simple images for guiding the AI. Thanks @mdiller
- **Use pre-trained hypernetworks** - for improving the quality of images. Thanks @C0bra5
- **Support for custom VAE models**. You can place your VAE files in the `models/vae` folder, and refresh the browser page to use them. More info: https://github.com/cmdr2/stable-diffusion-ui/wiki/VAE-Variational-Auto-Encoder
- **Experimental support for multiple GPUs!** It should work automatically. Just open one browser tab per GPU, and spread your tasks across your GPUs. For e.g. open our UI in two browser tabs if you have two GPUs. You can customize which GPUs it should use in the "Settings" tab, otherwise let it automatically pick the best GPUs. Thanks @madrang . More info: https://github.com/cmdr2/stable-diffusion-ui/wiki/Run-on-Multiple-GPUs
- **Cleaner UI design** - Show settings and help in new tabs, instead of dropdown popups (which were buggy). Thanks @mdiller
- **Progress bar.** Thanks @mdiller
- **Custom Image Modifiers** - You can now save your custom image modifiers! Your saved modifiers can include special characters like `{}, (), [], |`
- Drag and Drop **text files generated from previously saved images**, and copy settings to clipboard. Thanks @madrang
- Paste settings from clipboard. Thanks @JeLuf
- Bug fixes to reduce the chances of tasks crashing during long multi-hour runs (chrome can put long-running background tabs to sleep). Thanks @JeLuf and @madrang
- **Improved documentation.** Thanks @JeLuf and @jsuelwald
- Improved the codebase for dealing with system settings and UI settings. Thanks @mdiller
- Help instructions next to some setttings, and in the tab
- Show system info in the settings tab
- Keyboard shortcut: Ctrl+Enter to start a task
- Configuration to prevent the browser from opening on startup
- Lots of minor bug fixes
- A `What's New?` tab in the UI
- Ask for a confimation before clearing the results pane or stopping a render task. The dialog can be skipped by holding down the shift key while clicking on the button.
- Show the network addresses of the server in the systems setting dialog
- Support loading models in the safetensor format, for improved safety
### Detailed changelog
* 2.4.21 - 23 Dec 2022 - Speed up image creation, by removing a delay (regression) of 4-5 seconds between clicking the `Make Image` button and calling the server.
* 2.4.20 - 22 Dec 2022 - `Pause All` button to pause all the pending tasks. Thanks @JeLuf
* 2.4.20 - 22 Dec 2022 - `Undo`/`Redo` buttons in the image editor. Thanks @JeLuf
* 2.4.20 - 22 Dec 2022 - Drag handle to reorder the tasks. This fixed a bug where the metadata was no longer selectable (for copying). Thanks @JeLuf
* 2.4.19 - 17 Dec 2022 - Add Undo/Redo buttons in the Image Editor. Thanks @JeLuf
* 2.4.19 - 10 Dec 2022 - Show init img in task list
* 2.4.19 - 7 Dec 2022 - Use pre-trained hypernetworks while generating images. Thanks @C0bra5
* 2.4.19 - 6 Dec 2022 - Allow processing new tasks first. Thanks @madrang
* 2.4.19 - 6 Dec 2022 - Allow reordering the task queue (by dragging tasks). Thanks @madrang
* 2.4.19 - 6 Dec 2022 - Re-organize the code, to make it easier to write user plugins. Thanks @madrang
* 2.4.18 - 5 Dec 2022 - Make JPEG Output quality user controllable. Thanks @JeLuf
* 2.4.18 - 5 Dec 2022 - Support loading models in the safetensor format, for improved safety. Thanks @JeLuf
* 2.4.18 - 1 Dec 2022 - Image Editor, for drawing simple images for guiding the AI. Thanks @mdiller
* 2.4.18 - 1 Dec 2022 - Disable an image modifier temporarily by right-clicking it. Thanks @patriceac
* 2.4.17 - 30 Nov 2022 - Scroll to generated image. Thanks @patriceac
* 2.4.17 - 30 Nov 2022 - Show the network addresses of the server in the systems setting dialog. Thanks @JeLuf
* 2.4.17 - 30 Nov 2022 - Fix a bug where GFPGAN wouldn't work properly when multiple GPUs tried to run it at the same time. Thanks @madrang
* 2.4.17 - 30 Nov 2022 - Confirm before stopping or clearing all the tasks. Thanks @JeLuf
* 2.4.16 - 29 Nov 2022 - Bug fixes for SD 2.0 - remove the need for patching, default to SD 1.4 model if trying to load an SD2 model in SD1.4.
* 2.4.15 - 25 Nov 2022 - Experimental support for SD 2.0. Uses lots of memory, not optimized, probably GPU-only.
* 2.4.14 - 22 Nov 2022 - Change the backend to a custom fork of Stable Diffusion
* 2.4.13 - 21 Nov 2022 - Change the modifier weight via mouse wheel, drag to reorder selected modifiers, and some more modifier-related fixes. Thanks @patriceac
* 2.4.12 - 21 Nov 2022 - Another fix for improving how long images take to generate. Reduces the time taken for an enqueued task to start processing.
* 2.4.11 - 21 Nov 2022 - Installer improvements: avoid crashing if the username contains a space or special characters, allow moving/renaming the folder after installation on Windows, whitespace fix on git apply
* 2.4.11 - 21 Nov 2022 - Validate inputs before submitting the Image request
* 2.4.11 - 19 Nov 2022 - New system settings to manage the network config (port number and whether to only listen on localhost)
* 2.4.11 - 19 Nov 2022 - Address a regression in how long images take to generate. Use the previous code for moving a model to CPU. This improves things by a second or two per image, but we still have a regression (investigating).
* 2.4.10 - 18 Nov 2022 - Textarea for negative prompts. Thanks @JeLuf
* 2.4.10 - 18 Nov 2022 - Improved design for Settings, and rounded toggle buttons instead of checkboxes for a more modern look. Thanks @mdiller
* 2.4.9 - 18 Nov 2022 - Add Picklescan - a scanner for malicious model files. If it finds a malicious file, it will halt the web application and alert the user. Thanks @JeLuf
* 2.4.8 - 18 Nov 2022 - A `Use these settings` button to use the settings from a previously generated image task. Thanks @patriceac
* 2.4.7 - 18 Nov 2022 - Don't crash if a VAE file fails to load
* 2.4.7 - 17 Nov 2022 - Fix a bug where Face Correction (GFPGAN) would fail on cuda:N (i.e. GPUs other than cuda:0), as well as fail on CPU if the system had an incompatible GPU.
* 2.4.6 - 16 Nov 2022 - Fix a regression in VRAM usage during startup, which caused 'Out of Memory' errors when starting on GPUs with 4gb (or less) VRAM
* 2.4.5 - 16 Nov 2022 - Add checkbox for "Open browser on startup".
* 2.4.5 - 16 Nov 2022 - Add a directory for core plugins that ship with Stable Diffusion UI by default.
* 2.4.5 - 16 Nov 2022 - Add a "What's New?" tab as a core plugin, which fetches the contents of CHANGES.md from the app's release branch.

View File

@ -6,18 +6,19 @@ Thanks
# For developers:
If you would like to contribute to this project, there is a discord for discussion:
If you would like to contribute to this project, there is a discord for dicussion:
[![Discord Server](https://badgen.net/badge/icon/discord?icon=discord&label)](https://discord.com/invite/u9yhsFmEkB)
## Development environment for UI (frontend and server) changes
This is in-flux, but one way to get a development environment running for editing the UI of this project is:
(swap `.sh` or `.bat` in instructions depending on your environment, and be sure to adjust any paths to match where you're working)
1) Install the project to a new location using the [usual installation process](https://github.com/cmdr2/stable-diffusion-ui#installation), e.g. to `/projects/stable-diffusion-ui-archive`
2) Start the newly installed project, and check that you can view and generate images on `localhost:9000`
3) Next, please clone the project repository using `git clone` (e.g. to `/projects/stable-diffusion-ui-repo`)
4) Close the server (started in step 2), and edit `/projects/stable-diffusion-ui-archive/scripts/on_env_start.sh` (or `on_env_start.bat`)
5) Comment out the lines near the bottom that copies the `files/ui` folder, e.g:
1) `git clone` the repository, e.g. to `/projects/stable-diffusion-ui-repo`
2) Download the pre-built end user archive from the link on github, and extract it, e.g. to `/projects/stable-diffusion-ui-archive`
3) `cd /projects/stable-diffusion-ui-archive` and run the script to set up and start the project, e.g. `start.sh`
4) Check you can view and generate images on `localhost:9000`
5) Close the server, and edit `/projects/stable-diffusion-ui-archive/scripts/on_env_start.sh`
6) Comment out the lines near the bottom that copies the `files/ui` folder, e.g:
for `.sh`
```
@ -32,20 +33,23 @@ REM @xcopy sd-ui-files\ui ui /s /i /Y
REM @copy sd-ui-files\scripts\on_sd_start.bat scripts\ /Y
REM @copy "sd-ui-files\scripts\Start Stable Diffusion UI.cmd" . /Y
```
6) Next, comment out the line at the top of `/projects/stable-diffusion-ui-archive/scripts/on_sd_start.sh` (or `on_sd_start.bat`) that copies `on_env_start`. For e.g. `@rem @copy sd-ui-files\scripts\on_env_start.bat scripts\ /Y`
7) Comment out the line at the top of `/projects/stable-diffusion-ui-archive/scripts/on_sd_start.sh` that copies `on_env_start`. For e.g. `@copy sd-ui-files\scripts\on_env_start.bat scripts\ /Y`
8) Delete the current `ui` folder at `/projects/stable-diffusion-ui-archive/ui`
9) Now make a symlink between the repository clone (where you will be making changes) and this archive (where you will be running stable diffusion):
`ln -s /projects/stable-diffusion-ui-repo/ui /projects/stable-diffusion-ui-archive/ui`
or for Windows
`mklink /J \projects\stable-diffusion-ui-archive\ui \projects\stable-diffusion-ui-repo\ui` (link name first, source repo dir second)
9) Run the project again (like in step 2) and ensure you can still use the UI.
`mklink /D \projects\stable-diffusion-ui-archive\ui \projects\stable-diffusion-ui-repo\ui` (link name first, source repo dir second)
9) Run the archive again `start.sh` and ensure you can still use the UI.
10) Congrats, now any changes you make in your repo `ui` folder are linked to this running archive of the app and can be previewed in the browser.
11) Please update CHANGES.md in your pull requests.
Check the `ui/frontend/build/README.md` for instructions on running and building the React code.
## Development environment for Installer changes
Build the Windows installer using Windows, and the Linux installer using Linux. Don't mix the two, and don't use WSL. An Ubuntu VM is fine for building the Linux installer on a Windows host.
1. Run `build.bat` or `./build.sh` depending on whether you're in Windows or Linux.
2. Make a new GitHub release and upload the Windows and Linux installer builds created inside the `dist` folder.
1. Install Miniconda 3 or Anaconda.
2. Install `conda install -c conda-forge -y conda-pack`
3. Open the Anaconda Prompt. Do not use WSL if you're building for Windows.
4. Run `build.bat` or `./build.sh` depending on whether you're in Windows or Linux.
5. Compress the `stable-diffusion-ui` folder created inside the `dist` folder. Make a `zip` for Windows, and `tar.xz` for Linux (smaller files, and Linux users already have tar).
6. Make a new GitHub release and upload the Windows and Linux installer builds.

15
Developer Console.cmd Normal file
View File

@ -0,0 +1,15 @@
@echo off
echo "Opening Stable Diffusion UI - Developer Console.." & echo.
set SD_BASE_DIR=%cd%
set MAMBA_ROOT_PREFIX=%SD_BASE_DIR%\env\mamba
set INSTALL_ENV_DIR=%SD_BASE_DIR%\env\installer_env
set PROJECT_ENV_DIR=%SD_BASE_DIR%\env\project_env
call "%MAMBA_ROOT_PREFIX%\condabin\mamba_hook.bat"
call micromamba activate "%INSTALL_ENV_DIR%"
call micromamba activate "%PROJECT_ENV_DIR%"
cmd /k

View File

@ -1,24 +0,0 @@
Congrats on downloading Stable Diffusion UI, version 2!
If you haven't downloaded Stable Diffusion UI yet, please download from https://github.com/cmdr2/stable-diffusion-ui#installation
After downloading, to install please follow these instructions:
For Windows:
- Please double-click the "Start Stable Diffusion UI.cmd" file inside the "stable-diffusion-ui" folder.
For Linux:
- Please open a terminal, and go to the "stable-diffusion-ui" directory. Then run ./start.sh
That file will automatically install everything. After that it will start the Stable Diffusion interface in a web browser.
To start the UI in the future, please run the same command mentioned above.
If you have any problems, please:
1. Try the troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting
2. Or, seek help from the community at https://discord.com/invite/u9yhsFmEkB
3. Or, file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues
Thanks
cmdr2 (and contributors to the project)

View File

@ -1 +0,0 @@
Scripts to be used with the Nullsoft Scriptable Installation System

Binary file not shown.

Before

Width:  |  Height:  |  Size: 288 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 200 KiB

View File

@ -1,265 +0,0 @@
; Script generated by the HM NIS Edit Script Wizard.
Target x86-unicode
Unicode True
!AddPluginDir /x86-unicode "."
; HM NIS Edit Wizard helper defines
!define PRODUCT_NAME "Stable Diffusion UI"
!define PRODUCT_VERSION "Installer 2.35"
!define PRODUCT_PUBLISHER "cmdr2 and contributors"
!define PRODUCT_WEB_SITE "https://stable-diffusion-ui.github.io"
!define PRODUCT_DIR_REGKEY "Software\Microsoft\Cmdr2\App Paths\installer.exe"
; MUI 1.67 compatible ------
!include "MUI.nsh"
!include "LogicLib.nsh"
!include "nsDialogs.nsh"
Var Dialog
Var Label
Var Button
Var InstDirLen
Var LongPathsEnabled
Var AccountType
;---------------------------------------------------------------------------------------------------------
; This function returns the number of spaces in a string.
; The string is passed on the stack (using Push $STRING)
; The result is also returned on the stack and can be consumed with Pop $var
; https://nsis.sourceforge.io/Check_for_spaces_in_a_directory_path
Function CheckForSpaces
Exch $R0
Push $R1
Push $R2
Push $R3
StrCpy $R1 -1
StrCpy $R3 $R0
StrCpy $R0 0
loop:
StrCpy $R2 $R3 1 $R1
IntOp $R1 $R1 - 1
StrCmp $R2 "" done
StrCmp $R2 " " 0 loop
IntOp $R0 $R0 + 1
Goto loop
done:
Pop $R3
Pop $R2
Pop $R1
Exch $R0
FunctionEnd
;---------------------------------------------------------------------------------------------------------
; The function DirectoryLeave is called after the user chose the installation directory.
; If it calls "abort", the user is sent back to choose a different directory.
Function DirectoryLeave
; check whether the installation directory path is longer than 30 characters.
; If yes, we suggest to the user to enable long filename support
;----------------------------------------------------------------------------
StrLen $InstDirLen "$INSTDIR"
; Check whether the registry key that allows for >260 characters in a path name is set
ReadRegStr $LongPathsEnabled HKLM "SYSTEM\CurrentControlSet\Control\FileSystem" "LongPathsEnabled"
${If} $InstDirLen > 30
${AndIf} $LongPathsEnabled == "0"
; Check whether we're in the Admin group
UserInfo::GetAccountType
Pop $AccountType
${If} $AccountType == "Admin"
${AndIf} ${Cmd} `MessageBox MB_YESNO|MB_ICONQUESTION 'The path name is too long. $\n$\nYou can either enable long file name support in Windows,$\nor you can go back and choose a different path.$\n$\nFor details see: shorturl.at/auBD1$\n$\nEnable long path name support in Windows?' IDYES`
; Enable long path names
WriteRegDWORD HKLM "SYSTEM\CurrentControlSet\Control\FileSystem" "LongPathsEnabled" 1
${Else}
MessageBox MB_OK|MB_ICONEXCLAMATION "Installation path name too long. The installation path must not have more than 30 characters."
abort
${EndIf}
${EndIf}
; Check for spaces in the installation directory path.
; ----------------------------------------------------
; $R0 = CheckForSpaces( $INSTDIR )
Push $INSTDIR # Input string (install path).
Call CheckForSpaces
Pop $R0 # The function returns the number of spaces found in the input string.
; Check if any spaces exist in $INSTDIR.
${If} $R0 != 0
; Plural if more than 1 space in $INSTDIR.
; If $R0 == 1: $R1 = ""; else: $R1 = "s"
StrCmp $R0 1 0 +3
StrCpy $R1 ""
Goto +2
StrCpy $R1 "s"
; Show message box then take the user back to the Directory page.
MessageBox MB_OK|MB_ICONEXCLAMATION "Error: The Installaton directory \
has $R0 space character$R1.$\nPlease choose an installation directory without space characters."
Abort
${EndIf}
; Check for NTFS filesystem. Installations on FAT fail.
; -----------------------------------------------------
StrCpy $5 $INSTDIR 3
System::Call 'Kernel32::GetVolumeInformation(t "$5",t,i ${NSIS_MAX_STRLEN},*i,*i,*i,t.r1,i ${NSIS_MAX_STRLEN})i.r0'
${If} $0 <> 0
${AndIf} $1 == "NTFS"
MessageBox mb_ok "$5 has filesystem type '$1'.$\nOnly NTFS filesystems are supported.$\nPlease choose a different drive."
Abort
${EndIf}
FunctionEnd
;---------------------------------------------------------------------------------------------------------
; Open the MS download page in a browser and enable the [Next] button
Function MSMediaFeaturepack
ExecShell "open" "https://www.microsoft.com/en-us/software-download/mediafeaturepack"
GetDlgItem $0 $HWNDPARENT 1
EnableWindow $0 1
FunctionEnd
;---------------------------------------------------------------------------------------------------------
; Install the MS Media Feature Pack, if it is missing (e.g. on Windows 10 N)
Function MediaPackDialog
!insertmacro MUI_HEADER_TEXT "Windows Media Feature Pack" "Required software module is missing"
; Skip this dialog if mf.dll is installed
${If} ${FileExists} "$WINDIR\system32\mf.dll"
Abort
${EndIf}
nsDialogs::Create 1018
Pop $Dialog
${If} $Dialog == error
Abort
${EndIf}
${NSD_CreateLabel} 0 0 100% 48u "The Windows Media Feature Pack is missing on this computer. It is required for the Stable Diffusion UI.$\nYou can continue the installation after installing the Windows Media Feature Pack."
Pop $Label
${NSD_CreateButton} 10% 49u 80% 12u "Download Meda Feature Pack from Microsoft"
Pop $Button
GetFunctionAddress $0 MSMediaFeaturePack
nsDialogs::OnClick $Button $0
GetDlgItem $0 $HWNDPARENT 1
EnableWindow $0 0
nsDialogs::Show
FunctionEnd
;---------------------------------------------------------------------------------------------------------
; MUI Settings
;---------------------------------------------------------------------------------------------------------
!define MUI_ABORTWARNING
!define MUI_ICON "sd.ico"
!define MUI_WELCOMEFINISHPAGE_BITMAP "astro.bmp"
; Welcome page
!define MUI_WELCOMEPAGE_TEXT "This installer will guide you through the installation of Stable Diffusion UI.$\n$\n\
Click Next to continue."
!insertmacro MUI_PAGE_WELCOME
Page custom MediaPackDialog
; License page
!insertmacro MUI_PAGE_LICENSE "..\LICENSE"
!insertmacro MUI_PAGE_LICENSE "..\CreativeML Open RAIL-M License"
; Directory page
!define MUI_PAGE_CUSTOMFUNCTION_LEAVE "DirectoryLeave"
!insertmacro MUI_PAGE_DIRECTORY
; Instfiles page
!insertmacro MUI_PAGE_INSTFILES
; Finish page
!define MUI_FINISHPAGE_RUN "$INSTDIR\Start Stable Diffusion UI.cmd"
!insertmacro MUI_PAGE_FINISH
; Language files
!insertmacro MUI_LANGUAGE "English"
;---------------------------------------------------------------------------------------------------------
; MUI end
;---------------------------------------------------------------------------------------------------------
Name "${PRODUCT_NAME} ${PRODUCT_VERSION}"
OutFile "Install Stable Diffusion UI.exe"
InstallDir "C:\Stable-Diffusion-UI\"
InstallDirRegKey HKLM "${PRODUCT_DIR_REGKEY}" ""
ShowInstDetails show
;---------------------------------------------------------------------------------------------------------
; List of files to be installed
Section "MainSection" SEC01
SetOutPath "$INSTDIR"
File "..\CreativeML Open RAIL-M License"
File "..\How to install and run.txt"
File "..\LICENSE"
File "..\Start Stable Diffusion UI.cmd"
SetOutPath "$INSTDIR\scripts"
File "..\scripts\bootstrap.bat"
File "..\scripts\install_status.txt"
File "..\scripts\on_env_start.bat"
File "C:\windows\system32\curl.exe"
CreateDirectory "$INSTDIR\profile"
CreateDirectory "$SMPROGRAMS\Stable Diffusion UI"
CreateShortCut "$SMPROGRAMS\Stable Diffusion UI\Start Stable Diffusion UI.lnk" "$INSTDIR\Start Stable Diffusion UI.cmd"
SectionEnd
;---------------------------------------------------------------------------------------------------------
; Our installer only needs 25 KB, but once it has run, we need 25 GB
; So we need to overwrite the automatically detected space requirements.
; https://nsis.sourceforge.io/Docs/Chapter4.html#4.9.13.7
; The example in section 4.9.13.7 seems to be wrong: the number
; needs to be provided in Kilobytes.
Function .onInit
; Set required size of section 'SEC01' to 25 Gigabytes
SectionSetSize ${SEC01} 26214400
; Check system meory size. We need at least 8GB
; ----------------------------------------------------
; allocate a few bytes of memory
System::Alloc 64
Pop $1
; Retrieve HW info from the Windows Kernel
System::Call "*$1(i64)"
System::Call "Kernel32::GlobalMemoryStatusEx(i r1)"
; unpack the data into $R2 - $R10
System::Call "*$1(i.r2, i.r3, l.r4, l.r5, l.r6, l.r7, l.r8, l.r9, l.r10)"
# free up the memory
System::Free $1
; Result mapping:
; "Structure size: $2 bytes"
; "Memory load: $3%"
; "Total physical memory: $4 bytes"
; "Free physical memory: $5 bytes"
; "Total page file: $6 bytes"
; "Free page file: $7 bytes"
; "Total virtual: $8 bytes"
; "Free virtual: $9 bytes"
; Mem size in MB
System::Int64Op $4 / 1048576
Pop $4
${If} $4 < "8000"
MessageBox MB_OK|MB_ICONEXCLAMATION "Warning!$\n$\nYour system has less than 8GB of memory (RAM).$\n$\n\
You can still try to install Stable Diffusion UI,$\nbut it might have problems to start, or run$\nvery slowly."
${EndIf}
FunctionEnd
;Section -Post
; WriteRegStr HKLM "${PRODUCT_DIR_REGKEY}" "" "$INSTDIR\installer.exe"
;SectionEnd

View File

@ -1,8 +0,0 @@
Hi there,
What you have downloaded is meant for the developers of this project, not for users.
If you only want to use the Stable Diffusion UI, you've downloaded the wrong file.
Please download and follow the instructions at https://github.com/cmdr2/stable-diffusion-ui#installation
Thanks

191
README.md
View File

@ -1,140 +1,107 @@
# Stable Diffusion UI
### The easiest way to install and use [Stable Diffusion](https://github.com/CompVis/stable-diffusion) on your own computer. Does not require technical knowledge, does not require pre-installed software. 1-click install, powerful features, friendly community.
[![Discord Server](https://img.shields.io/discord/1014774730907209781?label=Discord)](https://discord.com/invite/u9yhsFmEkB) (for support, and development discussion) | [Troubleshooting guide for common problems](https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting)
### New:
Experimental support for Stable Diffusion 2.0 is available in beta!
----
# Step 1: Download and prepare the installer
Click the download button for your operating system:
# Stable Diffusion UI v2
### A simple 1-click way to install and use [Stable Diffusion](https://github.com/CompVis/stable-diffusion) on your own computer. No dependencies or technical knowledge required.
<p float="left">
<a href="https://github.com/cmdr2/stable-diffusion-ui/releases/download/v2.4.13/stable-diffusion-ui-windows.zip"><img src="https://github.com/cmdr2/stable-diffusion-ui/raw/main/media/download-win.png" width="200" /></a>
<a href="https://github.com/cmdr2/stable-diffusion-ui#installation"><img src="https://github.com/cmdr2/stable-diffusion-ui/raw/main/media/download-linux.png" width="200" /></a>
<a href="#installation"><img src="https://github.com/cmdr2/stable-diffusion-ui/raw/develop/media/download-win.png" width="200" /></a>
<a href="#installation"><img src="https://github.com/cmdr2/stable-diffusion-ui/raw/develop/media/download-linux.png" width="200" /></a>
</p>
## On Windows:
1. Unzip/extract the folder `stable-diffusion-ui` which should be in your downloads folder, unless you changed your default downloads destination.
2. Move the `stable-diffusion-ui` folder to your `C:` drive (or any other drive like `D:`, at the top root level). `C:\stable-diffusion-ui` or `D:\stable-diffusion-ui` as examples. This will avoid a common problem with Windows (file path length limits).
## On Linux:
1. Unzip/extract the folder `stable-diffusion-ui` which should be in your downloads folder, unless you changed your default downloads destination.
2. Open a terminal window, and navigate to the `stable-diffusion-ui` directory.
[![Discord Server](https://img.shields.io/discord/1014774730907209781?label=Discord)](https://discord.com/invite/u9yhsFmEkB) (for support, and development discussion) | [Troubleshooting guide for common problems](Troubleshooting.md)
# Step 2: Run the program
## On Windows:
Double-click `Start Stable Diffusion UI.cmd`.
If Windows SmartScreen prevents you from running the program click `More info` and then `Run anyway`.
## On Linux:
Run `./start.sh` (or `bash start.sh`) in a terminal.
️‍🔥🎉 **New!** Use Custom Weights, Task Queue, Negative Prompt, Live Preview, More Samplers, In-Painting, Face Correction (GFPGAN) and Upscaling (RealESRGAN) have been added!
The installer will take care of whatever is needed. If you face any problems, you can join the friendly [Discord community](https://discord.com/invite/u9yhsFmEkB) and ask for assistance.
This distribution currently uses Stable Diffusion 1.4. Once the model for 1.5 becomes publicly available, the model in this distribution will be updated.
# Step 3: There is no Step 3. It's that simple!
**To Uninstall:** Just delete the `stable-diffusion-ui` folder to uninstall all the downloaded packages.
----
# Easy for new users, powerful features for advanced users
## Features:
### User experience
- **Hassle-free installation**: Does not require technical knowledge, does not require pre-installed software. Just download and run!
- **Clutter-free UI**: A friendly and simple UI, while providing a lot of powerful features.
### Image generation
- **Supports**: "*Text to Image*" and "*Image to Image*".
- **In-Painting**: Specify areas of your image to paint into.
- **Simple Drawing Tool**: Draw basic images to guide the AI, without needing an external drawing program.
- **Face Correction (GFPGAN)**
- **Upscaling (RealESRGAN)**
- **Loopback**: Use the output image as the input image for the next img2img task.
# Features in the new v2 Version:
- **No Dependencies or Technical Knowledge Required**: 1-click install for Windows 10/11 and Linux. *No dependencies*, no need for WSL or Docker or Conda or technical setup. Just download and run!
- **Face Correction (GFPGAN) and Upscaling (RealESRGAN)**
- **In-Painting**
- **Live Preview**: See the image as the AI is drawing it
- **Task Queue**: Queue up all your ideas, without waiting for the current task to finish
- **Custom Weights**: Use your own `.ckpt` file, by placing it inside the `stable-diffusion` folder (rename it to `custom-model.ckpt`)
- **Negative Prompt**: Specify aspects of the image to *remove*.
- **Attention/Emphasis**: () in the prompt increases the model's attention to enclosed words, and [] decreases it.
- **Weighted Prompts**: Use weights for specific words in your prompt to change their importance, e.g. `red:2.4 dragon:1.2`.
- **Prompt Matrix**: Quickly create multiple variations of your prompt, e.g. `a photograph of an astronaut riding a horse | illustration | cinematic lighting`.
- **Lots of Samplers**: ddim, plms, heun, euler, euler_a, dpm2, dpm2_a, lms.
- **1-click Upscale/Face Correction**: Upscale or correct an image after it has been generated.
- **Make Similar Images**: Click to generate multiple variations of a generated image.
- **NSFW Setting**: A setting in the UI to control *NSFW content*.
- **JPEG/PNG output**: Multiple file formats.
### Advanced features
- **Custom Models**: Use your own `.ckpt` or `.safetensors` file, by placing it inside the `models/stable-diffusion` folder!
- **Stable Diffusion 2.0 support (experimental)**: available in beta channel.
- **Use custom VAE models**
- **Use pre-trained Hypernetworks**
- **UI Plugins**: Choose from a growing list of [community-generated UI plugins](https://github.com/cmdr2/stable-diffusion-ui/wiki/UI-Plugins), or write your own plugin to add features to the project!
### Performance and security
- **Low Memory Usage**: Creates 512x512 images with less than 4GB of GPU RAM!
- **Use CPU setting**: If you don't have a compatible graphics card, but still want to run it on your CPU.
- **Multi-GPU support**: Automatically spreads your tasks across multiple GPUs (if available), for faster performance!
- **Auto scan for malicious models**: Uses picklescan to prevent malicious models.
- **Safetensors support**: Support loading models in the safetensor format, for improved safety.
- **Auto-updater**: Gets you the latest improvements and bug-fixes to a rapidly evolving project.
- **Developer Console**: A developer-mode for those who want to modify their Stable Diffusion code, and edit the conda environment.
### Usability:
- **Live Preview**: See the image as the AI is drawing it.
- **Task Queue**: Queue up all your ideas, without waiting for the current task to finish.
- **Lots of Samplers:** ddim, plms, heun, euler, euler_a, dpm2, dpm2_a, lms
- **Image Modifiers**: A library of *modifier tags* like *"Realistic"*, *"Pencil Sketch"*, *"ArtStation"* etc. Experiment with various styles quickly.
- **Multiple Prompts File**: Queue multiple prompts by entering one prompt per line, or by running a text file.
- **Save generated images to disk**: Save your images to your PC!
- **UI Themes**: Customize the program to your liking.
- **New UI**: with cleaner design
- **Waifu Model Support**: Just replace the `stable-diffusion\sd-v1-4.ckpt` file after installation with the Waifu model
- Supports "*Text to Image*" and "*Image to Image*"
- **NSFW Setting**: A setting in the UI to control *NSFW content*
- **Use CPU setting**: If you don't have a compatible graphics card, but still want to run it on your CPU.
- **Auto-updater**: Gets you the latest improvements and bug-fixes to a rapidly evolving project.
- **Low Memory Usage**: Creates 512x512 images with less than 4GB of VRAM!
**(and a lot more)**
----
## Easy for new users:
![Screenshot of the initial UI](media/shot-v10-simple.jpg?raw=true)
## Powerful features for advanced users:
![Screenshot of advanced settings](media/shot-v10.jpg?raw=true)
![Screenshot of advanced settings](media/shot-v9.jpg?raw=true)
## Live Preview
Useful for judging (and stopping) an image quickly, without waiting for it to finish rendering.
![live-512](https://user-images.githubusercontent.com/844287/192097249-729a0a1e-a677-485e-9ccc-16a9e848fabe.gif)
## Task Queue
![Screenshot of task queue](media/task-queue-v1.jpg?raw=true)
# System Requirements
1. Windows 10/11, or Linux. Experimental support for Mac is coming soon.
2. An NVIDIA graphics card, preferably with 4GB or more of VRAM. If you don't have a compatible graphics card, it'll automatically run in the slower "CPU Mode".
3. Minimum 8 GB of RAM and 25GB of disk space.
2. An NVIDIA graphics card, preferably with 4GB or more of VRAM. But if you don't have a compatible graphics card, you can still use it with a "Use CPU" setting. It'll be very slow, but it should still work.
You don't need to install or struggle with Python, Anaconda, Docker etc. The installer will take care of whatever is needed.
You do not need anything else. You do not need WSL, Docker or Conda. The installer will take care of it.
----
# Installation
1. **Download** [for Windows](https://github.com/cmdr2/stable-diffusion-ui/releases/download/v2.16/stable-diffusion-ui-win64.zip) or [for Linux](https://github.com/cmdr2/stable-diffusion-ui/releases/download/v2.16/stable-diffusion-ui-linux.tar.xz).
# How to use?
Please refer to our [guide](https://github.com/cmdr2/stable-diffusion-ui/wiki/How-to-Use) to understand how to use the features in this UI.
2. **Extract**:
- For Windows: After unzipping the file, please move the `stable-diffusion-ui` folder to your `C:` (or any drive like D:, at the top root level), e.g. `C:\stable-diffusion-ui`. This will avoid a common problem with Windows (file path length limits).
- For Linux: After extracting the .tar.xz file, please open a terminal, and go to the `stable-diffusion-ui` directory.
3. **Run**:
- For Windows: `Start Stable Diffusion UI.cmd` by double-clicking it.
- For Linux: In the terminal, run `./start.sh` (or `bash start.sh`)
This will automatically install Stable Diffusion, set it up, and start the interface. No additional steps are needed.
**To Uninstall:** Just delete the `stable-diffusion-ui` folder to uninstall all the downloaded packages.
# Usage
Open http://localhost:9000 in your browser (after running step 3 previously). It may take a few moments for the back-end to be ready.
## With a text description
1. Enter a text prompt, like `a photograph of an astronaut riding a horse` in the textbox.
2. Press `Make Image`. This will take some time, depending on your system's processing power.
3. See the image generated using your prompt.
## With an image
1. Click `Browse..` next to `Initial Image`. Select your desired image.
2. An optional text prompt can help you further describe the kind of image you want to generate.
3. Press `Make Image`. See the image generated using your prompt.
You can use Face Correction or Upscaling to improve the image further.
**Pro tip:** You can also click `Use as Input` on a generated image, to use it as the input image for your next generation. This can be useful for sequentially refining the generated image with a single click.
**Another tip:** Images with the same aspect ratio of your generated image work best. E.g. 1:1 if you're generating images sized 512x512.
## Problems? Troubleshooting
Please try the common [troubleshooting](Troubleshooting.md) steps. If that doesn't fix it, please ask on the [discord server](https://discord.com/invite/u9yhsFmEkB), or [file an issue](https://github.com/cmdr2/stable-diffusion-ui/issues).
# Image Settings
You can also set the configuration like `seed`, `width`, `height`, `num_outputs`, `num_inference_steps` and `guidance_scale` using the 'show' button next to 'Image settings'.
Use the same `seed` number to get the same image for a certain prompt. This is useful for refining a prompt without losing the basic image design. Enable the `random images` checkbox to get random images.
![Screenshot of advanced settings](media/config-v6.jpg?raw=true)
# System Settings
The system settings are reachable via the cogwheel symbol on the top right. It can be used to configure whether all generated images should
saved be automically, or to tune the Stable Diffusion image generation.
![Screenshot of advanced settings](media/system-settings-v2.jpg?raw=true)
# Image Modifiers
![Screenshot of advanced settings](media/modifiers-v1.jpg?raw=true)
# Bugs reports and code contributions welcome
If there are any problems or suggestions, please feel free to ask on the [discord server](https://discord.com/invite/u9yhsFmEkB) or [file an issue](https://github.com/cmdr2/stable-diffusion-ui/issues).
We could really use help on these aspects (click to view tasks that need your help):
* [User Interface](https://github.com/users/cmdr2/projects/1/views/1)
* [Engine](https://github.com/users/cmdr2/projects/3/views/1)
* [Installer](https://github.com/users/cmdr2/projects/4/views/1)
* [Documentation](https://github.com/users/cmdr2/projects/5/views/1)
If you have any code contributions in mind, please feel free to say Hi to us on the [discord server](https://discord.com/invite/u9yhsFmEkB). We use the Discord server for development-related discussions, and for helping users.
Also, please feel free to submit a pull request, if you have any code contributions in mind. Join the [discord server](https://discord.com/invite/u9yhsFmEkB) for development-related discussions, and for helping other users.
# Disclaimer
The authors of this project are not responsible for any content generated using this interface.
The license of this software forbids you from sharing any content that:
- Violates any laws.
- Produces any harm to a person or persons.
- Disseminates (spreads) any personal information that would be meant for harm.
- Spreads misinformation.
- Target vulnerable groups.
For the full list of restrictions please read [the License](LICENSE). You agree to these terms by using this software.
The license of this software forbids you from sharing any content that violates any laws, produce any harm to a person, disseminate any personal information that would be meant for harm, spread misinformation, or target vulnerable groups. For the full list of restrictions please read [the license](LICENSE). You agree to these terms by using this software.

