forked from extern/whisper.cpp
Compare commits
2 Commits
1.0.3
...
experiment
Author | SHA1 | Date | |
---|---|---|---|
4597c9c19b | |||
4a4a754220 |
70
.github/workflows/build.yml
vendored
70
.github/workflows/build.yml
vendored
@ -113,73 +113,3 @@ jobs:
|
||||
run: |
|
||||
make
|
||||
ctest -L gh --output-on-failure
|
||||
|
||||
windows:
|
||||
runs-on: windows-latest
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
build: [RelWithDebInfo]
|
||||
arch: [Win32, x64]
|
||||
blas: [ON]
|
||||
sdl2: [ON]
|
||||
include:
|
||||
- arch: Win32
|
||||
obzip: https://github.com/xianyi/OpenBLAS/releases/download/v0.3.21/OpenBLAS-0.3.21-x86.zip
|
||||
s2arc: x86
|
||||
- arch: x64
|
||||
obzip: https://github.com/xianyi/OpenBLAS/releases/download/v0.3.21/OpenBLAS-0.3.21-x64.zip
|
||||
s2arc: x64
|
||||
- sdl2: ON
|
||||
s2ver: 2.26.0
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Add msbuild to PATH
|
||||
uses: microsoft/setup-msbuild@v1
|
||||
|
||||
- name: Fetch OpenBLAS
|
||||
if: matrix.blas == 'ON'
|
||||
run: |
|
||||
C:/msys64/usr/bin/wget.exe -qO blas.zip ${{ matrix.obzip }}
|
||||
7z x blas.zip -oblas -y
|
||||
copy blas/include/cblas.h .
|
||||
copy blas/include/openblas_config.h .
|
||||
echo "blasdir=$env:GITHUB_WORKSPACE/blas" >> $env:GITHUB_ENV
|
||||
|
||||
- name: Fetch SDL2 and set SDL2_DIR
|
||||
if: matrix.sdl2 == 'ON'
|
||||
run: |
|
||||
C:/msys64/usr/bin/wget.exe -qO sdl2.zip https://github.com/libsdl-org/SDL/releases/download/release-${{ matrix.s2ver }}/SDL2-devel-${{ matrix.s2ver }}-VC.zip
|
||||
7z x sdl2.zip
|
||||
echo "SDL2_DIR=$env:GITHUB_WORKSPACE/SDL2-${{ matrix.s2ver }}/cmake" >> $env:GITHUB_ENV
|
||||
|
||||
- name: Configure
|
||||
run: >
|
||||
cmake -S . -B ./build -A ${{ matrix.arch }}
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build }}
|
||||
-DWHISPER_SUPPORT_OPENBLAS=${{ matrix.blas }}
|
||||
-DCMAKE_LIBRARY_PATH="$env:blasdir/lib"
|
||||
-DWHISPER_SUPPORT_SDL2=${{ matrix.sdl2 }}
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cd ./build
|
||||
msbuild ALL_BUILD.vcxproj -t:build -p:configuration=${{ matrix.build }} -p:platform=${{ matrix.arch }}
|
||||
|
||||
- name: Copy libopenblas.dll
|
||||
if: matrix.blas == 'ON'
|
||||
run: copy "$env:blasdir/bin/libopenblas.dll" build/bin/${{ matrix.build }}
|
||||
|
||||
- name: Copy SDL2.dll
|
||||
if: matrix.sdl2 == 'ON'
|
||||
run: copy "$env:SDL2_DIR/../lib/${{ matrix.s2arc }}/SDL2.dll" build/bin/${{ matrix.build }}
|
||||
|
||||
- name: Upload binaries
|
||||
if: matrix.blas == 'ON' && matrix.sdl2 == 'ON'
|
||||
uses: actions/upload-artifact@v1
|
||||
with:
|
||||
name: whisper-bin-${{ matrix.arch }}
|
||||
path: build/bin/${{ matrix.build }}
|
||||
|
32
.gitignore
vendored
32
.gitignore
vendored
@ -1,29 +1,7 @@
|
||||
*.o
|
||||
.cache/
|
||||
.vs/
|
||||
.vscode/
|
||||
.DS_Store
|
||||
|
||||
build/
|
||||
build-em/
|
||||
build-debug/
|
||||
build-release/
|
||||
build-sanitize-addr/
|
||||
build-sanitize-thread/
|
||||
|
||||
/main
|
||||
/stream
|
||||
/command
|
||||
/talk
|
||||
/bench
|
||||
|
||||
sync.sh
|
||||
libwhisper.so
|
||||
main
|
||||
stream
|
||||
*.o
|
||||
.cache
|
||||
build/
|
||||
compile_commands.json
|
||||
|
||||
examples/arm_neon.h
|
||||
examples/whisper.objc/whisper.objc.xcodeproj/xcshareddata
|
||||
examples/whisper.objc/whisper.objc.xcodeproj/xcuserdata/
|
||||
examples/whisper.objc/whisper.objc.xcodeproj/project.xcworkspace/xcuserdata
|
||||
|
||||
extra/bench-gg.txt
|
||||
|
3
.gitmodules
vendored
3
.gitmodules
vendored
@ -1,3 +0,0 @@
|
||||
[submodule "bindings/ios"]
|
||||
path = bindings/ios
|
||||
url = https://github.com/ggerganov/whisper.spm
|
175
CMakeLists.txt
175
CMakeLists.txt
@ -1,5 +1,5 @@
|
||||
cmake_minimum_required (VERSION 3.0)
|
||||
project(whisper.cpp VERSION 1.0.3)
|
||||
project(whisper.cpp VERSION 1.0.0)
|
||||
|
||||
set(CMAKE_EXPORT_COMPILE_COMMANDS "on")
|
||||
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin)
|
||||
@ -7,73 +7,38 @@ set(CMAKE_INSTALL_RPATH "${CMAKE_INSTALL_PREFIX}/lib")
|
||||
|
||||
if(CMAKE_SOURCE_DIR STREQUAL CMAKE_CURRENT_SOURCE_DIR)
|
||||
set(WHISPER_STANDALONE ON)
|
||||
include(cmake/GitVars.cmake)
|
||||
include(cmake/BuildTypes.cmake)
|
||||
|
||||
# configure project version
|
||||
if (EXISTS "${CMAKE_SOURCE_DIR}/bindings/ios/Makefile-tmpl")
|
||||
configure_file(${CMAKE_SOURCE_DIR}/bindings/ios/Makefile-tmpl ${CMAKE_SOURCE_DIR}/bindings/ios/Makefile @ONLY)
|
||||
endif()
|
||||
configure_file(${CMAKE_SOURCE_DIR}/bindings/javascript/package-tmpl.json ${CMAKE_SOURCE_DIR}/bindings/javascript/package.json @ONLY)
|
||||
else()
|
||||
set(WHISPER_STANDALONE OFF)
|
||||
endif()
|
||||
|
||||
if (EMSCRIPTEN)
|
||||
set(BUILD_SHARED_LIBS_DEFAULT OFF)
|
||||
|
||||
option(WHISPER_WASM_SINGLE_FILE "whisper: embed WASM inside the generated whisper.js" ON)
|
||||
else()
|
||||
if (MINGW)
|
||||
set(BUILD_SHARED_LIBS_DEFAULT OFF)
|
||||
else()
|
||||
set(BUILD_SHARED_LIBS_DEFAULT ON)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
# options
|
||||
|
||||
option(BUILD_SHARED_LIBS "whisper: build shared libs" ${BUILD_SHARED_LIBS_DEFAULT})
|
||||
|
||||
option(WHISPER_ALL_WARNINGS "whisper: enable all compiler warnings" ON)
|
||||
option(WHISPER_ALL_WARNINGS "whisper: enable all compiler warnings" ON)
|
||||
option(WHISPER_ALL_WARNINGS_3RD_PARTY "whisper: enable all compiler warnings in 3rd party libs" OFF)
|
||||
|
||||
option(WHISPER_SANITIZE_THREAD "whisper: enable thread sanitizer" OFF)
|
||||
option(WHISPER_SANITIZE_ADDRESS "whisper: enable address sanitizer" OFF)
|
||||
option(WHISPER_SANITIZE_THREAD "whisper: enable thread sanitizer" OFF)
|
||||
option(WHISPER_SANITIZE_ADDRESS "whisper: enable address sanitizer" OFF)
|
||||
option(WHISPER_SANITIZE_UNDEFINED "whisper: enable undefined sanitizer" OFF)
|
||||
|
||||
option(WHISPER_BUILD_TESTS "whisper: build tests" ${WHISPER_STANDALONE})
|
||||
option(WHISPER_BUILD_EXAMPLES "whisper: build examples" ${WHISPER_STANDALONE})
|
||||
option(WHISPER_BUILD_TESTS "whisper: build tests" ${WHISPER_STANDALONE})
|
||||
|
||||
option(WHISPER_SUPPORT_SDL2 "whisper: support for libSDL2" OFF)
|
||||
|
||||
if (APPLE)
|
||||
option(WHISPER_NO_ACCELERATE "whisper: disable Accelerate framework" OFF)
|
||||
option(WHISPER_NO_AVX "whisper: disable AVX" OFF)
|
||||
option(WHISPER_NO_AVX2 "whisper: disable AVX2" OFF)
|
||||
else()
|
||||
option(WHISPER_SUPPORT_OPENBLAS "whisper: support for OpenBLAS" OFF)
|
||||
endif()
|
||||
|
||||
option(WHISPER_PERF "whisper: enable perf timings" OFF)
|
||||
|
||||
# sanitizers
|
||||
|
||||
if (NOT MSVC)
|
||||
if (WHISPER_SANITIZE_THREAD)
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fsanitize=thread")
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsanitize=thread")
|
||||
endif()
|
||||
if (WHISPER_SANITIZE_THREAD)
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fsanitize=thread")
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsanitize=thread")
|
||||
endif()
|
||||
|
||||
if (WHISPER_SANITIZE_ADDRESS)
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fsanitize=address -fno-omit-frame-pointer")
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsanitize=address -fno-omit-frame-pointer")
|
||||
endif()
|
||||
if (WHISPER_SANITIZE_ADDRESS)
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fsanitize=address -fno-omit-frame-pointer")
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsanitize=address -fno-omit-frame-pointer")
|
||||
endif()
|
||||
|
||||
if (WHISPER_SANITIZE_UNDEFINED)
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fsanitize=undefined")
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsanitize=undefined")
|
||||
endif()
|
||||
if (WHISPER_SANITIZE_UNDEFINED)
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fsanitize=undefined")
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsanitize=undefined")
|
||||
endif()
|
||||
|
||||
#set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -ffast-math")
|
||||
@ -86,31 +51,14 @@ set(CMAKE_CXX_STANDARD 11)
|
||||
|
||||
find_package(Threads REQUIRED)
|
||||
|
||||
# on APPLE - include Accelerate framework
|
||||
if (APPLE AND NOT WHISPER_NO_ACCELERATE)
|
||||
find_library(ACCELERATE_FRAMEWORK Accelerate)
|
||||
if (ACCELERATE_FRAMEWORK)
|
||||
message(STATUS "Accelerate framework found")
|
||||
if (WHISPER_SUPPORT_SDL2)
|
||||
# SDL2
|
||||
find_package(SDL2 REQUIRED)
|
||||
|
||||
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ${ACCELERATE_FRAMEWORK})
|
||||
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_ACCELERATE)
|
||||
else()
|
||||
message(WARNING "Accelerate framework not found")
|
||||
endif()
|
||||
endif()
|
||||
string(STRIP "${SDL2_LIBRARIES}" SDL2_LIBRARIES)
|
||||
|
||||
if (WHISPER_SUPPORT_OPENBLAS)
|
||||
find_library(OPENBLAS_LIB
|
||||
NAMES openblas libopenblas
|
||||
)
|
||||
if (OPENBLAS_LIB)
|
||||
message(STATUS "OpenBLAS found")
|
||||
|
||||
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ${OPENBLAS_LIB})
|
||||
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_OPENBLAS)
|
||||
else()
|
||||
message(WARNING "OpenBLAS not found")
|
||||
endif()
|
||||
message(STATUS "SDL2_INCLUDE_DIRS = ${SDL2_INCLUDE_DIRS}")
|
||||
message(STATUS "SDL2_LIBRARIES = ${SDL2_LIBRARIES}")
|
||||
endif()
|
||||
|
||||
# compiler flags
|
||||
@ -121,7 +69,7 @@ if (NOT CMAKE_BUILD_TYPE AND NOT CMAKE_CONFIGURATION_TYPES)
|
||||
endif ()
|
||||
|
||||
if (WHISPER_ALL_WARNINGS)
|
||||
if (NOT MSVC)
|
||||
if (CMAKE_COMPILER_IS_GNUCC OR CMAKE_C_COMPILER_ID MATCHES "Clang")
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} \
|
||||
-Wall \
|
||||
-Wextra \
|
||||
@ -132,14 +80,12 @@ if (WHISPER_ALL_WARNINGS)
|
||||
-Wpointer-arith \
|
||||
")
|
||||
else()
|
||||
# todo : msvc
|
||||
# todo : windows
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (NOT MSVC)
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -Werror=vla")
|
||||
#set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fno-math-errno -ffinite-math-only -funsafe-math-optimizations")
|
||||
endif()
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -Werror=vla")
|
||||
#set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fno-math-errno -ffinite-math-only -funsafe-math-optimizations")
|
||||
|
||||
message(STATUS "CMAKE_SYSTEM_PROCESSOR: ${CMAKE_SYSTEM_PROCESSOR}")
|
||||
|
||||
@ -147,32 +93,10 @@ if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm" OR ${CMAKE_SYSTEM_PROCESSOR} MATCHES
|
||||
message(STATUS "ARM detected")
|
||||
else()
|
||||
message(STATUS "x86 detected")
|
||||
if (MSVC)
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /arch:AVX2")
|
||||
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /arch:AVX2")
|
||||
else()
|
||||
if (EMSCRIPTEN)
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -pthread")
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pthread")
|
||||
else()
|
||||
if(NOT WHISPER_NO_AVX)
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mavx")
|
||||
endif()
|
||||
if(NOT WHISPER_NO_AVX2)
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mavx2")
|
||||
endif()
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mfma -mf16c")
|
||||
endif()
|
||||
endif()
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mavx -mavx2 -mfma -mf16c")
|
||||
endif()
|
||||
|
||||
if (WHISPER_PERF)
|
||||
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_PERF)
|
||||
endif()
|
||||
|
||||
#
|
||||
# whisper - this is the main library of the project
|
||||
#
|
||||
|
||||
set(TARGET whisper)
|
||||
|
||||
@ -185,13 +109,7 @@ target_include_directories(${TARGET} PUBLIC
|
||||
.
|
||||
)
|
||||
|
||||
if (MSVC)
|
||||
target_link_libraries(${TARGET} PRIVATE ${WHISPER_EXTRA_LIBS} ${CMAKE_THREAD_LIBS_INIT})
|
||||
|
||||
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -D_CRT_SECURE_NO_WARNINGS)
|
||||
else()
|
||||
target_link_libraries(${TARGET} PRIVATE m ${WHISPER_EXTRA_LIBS} ${CMAKE_THREAD_LIBS_INIT})
|
||||
endif()
|
||||
target_link_libraries(${TARGET} PRIVATE ${CMAKE_THREAD_LIBS_INIT})
|
||||
|
||||
if (BUILD_SHARED_LIBS)
|
||||
target_link_libraries(${TARGET} PUBLIC
|
||||
@ -203,10 +121,6 @@ if (BUILD_SHARED_LIBS)
|
||||
)
|
||||
endif()
|
||||
|
||||
if (EMSCRIPTEN)
|
||||
set_target_properties(${TARGET} PROPERTIES COMPILE_FLAGS "-msimd128")
|
||||
endif()
|
||||
|
||||
target_compile_definitions(${TARGET} PUBLIC
|
||||
${WHISPER_EXTRA_FLAGS}
|
||||
)
|
||||
@ -216,21 +130,24 @@ install(TARGETS ${TARGET}
|
||||
ARCHIVE DESTINATION lib/static
|
||||
)
|
||||
|
||||
#
|
||||
# bindings
|
||||
#
|
||||
|
||||
add_subdirectory(bindings)
|
||||
|
||||
#
|
||||
# programs, examples and tests
|
||||
#
|
||||
|
||||
if (WHISPER_BUILD_TESTS)
|
||||
enable_testing()
|
||||
add_subdirectory(tests)
|
||||
if (WHISPER_STANDALONE)
|
||||
# main
|
||||
set(TARGET main)
|
||||
add_executable(${TARGET} main.cpp)
|
||||
target_link_libraries(${TARGET} PRIVATE whisper ${CMAKE_THREAD_LIBS_INIT})
|
||||
|
||||
if (WHISPER_SUPPORT_SDL2)
|
||||
# stream
|
||||
set(TARGET stream)
|
||||
add_executable(${TARGET} stream.cpp)
|
||||
target_include_directories(${TARGET} PRIVATE ${SDL2_INCLUDE_DIRS})
|
||||
target_link_libraries(${TARGET} PRIVATE whisper ${SDL2_LIBRARIES} ${CMAKE_THREAD_LIBS_INIT})
|
||||
endif ()
|
||||
|
||||
if (WHISPER_BUILD_TESTS)
|
||||
enable_testing()
|
||||
add_subdirectory(tests)
|
||||
endif ()
|
||||
endif ()
|
||||
|
||||
if (WHISPER_BUILD_EXAMPLES)
|
||||
add_subdirectory(examples)
|
||||
endif()
|
||||
|
166
Makefile
166
Makefile
@ -1,35 +1,16 @@
|
||||
ifndef UNAME_S
|
||||
UNAME_S := $(shell uname -s)
|
||||
endif
|
||||
|
||||
ifndef UNAME_P
|
||||
UNAME_P := $(shell uname -p)
|
||||
endif
|
||||
|
||||
ifndef UNAME_M
|
||||
UNAME_M := $(shell uname -m)
|
||||
endif
|
||||
|
||||
# Mac OS + Arm can report x86_64
|
||||
# ref: https://github.com/ggerganov/whisper.cpp/issues/66#issuecomment-1282546789
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
ifneq ($(UNAME_P),arm)
|
||||
SYSCTL_M := $(shell sysctl -n hw.optional.arm64)
|
||||
ifeq ($(SYSCTL_M),1)
|
||||
# UNAME_P := arm
|
||||
# UNAME_M := arm64
|
||||
warn := $(warning Your arch is announced as x86_64, but it seems to actually be ARM64. Not fixing that can lead to bad performance. For more info see: https://github.com/ggerganov/whisper.cpp/issues/66\#issuecomment-1282546789)
|
||||
endif
|
||||
endif
|
||||
endif
|
||||
|
||||
#
|
||||
# Compile flags
|
||||
#
|
||||
|
||||
CFLAGS = -I. -O3 -std=c11 -fPIC
|
||||
CXXFLAGS = -I. -I./examples -O3 -std=c++11 -fPIC
|
||||
LDFLAGS =
|
||||
CFLAGS = -O3 -std=c11
|
||||
CXXFLAGS = -O3 -std=c++11
|
||||
|
||||
CFLAGS += -Wall -Wextra -Wno-unused-parameter -Wno-unused-function
|
||||
CXXFLAGS += -Wall -Wextra -Wno-unused-parameter -Wno-unused-function
|
||||
|
||||
# OS specific
|
||||
# TODO: support Windows
|
||||
@ -41,88 +22,17 @@ ifeq ($(UNAME_S),Darwin)
|
||||
CFLAGS += -pthread
|
||||
CXXFLAGS += -pthread
|
||||
endif
|
||||
ifeq ($(UNAME_S),FreeBSD)
|
||||
CFLAGS += -pthread
|
||||
CXXFLAGS += -pthread
|
||||
endif
|
||||
ifeq ($(UNAME_S),Haiku)
|
||||
CFLAGS += -pthread
|
||||
CXXFLAGS += -pthread
|
||||
endif
|
||||
|
||||
# Architecture specific
|
||||
# TODO: probably these flags need to be tweaked on some architectures
|
||||
# feel free to update the Makefile for your architecture and send a pull request or issue
|
||||
ifeq ($(UNAME_M),x86_64)
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
CFLAGS += -mfma -mf16c
|
||||
AVX1_M := $(shell sysctl machdep.cpu.features)
|
||||
ifneq (,$(findstring AVX1.0,$(AVX1_M)))
|
||||
CFLAGS += -mavx
|
||||
endif
|
||||
AVX2_M := $(shell sysctl machdep.cpu.leaf7_features)
|
||||
ifneq (,$(findstring AVX2,$(AVX2_M)))
|
||||
CFLAGS += -mavx2
|
||||
endif
|
||||
else ifeq ($(UNAME_S),Linux)
|
||||
AVX1_M := $(shell grep "avx " /proc/cpuinfo)
|
||||
ifneq (,$(findstring avx,$(AVX1_M)))
|
||||
CFLAGS += -mavx
|
||||
endif
|
||||
AVX2_M := $(shell grep "avx2 " /proc/cpuinfo)
|
||||
ifneq (,$(findstring avx2,$(AVX2_M)))
|
||||
CFLAGS += -mavx2
|
||||
endif
|
||||
FMA_M := $(shell grep "fma " /proc/cpuinfo)
|
||||
ifneq (,$(findstring fma,$(FMA_M)))
|
||||
CFLAGS += -mfma
|
||||
endif
|
||||
F16C_M := $(shell grep "f16c " /proc/cpuinfo)
|
||||
ifneq (,$(findstring f16c,$(F16C_M)))
|
||||
CFLAGS += -mf16c
|
||||
endif
|
||||
else ifeq ($(UNAME_S),Haiku)
|
||||
AVX1_M := $(shell sysinfo -cpu | grep "AVX ")
|
||||
ifneq (,$(findstring avx,$(AVX1_M)))
|
||||
CFLAGS += -mavx
|
||||
endif
|
||||
AVX2_M := $(shell sysinfo -cpu | grep "AVX2 ")
|
||||
ifneq (,$(findstring avx2,$(AVX2_M)))
|
||||
CFLAGS += -mavx2
|
||||
endif
|
||||
FMA_M := $(shell sysinfo -cpu | grep "FMA ")
|
||||
ifneq (,$(findstring fma,$(FMA_M)))
|
||||
CFLAGS += -mfma
|
||||
endif
|
||||
F16C_M := $(shell sysinfo -cpu | grep "F16C ")
|
||||
ifneq (,$(findstring f16c,$(F16C_M)))
|
||||
CFLAGS += -mf16c
|
||||
endif
|
||||
else
|
||||
CFLAGS += -mfma -mf16c -mavx -mavx2
|
||||
endif
|
||||
endif
|
||||
ifeq ($(UNAME_M),amd64)
|
||||
ifeq ($(UNAME_P),x86_64)
|
||||
CFLAGS += -mavx -mavx2 -mfma -mf16c
|
||||
endif
|
||||
ifndef WHISPER_NO_ACCELERATE
|
||||
# Mac M1 - include Accelerate framework
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
CFLAGS += -DGGML_USE_ACCELERATE
|
||||
LDFLAGS += -framework Accelerate
|
||||
ifneq ($(filter arm%,$(UNAME_P)),)
|
||||
# Mac M1
|
||||
endif
|
||||
ifneq ($(filter aarch64%,$(UNAME_P)),)
|
||||
endif
|
||||
endif
|
||||
ifdef WHISPER_OPENBLAS
|
||||
CFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/openblas
|
||||
LDFLAGS += -lopenblas
|
||||
endif
|
||||
ifdef WHISPER_GPROF
|
||||
CFLAGS += -pg
|
||||
CXXFLAGS += -pg
|
||||
endif
|
||||
ifneq ($(filter aarch64%,$(UNAME_M)),)
|
||||
endif
|
||||
ifneq ($(filter armv6%,$(UNAME_M)),)
|
||||
ifneq ($(filter armv6%,$(UNAME_M)),)
|
||||
# Raspberry Pi 1, 2, 3
|
||||
CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access
|
||||
endif
|
||||
@ -135,26 +45,22 @@ ifneq ($(filter armv8%,$(UNAME_M)),)
|
||||
CFLAGS += -mfp16-format=ieee -mno-unaligned-access
|
||||
endif
|
||||
|
||||
default: main
|
||||
#
|
||||
# Build library + main
|
||||
#
|
||||
|
||||
#
|
||||
# Build library
|
||||
#
|
||||
main: main.cpp ggml.o whisper.o
|
||||
$(CXX) $(CXXFLAGS) main.cpp whisper.o ggml.o -o main
|
||||
./main -h
|
||||
|
||||
ggml.o: ggml.c ggml.h
|
||||
$(CC) $(CFLAGS) -c ggml.c -o ggml.o
|
||||
$(CC) $(CFLAGS) -c ggml.c
|
||||
|
||||
whisper.o: whisper.cpp whisper.h
|
||||
$(CXX) $(CXXFLAGS) -c whisper.cpp -o whisper.o
|
||||
|
||||
libwhisper.a: ggml.o whisper.o
|
||||
$(AR) rcs libwhisper.a ggml.o whisper.o
|
||||
|
||||
libwhisper.so: ggml.o whisper.o
|
||||
$(CXX) $(CXXFLAGS) -shared -o libwhisper.so ggml.o whisper.o $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c whisper.cpp
|
||||
|
||||
clean:
|
||||
rm -f *.o main stream command talk bench libwhisper.a libwhisper.so
|
||||
rm -f *.o main
|
||||
|
||||
#
|
||||
# Examples
|
||||
@ -162,21 +68,8 @@ clean:
|
||||
|
||||
CC_SDL=`sdl2-config --cflags --libs`
|
||||
|
||||
main: examples/main/main.cpp ggml.o whisper.o
|
||||
$(CXX) $(CXXFLAGS) examples/main/main.cpp ggml.o whisper.o -o main $(LDFLAGS)
|
||||
./main -h
|
||||
|
||||
stream: examples/stream/stream.cpp ggml.o whisper.o
|
||||
$(CXX) $(CXXFLAGS) examples/stream/stream.cpp ggml.o whisper.o -o stream $(CC_SDL) $(LDFLAGS)
|
||||
|
||||
command: examples/command/command.cpp ggml.o whisper.o
|
||||
$(CXX) $(CXXFLAGS) examples/command/command.cpp ggml.o whisper.o -o command $(CC_SDL) $(LDFLAGS)
|
||||
|
||||
talk: examples/talk/talk.cpp examples/talk/gpt-2.cpp ggml.o whisper.o
|
||||
$(CXX) $(CXXFLAGS) examples/talk/talk.cpp examples/talk/gpt-2.cpp ggml.o whisper.o -o talk $(CC_SDL) $(LDFLAGS)
|
||||
|
||||
bench: examples/bench/bench.cpp ggml.o whisper.o
|
||||
$(CXX) $(CXXFLAGS) examples/bench/bench.cpp ggml.o whisper.o -o bench $(LDFLAGS)
|
||||
stream: stream.cpp ggml.o whisper.o
|
||||
$(CXX) $(CXXFLAGS) stream.cpp ggml.o whisper.o -o stream $(CC_SDL)
|
||||
|
||||
#
|
||||
# Audio samples
|
||||
@ -213,11 +106,10 @@ samples:
|
||||
.PHONY: small
|
||||
.PHONY: medium.en
|
||||
.PHONY: medium
|
||||
.PHONY: large-v1
|
||||
.PHONY: large
|
||||
|
||||
tiny.en tiny base.en base small.en small medium.en medium large-v1 large: main
|
||||
bash ./models/download-ggml-model.sh $@
|
||||
tiny.en tiny base.en base small.en small medium.en medium large: main
|
||||
bash ./download-ggml-model.sh $@
|
||||
@echo ""
|
||||
@echo "==============================================="
|
||||
@echo "Running $@ on all samples in ./samples ..."
|
||||
@ -225,17 +117,9 @@ tiny.en tiny base.en base small.en small medium.en medium large-v1 large: main
|
||||
@echo ""
|
||||
@for f in samples/*.wav; do \
|
||||
echo "----------------------------------------------" ; \
|
||||
echo "[+] Running $@ on $$f ... (run 'ffplay $$f' to listen)" ; \
|
||||
echo "[+] Running base.en on $$f ... (run 'ffplay $$f' to listen)" ; \
|
||||
echo "----------------------------------------------" ; \
|
||||
echo "" ; \
|
||||
./main -m models/ggml-$@.bin -f $$f ; \
|
||||
echo "" ; \
|
||||
done
|
||||
|
||||
#
|
||||
# Tests
|
||||
#
|
||||
|
||||
.PHONY: tests
|
||||
tests:
|
||||
bash ./tests/run-tests.sh
|
||||
|
403
README.md
403
README.md
@ -2,73 +2,30 @@
|
||||
|
||||
[](https://github.com/ggerganov/whisper.cpp/actions)
|
||||
[](https://opensource.org/licenses/MIT)
|
||||
[](https://www.npmjs.com/package/whisper.cpp/)
|
||||
|
||||
High-performance inference of [OpenAI's Whisper](https://github.com/openai/whisper) automatic speech recognition (ASR) model:
|
||||
|
||||
- Plain C/C++ implementation without dependencies
|
||||
- Apple silicon first-class citizen - optimized via Arm Neon and Accelerate framework
|
||||
- AVX intrinsics support for x86 architectures
|
||||
- ARM_NEON and AVX intrinsics support
|
||||
- Mixed F16 / F32 precision
|
||||
- Low memory usage (Flash Attention + Flash Forward)
|
||||
- Zero memory allocations at runtime
|
||||
- Runs on the CPU
|
||||
- [C-style API](https://github.com/ggerganov/whisper.cpp/blob/master/whisper.h)
|
||||
- Supported platforms: Linux, Mac OS (Intel and Arm), Raspberry Pi, Android
|
||||
|
||||
Supported platforms:
|
||||
## Usage
|
||||
|
||||
- [x] Mac OS (Intel and Arm)
|
||||
- [x] [iOS](examples/whisper.objc)
|
||||
- [x] Linux
|
||||
- [x] [WebAssembly](examples/whisper.wasm)
|
||||
- [x] Windows ([MSVC](https://github.com/ggerganov/whisper.cpp/blob/master/.github/workflows/build.yml#L117-L144) and [MinGW](https://github.com/ggerganov/whisper.cpp/issues/168)]
|
||||
- [x] [Raspberry Pi](https://github.com/ggerganov/whisper.cpp/discussions/166)
|
||||
- [x] [Android](https://github.com/ggerganov/whisper.cpp/issues/30)
|
||||
|
||||
The entire implementation of the model is contained in 2 source files:
|
||||
|
||||
- Tensor operations: [ggml.h](ggml.h) / [ggml.c](ggml.c)
|
||||
- Transformer inference: [whisper.h](whisper.h) / [whisper.cpp](whisper.cpp)
|
||||
|
||||
Having such a lightweight implementation of the model allows to easily integrate it in different platforms and applications.