View File

@ -0,0 +1,25 @@
@echo off
echo. & echo "Stable Diffusion UI - v2.5" & echo.
set PATH=C:\Windows\System32;%PATH%
set SD_BASE_DIR=%cd%
@rem Confirm or change the installation dir
call installer\bootstrap\check-install-dir.bat
@rem set the vars again, if the installer dir has changed
set SD_BASE_DIR=%cd%
echo Working in %SD_BASE_DIR%
@rem Setup the packages required for the installer
call installer\bootstrap\bootstrap.bat
@rem Test the bootstrap
call git --version
call python --version
@rem Download the rest of the installer and UI
call installer\installer\start.bat

75
Troubleshooting.md Normal file
View File

@ -0,0 +1,75 @@
Common issues and their solutions. If these solutions don't work, please feel free to ask at the [discord server](https://discord.com/invite/u9yhsFmEkB) or [file an issue](https://github.com/cmdr2/stable-diffusion-ui/issues).
## RuntimeError: CUDA out of memory
This can happen if your PC has less than 6GB of VRAM.
Try disabling the "Turbo mode" setting under "Advanced Settings", since that takes an additional 1 GB of VRAM (to increase the speed).
Additionally, a common reason for this error is that you're using an initial image larger than 768x768 pixels. Try using a smaller initial image.
Also try generating smaller sized images.
## basicsr module not found
For Windows: Please download and extract basicsr from [here](https://github.com/cmdr2/stable-diffusion-ui/releases/download/v2.16/basicsr-win64.zip), and place the `basicsr` folder inside the `stable-diffusion-ui\stable-diffusion\env\lib\site-packages` folder. Then run the `Start Stable Diffusion UI.cmd` file again.
For Linux: Please contact on the [discord server](https://discord.com/invite/u9yhsFmEkB).
## No ldm found, or antlr4 or any other missing module, or ClobberError: This transaction has incompatible packages due to a shared path
On Windows, please ensure that you had placed the `stable-diffusion-ui` folder after unzipping to the root of C: or D: (or any drive). For e.g. `C:\stable-diffusion-ui`. **Note:** This has to be done **before** you start the installation process. If you have already installed (and are facing this error), please delete the installed folder, and start fresh by unzipping and placing the folder at the top of your drive.
This error can also be caused if you already have conda/miniconda/anaconda installed, due to package conflicts. Please open your Anaconda Prompt, and run `conda clean --all` to clean up unused packages.
If nothing works, this could be due to a corrupted installation. Please try reinstalling this, by deleting the installed folder, and unzipping from the downloaded zip file.
## Killed uvicorn server:app --app-dir ... --port 9000 --host 0.0.0.0
This happens if your PC ran out of RAM. Stable Diffusion requires a lot of RAM, and requires atleast 10 GB of RAM to work well. You can also try closing all other applications before running Stable Diffusion UI.
## Green image generated
This usually happens if you're running NVIDIA 1650 or 1660 Super. To solve this, please close and run the Stable Diffusion command on your computer. If you're using the older Docker-based solution (v1), please upgrade to v2: https://github.com/cmdr2/stable-diffusion-ui/tree/v2#installation
If you're still seeing this error, please try enabling "Full Precision" under "Advanced Settings" in the Stable Diffusion UI.
## './docker-compose.yml' is invalid:
> ERROR: The Compose file './docker-compose.yml' is invalid because:
> services.stability-ai.deploy.resources.reservations value Additional properties are not allowed ('devices' was unexpected)
Please ensure you have `docker-compose` version 1.29 or higher. Check `docker-compose --version`, and if required [update it to 1.29](https://docs.docker.com/compose/install/). (Thanks [HVRyan](https://github.com/HVRyan))
## RuntimeError: Found no NVIDIA driver on your system:
If you have an NVIDIA GPU and the latest [NVIDIA driver](http://www.nvidia.com/Download/index.aspx), please ensure that you've installed [nvidia-container-toolkit](https://stackoverflow.com/a/58432877). (Thanks [u/exintrovert420](https://www.reddit.com/user/exintrovert420/))
## Some other process is already running at port 9000 / port 9000 could not be bound
You can override the port used. Please change `docker-compose.yml` inside the project directory, and update the line `9000:9000` to `1337:9000` (where 1337 is whichever port number you want).
After doing this, please restart your server, by running `./server restart`.
After this, you can access the server at `http://localhost:1337` (where 1337 is the new port you specified earlier).
## RuntimeError: CUDA error: unknown error
Please ensure that you have an NVIDIA GPU and the latest [NVIDIA driver](http://www.nvidia.com/Download/index.aspx), and that you've installed [nvidia-container-toolkit](https://stackoverflow.com/a/58432877).
Also, if you are using WSL (Windows), please ensure you have the latest WSL kernel by running `wsl --shutdown` and then `wsl --update`. (Thanks [AndrWeisR](https://github.com/AndrWeisR))
# For support queries
## Entering a conda environment in an existing installation
This will give you an activated conda environment in the terminal, so you can run commands and force-install any packages, if required.
Users don't need to have the Anaconda Prompt installed to do this anymore, since the installer bundles a portable version of conda inside it. Just follow these steps.
**Windows:**
1. Open the terminal: Press Win+R, type "cmd", and press "Run"
2. Type `cd C:\stable-diffusion-ui` and press enter (or wherever you've installed it)
3. Type `installer\Scripts\activate.bat` and press enter
4. Type `cd stable-diffusion` and press enter
5. Type `conda activate .\env` and press enter
6. Type `python --version` and press enter. You should see 3.8.5.
**Linux:**
1. Open the terminal
2. Type `cd /path/to/stable-diffusion-ui` and press enter
3. Type `installer/bin/activate` and press enter
4. Type `cd stable-diffusion` and press enter
5. Type `conda activate ./env` and press enter
6. Type `python --version` and press enter. You should see 3.8.5.
This will give you an activated conda environment. To confirm, type `python --version` and press enter. You should see 3.8.5.

View File

@ -1,47 +0,0 @@
@echo off
@echo "Hi there, what you are running is meant for the developers of this project, not for users." & echo.
@echo "If you only want to use the Stable Diffusion UI, you've downloaded the wrong file."
@echo "Please download and follow the instructions at https://github.com/cmdr2/stable-diffusion-ui#installation" & echo.
@echo "If you are actually a developer of this project, please type Y and press enter" & echo.
set /p answer=Are you a developer of this project (Y/N)?
if /i "%answer:~,1%" NEQ "Y" exit /b
mkdir dist\win\stable-diffusion-ui\scripts
@REM mkdir dist\linux-mac\stable-diffusion-ui\scripts
@rem copy the installer files for Windows
copy scripts\on_env_start.bat dist\win\stable-diffusion-ui\scripts\
copy scripts\bootstrap.bat dist\win\stable-diffusion-ui\scripts\
copy "scripts\Start Stable Diffusion UI.cmd" dist\win\stable-diffusion-ui\
copy LICENSE dist\win\stable-diffusion-ui\
copy "CreativeML Open RAIL-M License" dist\win\stable-diffusion-ui\
copy "How to install and run.txt" dist\win\stable-diffusion-ui\
echo. > dist\win\stable-diffusion-ui\scripts\install_status.txt
@rem copy the installer files for Linux and Mac
@REM copy scripts\on_env_start.sh dist\linux-mac\stable-diffusion-ui\scripts\
@REM copy scripts\bootstrap.sh dist\linux-mac\stable-diffusion-ui\scripts\
@REM copy scripts\start.sh dist\linux-mac\stable-diffusion-ui\
@REM copy LICENSE dist\linux-mac\stable-diffusion-ui\
@REM copy "CreativeML Open RAIL-M License" dist\linux-mac\stable-diffusion-ui\
@REM copy "How to install and run.txt" dist\linux-mac\stable-diffusion-ui\
@REM echo. > dist\linux-mac\stable-diffusion-ui\scripts\install_status.txt
@rem make the zip
cd dist\win
call powershell Compress-Archive -Path stable-diffusion-ui -DestinationPath ..\stable-diffusion-ui-windows.zip
cd ..\..
@REM cd dist\linux-mac
@REM call powershell Compress-Archive -Path stable-diffusion-ui -DestinationPath ..\stable-diffusion-ui-linux.zip
@REM call powershell Compress-Archive -Path stable-diffusion-ui -DestinationPath ..\stable-diffusion-ui-mac.zip
@REM cd ..\..
echo "Build ready. Upload the zip files inside the 'dist' folder."
pause

View File

@ -1,49 +0,0 @@
#!/bin/bash
printf "Hi there, what you are running is meant for the developers of this project, not for users.\n\n"
printf "If you only want to use the Stable Diffusion UI, you've downloaded the wrong file.\n"
printf "Please download and follow the instructions at https://github.com/cmdr2/stable-diffusion-ui#installation\n\n"
printf "If you are actually a developer of this project, please type Y and press enter\n\n"
read -p "Are you a developer of this project (Y/N) " yn
case $yn in
[Yy]* ) ;;
* ) exit;;
esac
# mkdir -p dist/win/stable-diffusion-ui/scripts
mkdir -p dist/linux-mac/stable-diffusion-ui/scripts
# copy the installer files for Windows
# cp scripts/on_env_start.bat dist/win/stable-diffusion-ui/scripts/
# cp scripts/bootstrap.bat dist/win/stable-diffusion-ui/scripts/
# cp "scripts/Start Stable Diffusion UI.cmd" dist/win/stable-diffusion-ui/
# cp LICENSE dist/win/stable-diffusion-ui/
# cp "CreativeML Open RAIL-M License" dist/win/stable-diffusion-ui/
# cp "How to install and run.txt" dist/win/stable-diffusion-ui/
# echo "" > dist/win/stable-diffusion-ui/scripts/install_status.txt
# copy the installer files for Linux and Mac
cp scripts/on_env_start.sh dist/linux-mac/stable-diffusion-ui/scripts/
cp scripts/bootstrap.sh dist/linux-mac/stable-diffusion-ui/scripts/
cp scripts/functions.sh dist/linux-mac/stable-diffusion-ui/scripts/
cp scripts/start.sh dist/linux-mac/stable-diffusion-ui/
cp LICENSE dist/linux-mac/stable-diffusion-ui/
cp "CreativeML Open RAIL-M License" dist/linux-mac/stable-diffusion-ui/
cp "How to install and run.txt" dist/linux-mac/stable-diffusion-ui/
echo "" > dist/linux-mac/stable-diffusion-ui/scripts/install_status.txt
# make the zip
# cd dist/win
# zip -r ../stable-diffusion-ui-windows.zip stable-diffusion-ui
# cd ../..
cd dist/linux-mac
zip -r ../stable-diffusion-ui-linux.zip stable-diffusion-ui
zip -r ../stable-diffusion-ui-mac.zip stable-diffusion-ui
cd ../..
echo "Build ready. Upload the zip files inside the 'dist' folder."

18
developer_console.sh Normal file
View File

@ -0,0 +1,18 @@
#!/bin/bash
if [ "$0" == "bash" ]; then
echo "Opening Stable Diffusion UI - Developer Console.."
echo ""
export SD_BASE_DIR=`pwd`
export MAMBA_ROOT_PREFIX="$SD_BASE_DIR/env/mamba"
export INSTALL_ENV_DIR="$SD_BASE_DIR/env/installer_env"
export PROJECT_ENV_DIR="$SD_BASE_DIR/env/project_env"
eval "$($MAMBA_ROOT_PREFIX/micromamba shell hook -s posix)"
micromamba activate "$INSTALL_ENV_DIR"
micromamba activate "$PROJECT_ENV_DIR"
else
bash --init-file developer_console.sh
fi

101
engine/__init__.py Normal file
View File

@ -0,0 +1,101 @@
import json
class Request:
session_id: str = "session"
prompt: str = ""
negative_prompt: str = ""
init_image: str = None # base64
mask: str = None # base64
num_outputs: int = 1
num_inference_steps: int = 50
guidance_scale: float = 7.5
width: int = 512
height: int = 512
seed: int = 42
prompt_strength: float = 0.8
sampler: str = None # "ddim", "plms", "heun", "euler", "euler_a", "dpm2", "dpm2_a", "lms"
# allow_nsfw: bool = False
precision: str = "autocast" # or "full"
save_to_disk_path: str = None
turbo: bool = True
use_cpu: bool = False
use_full_precision: bool = False
use_face_correction: str = None # or "GFPGANv1.3"
use_upscale: str = None # or "RealESRGAN_x4plus" or "RealESRGAN_x4plus_anime_6B"
show_only_filtered_image: bool = False
stream_progress_updates: bool = False
stream_image_progress: bool = False
def json(self):
return {
"session_id": self.session_id,
"prompt": self.prompt,
"negative_prompt": self.negative_prompt,
"num_outputs": self.num_outputs,
"num_inference_steps": self.num_inference_steps,
"guidance_scale": self.guidance_scale,
"width": self.width,
"height": self.height,
"seed": self.seed,
"prompt_strength": self.prompt_strength,
"sampler": self.sampler,
"use_face_correction": self.use_face_correction,
"use_upscale": self.use_upscale,
}
def to_string(self):
return f'''
session_id: {self.session_id}
prompt: {self.prompt}
negative_prompt: {self.negative_prompt}
seed: {self.seed}
num_inference_steps: {self.num_inference_steps}
sampler: {self.sampler}
guidance_scale: {self.guidance_scale}
w: {self.width}
h: {self.height}
precision: {self.precision}
save_to_disk_path: {self.save_to_disk_path}
turbo: {self.turbo}
use_cpu: {self.use_cpu}
use_full_precision: {self.use_full_precision}
use_face_correction: {self.use_face_correction}
use_upscale: {self.use_upscale}
show_only_filtered_image: {self.show_only_filtered_image}
stream_progress_updates: {self.stream_progress_updates}
stream_image_progress: {self.stream_image_progress}'''
class Image:
data: str # base64
seed: int
is_nsfw: bool
path_abs: str = None
def __init__(self, data, seed):
self.data = data
self.seed = seed
def json(self):
return {
"data": self.data,
"seed": self.seed,
"path_abs": self.path_abs,
}
class Response:
request: Request
images: list
def json(self):
res = {
"status": 'succeeded',
"request": self.request.json(),
"output": [],
}
for image in self.images:
res["output"].append(image.json())
return res

658
engine/runtime.py Normal file
View File

@ -0,0 +1,658 @@
import json
import os, re
import traceback
import torch
import numpy as np
from omegaconf import OmegaConf
from PIL import Image, ImageOps
from tqdm import tqdm, trange
from itertools import islice
from einops import rearrange
import time
from pytorch_lightning import seed_everything
from torch import autocast
from contextlib import nullcontext
from einops import rearrange, repeat
from ldm.util import instantiate_from_config
from optimizedSD.optimUtils import split_weighted_subprompts
from transformers import logging
from gfpgan import GFPGANer
from basicsr.archs.rrdbnet_arch import RRDBNet
from realesrgan import RealESRGANer
import uuid
logging.set_verbosity_error()
# consts
config_yaml = "optimizedSD/v1-inference.yaml"
filename_regex = re.compile('[^a-zA-Z0-9]')
# api stuff
from . import Request, Response, Image as ResponseImage
import base64
from io import BytesIO
#from colorama import Fore
# local
stop_processing = False
temp_images = {}
ckpt_file = None
gfpgan_file = None
real_esrgan_file = None
model = None
modelCS = None
modelFS = None
model_gfpgan = None
model_real_esrgan = None
model_is_half = False
model_fs_is_half = False
device = None
unet_bs = 1
precision = 'autocast'
sampler_plms = None
sampler_ddim = None
has_valid_gpu = False
force_full_precision = False
try:
gpu = torch.cuda.current_device()
gpu_name = torch.cuda.get_device_name(gpu)
print('GPU detected: ', gpu_name)
force_full_precision = ('nvidia' in gpu_name.lower() or 'geforce' in gpu_name.lower()) and (' 1660' in gpu_name or ' 1650' in gpu_name) # otherwise these NVIDIA cards create green images
if force_full_precision:
print('forcing full precision on NVIDIA 16xx cards, to avoid green images. GPU detected: ', gpu_name)
mem_free, mem_total = torch.cuda.mem_get_info(gpu)
mem_total /= float(10**9)
if mem_total < 3.0:
print("GPUs with less than 3 GB of VRAM are not compatible with Stable Diffusion")
raise Exception()
has_valid_gpu = True
except:
print('WARNING: No compatible GPU found. Using the CPU, but this will be very slow!')
pass
def load_model_ckpt(ckpt_to_use, device_to_use='cuda', turbo=False, unet_bs_to_use=1, precision_to_use='autocast', half_model_fs=False):
global ckpt_file, model, modelCS, modelFS, model_is_half, device, unet_bs, precision, model_fs_is_half
ckpt_file = ckpt_to_use
device = device_to_use if has_valid_gpu else 'cpu'
precision = precision_to_use if not force_full_precision else 'full'
unet_bs = unet_bs_to_use
if device == 'cpu':
precision = 'full'
sd = load_model_from_config(f"{ckpt_file}.ckpt")
li, lo = [], []
for key, value in sd.items():
sp = key.split(".")
if (sp[0]) == "model":
if "input_blocks" in sp:
li.append(key)
elif "middle_block" in sp:
li.append(key)
elif "time_embed" in sp:
li.append(key)
else:
lo.append(key)
for key in li:
sd["model1." + key[6:]] = sd.pop(key)
for key in lo:
sd["model2." + key[6:]] = sd.pop(key)
config = OmegaConf.load(f"{config_yaml}")
model = instantiate_from_config(config.modelUNet)
_, _ = model.load_state_dict(sd, strict=False)
model.eval()
model.cdevice = device
model.unet_bs = unet_bs
model.turbo = turbo
modelCS = instantiate_from_config(config.modelCondStage)
_, _ = modelCS.load_state_dict(sd, strict=False)
modelCS.eval()
modelCS.cond_stage_model.device = device
modelFS = instantiate_from_config(config.modelFirstStage)
_, _ = modelFS.load_state_dict(sd, strict=False)
modelFS.eval()
del sd
if device != "cpu" and precision == "autocast":
model.half()
modelCS.half()
model_is_half = True
else:
model_is_half = False
if half_model_fs:
modelFS.half()
model_fs_is_half = True
else:
model_fs_is_half = False
print('loaded ', ckpt_file, 'to', device, 'precision', precision)
def load_model_gfpgan(gfpgan_to_use):
global gfpgan_file, model_gfpgan
if gfpgan_to_use is None:
return
gfpgan_file = gfpgan_to_use
model_path = gfpgan_to_use + ".pth"
if device == 'cpu':
model_gfpgan = GFPGANer(model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=torch.device('cpu'))
else:
model_gfpgan = GFPGANer(model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=torch.device('cuda'))
print('loaded ', gfpgan_to_use, 'to', device, 'precision', precision)
def load_model_real_esrgan(real_esrgan_to_use):
global real_esrgan_file, model_real_esrgan
if real_esrgan_to_use is None:
return
real_esrgan_file = real_esrgan_to_use
model_path = real_esrgan_to_use + ".pth"
RealESRGAN_models = {
'RealESRGAN_x4plus': RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4),
'RealESRGAN_x4plus_anime_6B': RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
}
model_to_use = RealESRGAN_models[real_esrgan_to_use]
if device == 'cpu':
model_real_esrgan = RealESRGANer(scale=2, model_path=model_path, model=model_to_use, pre_pad=0, half=False) # cpu does not support half
model_real_esrgan.device = torch.device('cpu')
model_real_esrgan.model.to('cpu')
else:
model_real_esrgan = RealESRGANer(scale=2, model_path=model_path, model=model_to_use, pre_pad=0, half=model_is_half)
model_real_esrgan.model.name = real_esrgan_to_use
print('loaded ', real_esrgan_to_use, 'to', device, 'precision', precision)
def mk_img(req: Request):
try:
yield from do_mk_img(req)
except Exception as e:
print(traceback.format_exc())
gc()
if device != "cpu":
modelFS.to("cpu")
modelCS.to("cpu")
model.model1.to("cpu")
model.model2.to("cpu")
gc()
yield json.dumps({
"status": 'failed',
"detail": str(e)
})
def do_mk_img(req: Request):
global model, modelCS, modelFS, device
global model_gfpgan, model_real_esrgan
global stop_processing
stop_processing = False
res = Response()
res.request = req
res.images = []
temp_images.clear()
model.turbo = req.turbo
if req.use_cpu:
if device != 'cpu':
device = 'cpu'
if model_is_half:
del model, modelCS, modelFS
load_model_ckpt(ckpt_file, device)
load_model_gfpgan(gfpgan_file)
load_model_real_esrgan(real_esrgan_file)
else:
if has_valid_gpu:
prev_device = device
device = 'cuda'
if (precision == 'autocast' and (req.use_full_precision or not model_is_half)) or \
(precision == 'full' and not req.use_full_precision and not force_full_precision) or \
(req.init_image is None and model_fs_is_half) or \
(req.init_image is not None and not model_fs_is_half and not force_full_precision):
del model, modelCS, modelFS
load_model_ckpt(ckpt_file, device, req.turbo, unet_bs, ('full' if req.use_full_precision else 'autocast'), half_model_fs=(req.init_image is not None and not req.use_full_precision))
if prev_device != device:
load_model_gfpgan(gfpgan_file)
load_model_real_esrgan(real_esrgan_file)
if req.use_face_correction != gfpgan_file:
load_model_gfpgan(req.use_face_correction)
if req.use_upscale != real_esrgan_file:
load_model_real_esrgan(req.use_upscale)
model.cdevice = device
modelCS.cond_stage_model.device = device
opt_prompt = req.prompt
opt_seed = req.seed
opt_n_samples = req.num_outputs
opt_n_iter = 1
opt_scale = req.guidance_scale
opt_C = 4
opt_H = req.height
opt_W = req.width
opt_f = 8
opt_ddim_steps = req.num_inference_steps
opt_ddim_eta = 0.0
opt_strength = req.prompt_strength
opt_save_to_disk_path = req.save_to_disk_path
opt_init_img = req.init_image
opt_use_face_correction = req.use_face_correction
opt_use_upscale = req.use_upscale
opt_show_only_filtered = req.show_only_filtered_image
opt_format = 'png'
opt_sampler_name = req.sampler
print(req.to_string(), '\n device', device)
print('\n\n Using precision:', precision)
seed_everything(opt_seed)
batch_size = opt_n_samples
prompt = opt_prompt
assert prompt is not None
data = [batch_size * [prompt]]
if precision == "autocast" and device != "cpu":
precision_scope = autocast
else:
precision_scope = nullcontext
mask = None
if req.init_image is None:
handler = _txt2img
init_latent = None
t_enc = None
else:
handler = _img2img
init_image = load_img(req.init_image, opt_W, opt_H)
init_image = init_image.to(device)
if device != "cpu" and precision == "autocast":
init_image = init_image.half()
modelFS.to(device)
init_image = repeat(init_image, '1 ... -> b ...', b=batch_size)
init_latent = modelFS.get_first_stage_encoding(modelFS.encode_first_stage(init_image)) # move to latent space
if req.mask is not None:
mask = load_mask(req.mask, opt_W, opt_H, init_latent.shape[2], init_latent.shape[3], True).to(device)
mask = mask[0][0].unsqueeze(0).repeat(4, 1, 1).unsqueeze(0)
mask = repeat(mask, '1 ... -> b ...', b=batch_size)
if device != "cpu" and precision == "autocast":
mask = mask.half()
move_fs_to_cpu()
assert 0. <= opt_strength <= 1., 'can only work with strength in [0.0, 1.0]'
t_enc = int(opt_strength * opt_ddim_steps)
print(f"target t_enc is {t_enc} steps")
if opt_save_to_disk_path is not None:
session_out_path = os.path.join(opt_save_to_disk_path, req.session_id)
os.makedirs(session_out_path, exist_ok=True)
else:
session_out_path = None
seeds = ""
with torch.no_grad():
for n in trange(opt_n_iter, desc="Sampling"):
for prompts in tqdm(data, desc="data"):
with precision_scope("cuda"):
modelCS.to(device)
uc = None
if opt_scale != 1.0:
uc = modelCS.get_learned_conditioning(batch_size * [req.negative_prompt])
if isinstance(prompts, tuple):
prompts = list(prompts)
subprompts, weights = split_weighted_subprompts(prompts[0])
if len(subprompts) > 1:
c = torch.zeros_like(uc)
totalWeight = sum(weights)
# normalize each "sub prompt" and add it
for i in range(len(subprompts)):
weight = weights[i]
# if not skip_normalize:
weight = weight / totalWeight
c = torch.add(c, modelCS.get_learned_conditioning(subprompts[i]), alpha=weight)
else:
c = modelCS.get_learned_conditioning(prompts)
modelFS.to(device)
partial_x_samples = None
def img_callback(x_samples, i):
nonlocal partial_x_samples
partial_x_samples = x_samples
if req.stream_progress_updates:
n_steps = opt_ddim_steps if req.init_image is None else t_enc
progress = {"step": i, "total_steps": n_steps}
if req.stream_image_progress and i % 5 == 0:
partial_images = []
for i in range(batch_size):
x_samples_ddim = modelFS.decode_first_stage(x_samples[i].unsqueeze(0))
x_sample = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
x_sample = 255.0 * rearrange(x_sample[0].cpu().numpy(), "c h w -> h w c")
x_sample = x_sample.astype(np.uint8)
img = Image.fromarray(x_sample)
buf = BytesIO()
img.save(buf, format='JPEG')
buf.seek(0)
del img, x_sample, x_samples_ddim
# don't delete x_samples, it is used in the code that called this callback
temp_images[str(req.session_id) + '/' + str(i)] = buf
partial_images.append({'path': f'/image/tmp/{req.session_id}/{i}'})
progress['output'] = partial_images
yield json.dumps(progress)
if stop_processing:
raise UserInitiatedStop("User requested that we stop processing")
# run the handler
try:
if handler == _txt2img:
x_samples = _txt2img(opt_W, opt_H, opt_n_samples, opt_ddim_steps, opt_scale, None, opt_C, opt_f, opt_ddim_eta, c, uc, opt_seed, img_callback, mask, opt_sampler_name)
else:
x_samples = _img2img(init_latent, t_enc, batch_size, opt_scale, c, uc, opt_ddim_steps, opt_ddim_eta, opt_seed, img_callback, mask)
yield from x_samples
x_samples = partial_x_samples
except UserInitiatedStop:
if partial_x_samples is None:
continue
x_samples = partial_x_samples
print("saving images")
for i in range(batch_size):
x_samples_ddim = modelFS.decode_first_stage(x_samples[i].unsqueeze(0))
x_sample = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
x_sample = 255.0 * rearrange(x_sample[0].cpu().numpy(), "c h w -> h w c")
x_sample = x_sample.astype(np.uint8)
img = Image.fromarray(x_sample)
has_filters = (opt_use_face_correction is not None and opt_use_face_correction.startswith('GFPGAN')) or \
(opt_use_upscale is not None and opt_use_upscale.startswith('RealESRGAN'))
return_orig_img = not has_filters or not opt_show_only_filtered
if stop_processing:
return_orig_img = True
if opt_save_to_disk_path is not None:
prompt_flattened = filename_regex.sub('_', prompts[0])
prompt_flattened = prompt_flattened[:50]
img_id = str(uuid.uuid4())[-8:]
file_path = f"{prompt_flattened}_{img_id}"
img_out_path = os.path.join(session_out_path, f"{file_path}.{opt_format}")
meta_out_path = os.path.join(session_out_path, f"{file_path}.txt")
if return_orig_img:
save_image(img, img_out_path)
save_metadata(meta_out_path, prompts, opt_seed, opt_W, opt_H, opt_ddim_steps, opt_scale, opt_strength, opt_use_face_correction, opt_use_upscale, opt_sampler_name, req.negative_prompt)
if return_orig_img:
img_data = img_to_base64_str(img)
res_image_orig = ResponseImage(data=img_data, seed=opt_seed)
res.images.append(res_image_orig)
if opt_save_to_disk_path is not None:
res_image_orig.path_abs = img_out_path
del img
if has_filters and not stop_processing:
print('Applying filters..')
gc()
filters_applied = []
if opt_use_face_correction:
_, _, output = model_gfpgan.enhance(x_sample[:,:,::-1], has_aligned=False, only_center_face=False, paste_back=True)
x_sample = output[:,:,::-1]
filters_applied.append(opt_use_face_correction)
if opt_use_upscale:
output, _ = model_real_esrgan.enhance(x_sample[:,:,::-1])
x_sample = output[:,:,::-1]
filters_applied.append(opt_use_upscale)
filtered_image = Image.fromarray(x_sample)
filtered_img_data = img_to_base64_str(filtered_image)
res_image_filtered = ResponseImage(data=filtered_img_data, seed=opt_seed)
res.images.append(res_image_filtered)
filters_applied = "_".join(filters_applied)
if opt_save_to_disk_path is not None:
filtered_img_out_path = os.path.join(session_out_path, f"{file_path}_{filters_applied}.{opt_format}")
save_image(filtered_image, filtered_img_out_path)
res_image_filtered.path_abs = filtered_img_out_path
del filtered_image
seeds += str(opt_seed) + ","
opt_seed += 1
move_fs_to_cpu()
gc()
del x_samples, x_samples_ddim, x_sample
print("memory_final = ", torch.cuda.memory_allocated() / 1e6)
print('Task completed')
yield json.dumps(res.json())
def save_image(img, img_out_path):
try:
img.save(img_out_path)
except:
print('could not save the file', traceback.format_exc())
def save_metadata(meta_out_path, prompts, opt_seed, opt_W, opt_H, opt_ddim_steps, opt_scale, opt_prompt_strength, opt_correct_face, opt_upscale, sampler_name, negative_prompt):
metadata = f"{prompts[0]}\nWidth: {opt_W}\nHeight: {opt_H}\nSeed: {opt_seed}\nSteps: {opt_ddim_steps}\nGuidance Scale: {opt_scale}\nPrompt Strength: {opt_prompt_strength}\nUse Face Correction: {opt_correct_face}\nUse Upscaling: {opt_upscale}\nSampler: {sampler_name}\nNegative Prompt: {negative_prompt}"
try:
with open(meta_out_path, 'w') as f:
f.write(metadata)
except:
print('could not save the file', traceback.format_exc())
def _txt2img(opt_W, opt_H, opt_n_samples, opt_ddim_steps, opt_scale, start_code, opt_C, opt_f, opt_ddim_eta, c, uc, opt_seed, img_callback, mask, sampler_name):
shape = [opt_n_samples, opt_C, opt_H // opt_f, opt_W // opt_f]
if device != "cpu":
mem = torch.cuda.memory_allocated() / 1e6
modelCS.to("cpu")
while torch.cuda.memory_allocated() / 1e6 >= mem:
time.sleep(1)
if sampler_name == 'ddim':
model.make_schedule(ddim_num_steps=opt_ddim_steps, ddim_eta=opt_ddim_eta, verbose=False)
samples_ddim = model.sample(
S=opt_ddim_steps,
conditioning=c,
seed=opt_seed,
shape=shape,
verbose=False,
unconditional_guidance_scale=opt_scale,
unconditional_conditioning=uc,
eta=opt_ddim_eta,
x_T=start_code,
img_callback=img_callback,
mask=mask,
sampler = sampler_name,
)
yield from samples_ddim
def _img2img(init_latent, t_enc, batch_size, opt_scale, c, uc, opt_ddim_steps, opt_ddim_eta, opt_seed, img_callback, mask):
# encode (scaled latent)
z_enc = model.stochastic_encode(
init_latent,
torch.tensor([t_enc] * batch_size).to(device),
opt_seed,
opt_ddim_eta,
opt_ddim_steps,
)
x_T = None if mask is None else init_latent
# decode it
samples_ddim = model.sample(
t_enc,
c,
z_enc,
unconditional_guidance_scale=opt_scale,
unconditional_conditioning=uc,
img_callback=img_callback,
mask=mask,
x_T=x_T,
sampler = 'ddim'
)
yield from samples_ddim
def move_fs_to_cpu():
if device != "cpu":
mem = torch.cuda.memory_allocated() / 1e6
modelFS.to("cpu")
while torch.cuda.memory_allocated() / 1e6 >= mem:
time.sleep(1)
def gc():
if device == 'cpu':
return
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
# internal
def chunk(it, size):
it = iter(it)
return iter(lambda: tuple(islice(it, size)), ())
def load_model_from_config(ckpt, verbose=False):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
sd = pl_sd["state_dict"]
return sd
# utils
class UserInitiatedStop(Exception):
pass
def load_img(img_str, w0, h0):
image = base64_str_to_img(img_str).convert("RGB")
w, h = image.size
print(f"loaded input image of size ({w}, {h}) from base64")
if h0 is not None and w0 is not None:
h, w = h0, w0
w, h = map(lambda x: x - x % 64, (w, h)) # resize to integer multiple of 64
image = image.resize((w, h), resample=Image.Resampling.LANCZOS)
image = np.array(image).astype(np.float32) / 255.0
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
return 2.*image - 1.
def load_mask(mask_str, h0, w0, newH, newW, invert=False):
image = base64_str_to_img(mask_str).convert("RGB")
w, h = image.size
print(f"loaded input mask of size ({w}, {h})")
if invert:
print("inverted")
image = ImageOps.invert(image)
# where_0, where_1 = np.where(image == 0), np.where(image == 255)
# image[where_0], image[where_1] = 255, 0
if h0 is not None and w0 is not None:
h, w = h0, w0
w, h = map(lambda x: x - x % 64, (w, h)) # resize to integer multiple of 64
print(f"New mask size ({w}, {h})")
image = image.resize((newW, newH), resample=Image.Resampling.LANCZOS)
image = np.array(image)
image = image.astype(np.float32) / 255.0
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
return image
# https://stackoverflow.com/a/61114178
def img_to_base64_str(img):
buffered = BytesIO()
img.save(buffered, format="PNG")
buffered.seek(0)
img_byte = buffered.getvalue()
img_str = "data:image/png;base64," + base64.b64encode(img_byte).decode()
return img_str
def base64_str_to_img(img_str):
img_str = img_str[len("data:image/png;base64,"):]
data = base64.b64decode(img_str)
buffered = BytesIO(data)
img = Image.open(buffered)
return img

237
engine/server.py Normal file
View File

@ -0,0 +1,237 @@
import json
import traceback
import sys
import os
SCRIPT_DIR = os.getcwd()
print('started in ', SCRIPT_DIR)
SD_UI_DIR = os.getenv('SD_UI_PATH', None)
sys.path.append(os.path.dirname(SD_UI_DIR))
CONFIG_DIR = os.path.join(SD_UI_DIR, '..', 'scripts')
OUTPUT_DIRNAME = "Stable Diffusion UI" # in the user's home folder
from fastapi import FastAPI, HTTPException
from fastapi.staticfiles import StaticFiles
from starlette.responses import FileResponse, StreamingResponse
from pydantic import BaseModel
import logging
from sd_internal import Request, Response
app = FastAPI()
model_loaded = False
model_is_loading = False
modifiers_cache = None
outpath = os.path.join(os.path.expanduser("~"), OUTPUT_DIRNAME)
# don't show access log entries for URLs that start with the given prefix
ACCESS_LOG_SUPPRESS_PATH_PREFIXES = ['/ping', '/modifier-thumbnails']
app.mount('/media', StaticFiles(directory=os.path.join(SD_UI_DIR, 'media/')), name="media")
# defaults from https://huggingface.co/blog/stable_diffusion
class ImageRequest(BaseModel):
session_id: str = "session"
prompt: str = ""
negative_prompt: str = ""
init_image: str = None # base64
mask: str = None # base64
num_outputs: int = 1
num_inference_steps: int = 50
guidance_scale: float = 7.5
width: int = 512
height: int = 512
seed: int = 42
prompt_strength: float = 0.8
sampler: str = None # "ddim", "plms", "heun", "euler", "euler_a", "dpm2", "dpm2_a", "lms"
# allow_nsfw: bool = False
save_to_disk_path: str = None
turbo: bool = True
use_cpu: bool = False
use_full_precision: bool = False
use_face_correction: str = None # or "GFPGANv1.3"
use_upscale: str = None # or "RealESRGAN_x4plus" or "RealESRGAN_x4plus_anime_6B"
show_only_filtered_image: bool = False
stream_progress_updates: bool = False
stream_image_progress: bool = False
class SetAppConfigRequest(BaseModel):
update_branch: str = "main"
@app.get('/')
def read_root():
headers = {"Cache-Control": "no-cache, no-store, must-revalidate", "Pragma": "no-cache", "Expires": "0"}
return FileResponse(os.path.join(SD_UI_DIR, 'index.html'), headers=headers)
@app.get('/ping')
async def ping():
global model_loaded, model_is_loading
try:
if model_loaded:
return {'OK'}
if model_is_loading:
return {'ERROR'}
model_is_loading = True
from sd_internal import runtime
custom_weight_path = os.path.join(SCRIPT_DIR, 'custom-model.ckpt')
ckpt_to_use = "sd-v1-4" if not os.path.exists(custom_weight_path) else "custom-model"
runtime.load_model_ckpt(ckpt_to_use=ckpt_to_use)
model_loaded = True
model_is_loading = False
return {'OK'}
except Exception as e:
print(traceback.format_exc())
return HTTPException(status_code=500, detail=str(e))
@app.post('/image')
def image(req : ImageRequest):
from sd_internal import runtime
r = Request()
r.session_id = req.session_id
r.prompt = req.prompt
r.negative_prompt = req.negative_prompt
r.init_image = req.init_image
r.mask = req.mask
r.num_outputs = req.num_outputs
r.num_inference_steps = req.num_inference_steps
r.guidance_scale = req.guidance_scale
r.width = req.width
r.height = req.height
r.seed = req.seed
r.prompt_strength = req.prompt_strength
r.sampler = req.sampler
# r.allow_nsfw = req.allow_nsfw
r.turbo = req.turbo
r.use_cpu = req.use_cpu
r.use_full_precision = req.use_full_precision
r.save_to_disk_path = req.save_to_disk_path
r.use_upscale: str = req.use_upscale
r.use_face_correction = req.use_face_correction
r.show_only_filtered_image = req.show_only_filtered_image
r.stream_progress_updates = True # the underlying implementation only supports streaming
r.stream_image_progress = req.stream_image_progress
try:
if not req.stream_progress_updates:
r.stream_image_progress = False
res = runtime.mk_img(r)
if req.stream_progress_updates:
return StreamingResponse(res, media_type='application/json')
else: # compatibility mode: buffer the streaming responses, and return the last one
last_result = None
for result in res:
last_result = result
return json.loads(last_result)
except Exception as e:
print(traceback.format_exc())
return HTTPException(status_code=500, detail=str(e))
@app.get('/image/stop')
def stop():
try:
if model_is_loading:
return {'ERROR'}
from sd_internal import runtime
runtime.stop_processing = True
return {'OK'}
except Exception as e:
print(traceback.format_exc())
return HTTPException(status_code=500, detail=str(e))
@app.get('/image/tmp/{session_id}/{img_id}')
def get_image(session_id, img_id):
from sd_internal import runtime
buf = runtime.temp_images[session_id + '/' + img_id]
buf.seek(0)
return StreamingResponse(buf, media_type='image/jpeg')
@app.post('/app_config')
async def setAppConfig(req : SetAppConfigRequest):
try:
config = {
'update_branch': req.update_branch
}
config_json_str = json.dumps(config)
config_bat_str = f'@set update_branch={req.update_branch}'
config_sh_str = f'export update_branch={req.update_branch}'
config_json_path = os.path.join(CONFIG_DIR, 'config.json')
config_bat_path = os.path.join(CONFIG_DIR, 'config.bat')
config_sh_path = os.path.join(CONFIG_DIR, 'config.sh')
with open(config_json_path, 'w') as f:
f.write(config_json_str)
with open(config_bat_path, 'w') as f:
f.write(config_bat_str)
with open(config_sh_path, 'w') as f:
f.write(config_sh_str)
return {'OK'}
except Exception as e:
print(traceback.format_exc())
return HTTPException(status_code=500, detail=str(e))
@app.get('/app_config')
def getAppConfig():
try:
config_json_path = os.path.join(CONFIG_DIR, 'config.json')
if not os.path.exists(config_json_path):
return HTTPException(status_code=500, detail="No config file")
with open(config_json_path, 'r') as f:
config_json_str = f.read()
config = json.loads(config_json_str)
return config
except Exception as e:
print(traceback.format_exc())
return HTTPException(status_code=500, detail=str(e))
@app.get('/modifiers.json')
def read_modifiers():
headers = {"Cache-Control": "no-cache, no-store, must-revalidate", "Pragma": "no-cache", "Expires": "0"}
return FileResponse(os.path.join(SD_UI_DIR, 'modifiers.json'), headers=headers)
@app.get('/output_dir')
def read_home_dir():
return {outpath}
# don't log certain requests
class LogSuppressFilter(logging.Filter):
def filter(self, record: logging.LogRecord) -> bool:
path = record.getMessage()
for prefix in ACCESS_LOG_SUPPRESS_PATH_PREFIXES:
if path.find(prefix) != -1:
return False
return True
logging.getLogger('uvicorn.access').addFilter(LogSuppressFilter())
# start the browser ui
import webbrowser; webbrowser.open('http://localhost:9000')

Binary file not shown.

Binary file not shown.

Binary file not shown.

BIN
installer/bin/micromamba_mac_x64 Executable file

Binary file not shown.

Binary file not shown.

View File

@ -0,0 +1,34 @@
@echo off
@rem This file initializes micromamba and activates the env.
@rem A similar bootstrap file needs to exist for each platform (win, linux, macOS)
@rem Ready to hand-over to the platform-independent installer after this (written in python).
set MAMBA_ROOT_PREFIX=%SD_BASE_DIR%\env\mamba
set INSTALL_ENV_DIR=%SD_BASE_DIR%\env\installer_env
set INSTALLER_YAML_FILE=%SD_BASE_DIR%\installer\yaml\installer-environment.yaml
set MICROMAMBA_BINARY_FILE=%SD_BASE_DIR%\installer\bin\micromamba_win_x64.exe
@rem initialize the mamba dir
if not exist "%MAMBA_ROOT_PREFIX%" mkdir "%MAMBA_ROOT_PREFIX%"
copy "%MICROMAMBA_BINARY_FILE%" "%MAMBA_ROOT_PREFIX%\micromamba.exe"
@rem test the mamba binary
echo Micromamba version:
call "%MAMBA_ROOT_PREFIX%\micromamba.exe" --version
@rem run the shell hook
if not exist "%MAMBA_ROOT_PREFIX%\Scripts" (
call "%MAMBA_ROOT_PREFIX%\micromamba.exe" shell hook --log-level 4 -s cmd.exe
)
call "%MAMBA_ROOT_PREFIX%\condabin\mamba_hook.bat"
@rem create the installer env
if not exist "%INSTALL_ENV_DIR%" (
call micromamba create -y --prefix "%INSTALL_ENV_DIR%" -f "%INSTALLER_YAML_FILE%"
)
@rem activate
call micromamba activate "%INSTALL_ENV_DIR%"

View File

@ -0,0 +1,44 @@
#!/bin/bash
# This file initializes micromamba and activates the env.
# A similar bootstrap file needs to exist for each platform (win, linux, macOS)
# Ready to hand-over to the platform-independent installer after this (written in python).
OS_NAME=$(uname -s)
case "${OS_NAME}" in
Linux*) OS_NAME="linux";;
Darwin*) OS_NAME="mac";;
*) echo "Unknown OS: $OS_NAME! This only runs on Linux or Mac" && exit
esac
OS_ARCH=$(uname -m)
case "${OS_ARCH}" in
x86_64*) OS_ARCH="x64";;
arm64*) OS_ARCH="arm64";;
*) echo "Unknown system architecture: $OS_ARCH! This only runs on x86_64 or arm64" && exit
esac
export MAMBA_ROOT_PREFIX=$SD_BASE_DIR/env/mamba
INSTALL_ENV_DIR=$SD_BASE_DIR/env/installer_env
INSTALLER_YAML_FILE=$SD_BASE_DIR/installer/yaml/installer-environment.yaml
MICROMAMBA_BINARY_FILE=$SD_BASE_DIR/installer/bin/micromamba_${OS_NAME}_${OS_ARCH}
# initialize the mamba dir
mkdir -p "$MAMBA_ROOT_PREFIX"
cp "$MICROMAMBA_BINARY_FILE" "$MAMBA_ROOT_PREFIX/micromamba"
# test the mamba binary
echo "Micromamba version:"
"$MAMBA_ROOT_PREFIX/micromamba" --version
# run the shell hook
eval "$($MAMBA_ROOT_PREFIX/micromamba shell hook -s posix)"
# create the installer env
if [ ! -e "$INSTALL_ENV_DIR" ]; then
micromamba create -y --prefix "$INSTALL_ENV_DIR" -f "$INSTALLER_YAML_FILE"
fi
# activate
micromamba activate "$INSTALL_ENV_DIR"

View File

@ -0,0 +1,21 @@
@echo off
if exist "%SD_BASE_DIR%\env" exit /b
set suggested_dir=%~d0\stable-diffusion-ui
echo "Please install Stable Diffusion UI at the root of your drive. This avoids problems with path length limits in Windows." & echo.
set /p answer="Press Enter to install at %suggested_dir%, or type 'c' (without quotes) to install at the current location (press enter or type 'c'): "
if /i "%answer:~,1%" NEQ "c" (
if exist "%suggested_dir%" (
echo. & echo "Sorry, %suggested_dir% already exists! Cannot overwrite that folder!" & echo.
pause
exit
)
xcopy "%SD_BASE_DIR%" "%suggested_dir%" /s /i /Y /Q
echo Please run the %START_CMD_FILENAME% file inside %suggested_dir% . Do not use this folder anymore > "%SD_BASE_DIR%/READ_ME - DO_NOT_USE_THIS_FOLDER.txt"
cd %suggested_dir%
)

View File

@ -0,0 +1,78 @@
import argparse
import subprocess
import sys
import json
import os
import platform
import shutil
config_path = os.path.join('config.json')
if not os.path.exists('LICENSE'):
print('Error: This script needs to be run from the root of the stable-diffusion-ui folder! Please cd to the correct folder, and run this again.')
exit(1)
parser = argparse.ArgumentParser()
parser.add_argument(
"--symlink_dir", type=str, default=None, help="the absolute path to the project git repository (to link to)"
)
opt = parser.parse_args()
def run(cmd):
p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, shell=True)
for c in iter(lambda: p.stdout.read(1), b""):
sys.stdout.buffer.write(c)
sys.stdout.flush()
p.wait()
return p.returncode == 0
def get_config():
if not os.path.exists(config_path):
return {}
with open(config_path, "r") as f:
return json.load(f)
def save_config(config):
with open(config_path, "w") as f:
json.dump(config, f)
# set the `is_developer_mode` flag to `true` in the config
config = get_config()
config['is_developer_mode'] = True
save_config(config)
print('set is_developer_mode=true in config.json')
# make the symlink, if requested
if opt.symlink_dir is not None:
if not os.path.exists(opt.symlink_dir):
print(f'Symlink directory "{opt.symlink_dir}" was not found! Are you sure it has been escaped correctly?')
exit(1)
installer_target_path = os.path.join(opt.symlink_dir, 'installer')
ui_target_path = os.path.join(opt.symlink_dir, 'ui')
engine_target_path = os.path.join(opt.symlink_dir, 'engine')
shutil.rmtree('installer', ignore_errors=True)
shutil.rmtree('ui', ignore_errors=True)
shutil.rmtree('engine', ignore_errors=True)
if not os.path.exists(ui_target_path) or not os.path.exists(installer_target_path) or not os.path.exists(engine_target_path):
print('The target symlink directory does not contain the required {ui, installer, engine} folders. Are you sure it is the correct git repo for the project?')
exit(1)
if platform.system() == 'Windows':
run(f'mklink /J "installer" "{installer_target_path}"')
run(f'mklink /J "ui" "{ui_target_path}"')
run(f'mklink /J "engine" "{engine_target_path}"')
elif platform.system() in ('Linux', 'Darwin'):
run(f'ln -s "{installer_target_path}" "installer"')
run(f'ln -s "{ui_target_path}" "ui"')
run(f'ln -s "{engine_target_path}" "engine"')
print(f'Created symlinks! Your installation will now automatically use the files present in the repository at {opt.symlink_dir}')

View File

@ -0,0 +1,70 @@
import os
import json
import platform
# config
PROJECT_REPO_URL = 'https://github.com/cmdr2/stable-diffusion-ui.git'
DEFAULT_PROJECT_BRANCH = 'installer_new'
PROJECT_REPO_DIR_NAME = 'project_repo'
STABLE_DIFFUSION_REPO_URL = 'https://github.com/basujindal/stable-diffusion.git'
DEFAULT_STABLE_DIFFUSION_COMMIT = 'f6cfebffa752ee11a7b07497b8529d5971de916c'
STABLE_DIFFUSION_REPO_DIR_NAME = 'stable-diffusion'
PROJECT_ENV_DIR_NAME = 'project_env'
START_CMD_FILE_NAME = "Start Stable Diffusion UI.cmd" if platform.system() == "Windows" else "start.sh"
DEV_CONSOLE_CMD_FILE_NAME = "Developer Console.cmd" if platform.system() == "Windows" else "developer_console.sh"
CONFIG_FILE_NAME = 'config.json'
# top-level folders
ENV_DIR_NAME = 'env'
MODELS_DIR_NAME = 'models'
INSTALLER_DIR_NAME = 'installer'
UI_DIR_NAME = 'ui'
ENGINE_DIR_NAME = 'engine'
# env
SD_BASE_DIR = os.environ['SD_BASE_DIR']
# model folders
STABLE_DIFFUSION_MODELS_DIR_NAME = "stable-diffusion"
GFPGAN_MODELS_DIR_NAME = "gfpgan"
RealESRGAN_MODELS_DIR_NAME = "realesrgan"
# create references to dirs
env_dir_path = os.path.join(SD_BASE_DIR, ENV_DIR_NAME)
installer_dir_path = os.path.join(SD_BASE_DIR, INSTALLER_DIR_NAME)
ui_dir_path = os.path.join(SD_BASE_DIR, UI_DIR_NAME)
engine_dir_path = os.path.join(SD_BASE_DIR, ENGINE_DIR_NAME)
project_repo_dir_path = os.path.join(env_dir_path, PROJECT_REPO_DIR_NAME)
stable_diffusion_repo_dir_path = os.path.join(env_dir_path, STABLE_DIFFUSION_REPO_DIR_NAME)
project_env_dir_path = os.path.join(env_dir_path, PROJECT_ENV_DIR_NAME)
patches_dir_path = os.path.join(installer_dir_path, 'patches')
models_dir_path = os.path.join(SD_BASE_DIR, MODELS_DIR_NAME)
stable_diffusion_models_dir_path = os.path.join(models_dir_path, STABLE_DIFFUSION_MODELS_DIR_NAME)
gfpgan_models_dir_path = os.path.join(models_dir_path, GFPGAN_MODELS_DIR_NAME)
realesrgan_models_dir_path = os.path.join(models_dir_path, RealESRGAN_MODELS_DIR_NAME)
# useful functions
def get_config():
config_path = os.path.join(SD_BASE_DIR, CONFIG_FILE_NAME)
if not os.path.exists(config_path):
return {}
with open(config_path, "r") as f:
return json.load(f)
# app context
config = get_config()
activated_env_dir_path = None

View File

@ -0,0 +1,18 @@
'''
This script is run by the `installer.helpers.modules_exist_in_env()` function
'''
import sys
import pkgutil
modules = sys.argv[1:]
missing_modules = []
for m in modules:
if pkgutil.find_loader(m) is None:
missing_modules.append(m)
if len(missing_modules) == 0:
print('42')
exit()
print('Missing modules', missing_modules)

View File

@ -0,0 +1,80 @@
import os
from os import path
import subprocess
import traceback
from installer import app
def run(cmd, run_in_folder=None, env=None, get_output=False, log_the_cmd=False):
if app.activated_env_dir_path is not None and 'micromamba activate' not in cmd:
cmd = f'micromamba activate "{app.activated_env_dir_path}" && {cmd}'
if run_in_folder is not None:
cmd = f'cd "{run_in_folder}" && {cmd}'
if log_the_cmd:
log('running: ' + cmd)
if get_output:
p = subprocess.Popen(cmd, shell=True, env=env, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
else:
p = subprocess.Popen(cmd, shell=True, env=env)
out, err = p.communicate()
out = out.decode('utf-8') if isinstance(out, bytes) else out
err = err.decode('utf-8') if isinstance(out, bytes) else err
if get_output:
return out, err
def log(msg):
print(msg)
def modules_exist_in_env(modules, env_dir_path=app.project_env_dir_path):
if not path.exists(env_dir_path):
return False
check_modules_script_path = path.join(app.installer_dir_path, 'installer', 'check_modules.py')
module_args = ' '.join(modules)
check_modules_cmd = f'python "{check_modules_script_path}" {module_args}'
env = os.environ.copy()
env['PYTHONPATH'] = app.stable_diffusion_repo_dir_path + ';' + os.path.join(app.project_env_dir_path, 'lib', 'site-packages')
if app.activated_env_dir_path != env_dir_path:
activate_cmd = f'micromamba activate "{env_dir_path}"'
check_modules_cmd = f'{activate_cmd} && {check_modules_cmd}'
# activate and run the modules checker
output, _ = run(check_modules_cmd, get_output=True, env=env)
if 'Missing' in output:
log(output)
return False
return True
def fail_with_install_error(error_msg):
try:
log(traceback.format_stack())
log(f'''
Error: {error_msg}. Sorry about that, please try to:
1. Run this installer again.
2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/blob/main/Troubleshooting.md
3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB
4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues
Thanks!''')
except:
pass
exit(1)
def apply_git_patches(repo_dir_path, patch_file_names):
is_developer_mode = app.config.get('is_developer_mode', False)
if is_developer_mode:
return
for patch_file_name in patch_file_names:
patch_file_path = path.join(app.patches_dir_path, patch_file_name)
run(f"git apply {patch_file_path}", run_in_folder=repo_dir_path)

View File

@ -0,0 +1,34 @@
import os
import sys
from datetime import datetime
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from installer import helpers
from installer.tasks import (
fetch_project_repo,
apply_project_update,
fetch_stable_diffusion_repo,
install_stable_diffusion_packages,
install_ui_packages,
download_weights,
start_ui_server,
)
tasks = [
fetch_project_repo,
apply_project_update,
fetch_stable_diffusion_repo,
install_stable_diffusion_packages,
install_ui_packages,
download_weights,
start_ui_server,
]
helpers.log(f'Starting Stable Diffusion UI at {datetime.now().strftime("%d/%m/%Y %H:%M:%S")}')
def run_tasks():
for task in tasks:
task.run()
run_tasks()

View File

@ -0,0 +1,8 @@
@echo off
rem Never edit this file. If you really, really have to, beware that a script doesn't like
rem being overwritten while it is running (the auto-updater will do that).
rem The trick is to update this file while another script is running, and vice versa.
call python %SD_BASE_DIR%\installer\installer\main.py
pause

9
installer/installer/start.sh Executable file
View File

@ -0,0 +1,9 @@
#!/bin/bash
# Never edit this file. If you really, really have to, beware that a script doesn't like
# being overwritten while it is running (the auto-updater will do that).
# The trick is to update this file while another script is running, and vice versa.
python $SD_BASE_DIR/installer/installer/main.py
read -p "Press enter to continue"

View File

View File

@ -0,0 +1,30 @@
from os import path
import shutil
from installer import app
def run():
is_developer_mode = app.config.get('is_developer_mode', False)
if is_developer_mode:
return
installer_src_path = path.join(app.project_repo_dir_path, 'installer')
ui_src_path = path.join(app.project_repo_dir_path, 'ui')
engine_src_path = path.join(app.project_repo_dir_path, 'engine')
start_cmd_src_path = path.join(app.project_repo_dir_path, app.START_CMD_FILE_NAME)
start_cmd_dst_path = path.join(app.SD_BASE_DIR, app.START_CMD_FILE_NAME)
dev_console_cmd_src_path = path.join(app.project_repo_dir_path, app.DEV_CONSOLE_CMD_FILE_NAME)
dev_console_cmd_dst_path = path.join(app.SD_BASE_DIR, app.DEV_CONSOLE_CMD_FILE_NAME)
shutil.rmtree(app.installer_dir_path, ignore_errors=True)
shutil.rmtree(app.ui_dir_path, ignore_errors=True)
shutil.rmtree(app.engine_dir_path, ignore_errors=True)
shutil.copytree(installer_src_path, app.installer_dir_path, dirs_exist_ok=True)
shutil.copytree(ui_src_path, app.ui_dir_path, dirs_exist_ok=True)
shutil.copytree(engine_src_path, app.engine_dir_path, dirs_exist_ok=True)
shutil.copy(start_cmd_src_path, start_cmd_dst_path)
shutil.copy(dev_console_cmd_src_path, dev_console_cmd_dst_path)

View File

@ -0,0 +1,46 @@
import os
from installer import app, helpers
def run():
fetch_model('Stable Diffusion', 'sd-v1-4.ckpt', model_dir_path=app.stable_diffusion_models_dir_path, download_url='https://me.cmdr2.org/stable-diffusion-ui/sd-v1-4.ckpt', expected_file_sizes=[4265380512, 7703807346, 7703810927])
fetch_model('Face Correction (GFPGAN)', 'GFPGANv1.4.pth', model_dir_path=app.gfpgan_models_dir_path, download_url='https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/GFPGANv1.4.pth', expected_file_sizes=[348632874])
fetch_model('Resolution Upscale (RealESRGAN x4)', 'RealESRGAN_x4plus.pth', model_dir_path=app.realesrgan_models_dir_path, download_url='https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth', expected_file_sizes=[67040989])
fetch_model('Resolution Upscale (RealESRGAN x4_anime)', 'RealESRGAN_x4plus_anime_6B.pth', model_dir_path=app.realesrgan_models_dir_path, download_url='https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth', expected_file_sizes=[17938799])
def fetch_model(model_type, file_name, model_dir_path, download_url, expected_file_sizes):
os.makedirs(model_dir_path, exist_ok=True)
file_path = os.path.join(model_dir_path, file_name)
if model_exists(file_name, file_path, expected_file_sizes):
helpers.log(f'Data files (weights) necessary for {model_type} were already downloaded')
return
helpers.log(f'Downloading data files (weights) for {model_type}..')
helpers.run(f'curl -L -k "{download_url}" > "{file_path}"', log_the_cmd=True)
def model_exists(file_name, file_path, expected_file_sizes):
legacy_file_path = os.path.join(app.stable_diffusion_repo_dir_path, file_name)
file_exists = os.path.exists(file_path)
legacy_file_exists = os.path.exists(legacy_file_path)
if legacy_file_exists:
file_size = os.path.getsize(legacy_file_path)
if file_size in expected_file_sizes:
return True
helpers.log(f'{file_name} is invalid. Was only {file_size} bytes in size. Downloading again..')
os.remove(legacy_file_path)
if file_exists:
file_size = os.path.getsize(file_path)
if file_size in expected_file_sizes:
return True
helpers.log(f'{file_name} is invalid. Was only {file_size} bytes in size. Downloading again..')
os.remove(file_path)
return False

View File

@ -0,0 +1,27 @@
from os import path
from installer import app, helpers
project_repo_git_path = path.join(app.project_repo_dir_path, '.git')
def run():
branch_name = app.config.get('update_branch', app.DEFAULT_PROJECT_BRANCH)
if path.exists(project_repo_git_path):
helpers.log(f"Stable Diffusion UI's git repository was already installed. Updating from {branch_name}..")
helpers.run("git reset --hard", run_in_folder=app.project_repo_dir_path)
helpers.run(f'git -c advice.detachedHead=false checkout "{branch_name}"', run_in_folder=app.project_repo_dir_path)
helpers.run("git pull", run_in_folder=app.project_repo_dir_path)
else:
helpers.log("\nDownloading Stable Diffusion UI..\n")
helpers.log(f"Using the {branch_name} channel\n")
helpers.run(f'git clone {app.PROJECT_REPO_URL} "{app.project_repo_dir_path}"')
if path.exists(project_repo_git_path):
helpers.log("Downloaded Stable Diffusion UI")
else:
helpers.fail_with_install_error(error_msg="Could not download Stable Diffusion UI")
helpers.run(f'git -c advice.detachedHead=false checkout "{branch_name}"', run_in_folder=app.project_repo_dir_path)

View File

@ -0,0 +1,37 @@
from os import path
from installer import app, helpers
stable_diffusion_repo_git_path = path.join(app.stable_diffusion_repo_dir_path, '.git')
is_developer_mode = app.config.get('is_developer_mode', False)
def run():
fetch_repo()
helpers.apply_git_patches(app.stable_diffusion_repo_dir_path, patch_file_names=(
"sd_custom.patch",
))
def fetch_repo():
commit_id = app.config.get('stable_diffusion_commit', app.DEFAULT_STABLE_DIFFUSION_COMMIT)
if path.exists(stable_diffusion_repo_git_path):
helpers.log(f"Stable Diffusion's git repository was already installed. Using commit: {commit_id}..")
if not is_developer_mode:
helpers.run("git reset --hard", run_in_folder=app.stable_diffusion_repo_dir_path)
helpers.run("git fetch origin", run_in_folder=app.stable_diffusion_repo_dir_path)
helpers.run(f'git -c advice.detachedHead=false checkout "{commit_id}"', run_in_folder=app.stable_diffusion_repo_dir_path)
else:
helpers.log("\nDownloading Stable Diffusion..\n")
helpers.log(f"Using commit: {commit_id}\n")
helpers.run(f'git clone {app.STABLE_DIFFUSION_REPO_URL} "{app.stable_diffusion_repo_dir_path}"')
if path.exists(stable_diffusion_repo_git_path):
helpers.log("Downloaded Stable Diffusion")
else:
helpers.fail_with_install_error(error_msg="Could not download Stable Diffusion")
helpers.run(f'git -c advice.detachedHead=false checkout "{commit_id}"', run_in_folder=app.stable_diffusion_repo_dir_path)