|
||||
As an example, here is a video of running the model on an iPhone 13 device - fully offline, on-device: [whisper.objc](examples/whisper.objc)
|
||||
|
||||
https://user-images.githubusercontent.com/1991296/197385372-962a6dea-bca1-4d50-bf96-1d8c27b98c81.mp4
|
||||
|
||||
You can also easily make your own offline voice assistant application: [command](examples/command)
|
||||
|
||||
https://user-images.githubusercontent.com/1991296/204038393-2f846eae-c255-4099-a76d-5735c25c49da.mp4
|
||||
|
||||
Or you can even run it straight in the browser: [talk.wasm](examples/talk.wasm)
|
||||
|
||||
## Implementation details
|
||||
|
||||
- The core tensor operations are implemented in C ([ggml.h](ggml.h) / [ggml.c](ggml.c))
|
||||
- The transformer model and the high-level C-style API are implemented in C++ ([whisper.h](whisper.h) / [whisper.cpp](whisper.cpp))
|
||||
- Sample usage is demonstrated in [main.cpp](examples/main)
|
||||
- Sample real-time audio transcription from the microphone is demonstrated in [stream.cpp](examples/stream)
|
||||
- Various other examples are available in the [examples](examples) folder
|
||||
|
||||
The tensor operators are optimized heavily for Apple silicon CPUs. Depending on the computation size, Arm Neon SIMD
|
||||
instrisics or CBLAS Accelerate framework routines are used. The latter are especially effective for bigger sizes since
|
||||
the Accelerate framework utilizes the special-purpose AMX coprocessor available in modern Apple products.
|
||||
|
||||
## Quick start
|
||||
|
||||
First, download one of the Whisper models converted in [ggml format](models). For example:
|
||||
To build the main program, run `make`. You can then transcribe a `.wav` file like this:
|
||||
|
||||
```bash
|
||||
bash ./models/download-ggml-model.sh base.en
|
||||
$ ./main -f input.wav
|
||||
```
|
||||
|
||||
Now build the [main](examples/main) example and transcribe an audio file like this:
|
||||
Before running the program, make sure to download one of the ggml Whisper models. For example:
|
||||
|
||||
```bash
|
||||
# build the main example
|
||||
make
|
||||
|
||||
# transcribe an audio file
|
||||
./main -f input.wav
|
||||
bash ./download-ggml-model.sh base.en
|
||||
```
|
||||
|
||||
---
|
||||
@ -77,40 +34,28 @@ For a quick demo, simply run `make base.en`:
|
||||
|
||||
```java
|
||||
$ make base.en
|
||||
|
||||
cc -I. -O3 -std=c11 -pthread -DGGML_USE_ACCELERATE -c ggml.c -o ggml.o
|
||||
c++ -I. -I./examples -O3 -std=c++11 -pthread -c whisper.cpp -o whisper.o
|
||||
c++ -I. -I./examples -O3 -std=c++11 -pthread examples/main/main.cpp whisper.o ggml.o -o main -framework Accelerate
|
||||
cc -O3 -std=c11 -Wall -Wextra -Wno-unused-parameter -Wno-unused-function -pthread -c ggml.c
|
||||
c++ -O3 -std=c++11 -Wall -Wextra -Wno-unused-parameter -Wno-unused-function -pthread -c whisper.cpp
|
||||
c++ -O3 -std=c++11 -Wall -Wextra -Wno-unused-parameter -Wno-unused-function -pthread main.cpp whisper.o ggml.o -o main
|
||||
./main -h
|
||||
|
||||
usage: ./main [options] file0.wav file1.wav ...
|
||||
|
||||
options:
|
||||
-h, --help [default] show this help message and exit
|
||||
-t N, --threads N [4 ] number of threads to use during computation
|
||||
-p N, --processors N [1 ] number of processors to use during computation
|
||||
-ot N, --offset-t N [0 ] time offset in milliseconds
|
||||
-on N, --offset-n N [0 ] segment index offset
|
||||
-d N, --duration N [0 ] duration of audio to process in milliseconds
|
||||
-mc N, --max-context N [-1 ] maximum number of text context tokens to store
|
||||
-ml N, --max-len N [0 ] maximum segment length in characters
|
||||
-wt N, --word-thold N [0.01 ] word timestamp probability threshold
|
||||
-su, --speed-up [false ] speed up audio by x2 (reduced accuracy)
|
||||
-tr, --translate [false ] translate from source language to english
|
||||
-otxt, --output-txt [false ] output result in a text file
|
||||
-ovtt, --output-vtt [false ] output result in a vtt file
|
||||
-osrt, --output-srt [false ] output result in a srt file
|
||||
-owts, --output-words [false ] output script for generating karaoke video
|
||||
-ps, --print-special [false ] print special tokens
|
||||
-pc, --print-colors [false ] print colors
|
||||
-nt, --no-timestamps [true ] do not print timestamps
|
||||
-l LANG, --language LANG [en ] spoken language
|
||||
-m FNAME, --model FNAME [models/ggml-base.en.bin] model path
|
||||
-f FNAME, --file FNAME [ ] input WAV file path
|
||||
-h, --help show this help message and exit
|
||||
-s SEED, --seed SEED RNG seed (default: -1)
|
||||
-t N, --threads N number of threads to use during computation (default: 4)
|
||||
-v, --verbose verbose output
|
||||
--translate translate from source language to english
|
||||
-ps, --print_special print special tokens
|
||||
-nt, --no_timestamps do not print timestamps
|
||||
-l LANG, --language LANG spoken language (default: en)
|
||||
-m FNAME, --model FNAME model path (default: models/ggml-base.en.bin)
|
||||
-f FNAME, --file FNAME input WAV file path
|
||||
|
||||
bash ./models/download-ggml-model.sh base.en
|
||||
bash ./download-ggml-model.sh base.en
|
||||
Downloading ggml model base.en ...
|
||||
ggml-base.en.bin 100%[========================>] 141.11M 6.34MB/s in 24s
|
||||
models/ggml-base.en.bin 100%[===================================>] 141.11M 6.49MB/s in 23s
|
||||
Done! Model 'base.en' saved in 'models/ggml-base.en.bin'
|
||||
You can now use it like this:
|
||||
|
||||
@ -138,33 +83,30 @@ whisper_model_load: n_text_layer = 6
|
||||
whisper_model_load: n_mels = 80
|
||||
whisper_model_load: f16 = 1
|
||||
whisper_model_load: type = 2
|
||||
whisper_model_load: mem_required = 377.00 MB
|
||||
whisper_model_load: adding 1607 extra tokens
|
||||
whisper_model_load: mem_required = 506.00 MB
|
||||
whisper_model_load: ggml ctx size = 140.60 MB
|
||||
whisper_model_load: memory size = 22.83 MB
|
||||
whisper_model_load: model size = 140.54 MB
|
||||
whisper_model_load: ggml ctx size = 163.43 MB
|
||||
whisper_model_load: memory size = 22.83 MB
|
||||
whisper_model_load: model size = 140.54 MB
|
||||
|
||||
system_info: n_threads = 4 / 10 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | NEON = 1 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 |
|
||||
main: processing 'samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, lang = en, task = transcribe, timestamps = 1 ...
|
||||
|
||||
main: processing 'samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 processors, lang = en, task = transcribe, timestamps = 1 ...
|
||||
[00:00.000 --> 00:11.000] And so my fellow Americans, ask not what your country can do for you, ask what you can do for your country.
|
||||
|
||||
|
||||
[00:00:00.000 --> 00:00:11.000] And so my fellow Americans, ask not what your country can do for you, ask what you can do for your country.
|
||||
|
||||
|
||||
whisper_print_timings: load time = 105.91 ms
|
||||
whisper_print_timings: mel time = 24.62 ms
|
||||
whisper_print_timings: sample time = 3.63 ms
|
||||
whisper_print_timings: encode time = 324.71 ms / 54.12 ms per layer
|
||||
whisper_print_timings: decode time = 83.58 ms / 13.93 ms per layer
|
||||
whisper_print_timings: total time = 542.81 ms
|
||||
whisper_print_timings: load time = 77.48 ms
|
||||
whisper_print_timings: mel time = 26.10 ms
|
||||
whisper_print_timings: sample time = 2.19 ms
|
||||
whisper_print_timings: encode time = 632.95 ms / 105.49 ms per layer
|
||||
whisper_print_timings: decode time = 85.11 ms / 14.18 ms per layer
|
||||
whisper_print_timings: total time = 824.14 ms
|
||||
```
|
||||
|
||||
The command downloads the `base.en` model converted to custom `ggml` format and runs the inference on all `.wav` samples in the folder `samples`.
|
||||
|
||||
For detailed usage instructions, run: `./main -h`
|
||||
|
||||
Note that the [main](examples/main) example currently runs only with 16-bit WAV files, so make sure to convert your input before running the tool.
|
||||
Note that `whisper.cpp` currently runs only with 16-bit WAV files, so make sure to convert your input before running the tool.
|
||||
For example, you can use `ffmpeg` like this:
|
||||
|
||||
```java
|
||||
@ -192,42 +134,13 @@ make small.en
|
||||
make small
|
||||
make medium.en
|
||||
make medium
|
||||
make large-v1
|
||||
make large
|
||||
```
|
||||
|
||||
## Memory usage
|
||||
|
||||
| Model | Disk | Mem | SHA |
|
||||
| --- | --- | --- | --- |
|
||||
| tiny | 75 MB | ~390 MB | `bd577a113a864445d4c299885e0cb97d4ba92b5f` |
|
||||
| base | 142 MB | ~500 MB | `465707469ff3a37a2b9b8d8f89f2f99de7299dac` |
|
||||
| small | 466 MB | ~1.0 GB | `55356645c2b361a969dfd0ef2c5a50d530afd8d5` |
|
||||
| medium | 1.5 GB | ~2.6 GB | `fd9727b6e1217c2f614f9b698455c4ffd82463b4` |
|
||||
| large | 2.9 GB | ~4.7 GB | `0f4c8e34f21cf1a914c59d8b3ce882345ad349d6` |
|
||||
|
||||
## Limitations
|
||||
|
||||
- Inference only
|
||||
- No GPU support
|
||||
- Very basic greedy sampling scheme - always pick up the token with highest probability.
|
||||
This should be similar to the [GreedyDecoder](https://github.com/openai/whisper/blob/main/whisper/decoding.py#L249-L274)
|
||||
from the original python implementation, so in order to make a fair comparison between the 2 implementations, make sure
|
||||
to run the python code with the following parameters:
|
||||
|
||||
```
|
||||
whisper --best_of None --beam_size None ...
|
||||
```
|
||||
|
||||
In the future, `whisper.cpp` will support more sampling strategies.
|
||||
|
||||
## Another example
|
||||
|
||||
Here is another example of transcribing a [3:24 min speech](https://upload.wikimedia.org/wikipedia/commons/1/1f/George_W_Bush_Columbia_FINAL.ogg)
|
||||
in about half a minute on a MacBook M1 Pro, using `medium.en` model:
|
||||
|
||||
<details>
|
||||
<summary>Expand to see the result</summary>
|
||||
in less than a minute on a MacBook M1 Pro, using `medium.en` model:
|
||||
|
||||
```java
|
||||
$ ./main -m models/ggml-medium.en.bin -f samples/gb1.wav -t 8
|
||||
@ -245,187 +158,86 @@ whisper_model_load: n_text_layer = 24
|
||||
whisper_model_load: n_mels = 80
|
||||
whisper_model_load: f16 = 1
|
||||
whisper_model_load: type = 4
|
||||
whisper_model_load: mem_required = 2610.00 MB
|
||||
whisper_model_load: mem_required = 2502.00 MB
|
||||
whisper_model_load: adding 1607 extra tokens
|
||||
whisper_model_load: ggml ctx size = 1644.97 MB
|
||||
whisper_model_load: memory size = 182.62 MB
|
||||
whisper_model_load: model size = 1462.12 MB
|
||||
log_mel_spectrogram: n_sample = 3179750, n_len = 19873
|
||||
log_mel_spectrogram: recording length: 198.734375 s
|
||||
|
||||
main: processing 'samples/gb1.wav' (3179750 samples, 198.7 sec), 8 threads, lang = en, task = transcribe, timestamps = 1 ...
|
||||
main: processing 3179750 samples (198.7 sec), 8 threads, lang = english, task = transcribe, timestamps = 1 ...
|
||||
|
||||
[00:00.000 --> 00:08.000] My fellow Americans, this day has brought terrible news and great sadness to our country.
|
||||
[00:08.000 --> 00:17.000] At nine o'clock this morning, Mission Control in Houston lost contact with our Space Shuttle Columbia.
|
||||
[00:17.000 --> 00:23.000] A short time later, debris was seen falling from the skies above Texas.
|
||||
[00:23.000 --> 00:29.000] The Columbia's lost. There are no survivors.
|
||||
[00:08.000 --> 00:17.000] At 9 o'clock this morning, Mission Control in Houston lost contact with our Space Shuttle Columbia.
|
||||
[00:17.000 --> 00:24.000] A short time later, debris was seen falling from the skies above Texas.
|
||||
[00:24.000 --> 00:29.000] The Columbia's lost. There are no survivors.
|
||||
[00:29.000 --> 00:32.000] On board was a crew of seven.
|
||||
[00:32.000 --> 00:39.000] Colonel Rick Husband, Lieutenant Colonel Michael Anderson, Commander Laurel Clark,
|
||||
[00:39.000 --> 00:48.000] Captain David Brown, Commander William McCool, Dr. Kultna Shavla, and Ilan Ramon,
|
||||
[00:48.000 --> 00:52.000] a colonel in the Israeli Air Force.
|
||||
[00:32.000 --> 00:43.000] Colonel Rick Husband, Lieutenant Colonel Michael Anderson, Commander Laurel Clark, Captain David Brown, Commander William McCool,
|
||||
[00:43.000 --> 00:52.000] Dr. Kultner Aschavla, and Elon Ramon, a Colonel in the Israeli Air Force.
|
||||
[00:52.000 --> 00:58.000] These men and women assumed great risk in the service to all humanity.
|
||||
[00:58.000 --> 01:03.000] In an age when space flight has come to seem almost routine,
|
||||
[01:03.000 --> 01:07.000] it is easy to overlook the dangers of travel by rocket
|
||||
[01:07.000 --> 01:12.000] and the difficulties of navigating the fierce outer atmosphere of the Earth.
|
||||
[01:12.000 --> 01:18.000] These astronauts knew the dangers, and they faced them willingly,
|
||||
[01:18.000 --> 01:23.000] knowing they had a high and noble purpose in life.
|
||||
[01:23.000 --> 01:31.000] Because of their courage and daring and idealism, we will miss them all the more.
|
||||
[01:31.000 --> 01:36.000] All Americans today are thinking as well of the families of these men and women
|
||||
[01:36.000 --> 01:40.000] who have been given this sudden shock and grief.
|
||||
[01:40.000 --> 01:45.000] You're not alone. Our entire nation grieves with you,
|
||||
[01:45.000 --> 01:52.000] and those you love will always have the respect and gratitude of this country.
|
||||
[00:58.000 --> 01:06.000] In an age when space flight has come to seem almost routine, it is easy to overlook the dangers of travel by rocket
|
||||
[01:06.000 --> 01:12.000] and the difficulties of navigating the fierce outer atmosphere of the Earth.
|
||||
[01:12.000 --> 01:22.000] These astronauts knew the dangers, and they faced them willingly, knowing they had a high and noble purpose in life.
|
||||
[01:22.000 --> 01:30.000] Because of their courage, endearing, and idealism, we will miss them all the more.
|
||||
[01:30.000 --> 01:40.000] All Americans today are thinking as well of the families of these men and women who have been given this sudden shock and grief.
|
||||
[01:40.000 --> 01:45.000] You're not alone. Our entire nation agrees with you.
|
||||
[01:45.000 --> 01:52.000] And those you love will always have the respect and gratitude of this country.
|
||||
[01:52.000 --> 01:56.000] The cause in which they died will continue.
|
||||
[01:56.000 --> 02:04.000] Mankind is led into the darkness beyond our world by the inspiration of discovery
|
||||
[02:04.000 --> 02:11.000] and the longing to understand. Our journey into space will go on.
|
||||
[01:56.000 --> 02:07.000] Mankind is led into the darkness beyond our world by the inspiration of discovery and the longing to understand.
|
||||
[02:07.000 --> 02:11.000] Our journey into space will go on.
|
||||
[02:11.000 --> 02:16.000] In the skies today, we saw destruction and tragedy.
|
||||
[02:16.000 --> 02:22.000] Yet farther than we can see, there is comfort and hope.
|
||||
[02:22.000 --> 02:29.000] In the words of the prophet Isaiah, "Lift your eyes and look to the heavens
|
||||
[02:29.000 --> 02:35.000] who created all these. He who brings out the starry hosts one by one
|
||||
[02:35.000 --> 02:39.000] and calls them each by name."
|
||||
[02:39.000 --> 02:46.000] Because of His great power and mighty strength, not one of them is missing.
|
||||
[02:46.000 --> 02:55.000] The same Creator who names the stars also knows the names of the seven souls we mourn today.
|
||||
[02:55.000 --> 03:01.000] The crew of the shuttle Columbia did not return safely to earth,
|
||||
[03:01.000 --> 03:05.000] yet we can pray that all are safely home.
|
||||
[03:05.000 --> 03:13.000] May God bless the grieving families, and may God continue to bless America.
|
||||
[03:13.000 --> 03:41.000] Audio
|
||||
[02:22.000 --> 02:31.000] In the words of the prophet Isaiah, "Lift your eyes and look to the heavens who created all these.
|
||||
[02:31.000 --> 02:39.000] He who brings out the starry hosts one by one and calls them each by name."
|
||||
[02:39.000 --> 02:46.000] Because of his great power and mighty strength, not one of them is missing.
|
||||
[02:46.000 --> 02:55.000] The same creator who names the stars also knows the names of the seven souls we mourn today.
|
||||
[02:55.000 --> 03:05.000] The crew of the shuttle Columbia did not return safely to Earth, yet we can pray that all are safely home.
|
||||
[03:05.000 --> 03:14.000] May God bless the grieving families and may God continue to bless America.
|
||||
[03:14.000 --> 03:24.000] [Music]
|
||||
|
||||
|
||||
whisper_print_timings: load time = 575.92 ms
|
||||
whisper_print_timings: mel time = 230.60 ms
|
||||
whisper_print_timings: sample time = 73.19 ms
|
||||
whisper_print_timings: encode time = 19552.61 ms / 814.69 ms per layer
|
||||
whisper_print_timings: decode time = 13249.96 ms / 552.08 ms per layer
|
||||
whisper_print_timings: total time = 33686.27 ms
|
||||
main: load time = 522.18 ms
|
||||
main: mel time = 423.43 ms
|
||||
main: sample time = 31.42 ms
|
||||
main: encode time = 41518.51 ms / 1729.94 ms per layer
|
||||
main: decode time = 14907.22 ms
|
||||
main: total time = 57416.63 ms
|
||||
```
|
||||
</details>
|
||||
|
||||
## Real-time audio input example
|
||||
|
||||
This is a naive example of performing real-time inference on audio from your microphone.
|
||||
The [stream](examples/stream) tool samples the audio every half a second and runs the transcription continously.
|
||||
More info is available in [issue #10](https://github.com/ggerganov/whisper.cpp/issues/10).
|
||||
The `stream` tool samples the audio every 3 seconds and runs the transcription continously. More info is available in [issue #10](https://github.com/ggerganov/whisper.cpp/issues/10).
|
||||
|
||||
```java
|
||||
./stream -m ./models/ggml-base.en.bin -t 8 --step 500 --length 5000
|
||||
$ ./stream -m models/ggml-small.en.bin -t 8
|
||||
```
|
||||
|
||||
https://user-images.githubusercontent.com/1991296/194935793-76afede7-cfa8-48d8-a80f-28ba83be7d09.mp4
|
||||
https://user-images.githubusercontent.com/1991296/193465125-c163d304-64f6-4f5d-83e5-72239c9a203e.mp4
|
||||
|
||||
## Confidence color-coding
|
||||
## Implementation details
|
||||
|
||||
Adding the `--print-colors` argument will print the transcribed text using an experimental color coding strategy
|
||||
to highlight words with high or low confidence:
|
||||
- The core tensor operations are implemented in C ([ggml.h](ggml.h) / [ggml.c](ggml.c))
|
||||
- The high-level C-style API is implemented in C++ ([whisper.h](whisper.h) / [whisper.cpp](whisper.cpp))
|
||||
- Simple usage is demonstrated in [main.cpp](main.cpp)
|
||||
- Sample real-time audio transcription from the microphone is demonstrated in [stream.cpp](stream.cpp)
|
||||
|
||||
<img width="965" alt="image" src="https://user-images.githubusercontent.com/1991296/197356445-311c8643-9397-4e5e-b46e-0b4b4daa2530.png">
|
||||
## Limitations
|
||||
|
||||
## Controlling the length of the generated text segments (experimental)
|
||||
- Very basic greedy sampling scheme - always pick up the top token. You can implement your own strategy
|
||||
- Inference only
|
||||
- No GPU support
|
||||
|
||||
For example, to limit the line length to a maximum of 16 characters, simply add `-ml 16`:
|
||||
## Memory usage
|
||||
|
||||
```java
|
||||
./main -m ./models/ggml-base.en.bin -f ./samples/jfk.wav -ml 16
|
||||
|
||||
whisper_model_load: loading model from './models/ggml-base.en.bin'
|
||||
...
|
||||
system_info: n_threads = 4 / 10 | AVX2 = 0 | AVX512 = 0 | NEON = 1 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 |
|
||||
|
||||
main: processing './samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 processors, lang = en, task = transcribe, timestamps = 1 ...
|
||||
|
||||
[00:00:00.000 --> 00:00:00.850] And so my
|
||||
[00:00:00.850 --> 00:00:01.590] fellow
|
||||
[00:00:01.590 --> 00:00:04.140] Americans, ask
|
||||
[00:00:04.140 --> 00:00:05.660] not what your
|
||||
[00:00:05.660 --> 00:00:06.840] country can do
|
||||
[00:00:06.840 --> 00:00:08.430] for you, ask
|
||||
[00:00:08.430 --> 00:00:09.440] what you can do
|
||||
[00:00:09.440 --> 00:00:10.020] for your
|
||||
[00:00:10.020 --> 00:00:11.000] country.
|
||||
```
|
||||
|
||||
## Word-level timestamp
|
||||
|
||||
The `--max-len` argument can be used to obtain word-level timestamps. Simply use `-ml 1`:
|
||||
|
||||
```java
|
||||
./main -m ./models/ggml-base.en.bin -f ./samples/jfk.wav -ml 1
|
||||
|
||||
whisper_model_load: loading model from './models/ggml-base.en.bin'
|
||||
...
|
||||
system_info: n_threads = 4 / 10 | AVX2 = 0 | AVX512 = 0 | NEON = 1 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 |
|
||||
|
||||
main: processing './samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 processors, lang = en, task = transcribe, timestamps = 1 ...
|
||||
|
||||
[00:00:00.000 --> 00:00:00.320]
|
||||
[00:00:00.320 --> 00:00:00.370] And
|
||||
[00:00:00.370 --> 00:00:00.690] so
|
||||
[00:00:00.690 --> 00:00:00.850] my
|
||||
[00:00:00.850 --> 00:00:01.590] fellow
|
||||
[00:00:01.590 --> 00:00:02.850] Americans
|
||||
[00:00:02.850 --> 00:00:03.300] ,
|
||||
[00:00:03.300 --> 00:00:04.140] ask
|
||||
[00:00:04.140 --> 00:00:04.990] not
|
||||
[00:00:04.990 --> 00:00:05.410] what
|
||||
[00:00:05.410 --> 00:00:05.660] your
|
||||
[00:00:05.660 --> 00:00:06.260] country
|
||||
[00:00:06.260 --> 00:00:06.600] can
|
||||
[00:00:06.600 --> 00:00:06.840] do
|
||||
[00:00:06.840 --> 00:00:07.010] for
|
||||
[00:00:07.010 --> 00:00:08.170] you
|
||||
[00:00:08.170 --> 00:00:08.190] ,
|
||||
[00:00:08.190 --> 00:00:08.430] ask
|
||||
[00:00:08.430 --> 00:00:08.910] what
|
||||
[00:00:08.910 --> 00:00:09.040] you
|
||||
[00:00:09.040 --> 00:00:09.320] can
|
||||
[00:00:09.320 --> 00:00:09.440] do
|
||||
[00:00:09.440 --> 00:00:09.760] for
|
||||
[00:00:09.760 --> 00:00:10.020] your
|
||||
[00:00:10.020 --> 00:00:10.510] country
|
||||
[00:00:10.510 --> 00:00:11.000] .
|
||||
```
|
||||
|
||||
## Karaoke-style movie generation (experimental)
|
||||
|
||||
The [main](examples/main) example provides support for output of karaoke-style movies, where the
|
||||
currently pronounced word is highlighted. Use the `-wts` argument and run the generated bash script.
|
||||
This requires to have `ffmpeg` installed.
|
||||
|
||||
Here are a few *"typical"* examples:
|
||||
|
||||
```java
|
||||
./main -m ./models/ggml-base.en.bin -f ./samples/jfk.wav -owts
|
||||
source ./samples/jfk.wav.wts
|
||||
ffplay ./samples/jfk.wav.mp4
|
||||
```
|
||||
|
||||
https://user-images.githubusercontent.com/1991296/199337465-dbee4b5e-9aeb-48a3-b1c6-323ac4db5b2c.mp4
|
||||
|
||||
---
|
||||
|
||||
```java
|
||||
./main -m ./models/ggml-base.en.bin -f ./samples/mm0.wav -owts
|
||||
source ./samples/mm0.wav.wts
|
||||
ffplay ./samples/mm0.wav.mp4
|
||||
```
|
||||
|
||||
https://user-images.githubusercontent.com/1991296/199337504-cc8fd233-0cb7-4920-95f9-4227de3570aa.mp4
|
||||
|
||||
---
|
||||
|
||||
```java
|
||||
./main -m ./models/ggml-base.en.bin -f ./samples/gb0.wav -owts
|
||||
source ./samples/gb0.wav.wts
|
||||
ffplay ./samples/gb0.wav.mp4
|
||||
```
|
||||
|
||||
https://user-images.githubusercontent.com/1991296/199337538-b7b0c7a3-2753-4a88-a0cd-f28a317987ba.mp4
|
||||
|
||||
---
|
||||
|
||||
## Benchmarks
|
||||
|
||||
In order to have an objective comparison of the performance of the inference across different system configurations,
|
||||
use the [bench](examples/bench) tool. The tool simply runs the Encoder part of the model and prints how much time it
|
||||
took to execute it. The results are summarized in the following Github issue:
|
||||
|
||||
[Benchmark results](https://github.com/ggerganov/whisper.cpp/issues/89)
|
||||
| Model | Disk | Mem |
|
||||
| --- | --- | --- |
|
||||
| tiny | 75 MB | ~240 MB |
|
||||
| base | 142 MB | ~380 MB |
|
||||
| small | 466 MB | ~970 MB |
|
||||
| medium | 1.5 GB | ~2.5 GB |
|
||||
| large | 2.9 GB | ~4.6 GB |
|
||||
|
||||
## ggml format
|
||||
|
||||
@ -436,43 +248,6 @@ The original models are converted to a custom binary format. This allows to pack
|
||||
- vocabulary
|
||||
- weights
|
||||
|
||||
You can download the converted models using the [models/download-ggml-model.sh](models/download-ggml-model.sh) script
|
||||
or manually from here:
|
||||
You can download the converted models using the [download-ggml-model.sh](download-ggml-model.sh) script.
|
||||
|
||||
- https://huggingface.co/datasets/ggerganov/whisper.cpp
|
||||
- https://ggml.ggerganov.com
|
||||
|
||||
For more details, see the conversion script [models/convert-pt-to-ggml.py](models/convert-pt-to-ggml.py) or the README
|
||||
in [models](models).
|
||||
|
||||
## Bindings
|
||||
|
||||
- [X] Rust: [tazz4843/whisper-rs](https://github.com/tazz4843/whisper-rs)
|
||||
- [X] Objective-C / Swift: [ggerganov/whisper.spm](https://github.com/ggerganov/whisper.spm)
|
||||
- [X] Javascript: [bindings/javascript](bindings/javascript)
|
||||
- [ ] Python: soon
|
||||
|
||||
## Examples
|
||||
|
||||
There are various examples of using the library for different projects in the [examples](examples) folder.
|
||||
Some of the examples are even ported to run in the browser using WebAssembly. Check them out!
|
||||
|
||||
| Example | Web | Description |
|
||||
| --- | --- | --- |
|
||||
| [main](examples/main) | [whisper.wasm](examples/whisper.wasm) | Tool for translating and transcribing audio using Whisper |
|
||||
| [bench](examples/bench) | [bench.wasm](examples/bench.wasm) | Benchmark the performance of Whisper on your machine |
|
||||
| [stream](examples/stream) | [stream.wasm](examples/stream.wasm) | Real-time transcription of raw microphone capture |
|
||||
| [command](examples/command) | [command.wasm](examples/command.wasm) | Basic voice assistant example for receiving voice commands from the mic |
|
||||
| [talk](examples/talk) | [talk.wasm](examples/talk.wasm) | Talk with a GPT-2 bot |
|
||||
| [whisper.objc](examples/whisper.objc) | | iOS mobile application using whisper.cpp |
|
||||
| [whisper.nvim](examples/whisper.nvim) | | Speech-to-text plugin for Neovim |
|
||||
| [generate-karaoke.sh](examples/generate-karaoke.sh) | | Helper script to easily [generate a karaoke video](https://youtu.be/uj7hVta4blM) of raw audio capture |
|
||||
| [livestream.sh](examples/livestream.sh) | | [Livestream audio transcription](https://github.com/ggerganov/whisper.cpp/issues/185) |
|
||||
| [yt-wsp.sh](examples/yt-wsp.sh) | | Download + transcribe and/or translate any VOD [(original)](https://gist.github.com/DaniruKun/96f763ec1a037cc92fe1a059b643b818) |
|
||||
|
||||
## [Discussions](https://github.com/ggerganov/whisper.cpp/discussions)
|
||||
|
||||
If you have any kind of feedback about this project feel free to use the Discussions section and open a new topic.