View File

@ -0,0 +1,59 @@
import os
import platform
import shutil
from installer import app, helpers
def run():
environment_file_path = get_environment_file_path()
local_env_file_path = os.path.join(app.stable_diffusion_repo_dir_path, 'environment.yaml')
shutil.copy(environment_file_path, local_env_file_path)
if is_valid_env():
helpers.log("Packages necessary for Stable Diffusion were already installed")
return
log_installing_header()
env = os.environ.copy()
env['PYTHONNOUSERSITE'] = '1'
if not os.path.exists(app.project_env_dir_path):
helpers.run(f'micromamba create --prefix {app.project_env_dir_path}', log_the_cmd=True)
helpers.run(f'micromamba install -y --prefix {app.project_env_dir_path} -f {local_env_file_path}', env=env, log_the_cmd=True, run_in_folder=app.stable_diffusion_repo_dir_path)
if is_valid_env():
helpers.log("Installed the packages necessary for Stable Diffusion")
app.activated_env_dir_path = app.project_env_dir_path # so that future `run()` invocations will run in the activated env
else:
helpers.fail_with_install_error(error_msg="Could not install the packages necessary for Stable Diffusion")
apply_patches()
def apply_patches():
gfpgan_repo_dir_path = os.path.join(app.stable_diffusion_repo_dir_path, 'src', 'gfpgan')
helpers.apply_git_patches(gfpgan_repo_dir_path, patch_file_names=(
"gfpgan_custom.patch",
))
def get_environment_file_path():
environment_file_name = 'sd-environment-win-linux-nvidia.yaml'
if platform.system() == 'Darwin':
environment_file_name = 'sd-environment-mac-nvidia.yaml'
return os.path.join(app.installer_dir_path, 'yaml', environment_file_name)
def log_installing_header():
helpers.log('''
Downloading packages necessary for Stable Diffusion..
***** !! This will take some time (depending on the speed of the Internet connection) and may appear to be stuck, but please be patient *****
''')
def is_valid_env():
return helpers.modules_exist_in_env(('torch', 'antlr4', 'transformers', 'numpy', 'gfpgan', 'realesrgan', 'basicsr'))

View File

@ -0,0 +1,39 @@
import os
import shutil
import platform
from installer import app, helpers
def run():
if is_valid_env():
helpers.log("Packages necessary for Stable Diffusion UI were already installed")
return
log_installing_header()
env = os.environ.copy()
env['PYTHONNOUSERSITE'] = '1'
helpers.run(f'micromamba install -y --prefix {app.project_env_dir_path} -c conda-forge uvicorn fastapi', env=env, log_the_cmd=True)
if is_valid_env():
helpers.log("Installed the packages necessary for Stable Diffusion UI")
else:
helpers.fail_with_install_error(error_msg="Could not install the packages necessary for Stable Diffusion UI")
def log_installing_header():
helpers.log('''
Downloading packages necessary for Stable Diffusion UI..
''')
def is_valid_env():
path = os.environ['PATH']
path += ';' + os.path.join(app.project_env_dir_path, 'Scripts' if platform.system() == 'Windows' else 'bin')
if shutil.which("uvicorn", path=path) is None:
helpers.log("uvicorn not found!")
return False
return helpers.modules_exist_in_env(('uvicorn', 'fastapi'))

View File

@ -0,0 +1,23 @@
import os
import platform
from installer import app, helpers
def run():
helpers.log("\nStable Diffusion is ready!\n")
env = os.environ.copy()
env['SD_DIR'] = app.stable_diffusion_repo_dir_path
env['PYTHONPATH'] = app.stable_diffusion_repo_dir_path + ';' + os.path.join(app.project_env_dir_path, 'lib', 'site-packages')
env['SD_UI_PATH'] = app.ui_dir_path
env['PATH'] += ';' + os.path.join(app.project_env_dir_path, 'Scripts' if platform.system() == 'Windows' else 'bin')
helpers.log(f'PYTHONPATH={env["PYTHONPATH"]}')
helpers.run('python --version', log_the_cmd=True)
host = app.config.get('host', 'localhost')
port = app.config.get('port', '9000')
ui_server_cmd = f'uvicorn server:app --app-dir "{app.ui_dir_path}" --port {port} --host {host}'
helpers.run(ui_server_cmd, run_in_folder=app.stable_diffusion_repo_dir_path, log_the_cmd=True, env=env)

View File

@ -0,0 +1,22 @@
diff --git a/gfpgan/utils.py b/gfpgan/utils.py
index 74ee5a8..1357f48 100644
--- a/gfpgan/utils.py
+++ b/gfpgan/utils.py
@@ -117,14 +117,14 @@ class GFPGANer():
# face restoration
for cropped_face in self.face_helper.cropped_faces:
# prepare data
- cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
+ cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=False, float32=True)
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
cropped_face_t = cropped_face_t.unsqueeze(0).to(self.device)
try:
- output = self.gfpgan(cropped_face_t, return_rgb=False, weight=weight)[0]
+ output = self.gfpgan(cropped_face_t, return_rgb=True, weight=weight)[0]
# convert to image
- restored_face = tensor2img(output.squeeze(0), rgb2bgr=True, min_max=(-1, 1))
+ restored_face = tensor2img(output.squeeze(0), rgb2bgr=False, min_max=(-1, 1))
except RuntimeError as error:
print(f'\tFailed inference for GFPGAN: {error}.')
restored_face = cropped_face

View File

@ -0,0 +1,332 @@
diff --git a/optimizedSD/ddpm.py b/optimizedSD/ddpm.py
index b967b55..35ef520 100644
--- a/optimizedSD/ddpm.py
+++ b/optimizedSD/ddpm.py
@@ -22,7 +22,7 @@ from ldm.util import exists, default, instantiate_from_config
from ldm.modules.diffusionmodules.util import make_beta_schedule
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
-from samplers import CompVisDenoiser, get_ancestral_step, to_d, append_dims,linear_multistep_coeff
+from .samplers import CompVisDenoiser, get_ancestral_step, to_d, append_dims,linear_multistep_coeff
def disabled_train(self):
"""Overwrite model.train with this function to make sure train/eval mode
@@ -506,6 +506,8 @@ class UNet(DDPM):
x_latent = noise if x0 is None else x0
# sampling
+ if sampler in ('ddim', 'dpm2', 'heun', 'dpm2_a', 'lms') and not hasattr(self, 'ddim_timesteps'):
+ self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=False)
if sampler == "plms":
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=False)
@@ -528,39 +530,46 @@ class UNet(DDPM):
elif sampler == "ddim":
samples = self.ddim_sampling(x_latent, conditioning, S, unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=unconditional_conditioning,
- mask = mask,init_latent=x_T,use_original_steps=False)
+ mask = mask,init_latent=x_T,use_original_steps=False,
+ callback=callback, img_callback=img_callback)
elif sampler == "euler":
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=False)
samples = self.euler_sampling(self.alphas_cumprod,x_latent, S, conditioning, unconditional_conditioning=unconditional_conditioning,
- unconditional_guidance_scale=unconditional_guidance_scale)
+ unconditional_guidance_scale=unconditional_guidance_scale,
+ img_callback=img_callback)
elif sampler == "euler_a":
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=False)
samples = self.euler_ancestral_sampling(self.alphas_cumprod,x_latent, S, conditioning, unconditional_conditioning=unconditional_conditioning,
- unconditional_guidance_scale=unconditional_guidance_scale)
+ unconditional_guidance_scale=unconditional_guidance_scale,
+ img_callback=img_callback)
elif sampler == "dpm2":
samples = self.dpm_2_sampling(self.alphas_cumprod,x_latent, S, conditioning, unconditional_conditioning=unconditional_conditioning,
- unconditional_guidance_scale=unconditional_guidance_scale)
+ unconditional_guidance_scale=unconditional_guidance_scale,
+ img_callback=img_callback)
elif sampler == "heun":
samples = self.heun_sampling(self.alphas_cumprod,x_latent, S, conditioning, unconditional_conditioning=unconditional_conditioning,
- unconditional_guidance_scale=unconditional_guidance_scale)
+ unconditional_guidance_scale=unconditional_guidance_scale,
+ img_callback=img_callback)
elif sampler == "dpm2_a":
samples = self.dpm_2_ancestral_sampling(self.alphas_cumprod,x_latent, S, conditioning, unconditional_conditioning=unconditional_conditioning,
- unconditional_guidance_scale=unconditional_guidance_scale)
+ unconditional_guidance_scale=unconditional_guidance_scale,
+ img_callback=img_callback)
elif sampler == "lms":
samples = self.lms_sampling(self.alphas_cumprod,x_latent, S, conditioning, unconditional_conditioning=unconditional_conditioning,
- unconditional_guidance_scale=unconditional_guidance_scale)
+ unconditional_guidance_scale=unconditional_guidance_scale,
+ img_callback=img_callback)
+
+ yield from samples
if(self.turbo):
self.model1.to("cpu")
self.model2.to("cpu")
- return samples
-
@torch.no_grad()
def plms_sampling(self, cond,b, img,
ddim_use_original_steps=False,
@@ -599,10 +608,10 @@ class UNet(DDPM):
old_eps.append(e_t)
if len(old_eps) >= 4:
old_eps.pop(0)
- if callback: callback(i)
- if img_callback: img_callback(pred_x0, i)
+ if callback: yield from callback(i)
+ if img_callback: yield from img_callback(pred_x0, i)
- return img
+ yield from img_callback(img, len(iterator)-1)
@torch.no_grad()
def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
@@ -706,7 +715,8 @@ class UNet(DDPM):
@torch.no_grad()
def ddim_sampling(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
- mask = None,init_latent=None,use_original_steps=False):
+ mask = None,init_latent=None,use_original_steps=False,
+ callback=None, img_callback=None):
timesteps = self.ddim_timesteps
timesteps = timesteps[:t_start]
@@ -730,10 +740,13 @@ class UNet(DDPM):
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=unconditional_conditioning)
+ if callback: yield from callback(i)
+ if img_callback: yield from img_callback(x_dec, i)
+
if mask is not None:
- return x0 * mask + (1. - mask) * x_dec
+ x_dec = x0 * mask + (1. - mask) * x_dec
- return x_dec
+ yield from img_callback(x_dec, len(iterator)-1)
@torch.no_grad()
@@ -779,13 +792,16 @@ class UNet(DDPM):
@torch.no_grad()
- def euler_sampling(self, ac, x, S, cond, unconditional_conditioning = None, unconditional_guidance_scale = 1,extra_args=None,callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
+ def euler_sampling(self, ac, x, S, cond, unconditional_conditioning = None, unconditional_guidance_scale = 1,extra_args=None,callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.,
+ img_callback=None):
"""Implements Algorithm 2 (Euler steps) from Karras et al. (2022)."""
extra_args = {} if extra_args is None else extra_args
cvd = CompVisDenoiser(ac)
sigmas = cvd.get_sigmas(S)
x = x*sigmas[0]
+ print(f"Running Euler Sampling with {len(sigmas) - 1} timesteps")
+
s_in = x.new_ones([x.shape[0]]).half()
for i in trange(len(sigmas) - 1, disable=disable):
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
@@ -807,13 +823,18 @@ class UNet(DDPM):
d = to_d(x, sigma_hat, denoised)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
+
+ if img_callback: yield from img_callback(x, i)
+
dt = sigmas[i + 1] - sigma_hat
# Euler method
x = x + d * dt
- return x
+
+ yield from img_callback(x, len(sigmas)-1)
@torch.no_grad()
- def euler_ancestral_sampling(self,ac,x, S, cond, unconditional_conditioning = None, unconditional_guidance_scale = 1,extra_args=None, callback=None, disable=None):
+ def euler_ancestral_sampling(self,ac,x, S, cond, unconditional_conditioning = None, unconditional_guidance_scale = 1,extra_args=None, callback=None, disable=None,
+ img_callback=None):
"""Ancestral sampling with Euler method steps."""
extra_args = {} if extra_args is None else extra_args
@@ -822,6 +843,8 @@ class UNet(DDPM):
sigmas = cvd.get_sigmas(S)
x = x*sigmas[0]
+ print(f"Running Euler Ancestral Sampling with {len(sigmas) - 1} timesteps")
+
s_in = x.new_ones([x.shape[0]]).half()
for i in trange(len(sigmas) - 1, disable=disable):
@@ -837,17 +860,22 @@ class UNet(DDPM):
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1])
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
+
+ if img_callback: yield from img_callback(x, i)
+
d = to_d(x, sigmas[i], denoised)
# Euler method
dt = sigma_down - sigmas[i]
x = x + d * dt
x = x + torch.randn_like(x) * sigma_up
- return x
+
+ yield from img_callback(x, len(sigmas)-1)
@torch.no_grad()
- def heun_sampling(self, ac, x, S, cond, unconditional_conditioning = None, unconditional_guidance_scale = 1, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
+ def heun_sampling(self, ac, x, S, cond, unconditional_conditioning = None, unconditional_guidance_scale = 1, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.,
+ img_callback=None):
"""Implements Algorithm 2 (Heun steps) from Karras et al. (2022)."""
extra_args = {} if extra_args is None else extra_args
@@ -855,6 +883,8 @@ class UNet(DDPM):
sigmas = cvd.get_sigmas(S)
x = x*sigmas[0]
+ print(f"Running Heun Sampling with {len(sigmas) - 1} timesteps")
+
s_in = x.new_ones([x.shape[0]]).half()
for i in trange(len(sigmas) - 1, disable=disable):
@@ -876,6 +906,9 @@ class UNet(DDPM):
d = to_d(x, sigma_hat, denoised)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
+
+ if img_callback: yield from img_callback(x, i)
+
dt = sigmas[i + 1] - sigma_hat
if sigmas[i + 1] == 0:
# Euler method
@@ -895,11 +928,13 @@ class UNet(DDPM):
d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
d_prime = (d + d_2) / 2
x = x + d_prime * dt
- return x
+
+ yield from img_callback(x, len(sigmas)-1)
@torch.no_grad()
- def dpm_2_sampling(self,ac,x, S, cond, unconditional_conditioning = None, unconditional_guidance_scale = 1,extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
+ def dpm_2_sampling(self,ac,x, S, cond, unconditional_conditioning = None, unconditional_guidance_scale = 1,extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.,
+ img_callback=None):
"""A sampler inspired by DPM-Solver-2 and Algorithm 2 from Karras et al. (2022)."""
extra_args = {} if extra_args is None else extra_args
@@ -907,6 +942,8 @@ class UNet(DDPM):
sigmas = cvd.get_sigmas(S)
x = x*sigmas[0]
+ print(f"Running DPM2 Sampling with {len(sigmas) - 1} timesteps")
+
s_in = x.new_ones([x.shape[0]]).half()
for i in trange(len(sigmas) - 1, disable=disable):
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
@@ -924,7 +961,7 @@ class UNet(DDPM):
e_t_uncond, e_t = (x_in + eps * c_out).chunk(2)
denoised = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
-
+ if img_callback: yield from img_callback(x, i)
d = to_d(x, sigma_hat, denoised)
# Midpoint method, where the midpoint is chosen according to a rho=3 Karras schedule
@@ -945,11 +982,13 @@ class UNet(DDPM):
d_2 = to_d(x_2, sigma_mid, denoised_2)
x = x + d_2 * dt_2
- return x
+
+ yield from img_callback(x, len(sigmas)-1)
@torch.no_grad()
- def dpm_2_ancestral_sampling(self,ac,x, S, cond, unconditional_conditioning = None, unconditional_guidance_scale = 1, extra_args=None, callback=None, disable=None):
+ def dpm_2_ancestral_sampling(self,ac,x, S, cond, unconditional_conditioning = None, unconditional_guidance_scale = 1, extra_args=None, callback=None, disable=None,
+ img_callback=None):
"""Ancestral sampling with DPM-Solver inspired second-order steps."""
extra_args = {} if extra_args is None else extra_args
@@ -957,6 +996,8 @@ class UNet(DDPM):
sigmas = cvd.get_sigmas(S)
x = x*sigmas[0]
+ print(f"Running DPM2 Ancestral Sampling with {len(sigmas) - 1} timesteps")
+
s_in = x.new_ones([x.shape[0]]).half()
for i in trange(len(sigmas) - 1, disable=disable):
@@ -973,6 +1014,9 @@ class UNet(DDPM):
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1])
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
+
+ if img_callback: yield from img_callback(x, i)
+
d = to_d(x, sigmas[i], denoised)
# Midpoint method, where the midpoint is chosen according to a rho=3 Karras schedule
sigma_mid = ((sigmas[i] ** (1 / 3) + sigma_down ** (1 / 3)) / 2) ** 3
@@ -993,11 +1037,13 @@ class UNet(DDPM):
d_2 = to_d(x_2, sigma_mid, denoised_2)
x = x + d_2 * dt_2
x = x + torch.randn_like(x) * sigma_up
- return x
+
+ yield from img_callback(x, len(sigmas)-1)
@torch.no_grad()
- def lms_sampling(self,ac,x, S, cond, unconditional_conditioning = None, unconditional_guidance_scale = 1, extra_args=None, callback=None, disable=None, order=4):
+ def lms_sampling(self,ac,x, S, cond, unconditional_conditioning = None, unconditional_guidance_scale = 1, extra_args=None, callback=None, disable=None, order=4,
+ img_callback=None):
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
@@ -1005,6 +1051,8 @@ class UNet(DDPM):
sigmas = cvd.get_sigmas(S)
x = x*sigmas[0]
+ print(f"Running LMS Sampling with {len(sigmas) - 1} timesteps")
+
ds = []
for i in trange(len(sigmas) - 1, disable=disable):
@@ -1017,6 +1065,7 @@ class UNet(DDPM):
e_t_uncond, e_t = (x_in + eps * c_out).chunk(2)
denoised = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
+ if img_callback: yield from img_callback(x, i)
d = to_d(x, sigmas[i], denoised)
ds.append(d)
@@ -1027,4 +1076,5 @@ class UNet(DDPM):
cur_order = min(i + 1, order)
coeffs = [linear_multistep_coeff(cur_order, sigmas.cpu(), i, j) for j in range(cur_order)]
x = x + sum(coeff * d for coeff, d in zip(coeffs, reversed(ds)))
- return x
+
+ yield from img_callback(x, len(sigmas)-1)
diff --git a/optimizedSD/openaimodelSplit.py b/optimizedSD/openaimodelSplit.py
index abc3098..7a32ffe 100644
--- a/optimizedSD/openaimodelSplit.py
+++ b/optimizedSD/openaimodelSplit.py
@@ -13,7 +13,7 @@ from ldm.modules.diffusionmodules.util import (
normalization,
timestep_embedding,
)
-from splitAttention import SpatialTransformer
+from .splitAttention import SpatialTransformer
class AttentionPool2d(nn.Module):

View File

@ -0,0 +1,13 @@
diff --git a/environment.yaml b/environment.yaml
index 7f25da8..306750f 100644
--- a/environment.yaml
+++ b/environment.yaml
@@ -23,6 +23,8 @@ dependencies:
- torch-fidelity==0.3.0
- transformers==4.19.2
- torchmetrics==0.6.0
+ - pywavelets==1.3.0
+ - pandas==1.4.4
- kornia==0.6
- -e git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers
- -e git+https://github.com/openai/CLIP.git@main#egg=clip

View File

@ -3,5 +3,5 @@ channels:
- defaults
- conda-forge
dependencies:
- conda
- git
- python=3.10.5

View File

@ -0,0 +1,47 @@
name: ldm
channels:
- pytorch
- conda-forge
dependencies:
- python==3.10.5
- pip==22.2.2
- pytorch
- torchvision
- albumentations==1.2.1
- coloredlogs==15.0.1
- einops==0.4.1
- grpcio==1.46.4
- humanfriendly==10.0
- imageio==2.21.2
- imageio-ffmpeg==0.4.7
- imgaug==0.4.0
- kornia==0.6.7
- mpmath==1.2.1
- nomkl
- numpy==1.23.2
- omegaconf==2.1.1
- onnx==1.12.0
- onnxruntime==1.12.1
- pudb==2022.1
- pytorch-lightning==1.6.5
- scipy==1.9.1
- streamlit==1.12.2
- sympy==1.10.1
- tensorboard==2.9.0
- torchmetrics==0.9.3
- antlr4-python3-runtime=4.8
- pip:
- opencv-python==4.6.0.66
- realesrgan==0.2.5.0
- test-tube==0.7.5
- transformers==4.21.2
- torch-fidelity==0.3.0
- -e git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers
- -e git+https://github.com/openai/CLIP.git@main#egg=clip
- -e git+https://github.com/TencentARC/GFPGAN#egg=GFPGAN
- -e git+https://github.com/xinntao/Real-ESRGAN#egg=realesrgan
- -e .
variables:
PYTORCH_ENABLE_MPS_FALLBACK: 1

View File

@ -0,0 +1,33 @@
name: ldm
channels:
- pytorch
- defaults
- conda-forge
dependencies:
- python=3.10.5
- pip=20.3
- cudatoolkit=11.3
- pytorch=1.11.0
- torchvision=0.12.0
- numpy=1.23.2
- antlr4-python3-runtime=4.8
- pip:
- albumentations==0.4.3
- opencv-python==4.6.0.66
- pudb==2019.2
- imageio==2.9.0
- imageio-ffmpeg==0.4.2
- pytorch-lightning==1.4.2
- omegaconf==2.1.1
- test-tube>=0.7.5
- streamlit>=0.73.1
- einops==0.3.0
- torch-fidelity==0.3.0
- transformers==4.19.2
- torchmetrics==0.6.0
- kornia==0.6
- -e git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers
- -e git+https://github.com/openai/CLIP.git@main#egg=clip
- -e git+https://github.com/TencentARC/GFPGAN#egg=GFPGAN
- -e git+https://github.com/xinntao/Real-ESRGAN#egg=realesrgan
- -e .

Binary file not shown.

Before

Width:  |  Height:  |  Size: 22 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 29 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 55 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 45 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 56 KiB

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 139 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 113 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 122 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 67 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 244 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 155 KiB

View File

@ -1,43 +0,0 @@
@echo off
echo "Opening Stable Diffusion UI - Developer Console.." & echo.
set PATH=C:\Windows\System32;%PATH%
@rem set legacy and new installer's PATH, if they exist
if exist "installer" set PATH=%cd%\installer;%cd%\installer\Library\bin;%cd%\installer\Scripts;%cd%\installer\Library\usr\bin;%PATH%
if exist "installer_files\env" set PATH=%cd%\installer_files\env;%cd%\installer_files\env\Library\bin;%cd%\installer_files\env\Scripts;%cd%\installer_files\Library\usr\bin;%PATH%
set PYTHONPATH=%cd%\installer;%cd%\installer_files\env
@rem activate the installer env
call conda activate
@rem Test the environment
echo "Environment Info:"
call where git
call git --version
call where conda
call conda --version
echo.
@rem activate the legacy environment (if present) and set PYTHONPATH
if exist "installer_files\env" (
set PYTHONPATH=%cd%\installer_files\env\lib\site-packages
)
if exist "stable-diffusion\env" (
call conda activate .\stable-diffusion\env
set PYTHONPATH=%cd%\stable-diffusion\env\lib\site-packages
)
call where python
call python --version
echo PYTHONPATH=%PYTHONPATH%
@rem done
echo.
cmd /k

View File

@ -1,27 +0,0 @@
@echo off
cd /d %~dp0
set PATH=C:\Windows\System32;%PATH%
@rem set legacy installer's PATH, if it exists
if exist "installer" set PATH=%cd%\installer;%cd%\installer\Library\bin;%cd%\installer\Scripts;%cd%\installer\Library\usr\bin;%PATH%
@rem Setup the packages required for the installer
call scripts\bootstrap.bat
@rem set new installer's PATH, if it downloaded any packages
if exist "installer_files\env" set PATH=%cd%\installer_files\env;%cd%\installer_files\env\Library\bin;%cd%\installer_files\env\Scripts;%cd%\installer_files\Library\usr\bin;%PATH%
set PYTHONPATH=%cd%\installer;%cd%\installer_files\env
@rem Test the bootstrap
call where git
call git --version
call where conda
call conda --version
@rem Download the rest of the installer and UI
call scripts\on_env_start.bat
@pause

View File

@ -1,77 +0,0 @@
@echo off
@rem This script will install git and conda (if not found on the PATH variable)
@rem using micromamba (an 8mb static-linked single-file binary, conda replacement).
@rem For users who already have git and conda, this step will be skipped.
@rem This enables a user to install this project without manually installing conda and git.
@rem config
set MAMBA_ROOT_PREFIX=%cd%\installer_files\mamba
set INSTALL_ENV_DIR=%cd%\installer_files\env
set LEGACY_INSTALL_ENV_DIR=%cd%\installer
set MICROMAMBA_DOWNLOAD_URL=https://github.com/cmdr2/stable-diffusion-ui/releases/download/v1.1/micromamba.exe
set umamba_exists=F
set OLD_APPDATA=%APPDATA%
set OLD_USERPROFILE=%USERPROFILE%
set APPDATA=%cd%\installer_files\appdata
set USERPROFILE=%cd%\profile
@rem figure out whether git and conda needs to be installed
if exist "%INSTALL_ENV_DIR%" set PATH=%INSTALL_ENV_DIR%;%INSTALL_ENV_DIR%\Library\bin;%INSTALL_ENV_DIR%\Scripts;%INSTALL_ENV_DIR%\Library\usr\bin;%PATH%
set PACKAGES_TO_INSTALL=
if not exist "%LEGACY_INSTALL_ENV_DIR%\etc\profile.d\conda.sh" (
if not exist "%INSTALL_ENV_DIR%\etc\profile.d\conda.sh" set PACKAGES_TO_INSTALL=%PACKAGES_TO_INSTALL% conda python=3.8.5
)
call git --version >.tmp1 2>.tmp2
if "%ERRORLEVEL%" NEQ "0" set PACKAGES_TO_INSTALL=%PACKAGES_TO_INSTALL% git
call "%MAMBA_ROOT_PREFIX%\micromamba.exe" --version >.tmp1 2>.tmp2
if "%ERRORLEVEL%" EQU "0" set umamba_exists=T
@rem (if necessary) install git and conda into a contained environment
if "%PACKAGES_TO_INSTALL%" NEQ "" (
@rem download micromamba
if "%umamba_exists%" == "F" (
echo "Downloading micromamba from %MICROMAMBA_DOWNLOAD_URL% to %MAMBA_ROOT_PREFIX%\micromamba.exe"
mkdir "%MAMBA_ROOT_PREFIX%"
call curl -Lk "%MICROMAMBA_DOWNLOAD_URL%" > "%MAMBA_ROOT_PREFIX%\micromamba.exe"
if "%ERRORLEVEL%" NEQ "0" (
echo "There was a problem downloading micromamba. Cannot continue."
pause
exit /b
)
mkdir "%APPDATA%"
mkdir "%USERPROFILE%"
@rem test the mamba binary
echo Micromamba version:
call "%MAMBA_ROOT_PREFIX%\micromamba.exe" --version
)
@rem create the installer env
if not exist "%INSTALL_ENV_DIR%" (
call "%MAMBA_ROOT_PREFIX%\micromamba.exe" create -y --prefix "%INSTALL_ENV_DIR%"
)
echo "Packages to install:%PACKAGES_TO_INSTALL%"
call "%MAMBA_ROOT_PREFIX%\micromamba.exe" install -y --prefix "%INSTALL_ENV_DIR%" -c conda-forge %PACKAGES_TO_INSTALL%
if not exist "%INSTALL_ENV_DIR%" (
echo "There was a problem while installing%PACKAGES_TO_INSTALL% using micromamba. Cannot continue."
pause
exit /b
)
)
@rem revert to the old APPDATA. only needed it for bypassing a bug in micromamba (with special characters)
set APPDATA=%OLD_APPDATA%
set USERPROFILE=%OLD_USERPROFILE%

View File

@ -1,86 +0,0 @@
#!/bin/bash
# This script will install git and conda (if not found on the PATH variable)
# using micromamba (an 8mb static-linked single-file binary, conda replacement).
# For users who already have git and conda, this step will be skipped.
# This enables a user to install this project without manually installing conda and git.
source ./scripts/functions.sh
set -o pipefail
OS_NAME=$(uname -s)
case "${OS_NAME}" in
Linux*) OS_NAME="linux";;
Darwin*) OS_NAME="osx";;
*) echo "Unknown OS: $OS_NAME! This script runs only on Linux or Mac" && exit
esac
OS_ARCH=$(uname -m)
case "${OS_ARCH}" in
x86_64*) OS_ARCH="64";;
arm64*) OS_ARCH="arm64";;
*) echo "Unknown system architecture: $OS_ARCH! This script runs only on x86_64 or arm64" && exit
esac
# https://mamba.readthedocs.io/en/latest/installation.html
if [ "$OS_NAME" == "linux" ] && [ "$OS_ARCH" == "arm64" ]; then OS_ARCH="aarch64"; fi
# config
export MAMBA_ROOT_PREFIX="$(pwd)/installer_files/mamba"
INSTALL_ENV_DIR="$(pwd)/installer_files/env"
LEGACY_INSTALL_ENV_DIR="$(pwd)/installer"
MICROMAMBA_DOWNLOAD_URL="https://micro.mamba.pm/api/micromamba/${OS_NAME}-${OS_ARCH}/latest"
umamba_exists="F"
# figure out whether git and conda needs to be installed
if [ -e "$INSTALL_ENV_DIR" ]; then export PATH="$INSTALL_ENV_DIR/bin:$PATH"; fi
PACKAGES_TO_INSTALL=""
if [ ! -e "$LEGACY_INSTALL_ENV_DIR/etc/profile.d/conda.sh" ] && [ ! -e "$INSTALL_ENV_DIR/etc/profile.d/conda.sh" ]; then PACKAGES_TO_INSTALL="$PACKAGES_TO_INSTALL conda python=3.8.5"; fi
if ! hash "git" &>/dev/null; then PACKAGES_TO_INSTALL="$PACKAGES_TO_INSTALL git"; fi
if "$MAMBA_ROOT_PREFIX/micromamba" --version &>/dev/null; then umamba_exists="T"; fi
# (if necessary) install git and conda into a contained environment
if [ "$PACKAGES_TO_INSTALL" != "" ]; then
# download micromamba
if [ "$umamba_exists" == "F" ]; then
echo "Downloading micromamba from $MICROMAMBA_DOWNLOAD_URL to $MAMBA_ROOT_PREFIX/micromamba"
mkdir -p "$MAMBA_ROOT_PREFIX"
curl -L "$MICROMAMBA_DOWNLOAD_URL" | tar -xvj bin/micromamba -O > "$MAMBA_ROOT_PREFIX/micromamba"
if [ "$?" != "0" ]; then
echo
echo "EE micromamba download failed"
echo "EE If the lines above contain 'bzip2: Cannot exec', your system doesn't have bzip2 installed"
echo "EE If there are network errors, please check your internet setup"
fail "micromamba download failed"
fi
chmod u+x "$MAMBA_ROOT_PREFIX/micromamba"
# test the mamba binary
echo "Micromamba version:"
"$MAMBA_ROOT_PREFIX/micromamba" --version
fi
# create the installer env
if [ ! -e "$INSTALL_ENV_DIR" ]; then
"$MAMBA_ROOT_PREFIX/micromamba" create -y --prefix "$INSTALL_ENV_DIR" || fail "unable to create the install environment"
fi
if [ ! -e "$INSTALL_ENV_DIR" ]; then
fail "There was a problem while installing$PACKAGES_TO_INSTALL using micromamba. Cannot continue."
fi
echo "Packages to install:$PACKAGES_TO_INSTALL"
"$MAMBA_ROOT_PREFIX/micromamba" install -y --prefix "$INSTALL_ENV_DIR" -c conda-forge $PACKAGES_TO_INSTALL
if [ "$?" != "0" ]; then
fail "Installation of the packages '$PACKAGES_TO_INSTALL' failed."
fi
fi

View File

@ -1,13 +0,0 @@
'''
This script checks if the given modules exist
'''
import sys
import pkgutil
modules = sys.argv[1:]
missing_modules = []
for m in modules:
if pkgutil.find_loader(m) is None:
print('module', m, 'not found')
exit(1)