|
||||
You can use the [Show and tell](https://github.com/ggerganov/whisper.cpp/discussions/categories/show-and-tell) category
|
||||
to share your own projects that use `whisper.cpp`. If you have a question, make sure to check the
|
||||
[Frequently asked questions (#126)](https://github.com/ggerganov/whisper.cpp/discussions/126) discussion.
|
||||
For more details, see the conversion script [convert-pt-to-ggml.py](convert-pt-to-ggml.py) or the README in [models](models).
|
||||
|
@ -1,19 +0,0 @@
|
||||
if (EMSCRIPTEN)
|
||||
add_subdirectory(javascript)
|
||||
|
||||
add_custom_command(
|
||||
OUTPUT ${CMAKE_CURRENT_SOURCE_DIR}/javascript/publish.log
|
||||
DEPENDS ${CMAKE_CURRENT_SOURCE_DIR}/javascript/whisper.js
|
||||
DEPENDS ${CMAKE_CURRENT_SOURCE_DIR}/javascript/libwhisper.worker.js
|
||||
DEPENDS ${CMAKE_CURRENT_SOURCE_DIR}/javascript/package.json
|
||||
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}/javascript
|
||||
COMMAND npm publish
|
||||
COMMAND touch publish.log
|
||||
COMMENT "Publishing npm module v${PROJECT_VERSION}"
|
||||
VERBATIM
|
||||
)
|
||||
|
||||
add_custom_target(publish-npm
|
||||
DEPENDS javascript/publish.log
|
||||
)
|
||||
endif()
|
Submodule bindings/ios deleted from dd58b25d84
1
bindings/javascript/.gitignore
vendored
1
bindings/javascript/.gitignore
vendored
@ -1 +0,0 @@
|
||||
publish.log
|
@ -1,41 +0,0 @@
|
||||
set(TARGET libwhisper)
|
||||
|
||||
add_executable(${TARGET}
|
||||
emscripten.cpp
|
||||
)
|
||||
|
||||
target_link_libraries(${TARGET} PRIVATE
|
||||
whisper
|
||||
)
|
||||
|
||||
unset(EXTRA_FLAGS)
|
||||
|
||||
if (WHISPER_WASM_SINGLE_FILE)
|
||||
set(EXTRA_FLAGS "-s SINGLE_FILE=1")
|
||||
message(STATUS "Embedding WASM inside whisper.js")
|
||||
|
||||
add_custom_command(
|
||||
TARGET ${TARGET} POST_BUILD
|
||||
COMMAND ${CMAKE_COMMAND} -E copy
|
||||
${CMAKE_BINARY_DIR}/bin/libwhisper.js
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/whisper.js
|
||||
)
|
||||
|
||||
add_custom_command(
|
||||
TARGET ${TARGET} POST_BUILD
|
||||
COMMAND ${CMAKE_COMMAND} -E copy
|
||||
${CMAKE_BINARY_DIR}/bin/libwhisper.worker.js
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/libwhisper.worker.js
|
||||
)
|
||||
endif()
|
||||
|
||||
set_target_properties(${TARGET} PROPERTIES LINK_FLAGS " \
|
||||
--bind \
|
||||
-s MODULARIZE=1 \
|
||||
-s EXPORT_NAME=\"'whisper_factory'\" \
|
||||
-s FORCE_FILESYSTEM=1 \
|
||||
-s USE_PTHREADS=1 \
|
||||
-s PTHREAD_POOL_SIZE=8 \
|
||||
-s ALLOW_MEMORY_GROWTH=1 \
|
||||
${EXTRA_FLAGS} \
|
||||
")
|
@ -1,78 +0,0 @@
|
||||
# whisper.cpp
|
||||
|
||||
Node.js package for Whisper speech recognition
|
||||
|
||||
Package: https://www.npmjs.com/package/whisper.cpp
|
||||
|
||||
## Details
|
||||
|
||||
The performance is comparable to when running `whisper.cpp` in the browser via WASM.
|
||||
|
||||
The API is currently very rudimentary: [bindings/javascript/emscripten.cpp](/bindings/javascript/emscripten.cpp)
|
||||
|
||||
For sample usage check [tests/test-whisper.js](/tests/test-whisper.js)
|
||||
|
||||
## Package building + test
|
||||
|
||||
```bash
|
||||
# load emscripten
|
||||
source /path/to/emsdk/emsdk_env.sh
|
||||
|
||||
# clone repo
|
||||
git clone https://github.com/ggerganov/whisper.cpp
|
||||
cd whisper.cpp
|
||||
|
||||
# grab base.en model
|
||||
./models/download-ggml-model.sh base.en
|
||||
|
||||
# prepare PCM sample for testing
|
||||
ffmpeg -i samples/jfk.wav -f f32le -acodec pcm_f32le samples/jfk.pcmf32
|
||||
|
||||
# build
|
||||
mkdir build-em && cd build-em
|
||||
emcmake cmake .. && make -j
|
||||
|
||||
# run test
|
||||
node --experimental-wasm-threads --experimental-wasm-simd ../tests/test-whisper.js
|
||||
|
||||
# publish npm package
|
||||
make publish-npm
|
||||
```
|
||||
|
||||
## Sample run
|
||||
|
||||
```java
|
||||
$ node --experimental-wasm-threads --experimental-wasm-simd ../tests/test-whisper.js
|
||||
|
||||
whisper_model_load: loading model from 'whisper.bin'
|
||||
whisper_model_load: n_vocab = 51864
|
||||
whisper_model_load: n_audio_ctx = 1500
|
||||
whisper_model_load: n_audio_state = 512
|
||||
whisper_model_load: n_audio_head = 8
|
||||
whisper_model_load: n_audio_layer = 6
|
||||
whisper_model_load: n_text_ctx = 448
|
||||
whisper_model_load: n_text_state = 512
|
||||
whisper_model_load: n_text_head = 8
|
||||
whisper_model_load: n_text_layer = 6
|
||||
whisper_model_load: n_mels = 80
|
||||
whisper_model_load: f16 = 1
|
||||
whisper_model_load: type = 2
|
||||
whisper_model_load: adding 1607 extra tokens
|
||||
whisper_model_load: mem_required = 506.00 MB
|
||||
whisper_model_load: ggml ctx size = 140.60 MB
|
||||
whisper_model_load: memory size = 22.83 MB
|
||||
whisper_model_load: model size = 140.54 MB
|
||||
|
||||
system_info: n_threads = 8 / 10 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | NEON = 0 | F16C = 0 | FP16_VA = 0 | WASM_SIMD = 1 | BLAS = 0 |
|
||||
|
||||
operator(): processing 176000 samples, 11.0 sec, 8 threads, 1 processors, lang = en, task = transcribe ...
|
||||
|
||||
[00:00:00.000 --> 00:00:11.000] And so my fellow Americans, ask not what your country can do for you, ask what you can do for your country.
|
||||
|
||||
whisper_print_timings: load time = 162.37 ms
|
||||
whisper_print_timings: mel time = 183.70 ms
|
||||
whisper_print_timings: sample time = 4.27 ms
|
||||
whisper_print_timings: encode time = 8582.63 ms / 1430.44 ms per layer
|
||||
whisper_print_timings: decode time = 436.16 ms / 72.69 ms per layer
|
||||
whisper_print_timings: total time = 9370.90 ms
|
||||
```
|
@ -1,93 +0,0 @@
|
||||
//
|
||||
// This is the Javascript API of whisper.cpp
|
||||
//
|
||||
// Very crude at the moment.
|
||||
// Feel free to contribute and make this better!
|
||||
//
|
||||
// See the tests/test-whisper.js for sample usage
|
||||
//
|
||||
|
||||
#include "whisper.h"
|
||||
|
||||
#include <emscripten.h>
|
||||
#include <emscripten/bind.h>
|
||||
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
|
||||
struct whisper_context * g_context;
|
||||
|
||||
EMSCRIPTEN_BINDINGS(whisper) {
|
||||
emscripten::function("init", emscripten::optional_override([](const std::string & path_model) {
|
||||
if (g_context == nullptr) {
|
||||
g_context = whisper_init(path_model.c_str());
|
||||
if (g_context != nullptr) {
|
||||
return true;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
}));
|
||||
|
||||
emscripten::function("free", emscripten::optional_override([]() {
|
||||
if (g_context) {
|
||||
whisper_free(g_context);
|
||||
g_context = nullptr;
|
||||
}
|
||||
}));
|
||||
|
||||
emscripten::function("full_default", emscripten::optional_override([](const emscripten::val & audio, const std::string & lang, bool translate) {
|
||||
if (g_context == nullptr) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
struct whisper_full_params params = whisper_full_default_params(whisper_sampling_strategy::WHISPER_SAMPLING_GREEDY);
|
||||
|
||||
params.print_realtime = true;
|
||||
params.print_progress = false;
|
||||
params.print_timestamps = true;
|
||||
params.print_special = false;
|
||||
params.translate = translate;
|
||||
params.language = whisper_is_multilingual(g_context) ? lang.c_str() : "en";
|
||||
params.n_threads = std::min(8, (int) std::thread::hardware_concurrency());
|
||||
params.offset_ms = 0;
|
||||
|
||||
std::vector<float> pcmf32;
|
||||
const int n = audio["length"].as<int>();
|
||||
|
||||
emscripten::val heap = emscripten::val::module_property("HEAPU8");
|
||||
emscripten::val memory = heap["buffer"];
|
||||
|
||||
pcmf32.resize(n);
|
||||
|
||||
emscripten::val memoryView = audio["constructor"].new_(memory, reinterpret_cast<uintptr_t>(pcmf32.data()), n);
|
||||
memoryView.call<void>("set", audio);
|
||||
|
||||
// print system information
|
||||
{
|
||||
printf("\n");
|
||||
printf("system_info: n_threads = %d / %d | %s\n",
|
||||
params.n_threads, std::thread::hardware_concurrency(), whisper_print_system_info());
|
||||
|
||||
printf("\n");
|
||||
printf("%s: processing %d samples, %.1f sec, %d threads, %d processors, lang = %s, task = %s ...\n",
|
||||
__func__, int(pcmf32.size()), float(pcmf32.size())/WHISPER_SAMPLE_RATE,
|
||||
params.n_threads, 1,
|
||||
params.language,
|
||||
params.translate ? "translate" : "transcribe");
|
||||
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
// run whisper
|
||||
{
|
||||
whisper_reset_timings(g_context);
|
||||
whisper_full(g_context, params, pcmf32.data(), pcmf32.size());
|
||||
whisper_print_timings(g_context);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}));
|
||||
}
|
@ -1 +0,0 @@
|
||||
"use strict";var Module={};var ENVIRONMENT_IS_NODE=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require("worker_threads");var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",data=>onmessage({data:data}));var fs=require("fs");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:function(f){(0,eval)(fs.readFileSync(f,"utf8")+"//# sourceURL="+f)},postMessage:function(msg){parentPort.postMessage(msg)},performance:global.performance||{now:function(){return Date.now()}}})}var initializedJS=false;var pendingNotifiedProxyingQueues=[];function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+"\n");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;self.alert=threadAlert;Module["instantiateWasm"]=(info,receiveInstance)=>{var instance=new WebAssembly.Instance(Module["wasmModule"],info);receiveInstance(instance);Module["wasmModule"]=null;return instance.exports};self.onunhandledrejection=e=>{throw e.reason??e};self.onmessage=e=>{try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;for(const handler of e.data.handlers){Module[handler]=function(){postMessage({cmd:"callHandler",handler:handler,args:[...arguments]})}}Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob=="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}whisper_factory(Module).then(function(instance){Module=instance})}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.pthread_ptr,0,0,1);Module["establishStackSpace"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].threadInitTLS();if(!initializedJS){Module["__embind_initialize_bindings"]();pendingNotifiedProxyingQueues.forEach(queue=>{Module["executeNotifiedProxyingQueue"](queue)});pendingNotifiedProxyingQueues=[];initializedJS=true}try{Module["invokeEntryPoint"](e.data.start_routine,e.data.arg)}catch(ex){if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["keepRuntimeAlive"]()){}else{Module["__emscripten_thread_exit"](ex.status)}}else{throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["__emscripten_thread_exit"](-1)}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processProxyingQueue"){if(initializedJS){Module["executeNotifiedProxyingQueue"](e.data.queue)}else{pendingNotifiedProxyingQueues.push(e.data.queue)}}else if(e.data.cmd){err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){if(Module["__emscripten_thread_crashed"]){Module["__emscripten_thread_crashed"]()}throw ex}};
|
@ -1,26 +0,0 @@
|
||||
{
|
||||
"name": "whisper.cpp",
|
||||
"version": "@PROJECT_VERSION@",
|
||||
"description": "Whisper speech recognition",
|
||||
"main": "whisper.js",
|
||||
"scripts": {
|
||||
"test": "echo \"todo: add tests\" && exit 0"
|
||||
},
|
||||
"repository": {
|
||||
"type": "git",
|
||||
"url": "git+https://github.com/ggerganov/whisper.cpp"
|
||||
},
|
||||
"keywords": [
|
||||
"openai",
|
||||
"whisper",
|
||||
"speech-to-text",
|
||||
"speech-recognition",
|
||||
"transformer"
|
||||
],
|
||||
"author": "Georgi Gerganov",
|
||||
"license": "MIT",
|
||||
"bugs": {
|
||||
"url": "https://github.com/ggerganov/whisper.cpp/issues"
|
||||
},
|
||||
"homepage": "https://github.com/ggerganov/whisper.cpp#readme"
|
||||
}
|
@ -1,26 +0,0 @@
|
||||
{
|
||||
"name": "whisper.cpp",
|
||||
"version": "1.0.3",
|
||||
"description": "Whisper speech recognition",
|
||||
"main": "whisper.js",
|
||||
"scripts": {
|
||||
"test": "echo \"todo: add tests\" && exit 0"
|
||||
},
|
||||
"repository": {
|
||||
"type": "git",
|
||||
"url": "git+https://github.com/ggerganov/whisper.cpp"
|
||||
},
|
||||
"keywords": [
|
||||
"openai",
|
||||
"whisper",
|
||||
"speech-to-text",
|
||||
"speech-recognition",
|
||||
"transformer"
|
||||
],
|
||||
"author": "Georgi Gerganov",
|
||||
"license": "MIT",
|
||||
"bugs": {
|
||||
"url": "https://github.com/ggerganov/whisper.cpp/issues"
|
||||
},
|
||||
"homepage": "https://github.com/ggerganov/whisper.cpp#readme"
|
||||
}
|
File diff suppressed because one or more lines are too long
@ -1,54 +0,0 @@
|
||||
# Add new build types
|
||||
|
||||
# ReleaseGG - Release with enabled asserts
|
||||
|
||||
SET(CMAKE_CXX_FLAGS_RELEASEGG
|
||||
"-O3"
|
||||
CACHE STRING "Flags used by the c++ compiler during release builds with enabled asserts."
|
||||
FORCE )
|
||||
SET(CMAKE_C_FLAGS_RELEASEGG
|
||||
"-O3"
|
||||
CACHE STRING "Flags used by the compiler during release builds with enabled asserts."
|
||||
FORCE )
|
||||
SET(CMAKE_EXE_LINKER_FLAGS_RELEASEGG
|
||||
""
|
||||
CACHE STRING "Flags used for linking binaries during release builds with enabled asserts."
|
||||
FORCE )
|
||||
SET(CMAKE_SHARED_LINKER_FLAGS_RELEASEGG
|
||||
""
|
||||
CACHE STRING "Flags used by the shared libraries linker during release builds with enabled asserts."
|
||||
FORCE )
|
||||
MARK_AS_ADVANCED(
|
||||
CMAKE_CXX_FLAGS_RELEASEGG
|
||||
CMAKE_C_FLAGS_RELEASEGG
|
||||
CMAKE_EXE_LINKER_FLAGS_RELEASEGG
|
||||
CMAKE_SHARED_LINKER_FLAGS_RELEASEGG )
|
||||
|
||||
# RelWithDebInfoGG - RelWithDebInfo with enabled asserts
|
||||
|
||||
SET(CMAKE_CXX_FLAGS_RELWITHDEBINFOGG
|
||||
"-O2 -g"
|
||||
CACHE STRING "Flags used by the c++ compiler during release builds with debug symbols and enabled asserts."
|
||||
FORCE )
|
||||
SET(CMAKE_C_FLAGS_RELWITHDEBINFOGG
|
||||
"-O2 -g"
|
||||
CACHE STRING "Flags used by the compiler during release builds with debug symbols and enabled asserts."
|
||||
FORCE )
|
||||
SET(CMAKE_EXE_LINKER_FLAGS_RELWITHDEBINFOGG
|
||||
""
|
||||
CACHE STRING "Flags used for linking binaries during release builds with debug symbols and enabled asserts."
|
||||
FORCE )
|
||||
SET(CMAKE_SHARED_LINKER_FLAGS_RELWITHDEBINFOGG
|
||||
""
|
||||
CACHE STRING "Flags used by the shared libraries linker during release builds with debug symbols and enabled asserts."
|
||||
FORCE )
|
||||
MARK_AS_ADVANCED(
|
||||
CMAKE_CXX_FLAGS_RELWITHDEBINFOGG
|
||||
CMAKE_C_FLAGS_RELWITHDEBINFOGG
|
||||
CMAKE_EXE_LINKER_FLAGS_RELWITHDEBINFOGG
|
||||
CMAKE_SHARED_LINKER_FLAGS_RELWITHDEBINFOGG )
|
||||
|
||||
if (NOT XCODE AND NOT MSVC AND NOT CMAKE_BUILD_TYPE)
|
||||
set(CMAKE_BUILD_TYPE Release CACHE STRING "Build type" FORCE)
|
||||
set_property(CACHE CMAKE_BUILD_TYPE PROPERTY STRINGS "Debug" "Release" "MinSizeRel" "RelWithDebInfo" "ReleaseGG" "RelWithDebInfoGG")
|
||||
endif()
|
@ -1,22 +0,0 @@
|
||||
find_package(Git)
|
||||
|
||||
# the commit's SHA1
|
||||
execute_process(COMMAND
|
||||
"${GIT_EXECUTABLE}" describe --match=NeVeRmAtCh --always --abbrev=8
|
||||
WORKING_DIRECTORY "${CMAKE_SOURCE_DIR}"
|
||||
OUTPUT_VARIABLE GIT_SHA1
|
||||
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
|
||||
|
||||
# the date of the commit
|
||||
execute_process(COMMAND
|
||||
"${GIT_EXECUTABLE}" log -1 --format=%ad --date=local
|
||||
WORKING_DIRECTORY "${CMAKE_SOURCE_DIR}"
|
||||
OUTPUT_VARIABLE GIT_DATE
|
||||
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
|
||||
|
||||
# the subject of the commit
|
||||
execute_process(COMMAND
|
||||
"${GIT_EXECUTABLE}" log -1 --format=%s
|
||||
WORKING_DIRECTORY "${CMAKE_SOURCE_DIR}"
|
||||
OUTPUT_VARIABLE GIT_COMMIT_SUBJECT
|
||||
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
|
@ -40,131 +40,131 @@ import code
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
#from transformers import GPTJForCausalLM
|
||||
#from transformers import GPT2TokenizerFast
|
||||
from transformers import GPTJForCausalLM
|
||||
from transformers import GPT2TokenizerFast
|
||||
|
||||
# ref: https://github.com/openai/whisper/blob/8cf36f3508c9acd341a45eb2364239a3d81458b9/whisper/tokenizer.py#L10-L110
|
||||
#LANGUAGES = {
|
||||
# "en": "english",
|
||||
# "zh": "chinese",
|
||||
# "de": "german",
|
||||
# "es": "spanish",
|
||||
# "ru": "russian",
|
||||
# "ko": "korean",
|
||||
# "fr": "french",
|
||||
# "ja": "japanese",
|
||||
# "pt": "portuguese",
|
||||
# "tr": "turkish",
|
||||
# "pl": "polish",
|
||||
# "ca": "catalan",
|
||||
# "nl": "dutch",
|
||||
# "ar": "arabic",
|
||||
# "sv": "swedish",
|
||||
# "it": "italian",
|
||||
# "id": "indonesian",
|
||||
# "hi": "hindi",
|
||||
# "fi": "finnish",
|
||||
# "vi": "vietnamese",
|
||||
# "iw": "hebrew",
|
||||
# "uk": "ukrainian",
|
||||
# "el": "greek",
|
||||
# "ms": "malay",
|
||||
# "cs": "czech",
|
||||
# "ro": "romanian",
|
||||
# "da": "danish",
|
||||
# "hu": "hungarian",
|
||||
# "ta": "tamil",
|
||||
# "no": "norwegian",
|
||||
# "th": "thai",
|
||||
# "ur": "urdu",
|
||||
# "hr": "croatian",
|
||||
# "bg": "bulgarian",
|
||||
# "lt": "lithuanian",
|
||||
# "la": "latin",
|
||||
# "mi": "maori",
|
||||
# "ml": "malayalam",
|
||||
# "cy": "welsh",
|
||||
# "sk": "slovak",
|
||||
# "te": "telugu",
|
||||
# "fa": "persian",
|
||||
# "lv": "latvian",
|
||||
# "bn": "bengali",
|
||||
# "sr": "serbian",
|
||||
# "az": "azerbaijani",
|
||||
# "sl": "slovenian",
|
||||
# "kn": "kannada",
|
||||
# "et": "estonian",
|
||||
# "mk": "macedonian",
|
||||
# "br": "breton",
|
||||
# "eu": "basque",
|
||||
# "is": "icelandic",
|
||||
# "hy": "armenian",
|
||||
# "ne": "nepali",
|
||||
# "mn": "mongolian",
|
||||
# "bs": "bosnian",
|
||||
# "kk": "kazakh",
|
||||
# "sq": "albanian",
|
||||
# "sw": "swahili",
|
||||
# "gl": "galician",
|
||||
# "mr": "marathi",
|
||||
# "pa": "punjabi",
|
||||
# "si": "sinhala",
|
||||
# "km": "khmer",
|
||||
# "sn": "shona",
|
||||
# "yo": "yoruba",
|
||||
# "so": "somali",
|
||||
# "af": "afrikaans",
|
||||
# "oc": "occitan",
|
||||
# "ka": "georgian",
|
||||
# "be": "belarusian",
|
||||
# "tg": "tajik",
|
||||
# "sd": "sindhi",
|
||||
# "gu": "gujarati",
|
||||
# "am": "amharic",
|
||||
# "yi": "yiddish",
|
||||
# "lo": "lao",
|
||||
# "uz": "uzbek",
|
||||
# "fo": "faroese",
|
||||
# "ht": "haitian creole",
|
||||
# "ps": "pashto",
|
||||
# "tk": "turkmen",
|
||||
# "nn": "nynorsk",
|
||||
# "mt": "maltese",
|
||||
# "sa": "sanskrit",
|
||||
# "lb": "luxembourgish",
|
||||
# "my": "myanmar",
|
||||
# "bo": "tibetan",
|
||||
# "tl": "tagalog",
|
||||
# "mg": "malagasy",
|
||||
# "as": "assamese",
|
||||
# "tt": "tatar",
|
||||
# "haw": "hawaiian",
|
||||
# "ln": "lingala",
|
||||
# "ha": "hausa",
|
||||
# "ba": "bashkir",
|
||||
# "jw": "javanese",
|
||||
# "su": "sundanese",
|
||||
#}
|
||||
LANGUAGES = {
|
||||
"en": "english",
|
||||
"zh": "chinese",
|
||||
"de": "german",
|
||||
"es": "spanish",
|
||||
"ru": "russian",
|
||||
"ko": "korean",
|
||||
"fr": "french",
|
||||
"ja": "japanese",
|
||||
"pt": "portuguese",
|
||||
"tr": "turkish",
|
||||
"pl": "polish",
|
||||
"ca": "catalan",
|
||||
"nl": "dutch",
|
||||
"ar": "arabic",
|
||||
"sv": "swedish",
|
||||
"it": "italian",
|
||||
"id": "indonesian",
|
||||
"hi": "hindi",
|
||||
"fi": "finnish",
|
||||
"vi": "vietnamese",
|
||||
"iw": "hebrew",
|
||||
"uk": "ukrainian",
|
||||
"el": "greek",
|
||||
"ms": "malay",
|
||||
"cs": "czech",
|
||||
"ro": "romanian",
|
||||
"da": "danish",
|
||||
"hu": "hungarian",
|
||||
"ta": "tamil",
|
||||
"no": "norwegian",
|
||||
"th": "thai",
|
||||
"ur": "urdu",
|
||||
"hr": "croatian",
|
||||
"bg": "bulgarian",
|
||||
"lt": "lithuanian",
|
||||
"la": "latin",
|
||||
"mi": "maori",
|
||||
"ml": "malayalam",
|
||||
"cy": "welsh",
|
||||
"sk": "slovak",
|
||||
"te": "telugu",
|
||||
"fa": "persian",
|
||||
"lv": "latvian",
|
||||
"bn": "bengali",
|
||||
"sr": "serbian",
|
||||
"az": "azerbaijani",
|
||||
"sl": "slovenian",
|
||||
"kn": "kannada",
|
||||
"et": "estonian",
|
||||
"mk": "macedonian",
|
||||
"br": "breton",
|
||||
"eu": "basque",
|
||||
"is": "icelandic",
|
||||
"hy": "armenian",
|
||||
"ne": "nepali",
|
||||
"mn": "mongolian",
|
||||
"bs": "bosnian",
|
||||
"kk": "kazakh",
|
||||
"sq": "albanian",
|
||||
"sw": "swahili",
|
||||
"gl": "galician",
|
||||
"mr": "marathi",
|
||||
"pa": "punjabi",
|
||||
"si": "sinhala",
|
||||
"km": "khmer",
|
||||
"sn": "shona",
|
||||
"yo": "yoruba",
|
||||
"so": "somali",
|
||||
"af": "afrikaans",
|
||||
"oc": "occitan",
|
||||
"ka": "georgian",
|
||||
"be": "belarusian",
|
||||
"tg": "tajik",
|
||||
"sd": "sindhi",
|
||||
"gu": "gujarati",
|
||||
"am": "amharic",
|
||||
"yi": "yiddish",
|
||||
"lo": "lao",
|
||||
"uz": "uzbek",
|
||||
"fo": "faroese",
|
||||
"ht": "haitian creole",
|
||||
"ps": "pashto",
|
||||
"tk": "turkmen",
|
||||
"nn": "nynorsk",
|
||||
"mt": "maltese",
|
||||
"sa": "sanskrit",
|
||||
"lb": "luxembourgish",
|
||||
"my": "myanmar",
|
||||
"bo": "tibetan",
|
||||
"tl": "tagalog",
|
||||
"mg": "malagasy",
|
||||
"as": "assamese",
|
||||
"tt": "tatar",
|
||||
"haw": "hawaiian",
|
||||
"ln": "lingala",
|
||||
"ha": "hausa",
|
||||
"ba": "bashkir",
|
||||
"jw": "javanese",
|
||||
"su": "sundanese",
|
||||
}
|
||||
|
||||
## ref: https://github.com/openai/whisper/blob/8cf36f3508c9acd341a45eb2364239a3d81458b9/whisper/tokenizer.py#L273-L292
|
||||
#def build_tokenizer(path_to_whisper_repo: str, name: str = "gpt2"):
|
||||
# os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
||||
# path = os.path.join(path_to_whisper_repo, "whisper/assets", name)
|
||||
# tokenizer = GPT2TokenizerFast.from_pretrained(path)
|
||||
#
|
||||
# specials = [
|
||||
# "<|startoftranscript|>",
|
||||
# *[f"<|{lang}|>" for lang in LANGUAGES.keys()],
|
||||
# "<|translate|>",
|
||||
# "<|transcribe|>",
|
||||
# "<|startoflm|>",
|
||||
# "<|startofprev|>",
|
||||
# "<|nocaptions|>",
|
||||
# "<|notimestamps|>",
|
||||
# ]
|
||||
#
|
||||
# tokenizer.add_special_tokens(dict(additional_special_tokens=specials))
|
||||
# return tokenizer
|
||||
# ref: https://github.com/openai/whisper/blob/8cf36f3508c9acd341a45eb2364239a3d81458b9/whisper/tokenizer.py#L273-L292
|
||||
def build_tokenizer(path_to_whisper_repo: str, name: str = "gpt2"):
|
||||
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
||||
path = os.path.join(path_to_whisper_repo, "whisper/assets", name)
|
||||
tokenizer = GPT2TokenizerFast.from_pretrained(path)
|
||||
|
||||
specials = [
|
||||
"<|startoftranscript|>",
|
||||
*[f"<|{lang}|>" for lang in LANGUAGES.keys()],
|
||||
"<|translate|>",
|
||||
"<|transcribe|>",
|
||||
"<|startoflm|>",
|
||||
"<|startofprev|>",
|
||||
"<|nocaptions|>",
|
||||
"<|notimestamps|>",
|
||||
]
|
||||
|
||||
tokenizer.add_special_tokens(dict(additional_special_tokens=specials))
|
||||
return tokenizer
|
||||
|
||||
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
|
||||
def bytes_to_unicode():
|
||||
@ -224,17 +224,17 @@ with np.load(os.path.join(dir_whisper, "whisper/assets", "mel_filters.npz")) as
|
||||
#code.interact(local=locals())
|
||||
|
||||
multilingual = hparams["n_vocab"] == 51865
|
||||
dir_tokenizer = os.path.join(dir_whisper, "whisper/assets", multilingual and "multilingual" or "gpt2")
|
||||
tokenizer = build_tokenizer(dir_whisper, multilingual and "multilingual" or "gpt2")
|
||||
|
||||
#tokenizer = build_tokenizer(dir_whisper, multilingual and "multilingual" or "gpt2")
|
||||
#print(tokenizer)
|
||||
#print(tokenizer.name_or_path)
|
||||
#print(len(tokenizer.additional_special_tokens))
|
||||
dir_tokenizer = tokenizer.name_or_path
|
||||
|
||||
# output in the same directory as the model
|
||||
fname_out = dir_out + "/ggml-model.bin"
|
||||
|
||||
with open(dir_tokenizer + "/vocab.json", "r", encoding="utf8") as f:
|
||||
with open(dir_tokenizer + "/vocab.json", "r") as f:
|
||||
tokens = json.load(f)
|
||||
|
||||
# use 16-bit or 32-bit floats
|
||||
@ -271,7 +271,7 @@ byte_decoder = {v:k for k, v in byte_encoder.items()}
|
||||
fout.write(struct.pack("i", len(tokens)))
|
||||
|
||||
for key in tokens:
|
||||
text = bytearray([byte_decoder[c] for c in key])
|
||||
text = bytearray([byte_decoder[c] for c in key]).decode('utf-8', errors='replace').encode('utf-8')
|
||||
fout.write(struct.pack("i", len(text)))
|
||||
fout.write(text)
|
||||
|
||||
@ -297,6 +297,8 @@ for name in list_vars.keys():
|
||||
name == "encoder.conv2.bias" or \
|
||||
name == "encoder.positional_embedding" or \
|
||||
name == "decoder.positional_embedding":
|
||||
ftype = 0
|
||||
data = data.astype(np.float32)
|
||||
print(" Converting to float32")
|
||||
data = data.astype(np.float32)