View File

@ -1,53 +0,0 @@
#!/bin/bash
cd "$(dirname "${BASH_SOURCE[0]}")"
if [ "$0" == "bash" ]; then
echo "Opening Stable Diffusion UI - Developer Console.."
echo ""
# set legacy and new installer's PATH, if they exist
if [ -e "installer" ]; then export PATH="$(pwd)/installer/bin:$PATH"; fi
if [ -e "installer_files/env" ]; then export PATH="$(pwd)/installer_files/env/bin:$PATH"; fi
# activate the installer env
CONDA_BASEPATH=$(conda info --base)
source "$CONDA_BASEPATH/etc/profile.d/conda.sh" # avoids the 'shell not initialized' error
conda activate
# test the environment
echo "Environment Info:"
which git
git --version
which conda
conda --version
echo ""
# activate the legacy environment (if present) and set PYTHONPATH
if [ -e "installer_files/env" ]; then
export PYTHONPATH="$(pwd)/installer_files/env/lib/python3.8/site-packages"
fi
if [ -e "stable-diffusion/env" ]; then
CONDA_BASEPATH=$(conda info --base)
source "$CONDA_BASEPATH/etc/profile.d/conda.sh" # otherwise conda complains about 'shell not initialized' (needed when running in a script)
conda activate ./stable-diffusion/env
export PYTHONPATH="$(pwd)/stable-diffusion/env/lib/python3.8/site-packages"
fi
which python
python --version
echo "PYTHONPATH=$PYTHONPATH"
# done
echo ""
else
file_name=$(basename "${BASH_SOURCE[0]}")
bash --init-file "$file_name"
fi

View File

@ -1,32 +0,0 @@
#
# utility functions for all scripts
#
fail() {
echo
echo "EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE"
echo
if [ "$1" != "" ]; then
echo ERROR: $1
else
echo An error occurred.
fi
cat <<EOF
Error downloading Stable Diffusion UI. Sorry about that, please try to:
1. Run this installer again.
2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting
3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB
4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues
Thanks!
EOF
read -p "Press any key to continue"
exit 1
}

View File

@ -1,62 +0,0 @@
@echo off
@echo. & echo "Stable Diffusion UI - v2" & echo.
set PATH=C:\Windows\System32;%PATH%
if exist "scripts\config.bat" (
@call scripts\config.bat
)
if "%update_branch%"=="" (
set update_branch=main
)
@>nul findstr /m "conda_sd_ui_deps_installed" scripts\install_status.txt
@if "%ERRORLEVEL%" NEQ "0" (
for /f "tokens=*" %%a in ('python -c "import os; parts = os.getcwd().split(os.path.sep); print(len(parts))"') do if "%%a" NEQ "2" (
echo. & echo "!!!! WARNING !!!!" & echo.
echo "Your 'stable-diffusion-ui' folder is at %cd%" & echo.
echo "The 'stable-diffusion-ui' folder needs to be at the top of your drive, for e.g. 'C:\stable-diffusion-ui' or 'D:\stable-diffusion-ui' etc."
echo "Not placing this folder at the top of a drive can cause errors on some computers."
echo. & echo "Recommended: Please close this window and move the 'stable-diffusion-ui' folder to the top of a drive. For e.g. 'C:\stable-diffusion-ui'. Then run the installer again." & echo.
echo "Not Recommended: If you're sure that you want to install at the current location, please press any key to continue." & echo.
pause
)
)
@>nul findstr /m "sd_ui_git_cloned" scripts\install_status.txt
@if "%ERRORLEVEL%" EQU "0" (
@echo "Stable Diffusion UI's git repository was already installed. Updating from %update_branch%.."
@cd sd-ui-files
@call git reset --hard
@call git -c advice.detachedHead=false checkout "%update_branch%"
@call git pull
@cd ..
) else (
@echo. & echo "Downloading Stable Diffusion UI.." & echo.
@echo "Using the %update_branch% channel" & echo.
@call git clone -b "%update_branch%" https://github.com/cmdr2/stable-diffusion-ui.git sd-ui-files && (
@echo sd_ui_git_cloned >> scripts\install_status.txt
) || (
@echo "Error downloading Stable Diffusion UI. Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!"
pause
@exit /b
)
)
@xcopy sd-ui-files\ui ui /s /i /Y /q
@copy sd-ui-files\scripts\on_sd_start.bat scripts\ /Y
@copy sd-ui-files\scripts\bootstrap.bat scripts\ /Y
@copy sd-ui-files\scripts\check_modules.py scripts\ /Y
@copy "sd-ui-files\scripts\Start Stable Diffusion UI.cmd" . /Y
@copy "sd-ui-files\scripts\Developer Console.cmd" . /Y
@call scripts\on_sd_start.bat
@pause

View File

@ -1,46 +0,0 @@
#!/bin/bash
source ./scripts/functions.sh
printf "\n\nStable Diffusion UI\n\n"
if [ -f "scripts/config.sh" ]; then
source scripts/config.sh
fi
if [ "$update_branch" == "" ]; then
export update_branch="main"
fi
if [ -f "scripts/install_status.txt" ] && [ `grep -c sd_ui_git_cloned scripts/install_status.txt` -gt "0" ]; then
echo "Stable Diffusion UI's git repository was already installed. Updating from $update_branch.."
cd sd-ui-files
git reset --hard
git -c advice.detachedHead=false checkout "$update_branch"
git pull
cd ..
else
printf "\n\nDownloading Stable Diffusion UI..\n\n"
printf "Using the $update_branch channel\n\n"
if git clone -b "$update_branch" https://github.com/cmdr2/stable-diffusion-ui.git sd-ui-files ; then
echo sd_ui_git_cloned >> scripts/install_status.txt
else
fail "git clone failed"
fi
fi
rm -rf ui
cp -Rf sd-ui-files/ui .
cp sd-ui-files/scripts/on_sd_start.sh scripts/
cp sd-ui-files/scripts/bootstrap.sh scripts/
cp sd-ui-files/scripts/check_modules.py scripts/
cp sd-ui-files/scripts/start.sh .
cp sd-ui-files/scripts/developer_console.sh .
./scripts/on_sd_start.sh
read -p "Press any key to continue"

View File

@ -1,329 +0,0 @@
@echo off
@REM Caution, this file will make your eyes and brain bleed. It's such an unholy mess.
@REM Note to self: Please rewrite this in Python. For the sake of your own sanity.
@copy sd-ui-files\scripts\on_env_start.bat scripts\ /Y
@copy sd-ui-files\scripts\bootstrap.bat scripts\ /Y
@copy sd-ui-files\scripts\check_modules.py scripts\ /Y
if exist "%cd%\profile" (
set USERPROFILE=%cd%\profile
)
@rem set the correct installer path (current vs legacy)
if exist "%cd%\installer_files\env" (
set INSTALL_ENV_DIR=%cd%\installer_files\env
)
if exist "%cd%\stable-diffusion\env" (
set INSTALL_ENV_DIR=%cd%\stable-diffusion\env
)
@mkdir tmp
@set TMP=%cd%\tmp
@set TEMP=%cd%\tmp
@rem activate the installer env
call conda activate
@if "%ERRORLEVEL%" NEQ "0" (
@echo. & echo "Error activating conda for Stable Diffusion. Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!" & echo.
pause
exit /b
)
@REM remove the old version of the dev console script, if it's still present
if exist "Open Developer Console.cmd" del "Open Developer Console.cmd"
@call python -c "import os; import shutil; frm = 'sd-ui-files\\ui\\hotfix\\9c24e6cd9f499d02c4f21a033736dabd365962dc80fe3aeb57a8f85ea45a20a3.26fead7ea4f0f843f6eb4055dfd25693f1a71f3c6871b184042d4b126244e142'; dst = os.path.join(os.path.expanduser('~'), '.cache', 'huggingface', 'transformers', '9c24e6cd9f499d02c4f21a033736dabd365962dc80fe3aeb57a8f85ea45a20a3.26fead7ea4f0f843f6eb4055dfd25693f1a71f3c6871b184042d4b126244e142'); shutil.copyfile(frm, dst) if os.path.exists(dst) else print(''); print('Hotfixed broken JSON file from OpenAI');"
@rem create the stable-diffusion folder, to work with legacy installations
if not exist "stable-diffusion" mkdir stable-diffusion
cd stable-diffusion
@rem activate the old stable-diffusion env, if it exists
if exist "env" (
call conda activate .\env
)
@rem disable the legacy src and ldm folder (otherwise this prevents installing gfpgan and realesrgan)
if exist src rename src src-old
if exist ldm rename ldm ldm-old
@rem install torch and torchvision
call python ..\scripts\check_modules.py torch torchvision
if "%ERRORLEVEL%" EQU "0" (
echo "torch and torchvision have already been installed."
) else (
echo "Installing torch and torchvision.."
@REM prevent from using packages from the user's home directory, to avoid conflicts
set PYTHONNOUSERSITE=1
set PYTHONPATH=%INSTALL_ENV_DIR%\lib\site-packages
call pip install --upgrade torch torchvision --extra-index-url https://download.pytorch.org/whl/cu116 || (
echo "Error installing torch. Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!"
pause
exit /b
)
)
@rem install/upgrade sdkit
call python ..\scripts\check_modules.py sdkit sdkit.models ldm transformers numpy antlr4 gfpgan realesrgan
if "%ERRORLEVEL%" EQU "0" (
echo "sdkit is already installed."
@REM prevent from using packages from the user's home directory, to avoid conflicts
set PYTHONNOUSERSITE=1
set PYTHONPATH=%INSTALL_ENV_DIR%\lib\site-packages
call >nul pip install --upgrade sdkit || (
echo "Error updating sdkit"
)
) else (
echo "Installing sdkit: https://pypi.org/project/sdkit/"
@REM prevent from using packages from the user's home directory, to avoid conflicts
set PYTHONNOUSERSITE=1
set PYTHONPATH=%INSTALL_ENV_DIR%\lib\site-packages
call pip install sdkit || (
echo "Error installing sdkit. Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!"
pause
exit /b
)
)
@rem install rich
call python ..\scripts\check_modules.py rich
if "%ERRORLEVEL%" EQU "0" (
echo "rich has already been installed."
) else (
echo "Installing rich.."
set PYTHONNOUSERSITE=1
set PYTHONPATH=%INSTALL_ENV_DIR%\lib\site-packages
call pip install rich || (
echo "Error installing rich. Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!"
pause
exit /b
)
)
set PATH=C:\Windows\System32;%PATH%
call python ..\scripts\check_modules.py uvicorn fastapi
@if "%ERRORLEVEL%" EQU "0" (
echo "Packages necessary for Stable Diffusion UI were already installed"
) else (
@echo. & echo "Downloading packages necessary for Stable Diffusion UI.." & echo.
set PYTHONNOUSERSITE=1
set PYTHONPATH=%INSTALL_ENV_DIR%\lib\site-packages
@call conda install -c conda-forge -y uvicorn fastapi || (
echo "Error installing the packages necessary for Stable Diffusion UI. Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!"
pause
exit /b
)
)
call WHERE uvicorn > .tmp
@>nul findstr /m "uvicorn" .tmp
@if "%ERRORLEVEL%" NEQ "0" (
@echo. & echo "UI packages not found! Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!" & echo.
pause
exit /b
)
@>nul findstr /m "conda_sd_ui_deps_installed" ..\scripts\install_status.txt
@if "%ERRORLEVEL%" NEQ "0" (
@echo conda_sd_ui_deps_installed >> ..\scripts\install_status.txt
)
if not exist "..\models\vae" mkdir "..\models\vae"
@if exist "sd-v1-4.ckpt" (
for %%I in ("sd-v1-4.ckpt") do if "%%~zI" EQU "4265380512" (
echo "Data files (weights) necessary for Stable Diffusion were already downloaded. Using the HuggingFace 4 GB Model."
) else (
for %%J in ("sd-v1-4.ckpt") do if "%%~zJ" EQU "7703807346" (
echo "Data files (weights) necessary for Stable Diffusion were already downloaded. Using the HuggingFace 7 GB Model."
) else (
for %%K in ("sd-v1-4.ckpt") do if "%%~zK" EQU "7703810927" (
echo "Data files (weights) necessary for Stable Diffusion were already downloaded. Using the Waifu Model."
) else (
echo. & echo "The model file present at %cd%\sd-v1-4.ckpt is invalid. It is only %%~zK bytes in size. Re-downloading.." & echo.
del "sd-v1-4.ckpt"
)
)
)
)
@if not exist "sd-v1-4.ckpt" (
@echo. & echo "Downloading data files (weights) for Stable Diffusion.." & echo.
@call curl -L -k https://me.cmdr2.org/stable-diffusion-ui/sd-v1-4.ckpt > sd-v1-4.ckpt
@if exist "sd-v1-4.ckpt" (
for %%I in ("sd-v1-4.ckpt") do if "%%~zI" NEQ "4265380512" (
echo. & echo "Error: The downloaded model file was invalid! Bytes downloaded: %%~zI" & echo.
echo. & echo "Error downloading the data files (weights) for Stable Diffusion. Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!" & echo.
pause
exit /b
)
) else (
@echo. & echo "Error downloading the data files (weights) for Stable Diffusion. Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!" & echo.
pause
exit /b
)
)
@if exist "GFPGANv1.3.pth" (
for %%I in ("GFPGANv1.3.pth") do if "%%~zI" EQU "348632874" (
echo "Data files (weights) necessary for GFPGAN (Face Correction) were already downloaded"
) else (
echo. & echo "The GFPGAN model file present at %cd%\GFPGANv1.3.pth is invalid. It is only %%~zI bytes in size. Re-downloading.." & echo.
del "GFPGANv1.3.pth"
)
)
@if not exist "GFPGANv1.3.pth" (
@echo. & echo "Downloading data files (weights) for GFPGAN (Face Correction).." & echo.
@call curl -L -k https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth > GFPGANv1.3.pth
@if exist "GFPGANv1.3.pth" (
for %%I in ("GFPGANv1.3.pth") do if "%%~zI" NEQ "348632874" (
echo. & echo "Error: The downloaded GFPGAN model file was invalid! Bytes downloaded: %%~zI" & echo.
echo. & echo "Error downloading the data files (weights) for GFPGAN (Face Correction). Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!" & echo.
pause
exit /b
)
) else (
@echo. & echo "Error downloading the data files (weights) for GFPGAN (Face Correction). Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!" & echo.
pause
exit /b
)
)
@if exist "RealESRGAN_x4plus.pth" (
for %%I in ("RealESRGAN_x4plus.pth") do if "%%~zI" EQU "67040989" (
echo "Data files (weights) necessary for ESRGAN (Resolution Upscaling) x4plus were already downloaded"
) else (
echo. & echo "The RealESRGAN model file present at %cd%\RealESRGAN_x4plus.pth is invalid. It is only %%~zI bytes in size. Re-downloading.." & echo.
del "RealESRGAN_x4plus.pth"
)
)
@if not exist "RealESRGAN_x4plus.pth" (
@echo. & echo "Downloading data files (weights) for ESRGAN (Resolution Upscaling) x4plus.." & echo.
@call curl -L -k https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth > RealESRGAN_x4plus.pth
@if exist "RealESRGAN_x4plus.pth" (
for %%I in ("RealESRGAN_x4plus.pth") do if "%%~zI" NEQ "67040989" (
echo. & echo "Error: The downloaded ESRGAN x4plus model file was invalid! Bytes downloaded: %%~zI" & echo.
echo. & echo "Error downloading the data files (weights) for ESRGAN (Resolution Upscaling) x4plus. Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!" & echo.
pause
exit /b
)
) else (
@echo. & echo "Error downloading the data files (weights) for ESRGAN (Resolution Upscaling) x4plus. Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!" & echo.
pause
exit /b
)
)
@if exist "RealESRGAN_x4plus_anime_6B.pth" (
for %%I in ("RealESRGAN_x4plus_anime_6B.pth") do if "%%~zI" EQU "17938799" (
echo "Data files (weights) necessary for ESRGAN (Resolution Upscaling) x4plus_anime were already downloaded"
) else (
echo. & echo "The RealESRGAN model file present at %cd%\RealESRGAN_x4plus_anime_6B.pth is invalid. It is only %%~zI bytes in size. Re-downloading.." & echo.
del "RealESRGAN_x4plus_anime_6B.pth"
)
)
@if not exist "RealESRGAN_x4plus_anime_6B.pth" (
@echo. & echo "Downloading data files (weights) for ESRGAN (Resolution Upscaling) x4plus_anime.." & echo.
@call curl -L -k https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth > RealESRGAN_x4plus_anime_6B.pth
@if exist "RealESRGAN_x4plus_anime_6B.pth" (
for %%I in ("RealESRGAN_x4plus_anime_6B.pth") do if "%%~zI" NEQ "17938799" (
echo. & echo "Error: The downloaded ESRGAN x4plus_anime model file was invalid! Bytes downloaded: %%~zI" & echo.
echo. & echo "Error downloading the data files (weights) for ESRGAN (Resolution Upscaling) x4plus_anime. Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!" & echo.
pause
exit /b
)
) else (
@echo. & echo "Error downloading the data files (weights) for ESRGAN (Resolution Upscaling) x4plus_anime. Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!" & echo.
pause
exit /b
)
)
@if exist "..\models\vae\vae-ft-mse-840000-ema-pruned.ckpt" (
for %%I in ("..\models\vae\vae-ft-mse-840000-ema-pruned.ckpt") do if "%%~zI" EQU "334695179" (
echo "Data files (weights) necessary for the default VAE (sd-vae-ft-mse-original) were already downloaded"
) else (
echo. & echo "The default VAE (sd-vae-ft-mse-original) file present at models\vae\vae-ft-mse-840000-ema-pruned.ckpt is invalid. It is only %%~zI bytes in size. Re-downloading.." & echo.
del "..\models\vae\vae-ft-mse-840000-ema-pruned.ckpt"
)
)
@if not exist "..\models\vae\vae-ft-mse-840000-ema-pruned.ckpt" (
@echo. & echo "Downloading data files (weights) for the default VAE (sd-vae-ft-mse-original).." & echo.
@call curl -L -k https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.ckpt > ..\models\vae\vae-ft-mse-840000-ema-pruned.ckpt
@if exist "..\models\vae\vae-ft-mse-840000-ema-pruned.ckpt" (
for %%I in ("..\models\vae\vae-ft-mse-840000-ema-pruned.ckpt") do if "%%~zI" NEQ "334695179" (
echo. & echo "Error: The downloaded default VAE (sd-vae-ft-mse-original) file was invalid! Bytes downloaded: %%~zI" & echo.
echo. & echo "Error downloading the data files (weights) for the default VAE (sd-vae-ft-mse-original). Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!" & echo.
pause
exit /b
)
) else (
@echo. & echo "Error downloading the data files (weights) for the default VAE (sd-vae-ft-mse-original). Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!" & echo.
pause
exit /b
)
)
@>nul findstr /m "sd_install_complete" ..\scripts\install_status.txt
@if "%ERRORLEVEL%" NEQ "0" (
@echo sd_weights_downloaded >> ..\scripts\install_status.txt
@echo sd_install_complete >> ..\scripts\install_status.txt
)
@echo. & echo "Stable Diffusion is ready!" & echo.
@set SD_DIR=%cd%
set PYTHONPATH=%INSTALL_ENV_DIR%\lib\site-packages
echo PYTHONPATH=%PYTHONPATH%
call where python
call python --version
@cd ..
@set SD_UI_PATH=%cd%\ui
@cd stable-diffusion
@if NOT DEFINED SD_UI_BIND_PORT set SD_UI_BIND_PORT=9000
@if NOT DEFINED SD_UI_BIND_IP set SD_UI_BIND_IP=0.0.0.0
@uvicorn main:server_api --app-dir "%SD_UI_PATH%" --port %SD_UI_BIND_PORT% --host %SD_UI_BIND_IP% --log-level error
@pause

View File

@ -1,280 +0,0 @@
#!/bin/bash
source ./scripts/functions.sh
cp sd-ui-files/scripts/on_env_start.sh scripts/
cp sd-ui-files/scripts/bootstrap.sh scripts/
cp sd-ui-files/scripts/check_modules.py scripts/
# activate the installer env
CONDA_BASEPATH=$(conda info --base)
source "$CONDA_BASEPATH/etc/profile.d/conda.sh" # avoids the 'shell not initialized' error
conda activate || fail "Failed to activate conda"
# remove the old version of the dev console script, if it's still present
if [ -e "open_dev_console.sh" ]; then
rm "open_dev_console.sh"
fi
python -c "import os; import shutil; frm = 'sd-ui-files/ui/hotfix/9c24e6cd9f499d02c4f21a033736dabd365962dc80fe3aeb57a8f85ea45a20a3.26fead7ea4f0f843f6eb4055dfd25693f1a71f3c6871b184042d4b126244e142'; dst = os.path.join(os.path.expanduser('~'), '.cache', 'huggingface', 'transformers', '9c24e6cd9f499d02c4f21a033736dabd365962dc80fe3aeb57a8f85ea45a20a3.26fead7ea4f0f843f6eb4055dfd25693f1a71f3c6871b184042d4b126244e142'); shutil.copyfile(frm, dst) if os.path.exists(dst) else print(''); print('Hotfixed broken JSON file from OpenAI');"
# Caution, this file will make your eyes and brain bleed. It's such an unholy mess.
# Note to self: Please rewrite this in Python. For the sake of your own sanity.
# set the correct installer path (current vs legacy)
if [ -e "installer_files/env" ]; then
export INSTALL_ENV_DIR="$(pwd)/installer_files/env"
fi
if [ -e "stable-diffusion/env" ]; then
export INSTALL_ENV_DIR="$(pwd)/stable-diffusion/env"
fi
# create the stable-diffusion folder, to work with legacy installations
if [ ! -e "stable-diffusion" ]; then mkdir stable-diffusion; fi
cd stable-diffusion
# activate the old stable-diffusion env, if it exists
if [ -e "env" ]; then
conda activate ./env || fail "conda activate failed"
fi
# disable the legacy src and ldm folder (otherwise this prevents installing gfpgan and realesrgan)
if [ -e "src" ]; then mv src src-old; fi
if [ -e "ldm" ]; then mv ldm ldm-old; fi
# install torch and torchvision
if python ../scripts/check_modules.py torch torchvision; then
echo "torch and torchvision have already been installed."
else
echo "Installing torch and torchvision.."
export PYTHONNOUSERSITE=1
export PYTHONPATH="$INSTALL_ENV_DIR/lib/python3.8/site-packages"
if pip install --upgrade torch torchvision --extra-index-url https://download.pytorch.org/whl/cu116 ; then
echo "Installed."
else
fail "torch install failed"
fi
fi
# install/upgrade sdkit
if python ../scripts/check_modules.py sdkit sdkit.models ldm transformers numpy antlr4 gfpgan realesrgan ; then
echo "sdkit is already installed."
export PYTHONNOUSERSITE=1
export PYTHONPATH="$INSTALL_ENV_DIR/lib/python3.8/site-packages"
pip install --upgrade sdkit > /dev/null
else
echo "Installing sdkit: https://pypi.org/project/sdkit/"
export PYTHONNOUSERSITE=1
export PYTHONPATH="$INSTALL_ENV_DIR/lib/python3.8/site-packages"
if pip install sdkit ; then
echo "Installed."
else
fail "sdkit install failed"
fi
fi
# install rich
if python ../scripts/check_modules.py rich; then
echo "rich has already been installed."
else
echo "Installing rich.."
export PYTHONNOUSERSITE=1
export PYTHONPATH="$INSTALL_ENV_DIR/lib/python3.8/site-packages"
if pip install rich ; then
echo "Installed."
else
fail "Install failed for rich"
fi
fi
if python ../scripts/check_modules.py uvicorn fastapi ; then
echo "Packages necessary for Stable Diffusion UI were already installed"
else
printf "\n\nDownloading packages necessary for Stable Diffusion UI..\n\n"
export PYTHONNOUSERSITE=1
export PYTHONPATH="$INSTALL_ENV_DIR/lib/python3.8/site-packages"
if conda install -c conda-forge -y uvicorn fastapi ; then
echo "Installed. Testing.."
else
fail "'conda install uvicorn' failed"
fi
if ! command -v uvicorn &> /dev/null; then
fail "UI packages not found!"
fi
fi
mkdir -p "../models/vae"
if [ -f "sd-v1-4.ckpt" ]; then
model_size=`find "sd-v1-4.ckpt" -printf "%s"`
if [ "$model_size" -eq "4265380512" ] || [ "$model_size" -eq "7703807346" ] || [ "$model_size" -eq "7703810927" ]; then
echo "Data files (weights) necessary for Stable Diffusion were already downloaded"
else
printf "\n\nThe model file present at $PWD/sd-v1-4.ckpt is invalid. It is only $model_size bytes in size. Re-downloading.."
rm sd-v1-4.ckpt
fi
fi
if [ ! -f "sd-v1-4.ckpt" ]; then
echo "Downloading data files (weights) for Stable Diffusion.."
curl -L -k https://me.cmdr2.org/stable-diffusion-ui/sd-v1-4.ckpt > sd-v1-4.ckpt
if [ -f "sd-v1-4.ckpt" ]; then
model_size=`find "sd-v1-4.ckpt" -printf "%s"`
if [ ! "$model_size" == "4265380512" ]; then
fail "The downloaded model file was invalid! Bytes downloaded: $model_size"
fi
else
fail "Error downloading the data files (weights) for Stable Diffusion"
fi
fi
if [ -f "GFPGANv1.3.pth" ]; then
model_size=`find "GFPGANv1.3.pth" -printf "%s"`
if [ "$model_size" -eq "348632874" ]; then
echo "Data files (weights) necessary for GFPGAN (Face Correction) were already downloaded"
else
printf "\n\nThe model file present at $PWD/GFPGANv1.3.pth is invalid. It is only $model_size bytes in size. Re-downloading.."
rm GFPGANv1.3.pth
fi
fi
if [ ! -f "GFPGANv1.3.pth" ]; then
echo "Downloading data files (weights) for GFPGAN (Face Correction).."
curl -L -k https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth > GFPGANv1.3.pth
if [ -f "GFPGANv1.3.pth" ]; then
model_size=`find "GFPGANv1.3.pth" -printf "%s"`
if [ ! "$model_size" -eq "348632874" ]; then
fail "The downloaded GFPGAN model file was invalid! Bytes downloaded: $model_size"
fi
else
fail "Error downloading the data files (weights) for GFPGAN (Face Correction)."
fi
fi
if [ -f "RealESRGAN_x4plus.pth" ]; then
model_size=`find "RealESRGAN_x4plus.pth" -printf "%s"`
if [ "$model_size" -eq "67040989" ]; then
echo "Data files (weights) necessary for ESRGAN (Resolution Upscaling) x4plus were already downloaded"
else
printf "\n\nThe model file present at $PWD/RealESRGAN_x4plus.pth is invalid. It is only $model_size bytes in size. Re-downloading.."
rm RealESRGAN_x4plus.pth
fi
fi
if [ ! -f "RealESRGAN_x4plus.pth" ]; then
echo "Downloading data files (weights) for ESRGAN (Resolution Upscaling) x4plus.."
curl -L -k https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth > RealESRGAN_x4plus.pth
if [ -f "RealESRGAN_x4plus.pth" ]; then
model_size=`find "RealESRGAN_x4plus.pth" -printf "%s"`
if [ ! "$model_size" -eq "67040989" ]; then
fail "The downloaded ESRGAN x4plus model file was invalid! Bytes downloaded: $model_size"
fi
else
fail "Error downloading the data files (weights) for ESRGAN (Resolution Upscaling) x4plus"
fi
fi
if [ -f "RealESRGAN_x4plus_anime_6B.pth" ]; then
model_size=`find "RealESRGAN_x4plus_anime_6B.pth" -printf "%s"`
if [ "$model_size" -eq "17938799" ]; then
echo "Data files (weights) necessary for ESRGAN (Resolution Upscaling) x4plus_anime were already downloaded"
else
printf "\n\nThe model file present at $PWD/RealESRGAN_x4plus_anime_6B.pth is invalid. It is only $model_size bytes in size. Re-downloading.."
rm RealESRGAN_x4plus_anime_6B.pth
fi
fi
if [ ! -f "RealESRGAN_x4plus_anime_6B.pth" ]; then
echo "Downloading data files (weights) for ESRGAN (Resolution Upscaling) x4plus_anime.."
curl -L -k https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth > RealESRGAN_x4plus_anime_6B.pth
if [ -f "RealESRGAN_x4plus_anime_6B.pth" ]; then
model_size=`find "RealESRGAN_x4plus_anime_6B.pth" -printf "%s"`
if [ ! "$model_size" -eq "17938799" ]; then
fail "The downloaded ESRGAN x4plus_anime model file was invalid! Bytes downloaded: $model_size"
fi
else
fail "Error downloading the data files (weights) for ESRGAN (Resolution Upscaling) x4plus_anime."
fi
fi
if [ -f "../models/vae/vae-ft-mse-840000-ema-pruned.ckpt" ]; then
model_size=`find ../models/vae/vae-ft-mse-840000-ema-pruned.ckpt -printf "%s"`
if [ "$model_size" -eq "334695179" ]; then
echo "Data files (weights) necessary for the default VAE (sd-vae-ft-mse-original) were already downloaded"
else
printf "\n\nThe model file present at models/vae/vae-ft-mse-840000-ema-pruned.ckpt is invalid. It is only $model_size bytes in size. Re-downloading.."
rm ../models/vae/vae-ft-mse-840000-ema-pruned.ckpt
fi
fi
if [ ! -f "../models/vae/vae-ft-mse-840000-ema-pruned.ckpt" ]; then
echo "Downloading data files (weights) for the default VAE (sd-vae-ft-mse-original).."
curl -L -k https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.ckpt > ../models/vae/vae-ft-mse-840000-ema-pruned.ckpt
if [ -f "../models/vae/vae-ft-mse-840000-ema-pruned.ckpt" ]; then
model_size=`find ../models/vae/vae-ft-mse-840000-ema-pruned.ckpt -printf "%s"`
if [ ! "$model_size" -eq "334695179" ]; then
printf "\n\nError: The downloaded default VAE (sd-vae-ft-mse-original) file was invalid! Bytes downloaded: $model_size\n\n"
printf "\n\nError downloading the data files (weights) for the default VAE (sd-vae-ft-mse-original). Sorry about that, please try to:\n 1. Run this installer again.\n 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting\n 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB\n 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues\nThanks!\n\n"
read -p "Press any key to continue"
exit
fi
else
printf "\n\nError downloading the data files (weights) for the default VAE (sd-vae-ft-mse-original). Sorry about that, please try to:\n 1. Run this installer again.\n 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting\n 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB\n 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues\nThanks!\n\n"
read -p "Press any key to continue"
exit
fi
fi
if [ `grep -c sd_install_complete ../scripts/install_status.txt` -gt "0" ]; then
echo sd_weights_downloaded >> ../scripts/install_status.txt
echo sd_install_complete >> ../scripts/install_status.txt
fi
printf "\n\nStable Diffusion is ready!\n\n"
SD_PATH=`pwd`
export PYTHONPATH="$INSTALL_ENV_DIR/lib/python3.8/site-packages"
echo "PYTHONPATH=$PYTHONPATH"
which python
python --version
cd ..
export SD_UI_PATH=`pwd`/ui
cd stable-diffusion
uvicorn main:server_api --app-dir "$SD_UI_PATH" --port ${SD_UI_BIND_PORT:-9000} --host ${SD_UI_BIND_IP:-0.0.0.0} --log-level error
read -p "Press any key to continue"

View File

@ -1,22 +0,0 @@
#!/bin/bash
cd "$(dirname "${BASH_SOURCE[0]}")"
# set legacy installer's PATH, if it exists
if [ -e "installer" ]; then export PATH="$(pwd)/installer/bin:$PATH"; fi
# Setup the packages required for the installer
scripts/bootstrap.sh || exit 1
# set new installer's PATH, if it downloaded any packages
if [ -e "installer_files/env" ]; then export PATH="$(pwd)/installer_files/env/bin:$PATH"; fi
# Test the bootstrap
which git
git --version || exit 1
which conda
conda --version || exit 1
# Download the rest of the installer and UI
scripts/on_env_start.sh

View File

@ -1,2 +0,0 @@
Set-ItemProperty -Path 'HKLM:\SYSTEM\CurrentControlSet\Control\FileSystem' -Name LongPathsEnabled -Type DWord -Value 1
pause

18
start.sh Executable file
View File

@ -0,0 +1,18 @@
#!/bin/bash
echo "Stable Diffusion UI - v2.5"
echo ""
export SD_BASE_DIR=$(pwd)
echo "Working in $SD_BASE_DIR"
# Setup the packages required for the installer
installer/bootstrap/bootstrap.sh
# Test the bootstrap
git --version
python --version
# Download the rest of the installer and UI
installer/installer/start.sh

View File

@ -1,165 +0,0 @@
import os
import socket
import sys
import json
import traceback
import logging
from rich.logging import RichHandler
from sdkit.utils import log as sdkit_log # hack, so we can overwrite the log config
from easydiffusion import task_manager
from easydiffusion.utils import log
# Remove all handlers associated with the root logger object.
for handler in logging.root.handlers[:]:
logging.root.removeHandler(handler)
LOG_FORMAT = '%(asctime)s.%(msecs)03d %(levelname)s %(threadName)s %(message)s'
logging.basicConfig(
level=logging.INFO,
format=LOG_FORMAT,
datefmt="%X",
handlers=[RichHandler(markup=True, rich_tracebacks=True, show_time=False, show_level=False)]
)
SD_DIR = os.getcwd()
SD_UI_DIR = os.getenv('SD_UI_PATH', None)
sys.path.append(os.path.dirname(SD_UI_DIR))
CONFIG_DIR = os.path.abspath(os.path.join(SD_UI_DIR, '..', 'scripts'))
MODELS_DIR = os.path.abspath(os.path.join(SD_DIR, '..', 'models'))
USER_UI_PLUGINS_DIR = os.path.abspath(os.path.join(SD_DIR, '..', 'plugins', 'ui'))
CORE_UI_PLUGINS_DIR = os.path.abspath(os.path.join(SD_UI_DIR, 'plugins', 'ui'))
UI_PLUGINS_SOURCES = ((CORE_UI_PLUGINS_DIR, 'core'), (USER_UI_PLUGINS_DIR, 'user'))
OUTPUT_DIRNAME = "Stable Diffusion UI" # in the user's home folder
TASK_TTL = 15 * 60 # Discard last session's task timeout
APP_CONFIG_DEFAULTS = {
# auto: selects the cuda device with the most free memory, cuda: use the currently active cuda device.
'render_devices': 'auto', # valid entries: 'auto', 'cpu' or 'cuda:N' (where N is a GPU index)
'update_branch': 'main',
'ui': {
'open_browser_on_start': True,
},
}
def init():
os.makedirs(USER_UI_PLUGINS_DIR, exist_ok=True)
update_render_threads()
def getConfig(default_val=APP_CONFIG_DEFAULTS):
try:
config_json_path = os.path.join(CONFIG_DIR, 'config.json')
if not os.path.exists(config_json_path):
return default_val
with open(config_json_path, 'r', encoding='utf-8') as f:
config = json.load(f)
if 'net' not in config:
config['net'] = {}
if os.getenv('SD_UI_BIND_PORT') is not None:
config['net']['listen_port'] = int(os.getenv('SD_UI_BIND_PORT'))
if os.getenv('SD_UI_BIND_IP') is not None:
config['net']['listen_to_network'] = (os.getenv('SD_UI_BIND_IP') == '0.0.0.0')
return config
except Exception as e:
log.warn(traceback.format_exc())
return default_val
def setConfig(config):
try: # config.json
config_json_path = os.path.join(CONFIG_DIR, 'config.json')
with open(config_json_path, 'w', encoding='utf-8') as f:
json.dump(config, f)
except:
log.error(traceback.format_exc())
try: # config.bat
config_bat_path = os.path.join(CONFIG_DIR, 'config.bat')
config_bat = []
if 'update_branch' in config:
config_bat.append(f"@set update_branch={config['update_branch']}")
config_bat.append(f"@set SD_UI_BIND_PORT={config['net']['listen_port']}")
bind_ip = '0.0.0.0' if config['net']['listen_to_network'] else '127.0.0.1'
config_bat.append(f"@set SD_UI_BIND_IP={bind_ip}")
if len(config_bat) > 0:
with open(config_bat_path, 'w', encoding='utf-8') as f:
f.write('\r\n'.join(config_bat))
except:
log.error(traceback.format_exc())
try: # config.sh
config_sh_path = os.path.join(CONFIG_DIR, 'config.sh')
config_sh = ['#!/bin/bash']
if 'update_branch' in config:
config_sh.append(f"export update_branch={config['update_branch']}")
config_sh.append(f"export SD_UI_BIND_PORT={config['net']['listen_port']}")
bind_ip = '0.0.0.0' if config['net']['listen_to_network'] else '127.0.0.1'
config_sh.append(f"export SD_UI_BIND_IP={bind_ip}")
if len(config_sh) > 1:
with open(config_sh_path, 'w', encoding='utf-8') as f:
f.write('\n'.join(config_sh))
except:
log.error(traceback.format_exc())
def save_to_config(ckpt_model_name, vae_model_name, hypernetwork_model_name, vram_usage_level):
config = getConfig()
if 'model' not in config:
config['model'] = {}
config['model']['stable-diffusion'] = ckpt_model_name
config['model']['vae'] = vae_model_name
config['model']['hypernetwork'] = hypernetwork_model_name
if vae_model_name is None or vae_model_name == "":
del config['model']['vae']
if hypernetwork_model_name is None or hypernetwork_model_name == "":
del config['model']['hypernetwork']
config['vram_usage_level'] = vram_usage_level
setConfig(config)
def update_render_threads():
config = getConfig()
render_devices = config.get('render_devices', 'auto')
active_devices = task_manager.get_devices()['active'].keys()
log.debug(f'requesting for render_devices: {render_devices}')
task_manager.update_render_threads(render_devices, active_devices)
def getUIPlugins():
plugins = []
for plugins_dir, dir_prefix in UI_PLUGINS_SOURCES:
for file in os.listdir(plugins_dir):
if file.endswith('.plugin.js'):
plugins.append(f'/plugins/{dir_prefix}/{file}')
return plugins
def getIPConfig():
try:
ips = socket.gethostbyname_ex(socket.gethostname())
ips[2].append(ips[0])
return ips[2]
except Exception as e:
log.exception(e)
return []
def open_browser():
config = getConfig()
ui = config.get('ui', {})
net = config.get('net', {'listen_port':9000})
port = net.get('listen_port', 9000)
if ui.get('open_browser_on_start', True):
import webbrowser; webbrowser.open(f"http://localhost:{port}")

View File

@ -1,195 +0,0 @@
import os
import torch
import traceback
import re
from easydiffusion.utils import log
'''
Set `FORCE_FULL_PRECISION` in the environment variables, or in `config.bat`/`config.sh` to set full precision (i.e. float32).
Otherwise the models will load at half-precision (i.e. float16).
Half-precision is fine most of the time. Full precision is only needed for working around GPU bugs (like NVIDIA 16xx GPUs).
'''
COMPARABLE_GPU_PERCENTILE = 0.65 # if a GPU's free_mem is within this % of the GPU with the most free_mem, it will be picked
mem_free_threshold = 0
def get_device_delta(render_devices, active_devices):
'''
render_devices: 'cpu', or 'auto' or ['cuda:N'...]
active_devices: ['cpu', 'cuda:N'...]
'''
if render_devices in ('cpu', 'auto'):
render_devices = [render_devices]
elif render_devices is not None:
if isinstance(render_devices, str):
render_devices = [render_devices]
if isinstance(render_devices, list) and len(render_devices) > 0:
render_devices = list(filter(lambda x: x.startswith('cuda:'), render_devices))
if len(render_devices) == 0:
raise Exception('Invalid render_devices value in config.json. Valid: {"render_devices": ["cuda:0", "cuda:1"...]}, or {"render_devices": "cpu"} or {"render_devices": "auto"}')
render_devices = list(filter(lambda x: is_device_compatible(x), render_devices))
if len(render_devices) == 0:
raise Exception('Sorry, none of the render_devices configured in config.json are compatible with Stable Diffusion')
else:
raise Exception('Invalid render_devices value in config.json. Valid: {"render_devices": ["cuda:0", "cuda:1"...]}, or {"render_devices": "cpu"} or {"render_devices": "auto"}')
else:
render_devices = ['auto']
if 'auto' in render_devices:
render_devices = auto_pick_devices(active_devices)
if 'cpu' in render_devices:
log.warn('WARNING: Could not find a compatible GPU. Using the CPU, but this will be very slow!')
active_devices = set(active_devices)
render_devices = set(render_devices)
devices_to_start = render_devices - active_devices
devices_to_stop = active_devices - render_devices
return devices_to_start, devices_to_stop
def auto_pick_devices(currently_active_devices):
global mem_free_threshold
if not torch.cuda.is_available(): return ['cpu']
device_count = torch.cuda.device_count()
if device_count == 1:
return ['cuda:0'] if is_device_compatible('cuda:0') else ['cpu']
log.debug('Autoselecting GPU. Using most free memory.')
devices = []
for device in range(device_count):
device = f'cuda:{device}'
if not is_device_compatible(device):
continue
mem_free, mem_total = torch.cuda.mem_get_info(device)
mem_free /= float(10**9)
mem_total /= float(10**9)
device_name = torch.cuda.get_device_name(device)
log.debug(f'{device} detected: {device_name} - Memory (free/total): {round(mem_free, 2)}Gb / {round(mem_total, 2)}Gb')
devices.append({'device': device, 'device_name': device_name, 'mem_free': mem_free})
devices.sort(key=lambda x:x['mem_free'], reverse=True)
max_mem_free = devices[0]['mem_free']
curr_mem_free_threshold = COMPARABLE_GPU_PERCENTILE * max_mem_free
mem_free_threshold = max(curr_mem_free_threshold, mem_free_threshold)
# Auto-pick algorithm:
# 1. Pick the top 75 percentile of the GPUs, sorted by free_mem.
# 2. Also include already-running devices (GPU-only), otherwise their free_mem will
# always be very low (since their VRAM contains the model).
# These already-running devices probably aren't terrible, since they were picked in the past.
# Worst case, the user can restart the program and that'll get rid of them.
devices = list(filter((lambda x: x['mem_free'] > mem_free_threshold or x['device'] in currently_active_devices), devices))
devices = list(map(lambda x: x['device'], devices))
return devices
def device_init(context, device):
'''
This function assumes the 'device' has already been verified to be compatible.
`get_device_delta()` has already filtered out incompatible devices.
'''
validate_device_id(device, log_prefix='device_init')
if device == 'cpu':
context.device = 'cpu'
context.device_name = get_processor_name()
context.half_precision = False
log.debug(f'Render device CPU available as {context.device_name}')
return
context.device_name = torch.cuda.get_device_name(device)
context.device = device
# Force full precision on 1660 and 1650 NVIDIA cards to avoid creating green images
if needs_to_force_full_precision(context):
log.warn(f'forcing full precision on this GPU, to avoid green images. GPU detected: {context.device_name}')
# Apply force_full_precision now before models are loaded.
context.half_precision = False
log.info(f'Setting {device} as active, with precision: {"half" if context.half_precision else "full"}')
torch.cuda.device(device)
return
def needs_to_force_full_precision(context):
if 'FORCE_FULL_PRECISION' in os.environ:
return True
device_name = context.device_name.lower()
return (('nvidia' in device_name or 'geforce' in device_name) and (' 1660' in device_name or ' 1650' in device_name)) or ('Quadro T2000' in device_name)
def get_max_vram_usage_level(device):
if device != 'cpu':
_, mem_total = torch.cuda.mem_get_info(device)
mem_total /= float(10**9)
if mem_total < 4.5:
return 'low'
elif mem_total < 6.5:
return 'balanced'
return 'high'
def validate_device_id(device, log_prefix=''):
def is_valid():
if not isinstance(device, str):
return False
if device == 'cpu':
return True
if not device.startswith('cuda:') or not device[5:].isnumeric():
return False
return True
if not is_valid():
raise EnvironmentError(f"{log_prefix}: device id should be 'cpu', or 'cuda:N' (where N is an integer index for the GPU). Got: {device}")
def is_device_compatible(device):
'''
Returns True/False, and prints any compatibility errors
'''
try:
validate_device_id(device, log_prefix='is_device_compatible')
except:
log.error(str(e))
return False
if device == 'cpu': return True
# Memory check
try:
_, mem_total = torch.cuda.mem_get_info(device)
mem_total /= float(10**9)
if mem_total < 3.0:
log.warn(f'GPU {device} with less than 3 GB of VRAM is not compatible with Stable Diffusion')
return False
except RuntimeError as e:
log.error(str(e))
return False
return True
def get_processor_name():
try:
import platform, subprocess
if platform.system() == "Windows":
return platform.processor()
elif platform.system() == "Darwin":
os.environ['PATH'] = os.environ['PATH'] + os.pathsep + '/usr/sbin'
command = "sysctl -n machdep.cpu.brand_string"
return subprocess.check_output(command).strip()
elif platform.system() == "Linux":
command = "cat /proc/cpuinfo"
all_info = subprocess.check_output(command, shell=True).decode().strip()
for line in all_info.split("\n"):
if "model name" in line:
return re.sub(".*model name.*:", "", line, 1).strip()
except:
log.error(traceback.format_exc())
return "cpu"

View File

@ -1,223 +0,0 @@
import os
from easydiffusion import app, device_manager
from easydiffusion.types import TaskData
from easydiffusion.utils import log
from sdkit import Context
from sdkit.models import load_model, unload_model, get_model_info_from_db, scan_model
from sdkit.utils import hash_file_quick
KNOWN_MODEL_TYPES = ['stable-diffusion', 'vae', 'hypernetwork', 'gfpgan', 'realesrgan']
MODEL_EXTENSIONS = {
'stable-diffusion': ['.ckpt', '.safetensors'],
'vae': ['.vae.pt', '.ckpt', '.safetensors'],
'hypernetwork': ['.pt', '.safetensors'],
'gfpgan': ['.pth'],
'realesrgan': ['.pth'],
}
DEFAULT_MODELS = {
'stable-diffusion': [ # needed to support the legacy installations
'custom-model', # only one custom model file was supported initially, creatively named 'custom-model'
'sd-v1-4', # Default fallback.
],
'gfpgan': ['GFPGANv1.3'],
'realesrgan': ['RealESRGAN_x4plus'],
}
VRAM_USAGE_LEVEL_TO_OPTIMIZATIONS = {
'balanced': {'KEEP_FS_AND_CS_IN_CPU', 'SET_ATTENTION_STEP_TO_4'},
'low': {'KEEP_ENTIRE_MODEL_IN_CPU'},
'high': {},
}
MODELS_TO_LOAD_ON_START = ['stable-diffusion', 'vae', 'hypernetwork']
known_models = {}
def init():
make_model_folders()
getModels() # run this once, to cache the picklescan results
def load_default_models(context: Context):
set_vram_optimizations(context)
# init default model paths
for model_type in MODELS_TO_LOAD_ON_START:
context.model_paths[model_type] = resolve_model_to_use(model_type=model_type)
load_model(context, model_type)
def unload_all(context: Context):
for model_type in KNOWN_MODEL_TYPES:
unload_model(context, model_type)
def resolve_model_to_use(model_name:str=None, model_type:str=None):
model_extensions = MODEL_EXTENSIONS.get(model_type, [])
default_models = DEFAULT_MODELS.get(model_type, [])
config = app.getConfig()
model_dirs = [os.path.join(app.MODELS_DIR, model_type), app.SD_DIR]
if not model_name: # When None try user configured model.
# config = getConfig()
if 'model' in config and model_type in config['model']:
model_name = config['model'][model_type]
if model_name:
# Check models directory
models_dir_path = os.path.join(app.MODELS_DIR, model_type, model_name)
for model_extension in model_extensions:
if os.path.exists(models_dir_path + model_extension):
return models_dir_path + model_extension
if os.path.exists(model_name + model_extension):
return os.path.abspath(model_name + model_extension)
# Default locations
if model_name in default_models:
default_model_path = os.path.join(app.SD_DIR, model_name)
for model_extension in model_extensions:
if os.path.exists(default_model_path + model_extension):
return default_model_path + model_extension
# Can't find requested model, check the default paths.
for default_model in default_models:
for model_dir in model_dirs:
default_model_path = os.path.join(model_dir, default_model)
for model_extension in model_extensions:
if os.path.exists(default_model_path + model_extension):
if model_name is not None:
log.warn(f'Could not find the configured custom model {model_name}{model_extension}. Using the default one: {default_model_path}{model_extension}')
return default_model_path + model_extension
return None
def reload_models_if_necessary(context: Context, task_data: TaskData):
model_paths_in_req = {
'stable-diffusion': task_data.use_stable_diffusion_model,
'vae': task_data.use_vae_model,
'hypernetwork': task_data.use_hypernetwork_model,
'gfpgan': task_data.use_face_correction,
'realesrgan': task_data.use_upscale,
}
models_to_reload = {model_type: path for model_type, path in model_paths_in_req.items() if context.model_paths.get(model_type) != path}
if set_vram_optimizations(context): # reload SD
models_to_reload['stable-diffusion'] = model_paths_in_req['stable-diffusion']
if 'stable-diffusion' in models_to_reload:
quick_hash = hash_file_quick(models_to_reload['stable-diffusion'])
known_model_info = get_model_info_from_db(quick_hash=quick_hash)
for model_type, model_path_in_req in models_to_reload.items():
context.model_paths[model_type] = model_path_in_req
action_fn = unload_model if context.model_paths[model_type] is None else load_model
action_fn(context, model_type, scan_model=False) # we've scanned them already
def resolve_model_paths(task_data: TaskData):
task_data.use_stable_diffusion_model = resolve_model_to_use(task_data.use_stable_diffusion_model, model_type='stable-diffusion')
task_data.use_vae_model = resolve_model_to_use(task_data.use_vae_model, model_type='vae')
task_data.use_hypernetwork_model = resolve_model_to_use(task_data.use_hypernetwork_model, model_type='hypernetwork')
if task_data.use_face_correction: task_data.use_face_correction = resolve_model_to_use(task_data.use_face_correction, 'gfpgan')
if task_data.use_upscale: task_data.use_upscale = resolve_model_to_use(task_data.use_upscale, 'realesrgan')
def set_vram_optimizations(context: Context):
config = app.getConfig()
max_usage_level = device_manager.get_max_vram_usage_level(context.device)
vram_usage_level = config.get('vram_usage_level', 'balanced')
v = {'low': 0, 'balanced': 1, 'high': 2}
if v[vram_usage_level] > v[max_usage_level]:
log.error(f'Requested GPU Memory Usage level ({vram_usage_level}) is higher than what is ' + \
f'possible ({max_usage_level}) on this device ({context.device}). Using "{max_usage_level}" instead')
vram_usage_level = max_usage_level
vram_optimizations = VRAM_USAGE_LEVEL_TO_OPTIMIZATIONS[vram_usage_level]
if vram_optimizations != context.vram_optimizations:
context.vram_optimizations = vram_optimizations
return True
return False
def make_model_folders():
for model_type in KNOWN_MODEL_TYPES:
model_dir_path = os.path.join(app.MODELS_DIR, model_type)
os.makedirs(model_dir_path, exist_ok=True)
help_file_name = f'Place your {model_type} model files here.txt'
help_file_contents = f'Supported extensions: {" or ".join(MODEL_EXTENSIONS.get(model_type))}'
with open(os.path.join(model_dir_path, help_file_name), 'w', encoding='utf-8') as f:
f.write(help_file_contents)
def is_malicious_model(file_path):
try:
scan_result = scan_model(file_path)
if scan_result.issues_count > 0 or scan_result.infected_files > 0:
log.warn(":warning: [bold red]Scan %s: %d scanned, %d issue, %d infected.[/bold red]" % (file_path, scan_result.scanned_files, scan_result.issues_count, scan_result.infected_files))
return True
else:
log.debug("Scan %s: [green]%d scanned, %d issue, %d infected.[/green]" % (file_path, scan_result.scanned_files, scan_result.issues_count, scan_result.infected_files))
return False
except Exception as e:
log.error(f'error while scanning: {file_path}, error: {e}')
return False
def getModels():
models = {
'active': {
'stable-diffusion': 'sd-v1-4',
'vae': '',
'hypernetwork': '',
},
'options': {
'stable-diffusion': ['sd-v1-4'],
'vae': [],
'hypernetwork': [],
},
}
models_scanned = 0
def listModels(model_type):
nonlocal models_scanned
model_extensions = MODEL_EXTENSIONS.get(model_type, [])
models_dir = os.path.join(app.MODELS_DIR, model_type)
if not os.path.exists(models_dir):
os.makedirs(models_dir)
for file in os.listdir(models_dir):
for model_extension in model_extensions:
if not file.endswith(model_extension):
continue
model_path = os.path.join(models_dir, file)
mtime = os.path.getmtime(model_path)
mod_time = known_models[model_path] if model_path in known_models else -1
if mod_time != mtime:
models_scanned += 1
if is_malicious_model(model_path):
models['scan-error'] = file
return
known_models[model_path] = mtime
model_name = file[:-len(model_extension)]
models['options'][model_type].append(model_name)
models['options'][model_type] = [*set(models['options'][model_type])] # remove duplicates
models['options'][model_type].sort()
# custom models
listModels(model_type='stable-diffusion')
listModels(model_type='vae')
listModels(model_type='hypernetwork')
if models_scanned > 0: log.info(f'[green]Scanned {models_scanned} models. Nothing infected[/]')
# legacy
custom_weight_path = os.path.join(app.SD_DIR, 'custom-model.ckpt')
if os.path.exists(custom_weight_path):
models['options']['stable-diffusion'].append('custom-model')
return models

View File

@ -1,124 +0,0 @@
import queue
import time
import json
from easydiffusion import device_manager
from easydiffusion.types import TaskData, Response, Image as ResponseImage, UserInitiatedStop, GenerateImageRequest
from easydiffusion.utils import get_printable_request, save_images_to_disk, log
from sdkit import Context
from sdkit.generate import generate_images
from sdkit.filter import apply_filters
from sdkit.utils import img_to_buffer, img_to_base64_str, latent_samples_to_images, gc
context = Context() # thread-local
'''
runtime data (bound locally to this thread), for e.g. device, references to loaded models, optimization flags etc
'''
def init(device):
'''
Initializes the fields that will be bound to this runtime's context, and sets the current torch device
'''
context.stop_processing = False
context.temp_images = {}
context.partial_x_samples = None
device_manager.device_init(context, device)
def make_images(req: GenerateImageRequest, task_data: TaskData, data_queue: queue.Queue, task_temp_images: list, step_callback):
context.stop_processing = False
log.info(f'request: {get_printable_request(req)}')
log.info(f'task data: {task_data.dict()}')
images = make_images_internal(req, task_data, data_queue, task_temp_images, step_callback)
res = Response(req, task_data, images=construct_response(images, task_data, base_seed=req.seed))
res = res.json()
data_queue.put(json.dumps(res))
log.info('Task completed')
return res
def make_images_internal(req: GenerateImageRequest, task_data: TaskData, data_queue: queue.Queue, task_temp_images: list, step_callback):
images, user_stopped = generate_images_internal(req, task_data, data_queue, task_temp_images, step_callback, task_data.stream_image_progress)
filtered_images = filter_images(task_data, images, user_stopped)
if task_data.save_to_disk_path is not None:
save_images_to_disk(images, filtered_images, req, task_data)
return filtered_images if task_data.show_only_filtered_image else images + filtered_images
def generate_images_internal(req: GenerateImageRequest, task_data: TaskData, data_queue: queue.Queue, task_temp_images: list, step_callback, stream_image_progress: bool):
context.temp_images.clear()
callback = make_step_callback(req, task_data, data_queue, task_temp_images, step_callback, stream_image_progress)
try:
images = generate_images(context, callback=callback, **req.dict())
user_stopped = False
except UserInitiatedStop:
images = []
user_stopped = True
if context.partial_x_samples is not None:
images = latent_samples_to_images(context, context.partial_x_samples)
context.partial_x_samples = None
finally:
gc(context)
return images, user_stopped
def filter_images(task_data: TaskData, images: list, user_stopped):
if user_stopped or (task_data.use_face_correction is None and task_data.use_upscale is None):
return images
filters_to_apply = []
if task_data.use_face_correction and 'gfpgan' in task_data.use_face_correction.lower(): filters_to_apply.append('gfpgan')
if task_data.use_upscale and 'realesrgan' in task_data.use_upscale.lower(): filters_to_apply.append('realesrgan')
return apply_filters(context, filters_to_apply, images)
def construct_response(images: list, task_data: TaskData, base_seed: int):
return [
ResponseImage(
data=img_to_base64_str(img, task_data.output_format, task_data.output_quality),
seed=base_seed + i
) for i, img in enumerate(images)
]
def make_step_callback(req: GenerateImageRequest, task_data: TaskData, data_queue: queue.Queue, task_temp_images: list, step_callback, stream_image_progress: bool):
n_steps = req.num_inference_steps if req.init_image is None else int(req.num_inference_steps * req.prompt_strength)
last_callback_time = -1
def update_temp_img(x_samples, task_temp_images: list):
partial_images = []
images = latent_samples_to_images(context, x_samples)
for i, img in enumerate(images):
buf = img_to_buffer(img, output_format='JPEG')
context.temp_images[f"{task_data.request_id}/{i}"] = buf
task_temp_images[i] = buf
partial_images.append({'path': f"/image/tmp/{task_data.request_id}/{i}"})
del images
return partial_images
def on_image_step(x_samples, i):
nonlocal last_callback_time
context.partial_x_samples = x_samples
step_time = time.time() - last_callback_time if last_callback_time != -1 else -1
last_callback_time = time.time()
progress = {"step": i, "step_time": step_time, "total_steps": n_steps}
if stream_image_progress and i % 5 == 0:
progress['output'] = update_temp_img(x_samples, task_temp_images)
data_queue.put(json.dumps(progress))
step_callback()
if context.stop_processing:
raise UserInitiatedStop("User requested that we stop processing")
return on_image_step

View File

@ -1,219 +0,0 @@
"""server.py: FastAPI SD-UI Web Host.
Notes:
async endpoints always run on the main thread. Without they run on the thread pool.
"""
import os
import traceback
import datetime
from typing import List, Union
from fastapi import FastAPI, HTTPException
from fastapi.staticfiles import StaticFiles
from starlette.responses import FileResponse, JSONResponse, StreamingResponse
from pydantic import BaseModel
from easydiffusion import app, model_manager, task_manager
from easydiffusion.types import TaskData, GenerateImageRequest
from easydiffusion.utils import log
log.info(f'started in {app.SD_DIR}')
log.info(f'started at {datetime.datetime.now():%x %X}')
server_api = FastAPI()
NOCACHE_HEADERS={"Cache-Control": "no-cache, no-store, must-revalidate", "Pragma": "no-cache", "Expires": "0"}
class NoCacheStaticFiles(StaticFiles):
def is_not_modified(self, response_headers, request_headers) -> bool:
if 'content-type' in response_headers and ('javascript' in response_headers['content-type'] or 'css' in response_headers['content-type']):
response_headers.update(NOCACHE_HEADERS)
return False
return super().is_not_modified(response_headers, request_headers)
class SetAppConfigRequest(BaseModel):
update_branch: str = None
render_devices: Union[List[str], List[int], str, int] = None
model_vae: str = None
ui_open_browser_on_start: bool = None
listen_to_network: bool = None
listen_port: int = None
def init():
server_api.mount('/media', NoCacheStaticFiles(directory=os.path.join(app.SD_UI_DIR, 'media')), name="media")
for plugins_dir, dir_prefix in app.UI_PLUGINS_SOURCES:
server_api.mount(f'/plugins/{dir_prefix}', NoCacheStaticFiles(directory=plugins_dir), name=f"plugins-{dir_prefix}")
@server_api.post('/app_config')
async def set_app_config(req : SetAppConfigRequest):
return set_app_config_internal(req)
@server_api.get('/get/{key:path}')
def read_web_data(key:str=None):
return read_web_data_internal(key)
@server_api.get('/ping') # Get server and optionally session status.
def ping(session_id:str=None):
return ping_internal(session_id)
@server_api.post('/render')
def render(req: dict):
return render_internal(req)
@server_api.get('/image/stream/{task_id:int}')
def stream(task_id:int):
return stream_internal(task_id)
@server_api.get('/image/stop')
def stop(task: int):
return stop_internal(task)
@server_api.get('/image/tmp/{task_id:int}/{img_id:int}')
def get_image(task_id: int, img_id: int):
return get_image_internal(task_id, img_id)
@server_api.get('/')
def read_root():
return FileResponse(os.path.join(app.SD_UI_DIR, 'index.html'), headers=NOCACHE_HEADERS)
@server_api.on_event("shutdown")
def shutdown_event(): # Signal render thread to close on shutdown
task_manager.current_state_error = SystemExit('Application shutting down.')
# API implementations
def set_app_config_internal(req : SetAppConfigRequest):
config = app.getConfig()
if req.update_branch is not None:
config['update_branch'] = req.update_branch
if req.render_devices is not None:
update_render_devices_in_config(config, req.render_devices)
if req.ui_open_browser_on_start is not None:
if 'ui' not in config:
config['ui'] = {}
config['ui']['open_browser_on_start'] = req.ui_open_browser_on_start
if req.listen_to_network is not None:
if 'net' not in config:
config['net'] = {}
config['net']['listen_to_network'] = bool(req.listen_to_network)
if req.listen_port is not None:
if 'net' not in config:
config['net'] = {}
config['net']['listen_port'] = int(req.listen_port)
try:
app.setConfig(config)
if req.render_devices:
app.update_render_threads()
return JSONResponse({'status': 'OK'}, headers=NOCACHE_HEADERS)
except Exception as e:
log.error(traceback.format_exc())
raise HTTPException(status_code=500, detail=str(e))
def update_render_devices_in_config(config, render_devices):
if render_devices not in ('cpu', 'auto') and not render_devices.startswith('cuda:'):
raise HTTPException(status_code=400, detail=f'Invalid render device requested: {render_devices}')
if render_devices.startswith('cuda:'):
render_devices = render_devices.split(',')
config['render_devices'] = render_devices
def read_web_data_internal(key:str=None):
if not key: # /get without parameters, stable-diffusion easter egg.
raise HTTPException(status_code=418, detail="StableDiffusion is drawing a teapot!") # HTTP418 I'm a teapot
elif key == 'app_config':
return JSONResponse(app.getConfig(), headers=NOCACHE_HEADERS)
elif key == 'system_info':
config = app.getConfig()
system_info = {
'devices': task_manager.get_devices(),
'hosts': app.getIPConfig(),
'default_output_dir': os.path.join(os.path.expanduser("~"), app.OUTPUT_DIRNAME),
}
system_info['devices']['config'] = config.get('render_devices', "auto")
return JSONResponse(system_info, headers=NOCACHE_HEADERS)
elif key == 'models':
return JSONResponse(model_manager.getModels(), headers=NOCACHE_HEADERS)
elif key == 'modifiers': return FileResponse(os.path.join(app.SD_UI_DIR, 'modifiers.json'), headers=NOCACHE_HEADERS)
elif key == 'ui_plugins': return JSONResponse(app.getUIPlugins(), headers=NOCACHE_HEADERS)
else:
raise HTTPException(status_code=404, detail=f'Request for unknown {key}') # HTTP404 Not Found
def ping_internal(session_id:str=None):
if task_manager.is_alive() <= 0: # Check that render threads are alive.
if task_manager.current_state_error: raise HTTPException(status_code=500, detail=str(task_manager.current_state_error))
raise HTTPException(status_code=500, detail='Render thread is dead.')
if task_manager.current_state_error and not isinstance(task_manager.current_state_error, StopAsyncIteration): raise HTTPException(status_code=500, detail=str(task_manager.current_state_error))
# Alive
response = {'status': str(task_manager.current_state)}
if session_id:
session = task_manager.get_cached_session(session_id, update_ttl=True)
response['tasks'] = {id(t): t.status for t in session.tasks}
response['devices'] = task_manager.get_devices()
return JSONResponse(response, headers=NOCACHE_HEADERS)
def render_internal(req: dict):
try:
# separate out the request data into rendering and task-specific data
render_req: GenerateImageRequest = GenerateImageRequest.parse_obj(req)
task_data: TaskData = TaskData.parse_obj(req)
render_req.init_image_mask = req.get('mask') # hack: will rename this in the HTTP API in a future revision
app.save_to_config(task_data.use_stable_diffusion_model, task_data.use_vae_model, task_data.use_hypernetwork_model, task_data.vram_usage_level)
# enqueue the task
new_task = task_manager.render(render_req, task_data)
response = {
'status': str(task_manager.current_state),
'queue': len(task_manager.tasks_queue),
'stream': f'/image/stream/{id(new_task)}',
'task': id(new_task)
}
return JSONResponse(response, headers=NOCACHE_HEADERS)
except ChildProcessError as e: # Render thread is dead
raise HTTPException(status_code=500, detail=f'Rendering thread has died.') # HTTP500 Internal Server Error
except ConnectionRefusedError as e: # Unstarted task pending limit reached, deny queueing too many.
raise HTTPException(status_code=503, detail=str(e)) # HTTP503 Service Unavailable
except Exception as e:
log.error(traceback.format_exc())
raise HTTPException(status_code=500, detail=str(e))
def stream_internal(task_id:int):
#TODO Move to WebSockets ??
task = task_manager.get_cached_task(task_id, update_ttl=True)
if not task: raise HTTPException(status_code=404, detail=f'Request {task_id} not found.') # HTTP404 NotFound
#if (id(task) != task_id): raise HTTPException(status_code=409, detail=f'Wrong task id received. Expected:{id(task)}, Received:{task_id}') # HTTP409 Conflict
if task.buffer_queue.empty() and not task.lock.locked():
if task.response:
#log.info(f'Session {session_id} sending cached response')
return JSONResponse(task.response, headers=NOCACHE_HEADERS)
raise HTTPException(status_code=425, detail='Too Early, task not started yet.') # HTTP425 Too Early
#log.info(f'Session {session_id} opened live render stream {id(task.buffer_queue)}')
return StreamingResponse(task.read_buffer_generator(), media_type='application/json')
def stop_internal(task: int):
if not task:
if task_manager.current_state == task_manager.ServerStates.Online or task_manager.current_state == task_manager.ServerStates.Unavailable:
raise HTTPException(status_code=409, detail='Not currently running any tasks.') # HTTP409 Conflict
task_manager.current_state_error = StopAsyncIteration('')
return {'OK'}
task_id = task
task = task_manager.get_cached_task(task_id, update_ttl=False)
if not task: raise HTTPException(status_code=404, detail=f'Task {task_id} was not found.') # HTTP404 Not Found
if isinstance(task.error, StopAsyncIteration): raise HTTPException(status_code=409, detail=f'Task {task_id} is already stopped.') # HTTP409 Conflict
task.error = StopAsyncIteration(f'Task {task_id} stop requested.')
return {'OK'}
def get_image_internal(task_id: int, img_id: int):
task = task_manager.get_cached_task(task_id, update_ttl=True)
if not task: raise HTTPException(status_code=410, detail=f'Task {task_id} could not be found.') # HTTP404 NotFound
if not task.temp_images[img_id]: raise HTTPException(status_code=425, detail='Too Early, task data is not available yet.') # HTTP425 Too Early
try:
img_data = task.temp_images[img_id]
img_data.seek(0)
return StreamingResponse(img_data, media_type='image/jpeg')
except KeyError as e:
raise HTTPException(status_code=500, detail=str(e))