|
||||
ftype = 0
|
@ -3,26 +3,10 @@
|
||||
# This script downloads Whisper model files that have already been converted to ggml format.
|
||||
# This way you don't have to convert them yourself.
|
||||
|
||||
#src="https://ggml.ggerganov.com"
|
||||
#pfx="ggml-model-whisper"
|
||||
|
||||
src="https://huggingface.co/datasets/ggerganov/whisper.cpp"
|
||||
pfx="resolve/main/ggml"
|
||||
|
||||
# get the path of this script
|
||||
function get_script_path() {
|
||||
if [ -x "$(command -v realpath)" ]; then
|
||||
echo "$(dirname $(realpath $0))"
|
||||
else
|
||||
local ret="$(cd -- "$(dirname "$0")" >/dev/null 2>&1 ; pwd -P)"
|
||||
echo "$ret"
|
||||
fi
|
||||
}
|
||||
|
||||
models_path=$(get_script_path)
|
||||
ggml_path=$(dirname $(realpath $0))
|
||||
|
||||
# Whisper models
|
||||
models=( "tiny.en" "tiny" "base.en" "base" "small.en" "small" "medium.en" "medium" "large-v1" "large" )
|
||||
models=( "tiny.en" "tiny" "base.en" "base" "small.en" "small" "medium.en" "medium" "large" )
|
||||
|
||||
# list available models
|
||||
function list_models {
|
||||
@ -52,24 +36,16 @@ fi
|
||||
|
||||
# download ggml model
|
||||
|
||||
printf "Downloading ggml model $model from '$src' ...\n"
|
||||
printf "Downloading ggml model $model ...\n"
|
||||
|
||||
cd $models_path
|
||||
mkdir -p models
|
||||
|
||||
if [ -f "ggml-$model.bin" ]; then
|
||||
if [ -f "models/ggml-$model.bin" ]; then
|
||||
printf "Model $model already exists. Skipping download.\n"
|
||||
exit 0
|
||||
fi
|
||||
|
||||
if [ -x "$(command -v wget)" ]; then
|
||||
wget --quiet --show-progress -O ggml-$model.bin $src/$pfx-$model.bin
|
||||
elif [ -x "$(command -v curl)" ]; then
|
||||
curl -L --output ggml-$model.bin $src/$pfx-$model.bin
|
||||
else
|
||||
printf "Either wget or curl is required to download models.\n"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
wget --quiet --show-progress -O models/ggml-$model.bin https://ggml.ggerganov.com/ggml-model-whisper-$model.bin
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
printf "Failed to download ggml model $model \n"
|
@ -1,33 +0,0 @@
|
||||
# dependencies
|
||||
|
||||
find_package(Threads REQUIRED)
|
||||
|
||||
# third-party
|
||||
|
||||
if (WHISPER_SUPPORT_SDL2)
|
||||
# SDL2
|
||||
find_package(SDL2 REQUIRED)
|
||||
|
||||
string(STRIP "${SDL2_LIBRARIES}" SDL2_LIBRARIES)
|
||||
|
||||
message(STATUS "SDL2_INCLUDE_DIRS = ${SDL2_INCLUDE_DIRS}")
|
||||
message(STATUS "SDL2_LIBRARIES = ${SDL2_LIBRARIES}")
|
||||
endif()
|
||||
|
||||
# examples
|
||||
|
||||
include_directories(${CMAKE_CURRENT_SOURCE_DIR})
|
||||
|
||||
if (EMSCRIPTEN)
|
||||
add_subdirectory(whisper.wasm)
|
||||
add_subdirectory(stream.wasm)
|
||||
add_subdirectory(command.wasm)
|
||||
add_subdirectory(talk.wasm)
|
||||
add_subdirectory(bench.wasm)
|
||||
else()
|
||||
add_subdirectory(main)
|
||||
add_subdirectory(stream)
|
||||
add_subdirectory(command)
|
||||
add_subdirectory(bench)
|
||||
add_subdirectory(talk)
|
||||
endif()
|
@ -1,47 +0,0 @@
|
||||
#
|
||||
# libbench
|
||||
#
|
||||
|
||||
set(TARGET libbench)
|
||||
|
||||
add_executable(${TARGET}
|
||||
emscripten.cpp
|
||||
)
|
||||
|
||||
target_link_libraries(${TARGET} PRIVATE
|
||||
whisper
|
||||
)
|
||||
|
||||
unset(EXTRA_FLAGS)
|
||||
|
||||
if (WHISPER_WASM_SINGLE_FILE)
|
||||
set(EXTRA_FLAGS "-s SINGLE_FILE=1")
|
||||
message(STATUS "Embedding WASM inside bench.js")
|
||||
|
||||
add_custom_command(
|
||||
TARGET ${TARGET} POST_BUILD
|
||||
COMMAND ${CMAKE_COMMAND} -E copy
|
||||
${CMAKE_BINARY_DIR}/bin/libbench.js
|
||||
${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/bench.wasm/bench.js
|
||||
)
|
||||
endif()
|
||||
|
||||
set_target_properties(${TARGET} PROPERTIES LINK_FLAGS " \
|
||||
--bind \
|
||||
-s USE_PTHREADS=1 \
|
||||
-s PTHREAD_POOL_SIZE=8 \
|
||||
-s INITIAL_MEMORY=1024MB \
|
||||
-s TOTAL_MEMORY=1024MB \
|
||||
-s FORCE_FILESYSTEM=1 \
|
||||
-s EXPORTED_RUNTIME_METHODS=\"['print', 'printErr', 'ccall', 'cwrap']\" \
|
||||
${EXTRA_FLAGS} \
|
||||
")
|
||||
|
||||
#
|
||||
# bench.wasm
|
||||
#
|
||||
|
||||
set(TARGET bench.wasm)
|
||||
|
||||
configure_file(${CMAKE_CURRENT_SOURCE_DIR}/index-tmpl.html ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/${TARGET}/index.html @ONLY)
|
||||
configure_file(${CMAKE_CURRENT_SOURCE_DIR}/../helpers.js ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/${TARGET}/helpers.js @ONLY)
|
@ -1,22 +0,0 @@
|
||||
# bench.wasm
|
||||
|
||||
Benchmark the performance of whisper.cpp in the browser using WebAssembly
|
||||
|
||||
Link: https://whisper.ggerganov.com/bench/
|
||||
|
||||
Terminal version: [examples/bench](/examples/bench)
|
||||
|
||||
## Build instructions
|
||||
|
||||
```bash
|
||||
# build using Emscripten (v3.1.2)
|
||||
git clone https://github.com/ggerganov/whisper.cpp
|
||||
cd whisper.cpp
|
||||
mkdir build-em && cd build-em
|
||||
emcmake cmake ..
|
||||
make -j
|
||||
|
||||
# copy the produced page to your HTTP path
|
||||
cp bin/bench.wasm/* /path/to/html/
|
||||
cp bin/libbench.worker.js /path/to/html/
|
||||
```
|
@ -1,80 +0,0 @@
|
||||
#include "whisper.h"
|
||||
|
||||
#include <emscripten.h>
|
||||
#include <emscripten/bind.h>
|
||||
|
||||
#include <cmath>
|
||||
#include <string>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
|
||||
constexpr int N_THREAD = 8;
|
||||
|
||||
// TODO: get rid of this vector of contexts - bad idea in the first place
|
||||
std::vector<struct whisper_context *> g_contexts(4, nullptr);
|
||||
|
||||
std::thread g_worker;
|
||||
|
||||
void bench_main(size_t index) {
|
||||
const int n_threads = std::min(N_THREAD, (int) std::thread::hardware_concurrency());
|
||||
|
||||
// whisper context
|
||||
auto & ctx = g_contexts[index];
|
||||
|
||||
fprintf(stderr, "%s: running benchmark with %d threads - please wait...\n", __func__, n_threads);
|
||||
|
||||
if (int ret = whisper_set_mel(ctx, nullptr, 0, WHISPER_N_MEL)) {
|
||||
fprintf(stderr, "error: failed to set mel: %d\n", ret);
|
||||
return;
|
||||
}
|
||||
|
||||
if (int ret = whisper_encode(ctx, 0, n_threads) != 0) {
|
||||
fprintf(stderr, "error: failed to encode model: %d\n", ret);
|
||||
return;
|
||||
}
|
||||
|
||||
whisper_print_timings(ctx);
|
||||
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "If you wish, you can submit these results here:\n");
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, " https://github.com/ggerganov/whisper.cpp/issues/89\n");
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "Please include the following information:\n");
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, " - CPU model\n");
|
||||
fprintf(stderr, " - Operating system\n");
|
||||
fprintf(stderr, " - Browser\n");
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
EMSCRIPTEN_BINDINGS(bench) {
|
||||
emscripten::function("init", emscripten::optional_override([](const std::string & path_model) {
|
||||
for (size_t i = 0; i < g_contexts.size(); ++i) {
|
||||
if (g_contexts[i] == nullptr) {
|
||||
g_contexts[i] = whisper_init(path_model.c_str());
|
||||
if (g_contexts[i] != nullptr) {
|
||||
if (g_worker.joinable()) {
|
||||
g_worker.join();
|
||||
}
|
||||
g_worker = std::thread([i]() {
|
||||
bench_main(i);
|
||||
});
|
||||
|
||||
return i + 1;
|
||||
} else {
|
||||
return (size_t) 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return (size_t) 0;
|
||||
}));
|
||||
|
||||
emscripten::function("free", emscripten::optional_override([](size_t index) {
|
||||
if (index < g_contexts.size()) {
|
||||
whisper_free(g_contexts[index]);
|
||||
g_contexts[index] = nullptr;
|
||||
}
|
||||
}));
|
||||
}
|
@ -1,227 +0,0 @@
|
||||
<!doctype html>
|
||||
<html lang="en-us">
|
||||
<head>
|
||||
<title>bench : Benchmark whisper.cpp performance in the browser</title>
|
||||
|
||||
<style>
|
||||
#output {
|
||||
width: 100%;
|
||||
height: 100%;
|
||||
margin: 0 auto;
|
||||
margin-top: 10px;
|
||||
border-left: 0px;
|
||||
border-right: 0px;
|
||||
padding-left: 0px;
|
||||
padding-right: 0px;
|
||||
display: block;
|
||||
background-color: black;
|
||||
color: white;
|
||||
font-size: 10px;
|
||||
font-family: 'Lucida Console', Monaco, monospace;
|
||||
outline: none;
|
||||
white-space: pre;
|
||||
overflow-wrap: normal;
|
||||
overflow-x: scroll;
|
||||
}
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
<div id="main-container">
|
||||
<b>bench : Benchmark whisper.cpp performance in the browser</b>
|
||||
|
||||
<br><br>
|
||||
|
||||
You can find more about this project on <a href="https://github.com/ggerganov/whisper.cpp/tree/master/examples/bench.wasm">GitHub</a>.
|
||||
|
||||
<br><br>
|
||||
|
||||
<hr>
|
||||
|
||||
Select the model you would like to use and click the "Bench" button.<br>
|
||||
The results will be displayed in the textarea below.
|
||||
|
||||
<br><br>
|
||||
|
||||
<div id="model-whisper">
|
||||
Whisper model: <span id="model-whisper-status"></span>
|
||||
<button id="fetch-whisper-tiny-en" onclick="loadWhisper('tiny.en')">tiny.en (75 MB)</button>
|
||||
<button id="fetch-whisper-base-en" onclick="loadWhisper('base.en')">base.en (142 MB)</button>
|
||||
<span id="fetch-whisper-progress"></span>
|
||||
|
||||
<input type="file" id="whisper-file" name="file" onchange="loadFile(event, 'whisper.bin')" />
|
||||
</div>
|
||||
|
||||
<br>
|
||||
|
||||
<div id="input">
|
||||
<button id="bench" onclick="onBench()" disabled>Bench</button>
|
||||
<button id="clear" onclick="clearCache()">Clear Cache</button>
|
||||
</div>
|
||||
|
||||
<hr>
|
||||
|
||||
Debug output:
|
||||
<textarea id="output" rows="20"></textarea>
|
||||
|
||||
<br>
|
||||
|
||||
<b>Troubleshooting</b>
|
||||
|
||||
<br><br>
|
||||
|
||||
The page does some heavy computations, so make sure:
|
||||
|
||||
<ul>
|
||||
<li>To use a modern web browser (e.g. Chrome, Firefox)</li>
|
||||
<li>To use a fast desktop or laptop computer (i.e. not a mobile phone)</li>
|
||||
<li>Your browser supports WASM <a href="https://webassembly.org/roadmap/">Fixed-width SIMD</a></li>
|
||||
</ul>
|
||||
|
||||
<div class="cell-version">
|
||||
<span>
|
||||
|
|
||||
Build time: <span class="nav-link">@GIT_DATE@</span> |
|
||||
Commit hash: <a class="nav-link" href="https://github.com/ggerganov/whisper.cpp/commit/@GIT_SHA1@">@GIT_SHA1@</a> |
|
||||
Commit subject: <span class="nav-link">@GIT_COMMIT_SUBJECT@</span> |
|
||||
<a class="nav-link" href="https://github.com/ggerganov/whisper.cpp/tree/master/examples/bench.wasm">Source Code</a> |
|
||||
</span>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<script type="text/javascript" src="helpers.js"></script>
|
||||
<script type='text/javascript'>
|
||||
// the bench instance
|
||||
var instance = null;
|
||||
|
||||
// model name
|
||||
var model_whisper = null;
|
||||
|
||||
var Module = {
|
||||
print: printTextarea,
|
||||
printErr: printTextarea,
|
||||
setStatus: function(text) {
|
||||
printTextarea('js: ' + text);
|
||||
},
|
||||
monitorRunDependencies: function(left) {
|
||||
},
|
||||
preRun: function() {
|
||||
printTextarea('js: Preparing ...');
|
||||
},
|
||||
postRun: function() {
|
||||
printTextarea('js: Initialized successfully!');
|
||||
}
|
||||
};
|
||||
|
||||
//
|
||||
// fetch models
|
||||
//
|
||||
|
||||
let dbVersion = 1
|
||||
let dbName = 'whisper.ggerganov.com';
|
||||
let indexedDB = window.indexedDB || window.mozIndexedDB || window.webkitIndexedDB || window.msIndexedDB
|
||||
|
||||
function storeFS(fname, buf) {
|
||||
// write to WASM file using FS_createDataFile
|
||||
// if the file exists, delete it
|
||||
try {
|
||||
Module.FS_unlink(fname);
|
||||
} catch (e) {
|
||||
// ignore
|
||||
}
|
||||
|
||||
Module.FS_createDataFile("/", fname, buf, true, true);
|
||||
|
||||
printTextarea('storeFS: stored model: ' + fname + ' size: ' + buf.length);
|
||||
|
||||
model_whisper = fname;
|
||||
|
||||
document.getElementById('model-whisper-status').innerHTML = 'loaded "' + model_whisper + '"!';
|
||||
|
||||
if (model_whisper != null) {
|
||||
document.getElementById('bench').disabled = false;
|
||||
}
|
||||
}
|
||||
|
||||
function loadFile(event, fname) {
|
||||
var file = event.target.files[0] || null;
|
||||
if (file == null) {
|
||||
return;
|
||||
}
|
||||
|
||||
printTextarea("loadFile: loading model: " + file.name + ", size: " + file.size + " bytes");
|
||||
printTextarea('loadFile: please wait ...');
|
||||
|
||||
var reader = new FileReader();
|
||||
reader.onload = function(event) {
|
||||
var buf = new Uint8Array(reader.result);
|
||||
storeFS(fname, buf);
|
||||
}
|
||||
reader.readAsArrayBuffer(file);
|
||||
|
||||
document.getElementById('fetch-whisper-tiny-en').style.display = 'none';
|
||||
document.getElementById('fetch-whisper-base-en').style.display = 'none';
|
||||
document.getElementById('whisper-file' ).style.display = 'none';
|
||||
document.getElementById('model-whisper-status' ).innerHTML = 'loaded model: ' + file.name;
|
||||
}
|
||||
|
||||
function loadWhisper(model) {
|
||||
let urls = {
|
||||
'tiny.en': 'https://whisper.ggerganov.com/ggml-model-whisper-tiny.en.bin',
|
||||
'base.en': 'https://whisper.ggerganov.com/ggml-model-whisper-base.en.bin',
|
||||
};
|
||||
|
||||
let sizes = {
|
||||
'tiny.en': 75,
|
||||
'base.en': 142,
|
||||
};
|
||||
|
||||
let url = urls[model];
|
||||
let dst = 'whisper.bin';
|
||||
let size_mb = sizes[model];
|
||||
|
||||
document.getElementById('fetch-whisper-tiny-en').style.display = 'none';
|
||||
document.getElementById('fetch-whisper-base-en').style.display = 'none';
|
||||
document.getElementById('model-whisper-status').innerHTML = 'loading "' + model + '" ... ';
|
||||
|
||||
cbProgress = function(p) {
|
||||
let el = document.getElementById('fetch-whisper-progress');
|
||||
el.innerHTML = Math.round(100*p) + '%';
|
||||
};
|
||||
|
||||
cbCancel = function() {
|
||||
var el;
|
||||
el = document.getElementById('fetch-whisper-tiny-en'); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-base-en'); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('model-whisper-status'); if (el) el.innerHTML = '';
|
||||
};
|
||||
|
||||
loadRemote(url, dst, size_mb, cbProgress, storeFS, cbCancel, printTextarea);
|
||||
}
|
||||
|
||||
//
|
||||
// main
|
||||
//
|
||||
|
||||
function onBench() {
|
||||
if (instance) {
|
||||
Module.free(instance);
|
||||
}
|
||||
|
||||
instance = Module.init('whisper.bin');
|
||||
|
||||
if (instance) {
|
||||
printTextarea("js: whisper initialized, instance: " + instance);
|
||||
}
|
||||
|
||||
document.getElementById('bench').disabled = true;
|
||||
|
||||
if (!instance) {
|
||||
printTextarea("js: failed to initialize whisper");
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
</script>
|
||||
<script type="text/javascript" src="bench.js"></script>
|
||||
</body>
|
||||
</html>
|
@ -1,3 +0,0 @@
|
||||
set(TARGET bench)
|
||||
add_executable(${TARGET} bench.cpp)
|
||||
target_link_libraries(${TARGET} PRIVATE whisper ${CMAKE_THREAD_LIBS_INIT})
|
@ -1,54 +0,0 @@
|
||||
# bench
|
||||
|
||||
A very basic tool for benchmarking the inference performance on your device. The tool simply runs the Encoder part of
|
||||
the transformer on some random audio data and records the execution time. This way we can have an objective comparison
|
||||
of the performance of the model for various setups.
|
||||
|
||||
Benchmark results are tracked in the following Github issue: https://github.com/ggerganov/whisper.cpp/issues/89
|
||||
|
||||
```bash
|
||||
# build the bench tool
|
||||
$ make bench
|
||||
|
||||
# run it on the small.en model using 4 threads
|
||||
$ ./bench -m ./models/ggml-small.en.bin -t 4
|
||||
|
||||
whisper_model_load: loading model from './models/ggml-small.en.bin'
|
||||
whisper_model_load: n_vocab = 51864
|
||||
whisper_model_load: n_audio_ctx = 1500
|
||||
whisper_model_load: n_audio_state = 768
|
||||
whisper_model_load: n_audio_head = 12
|
||||
whisper_model_load: n_audio_layer = 12
|
||||
whisper_model_load: n_text_ctx = 448
|
||||
whisper_model_load: n_text_state = 768
|
||||
whisper_model_load: n_text_head = 12
|
||||
whisper_model_load: n_text_layer = 12
|
||||
whisper_model_load: n_mels = 80
|
||||
whisper_model_load: f16 = 1
|
||||
whisper_model_load: type = 3
|
||||
whisper_model_load: mem_required = 1048.00 MB
|
||||
whisper_model_load: adding 1607 extra tokens
|
||||
whisper_model_load: ggml ctx size = 533.05 MB
|
||||
whisper_model_load: memory size = 68.48 MB
|
||||
whisper_model_load: model size = 464.44 MB
|
||||
|
||||
whisper_print_timings: load time = 240.82 ms
|
||||
whisper_print_timings: mel time = 0.00 ms
|
||||
whisper_print_timings: sample time = 0.00 ms
|
||||
whisper_print_timings: encode time = 1062.21 ms / 88.52 ms per layer
|
||||
whisper_print_timings: decode time = 0.00 ms / 0.00 ms per layer
|
||||
whisper_print_timings: total time = 1303.04 ms
|
||||
|
||||
system_info: n_threads = 4 | AVX2 = 0 | AVX512 = 0 | NEON = 1 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 |
|
||||
|
||||
If you wish, you can submit these results here:
|
||||
|
||||
https://github.com/ggerganov/whisper.cpp/issues/89
|
||||
|
||||
Please include the following information:
|
||||
|
||||
- CPU model
|
||||
- Operating system
|
||||
- Compiler
|
||||
|
||||
```
|
@ -1,94 +0,0 @@
|
||||
#include "whisper.h"
|
||||
|
||||
#include <cstdio>
|
||||
#include <string>
|
||||
#include <thread>
|
||||
|
||||
// command-line parameters
|
||||
struct whisper_params {
|
||||
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
||||
|
||||
std::string model = "models/ggml-base.en.bin";
|
||||
};
|
||||
|
||||
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
|
||||
|
||||
bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
for (int i = 1; i < argc; i++) {
|
||||
std::string arg = argv[i];
|
||||
|
||||
if (arg == "-h" || arg == "--help") {
|
||||
whisper_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
|
||||
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
|
||||
else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
whisper_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void whisper_print_usage(int argc, char ** argv, const whisper_params & params) {
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "options:\n");
|
||||
fprintf(stderr, " -h, --help [default] show this help message and exit\n");
|
||||
fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads);
|
||||
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
whisper_params params;
|
||||
|
||||
if (whisper_params_parse(argc, argv, params) == false) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
// whisper init
|
||||
|
||||
struct whisper_context * ctx = whisper_init(params.model.c_str());
|
||||
|
||||
{
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n", params.n_threads, std::thread::hardware_concurrency(), whisper_print_system_info());
|
||||
}
|
||||
|
||||
if (ctx == nullptr) {
|
||||
fprintf(stderr, "error: failed to initialize whisper context\n");
|
||||
return 2;
|
||||
}
|
||||
|
||||
if (int ret = whisper_set_mel(ctx, nullptr, 0, WHISPER_N_MEL)) {
|
||||
fprintf(stderr, "error: failed to set mel: %d\n", ret);
|
||||
return 3;
|
||||
}
|
||||
|
||||
if (int ret = whisper_encode(ctx, 0, params.n_threads) != 0) {
|
||||
fprintf(stderr, "error: failed to encode model: %d\n", ret);
|
||||
return 4;
|
||||
}
|
||||
|
||||
whisper_print_timings(ctx);
|
||||
whisper_free(ctx);
|
||||
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "If you wish, you can submit these results here:\n");
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, " https://github.com/ggerganov/whisper.cpp/issues/89\n");
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "Please include the following information:\n");
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, " - CPU model\n");
|
||||
fprintf(stderr, " - Operating system\n");
|
||||
fprintf(stderr, " - Compiler\n");
|
||||
fprintf(stderr, "\n");
|
||||
|
||||
return 0;
|
||||
}
|
@ -1,47 +0,0 @@
|
||||
#
|
||||
# libcommand
|
||||
#
|
||||
|
||||
set(TARGET libcommand)
|
||||
|
||||
add_executable(${TARGET}
|
||||
emscripten.cpp
|
||||
)
|
||||
|
||||
target_link_libraries(${TARGET} PRIVATE
|
||||
whisper
|
||||
)
|
||||
|
||||
unset(EXTRA_FLAGS)
|
||||
|
||||
if (WHISPER_WASM_SINGLE_FILE)
|
||||
set(EXTRA_FLAGS "-s SINGLE_FILE=1")
|
||||
message(STATUS "Embedding WASM inside command.js")
|
||||
|
||||
add_custom_command(
|
||||
TARGET ${TARGET} POST_BUILD
|
||||
COMMAND ${CMAKE_COMMAND} -E copy
|
||||
${CMAKE_BINARY_DIR}/bin/libcommand.js
|
||||
${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/command.wasm/command.js
|
||||
)
|
||||
endif()
|
||||
|
||||
set_target_properties(${TARGET} PROPERTIES LINK_FLAGS " \
|
||||
--bind \
|
||||
-s USE_PTHREADS=1 \
|
||||
-s PTHREAD_POOL_SIZE=8 \
|
||||
-s INITIAL_MEMORY=1024MB \
|
||||
-s TOTAL_MEMORY=1024MB \
|
||||
-s FORCE_FILESYSTEM=1 \
|
||||
-s EXPORTED_RUNTIME_METHODS=\"['print', 'printErr', 'ccall', 'cwrap']\" \
|
||||
${EXTRA_FLAGS} \
|
||||
")
|
||||
|
||||
#
|
||||
# command.wasm
|
||||
#
|
||||
|
||||
set(TARGET command.wasm)
|
||||
|
||||
configure_file(${CMAKE_CURRENT_SOURCE_DIR}/index-tmpl.html ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/${TARGET}/index.html @ONLY)
|
||||
configure_file(${CMAKE_CURRENT_SOURCE_DIR}/../helpers.js ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/${TARGET}/helpers.js @ONLY)
|
@ -1,23 +0,0 @@
|
||||
# command.wasm
|
||||
|
||||
This is a basic Voice Assistant example that accepts voice commands from the microphone.
|
||||
It runs in fully in the browser via WebAseembly.
|
||||
|
||||
Online demo: https://whisper.ggerganov.com/command/
|
||||
|
||||
Terminal version: [examples/command](/examples/command)
|
||||
|
||||
## Build instructions
|
||||
|
||||
```bash
|
||||
# build using Emscripten (v3.1.2)
|
||||
git clone https://github.com/ggerganov/whisper.cpp
|
||||
cd whisper.cpp
|
||||
mkdir build-em && cd build-em
|
||||
emcmake cmake ..
|
||||
make -j
|
||||
|
||||
# copy the produced page to your HTTP path
|
||||
cp bin/command.wasm/* /path/to/html/
|
||||
cp bin/libcommand.worker.js /path/to/html/
|
||||
```
|
@ -1,408 +0,0 @@
|
||||
#include "ggml.h"
|
||||
#include "whisper.h"
|
||||
|
||||
#include <emscripten.h>
|
||||
#include <emscripten/bind.h>
|
||||
|
||||
#include <atomic>
|
||||
#include <cmath>
|
||||
#include <mutex>
|
||||
#include <string>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
#include <regex>
|
||||
|
||||
constexpr int N_THREAD = 8;
|
||||
|
||||
std::vector<struct whisper_context *> g_contexts(4, nullptr);
|
||||
|
||||
std::mutex g_mutex;
|
||||
std::thread g_worker;
|
||||
|
||||
std::atomic<bool> g_running(false);
|
||||
|
||||
std::string g_status = "";
|
||||
std::string g_status_forced = "";
|
||||
std::string g_transcribed = "";
|
||||
|
||||
std::vector<float> g_pcmf32;
|
||||
|
||||
static std::string trim(const std::string & s) {
|
||||
std::regex e("^\\s+|\\s+$");
|
||||
return std::regex_replace(s, e, "");
|
||||
}
|
||||
|
||||
static void high_pass_filter(std::vector<float> & data, float cutoff, float sample_rate) {
|
||||
const float rc = 1.0f / (2.0f * M_PI * cutoff);
|
||||
const float dt = 1.0f / sample_rate;
|
||||
const float alpha = dt / (rc + dt);
|
||||
|
||||
float y = data[0];
|
||||
|
||||
for (size_t i = 1; i < data.size(); i++) {
|
||||
y = alpha * (y + data[i] - data[i - 1]);
|
||||
data[i] = y;
|
||||
}
|
||||
}
|
||||
|
||||
// compute similarity between two strings using Levenshtein distance
|
||||
static float similarity(const std::string & s0, const std::string & s1) {
|
||||
const size_t len0 = s0.size() + 1;
|
||||
const size_t len1 = s1.size() + 1;
|
||||
|
||||
std::vector<int> col(len1, 0);
|
||||
std::vector<int> prevCol(len1, 0);
|
||||
|
||||
for (size_t i = 0; i < len1; i++) {
|
||||
prevCol[i] = i;
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < len0; i++) {
|
||||
col[0] = i;
|
||||
for (size_t j = 1; j < len1; j++) {
|
||||
col[j] = std::min(std::min(1 + col[j - 1], 1 + prevCol[j]), prevCol[j - 1] + (s0[i - 1] == s1[j - 1] ? 0 : 1));
|
||||
}
|
||||
col.swap(prevCol);
|
||||
}
|
||||
|
||||
const float dist = prevCol[len1 - 1];
|
||||
|
||||
return 1.0f - (dist / std::max(s0.size(), s1.size()));
|
||||
}
|
||||
|
||||
void command_set_status(const std::string & status) {
|
||||
std::lock_guard<std::mutex> lock(g_mutex);
|
||||
g_status = status;
|
||||
}
|
||||
|
||||
bool command_vad_simple(std::vector<float> & pcmf32, int sample_rate, int last_ms, float vad_thold, float freq_thold, bool verbose) {
|
||||
const int n_samples = pcmf32.size();
|
||||
const int n_samples_last = (sample_rate * last_ms) / 1000;
|
||||
|
||||
if (n_samples_last >= n_samples) {
|
||||
// not enough samples - assume no speech
|
||||
return false;
|
||||
}
|
||||
|
||||
if (freq_thold > 0.0f) {
|
||||
high_pass_filter(pcmf32, freq_thold, sample_rate);
|
||||
}
|
||||
|
||||
float energy_all = 0.0f;
|
||||
float energy_last = 0.0f;
|
||||
|
||||
for (size_t i = 0; i < n_samples; i++) {
|
||||
energy_all += fabsf(pcmf32[i]);
|
||||
|
||||
if (i >= n_samples - n_samples_last) {
|
||||
energy_last += fabsf(pcmf32[i]);
|
||||
}
|
||||
}
|
||||
|
||||
energy_all /= n_samples;
|
||||
energy_last /= n_samples_last;
|
||||
|
||||
if (verbose) {
|
||||
fprintf(stderr, "%s: energy_all: %f, energy_last: %f, vad_thold: %f, freq_thold: %f\n", __func__, energy_all, energy_last, vad_thold, freq_thold);
|
||||
}
|
||||
|
||||
if (energy_last > vad_thold*energy_all) {
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
std::string command_transcribe(whisper_context * ctx, const whisper_full_params & wparams, const std::vector<float> & pcmf32, float & prob, int64_t & t_ms) {
|
||||
const auto t_start = std::chrono::high_resolution_clock::now();
|
||||
|
||||
prob = 0.0f;
|
||||
t_ms = 0;
|
||||
|
||||
if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) {
|
||||
return "";
|
||||
}
|
||||
|
||||
int prob_n = 0;
|
||||
std::string result;
|
||||
|
||||
const int n_segments = whisper_full_n_segments(ctx);
|
||||
for (int i = 0; i < n_segments; ++i) {
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
|
||||
result += text;
|
||||
|
||||
const int n_tokens = whisper_full_n_tokens(ctx, i);
|
||||
for (int j = 0; j < n_tokens; ++j) {
|
||||
const auto token = whisper_full_get_token_data(ctx, i, j);
|
||||
|
||||
prob += token.p;
|
||||
++prob_n;
|
||||
}
|
||||
}
|
||||
|
||||
if (prob_n > 0) {
|
||||
prob /= prob_n;
|
||||
}
|
||||
|
||||
const auto t_end = std::chrono::high_resolution_clock::now();
|
||||
t_ms = std::chrono::duration_cast<std::chrono::milliseconds>(t_end - t_start).count();
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
void command_get_audio(int ms, int sample_rate, std::vector<float> & audio) {
|
||||
const int64_t n_samples = (ms * sample_rate) / 1000;
|
||||
|
||||
int64_t n_take = 0;
|
||||
if (g_pcmf32.size() < n_samples) {
|
||||
n_take = g_pcmf32.size();
|
||||
} else {
|
||||
n_take = n_samples;
|
||||
}
|
||||
|
||||
audio.resize(n_take);
|
||||
std::copy(g_pcmf32.end() - n_take, g_pcmf32.end(), audio.begin());
|
||||
}
|
||||
|
||||
void command_main(size_t index) {
|
||||
command_set_status("loading data ...");
|
||||
|
||||
struct whisper_full_params wparams = whisper_full_default_params(whisper_sampling_strategy::WHISPER_SAMPLING_GREEDY);
|
||||
|
||||
wparams.n_threads = std::min(N_THREAD, (int) std::thread::hardware_concurrency());
|
||||
wparams.offset_ms = 0;
|
||||
wparams.translate = false;
|
||||
wparams.no_context = true;
|
||||
wparams.single_segment = true;
|
||||
wparams.print_realtime = false;
|
||||
wparams.print_progress = false;
|
||||
wparams.print_timestamps = true;
|
||||
wparams.print_special = false;
|
||||
|
||||
wparams.max_tokens = 32;
|
||||
wparams.audio_ctx = 768; // partial encoder context for better performance
|
||||
|
||||
wparams.language = "en";
|
||||
|
||||
printf("command: using %d threads\n", wparams.n_threads);
|
||||
|
||||
bool is_running = true;
|
||||
bool have_prompt = false;
|
||||
bool ask_prompt = true;
|
||||
bool print_energy = false;
|
||||
|
||||
float prob0 = 0.0f;
|
||||
float prob = 0.0f;
|
||||
|
||||
std::vector<float> pcmf32_cur;
|
||||
std::vector<float> pcmf32_prompt;
|
||||
|
||||
const std::string k_prompt = "Ok Whisper, start listening for commands.";
|
||||
|
||||
// whisper context
|
||||
auto & ctx = g_contexts[index];
|
||||
|
||||
const int32_t vad_ms = 2000;
|
||||
const int32_t prompt_ms = 5000;
|
||||
const int32_t command_ms = 4000;
|
||||
|
||||
const float vad_thold = 0.1f;
|
||||
const float freq_thold = -1.0f;
|
||||
|
||||
while (g_running) {
|
||||
// delay
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(100));
|
||||
|
||||
if (ask_prompt) {
|
||||
fprintf(stdout, "\n");
|
||||
fprintf(stdout, "%s: Say the following phrase: '%s%s%s'\n", __func__, "\033[1m", k_prompt.c_str(), "\033[0m");
|
||||
fprintf(stdout, "\n");
|
||||
|
||||
{
|
||||
char txt[1024];
|
||||
snprintf(txt, sizeof(txt), "Say the following phrase: '%s'", k_prompt.c_str());
|
||||
command_set_status(txt);
|
||||
}
|
||||
|
||||
ask_prompt = false;
|
||||
}
|
||||
|
||||
int64_t t_ms = 0;
|
||||
|
||||
{
|
||||
command_get_audio(vad_ms, WHISPER_SAMPLE_RATE, pcmf32_cur);
|
||||
|
||||
if (command_vad_simple(pcmf32_cur, WHISPER_SAMPLE_RATE, 1000, vad_thold, freq_thold, print_energy)) {
|
||||
fprintf(stdout, "%s: Speech detected! Processing ...\n", __func__);
|
||||
command_set_status("Speech detected! Processing ...");
|
||||
|
||||
if (!have_prompt) {
|
||||
command_get_audio(prompt_ms, WHISPER_SAMPLE_RATE, pcmf32_cur);
|
||||
|
||||
const auto txt = ::trim(::command_transcribe(ctx, wparams, pcmf32_cur, prob0, t_ms));
|
||||
|
||||
fprintf(stdout, "%s: Heard '%s%s%s', (t = %d ms)\n", __func__, "\033[1m", txt.c_str(), "\033[0m", (int) t_ms);
|
||||
|
||||
const float sim = similarity(txt, k_prompt);
|
||||
|
||||
if (txt.length() < 0.8*k_prompt.length() || txt.length() > 1.2*k_prompt.length() || sim < 0.8f) {
|
||||
fprintf(stdout, "%s: WARNING: prompt not recognized, try again\n", __func__);
|
||||
ask_prompt = true;
|
||||
} else {
|
||||
fprintf(stdout, "\n");
|
||||
fprintf(stdout, "%s: The prompt has been recognized!\n", __func__);
|
||||
fprintf(stdout, "%s: Waiting for voice commands ...\n", __func__);
|
||||
fprintf(stdout, "\n");
|
||||
|
||||
{
|
||||
char txt[1024];
|
||||
snprintf(txt, sizeof(txt), "Success! Waiting for voice commands ...");
|
||||
command_set_status(txt);
|
||||
}
|
||||
|
||||
// save the audio for the prompt
|
||||
pcmf32_prompt = pcmf32_cur;
|
||||
have_prompt = true;
|
||||
}
|
||||
} else {
|
||||
command_get_audio(command_ms, WHISPER_SAMPLE_RATE, pcmf32_cur);
|
||||
|
||||
// prepend the prompt audio
|
||||
pcmf32_cur.insert(pcmf32_cur.begin(), pcmf32_prompt.begin(), pcmf32_prompt.end());
|
||||
|
||||
const auto txt = ::trim(::command_transcribe(ctx, wparams, pcmf32_cur, prob, t_ms));
|
||||
|
||||
prob = 100.0f*(prob - prob0);
|
||||
|
||||
fprintf(stdout, "%s: heard '%s'\n", __func__, txt.c_str());
|
||||
|
||||
// find the prompt in the text
|
||||
float best_sim = 0.0f;
|
||||
size_t best_len = 0;
|
||||
for (int n = 0.8*k_prompt.size(); n <= 1.2*k_prompt.size(); ++n) {
|
||||
const auto prompt = txt.substr(0, n);
|
||||
|
||||
const float sim = similarity(prompt, k_prompt);
|
||||
|
||||
//fprintf(stderr, "%s: prompt = '%s', sim = %f\n", __func__, prompt.c_str(), sim);
|
||||
|
||||
if (sim > best_sim) {
|
||||
best_sim = sim;
|
||||
best_len = n;
|
||||
}
|
||||
}
|
||||
|
||||
const std::string command = ::trim(txt.substr(best_len));
|
||||
|
||||
fprintf(stdout, "%s: Command '%s%s%s', (t = %d ms)\n", __func__, "\033[1m", command.c_str(), "\033[0m", (int) t_ms);
|
||||
fprintf(stdout, "\n");
|
||||
|
||||
{
|
||||
char txt[1024];
|
||||
snprintf(txt, sizeof(txt), "Command '%s', (t = %d ms)", command.c_str(), (int) t_ms);
|
||||
command_set_status(txt);
|
||||
}
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(g_mutex);
|
||||
g_transcribed = command;
|
||||
}
|
||||
}
|
||||
|
||||
g_pcmf32.clear();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (index < g_contexts.size()) {
|
||||
whisper_free(g_contexts[index]);
|
||||
g_contexts[index] = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
EMSCRIPTEN_BINDINGS(command) {
|
||||
emscripten::function("init", emscripten::optional_override([](const std::string & path_model) {
|
||||
for (size_t i = 0; i < g_contexts.size(); ++i) {
|
||||
if (g_contexts[i] == nullptr) {
|
||||
g_contexts[i] = whisper_init(path_model.c_str());
|
||||
if (g_contexts[i] != nullptr) {
|
||||
g_running = true;
|
||||
if (g_worker.joinable()) {
|
||||
g_worker.join();
|
||||
}
|
||||
g_worker = std::thread([i]() {
|
||||
command_main(i);
|
||||
});
|
||||
|
||||
return i + 1;
|
||||
} else {
|
||||
return (size_t) 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return (size_t) 0;
|
||||
}));
|
||||
|
||||
emscripten::function("free", emscripten::optional_override([](size_t index) {
|
||||
if (g_running) {
|
||||
g_running = false;
|
||||
}
|
||||
}));
|
||||
|
||||
emscripten::function("set_audio", emscripten::optional_override([](size_t index, const emscripten::val & audio) {
|
||||
--index;
|
||||
|
||||
if (index >= g_contexts.size()) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (g_contexts[index] == nullptr) {
|
||||
return -2;
|
||||
}
|
||||
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(g_mutex);
|
||||
const int n = audio["length"].as<int>();
|
||||
|
||||
emscripten::val heap = emscripten::val::module_property("HEAPU8");
|
||||
emscripten::val memory = heap["buffer"];
|
||||
|
||||
g_pcmf32.resize(n);
|
||||
|
||||
emscripten::val memoryView = audio["constructor"].new_(memory, reinterpret_cast<uintptr_t>(g_pcmf32.data()), n);
|
||||
memoryView.call<void>("set", audio);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}));
|
||||
|
||||
emscripten::function("get_transcribed", emscripten::optional_override([]() {
|
||||
std::string transcribed;
|
||||
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(g_mutex);
|
||||
transcribed = std::move(g_transcribed);
|
||||
}
|
||||
|
||||
return transcribed;
|
||||
}));
|
||||
|
||||
emscripten::function("get_status", emscripten::optional_override([]() {
|
||||
std::string status;
|
||||
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(g_mutex);
|
||||
status = g_status_forced.empty() ? g_status : g_status_forced;
|
||||
}
|
||||
|
||||
return status;
|
||||
}));
|
||||
|
||||
emscripten::function("set_status", emscripten::optional_override([](const std::string & status) {
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(g_mutex);
|
||||
g_status_forced = status;
|
||||
}
|
||||
}));
|
||||
}
|
@ -1,386 +0,0 @@
|
||||
<!doctype html>
|
||||
<html lang="en-us">
|
||||
<head>
|
||||
<title>command : Voice assistant example using Whisper + WebAssembly</title>
|
||||
|
||||
<style>
|
||||
#output {
|
||||
width: 100%;
|
||||
height: 100%;
|
||||
margin: 0 auto;
|
||||
margin-top: 10px;
|
||||
border-left: 0px;
|
||||
border-right: 0px;
|
||||
padding-left: 0px;
|
||||
padding-right: 0px;
|
||||
display: block;
|
||||
background-color: black;
|
||||
color: white;
|
||||
font-size: 10px;
|
||||
font-family: 'Lucida Console', Monaco, monospace;
|
||||
outline: none;
|
||||
white-space: pre;
|
||||
overflow-wrap: normal;
|
||||
overflow-x: scroll;
|
||||
}
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
<div id="main-container">
|
||||
<b>command : Voice assistant example using Whisper + WebAssembly</b>
|
||||
|
||||
<br><br>
|
||||
|
||||
You can find more about this project on <a href="https://github.com/ggerganov/whisper.cpp/tree/master/examples/command.wasm">GitHub</a>.
|
||||
|
||||
<br><br>
|
||||
|
||||
<hr>
|
||||
|
||||
Select the model you would like to use, click the "Start" button and follow the instructions.
|
||||
|
||||
<br><br>
|
||||
|
||||
<div id="model-whisper">
|
||||
Whisper model: <span id="model-whisper-status"></span>
|
||||
<button id="fetch-whisper-tiny-en" onclick="loadWhisper('tiny.en')">tiny.en (75 MB)</button>
|
||||
<button id="fetch-whisper-base-en" onclick="loadWhisper('base.en')">base.en (142 MB)</button>
|
||||
<span id="fetch-whisper-progress"></span>
|
||||
|
||||
<!--
|
||||
<input type="file" id="file" name="file" onchange="loadFile(event, 'whisper.bin')" />
|
||||
-->
|
||||
</div>
|
||||
|
||||
<br>
|
||||
|
||||
<div id="input">
|
||||
<button id="start" onclick="onStart()" disabled>Start</button>
|
||||
<button id="stop" onclick="onStop()" disabled>Stop</button>
|
||||
<button id="clear" onclick="clearCache()">Clear Cache</button>
|
||||
</div>
|
||||
|
||||
<br>
|
||||
|
||||
<div id="state">
|
||||
Status: <b><span id="state-status">not started</span></b>
|
||||
|
||||
<pre id="state-transcribed">[The recognized voice commands will be displayed here]</pre>
|
||||
</div>
|
||||
|
||||
<hr>
|
||||
|
||||
Debug output:
|
||||
<textarea id="output" rows="20"></textarea>
|
||||
|
||||
<br>
|
||||
|
||||
<b>Troubleshooting</b>
|
||||
|
||||
<br><br>
|
||||
|
||||
The page does some heavy computations, so make sure:
|
||||
|
||||
<ul>
|
||||
<li>To use a modern web browser (e.g. Chrome, Firefox)</li>
|
||||
<li>To use a fast desktop or laptop computer (i.e. not a mobile phone)</li>
|
||||
<li>Your browser supports WASM <a href="https://webassembly.org/roadmap/">Fixed-width SIMD</a></li>
|
||||
</ul>
|
||||
|
||||
<div class="cell-version">
|
||||
<span>
|
||||
|
|
||||
Build time: <span class="nav-link">@GIT_DATE@</span> |
|
||||
Commit hash: <a class="nav-link" href="https://github.com/ggerganov/whisper.cpp/commit/@GIT_SHA1@">@GIT_SHA1@</a> |
|
||||
Commit subject: <span class="nav-link">@GIT_COMMIT_SUBJECT@</span> |
|
||||
<a class="nav-link" href="https://github.com/ggerganov/whisper.cpp/tree/master/examples/command.wasm">Source Code</a> |
|
||||
</span>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<script type="text/javascript" src="helpers.js"></script>
|
||||
<script type='text/javascript'>
|
||||
// web audio context
|
||||
var context = null;
|
||||
|
||||
// audio data
|
||||
var audio = null;
|
||||
var audio0 = null;
|
||||
|
||||
// the command instance
|
||||
var instance = null;
|
||||
|
||||
// model name
|
||||
var model_whisper = null;
|
||||
|
||||
var Module = {
|
||||
print: printTextarea,
|
||||
printErr: printTextarea,
|
||||
setStatus: function(text) {
|
||||
printTextarea('js: ' + text);
|
||||
},
|
||||
monitorRunDependencies: function(left) {
|
||||
},
|
||||
preRun: function() {
|
||||
printTextarea('js: Preparing ...');
|
||||
},
|
||||
postRun: function() {
|
||||
printTextarea('js: Initialized successfully!');
|
||||
}
|
||||
};
|
||||
|
||||
//
|
||||
// fetch models
|
||||
//
|
||||
|
||||
let dbVersion = 1
|
||||
let dbName = 'whisper.ggerganov.com';
|
||||
let indexedDB = window.indexedDB || window.mozIndexedDB || window.webkitIndexedDB || window.msIndexedDB
|
||||
|
||||
function storeFS(fname, buf) {
|
||||
// write to WASM file using FS_createDataFile
|
||||
// if the file exists, delete it
|
||||
try {
|
||||
Module.FS_unlink(fname);
|
||||
} catch (e) {
|
||||
// ignore
|
||||
}
|
||||
|
||||
Module.FS_createDataFile("/", fname, buf, true, true);
|
||||
|
||||
printTextarea('storeFS: stored model: ' + fname + ' size: ' + buf.length);
|
||||
|
||||
document.getElementById('model-whisper-status').innerHTML = 'loaded "' + model_whisper + '"!';
|
||||
|
||||
if (model_whisper != null) {
|
||||
document.getElementById('start').disabled = false;
|
||||
document.getElementById('stop' ).disabled = true;
|
||||
}
|
||||
}
|
||||
|
||||
function loadWhisper(model) {
|
||||
let urls = {
|
||||
'tiny.en': 'https://whisper.ggerganov.com/ggml-model-whisper-tiny.en.bin',
|
||||
'base.en': 'https://whisper.ggerganov.com/ggml-model-whisper-base.en.bin',
|
||||
};
|
||||
|
||||
let sizes = {
|
||||
'tiny.en': 75,
|
||||
'base.en': 142,
|
||||
};
|
||||
|
||||
let url = urls[model];
|
||||
let dst = 'whisper.bin';
|
||||
let size_mb = sizes[model];
|
||||
|
||||
model_whisper = model;
|
||||
|
||||
document.getElementById('fetch-whisper-tiny-en').style.display = 'none';
|
||||
document.getElementById('fetch-whisper-base-en').style.display = 'none';
|
||||
document.getElementById('model-whisper-status').innerHTML = 'loading "' + model + '" ... ';
|
||||
|
||||
cbProgress = function(p) {
|
||||
let el = document.getElementById('fetch-whisper-progress');
|
||||
el.innerHTML = Math.round(100*p) + '%';
|
||||
};
|
||||
|
||||
cbCancel = function() {
|
||||
var el;
|
||||
el = document.getElementById('fetch-whisper-tiny-en'); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-base-en'); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('model-whisper-status'); if (el) el.innerHTML = '';
|
||||
};
|
||||
|
||||
loadRemote(url, dst, size_mb, cbProgress, storeFS, cbCancel, printTextarea);
|
||||
}
|
||||
|
||||
//
|
||||
// microphone
|
||||
//
|
||||
|
||||
const kSampleRate = 16000;
|
||||
const kRestartRecording_s = 120;
|
||||
const kIntervalAudio_ms = 250; // pass the recorded audio to the C++ instance at this rate
|
||||
|
||||
var mediaRecorder = null;
|
||||
var doRecording = false;
|
||||
var startTime = 0;
|
||||
|
||||
window.AudioContext = window.AudioContext || window.webkitAudioContext;
|
||||
window.OfflineAudioContext = window.OfflineAudioContext || window.webkitOfflineAudioContext;
|
||||
|
||||
function stopRecording() {
|
||||
Module.set_status("paused");
|
||||
doRecording = false;
|
||||
audio0 = null;
|
||||
audio = null;
|
||||
context = null;
|
||||
}
|
||||
|
||||
function startRecording() {
|
||||
if (!context) {
|
||||
context = new AudioContext({
|
||||
sampleRate: kSampleRate,
|
||||
channelCount: 1,
|
||||
echoCancellation: false,
|
||||
autoGainControl: true,
|
||||
noiseSuppression: true,
|
||||
});
|
||||
}
|
||||
|
||||
Module.set_status("");
|
||||
|
||||
document.getElementById('start').disabled = true;
|
||||
document.getElementById('stop').disabled = false;
|
||||
|
||||
doRecording = true;
|
||||
startTime = Date.now();
|
||||
|
||||
var chunks = [];
|
||||
var stream = null;
|
||||
|
||||
navigator.mediaDevices.getUserMedia({audio: true, video: false})
|
||||
.then(function(s) {
|
||||
stream = s;
|
||||
mediaRecorder = new MediaRecorder(stream);
|
||||
mediaRecorder.ondataavailable = function(e) {
|
||||
chunks.push(e.data);
|
||||
|
||||
var blob = new Blob(chunks, { 'type' : 'audio/ogg; codecs=opus' });
|
||||
var reader = new FileReader();
|
||||
|
||||
reader.onload = function(event) {
|
||||
var buf = new Uint8Array(reader.result);
|
||||
|
||||
if (!context) {
|
||||
return;
|
||||
}
|
||||
context.decodeAudioData(buf.buffer, function(audioBuffer) {
|
||||
var offlineContext = new OfflineAudioContext(audioBuffer.numberOfChannels, audioBuffer.length, audioBuffer.sampleRate);
|
||||
var source = offlineContext.createBufferSource();
|
||||
source.buffer = audioBuffer;
|
||||
source.connect(offlineContext.destination);
|
||||
source.start(0);
|
||||
|
||||
offlineContext.startRendering().then(function(renderedBuffer) {
|
||||
audio = renderedBuffer.getChannelData(0);
|
||||
|
||||
//printTextarea('js: audio recorded, size: ' + audio.length + ', old size: ' + (audio0 == null ? 0 : audio0.length));
|
||||
|
||||
var audioAll = new Float32Array(audio0 == null ? audio.length : audio0.length + audio.length);
|
||||
if (audio0 != null) {
|
||||
audioAll.set(audio0, 0);
|
||||
}
|
||||
audioAll.set(audio, audio0 == null ? 0 : audio0.length);
|
||||
|
||||
if (instance) {
|
||||
Module.set_audio(instance, audioAll);
|
||||
}
|
||||
});
|
||||
}, function(e) {
|
||||
audio = null;
|
||||
});
|
||||
}
|
||||
|
||||
reader.readAsArrayBuffer(blob);
|
||||
};
|
||||
|
||||
mediaRecorder.onstop = function(e) {
|
||||
if (doRecording) {
|
||||
setTimeout(function() {
|
||||
startRecording();
|
||||
});
|
||||
}
|
||||
};
|
||||
|
||||
mediaRecorder.start(kIntervalAudio_ms);
|
||||
})
|
||||
.catch(function(err) {
|
||||
printTextarea('js: error getting audio stream: ' + err);
|
||||
});
|
||||
|
||||
var interval = setInterval(function() {
|
||||
if (!doRecording) {
|
||||
clearInterval(interval);
|
||||
mediaRecorder.stop();
|
||||
stream.getTracks().forEach(function(track) {
|
||||
track.stop();
|
||||
});
|
||||
|
||||
document.getElementById('start').disabled = false;
|
||||
document.getElementById('stop').disabled = true;
|
||||
|
||||
mediaRecorder = null;
|
||||
}
|
||||
|
||||
// if audio length is more than kRestartRecording_s seconds, restart recording
|
||||
if (audio != null && audio.length > kSampleRate*kRestartRecording_s) {
|
||||
if (doRecording) {
|
||||
//printTextarea('js: restarting recording');
|
||||
|
||||
clearInterval(interval);
|
||||
audio0 = audio;
|
||||
audio = null;
|
||||
mediaRecorder.stop();
|
||||
stream.getTracks().forEach(function(track) {
|
||||
track.stop();
|
||||
});
|
||||
}
|
||||
}
|
||||
}, 100);
|
||||
}
|
||||
|
||||
//
|
||||
// main
|
||||
//
|
||||
|
||||
var nLines = 0;
|
||||
var intervalUpdate = null;
|
||||
var transcribedAll = '';
|
||||
|
||||
function onStart() {
|
||||
if (!instance) {
|
||||
instance = Module.init('whisper.bin');
|
||||
|
||||
if (instance) {
|
||||
printTextarea("js: whisper initialized, instance: " + instance);
|
||||
}
|
||||
}
|
||||
|
||||
if (!instance) {
|
||||
printTextarea("js: failed to initialize whisper");
|
||||
return;
|
||||
}
|
||||
|
||||
startRecording();
|
||||
|
||||
intervalUpdate = setInterval(function() {
|
||||
var transcribed = Module.get_transcribed();
|
||||
|
||||
if (transcribed != null && transcribed.length > 1) {
|
||||
transcribedAll += transcribed + '<br>';
|
||||
nLines++;
|
||||
|
||||
// if more than 10 lines, remove the first line
|
||||
if (nLines > 10) {
|
||||
var i = transcribedAll.indexOf('<br>');
|
||||
if (i > 0) {
|
||||
transcribedAll = transcribedAll.substring(i + 4);
|
||||
nLines--;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
document.getElementById('state-status').innerHTML = Module.get_status();
|
||||
document.getElementById('state-transcribed').innerHTML = transcribedAll;
|
||||
}, 100);
|
||||
}
|
||||
|
||||
function onStop() {
|
||||
stopRecording();
|
||||
}
|
||||
|
||||
</script>
|
||||
<script type="text/javascript" src="command.js"></script>
|
||||
</body>
|
||||
</html>
|
@ -1,7 +0,0 @@
|
||||
if (WHISPER_SUPPORT_SDL2)
|
||||
# command
|
||||
set(TARGET command)
|
||||
add_executable(${TARGET} command.cpp)
|
||||
target_include_directories(${TARGET} PRIVATE ${SDL2_INCLUDE_DIRS})
|
||||
target_link_libraries(${TARGET} PRIVATE whisper ${SDL2_LIBRARIES} ${CMAKE_THREAD_LIBS_INIT})
|
||||
endif ()
|
@ -1,30 +0,0 @@
|
||||
# command
|
||||
|
||||
This is a basic Voice Assistant example that accepts voice commands from the microphone.
|
||||
More info is available in [issue #171](https://github.com/ggerganov/whisper.cpp/issues/171).
|
||||
|
||||
```bash
|
||||
# Run with default arguments and small model
|
||||
./command -m ./models/ggml-small.en.bin -t 8
|
||||
|
||||
# On Raspberry Pi, use tiny or base models + "-ac 768" for better performance
|
||||
./command -m ./models/ggml-tiny.en.bin -ac 768 -t 4 -c 0
|
||||
```
|
||||
|
||||
https://user-images.githubusercontent.com/1991296/204038393-2f846eae-c255-4099-a76d-5735c25c49da.mp4
|
||||
|
||||
Web version: [examples/command.wasm](/examples/command.wasm)
|
||||
|
||||
## Building
|
||||
|
||||
The `command` tool depends on SDL2 library to capture audio from the microphone. You can build it like this:
|
||||
|
||||
```bash
|
||||
# Install SDL2 on Linux
|
||||
sudo apt-get install libsdl2-dev
|
||||
|
||||
# Install SDL2 on Mac OS
|
||||
brew install sdl2
|
||||
|
||||
make command
|
||||
```
|
@ -1,654 +0,0 @@
|
||||
// Voice assistant example
|
||||
//
|
||||
// Speak short text commands to the microphone.
|
||||
// This program will detect your voice command and convert them to text.