View File

@ -1,491 +0,0 @@
"""task_manager.py: manage tasks dispatching and render threads.
Notes:
render_threads should be the only hard reference held by the manager to the threads.
Use weak_thread_data to store all other data using weak keys.
This will allow for garbage collection after the thread dies.
"""
import json
import traceback
TASK_TTL = 15 * 60 # seconds, Discard last session's task timeout
import torch
import queue, threading, time, weakref
from typing import Any, Hashable
from easydiffusion import device_manager
from easydiffusion.types import TaskData, GenerateImageRequest
from easydiffusion.utils import log
THREAD_NAME_PREFIX = ''
ERR_LOCK_FAILED = ' failed to acquire lock within timeout.'
LOCK_TIMEOUT = 15 # Maximum locking time in seconds before failing a task.
# It's better to get an exception than a deadlock... ALWAYS use timeout in critical paths.
DEVICE_START_TIMEOUT = 60 # seconds - Maximum time to wait for a render device to init.
class SymbolClass(type): # Print nicely formatted Symbol names.
def __repr__(self): return self.__qualname__
def __str__(self): return self.__name__
class Symbol(metaclass=SymbolClass): pass
class ServerStates:
class Init(Symbol): pass
class LoadingModel(Symbol): pass
class Online(Symbol): pass
class Rendering(Symbol): pass
class Unavailable(Symbol): pass
class RenderTask(): # Task with output queue and completion lock.
def __init__(self, req: GenerateImageRequest, task_data: TaskData):
task_data.request_id = id(self)
self.render_request: GenerateImageRequest = req # Initial Request
self.task_data: TaskData = task_data
self.response: Any = None # Copy of the last reponse
self.render_device = None # Select the task affinity. (Not used to change active devices).
self.temp_images:list = [None] * req.num_outputs * (1 if task_data.show_only_filtered_image else 2)
self.error: Exception = None
self.lock: threading.Lock = threading.Lock() # Locks at task start and unlocks when task is completed
self.buffer_queue: queue.Queue = queue.Queue() # Queue of JSON string segments
async def read_buffer_generator(self):
try:
while not self.buffer_queue.empty():
res = self.buffer_queue.get(block=False)
self.buffer_queue.task_done()
yield res
except queue.Empty as e: yield
@property
def status(self):
if self.lock.locked():
return 'running'
if isinstance(self.error, StopAsyncIteration):
return 'stopped'
if self.error:
return 'error'
if not self.buffer_queue.empty():
return 'buffer'
if self.response:
return 'completed'
return 'pending'
@property
def is_pending(self):
return bool(not self.response and not self.error)
# Temporary cache to allow to query tasks results for a short time after they are completed.
class DataCache():
def __init__(self):
self._base = dict()
self._lock: threading.Lock = threading.Lock()
def _get_ttl_time(self, ttl: int) -> int:
return int(time.time()) + ttl
def _is_expired(self, timestamp: int) -> bool:
return int(time.time()) >= timestamp
def clean(self) -> None:
if not self._lock.acquire(blocking=True, timeout=LOCK_TIMEOUT): raise Exception('DataCache.clean' + ERR_LOCK_FAILED)
try:
# Create a list of expired keys to delete
to_delete = []
for key in self._base:
ttl, _ = self._base[key]
if self._is_expired(ttl):
to_delete.append(key)
# Remove Items
for key in to_delete:
(_, val) = self._base[key]
if isinstance(val, RenderTask):
log.debug(f'RenderTask {key} expired. Data removed.')
elif isinstance(val, SessionState):
log.debug(f'Session {key} expired. Data removed.')
else:
log.debug(f'Key {key} expired. Data removed.')
del self._base[key]
finally:
self._lock.release()
def clear(self) -> None:
if not self._lock.acquire(blocking=True, timeout=LOCK_TIMEOUT): raise Exception('DataCache.clear' + ERR_LOCK_FAILED)
try: self._base.clear()
finally: self._lock.release()
def delete(self, key: Hashable) -> bool:
if not self._lock.acquire(blocking=True, timeout=LOCK_TIMEOUT): raise Exception('DataCache.delete' + ERR_LOCK_FAILED)
try:
if key not in self._base:
return False
del self._base[key]
return True
finally:
self._lock.release()
def keep(self, key: Hashable, ttl: int) -> bool:
if not self._lock.acquire(blocking=True, timeout=LOCK_TIMEOUT): raise Exception('DataCache.keep' + ERR_LOCK_FAILED)
try:
if key in self._base:
_, value = self._base.get(key)
self._base[key] = (self._get_ttl_time(ttl), value)
return True
return False
finally:
self._lock.release()
def put(self, key: Hashable, value: Any, ttl: int) -> bool:
if not self._lock.acquire(blocking=True, timeout=LOCK_TIMEOUT): raise Exception('DataCache.put' + ERR_LOCK_FAILED)
try:
self._base[key] = (
self._get_ttl_time(ttl), value
)
except Exception as e:
log.error(traceback.format_exc())
return False
else:
return True
finally:
self._lock.release()
def tryGet(self, key: Hashable) -> Any:
if not self._lock.acquire(blocking=True, timeout=LOCK_TIMEOUT): raise Exception('DataCache.tryGet' + ERR_LOCK_FAILED)
try:
ttl, value = self._base.get(key, (None, None))
if ttl is not None and self._is_expired(ttl):
log.debug(f'Session {key} expired. Discarding data.')
del self._base[key]
return None
return value
finally:
self._lock.release()
manager_lock = threading.RLock()
render_threads = []
current_state = ServerStates.Init
current_state_error:Exception = None
tasks_queue = []
session_cache = DataCache()
task_cache = DataCache()
weak_thread_data = weakref.WeakKeyDictionary()
idle_event: threading.Event = threading.Event()
class SessionState():
def __init__(self, id: str):
self._id = id
self._tasks_ids = []
@property
def id(self):
return self._id
@property
def tasks(self):
tasks = []
for task_id in self._tasks_ids:
task = task_cache.tryGet(task_id)
if task:
tasks.append(task)
return tasks
def put(self, task, ttl=TASK_TTL):
task_id = id(task)
self._tasks_ids.append(task_id)
if not task_cache.put(task_id, task, ttl):
return False
while len(self._tasks_ids) > len(render_threads) * 2:
self._tasks_ids.pop(0)
return True
def thread_get_next_task():
from easydiffusion import renderer
if not manager_lock.acquire(blocking=True, timeout=LOCK_TIMEOUT):
log.warn(f'Render thread on device: {renderer.context.device} failed to acquire manager lock.')
return None
if len(tasks_queue) <= 0:
manager_lock.release()
return None
task = None
try: # Select a render task.
for queued_task in tasks_queue:
if queued_task.render_device and renderer.context.device != queued_task.render_device:
# Is asking for a specific render device.
if is_alive(queued_task.render_device) > 0:
continue # requested device alive, skip current one.
else:
# Requested device is not active, return error to UI.
queued_task.error = Exception(queued_task.render_device + ' is not currently active.')
task = queued_task
break
if not queued_task.render_device and renderer.context.device == 'cpu' and is_alive() > 1:
# not asking for any specific devices, cpu want to grab task but other render devices are alive.
continue # Skip Tasks, don't run on CPU unless there is nothing else or user asked for it.
task = queued_task
break
if task is not None:
del tasks_queue[tasks_queue.index(task)]
return task
finally:
manager_lock.release()
def thread_render(device):
global current_state, current_state_error
from easydiffusion import renderer, model_manager
try:
renderer.init(device)
weak_thread_data[threading.current_thread()] = {
'device': renderer.context.device,
'device_name': renderer.context.device_name,
'alive': True
}
current_state = ServerStates.LoadingModel
model_manager.load_default_models(renderer.context)
current_state = ServerStates.Online
except Exception as e:
log.error(traceback.format_exc())
weak_thread_data[threading.current_thread()] = {
'error': e,
'alive': False
}
return
while True:
session_cache.clean()
task_cache.clean()
if not weak_thread_data[threading.current_thread()]['alive']:
log.info(f'Shutting down thread for device {renderer.context.device}')
model_manager.unload_all(renderer.context)
return
if isinstance(current_state_error, SystemExit):
current_state = ServerStates.Unavailable
return
task = thread_get_next_task()
if task is None:
idle_event.clear()
idle_event.wait(timeout=1)
continue
if task.error is not None:
log.error(task.error)
task.response = {"status": 'failed', "detail": str(task.error)}
task.buffer_queue.put(json.dumps(task.response))
continue
if current_state_error:
task.error = current_state_error
task.response = {"status": 'failed', "detail": str(task.error)}
task.buffer_queue.put(json.dumps(task.response))
continue
log.info(f'Session {task.task_data.session_id} starting task {id(task)} on {renderer.context.device_name}')
if not task.lock.acquire(blocking=False): raise Exception('Got locked task from queue.')
try:
def step_callback():
global current_state_error
if isinstance(current_state_error, SystemExit) or isinstance(current_state_error, StopAsyncIteration) or isinstance(task.error, StopAsyncIteration):
renderer.context.stop_processing = True
if isinstance(current_state_error, StopAsyncIteration):
task.error = current_state_error
current_state_error = None
log.info(f'Session {task.task_data.session_id} sent cancel signal for task {id(task)}')
current_state = ServerStates.LoadingModel
model_manager.resolve_model_paths(task.task_data)
model_manager.reload_models_if_necessary(renderer.context, task.task_data)
current_state = ServerStates.Rendering
task.response = renderer.make_images(task.render_request, task.task_data, task.buffer_queue, task.temp_images, step_callback)
# Before looping back to the generator, mark cache as still alive.
task_cache.keep(id(task), TASK_TTL)
session_cache.keep(task.task_data.session_id, TASK_TTL)
except Exception as e:
task.error = e
task.response = {"status": 'failed', "detail": str(task.error)}
task.buffer_queue.put(json.dumps(task.response))
log.error(traceback.format_exc())
continue
finally:
# Task completed
task.lock.release()
task_cache.keep(id(task), TASK_TTL)
session_cache.keep(task.task_data.session_id, TASK_TTL)
if isinstance(task.error, StopAsyncIteration):
log.info(f'Session {task.task_data.session_id} task {id(task)} cancelled!')
elif task.error is not None:
log.info(f'Session {task.task_data.session_id} task {id(task)} failed!')
else:
log.info(f'Session {task.task_data.session_id} task {id(task)} completed by {renderer.context.device_name}.')
current_state = ServerStates.Online
def get_cached_task(task_id:str, update_ttl:bool=False):
# By calling keep before tryGet, wont discard if was expired.
if update_ttl and not task_cache.keep(task_id, TASK_TTL):
# Failed to keep task, already gone.
return None
return task_cache.tryGet(task_id)
def get_cached_session(session_id:str, update_ttl:bool=False):
if update_ttl:
session_cache.keep(session_id, TASK_TTL)
session = session_cache.tryGet(session_id)
if not session:
session = SessionState(session_id)
session_cache.put(session_id, session, TASK_TTL)
return session
def get_devices():
devices = {
'all': {},
'active': {},
}
def get_device_info(device):
if device == 'cpu':
return {'name': device_manager.get_processor_name()}
mem_free, mem_total = torch.cuda.mem_get_info(device)
mem_free /= float(10**9)
mem_total /= float(10**9)
return {
'name': torch.cuda.get_device_name(device),
'mem_free': mem_free,
'mem_total': mem_total,
'max_vram_usage_level': device_manager.get_max_vram_usage_level(device),
}
# list the compatible devices
gpu_count = torch.cuda.device_count()
for device in range(gpu_count):
device = f'cuda:{device}'
if not device_manager.is_device_compatible(device):
continue
devices['all'].update({device: get_device_info(device)})
devices['all'].update({'cpu': get_device_info('cpu')})
# list the activated devices
if not manager_lock.acquire(blocking=True, timeout=LOCK_TIMEOUT): raise Exception('get_devices' + ERR_LOCK_FAILED)
try:
for rthread in render_threads:
if not rthread.is_alive():
continue
weak_data = weak_thread_data.get(rthread)
if not weak_data or not 'device' in weak_data or not 'device_name' in weak_data:
continue
device = weak_data['device']
devices['active'].update({device: get_device_info(device)})
finally:
manager_lock.release()
return devices
def is_alive(device=None):
if not manager_lock.acquire(blocking=True, timeout=LOCK_TIMEOUT): raise Exception('is_alive' + ERR_LOCK_FAILED)
nbr_alive = 0
try:
for rthread in render_threads:
if device is not None:
weak_data = weak_thread_data.get(rthread)
if weak_data is None or not 'device' in weak_data or weak_data['device'] is None:
continue
thread_device = weak_data['device']
if thread_device != device:
continue
if rthread.is_alive():
nbr_alive += 1
return nbr_alive
finally:
manager_lock.release()
def start_render_thread(device):
if not manager_lock.acquire(blocking=True, timeout=LOCK_TIMEOUT): raise Exception('start_render_thread' + ERR_LOCK_FAILED)
log.info(f'Start new Rendering Thread on device: {device}')
try:
rthread = threading.Thread(target=thread_render, kwargs={'device': device})
rthread.daemon = True
rthread.name = THREAD_NAME_PREFIX + device
rthread.start()
render_threads.append(rthread)
finally:
manager_lock.release()
timeout = DEVICE_START_TIMEOUT
while not rthread.is_alive() or not rthread in weak_thread_data or not 'device' in weak_thread_data[rthread]:
if rthread in weak_thread_data and 'error' in weak_thread_data[rthread]:
log.error(f"{rthread}, {device}, error: {weak_thread_data[rthread]['error']}")
return False
if timeout <= 0:
return False
timeout -= 1
time.sleep(1)
return True
def stop_render_thread(device):
try:
device_manager.validate_device_id(device, log_prefix='stop_render_thread')
except:
log.error(traceback.format_exc())
return False
if not manager_lock.acquire(blocking=True, timeout=LOCK_TIMEOUT): raise Exception('stop_render_thread' + ERR_LOCK_FAILED)
log.info(f'Stopping Rendering Thread on device: {device}')
try:
thread_to_remove = None
for rthread in render_threads:
weak_data = weak_thread_data.get(rthread)
if weak_data is None or not 'device' in weak_data or weak_data['device'] is None:
continue
thread_device = weak_data['device']
if thread_device == device:
weak_data['alive'] = False
thread_to_remove = rthread
break
if thread_to_remove is not None:
render_threads.remove(rthread)
return True
finally:
manager_lock.release()
return False
def update_render_threads(render_devices, active_devices):
devices_to_start, devices_to_stop = device_manager.get_device_delta(render_devices, active_devices)
log.debug(f'devices_to_start: {devices_to_start}')
log.debug(f'devices_to_stop: {devices_to_stop}')
for device in devices_to_stop:
if is_alive(device) <= 0:
log.debug(f'{device} is not alive')
continue
if not stop_render_thread(device):
log.warn(f'{device} could not stop render thread')
for device in devices_to_start:
if is_alive(device) >= 1:
log.debug(f'{device} already registered.')
continue
if not start_render_thread(device):
log.warn(f'{device} failed to start.')
if is_alive() <= 0: # No running devices, probably invalid user config.
raise EnvironmentError('ERROR: No active render devices! Please verify the "render_devices" value in config.json')
log.debug(f"active devices: {get_devices()['active']}")
def shutdown_event(): # Signal render thread to close on shutdown
global current_state_error
current_state_error = SystemExit('Application shutting down.')
def render(render_req: GenerateImageRequest, task_data: TaskData):
current_thread_count = is_alive()
if current_thread_count <= 0: # Render thread is dead
raise ChildProcessError('Rendering thread has died.')
# Alive, check if task in cache
session = get_cached_session(task_data.session_id, update_ttl=True)
pending_tasks = list(filter(lambda t: t.is_pending, session.tasks))
if current_thread_count < len(pending_tasks):
raise ConnectionRefusedError(f'Session {task_data.session_id} already has {len(pending_tasks)} pending tasks out of {current_thread_count}.')
new_task = RenderTask(render_req, task_data)
if session.put(new_task, TASK_TTL):
# Use twice the normal timeout for adding user requests.
# Tries to force session.put to fail before tasks_queue.put would.
if manager_lock.acquire(blocking=True, timeout=LOCK_TIMEOUT * 2):
try:
tasks_queue.append(new_task)
idle_event.set()
return new_task
finally:
manager_lock.release()
raise RuntimeError('Failed to add task to cache.')

View File

@ -1,87 +0,0 @@
from pydantic import BaseModel
from typing import Any
class GenerateImageRequest(BaseModel):
prompt: str = ""
negative_prompt: str = ""
seed: int = 42
width: int = 512
height: int = 512
num_outputs: int = 1
num_inference_steps: int = 50
guidance_scale: float = 7.5
init_image: Any = None
init_image_mask: Any = None
prompt_strength: float = 0.8
preserve_init_image_color_profile = False
sampler_name: str = None # "ddim", "plms", "heun", "euler", "euler_a", "dpm2", "dpm2_a", "lms"
hypernetwork_strength: float = 0
class TaskData(BaseModel):
request_id: str = None
session_id: str = "session"
save_to_disk_path: str = None
vram_usage_level: str = "balanced" # or "low" or "medium"
use_face_correction: str = None # or "GFPGANv1.3"
use_upscale: str = None # or "RealESRGAN_x4plus" or "RealESRGAN_x4plus_anime_6B"
use_stable_diffusion_model: str = "sd-v1-4"
use_stable_diffusion_config: str = "v1-inference"
use_vae_model: str = None
use_hypernetwork_model: str = None
show_only_filtered_image: bool = False
output_format: str = "jpeg" # or "png"
output_quality: int = 75
metadata_output_format: str = "txt" # or "json"
stream_image_progress: bool = False
class Image:
data: str # base64
seed: int
is_nsfw: bool
path_abs: str = None
def __init__(self, data, seed):
self.data = data
self.seed = seed
def json(self):
return {
"data": self.data,
"seed": self.seed,
"path_abs": self.path_abs,
}
class Response:
render_request: GenerateImageRequest
task_data: TaskData
images: list
def __init__(self, render_request: GenerateImageRequest, task_data: TaskData, images: list):
self.render_request = render_request
self.task_data = task_data
self.images = images
def json(self):
del self.render_request.init_image
del self.render_request.init_image_mask
res = {
"status": 'succeeded',
"render_request": self.render_request.dict(),
"task_data": self.task_data.dict(),
"output": [],
}
for image in self.images:
res["output"].append(image.json())
return res
class UserInitiatedStop(Exception):
pass

View File

@ -1,8 +0,0 @@
import logging
log = logging.getLogger('easydiffusion')
from .save_utils import (
save_images_to_disk,
get_printable_request,
)

View File

@ -1,79 +0,0 @@
import os
import time
import base64
import re
from easydiffusion.types import TaskData, GenerateImageRequest
from sdkit.utils import save_images, save_dicts
filename_regex = re.compile('[^a-zA-Z0-9]')
# keep in sync with `ui/media/js/dnd.js`
TASK_TEXT_MAPPING = {
'prompt': 'Prompt',
'width': 'Width',
'height': 'Height',
'seed': 'Seed',
'num_inference_steps': 'Steps',
'guidance_scale': 'Guidance Scale',
'prompt_strength': 'Prompt Strength',
'use_face_correction': 'Use Face Correction',
'use_upscale': 'Use Upscaling',
'sampler_name': 'Sampler',
'negative_prompt': 'Negative Prompt',
'use_stable_diffusion_model': 'Stable Diffusion model',
'use_hypernetwork_model': 'Hypernetwork model',
'hypernetwork_strength': 'Hypernetwork Strength'
}
def save_images_to_disk(images: list, filtered_images: list, req: GenerateImageRequest, task_data: TaskData):
save_dir_path = os.path.join(task_data.save_to_disk_path, filename_regex.sub('_', task_data.session_id))
metadata_entries = get_metadata_entries_for_request(req, task_data)
if task_data.show_only_filtered_image or filtered_images == images:
save_images(filtered_images, save_dir_path, file_name=make_filename_callback(req), output_format=task_data.output_format, output_quality=task_data.output_quality)
save_dicts(metadata_entries, save_dir_path, file_name=make_filename_callback(req), output_format=task_data.metadata_output_format)
else:
save_images(images, save_dir_path, file_name=make_filename_callback(req), output_format=task_data.output_format, output_quality=task_data.output_quality)
save_images(filtered_images, save_dir_path, file_name=make_filename_callback(req, suffix='filtered'), output_format=task_data.output_format, output_quality=task_data.output_quality)
save_dicts(metadata_entries, save_dir_path, file_name=make_filename_callback(req, suffix='filtered'), output_format=task_data.metadata_output_format)
def get_metadata_entries_for_request(req: GenerateImageRequest, task_data: TaskData):
metadata = get_printable_request(req)
metadata.update({
'use_stable_diffusion_model': task_data.use_stable_diffusion_model,
'use_vae_model': task_data.use_vae_model,
'use_hypernetwork_model': task_data.use_hypernetwork_model,
'use_face_correction': task_data.use_face_correction,
'use_upscale': task_data.use_upscale,
})
# if text, format it in the text format expected by the UI
is_txt_format = (task_data.metadata_output_format.lower() == 'txt')
if is_txt_format:
metadata = {TASK_TEXT_MAPPING[key]: val for key, val in metadata.items() if key in TASK_TEXT_MAPPING}
entries = [metadata.copy() for _ in range(req.num_outputs)]
for i, entry in enumerate(entries):
entry['Seed' if is_txt_format else 'seed'] = req.seed + i
return entries
def get_printable_request(req: GenerateImageRequest):
metadata = req.dict()
del metadata['init_image']
del metadata['init_image_mask']
return metadata
def make_filename_callback(req: GenerateImageRequest, suffix=None):
def make_filename(i):
img_id = base64.b64encode(int(time.time()+i).to_bytes(8, 'big')).decode() # Generate unique ID based on time.
img_id = img_id.translate({43:None, 47:None, 61:None})[-8:] # Remove + / = and keep last 8 chars.
prompt_flattened = filename_regex.sub('_', req.prompt)[:50]
name = f"{prompt_flattened}_{img_id}"
name = name if suffix is None else f'{name}_{suffix}'
return name
return make_filename