|
||||
//
|
||||
// ref: https://github.com/ggerganov/whisper.cpp/issues/171
|
||||
//
|
||||
|
||||
#include "whisper.h"
|
||||
|
||||
#include <SDL.h>
|
||||
#include <SDL_audio.h>
|
||||
|
||||
#include <cassert>
|
||||
#include <cstdio>
|
||||
#include <fstream>
|
||||
#include <mutex>
|
||||
#include <regex>
|
||||
#include <string>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
|
||||
// command-line parameters
|
||||
struct whisper_params {
|
||||
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
||||
int32_t prompt_ms = 5000;
|
||||
int32_t command_ms = 4000;
|
||||
int32_t capture_id = -1;
|
||||
int32_t max_tokens = 32;
|
||||
int32_t audio_ctx = 0;
|
||||
|
||||
float vad_thold = 0.6f;
|
||||
float freq_thold = 100.0f;
|
||||
|
||||
bool speed_up = false;
|
||||
bool translate = false;
|
||||
bool print_special = false;
|
||||
bool print_energy = false;
|
||||
bool no_timestamps = true;
|
||||
|
||||
std::string language = "en";
|
||||
std::string model = "models/ggml-base.en.bin";
|
||||
std::string fname_out = "";
|
||||
};
|
||||
|
||||
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
|
||||
|
||||
bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
for (int i = 1; i < argc; i++) {
|
||||
std::string arg = argv[i];
|
||||
|
||||
if (arg == "-h" || arg == "--help") {
|
||||
whisper_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
|
||||
else if (arg == "-pms" || arg == "--prompt-ms") { params.prompt_ms = std::stoi(argv[++i]); }
|
||||
else if (arg == "-cms" || arg == "--command-ms") { params.command_ms = std::stoi(argv[++i]); }
|
||||
else if (arg == "-c" || arg == "--capture") { params.capture_id = std::stoi(argv[++i]); }
|
||||
else if (arg == "-mt" || arg == "--max-tokens") { params.max_tokens = std::stoi(argv[++i]); }
|
||||
else if (arg == "-ac" || arg == "--audio-ctx") { params.audio_ctx = std::stoi(argv[++i]); }
|
||||
else if (arg == "-vth" || arg == "--vad-thold") { params.vad_thold = std::stof(argv[++i]); }
|
||||
else if (arg == "-fth" || arg == "--freq-thold") { params.freq_thold = std::stof(argv[++i]); }
|
||||
else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; }
|
||||
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
|
||||
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
|
||||
else if (arg == "-pe" || arg == "--print-energy") { params.print_energy = true; }
|
||||
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
|
||||
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
|
||||
else if (arg == "-f" || arg == "--file") { params.fname_out = argv[++i]; }
|
||||
else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
whisper_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void whisper_print_usage(int argc, char ** argv, const whisper_params & params) {
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "options:\n");
|
||||
fprintf(stderr, " -h, --help [default] show this help message and exit\n");
|
||||
fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads);
|
||||
fprintf(stderr, " -pms N, --prompt-ms N [%-7d] prompt duration in milliseconds\n", params.prompt_ms);
|
||||
fprintf(stderr, " -cms N, --command-ms N [%-7d] command duration in milliseconds\n", params.command_ms);
|
||||
fprintf(stderr, " -c ID, --capture ID [%-7d] capture device ID\n", params.capture_id);
|
||||
fprintf(stderr, " -mt N, --max-tokens N [%-7d] maximum number of tokens per audio chunk\n", params.max_tokens);
|
||||
fprintf(stderr, " -ac N, --audio-ctx N [%-7d] audio context size (0 - all)\n", params.audio_ctx);
|
||||
fprintf(stderr, " -vth N, --vad-thold N [%-7.2f] voice activity detection threshold\n", params.vad_thold);
|
||||
fprintf(stderr, " -fth N, --freq-thold N [%-7.2f] high-pass frequency cutoff\n", params.freq_thold);
|
||||
fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
|
||||
fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
|
||||
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
|
||||
fprintf(stderr, " -pe, --print-energy [%-7s] print sound energy (for debugging)\n", params.print_energy ? "true" : "false");
|
||||
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str());
|
||||
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
|
||||
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] text output file name\n", params.fname_out.c_str());
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
//
|
||||
// SDL Audio capture
|
||||
//
|
||||
|
||||
class audio_async {
|
||||
public:
|
||||
audio_async(int len_ms);
|
||||
~audio_async();
|
||||
|
||||
bool init(int capture_id, int sample_rate);
|
||||
|
||||
// start capturing audio via the provided SDL callback
|
||||
// keep last len_ms seconds of audio in a circular buffer
|
||||
bool resume();
|
||||
bool pause();
|
||||
bool clear();
|
||||
|
||||
// callback to be called by SDL
|
||||
void callback(uint8_t * stream, int len);
|
||||
|
||||
// get audio data from the circular buffer
|
||||
void get(int ms, std::vector<float> & audio);
|
||||
|
||||
private:
|
||||
SDL_AudioDeviceID m_dev_id_in = 0;
|
||||
|
||||
int m_len_ms = 0;
|
||||
int m_sample_rate = 0;
|
||||
|
||||
bool m_running = false;
|
||||
std::mutex m_mutex;
|
||||
|
||||
std::vector<float> m_audio;
|
||||
std::vector<float> m_audio_new;
|
||||
size_t m_audio_pos = 0;
|
||||
size_t m_audio_len = 0;
|
||||
};
|
||||
|
||||
audio_async::audio_async(int len_ms) {
|
||||
m_len_ms = len_ms;
|
||||
}
|
||||
|
||||
audio_async::~audio_async() {
|
||||
if (m_dev_id_in) {
|
||||
SDL_CloseAudioDevice(m_dev_id_in);
|
||||
}
|
||||
}
|
||||
|
||||
bool audio_async::init(int capture_id, int sample_rate) {
|
||||
SDL_LogSetPriority(SDL_LOG_CATEGORY_APPLICATION, SDL_LOG_PRIORITY_INFO);
|
||||
|
||||
if (SDL_Init(SDL_INIT_AUDIO) < 0) {
|
||||
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "Couldn't initialize SDL: %s\n", SDL_GetError());
|
||||
return false;
|
||||
}
|
||||
|
||||
SDL_SetHintWithPriority(SDL_HINT_AUDIO_RESAMPLING_MODE, "medium", SDL_HINT_OVERRIDE);
|
||||
|
||||
{
|
||||
int nDevices = SDL_GetNumAudioDevices(SDL_TRUE);
|
||||
fprintf(stderr, "%s: found %d capture devices:\n", __func__, nDevices);
|
||||
for (int i = 0; i < nDevices; i++) {
|
||||
fprintf(stderr, "%s: - Capture device #%d: '%s'\n", __func__, i, SDL_GetAudioDeviceName(i, SDL_TRUE));
|
||||
}
|
||||
}
|
||||
|
||||
SDL_AudioSpec capture_spec_requested;
|
||||
SDL_AudioSpec capture_spec_obtained;
|
||||
|
||||
SDL_zero(capture_spec_requested);
|
||||
SDL_zero(capture_spec_obtained);
|
||||
|
||||
capture_spec_requested.freq = sample_rate;
|
||||
capture_spec_requested.format = AUDIO_F32;
|
||||
capture_spec_requested.channels = 1;
|
||||
capture_spec_requested.samples = 1024;
|
||||
capture_spec_requested.callback = [](void * userdata, uint8_t * stream, int len) {
|
||||
audio_async * audio = (audio_async *) userdata;
|
||||
audio->callback(stream, len);
|
||||
};
|
||||
capture_spec_requested.userdata = this;
|
||||
|
||||
if (capture_id >= 0) {
|
||||
fprintf(stderr, "%s: attempt to open capture device %d : '%s' ...\n", __func__, capture_id, SDL_GetAudioDeviceName(capture_id, SDL_TRUE));
|
||||
m_dev_id_in = SDL_OpenAudioDevice(SDL_GetAudioDeviceName(capture_id, SDL_TRUE), SDL_TRUE, &capture_spec_requested, &capture_spec_obtained, 0);
|
||||
} else {
|
||||
fprintf(stderr, "%s: attempt to open default capture device ...\n", __func__);
|
||||
m_dev_id_in = SDL_OpenAudioDevice(nullptr, SDL_TRUE, &capture_spec_requested, &capture_spec_obtained, 0);
|
||||
}
|
||||
|
||||
if (!m_dev_id_in) {
|
||||
fprintf(stderr, "%s: couldn't open an audio device for capture: %s!\n", __func__, SDL_GetError());
|
||||
m_dev_id_in = 0;
|
||||
|
||||
return false;
|
||||
} else {
|
||||
fprintf(stderr, "%s: obtained spec for input device (SDL Id = %d):\n", __func__, m_dev_id_in);
|
||||
fprintf(stderr, "%s: - sample rate: %d\n", __func__, capture_spec_obtained.freq);
|
||||
fprintf(stderr, "%s: - format: %d (required: %d)\n", __func__, capture_spec_obtained.format,
|
||||
capture_spec_requested.format);
|
||||
fprintf(stderr, "%s: - channels: %d (required: %d)\n", __func__, capture_spec_obtained.channels,
|
||||
capture_spec_requested.channels);
|
||||
fprintf(stderr, "%s: - samples per frame: %d\n", __func__, capture_spec_obtained.samples);
|
||||
}
|
||||
|
||||
m_sample_rate = capture_spec_obtained.freq;
|
||||
|
||||
m_audio.resize((m_sample_rate*m_len_ms)/1000);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool audio_async::resume() {
|
||||
if (!m_dev_id_in) {
|
||||
fprintf(stderr, "%s: no audio device to resume!\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (m_running) {
|
||||
fprintf(stderr, "%s: already running!\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
SDL_PauseAudioDevice(m_dev_id_in, 0);
|
||||
|
||||
m_running = true;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool audio_async::pause() {
|
||||
if (!m_dev_id_in) {
|
||||
fprintf(stderr, "%s: no audio device to pause!\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!m_running) {
|
||||
fprintf(stderr, "%s: already paused!\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
SDL_PauseAudioDevice(m_dev_id_in, 1);
|
||||
|
||||
m_running = false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool audio_async::clear() {
|
||||
if (!m_dev_id_in) {
|
||||
fprintf(stderr, "%s: no audio device to clear!\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!m_running) {
|
||||
fprintf(stderr, "%s: not running!\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(m_mutex);
|
||||
|
||||
m_audio_pos = 0;
|
||||
m_audio_len = 0;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// callback to be called by SDL
|
||||
void audio_async::callback(uint8_t * stream, int len) {
|
||||
if (!m_running) {
|
||||
return;
|
||||
}
|
||||
|
||||
const size_t n_samples = len / sizeof(float);
|
||||
|
||||
m_audio_new.resize(n_samples);
|
||||
memcpy(m_audio_new.data(), stream, n_samples * sizeof(float));
|
||||
|
||||
//fprintf(stderr, "%s: %zu samples, pos %zu, len %zu\n", __func__, n_samples, m_audio_pos, m_audio_len);
|
||||
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(m_mutex);
|
||||
|
||||
if (m_audio_pos + n_samples > m_audio.size()) {
|
||||
const size_t n0 = m_audio.size() - m_audio_pos;
|
||||
|
||||
memcpy(&m_audio[m_audio_pos], stream, n0 * sizeof(float));
|
||||
memcpy(&m_audio[0], &stream[n0], (n_samples - n0) * sizeof(float));
|
||||
|
||||
m_audio_pos = (m_audio_pos + n_samples) % m_audio.size();
|
||||
m_audio_len = m_audio.size();
|
||||
} else {
|
||||
memcpy(&m_audio[m_audio_pos], stream, n_samples * sizeof(float));
|
||||
|
||||
m_audio_pos = (m_audio_pos + n_samples) % m_audio.size();
|
||||
m_audio_len = std::min(m_audio_len + n_samples, m_audio.size());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void audio_async::get(int ms, std::vector<float> & result) {
|
||||
if (!m_dev_id_in) {
|
||||
fprintf(stderr, "%s: no audio device to get audio from!\n", __func__);
|
||||
return;
|
||||
}
|
||||
|
||||
if (!m_running) {
|
||||
fprintf(stderr, "%s: not running!\n", __func__);
|
||||
return;
|
||||
}
|
||||
|
||||
result.clear();
|
||||
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(m_mutex);
|
||||
|
||||
if (ms <= 0) {
|
||||
ms = m_len_ms;
|
||||
}
|
||||
|
||||
size_t n_samples = (m_sample_rate * ms) / 1000;
|
||||
if (n_samples > m_audio_len) {
|
||||
n_samples = m_audio_len;
|
||||
}
|
||||
|
||||
result.resize(n_samples);
|
||||
|
||||
int s0 = m_audio_pos - n_samples;
|
||||
if (s0 < 0) {
|
||||
s0 += m_audio.size();
|
||||
}
|
||||
|
||||
if (s0 + n_samples > m_audio.size()) {
|
||||
const size_t n0 = m_audio.size() - s0;
|
||||
|
||||
memcpy(result.data(), &m_audio[s0], n0 * sizeof(float));
|
||||
memcpy(&result[n0], &m_audio[0], (n_samples - n0) * sizeof(float));
|
||||
} else {
|
||||
memcpy(result.data(), &m_audio[s0], n_samples * sizeof(float));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////
|
||||
|
||||
std::string trim(const std::string & s) {
|
||||
std::regex e("^\\s+|\\s+$");
|
||||
return std::regex_replace(s, e, "");
|
||||
}
|
||||
|
||||
void high_pass_filter(std::vector<float> & data, float cutoff, float sample_rate) {
|
||||
const float rc = 1.0f / (2.0f * M_PI * cutoff);
|
||||
const float dt = 1.0f / sample_rate;
|
||||
const float alpha = dt / (rc + dt);
|
||||
|
||||
float y = data[0];
|
||||
|
||||
for (size_t i = 1; i < data.size(); i++) {
|
||||
y = alpha * (y + data[i] - data[i - 1]);
|
||||
data[i] = y;
|
||||
}
|
||||
}
|
||||
|
||||
bool vad_simple(std::vector<float> & pcmf32, int sample_rate, int last_ms, float vad_thold, float freq_thold, bool verbose) {
|
||||
const int n_samples = pcmf32.size();
|
||||
const int n_samples_last = (sample_rate * last_ms) / 1000;
|
||||
|
||||
if (n_samples_last >= n_samples) {
|
||||
// not enough samples - assume no speech
|
||||
return false;
|
||||
}
|
||||
|
||||
if (freq_thold > 0.0f) {
|
||||
high_pass_filter(pcmf32, freq_thold, sample_rate);
|
||||
}
|
||||
|
||||
float energy_all = 0.0f;
|
||||
float energy_last = 0.0f;
|
||||
|
||||
for (size_t i = 0; i < n_samples; i++) {
|
||||
energy_all += fabsf(pcmf32[i]);
|
||||
|
||||
if (i >= n_samples - n_samples_last) {
|
||||
energy_last += fabsf(pcmf32[i]);
|
||||
}
|
||||
}
|
||||
|
||||
energy_all /= n_samples;
|
||||
energy_last /= n_samples_last;
|
||||
|
||||
if (verbose) {
|
||||
fprintf(stderr, "%s: energy_all: %f, energy_last: %f, vad_thold: %f, freq_thold: %f\n", __func__, energy_all, energy_last, vad_thold, freq_thold);
|
||||
}
|
||||
|
||||
if (energy_last > vad_thold*energy_all) {
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
std::string transcribe(whisper_context * ctx, const whisper_params & params, const std::vector<float> & pcmf32, float & prob, int64_t & t_ms) {
|
||||
const auto t_start = std::chrono::high_resolution_clock::now();
|
||||
|
||||
prob = 0.0f;
|
||||
t_ms = 0;
|
||||
|
||||
whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
|
||||
|
||||
wparams.print_progress = false;
|
||||
wparams.print_special = params.print_special;
|
||||
wparams.print_realtime = false;
|
||||
wparams.print_timestamps = !params.no_timestamps;
|
||||
wparams.translate = params.translate;
|
||||
wparams.no_context = true;
|
||||
wparams.single_segment = true;
|
||||
wparams.max_tokens = params.max_tokens;
|
||||
wparams.language = params.language.c_str();
|
||||
wparams.n_threads = params.n_threads;
|
||||
|
||||
wparams.audio_ctx = params.audio_ctx;
|
||||
wparams.speed_up = params.speed_up;
|
||||
|
||||
if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) {
|
||||
return "";
|
||||
}
|
||||
|
||||
int prob_n = 0;
|
||||
std::string result;
|
||||
|
||||
const int n_segments = whisper_full_n_segments(ctx);
|
||||
for (int i = 0; i < n_segments; ++i) {
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
|
||||
result += text;
|
||||
|
||||
const int n_tokens = whisper_full_n_tokens(ctx, i);
|
||||
for (int j = 0; j < n_tokens; ++j) {
|
||||
const auto token = whisper_full_get_token_data(ctx, i, j);
|
||||
|
||||
prob += token.p;
|
||||
++prob_n;
|
||||
}
|
||||
}
|
||||
|
||||
if (prob_n > 0) {
|
||||
prob /= prob_n;
|
||||
}
|
||||
|
||||
const auto t_end = std::chrono::high_resolution_clock::now();
|
||||
t_ms = std::chrono::duration_cast<std::chrono::milliseconds>(t_end - t_start).count();
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// compute similarity between two strings using Levenshtein distance
|
||||
float similarity(const std::string & s0, const std::string & s1) {
|
||||
const size_t len0 = s0.size() + 1;
|
||||
const size_t len1 = s1.size() + 1;
|
||||
|
||||
std::vector<int> col(len1, 0);
|
||||
std::vector<int> prevCol(len1, 0);
|
||||
|
||||
for (size_t i = 0; i < len1; i++) {
|
||||
prevCol[i] = i;
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < len0; i++) {
|
||||
col[0] = i;
|
||||
for (size_t j = 1; j < len1; j++) {
|
||||
col[j] = std::min(std::min(1 + col[j - 1], 1 + prevCol[j]), prevCol[j - 1] + (s0[i - 1] == s1[j - 1] ? 0 : 1));
|
||||
}
|
||||
col.swap(prevCol);
|
||||
}
|
||||
|
||||
const float dist = prevCol[len1 - 1];
|
||||
|
||||
return 1.0f - (dist / std::max(s0.size(), s1.size()));
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
whisper_params params;
|
||||
|
||||
if (whisper_params_parse(argc, argv, params) == false) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (whisper_lang_id(params.language.c_str()) == -1) {
|
||||
fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str());
|
||||
whisper_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
|
||||
// whisper init
|
||||
|
||||
struct whisper_context * ctx = whisper_init(params.model.c_str());
|
||||
|
||||
// print some info about the processing
|
||||
{
|
||||
fprintf(stderr, "\n");
|
||||
if (!whisper_is_multilingual(ctx)) {
|
||||
if (params.language != "en" || params.translate) {
|
||||
params.language = "en";
|
||||
params.translate = false;
|
||||
fprintf(stderr, "%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__);
|
||||
}
|
||||
}
|
||||
fprintf(stderr, "%s: processing, %d threads, lang = %s, task = %s, timestamps = %d ...\n",
|
||||
__func__,
|
||||
params.n_threads,
|
||||
params.language.c_str(),
|
||||
params.translate ? "translate" : "transcribe",
|
||||
params.no_timestamps ? 0 : 1);
|
||||
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
|
||||
// init audio
|
||||
|
||||
audio_async audio(30*1000);
|
||||
if (!audio.init(params.capture_id, WHISPER_SAMPLE_RATE)) {
|
||||
fprintf(stderr, "%s: audio.init() failed!\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
audio.resume();
|
||||
|
||||
bool is_running = true;
|
||||
bool have_prompt = false;
|
||||
bool ask_prompt = true;
|
||||
|
||||
float prob0 = 0.0f;
|
||||
float prob = 0.0f;
|
||||
|
||||
std::vector<float> pcmf32_cur;
|
||||
std::vector<float> pcmf32_prompt;
|
||||
|
||||
const std::string k_prompt = "Ok Whisper, start listening for commands.";
|
||||
|
||||
// main loop
|
||||
while (is_running) {
|
||||
// handle Ctrl + C
|
||||
{
|
||||
SDL_Event event;
|
||||
while (SDL_PollEvent(&event)) {
|
||||
switch (event.type) {
|
||||
case SDL_QUIT:
|
||||
{
|
||||
is_running = false;
|
||||
} break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (!is_running) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// delay
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(100));
|
||||
|
||||
if (ask_prompt) {
|
||||
fprintf(stdout, "\n");
|
||||
fprintf(stdout, "%s: Say the following phrase: '%s%s%s'\n", __func__, "\033[1m", k_prompt.c_str(), "\033[0m");
|
||||
fprintf(stdout, "\n");
|
||||
|
||||
ask_prompt = false;
|
||||
}
|
||||
|
||||
int64_t t_ms = 0;
|
||||
|
||||
{
|
||||
audio.get(2000, pcmf32_cur);
|
||||
|
||||
if (vad_simple(pcmf32_cur, WHISPER_SAMPLE_RATE, 1000, params.vad_thold, params.freq_thold, params.print_energy)) {
|
||||
fprintf(stdout, "%s: Speech detected! Processing ...\n", __func__);
|
||||
|
||||
if (!have_prompt) {
|
||||
audio.get(params.prompt_ms, pcmf32_cur);
|
||||
|
||||
const auto txt = ::trim(::transcribe(ctx, params, pcmf32_cur, prob0, t_ms));
|
||||
|
||||
fprintf(stdout, "%s: Heard '%s%s%s', (t = %d ms)\n", __func__, "\033[1m", txt.c_str(), "\033[0m", (int) t_ms);
|
||||
|
||||
const float sim = similarity(txt, k_prompt);
|
||||
|
||||
if (txt.length() < 0.8*k_prompt.length() || txt.length() > 1.2*k_prompt.length() || sim < 0.8f) {
|
||||
fprintf(stdout, "%s: WARNING: prompt not recognized, try again\n", __func__);
|
||||
ask_prompt = true;
|
||||
} else {
|
||||
fprintf(stdout, "\n");
|
||||
fprintf(stdout, "%s: The prompt has been recognized!\n", __func__);
|
||||
fprintf(stdout, "%s: Waiting for voice commands ...\n", __func__);
|
||||
fprintf(stdout, "\n");
|
||||
|
||||
// save the audio for the prompt
|
||||
pcmf32_prompt = pcmf32_cur;
|
||||
have_prompt = true;
|
||||
}
|
||||
} else {
|
||||
audio.get(params.command_ms, pcmf32_cur);
|
||||
|
||||
// prepend the prompt audio
|
||||
pcmf32_cur.insert(pcmf32_cur.begin(), pcmf32_prompt.begin(), pcmf32_prompt.end());
|
||||
|
||||
const auto txt = ::trim(::transcribe(ctx, params, pcmf32_cur, prob, t_ms));
|
||||
|
||||
prob = 100.0f*(prob - prob0);
|
||||
|
||||
//fprintf(stdout, "%s: heard '%s'\n", __func__, txt.c_str());
|
||||
|
||||
// find the prompt in the text
|
||||
float best_sim = 0.0f;
|
||||
size_t best_len = 0;
|
||||
for (int n = 0.8*k_prompt.size(); n <= 1.2*k_prompt.size(); ++n) {
|
||||
const auto prompt = txt.substr(0, n);
|
||||
|
||||
const float sim = similarity(prompt, k_prompt);
|
||||
|
||||
//fprintf(stderr, "%s: prompt = '%s', sim = %f\n", __func__, prompt.c_str(), sim);
|
||||
|
||||
if (sim > best_sim) {
|
||||
best_sim = sim;
|
||||
best_len = n;
|
||||
}
|
||||
}
|
||||
|
||||
const std::string command = ::trim(txt.substr(best_len));
|
||||
|
||||
fprintf(stdout, "%s: Command '%s%s%s', (t = %d ms)\n", __func__, "\033[1m", command.c_str(), "\033[0m", (int) t_ms);
|
||||
fprintf(stdout, "\n");
|
||||
}
|
||||
|
||||
audio.clear();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
audio.pause();
|
||||
|
||||
whisper_print_timings(ctx);
|
||||
whisper_free(ctx);
|
||||
|
||||
return 0;
|
||||
}
|
@ -1,60 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Simple tool to record audio from the microphone and generate a karaoke video
|
||||
# Usage:
|
||||
#
|
||||
# cd whisper.cpp
|
||||
# make
|
||||
#
|
||||
# ./examples/generate-karaoke.sh [model] [step_ms]
|
||||
#
|
||||
# Press Ctrl+C to stop recording
|
||||
#
|
||||
|
||||
executable="./main"
|
||||
model="base.en"
|
||||
model_path="models/ggml-$model.bin"
|
||||
|
||||
# require sox and ffmpeg to be installed
|
||||
if ! command -v sox &> /dev/null
|
||||
then
|
||||
echo "sox could not be found"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if ! command -v ffmpeg &> /dev/null
|
||||
then
|
||||
echo "ffmpeg could not be found"
|
||||
exit 2
|
||||
fi
|
||||
|
||||
if [ ! -f "$executable" ]; then
|
||||
echo "'$executable' does not exist. Please build it first."
|
||||
exit 3
|
||||
fi
|
||||
|
||||
if [ ! -f "$model_path" ]; then
|
||||
echo "'$model_path' does not exist. Please download it first."
|
||||
exit 4
|
||||
fi
|
||||
|
||||
# record some raw audio
|
||||
sox -d rec.wav
|
||||
|
||||
# resample to 16kHz
|
||||
ffmpeg -y -i ./rec.wav -ar 16000 -ac 1 -c:a pcm_s16le ./rec16.wav > /dev/null 2>&1
|
||||
|
||||
# run Whisper
|
||||
echo "Processing ..."
|
||||
./main -m models/ggml-base.en.bin rec16.wav -owts > /dev/null 2>&1
|
||||
|
||||
# generate Karaoke video
|
||||
echo "Generating video ..."
|
||||
source rec16.wav.wts > /dev/null 2>&1
|
||||
|
||||
# play the video
|
||||
echo "Playing ./rec16.wav.mp4 ..."
|
||||
ffplay -loglevel 0 -autoexit ./rec16.wav.mp4
|
||||
|
||||
echo "Done"
|
||||
exit 0
|
@ -1,182 +0,0 @@
|
||||
// Common Javascript functions used by the examples
|
||||
|
||||
function convertTypedArray(src, type) {
|
||||
var buffer = new ArrayBuffer(src.byteLength);
|
||||
var baseView = new src.constructor(buffer).set(src);
|
||||
return new type(buffer);
|
||||
}
|
||||
|
||||
var printTextarea = (function() {
|
||||
var element = document.getElementById('output');
|
||||
if (element) element.alue = ''; // clear browser cache
|
||||
return function(text) {
|
||||
if (arguments.length > 1) text = Array.prototype.slice.call(arguments).join(' ');
|
||||
console.log(text);
|
||||
if (element) {
|
||||
element.value += text + "\n";
|
||||
element.scrollTop = element.scrollHeight; // focus on bottom
|
||||
}
|
||||
};
|
||||
})();
|
||||
|
||||
async function clearCache() {
|
||||
if (confirm('Are you sure you want to clear the cache?\nAll the models will be downloaded again.')) {
|
||||
indexedDB.deleteDatabase(dbName);
|
||||
}
|
||||
}
|
||||
|
||||
// fetch a remote file from remote URL using the Fetch API
|
||||
async function fetchRemote(url, cbProgress, cbPrint) {
|
||||
cbPrint('fetchRemote: downloading with fetch()...');
|
||||
|
||||
const response = await fetch(
|
||||
url,
|
||||
{
|
||||
method: 'GET',
|
||||
headers: {
|
||||
'Content-Type': 'application/octet-stream',
|
||||
},
|
||||
}
|
||||
);
|
||||
|
||||
if (!response.ok) {
|
||||
cbPrint('fetchRemote: failed to fetch ' + url);
|
||||
return;
|
||||
}
|
||||
|
||||
const contentLength = response.headers.get('content-length');
|
||||
const total = parseInt(contentLength, 10);
|
||||
const reader = response.body.getReader();
|
||||
|
||||
var chunks = [];
|
||||
var receivedLength = 0;
|
||||
var progressLast = -1;
|
||||
|
||||
while (true) {
|
||||
const { done, value } = await reader.read();
|
||||
|
||||
if (done) {
|
||||
break;
|
||||
}
|
||||
|
||||
chunks.push(value);
|
||||
receivedLength += value.length;
|
||||
|
||||
if (contentLength) {
|
||||
cbProgress(receivedLength/total);
|
||||
|
||||
var progressCur = Math.round((receivedLength / total) * 10);
|
||||
if (progressCur != progressLast) {
|
||||
cbPrint('fetchRemote: fetching ' + 10*progressCur + '% ...');
|
||||
progressLast = progressCur;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
var position = 0;
|
||||
var chunksAll = new Uint8Array(receivedLength);
|
||||
|
||||
for (var chunk of chunks) {
|
||||
chunksAll.set(chunk, position);
|
||||
position += chunk.length;
|
||||
}
|
||||
|
||||
return chunksAll;
|
||||
}
|
||||
|
||||
// load remote data
|
||||
// - check if the data is already in the IndexedDB
|
||||
// - if not, fetch it from the remote URL and store it in the IndexedDB
|
||||
function loadRemote(url, dst, size_mb, cbProgress, cbReady, cbCancel, cbPrint) {
|
||||
// query the storage quota and print it
|
||||
navigator.storage.estimate().then(function (estimate) {
|
||||
cbPrint('loadRemote: storage quota: ' + estimate.quota + ' bytes');
|
||||
cbPrint('loadRemote: storage usage: ' + estimate.usage + ' bytes');
|
||||
});
|
||||
|
||||
// check if the data is already in the IndexedDB
|
||||
var rq = indexedDB.open(dbName, dbVersion);
|
||||
|
||||
rq.onupgradeneeded = function (event) {
|
||||
var db = event.target.result;
|
||||
if (db.version == 1) {
|
||||
var os = db.createObjectStore('models', { autoIncrement: false });
|
||||
cbPrint('loadRemote: created IndexedDB ' + db.name + ' version ' + db.version);
|
||||
} else {
|
||||
// clear the database
|
||||
var os = event.currentTarget.transaction.objectStore('models');
|
||||
os.clear();
|
||||
cbPrint('loadRemote: cleared IndexedDB ' + db.name + ' version ' + db.version);
|
||||
}
|
||||
};
|
||||
|
||||
rq.onsuccess = function (event) {
|
||||
var db = event.target.result;
|
||||
var tx = db.transaction(['models'], 'readonly');
|
||||
var os = tx.objectStore('models');
|
||||
var rq = os.get(url);
|
||||
|
||||
rq.onsuccess = function (event) {
|
||||
if (rq.result) {
|
||||
cbPrint('loadRemote: "' + url + '" is already in the IndexedDB');
|
||||
cbReady(dst, rq.result);
|
||||
} else {
|
||||
// data is not in the IndexedDB
|
||||
cbPrint('loadRemote: "' + url + '" is not in the IndexedDB');
|
||||
|
||||
// alert and ask the user to confirm
|
||||
if (!confirm(
|
||||
'You are about to download ' + size_mb + ' MB of data.\n' +
|
||||
'The model data will be cached in the browser for future use.\n\n' +
|
||||
'Press OK to continue.')) {
|
||||
cbCancel();
|
||||
return;
|
||||
}
|
||||
|
||||
fetchRemote(url, cbProgress, cbPrint).then(function (data) {
|
||||
if (data) {
|
||||
// store the data in the IndexedDB
|
||||
var rq = indexedDB.open(dbName, dbVersion);
|
||||
rq.onsuccess = function (event) {
|
||||
var db = event.target.result;
|
||||
var tx = db.transaction(['models'], 'readwrite');
|
||||
var os = tx.objectStore('models');
|
||||
var rq = os.put(data, url);
|
||||
|
||||
rq.onsuccess = function (event) {
|
||||
cbPrint('loadRemote: "' + url + '" stored in the IndexedDB');
|
||||
cbReady(dst, data);
|
||||
};
|
||||
|
||||
rq.onerror = function (event) {
|
||||
cbPrint('loadRemote: failed to store "' + url + '" in the IndexedDB');
|
||||
cbCancel();
|
||||
};
|
||||
};
|
||||
}
|
||||
});
|
||||
}
|
||||
};
|
||||
|
||||
rq.onerror = function (event) {
|
||||
cbPrint('loadRemote: failed to get data from the IndexedDB');
|
||||
cbCancel();
|
||||
};
|
||||
};
|
||||
|
||||
rq.onerror = function (event) {
|
||||
cbPrint('loadRemote: failed to open IndexedDB');
|
||||
cbCancel();
|
||||
};
|
||||
|
||||
rq.onblocked = function (event) {
|
||||
cbPrint('loadRemote: failed to open IndexedDB: blocked');
|
||||
cbCancel();
|
||||
};
|
||||
|
||||
rq.onabort = function (event) {
|
||||
cbPrint('loadRemote: failed to open IndexedDB: abort');
|
||||
|
||||
};
|
||||
}
|
||||
|
@ -1,112 +0,0 @@
|
||||
#!/bin/bash
|
||||
#
|
||||
# Transcribe audio livestream by feeding ffmpeg output to whisper.cpp at regular intervals
|
||||
# Idea by @semiformal-net
|
||||
# ref: https://github.com/ggerganov/whisper.cpp/issues/185
|
||||
#
|
||||
|
||||
set -eo pipefail
|
||||
|
||||
url="http://a.files.bbci.co.uk/media/live/manifesto/audio/simulcast/hls/nonuk/sbr_low/ak/bbc_world_service.m3u8"
|
||||
fmt=aac # the audio format extension of the stream (TODO: auto detect)
|
||||
step_s=30
|
||||
model="base.en"
|
||||
|
||||
check_requirements()
|
||||
{
|
||||
if ! command -v ./main &>/dev/null; then
|
||||
echo "whisper.cpp main executable is required (make)"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if ! command -v ffmpeg &>/dev/null; then
|
||||
echo "ffmpeg is required (https://ffmpeg.org)"
|
||||
exit 1
|
||||
fi
|
||||
}
|
||||
|
||||
check_requirements
|
||||
|
||||
|
||||
if [ -z "$1" ]; then
|
||||
echo "Usage: $0 stream_url [step_s] [model]"
|
||||
echo ""
|
||||
echo " Example:"
|
||||
echo " $0 $url $step_s $model"
|
||||
echo ""
|
||||
echo "No url specified, using default: $url"
|
||||
else
|
||||
url="$1"
|
||||
fi
|
||||
|
||||
if [ -n "$2" ]; then
|
||||
step_s="$2"
|
||||
fi
|
||||
|
||||
if [ -n "$3" ]; then
|
||||
model="$3"
|
||||
fi
|
||||
|
||||
# Whisper models
|
||||
models=( "tiny.en" "tiny" "base.en" "base" "small.en" "small" "medium.en" "medium" "large-v1" "large" )
|
||||
|
||||
# list available models
|
||||
function list_models {
|
||||
printf "\n"
|
||||
printf " Available models:"
|
||||
for model in "${models[@]}"; do
|
||||
printf " $model"
|
||||
done
|
||||
printf "\n\n"
|
||||
}
|
||||
|
||||
if [[ ! " ${models[@]} " =~ " ${model} " ]]; then
|
||||
printf "Invalid model: $model\n"
|
||||
list_models
|
||||
|
||||
exit 1
|
||||
fi
|
||||
|
||||
running=1
|
||||
|
||||
trap "running=0" SIGINT SIGTERM
|
||||
|
||||
printf "[+] Transcribing stream with model '$model', step_s $step_s (press Ctrl+C to stop):\n\n"
|
||||
|
||||
# continuous stream in native fmt (this file will grow forever!)
|
||||
ffmpeg -loglevel quiet -y -re -probesize 32 -i $url -c copy /tmp/whisper-live0.${fmt} &
|
||||
if [ $? -ne 0 ]; then
|
||||
printf "Error: ffmpeg failed to capture audio stream\n"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
printf "Buffering audio. Please wait...\n\n"
|
||||
sleep $(($step_s))
|
||||
|
||||
# do not stop script on error
|
||||
set +e
|
||||
|
||||
i=0
|
||||
SECONDS=0
|
||||
while [ $running -eq 1 ]; do
|
||||
# extract the next piece from the main file above and transcode to wav. -ss sets start time and nudges it by -0.5s to catch missing words (??)
|
||||
err=1
|
||||
while [ $err -ne 0 ]; do
|
||||
if [ $i -gt 0 ]; then
|
||||
ffmpeg -loglevel quiet -v error -noaccurate_seek -i /tmp/whisper-live0.${fmt} -y -ar 16000 -ac 1 -c:a pcm_s16le -ss $(($i*$step_s-1)).5 -t $step_s /tmp/whisper-live.wav 2> /tmp/whisper-live.err
|
||||
else
|
||||
ffmpeg -loglevel quiet -v error -noaccurate_seek -i /tmp/whisper-live0.${fmt} -y -ar 16000 -ac 1 -c:a pcm_s16le -ss $(($i*$step_s)) -t $step_s /tmp/whisper-live.wav 2> /tmp/whisper-live.err
|
||||
fi
|
||||
err=$(cat /tmp/whisper-live.err | wc -l)
|
||||
done
|
||||
|
||||
./main -t 8 -m ./models/ggml-base.en.bin -f /tmp/whisper-live.wav --no-timestamps -otxt 2> /tmp/whispererr | tail -n 1
|
||||
|
||||
while [ $SECONDS -lt $((($i+1)*$step_s)) ]; do
|
||||
sleep 1
|
||||
done
|
||||
((i=i+1))
|
||||
done
|
||||
|
||||
killall -v ffmpeg
|
||||
killall -v main
|
@ -1,3 +0,0 @@
|
||||
set(TARGET main)
|
||||
add_executable(${TARGET} main.cpp)
|
||||
target_link_libraries(${TARGET} PRIVATE whisper ${CMAKE_THREAD_LIBS_INIT})
|
@ -1,33 +0,0 @@
|
||||
# main
|
||||
|
||||
This is the main example demonstrating most of the functionality of the Whisper model.
|
||||
It can be used as a reference for using the `whisper.cpp` library in other projects.
|
||||
|
||||
```
|
||||
./main -h
|
||||
|
||||
usage: ./main [options] file0.wav file1.wav ...
|
||||
|
||||
options:
|
||||
-h, --help [default] show this help message and exit
|
||||
-t N, --threads N [4 ] number of threads to use during computation
|
||||
-p N, --processors N [1 ] number of processors to use during computation
|
||||
-ot N, --offset-t N [0 ] time offset in milliseconds
|
||||
-on N, --offset-n N [0 ] segment index offset
|
||||
-d N, --duration N [0 ] duration of audio to process in milliseconds
|
||||
-mc N, --max-context N [-1 ] maximum number of text context tokens to store
|
||||
-ml N, --max-len N [0 ] maximum segment length in characters
|
||||
-wt N, --word-thold N [0.01 ] word timestamp probability threshold
|
||||
-su, --speed-up [false ] speed up audio by x2 (reduced accuracy)
|
||||
-tr, --translate [false ] translate from source language to english
|
||||
-otxt, --output-txt [false ] output result in a text file
|
||||
-ovtt, --output-vtt [false ] output result in a vtt file
|
||||
-osrt, --output-srt [false ] output result in a srt file
|
||||
-owts, --output-words [false ] output script for generating karaoke video
|
||||
-ps, --print-special [false ] print special tokens
|
||||
-pc, --print-colors [false ] print colors
|
||||
-nt, --no-timestamps [true ] do not print timestamps
|
||||
-l LANG, --language LANG [en ] spoken language
|
||||
-m FNAME, --model FNAME [models/ggml-base.en.bin] model path
|
||||
-f FNAME, --file FNAME [ ] input WAV file path
|
||||
```
|
@ -1,663 +0,0 @@
|
||||
#include "whisper.h"
|
||||
|
||||
// third-party utilities
|
||||
// use your favorite implementations
|
||||
#define DR_WAV_IMPLEMENTATION
|
||||
#include "dr_wav.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <fstream>
|
||||
#include <cstdio>
|
||||
#include <string>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
|
||||
// Terminal color map. 10 colors grouped in ranges [0.0, 0.1, ..., 0.9]
|
||||
// Lowest is red, middle is yellow, highest is green.
|
||||
const std::vector<std::string> k_colors = {
|
||||
"\033[38;5;196m", "\033[38;5;202m", "\033[38;5;208m", "\033[38;5;214m", "\033[38;5;220m",
|
||||
"\033[38;5;226m", "\033[38;5;190m", "\033[38;5;154m", "\033[38;5;118m", "\033[38;5;82m",
|
||||
};
|
||||
|
||||
// 500 -> 00:05.000
|
||||
// 6000 -> 01:00.000
|
||||
std::string to_timestamp(int64_t t, bool comma = false) {
|
||||
int64_t msec = t * 10;
|
||||
int64_t hr = msec / (1000 * 60 * 60);
|
||||
msec = msec - hr * (1000 * 60 * 60);
|
||||
int64_t min = msec / (1000 * 60);
|
||||
msec = msec - min * (1000 * 60);
|
||||
int64_t sec = msec / 1000;
|
||||
msec = msec - sec * 1000;
|
||||
|
||||
char buf[32];
|
||||
snprintf(buf, sizeof(buf), "%02d:%02d:%02d%s%03d", (int) hr, (int) min, (int) sec, comma ? "," : ".", (int) msec);
|
||||
|
||||
return std::string(buf);
|
||||
}
|
||||
|
||||
int timestamp_to_sample(int64_t t, int n_samples) {
|
||||
return std::max(0, std::min((int) n_samples - 1, (int) ((t*WHISPER_SAMPLE_RATE)/100)));
|
||||
}
|
||||
|
||||
// helper function to replace substrings
|
||||
void replace_all(std::string & s, const std::string & search, const std::string & replace) {
|
||||
for (size_t pos = 0; ; pos += replace.length()) {
|
||||
pos = s.find(search, pos);
|
||||
if (pos == std::string::npos) break;
|
||||
s.erase(pos, search.length());
|
||||
s.insert(pos, replace);
|
||||
}
|
||||
}
|
||||
|
||||
// command-line parameters
|
||||
struct whisper_params {
|
||||
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
||||
int32_t n_processors = 1;
|
||||
int32_t offset_t_ms = 0;
|
||||
int32_t offset_n = 0;
|
||||
int32_t duration_ms = 0;
|
||||
int32_t max_context = -1;
|
||||
int32_t max_len = 0;
|
||||
|
||||
float word_thold = 0.01f;
|
||||
|
||||
bool speed_up = false;
|
||||
bool translate = false;
|
||||
bool diarize = false;
|
||||
bool output_txt = false;
|
||||
bool output_vtt = false;
|
||||
bool output_srt = false;
|
||||
bool output_wts = false;
|
||||
bool print_special = false;
|
||||
bool print_colors = false;
|
||||
bool no_timestamps = false;
|
||||
|
||||
std::string language = "en";
|
||||
std::string model = "models/ggml-base.en.bin";
|
||||
|
||||
std::vector<std::string> fname_inp = {};
|
||||
};
|
||||
|
||||
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
|
||||
|
||||
bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
for (int i = 1; i < argc; i++) {
|
||||
std::string arg = argv[i];
|
||||
|
||||
if (arg[0] != '-') {
|
||||
params.fname_inp.push_back(arg);
|
||||
continue;
|
||||
}
|
||||
|
||||
if (arg == "-h" || arg == "--help") {
|
||||
whisper_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
|
||||
else if (arg == "-p" || arg == "--processors") { params.n_processors = std::stoi(argv[++i]); }
|
||||
else if (arg == "-ot" || arg == "--offset-t") { params.offset_t_ms = std::stoi(argv[++i]); }
|
||||
else if (arg == "-on" || arg == "--offset-n") { params.offset_n = std::stoi(argv[++i]); }
|
||||
else if (arg == "-d" || arg == "--duration") { params.duration_ms = std::stoi(argv[++i]); }
|
||||
else if (arg == "-mc" || arg == "--max-context") { params.max_context = std::stoi(argv[++i]); }
|
||||
else if (arg == "-ml" || arg == "--max-len") { params.max_len = std::stoi(argv[++i]); }
|
||||
else if (arg == "-wt" || arg == "--word-thold") { params.word_thold = std::stof(argv[++i]); }
|
||||
else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; }
|
||||
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
|
||||
else if (arg == "-di" || arg == "--diarize") { params.diarize = true; }
|
||||
else if (arg == "-otxt" || arg == "--output-txt") { params.output_txt = true; }
|
||||
else if (arg == "-ovtt" || arg == "--output-vtt") { params.output_vtt = true; }
|
||||
else if (arg == "-osrt" || arg == "--output-srt") { params.output_srt = true; }
|
||||
else if (arg == "-owts" || arg == "--output-words") { params.output_wts = true; }
|
||||
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
|
||||
else if (arg == "-pc" || arg == "--print-colors") { params.print_colors = true; }
|
||||
else if (arg == "-nt" || arg == "--no-timestamps") { params.no_timestamps = true; }
|
||||
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
|
||||
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
|
||||
else if (arg == "-f" || arg == "--file") { params.fname_inp.push_back(argv[++i]); }
|
||||
else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
whisper_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void whisper_print_usage(int argc, char ** argv, const whisper_params & params) {
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "usage: %s [options] file0.wav file1.wav ...\n", argv[0]);
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "options:\n");
|
||||
fprintf(stderr, " -h, --help [default] show this help message and exit\n");
|
||||
fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads);
|
||||
fprintf(stderr, " -p N, --processors N [%-7d] number of processors to use during computation\n", params.n_processors);
|
||||
fprintf(stderr, " -ot N, --offset-t N [%-7d] time offset in milliseconds\n", params.offset_t_ms);
|
||||
fprintf(stderr, " -on N, --offset-n N [%-7d] segment index offset\n", params.offset_n);
|
||||
fprintf(stderr, " -d N, --duration N [%-7d] duration of audio to process in milliseconds\n", params.duration_ms);
|
||||
fprintf(stderr, " -mc N, --max-context N [%-7d] maximum number of text context tokens to store\n", params.max_context);
|
||||
fprintf(stderr, " -ml N, --max-len N [%-7d] maximum segment length in characters\n", params.max_len);
|
||||
fprintf(stderr, " -wt N, --word-thold N [%-7.2f] word timestamp probability threshold\n", params.word_thold);
|
||||
fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
|
||||
fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
|
||||
fprintf(stderr, " -di, --diarize [%-7s] stereo audio diarization\n", params.diarize ? "true" : "false");
|
||||
fprintf(stderr, " -otxt, --output-txt [%-7s] output result in a text file\n", params.output_txt ? "true" : "false");
|
||||
fprintf(stderr, " -ovtt, --output-vtt [%-7s] output result in a vtt file\n", params.output_vtt ? "true" : "false");
|
||||
fprintf(stderr, " -osrt, --output-srt [%-7s] output result in a srt file\n", params.output_srt ? "true" : "false");
|
||||
fprintf(stderr, " -owts, --output-words [%-7s] output script for generating karaoke video\n", params.output_wts ? "true" : "false");
|
||||
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
|
||||
fprintf(stderr, " -pc, --print-colors [%-7s] print colors\n", params.print_colors ? "true" : "false");
|
||||
fprintf(stderr, " -nt, --no-timestamps [%-7s] do not print timestamps\n", params.no_timestamps ? "false" : "true");
|
||||
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str());
|
||||
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
|
||||
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] input WAV file path\n", "");
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
struct whisper_print_user_data {
|
||||
const whisper_params * params;
|
||||
|
||||
const std::vector<std::vector<float>> * pcmf32s;
|
||||
};
|
||||
|
||||
void whisper_print_segment_callback(struct whisper_context * ctx, int n_new, void * user_data) {
|
||||
const auto & params = *((whisper_print_user_data *) user_data)->params;
|
||||
const auto & pcmf32s = *((whisper_print_user_data *) user_data)->pcmf32s;
|
||||
|
||||
const int n_segments = whisper_full_n_segments(ctx);
|
||||
|
||||
// print the last n_new segments
|
||||
const int s0 = n_segments - n_new;
|
||||
if (s0 == 0) {
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
for (int i = s0; i < n_segments; i++) {
|
||||
if (params.no_timestamps) {
|
||||
if (params.print_colors) {
|
||||
for (int j = 0; j < whisper_full_n_tokens(ctx, i); ++j) {
|
||||
if (params.print_special == false) {
|
||||
const whisper_token id = whisper_full_get_token_id(ctx, i, j);
|
||||
if (id >= whisper_token_eot(ctx)) {
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
const char * text = whisper_full_get_token_text(ctx, i, j);
|
||||
const float p = whisper_full_get_token_p (ctx, i, j);
|
||||
|
||||
const int col = std::max(0, std::min((int) k_colors.size(), (int) (std::pow(p, 3)*float(k_colors.size()))));
|
||||
|
||||
printf("%s%s%s", k_colors[col].c_str(), text, "\033[0m");
|
||||
}
|
||||
} else {
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
printf("%s", text);
|
||||
}
|
||||
fflush(stdout);
|
||||
} else {
|
||||
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
|
||||
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
|
||||
|
||||
std::string speaker = "";
|
||||
|
||||
if (params.diarize && pcmf32s.size() == 2) {
|
||||
const int64_t n_samples = pcmf32s[0].size();
|
||||
|
||||
const int64_t is0 = timestamp_to_sample(t0, n_samples);
|
||||
const int64_t is1 = timestamp_to_sample(t1, n_samples);
|
||||
|
||||
double energy0 = 0.0f;
|
||||
double energy1 = 0.0f;
|
||||
|
||||
for (int64_t j = is0; j < is1; j++) {
|
||||
energy0 += fabs(pcmf32s[0][j]);
|
||||
energy1 += fabs(pcmf32s[1][j]);
|
||||
}
|
||||
|
||||
if (energy0 > 1.1*energy1) {
|
||||
speaker = "(speaker 0)";
|
||||
} else if (energy1 > 1.1*energy0) {
|
||||
speaker = "(speaker 1)";
|
||||
} else {
|
||||
speaker = "(speaker ?)";
|
||||
}
|
||||
|
||||
//printf("is0 = %lld, is1 = %lld, energy0 = %f, energy1 = %f, %s\n", is0, is1, energy0, energy1, speaker.c_str());
|
||||
}
|
||||
|
||||
if (params.print_colors) {
|
||||
printf("[%s --> %s] ", to_timestamp(t0).c_str(), to_timestamp(t1).c_str());
|
||||
for (int j = 0; j < whisper_full_n_tokens(ctx, i); ++j) {
|
||||
if (params.print_special == false) {
|
||||
const whisper_token id = whisper_full_get_token_id(ctx, i, j);
|
||||
if (id >= whisper_token_eot(ctx)) {
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
const char * text = whisper_full_get_token_text(ctx, i, j);
|
||||
const float p = whisper_full_get_token_p (ctx, i, j);
|
||||
|
||||
const int col = std::max(0, std::min((int) k_colors.size(), (int) (std::pow(p, 3)*float(k_colors.size()))));
|
||||
|
||||
printf("%s%s%s%s", speaker.c_str(), k_colors[col].c_str(), text, "\033[0m");
|
||||
}
|
||||
printf("\n");
|
||||
} else {
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
|
||||
printf("[%s --> %s] %s%s\n", to_timestamp(t0).c_str(), to_timestamp(t1).c_str(), speaker.c_str(), text);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bool output_txt(struct whisper_context * ctx, const char * fname) {
|
||||
std::ofstream fout(fname);
|
||||
if (!fout.is_open()) {
|
||||
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname);
|
||||
return false;
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
|
||||
|
||||
const int n_segments = whisper_full_n_segments(ctx);
|
||||
for (int i = 0; i < n_segments; ++i) {
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
fout << text << "\n";
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool output_vtt(struct whisper_context * ctx, const char * fname) {
|
||||
std::ofstream fout(fname);
|
||||
if (!fout.is_open()) {
|
||||
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname);
|
||||
return false;
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
|
||||
|
||||
fout << "WEBVTT\n\n";
|
||||
|
||||
const int n_segments = whisper_full_n_segments(ctx);
|
||||
for (int i = 0; i < n_segments; ++i) {
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
|
||||
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
|
||||
|
||||
fout << to_timestamp(t0) << " --> " << to_timestamp(t1) << "\n";
|
||||
fout << text << "\n\n";
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool output_srt(struct whisper_context * ctx, const char * fname, const whisper_params & params) {
|
||||
std::ofstream fout(fname);
|
||||
if (!fout.is_open()) {
|
||||
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname);
|
||||
return false;
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
|
||||
|
||||
const int n_segments = whisper_full_n_segments(ctx);
|
||||
for (int i = 0; i < n_segments; ++i) {
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
|
||||
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
|
||||
|
||||
fout << i + 1 + params.offset_n << "\n";
|
||||
fout << to_timestamp(t0, true) << " --> " << to_timestamp(t1, true) << "\n";
|
||||
fout << text << "\n\n";
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// karaoke video generation
|
||||
// outputs a bash script that uses ffmpeg to generate a video with the subtitles
|
||||
// TODO: font parameter adjustments
|
||||
bool output_wts(struct whisper_context * ctx, const char * fname, const char * fname_inp, const whisper_params & params, float t_sec) {
|
||||
std::ofstream fout(fname);
|
||||
|
||||
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
|
||||
|
||||
// TODO: become parameter
|
||||
static const char * font = "/System/Library/Fonts/Supplemental/Courier New Bold.ttf";
|
||||
|
||||
fout << "#!/bin/bash" << "\n";
|
||||
fout << "\n";
|
||||
|
||||
fout << "ffmpeg -i " << fname_inp << " -f lavfi -i color=size=1200x120:duration=" << t_sec << ":rate=25:color=black -vf \"";
|
||||
|
||||
for (int i = 0; i < whisper_full_n_segments(ctx); i++) {
|
||||
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
|
||||
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
|
||||
|
||||
const int n = whisper_full_n_tokens(ctx, i);
|
||||
|
||||
std::vector<whisper_token_data> tokens(n);
|
||||
for (int j = 0; j < n; ++j) {
|
||||
tokens[j] = whisper_full_get_token_data(ctx, i, j);
|
||||
}
|
||||
|
||||
if (i > 0) {
|
||||
fout << ",";
|
||||
}
|
||||
|
||||
// background text
|
||||
fout << "drawtext=fontfile='" << font << "':fontsize=24:fontcolor=gray:x=(w-text_w)/2:y=h/2:text='':enable='between(t," << t0/100.0 << "," << t0/100.0 << ")'";
|
||||
|
||||
bool is_first = true;
|
||||
|
||||
for (int j = 0; j < n; ++j) {
|
||||
const auto & token = tokens[j];
|
||||
|
||||
if (tokens[j].id >= whisper_token_eot(ctx)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
std::string txt_bg;
|
||||
std::string txt_fg; // highlight token
|
||||
std::string txt_ul; // underline
|
||||
|
||||
txt_bg = "> ";
|
||||
txt_fg = "> ";
|
||||
txt_ul = "\\ \\ ";
|
||||
|
||||
{
|
||||
int ncnt = 0;
|
||||
for (int k = 0; k < n; ++k) {
|
||||
const auto & token2 = tokens[k];
|
||||
|
||||
if (tokens[k].id >= whisper_token_eot(ctx)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const std::string txt = whisper_token_to_str(ctx, token2.id);
|
||||
|
||||
txt_bg += txt;
|
||||
|
||||
if (k == j) {
|
||||
for (int l = 0; l < (int) txt.size(); ++l) {
|
||||
txt_fg += txt[l];
|
||||
txt_ul += "_";
|
||||
}
|
||||
txt_fg += "|";
|
||||
} else {
|
||||
for (int l = 0; l < (int) txt.size(); ++l) {
|
||||
txt_fg += "\\ ";
|
||||
txt_ul += "\\ ";
|
||||
}
|
||||
}
|
||||
|
||||
ncnt += txt.size();
|
||||
}
|
||||
|
||||
::replace_all(txt_bg, "'", "\u2019");
|
||||
::replace_all(txt_bg, "\"", "\\\"");
|
||||
::replace_all(txt_fg, "'", "\u2019");
|
||||
::replace_all(txt_fg, "\"", "\\\"");
|
||||
}
|
||||
|
||||
if (is_first) {
|
||||
// background text
|
||||
fout << ",drawtext=fontfile='" << font << "':fontsize=24:fontcolor=gray:x=(w-text_w)/2:y=h/2:text='" << txt_bg << "':enable='between(t," << t0/100.0 << "," << t1/100.0 << ")'";
|
||||
is_first = false;
|
||||
}
|
||||
|
||||
// foreground text
|
||||
fout << ",drawtext=fontfile='" << font << "':fontsize=24:fontcolor=lightgreen:x=(w-text_w)/2+8:y=h/2:text='" << txt_fg << "':enable='between(t," << token.t0/100.0 << "," << token.t1/100.0 << ")'";
|
||||
|
||||
// underline
|
||||
fout << ",drawtext=fontfile='" << font << "':fontsize=24:fontcolor=lightgreen:x=(w-text_w)/2+8:y=h/2+16:text='" << txt_ul << "':enable='between(t," << token.t0/100.0 << "," << token.t1/100.0 << ")'";
|
||||
}
|
||||
}
|
||||
|
||||
fout << "\" -c:v libx264 -pix_fmt yuv420p -y " << fname_inp << ".mp4" << "\n";
|
||||
|
||||
fout << "\n\n";
|
||||
fout << "echo \"Your video has been saved to " << fname_inp << ".mp4\"" << "\n";
|
||||
fout << "\n";
|
||||
fout << "echo \" ffplay " << fname_inp << ".mp4\"\n";
|
||||
fout << "\n";
|
||||
|
||||
fout.close();
|
||||
|
||||
fprintf(stderr, "%s: run 'source %s' to generate karaoke video\n", __func__, fname);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
whisper_params params;
|
||||
|
||||
if (whisper_params_parse(argc, argv, params) == false) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (params.fname_inp.empty()) {
|
||||
fprintf(stderr, "error: no input files specified\n");
|
||||
whisper_print_usage(argc, argv, params);
|
||||
return 2;
|
||||
}
|
||||
|
||||
if (whisper_lang_id(params.language.c_str()) == -1) {
|
||||
fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str());
|
||||
whisper_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
|
||||
// whisper init
|
||||
|
||||
struct whisper_context * ctx = whisper_init(params.model.c_str());
|
||||
|
||||
if (ctx == nullptr) {
|
||||
fprintf(stderr, "error: failed to initialize whisper context\n");
|
||||
return 3;
|
||||
}
|
||||
|
||||
for (int f = 0; f < (int) params.fname_inp.size(); ++f) {
|
||||
const auto fname_inp = params.fname_inp[f];
|
||||
|
||||
std::vector<float> pcmf32; // mono-channel F32 PCM
|
||||
std::vector<std::vector<float>> pcmf32s; // stereo-channel F32 PCM
|
||||
|
||||
// WAV input
|
||||
{
|
||||
drwav wav;
|
||||
std::vector<uint8_t> wav_data; // used for pipe input from stdin
|
||||
|
||||
if (fname_inp == "-") {
|
||||
{
|
||||
uint8_t buf[1024];
|
||||
while (true)
|
||||
{
|
||||
const size_t n = fread(buf, 1, sizeof(buf), stdin);
|
||||
if (n == 0) {
|
||||
break;
|
||||
}
|
||||
wav_data.insert(wav_data.end(), buf, buf + n);
|
||||
}
|
||||
}
|
||||
|
||||
if (drwav_init_memory(&wav, wav_data.data(), wav_data.size(), NULL) == false) {
|
||||
fprintf(stderr, "error: failed to open WAV file from stdin\n");
|
||||
return 4;
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: read %zu bytes from stdin\n", __func__, wav_data.size());
|
||||
}
|
||||
else if (drwav_init_file(&wav, fname_inp.c_str(), NULL) == false) {
|
||||
fprintf(stderr, "error: failed to open '%s' as WAV file\n", fname_inp.c_str());
|
||||
return 5;
|
||||
}
|
||||
|
||||
if (wav.channels != 1 && wav.channels != 2) {
|
||||
fprintf(stderr, "%s: WAV file '%s' must be mono or stereo\n", argv[0], fname_inp.c_str());
|
||||
return 6;
|
||||
}
|
||||
|
||||
if (params.diarize && wav.channels != 2 && params.no_timestamps == false) {
|
||||
fprintf(stderr, "%s: WAV file '%s' must be stereo for diarization and timestamps have to be enabled\n", argv[0], fname_inp.c_str());
|
||||
return 6;
|
||||
}
|
||||
|
||||
if (wav.sampleRate != WHISPER_SAMPLE_RATE) {
|
||||
fprintf(stderr, "%s: WAV file '%s' must be 16 kHz\n", argv[0], fname_inp.c_str());
|
||||
return 8;
|
||||
}
|
||||
|
||||
if (wav.bitsPerSample != 16) {
|
||||
fprintf(stderr, "%s: WAV file '%s' must be 16-bit\n", argv[0], fname_inp.c_str());
|
||||
return 9;
|
||||
}
|
||||
|
||||
const uint64_t n = wav_data.empty() ? wav.totalPCMFrameCount : wav_data.size()/(wav.channels*wav.bitsPerSample/8);
|
||||
|
||||
std::vector<int16_t> pcm16;
|
||||
pcm16.resize(n*wav.channels);
|
||||
drwav_read_pcm_frames_s16(&wav, n, pcm16.data());
|
||||
drwav_uninit(&wav);
|
||||
|
||||
// convert to mono, float
|
||||
pcmf32.resize(n);
|
||||
if (wav.channels == 1) {
|
||||
for (int i = 0; i < n; i++) {
|
||||
pcmf32[i] = float(pcm16[i])/32768.0f;
|
||||
}
|
||||
} else {
|
||||
for (int i = 0; i < n; i++) {
|
||||
pcmf32[i] = float(pcm16[2*i] + pcm16[2*i + 1])/65536.0f;
|
||||
}
|
||||
}
|
||||
|
||||
if (params.diarize) {
|
||||
// convert to stereo, float
|
||||
pcmf32s.resize(2);
|
||||
|
||||
pcmf32s[0].resize(n);
|
||||
pcmf32s[1].resize(n);
|
||||
for (int i = 0; i < n; i++) {
|
||||
pcmf32s[0][i] = float(pcm16[2*i])/32768.0f;
|
||||
pcmf32s[1][i] = float(pcm16[2*i + 1])/32768.0f;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// print system information
|
||||
{
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
|
||||
params.n_threads*params.n_processors, std::thread::hardware_concurrency(), whisper_print_system_info());
|
||||
}
|
||||
|
||||
// print some info about the processing
|
||||
{
|
||||
fprintf(stderr, "\n");
|
||||
if (!whisper_is_multilingual(ctx)) {
|
||||
if (params.language != "en" || params.translate) {
|
||||
params.language = "en";
|
||||
params.translate = false;
|
||||
fprintf(stderr, "%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__);
|
||||
}
|
||||
}
|
||||
fprintf(stderr, "%s: processing '%s' (%d samples, %.1f sec), %d threads, %d processors, lang = %s, task = %s, timestamps = %d ...\n",
|
||||
__func__, fname_inp.c_str(), int(pcmf32.size()), float(pcmf32.size())/WHISPER_SAMPLE_RATE,
|
||||
params.n_threads, params.n_processors,
|
||||
params.language.c_str(),
|
||||
params.translate ? "translate" : "transcribe",
|
||||
params.no_timestamps ? 0 : 1);
|
||||
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
|
||||
// run the inference
|
||||
{
|
||||
whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
|
||||
|
||||
wparams.print_realtime = false;
|
||||
wparams.print_progress = false;
|
||||
wparams.print_timestamps = !params.no_timestamps;
|
||||
wparams.print_special = params.print_special;
|
||||
wparams.translate = params.translate;
|
||||
wparams.language = params.language.c_str();
|
||||
wparams.n_threads = params.n_threads;
|
||||
wparams.n_max_text_ctx = params.max_context >= 0 ? params.max_context : wparams.n_max_text_ctx;
|
||||
wparams.offset_ms = params.offset_t_ms;
|
||||
wparams.duration_ms = params.duration_ms;
|
||||
|
||||
wparams.token_timestamps = params.output_wts || params.max_len > 0;
|
||||
wparams.thold_pt = params.word_thold;
|
||||
wparams.max_len = params.output_wts && params.max_len == 0 ? 60 : params.max_len;
|
||||
|
||||
wparams.speed_up = params.speed_up;
|
||||
|
||||
whisper_print_user_data user_data = { ¶ms, &pcmf32s };
|
||||
|
||||
// this callback is called on each new segment
|
||||
if (!wparams.print_realtime) {
|
||||
wparams.new_segment_callback = whisper_print_segment_callback;
|
||||
wparams.new_segment_callback_user_data = &user_data;
|
||||
}
|
||||
|
||||
// example for abort mechanism
|
||||
// in this example, we do not abort the processing, but we could if the flag is set to true
|
||||
// the callback is called before every encoder run - if it returns false, the processing is aborted
|
||||
{
|
||||
static bool is_aborted = false; // NOTE: this should be atomic to avoid data race
|
||||
|
||||
wparams.encoder_begin_callback = [](struct whisper_context * ctx, void * user_data) {
|
||||
bool is_aborted = *(bool*)user_data;
|
||||
return !is_aborted;
|
||||
};
|
||||
wparams.encoder_begin_callback_user_data = &is_aborted;
|
||||
}
|
||||
|
||||
if (whisper_full_parallel(ctx, wparams, pcmf32.data(), pcmf32.size(), params.n_processors) != 0) {
|
||||
fprintf(stderr, "%s: failed to process audio\n", argv[0]);
|
||||
return 10;
|
||||
}
|
||||
}
|
||||
|
||||
// output stuff
|
||||
{
|
||||
printf("\n");
|
||||
|
||||
// output to text file
|
||||
if (params.output_txt) {
|
||||
const auto fname_txt = fname_inp + ".txt";
|
||||
output_txt(ctx, fname_txt.c_str());
|
||||
}
|
||||
|
||||
// output to VTT file
|
||||
if (params.output_vtt) {
|
||||
const auto fname_vtt = fname_inp + ".vtt";
|
||||
output_vtt(ctx, fname_vtt.c_str());
|
||||
}
|
||||
|
||||
// output to SRT file
|
||||
if (params.output_srt) {
|
||||
const auto fname_srt = fname_inp + ".srt";
|
||||
output_srt(ctx, fname_srt.c_str(), params);
|
||||
}
|
||||
|
||||
// output to WTS file
|
||||
if (params.output_wts) {
|
||||
const auto fname_wts = fname_inp + ".wts";
|
||||
output_wts(ctx, fname_wts.c_str(), fname_inp.c_str(), params, float(pcmf32.size() + 1000)/WHISPER_SAMPLE_RATE);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
whisper_print_timings(ctx);
|
||||
whisper_free(ctx);
|
||||
|
||||
return 0;
|
||||
}
|
@ -1,47 +0,0 @@
|
||||
#
|
||||
# libstream
|
||||
#
|
||||
|
||||
set(TARGET libstream)
|
||||
|
||||
add_executable(${TARGET}
|
||||
emscripten.cpp
|
||||
)
|
||||
|
||||
target_link_libraries(${TARGET} PRIVATE
|
||||
whisper
|
||||
)
|
||||
|
||||
unset(EXTRA_FLAGS)
|
||||
|
||||
if (WHISPER_WASM_SINGLE_FILE)
|
||||
set(EXTRA_FLAGS "-s SINGLE_FILE=1")
|
||||
message(STATUS "Embedding WASM inside stream.js")
|
||||
|
||||
add_custom_command(
|
||||
TARGET ${TARGET} POST_BUILD
|
||||
COMMAND ${CMAKE_COMMAND} -E copy
|
||||
${CMAKE_BINARY_DIR}/bin/libstream.js
|
||||
${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/stream.wasm/stream.js
|
||||
)
|
||||
endif()
|
||||
|
||||
set_target_properties(${TARGET} PROPERTIES LINK_FLAGS " \
|
||||
--bind \
|
||||
-s USE_PTHREADS=1 \
|
||||
-s PTHREAD_POOL_SIZE=8 \
|
||||
-s INITIAL_MEMORY=1024MB \
|
||||
-s TOTAL_MEMORY=1024MB \
|
||||
-s FORCE_FILESYSTEM=1 \
|
||||
-s EXPORTED_RUNTIME_METHODS=\"['print', 'printErr', 'ccall', 'cwrap']\" \
|
||||
${EXTRA_FLAGS} \
|
||||
")
|
||||
|
||||
#
|
||||
# stream.wasm
|
||||
#
|
||||
|
||||
set(TARGET stream.wasm)
|
||||
|
||||
configure_file(${CMAKE_CURRENT_SOURCE_DIR}/index-tmpl.html ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/${TARGET}/index.html @ONLY)
|
||||
configure_file(${CMAKE_CURRENT_SOURCE_DIR}/../helpers.js ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/${TARGET}/helpers.js @ONLY)
|
@ -1,20 +0,0 @@
|
||||
# stream.wasm
|
||||
|
||||
Real-time transcription in the browser using WebAssembly
|
||||
|
||||
Online demo: https://whisper.ggerganov.com/stream/
|
||||
|
||||
## Build instructions
|
||||
|
||||
```bash
|
||||
# build using Emscripten (v3.1.2)
|
||||
git clone https://github.com/ggerganov/whisper.cpp
|
||||
cd whisper.cpp
|
||||
mkdir build-em && cd build-em
|
||||
emcmake cmake ..