View File

@ -1,164 +1,107 @@
<!DOCTYPE html>
<html>
<head>
<title>Stable Diffusion UI</title>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta name="theme-color" content="#673AB6">
<link rel="icon" type="image/png" href="/media/images/favicon-16x16.png" sizes="16x16">
<link rel="icon" type="image/png" href="/media/images/favicon-32x32.png" sizes="32x32">
<link rel="stylesheet" href="/media/css/fonts.css">
<link rel="stylesheet" href="/media/css/themes.css">
<link rel="stylesheet" href="/media/css/main.css">
<link rel="stylesheet" href="/media/css/auto-save.css">
<link rel="stylesheet" href="/media/css/modifier-thumbnails.css">
<link rel="stylesheet" href="/media/css/fontawesome-all.min.css">
<link rel="stylesheet" href="/media/css/image-editor.css">
<link rel="stylesheet" href="/media/css/jquery-confirm.min.css">
<link rel="manifest" href="/media/manifest.webmanifest">
<script src="/media/js/jquery-3.6.1.min.js"></script>
<script src="/media/js/jquery-confirm.min.js"></script>
<script src="/media/js/marked.min.js"></script>
<link rel="icon" type="image/png" href="/media/favicon-16x16.png" sizes="16x16">
<link rel="icon" type="image/png" href="/media/favicon-32x32.png" sizes="32x32">
<link rel="stylesheet" href="/media/main.css?v=10">
<link rel="stylesheet" href="/media/modifier-thumbnails.css?v=1">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.2.0/css/all.min.css">
<link rel="stylesheet" href="/media/drawingboard.min.css">
<script src="/media/jquery-3.6.1.min.js"></script>
<script src="/media/drawingboard.min.js"></script>
</head>
<body>
<div id="container">
<div id="top-nav">
<div id="logo">
<h1>
Easy Diffusion
<small>v2.5.0 <span id="updateBranchLabel"></span></small>
</h1>
<h1>Stable Diffusion UI <small>v2.195 <span id="updateBranchLabel"></span></small></h1>
</div>
<div id="server-status">
<div id="server-status-color"></div>
<span id="server-status-msg">Stable Diffusion is starting..</span>
</div>
<div id="tab-container">
<span id="tab-main" class="tab active">
<span><i class="fa fa-image icon"></i> Generate</span>
</span>
<span id="tab-settings" class="tab">
<span><i class="fa fa-gear icon"></i> Settings</span>
</span>
<span id="tab-about" class="tab">
<ul id="top-nav-items">
<li class="dropdown">
<span><i class="fa fa-comments icon"></i> Help & Community</span>
</span>
</div>
<ul id="community-links" class="dropdown-content">
<li><a href="https://github.com/cmdr2/stable-diffusion-ui/blob/main/Troubleshooting.md" target="_blank"><i class="fa-solid fa-circle-question fa-fw"></i> Usual problems and solutions</a></li>
<li><a href="https://discord.com/invite/u9yhsFmEkB" target="_blank"><i class="fa-brands fa-discord fa-fw"></i> Discord user community</a></li>
<li><a href="https://www.reddit.com/r/StableDiffusionUI/" target="_blank"><i class="fa-brands fa-reddit fa-fw"></i> Reddit community</a></li>
<li><a href="https://github.com/cmdr2/stable-diffusion-ui" target="_blank"><i class="fa-brands fa-github fa-fw"></i> Source code on GitHub</a></li>
</ul>
</li>
<li class="dropdown">
<span><i class="fa fa-gear icon"></i> Settings</span>
<div id="system-settings" class="panel-box settings-box dropdown-content">
<ul id="system-settings-entries">
<li><b class="settings-subheader">System Settings</b></li>
<br/>
<li><input id="save_to_disk" name="save_to_disk" type="checkbox"> <label for="save_to_disk">Automatically save to <input id="diskPath" name="diskPath" size="40" disabled></label></li>
<li><input id="sound_toggle" name="sound_toggle" type="checkbox" checked> <label for="sound_toggle">Play sound on task completion</label></li>
<li><input id="turbo" name="turbo" type="checkbox" checked> <label for="turbo">Turbo mode <small>(generates images faster, but uses an additional 1 GB of GPU memory)</small></label></li>
<li><input id="use_cpu" name="use_cpu" type="checkbox"> <label for="use_cpu">Use CPU instead of GPU <small>(warning: this will be *very* slow)</small></label></li>
<li><input id="use_full_precision" name="use_full_precision" type="checkbox"> <label for="use_full_precision">Use full precision <small>(for GPU-only. warning: this will consume more VRAM)</small></label></li>
<!-- <li><input id="allow_nsfw" name="allow_nsfw" type="checkbox"> <label for="allow_nsfw">Allow NSFW Content (You confirm you are above 18 years of age)</label></li> -->
<br/>
<li><input id="use_beta_channel" name="use_beta_channel" type="checkbox"> <label for="use_beta_channel">🔥Beta channel. Get the latest features immediately (but could be less stable). Please restart the program after changing this.</label></li>
</ul>
</div>
</li>
</ul>
</div>
<div id="tab-content-wrapper">
<div id="tab-content-main" class="tab-content active flex-container">
<div id="editor">
<div class="flex-container">
<div id="editor" class="col-fixed-10">
<div id="server-status">
<div id="server-status-color"></div>
<span id="server-status-msg">Stable Diffusion is starting..</span>
</div>
<div id="editor-inputs">
<div id="editor-inputs-prompt" class="row">
<label for="prompt"><b>Enter Prompt</b></label> <small>or</small> <button id="promptsFromFileBtn">Load from a file</button>
<label for="prompt">Prompt</label>
<textarea id="prompt" class="col-free">a photograph of an astronaut riding a horse</textarea>
<input id="prompt_from_file" name="prompt_from_file" type="file" /> <!-- hidden -->
<label for="negative_prompt" class="collapsible" id="negative_prompt_handle">
Negative Prompt
<a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/Writing-prompts#negative-prompts" target="_blank"><i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip top-left">Click to learn more about Negative Prompts</span></i></a>
<small>(optional)</small>
</label>
<div class="collapsible-content">
<textarea id="negative_prompt" name="negative_prompt" placeholder="list the things to remove from the image (e.g. fog, green)"></textarea>
</div>
</div>
<div id="editor-inputs-init-image" class="row">
<label for="init_image">Initial Image (img2img) <small>(optional)</small> </label>
<label for="init_image"><b>Initial Image:</b> (optional) </label> <input id="init_image" name="init_image" type="file" /><br/>
<div id="init_image_preview_container" class="image_preview_container">
<div id="init_image_wrapper">
<img id="init_image_preview" src="" />
<span id="init_image_size_box"></span>
<button class="init_image_clear image_clear_btn"><i class="fa-solid fa-xmark"></i></button>
</div>
<div id="init_image_buttons">
<div class="button">
<i class="fa-regular fa-folder-open"></i>
Browse
<input id="init_image" name="init_image" type="file" />
</div>
<div id="init_image_button_draw" class="button">
<i class="fa-solid fa-pencil"></i>
Draw
</div>
<div id="inpaint_button_container">
<div id="init_image_button_inpaint" class="button">
<i class="fa-solid fa-paintbrush"></i>
Inpaint
</div>
<input id="enable_mask" name="enable_mask" type="checkbox">
</div>
</div>
</div>
<img id="init_image_preview" src="" width="100" height="100" />
<button class="init_image_clear image_clear_btn">X</button>
<br/>
<input id="enable_mask" name="enable_mask" type="checkbox"> <label for="enable_mask">In-Painting (beta) <small>(select the area which the AI will paint into)</small></label>
<div id="inpaintingEditor"></div>
</div>
</div>
<div id="editor-inputs-tags-container" class="row">
<label>Image Modifiers <i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip top-left">click an Image Modifier to remove it, use Ctrl+Mouse Wheel to adjust its weight</span></i>:</label>
<label>Image Modifiers: <small>(click an Image Modifier to remove it)</small></label>
<div id="editor-inputs-tags-list"></div>
</div>
<button id="makeImage" class="primaryButton">Make Image</button>
<div id="render-buttons">
<button id="stopImage" class="secondaryButton">Stop All</button>
<button id="pause"><i class="fa-solid fa-pause"></i> Pause All</button>
<button id="resume"><i class="fa-solid fa-play"></i> Resume</button>
</div>
<button id="makeImage">Make Image</button>
<button id="stopImage" class="secondaryButton">Stop All</button>
</div>
<span class="line-separator"></span>
<div class="line-separator">&nbsp;</div>
<div id="editor-settings" class="settings-box panel-box">
<h4 class="collapsible">
Image Settings
<i id="reset-image-settings" class="fa-solid fa-arrow-rotate-left section-button">
<span class="simple-tooltip top-left">
Reset Image Settings
</span>
</i>
</h4>
<div id="editor-settings-entries" class="collapsible-content">
<div><table>
<tr><b class="settings-subheader">Image Settings</b></tr>
<tr class="pl-5"><td><label for="seed">Seed:</label></td><td><input id="seed" name="seed" size="10" value="0" onkeypress="preventNonNumericalInput(event)"> <input id="random_seed" name="random_seed" type="checkbox" checked><label for="random_seed">Random</label></td></tr>
<tr class="pl-5"><td><label for="num_outputs_total">Number of Images:</label></td><td><input id="num_outputs_total" name="num_outputs_total" value="1" size="1" onkeypress="preventNonNumericalInput(event)"> <label><small>(total)</small></label> <input id="num_outputs_parallel" name="num_outputs_parallel" value="1" size="1" onkeypress="preventNonNumericalInput(event)"> <label for="num_outputs_parallel"><small>(in parallel)</small></label></td></tr>
<tr class="pl-5"><td><label for="stable_diffusion_model">Model:</label></td><td>
<select id="stable_diffusion_model" name="stable_diffusion_model">
<!-- <option value="sd-v1-4" selected>sd-v1-4</option> -->
<div id="editor-settings" class="panel-box settings-box">
<h4 class="collapsible">Image Settings</h4>
<ul id="editor-settings-entries" class="collapsible-content">
<li><b class="settings-subheader">Image Settings</b></li>
<li class="pl-5"><label for="seed">Seed:</label> <input id="seed" name="seed" size="10" value="30000"> <input id="random_seed" name="random_seed" type="checkbox" checked> <label for="random_seed">Random Image</label></li>
<li class="pl-5"><label for="num_outputs_total">Number of images to make:</label> <input id="num_outputs_total" name="num_outputs_total" value="1" size="1"> <label for="num_outputs_parallel">Generate in parallel:</label> <input id="num_outputs_parallel" name="num_outputs_parallel" value="1" size="1"> (images at once)</li>
<li id="samplerSelection" class="pl-5"><label for="sampler">Sampler:</label>
<select id="sampler" name="sampler">
<option value="plms" selected>plms</option>
<option value="ddim">ddim</option>
<option value="heun">heun</option>
<option value="euler">euler</option>
<option value="euler_a">euler_a</option>
<option value="dpm2">dpm2</option>
<option value="dpm2_a">dpm2_a</option>
<option value="lms">lms</option>
</select>
<a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/Custom-Models" target="_blank"><i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip top-left">Click to learn more about custom models</span></i></a>
</td></tr>
<!-- <tr id="modelConfigSelection" class="pl-5"><td><label for="model_config">Model Config:</i></label></td><td>
<select id="model_config" name="model_config">
</select>
</td></tr> -->
<tr class="pl-5"><td><label for="vae_model">Custom VAE:</i></label></td><td>
<select id="vae_model" name="vae_model">
<!-- <option value="" selected>None</option> -->
</select>
<a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/VAE-Variational-Auto-Encoder" target="_blank"><i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip top-left">Click to learn more about VAEs</span></i></a>
</td></tr>
<tr id="samplerSelection" class="pl-5"><td><label for="sampler_name">Sampler:</label></td><td>
<select id="sampler_name" name="sampler_name">
<option value="plms">PLMS</option>
<option value="ddim">DDIM</option>
<option value="heun">Heun</option>
<option value="euler">Euler</option>
<option value="euler_a" selected>Euler Ancestral</option>
<option value="dpm2">DPM2</option>
<option value="dpm2_a">DPM2 Ancestral</option>
<option value="lms">LMS</option>
<option value="dpm_solver_stability">DPM Solver (Stability AI)</option>
<option value="dpmpp_2s_a" selected>DPM++ 2s Ancestral</option>
<option value="dpmpp_2m">DPM++ 2m</option>
<option value="dpmpp_sde">DPM++ SDE</option>
<option value="dpm_fast">DPM Fast</option>
<option value="dpm_adaptive">DPM Adaptive</option>
</select>
<a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/How-to-Use#samplers" target="_blank"><i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip top-left">Click to learn more about samplers</span></i></a>
</td></tr>
<tr class="pl-5"><td><label>Image Size: </label></td><td>
</li>
<li class="pl-5"><label>Image Size: </label>
<select id="width" name="width" value="512">
<option value="128">128 (*)</option>
<option value="192">192</option>
@ -203,205 +146,63 @@
<option value="2048">2048</option>
</select>
<label for="height"><small>(height)</small></label>
</td></tr>
<tr class="pl-5"><td><label for="num_inference_steps">Inference Steps:</label></td><td> <input id="num_inference_steps" name="num_inference_steps" size="4" value="25" onkeypress="preventNonNumericalInput(event)"></td></tr>
<tr class="pl-5"><td><label for="guidance_scale_slider">Guidance Scale:</label></td><td> <input id="guidance_scale_slider" name="guidance_scale_slider" class="editor-slider" value="75" type="range" min="11" max="500"> <input id="guidance_scale" name="guidance_scale" size="4" pattern="^[0-9\.]+$" onkeypress="preventNonNumericalInput(event)"></td></tr>
<tr id="prompt_strength_container" class="pl-5"><td><label for="prompt_strength_slider">Prompt Strength:</label></td><td> <input id="prompt_strength_slider" name="prompt_strength_slider" class="editor-slider" value="80" type="range" min="0" max="99"> <input id="prompt_strength" name="prompt_strength" size="4" pattern="^[0-9\.]+$" onkeypress="preventNonNumericalInput(event)"><br/></td></tr>
<tr class="pl-5"><td><label for="hypernetwork_model">Hypernetwork:</i></label></td><td>
<select id="hypernetwork_model" name="hypernetwork_model">
<!-- <option value="" selected>None</option> -->
</select>
</td></tr>
<tr id="hypernetwork_strength_container" class="pl-5">
<td><label for="hypernetwork_strength_slider">Hypernetwork Strength:</label></td>
<td> <input id="hypernetwork_strength_slider" name="hypernetwork_strength_slider" class="editor-slider" value="100" type="range" min="0" max="100"> <input id="hypernetwork_strength" name="hypernetwork_strength" size="4" pattern="^[0-9\.]+$" onkeypress="preventNonNumericalInput(event)"><br/></td>
</tr>
<tr class="pl-5"><td><label for="output_format">Output Format:</label></td><td>
<select id="output_format" name="output_format">
<option value="jpeg" selected>jpeg</option>
<option value="png">png</option>
</select>
</td></tr>
<tr class="pl-5" id="output_quality_row"><td><label for="output_quality">JPEG Quality:</label></td><td>
<input id="output_quality_slider" name="output_quality" class="editor-slider" value="75" type="range" min="10" max="95"> <input id="output_quality" name="output_quality" size="4" pattern="^[0-9\.]+$" onkeypress="preventNonNumericalInput(event)">
</td></tr>
</table></div>
</li>
<li class="pl-5"><label for="num_inference_steps">Number of inference steps:</label> <input id="num_inference_steps" name="num_inference_steps" size="4" value="50"></li>
<li class="pl-5"><label for="guidance_scale_slider">Guidance Scale:</label> <input id="guidance_scale_slider" name="guidance_scale_slider" class="editor-slider" value="75" type="range" min="10" max="500"> <input id="guidance_scale" name="guidance_scale" size="4"></li>
<li class="pl-5"><span id="prompt_strength_container"><label for="prompt_strength_slider">Prompt Strength:</label> <input id="prompt_strength_slider" name="prompt_strength_slider" class="editor-slider" value="80" type="range" min="0" max="99"> <input id="prompt_strength" name="prompt_strength" size="4"><br/></span></li>
<br/>
<li><b class="settings-subheader">Prompt Settings</b></li>
<li class="pl-5"><label for="negative_prompt">Negative Prompt:</label> <input id="negative_prompt" name="negative_prompt" size="55"></li>
<br/>
<div><ul>
<li><b class="settings-subheader">Render Settings</b></li>
<li class="pl-5"><input id="stream_image_progress" name="stream_image_progress" type="checkbox"> <label for="stream_image_progress">Show a live preview <small>(uses more VRAM, slower images)</small></label></li>
<li id="apply_color_correction_setting" class="pl-5"><input id="apply_color_correction" name="apply_color_correction" type="checkbox"> <label for="apply_color_correction">Preserve color profile <small>(helps during inpainting)</small></label></li>
<li class="pl-5"><input id="use_face_correction" name="use_face_correction" type="checkbox"> <label for="use_face_correction">Fix incorrect faces and eyes <small>(uses GFPGAN)</small></label></li>
<li class="pl-5"><input id="stream_image_progress" name="stream_image_progress" type="checkbox"> <label for="stream_image_progress">Show a live preview of the image <small>(uses more VRAM, slightly slower image creation)</small></label></li>
<li class="pl-5"><input id="use_face_correction" name="use_face_correction" type="checkbox" checked> <label for="use_face_correction">Fix incorrect faces and eyes <small>(uses GFPGAN)</small></label></li>
<li class="pl-5">
<input id="use_upscale" name="use_upscale" type="checkbox"> <label for="use_upscale">Upscale image by 4x with </label>
<input id="use_upscale" name="use_upscale" type="checkbox"> <label for="use_upscale">Upscale the image to 4x resolution using </label>
<select id="upscale_model" name="upscale_model">
<option value="RealESRGAN_x4plus" selected>RealESRGAN_x4plus</option>
<option value="RealESRGAN_x4plus_anime_6B">RealESRGAN_x4plus_anime_6B</option>
</select>
</li>
<li class="pl-5"><input id="show_only_filtered_image" name="show_only_filtered_image" type="checkbox" checked> <label for="show_only_filtered_image">Show only the corrected/upscaled image</label></li>
</ul></div>
</div>
<br/>
<li><small>The system-related settings have been moved to the top-right corner.</small></li>
</ul>
</div>
<div id="editor-modifiers" class="panel-box">
<h4 class="collapsible">
Image Modifiers (art styles, tags etc)
<i id="modifier-settings-btn" class="fa-solid fa-gear section-button">
<span class="simple-tooltip left">
Add Custom Modifiers
</span>
</i>
</h4>
<h4 class="collapsible">Image Modifiers (art styles, tags etc)</h4>
<div id="editor-modifiers-entries" class="collapsible-content">
<div id="editor-modifiers-entries-toolbar">
<label for="preview-image">Image Style:</label>
<select id="preview-image" name="preview-image" value="portrait">
<option value="portrait" selected="">Face</option>
<option value="landscape">Landscape</option>
</select>
&nbsp;
<label for="modifier-card-size-slider">Thumbnail Size:</label>
<input id="modifier-card-size-slider" name="modifier-card-size-slider" value="0" type="range" min="-3" max="5">
</div>
<label for="preview-image">Image Style:</label>
<select id="preview-image" name="preview-image" value="portrait">
<option value="portrait" selected="">Face</option>
<option value="landscape">Landscape</option>
</select>
&nbsp;
<label for="modifier-card-size-slider">Thumbnail Size:</label>
<input id="modifier-card-size-slider" name="modifier-card-size-slider" value="0" type="range" min="-3" max="5">
</div>
</div>
</div>
<div id="preview" class="col-free">
<div id="initial-text">
Type a prompt and press the "Make Image" button.<br/><br/>You can set an "Initial Image" if you want to guide the AI.<br/><br/>
You can also add modifiers like "Realistic", "Pencil Sketch", "ArtStation" etc by browsing through the "Image Modifiers" section
and selecting the desired modifiers.<br/><br/>
Click "Image Settings" for additional settings like seed, image size, number of images to generate etc.<br/><br/>Enjoy! :)
Type a prompt and press the "Make Image" button.<br/><br/>You can set an "Initial Image" if you want to guide the AI.<br/><br/>You can also add modifiers like "Realistic", "Pencil Sketch", "ArtStation" etc by browsing through the "Image Modifiers" section and selecting the desired modifiers.<br/><br/>Click "Advanced Settings" for additional settings like seed, image size, number of images to generate etc.<br/><br/>Enjoy! :)
</div>
<div id="preview-tools">
<button id="clear-all-previews" class="secondaryButton"><i class="fa-solid fa-trash-can"></i> Clear All</button>
</div>
</div>
</div>
<div id="tab-content-settings" class="tab-content">
<div id="system-settings" class="tab-content-inner">
<h1>System Settings</h1>
<div class="parameters-table"></div>
<br/>
<button id="save-system-settings-btn" class="primaryButton">Save</button>
<br/><br/>
<div>
<h3><i class="fa fa-microchip icon"></i> System Info</h3>
<div id="system-info">
<table>
<tr><td><label>Processor:</label></td><td id="system-info-cpu" class="value"></td></tr>
<tr><td><label>Compatible Graphics Cards (all):</label></td><td id="system-info-gpus-all" class="value"></td></tr>
<tr><td></td><td>&nbsp;</td></tr>
<tr><td><label>Used for rendering 🔥:</label></td><td id="system-info-rendering-devices" class="value"></td></tr>
<tr><td><label>Server Addresses <i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip top-left">You can access Stable Diffusion UI from other devices using these addresses</span></i> :</label></td><td id="system-info-server-hosts" class="value"></td></tr>
</table>
</div>
</div>
</div>
</div>
<div id="tab-content-about" class="tab-content">
<div class="tab-content-inner">
<div class="float-container">
<div class="float-child">
<h1>Help</h1>
<ul id="help-links">
<li><span class="help-section">Using the software</span>
<ul>
<li> <a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/How-To-Use" target="_blank"><i class="fa-solid fa-book fa-fw"></i> How to use</a>
<li> <a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/UI-Overview" target="_blank"><i class="fa-solid fa-list fa-fw"></i> UI Overview</a>
<li> <a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/Writing-Prompts" target="_blank"><i class="fa-solid fa-pen-to-square fa-fw"></i> Writing prompts</a>
<li> <a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/Inpainting" target="_blank"><i class="fa-solid fa-paintbrush fa-fw"></i> Inpainting</a>
<li> <a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/Run-on-Multiple-GPUs" target="_blank"><i class="fa-solid fa-paintbrush fa-fw"></i> Run on Multiple GPUs</a>
</ul>
<li><span class="help-section">Installation</span>
<ul>
<li> <a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" target="_blank"><i class="fa-solid fa-circle-question fa-fw"></i> Troubleshooting</a>
</ul>
<li><span class="help-section">Downloadable Content</span>
<ul>
<li> <a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/Custom-Models" target="_blank"><i class="fa-solid fa-images fa-fw"></i> Custom Models</a>
<li> <a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/UI-Plugins" target="_blank"><i class="fa-solid fa-puzzle-piece fa-fw"></i> UI Plugins</a>
<li> <a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/VAE-Variational-Auto-Encoder" target="_blank"><i class="fa-solid fa-hand-sparkles fa-fw"></i> VAE Variational Auto Encoder</a>
</ul>
</ul>
</div>
<div class="float-child">
<h1>Community</h1>
<ul id="community-links">
<li><a href="https://discord.com/invite/u9yhsFmEkB" target="_blank"><i class="fa-brands fa-discord fa-fw"></i> Discord user community</a></li>
<li><a href="https://www.reddit.com/r/StableDiffusionUI/" target="_blank"><i class="fa-brands fa-reddit fa-fw"></i> Reddit community</a></li>
<li><a href="https://github.com/cmdr2/stable-diffusion-ui" target="_blank"><i class="fa-brands fa-github fa-fw"></i> Source code on GitHub</a></li>
</ul>
</div>
</div>
</div>
</div>
</div>
<div id="save-settings-config" class="popup">
<div>
<i class="close-button fa-solid fa-xmark"></i>
<h1>Save Settings Configuration</h1>
<p>Select which settings should be remembered when restarting the browser</p>
<table id="save-settings-config-table" class="form-table">
</table>
</div>
</div>
<div id="modifier-settings-config" class="popup">
<div>
<i class="close-button fa-solid fa-xmark"></i>
<h1>Modifier Settings</h1>
<p>Set your custom modifiers (one per line)</p>
<textarea id="custom-modifiers-input" placeholder="Enter your custom modifiers, one-per-line"></textarea>
<p><small><b>Tip:</b> You can include special characters like {} () [] and |. You can also put multiple comma-separated phrases in a single line, to make a single modifier that combines all of those.</small></p>
</div>
</div>
<div class="line-separator">&nbsp;</div>
<div id="image-editor" class="popup image-editor-popup">
<div>
<i class="close-button fa-solid fa-xmark"></i>
<h1>Image Editor</h1>
<div class="flex-container">
<div class="editor-controls-left"></div>
<div class="editor-controls-center">
<div></div>
</div>
<div class="editor-controls-right">
<div></div>
</div>
</div>
</div>
</div>
<div id="image-inpainter" class="popup image-editor-popup">
<div>
<i class="close-button fa-solid fa-xmark"></i>
<h1>Inpainter</h1>
<div class="flex-container">
<div class="editor-controls-left"></div>
<div class="editor-controls-center">
<div></div>
</div>
<div class="editor-controls-right">
<div></div>
</div>
</div>
</div>
</div>
<div id="footer-spacer"></div>
<div id="footer">
<div class="line-separator">&nbsp;</div>
<p>If you found this project useful and want to help keep it alive, please <a href="https://ko-fi.com/cmdr2_stablediffusion_ui" target="_blank"><img src="/media/images/kofi.png" id="coffeeButton"></a> to help cover the cost of development and maintenance! Thank you for your support!</p>
<div id="footer" class="panel-box">
<p>If you found this project useful and want to help keep it alive, please <a href="https://ko-fi.com/cmdr2_stablediffusion_ui" target="_blank"><img src="media/kofi.png" id="coffeeButton"></a> to help cover the cost of development and maintenance! Thank you for your support!</p>
<p>Please feel free to join the <a href="https://discord.com/invite/u9yhsFmEkB" target="_blank">discord community</a> or <a href="https://github.com/cmdr2/stable-diffusion-ui/issues" target="_blank">file an issue</a> if you have any problems or suggestions in using this interface.</p>
<div id="footer-legal">
<p><b>Disclaimer:</b> The authors of this project are not responsible for any content generated using this interface.</p>
@ -411,33 +212,16 @@
</div>
</div>
</body>
<script src="media/js/utils.js"></script>
<script src="media/js/engine.js"></script>
<script src="media/js/parameters.js"></script>
<script src="media/js/plugins.js"></script>
<script src="media/js/image-modifiers.js"></script>
<script src="media/js/auto-save.js"></script>
<script src="media/js/main.js"></script>
<script src="media/js/themes.js"></script>
<script src="media/js/dnd.js"></script>
<script src="media/js/image-editor.js"></script>
<script src="media/main.js?v=15"></script>
<script>
async function init() {
await initSettings()
await getModels()
await getAppConfig()
await loadUIPlugins()
await loadModifiers()
await getSystemInfo()
await getDiskPath()
await getAppConfig()
SD.init({
events: {
statusChange: setServerStatus
, idle: onIdle
}
})
setInterval(healthCheck, HEALTH_PING_INTERVAL * 1000)
healthCheck()
playSound()
}

View File

@ -1,10 +0,0 @@
from easydiffusion import model_manager, app, server
from easydiffusion.server import server_api # required for uvicorn
# Init the app
model_manager.init()
app.init()
server.init()
# start the browser ui
app.open_browser()

View File

@ -1,81 +0,0 @@
/* Auto-Settings Styling */
#auto_save_settings ~ button {
margin: 5px;
}
#auto_save_settings:not(:checked) ~ button {
display: none;
}
.form-table {
margin: auto;
}
.form-table th {
padding-top: 15px;
padding-bottom: 5px;
}
.form-table td:first-child > *,
.form-table th:first-child > * {
float: right;
white-space: nowrap;
}
.form-table td:last-child > *,
.form-table th:last-child > * {
float: left;
}
.parameters-table {
display: flex;
flex-direction: column;
gap: 1px;
}
.parameters-table > div {
background: var(--background-color2);
display: flex;
padding: 0px 4px;
}
.parameters-table > div > div {
padding: 10px;
display: flex;
align-items: center;
justify-content: center;
}
.parameters-table small {
color: rgb(153, 153, 153);
}
.parameters-table > div > div:nth-child(1) {
font-size: 20px;
width: 45px;
}
.parameters-table > div > div:nth-child(2) {
flex: 1;
flex-direction: column;
text-align: left;
justify-content: center;
align-items: start;
gap: 4px;
}
.parameters-table > div > div:nth-child(3) {
text-align: right;
}
.parameters-table > div:first-child {
border-radius: 12px 12px 0px 0px;
}
.parameters-table > div:last-child {
border-radius: 0px 0px 12px 12px;
}
.parameters-table .fa-fire {
color: #F7630C;
}

File diff suppressed because one or more lines are too long

View File

@ -1,40 +0,0 @@
/* work-sans-regular - latin */
@font-face {
font-family: 'Work Sans';
font-style: normal;
font-weight: 400;
src: local(''),
url('/media/fonts/work-sans-v18-latin-regular.woff2') format('woff2'), /* Chrome 26+, Opera 23+, Firefox 39+ */
url('/media/fonts/work-sans-v18-latin-regular.woff') format('woff'); /* Chrome 6+, Firefox 3.6+, IE 9+, Safari 5.1+ */
}
/* work-sans-600 - latin */
@font-face {
font-family: 'Work Sans';
font-style: normal;
font-weight: 600;
src: local(''),
url('/media/fonts/work-sans-v18-latin-600.woff2') format('woff2'), /* Chrome 26+, Opera 23+, Firefox 39+ */
url('/media/fonts/work-sans-v18-latin-600.woff') format('woff'); /* Chrome 6+, Firefox 3.6+, IE 9+, Safari 5.1+ */
}
/* work-sans-700 - latin */
@font-face {
font-family: 'Work Sans';
font-style: normal;
font-weight: 700;
src: local(''),
url('/media/fonts/work-sans-v18-latin-700.woff2') format('woff2'), /* Chrome 26+, Opera 23+, Firefox 39+ */
url('/media/fonts/work-sans-v18-latin-700.woff') format('woff'); /* Chrome 6+, Firefox 3.6+, IE 9+, Safari 5.1+ */
}
/* work-sans-800 - latin */
@font-face {
font-family: 'Work Sans';
font-style: normal;
font-weight: 800;
src: local(''),
url('/media/fonts/work-sans-v18-latin-800.woff2') format('woff2'), /* Chrome 26+, Opera 23+, Firefox 39+ */
url('/media/fonts/work-sans-v18-latin-800.woff') format('woff'); /* Chrome 6+, Firefox 3.6+, IE 9+, Safari 5.1+ */
}

View File

@ -1,215 +0,0 @@
.editor-controls-left {
padding-left: 32px;
text-align: left;
padding-bottom: 20px;
}
.editor-options-container {
display: flex;
row-gap: 10px;
max-width: 210px;
}
.editor-options-container > * {
flex: 1;
display: flex;
justify-content: center;
align-items: center;
}
.editor-options-container > * > * {
position: inherit;
width: 32px;
height: 32px;
border-radius: 16px;
background: var(--background-color3);
cursor: pointer;
transition: opacity 0.25s;
}
.editor-options-container > * > *:hover {
opacity: 0.75;
}
.editor-options-container > * > *.active {
border: 2px solid #3584e4;
}
.image_editor_opacity .editor-options-container > * > *:not(.active) {
border: 1px solid var(--background-color3);
}
.image_editor_color .editor-options-container {
flex-wrap: wrap;
}
.image_editor_color .editor-options-container > * {
flex: 20%;
}
.image_editor_color .editor-options-container > * > * {
position: relative;
}
.image_editor_color .editor-options-container > * > *.active::before {
content: "\f00c";
display: var(--fa-display,inline-block);
font-style: normal;
font-variant: normal;
line-height: 1;
text-rendering: auto;
font-family: var(--fa-style-family, "Font Awesome 6 Free");
font-weight: var(--fa-style, 900);
position: absolute;
left: 50%;
top: 50%;
transform: translate(-50%, -50%) scale(125%);
color: black;
}
.image_editor_color .editor-options-container > *:first-child {
flex: 100%;
}
.image_editor_color .editor-options-container > *:first-child > * {
width: 100%;
}
.image_editor_color .editor-options-container > *:first-child > * > input {
width: 100%;
height: 100%;
opacity: 0;
cursor: pointer;
}
.image_editor_color .editor-options-container > *:first-child > * > span {
position: absolute;
left: 50%;
top: 50%;
transform: translate(-50%, -50%);
opacity: 0.5;
}
.image_editor_color .editor-options-container > *:first-child > *.active > span {
opacity: 0;
}
.image_editor_tool .editor-options-container {
flex-wrap: wrap;
}
.image_editor_tool .editor-options-container > * {
padding: 2px;
flex: 50%;
}
.editor-controls-center {
/* background: var(--background-color2); */
flex: 1;
display: flex;
justify-content: center;
align-items: center;
}
.editor-controls-center > div {
position: relative;
background: black;
}
.editor-controls-center canvas {
position: absolute;
left: 0;
top: 0;
}
.editor-controls-right {
padding: 32px;
display: flex;
flex-direction: column;
}
.editor-controls-right > div:last-child {
flex: 1;
display: flex;
flex-direction: column;
min-width: 200px;
gap: 5px;
justify-content: end;
}
.image-editor-button {
width: 100%;
height: 32px;
border-radius: 16px;
background: var(--background-color3);
}
.editor-controls-right .image-editor-button {
margin-bottom: 4px;
}
#init_image_button_inpaint .input-toggle {
position: absolute;
left: 16px;
}
#init_image_button_inpaint .input-toggle input:not(:checked) ~ label {
pointer-events: none;
}
.image-editor-popup {
--popup-margin: 16px;
--popup-padding: 24px;
}
.image-editor-popup > div {
margin: var(--popup-margin);
padding: var(--popup-padding);
min-height: calc(100vh - (2 * var(--popup-margin)));
max-width: none;
}
.image-editor-popup h1 {
position: absolute;
top: 32px;
left: 50%;
transform: translateX(-50%);
}
@media screen and (max-width: 700px) {
.image-editor-popup > div {
margin: 0px;
padding: 0px;
}
.image-editor-popup h1 {
position: relative;
transform: none;
left: auto;
}
}
.image-editor-popup > div > div {
min-height: calc(100vh - (2 * var(--popup-margin)) - (2 * var(--popup-padding)));
}
.inpainter .image_editor_color {
display: none;
}
.inpainter .editor-canvas-background {
opacity: 0.75;
}
#init_image_preview_container .button {
display: flex;
padding: 6px;
height: 24px;
box-shadow: 2px 2px 1px 1px #00000088;
}
#init_image_preview_container .button:hover {
background: var(--background-color4)
}
.image-editor-popup .button {
display: flex;
}
.image-editor-popup h4 {
text-align: left;
}

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

View File

@ -1,160 +0,0 @@
:root {
--main-hue: 222;
--main-saturation: 4%;
--value-base: 13%;
--value-step: 5%;
--background-color1: hsl(var(--main-hue), var(--main-saturation), var(--value-base));
--background-color2: hsl(var(--main-hue), var(--main-saturation), calc(var(--value-base) + (1 * var(--value-step))));
--background-color3: hsl(var(--main-hue), var(--main-saturation), calc(var(--value-base) - (0.5 * var(--value-step))));
--background-color4: hsl(var(--main-hue), var(--main-saturation), calc(var(--value-base) - (1.5 * var(--value-step))));
--accent-hue: 267;
--accent-lightness: 36%;
--accent-lightness-hover: 40%;
--text-color: #eee;
--input-text-color: #eee;
--input-background-color: hsl(var(--main-hue), var(--main-saturation), calc(var(--value-base) - (0.7 * var(--value-step))));
--input-border-color: var(--background-color4);
--button-text-color: var(--input-text-color);
--button-color: var(--input-background-color);
--button-border: none;
/* other */
--input-border-radius: 4px;
--input-border-size: 1px;
--accent-color: hsl(var(--accent-hue), 100%, var(--accent-lightness));
--accent-color-hover: hsl(var(--accent-hue), 100%, var(--accent-lightness-hover));
--primary-button-border: none;
--input-switch-padding: 1px;
--input-height: 18px;
/* Main theme color, hex color fallback. */
--theme-color-fallback: #673AB6;
}
.theme-light {
--background-color1: white;
--background-color2: #ececec;
--background-color3: #e7e9eb;
--background-color4: #cccccc;
--text-color: black;
--input-text-color: black;
--input-background-color: #f8f9fa;
--input-border-color: grey;
--theme-color-fallback: #aaaaaa;
}
.theme-discord {
--background-color1: #36393f;
--background-color2: #2f3136;
--background-color3: #292b2f;
--background-color4: #202225;
--accent-hue: 235;
--accent-lightness: 65%;
--input-border-size: 2px;
--input-background-color: #202225;
--input-border-color: var(--input-background-color);
--theme-color-fallback: #202225;
}
.theme-cool-blue {
--main-hue: 222;
--main-saturation: 18%;
--value-base: 18%;
--value-step: 3%;
--background-color1: hsl(var(--main-hue), var(--main-saturation), var(--value-base));
--background-color2: hsl(var(--main-hue), var(--main-saturation), calc(var(--value-base) - (1 * var(--value-step))));
--background-color3: hsl(var(--main-hue), var(--main-saturation), calc(var(--value-base) - (2 * var(--value-step))));
--background-color4: hsl(var(--main-hue), var(--main-saturation), calc(var(--value-base) - (3 * var(--value-step))));
--input-background-color: var(--background-color3);
--accent-hue: 212;
--theme-color-fallback: #0056b8;
}
.theme-blurple {
--main-hue: 235;
--main-saturation: 18%;
--value-base: 16%;
--value-step: 3%;
--background-color1: hsl(var(--main-hue), var(--main-saturation), var(--value-base));
--background-color2: hsl(var(--main-hue), var(--main-saturation), calc(var(--value-base) - (1 * var(--value-step))));
--background-color3: hsl(var(--main-hue), var(--main-saturation), calc(var(--value-base) - (2 * var(--value-step))));
--background-color4: hsl(var(--main-hue), var(--main-saturation), calc(var(--value-base) - (3 * var(--value-step))));
--input-background-color: var(--background-color3);
--theme-color-fallback: #5300b8;
}
.theme-super-dark {
--main-hue: 222;
--main-saturation: 18%;
--value-base: 5%;
--value-step: 5%;
--background-color1: hsl(var(--main-hue), var(--main-saturation), var(--value-base));
--background-color2: hsl(var(--main-hue), var(--main-saturation), calc(var(--value-base) + (1 * var(--value-step))));
--background-color3: hsl(var(--main-hue), var(--main-saturation), calc(var(--value-base) + (2 * var(--value-step))));
--background-color4: hsl(var(--main-hue), var(--main-saturation), calc(var(--value-base) + (1.4 * var(--value-step))));
--input-background-color: var(--background-color3);
--input-border-size: 0px;
--theme-color-fallback: #000000;
}
.theme-wild {
--main-hue: 128;
--main-saturation: 18%;
--value-base: 20%;
--value-step: 5%;
--background-color1: hsl(var(--main-hue), var(--main-saturation), var(--value-base));
--background-color2: hsl(var(--main-hue), var(--main-saturation), calc(var(--value-base) - (1 * var(--value-step))));
--background-color3: hsl(var(--main-hue), var(--main-saturation), calc(var(--value-base) - (2 * var(--value-step))));
--background-color4: hsl(var(--main-hue), var(--main-saturation), calc(var(--value-base) - (3 * var(--value-step))));
--accent-hue: 212;
--input-border-size: 1px;
--input-background-color: hsl(222, var(--main-saturation), calc(var(--value-base) - (2 * var(--value-step))));
--input-text-color: #FF0000;
--input-border-color: #005E05;
}
.theme-gnomie {
--background-color1: #242424;
--background-color2: #353535;
--background-color3: #494949;
--background-color4: #000000;
--accent-hue: 213;
--accent-lightness: 55%;
--accent-color: #2168bf;
--input-border-radius: 6px;
--input-text-color: #ffffff;
--input-background-color: #2a2a2a;
--input-border-size: 0px;
--input-border-color: var(--input-background-color);
--theme-color-fallback: #2168bf;
}
.theme-gnomie .panel-box {
border: none;
box-shadow: 0px 1px 2px rgba(0, 0, 0, 0.25);
border-radius: 10px;
}

5
ui/media/drawingboard.min.css vendored Normal file

File diff suppressed because one or more lines are too long

4
ui/media/drawingboard.min.js vendored Normal file

File diff suppressed because one or more lines are too long

View File

Before

Width:  |  Height:  |  Size: 466 B

After

Width:  |  Height:  |  Size: 466 B

View File

Before

Width:  |  Height:  |  Size: 973 B

After

Width:  |  Height:  |  Size: 973 B

Binary file not shown.

Some files were not shown because too many files have changed in this diff Show More