|
||||
make -j
|
||||
|
||||
# copy the produced page to your HTTP path
|
||||
cp bin/stream.wasm/* /path/to/html/
|
||||
cp bin/libstream.worker.js /path/to/html/
|
||||
```
|
@ -1,213 +0,0 @@
|
||||
#include "ggml.h"
|
||||
#include "whisper.h"
|
||||
|
||||
#include <emscripten.h>
|
||||
#include <emscripten/bind.h>
|
||||
|
||||
#include <atomic>
|
||||
#include <cmath>
|
||||
#include <mutex>
|
||||
#include <string>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
|
||||
constexpr int N_THREAD = 8;
|
||||
|
||||
std::vector<struct whisper_context *> g_contexts(4, nullptr);
|
||||
|
||||
std::mutex g_mutex;
|
||||
std::thread g_worker;
|
||||
|
||||
std::atomic<bool> g_running(false);
|
||||
|
||||
std::string g_status = "";
|
||||
std::string g_status_forced = "";
|
||||
std::string g_transcribed = "";
|
||||
|
||||
std::vector<float> g_pcmf32;
|
||||
|
||||
void stream_set_status(const std::string & status) {
|
||||
std::lock_guard<std::mutex> lock(g_mutex);
|
||||
g_status = status;
|
||||
}
|
||||
|
||||
void stream_main(size_t index) {
|
||||
stream_set_status("loading data ...");
|
||||
|
||||
struct whisper_full_params wparams = whisper_full_default_params(whisper_sampling_strategy::WHISPER_SAMPLING_GREEDY);
|
||||
|
||||
wparams.n_threads = std::min(N_THREAD, (int) std::thread::hardware_concurrency());
|
||||
wparams.offset_ms = 0;
|
||||
wparams.translate = false;
|
||||
wparams.no_context = true;
|
||||
wparams.single_segment = true;
|
||||
wparams.print_realtime = false;
|
||||
wparams.print_progress = false;
|
||||
wparams.print_timestamps = true;
|
||||
wparams.print_special = false;
|
||||
|
||||
wparams.max_tokens = 32;
|
||||
wparams.audio_ctx = 768; // partial encoder context for better performance
|
||||
|
||||
wparams.language = "en";
|
||||
|
||||
printf("stream: using %d threads\n", wparams.n_threads);
|
||||
|
||||
std::vector<float> pcmf32;
|
||||
|
||||
// whisper context
|
||||
auto & ctx = g_contexts[index];
|
||||
|
||||
// 5 seconds interval
|
||||
const int64_t window_samples = 5*WHISPER_SAMPLE_RATE;
|
||||
|
||||
while (g_running) {
|
||||
stream_set_status("waiting for audio ...");
|
||||
|
||||
{
|
||||
std::unique_lock<std::mutex> lock(g_mutex);
|
||||
|
||||
if (g_pcmf32.size() < 1024) {
|
||||
lock.unlock();
|
||||
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(10));
|
||||
|
||||
continue;
|
||||
}
|
||||
|
||||
pcmf32 = std::vector<float>(g_pcmf32.end() - std::min((int64_t) g_pcmf32.size(), window_samples), g_pcmf32.end());
|
||||
g_pcmf32.clear();
|
||||
}
|
||||
|
||||
{
|
||||
const auto t_start = std::chrono::high_resolution_clock::now();
|
||||
|
||||
stream_set_status("running whisper ...");
|
||||
|
||||
int ret = whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size());
|
||||
if (ret != 0) {
|
||||
printf("whisper_full() failed: %d\n", ret);
|
||||
break;
|
||||
}
|
||||
|
||||
const auto t_end = std::chrono::high_resolution_clock::now();
|
||||
|
||||
printf("stream: whisper_full() returned %d in %f seconds\n", ret, std::chrono::duration<double>(t_end - t_start).count());
|
||||
}
|
||||
|
||||
{
|
||||
std::string text_heard;
|
||||
|
||||
{
|
||||
const int n_segments = whisper_full_n_segments(ctx);
|
||||
for (int i = n_segments - 1; i < n_segments; ++i) {
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
|
||||
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
|
||||
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
|
||||
|
||||
printf("transcribed: %s\n", text);
|
||||
|
||||
text_heard += text;
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(g_mutex);
|
||||
g_transcribed = text_heard;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (index < g_contexts.size()) {
|
||||
whisper_free(g_contexts[index]);
|
||||
g_contexts[index] = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
EMSCRIPTEN_BINDINGS(stream) {
|
||||
emscripten::function("init", emscripten::optional_override([](const std::string & path_model) {
|
||||
for (size_t i = 0; i < g_contexts.size(); ++i) {
|
||||
if (g_contexts[i] == nullptr) {
|
||||
g_contexts[i] = whisper_init(path_model.c_str());
|
||||
if (g_contexts[i] != nullptr) {
|
||||
g_running = true;
|
||||
if (g_worker.joinable()) {
|
||||
g_worker.join();
|
||||
}
|
||||
g_worker = std::thread([i]() {
|
||||
stream_main(i);
|
||||
});
|
||||
|
||||
return i + 1;
|
||||
} else {
|
||||
return (size_t) 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return (size_t) 0;
|
||||
}));
|
||||
|
||||
emscripten::function("free", emscripten::optional_override([](size_t index) {
|
||||
if (g_running) {
|
||||
g_running = false;
|
||||
}
|
||||
}));
|
||||
|
||||
emscripten::function("set_audio", emscripten::optional_override([](size_t index, const emscripten::val & audio) {
|
||||
--index;
|
||||
|
||||
if (index >= g_contexts.size()) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (g_contexts[index] == nullptr) {
|
||||
return -2;
|
||||
}
|
||||
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(g_mutex);
|
||||
const int n = audio["length"].as<int>();
|
||||
|
||||
emscripten::val heap = emscripten::val::module_property("HEAPU8");
|
||||
emscripten::val memory = heap["buffer"];
|
||||
|
||||
g_pcmf32.resize(n);
|
||||
|
||||
emscripten::val memoryView = audio["constructor"].new_(memory, reinterpret_cast<uintptr_t>(g_pcmf32.data()), n);
|
||||
memoryView.call<void>("set", audio);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}));
|
||||
|
||||
emscripten::function("get_transcribed", emscripten::optional_override([]() {
|
||||
std::string transcribed;
|
||||
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(g_mutex);
|
||||
transcribed = std::move(g_transcribed);
|
||||
}
|
||||
|
||||
return transcribed;
|
||||
}));
|
||||
|
||||
emscripten::function("get_status", emscripten::optional_override([]() {
|
||||
std::string status;
|
||||
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(g_mutex);
|
||||
status = g_status_forced.empty() ? g_status : g_status_forced;
|
||||
}
|
||||
|
||||
return status;
|
||||
}));
|
||||
|
||||
emscripten::function("set_status", emscripten::optional_override([](const std::string & status) {
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(g_mutex);
|
||||
g_status_forced = status;
|
||||
}
|
||||
}));
|
||||
}
|
@ -1,386 +0,0 @@
|
||||
<!doctype html>
|
||||
<html lang="en-us">
|
||||
<head>
|
||||
<title>stream : Real-time Whisper transcription in WebAssembly</title>
|
||||
|
||||
<style>
|
||||
#output {
|
||||
width: 100%;
|
||||
height: 100%;
|
||||
margin: 0 auto;
|
||||
margin-top: 10px;
|
||||
border-left: 0px;
|
||||
border-right: 0px;
|
||||
padding-left: 0px;
|
||||
padding-right: 0px;
|
||||
display: block;
|
||||
background-color: black;
|
||||
color: white;
|
||||
font-size: 10px;
|
||||
font-family: 'Lucida Console', Monaco, monospace;
|
||||
outline: none;
|
||||
white-space: pre;
|
||||
overflow-wrap: normal;
|
||||
overflow-x: scroll;
|
||||
}
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
<div id="main-container">
|
||||
<b>stream : Real-time Whisper transcription in WebAssembly</b>
|
||||
|
||||
<br><br>
|
||||
|
||||
You can find more about this project on <a href="https://github.com/ggerganov/whisper.cpp/tree/master/examples/stream.wasm">GitHub</a>.
|
||||
|
||||
<br><br>
|
||||
|
||||
<hr>
|
||||
|
||||
Select the model you would like to use, click the "Start" button and start speaking
|
||||
|
||||
<br><br>
|
||||
|
||||
<div id="model-whisper">
|
||||
Whisper model: <span id="model-whisper-status"></span>
|
||||
<button id="fetch-whisper-tiny-en" onclick="loadWhisper('tiny.en')">tiny.en (75 MB)</button>
|
||||
<button id="fetch-whisper-base-en" onclick="loadWhisper('base.en')">base.en (142 MB)</button>
|
||||
<span id="fetch-whisper-progress"></span>
|
||||
|
||||
<!--
|
||||
<input type="file" id="file" name="file" onchange="loadFile(event, 'whisper.bin')" />
|
||||
-->
|
||||
</div>
|
||||
|
||||
<br>
|
||||
|
||||
<div id="input">
|
||||
<button id="start" onclick="onStart()" disabled>Start</button>
|
||||
<button id="stop" onclick="onStop()" disabled>Stop</button>
|
||||
<button id="clear" onclick="clearCache()">Clear Cache</button>
|
||||
</div>
|
||||
|
||||
<br>
|
||||
|
||||
<div id="state">
|
||||
Status: <b><span id="state-status">not started</span></b>
|
||||
|
||||
<pre id="state-transcribed">[The transcribed text will be displayed here]</pre>
|
||||
</div>
|
||||
|
||||
<hr>
|
||||
|
||||
Debug output:
|
||||
<textarea id="output" rows="20"></textarea>
|
||||
|
||||
<br>
|
||||
|
||||
<b>Troubleshooting</b>
|
||||
|
||||
<br><br>
|
||||
|
||||
The page does some heavy computations, so make sure:
|
||||
|
||||
<ul>
|
||||
<li>To use a modern web browser (e.g. Chrome, Firefox)</li>
|
||||
<li>To use a fast desktop or laptop computer (i.e. not a mobile phone)</li>
|
||||
<li>Your browser supports WASM <a href="https://webassembly.org/roadmap/">Fixed-width SIMD</a></li>
|
||||
</ul>
|
||||
|
||||
<div class="cell-version">
|
||||
<span>
|
||||
|
|
||||
Build time: <span class="nav-link">@GIT_DATE@</span> |
|
||||
Commit hash: <a class="nav-link" href="https://github.com/ggerganov/whisper.cpp/commit/@GIT_SHA1@">@GIT_SHA1@</a> |
|
||||
Commit subject: <span class="nav-link">@GIT_COMMIT_SUBJECT@</span> |
|
||||
<a class="nav-link" href="https://github.com/ggerganov/whisper.cpp/tree/master/examples/stream.wasm">Source Code</a> |
|
||||
</span>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<script type="text/javascript" src="helpers.js"></script>
|
||||
<script type='text/javascript'>
|
||||
// web audio context
|
||||
var context = null;
|
||||
|
||||
// audio data
|
||||
var audio = null;
|
||||
var audio0 = null;
|
||||
|
||||
// the stream instance
|
||||
var instance = null;
|
||||
|
||||
// model name
|
||||
var model_whisper = null;
|
||||
|
||||
var Module = {
|
||||
print: printTextarea,
|
||||
printErr: printTextarea,
|
||||
setStatus: function(text) {
|
||||
printTextarea('js: ' + text);
|
||||
},
|
||||
monitorRunDependencies: function(left) {
|
||||
},
|
||||
preRun: function() {
|
||||
printTextarea('js: Preparing ...');
|
||||
},
|
||||
postRun: function() {
|
||||
printTextarea('js: Initialized successfully!');
|
||||
}
|
||||
};
|
||||
|
||||
//
|
||||
// fetch models
|
||||
//
|
||||
|
||||
let dbVersion = 1
|
||||
let dbName = 'whisper.ggerganov.com';
|
||||
let indexedDB = window.indexedDB || window.mozIndexedDB || window.webkitIndexedDB || window.msIndexedDB
|
||||
|
||||
function storeFS(fname, buf) {
|
||||
// write to WASM file using FS_createDataFile
|
||||
// if the file exists, delete it
|
||||
try {
|
||||
Module.FS_unlink(fname);
|
||||
} catch (e) {
|
||||
// ignore
|
||||
}
|
||||
|
||||
Module.FS_createDataFile("/", fname, buf, true, true);
|
||||
|
||||
printTextarea('storeFS: stored model: ' + fname + ' size: ' + buf.length);
|
||||
|
||||
document.getElementById('model-whisper-status').innerHTML = 'loaded "' + model_whisper + '"!';
|
||||
|
||||
if (model_whisper != null) {
|
||||
document.getElementById('start').disabled = false;
|
||||
document.getElementById('stop' ).disabled = true;
|
||||
}
|
||||
}
|
||||
|
||||
function loadWhisper(model) {
|
||||
let urls = {
|
||||
'tiny.en': 'https://whisper.ggerganov.com/ggml-model-whisper-tiny.en.bin',
|
||||
'base.en': 'https://whisper.ggerganov.com/ggml-model-whisper-base.en.bin',
|
||||
};
|
||||
|
||||
let sizes = {
|
||||
'tiny.en': 75,
|
||||
'base.en': 142,
|
||||
};
|
||||
|
||||
let url = urls[model];
|
||||
let dst = 'whisper.bin';
|
||||
let size_mb = sizes[model];
|
||||
|
||||
model_whisper = model;
|
||||
|
||||
document.getElementById('fetch-whisper-tiny-en').style.display = 'none';
|
||||
document.getElementById('fetch-whisper-base-en').style.display = 'none';
|
||||
document.getElementById('model-whisper-status').innerHTML = 'loading "' + model + '" ... ';
|
||||
|
||||
cbProgress = function(p) {
|
||||
let el = document.getElementById('fetch-whisper-progress');
|
||||
el.innerHTML = Math.round(100*p) + '%';
|
||||
};
|
||||
|
||||
cbCancel = function() {
|
||||
var el;
|
||||
el = document.getElementById('fetch-whisper-tiny-en'); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-base-en'); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('model-whisper-status'); if (el) el.innerHTML = '';
|
||||
};
|
||||
|
||||
loadRemote(url, dst, size_mb, cbProgress, storeFS, cbCancel, printTextarea);
|
||||
}
|
||||
|
||||
//
|
||||
// microphone
|
||||
//
|
||||
|
||||
const kSampleRate = 16000;
|
||||
const kRestartRecording_s = 120;
|
||||
const kIntervalAudio_ms = 5000; // pass the recorded audio to the C++ instance at this rate
|
||||
|
||||
var mediaRecorder = null;
|
||||
var doRecording = false;
|
||||
var startTime = 0;
|
||||
|
||||
window.AudioContext = window.AudioContext || window.webkitAudioContext;
|
||||
window.OfflineAudioContext = window.OfflineAudioContext || window.webkitOfflineAudioContext;
|
||||
|
||||
function stopRecording() {
|
||||
Module.set_status("paused");
|
||||
doRecording = false;
|
||||
audio0 = null;
|
||||
audio = null;
|
||||
context = null;
|
||||
}
|
||||
|
||||
function startRecording() {
|
||||
if (!context) {
|
||||
context = new AudioContext({
|
||||
sampleRate: kSampleRate,
|
||||
channelCount: 1,
|
||||
echoCancellation: false,
|
||||
autoGainControl: true,
|
||||
noiseSuppression: true,
|
||||
});
|
||||
}
|
||||
|
||||
Module.set_status("");
|
||||
|
||||
document.getElementById('start').disabled = true;
|
||||
document.getElementById('stop').disabled = false;
|
||||
|
||||
doRecording = true;
|
||||
startTime = Date.now();
|
||||
|
||||
var chunks = [];
|
||||
var stream = null;
|
||||
|
||||
navigator.mediaDevices.getUserMedia({audio: true, video: false})
|
||||
.then(function(s) {
|
||||
stream = s;
|
||||
mediaRecorder = new MediaRecorder(stream);
|
||||
mediaRecorder.ondataavailable = function(e) {
|
||||
chunks.push(e.data);
|
||||
|
||||
var blob = new Blob(chunks, { 'type' : 'audio/ogg; codecs=opus' });
|
||||
var reader = new FileReader();
|
||||
|
||||
reader.onload = function(event) {
|
||||
var buf = new Uint8Array(reader.result);
|
||||
|
||||
if (!context) {
|
||||
return;
|
||||
}
|
||||
context.decodeAudioData(buf.buffer, function(audioBuffer) {
|
||||
var offlineContext = new OfflineAudioContext(audioBuffer.numberOfChannels, audioBuffer.length, audioBuffer.sampleRate);
|
||||
var source = offlineContext.createBufferSource();
|
||||
source.buffer = audioBuffer;
|
||||
source.connect(offlineContext.destination);
|
||||
source.start(0);
|
||||
|
||||
offlineContext.startRendering().then(function(renderedBuffer) {
|
||||
audio = renderedBuffer.getChannelData(0);
|
||||
|
||||
//printTextarea('js: audio recorded, size: ' + audio.length + ', old size: ' + (audio0 == null ? 0 : audio0.length));
|
||||
|
||||
var audioAll = new Float32Array(audio0 == null ? audio.length : audio0.length + audio.length);
|
||||
if (audio0 != null) {
|
||||
audioAll.set(audio0, 0);
|
||||
}
|
||||
audioAll.set(audio, audio0 == null ? 0 : audio0.length);
|
||||
|
||||
if (instance) {
|
||||
Module.set_audio(instance, audioAll);
|
||||
}
|
||||
});
|
||||
}, function(e) {
|
||||
audio = null;
|
||||
});
|
||||
}
|
||||
|
||||
reader.readAsArrayBuffer(blob);
|
||||
};
|
||||
|
||||
mediaRecorder.onstop = function(e) {
|
||||
if (doRecording) {
|
||||
setTimeout(function() {
|
||||
startRecording();
|
||||
});
|
||||
}
|
||||
};
|
||||
|
||||
mediaRecorder.start(kIntervalAudio_ms);
|
||||
})
|
||||
.catch(function(err) {
|
||||
printTextarea('js: error getting audio stream: ' + err);
|
||||
});
|
||||
|
||||
var interval = setInterval(function() {
|
||||
if (!doRecording) {
|
||||
clearInterval(interval);
|
||||
mediaRecorder.stop();
|
||||
stream.getTracks().forEach(function(track) {
|
||||
track.stop();
|
||||
});
|
||||
|
||||
document.getElementById('start').disabled = false;
|
||||
document.getElementById('stop').disabled = true;
|
||||
|
||||
mediaRecorder = null;
|
||||
}
|
||||
|
||||
// if audio length is more than kRestartRecording_s seconds, restart recording
|
||||
if (audio != null && audio.length > kSampleRate*kRestartRecording_s) {
|
||||
if (doRecording) {
|
||||
//printTextarea('js: restarting recording');
|
||||
|
||||
clearInterval(interval);
|
||||
audio0 = audio;
|
||||
audio = null;
|
||||
mediaRecorder.stop();
|
||||
stream.getTracks().forEach(function(track) {
|
||||
track.stop();
|
||||
});
|
||||
}
|
||||
}
|
||||
}, 100);
|
||||
}
|
||||
|
||||
//
|
||||
// main
|
||||
//
|
||||
|
||||
var nLines = 0;
|
||||
var intervalUpdate = null;
|
||||
var transcribedAll = '';
|
||||
|
||||
function onStart() {
|
||||
if (!instance) {
|
||||
instance = Module.init('whisper.bin');
|
||||
|
||||
if (instance) {
|
||||
printTextarea("js: whisper initialized, instance: " + instance);
|
||||
}
|
||||
}
|
||||
|
||||
if (!instance) {
|
||||
printTextarea("js: failed to initialize whisper");
|
||||
return;
|
||||
}
|
||||
|
||||
startRecording();
|
||||
|
||||
intervalUpdate = setInterval(function() {
|
||||
var transcribed = Module.get_transcribed();
|
||||
|
||||
if (transcribed != null && transcribed.length > 1) {
|
||||
transcribedAll += transcribed + '<br>';
|
||||
nLines++;
|
||||
|
||||
// if more than 10 lines, remove the first line
|
||||
if (nLines > 10) {
|
||||
var i = transcribedAll.indexOf('<br>');
|
||||
if (i > 0) {
|
||||
transcribedAll = transcribedAll.substring(i + 4);
|
||||
nLines--;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
document.getElementById('state-status').innerHTML = Module.get_status();
|
||||
document.getElementById('state-transcribed').innerHTML = transcribedAll;
|
||||
}, 100);
|
||||
}
|
||||
|
||||
function onStop() {
|
||||
stopRecording();
|
||||
}
|
||||
|
||||
</script>
|
||||
<script type="text/javascript" src="stream.js"></script>
|
||||
</body>
|
||||
</html>
|
@ -1,7 +0,0 @@
|
||||
if (WHISPER_SUPPORT_SDL2)
|
||||
# stream
|
||||
set(TARGET stream)
|
||||
add_executable(${TARGET} stream.cpp)
|
||||
target_include_directories(${TARGET} PRIVATE ${SDL2_INCLUDE_DIRS})
|
||||
target_link_libraries(${TARGET} PRIVATE whisper ${SDL2_LIBRARIES} ${CMAKE_THREAD_LIBS_INIT})
|
||||
endif ()
|
@ -1,27 +0,0 @@
|
||||
# stream
|
||||
|
||||
This is a naive example of performing real-time inference on audio from your microphone.
|
||||
The `stream` tool samples the audio every half a second and runs the transcription continously.
|
||||
More info is available in [issue #10](https://github.com/ggerganov/whisper.cpp/issues/10).
|
||||
|
||||
```java
|
||||
./stream -m ./models/ggml-base.en.bin -t 8 --step 500 --length 5000
|
||||
```
|
||||
|
||||
https://user-images.githubusercontent.com/1991296/194935793-76afede7-cfa8-48d8-a80f-28ba83be7d09.mp4
|
||||
|
||||
The `stream` tool depends on SDL2 library to capture audio from the microphone. You can build it like this:
|
||||
|
||||
```bash
|
||||
# Install SDL2 on Linux
|
||||
sudo apt-get install libsdl2-dev
|
||||
|
||||
# Install SDL2 on Mac OS
|
||||
brew install sdl2
|
||||
|
||||
make stream
|
||||
```
|
||||
|
||||
## Web version
|
||||
|
||||
This tool can also run in the browser: [examples/stream.wasm](/examples/stream.wasm)
|
@ -1,395 +0,0 @@
|
||||
// Real-time speech recognition of input from a microphone
|
||||
//
|
||||
// A very quick-n-dirty implementation serving mainly as a proof of concept.
|
||||
|
||||
#include "whisper.h"
|
||||
|
||||
#include <SDL.h>
|
||||
#include <SDL_audio.h>
|
||||
|
||||
#include <cassert>
|
||||
#include <cstdio>
|
||||
#include <string>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
#include <fstream>
|
||||
|
||||
// 500 -> 00:05.000
|
||||
// 6000 -> 01:00.000
|
||||
std::string to_timestamp(int64_t t) {
|
||||
int64_t sec = t/100;
|
||||
int64_t msec = t - sec*100;
|
||||
int64_t min = sec/60;
|
||||
sec = sec - min*60;
|
||||
|
||||
char buf[32];
|
||||
snprintf(buf, sizeof(buf), "%02d:%02d.%03d", (int) min, (int) sec, (int) msec);
|
||||
|
||||
return std::string(buf);
|
||||
}
|
||||
|
||||
// command-line parameters
|
||||
struct whisper_params {
|
||||
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
||||
int32_t step_ms = 3000;
|
||||
int32_t length_ms = 10000;
|
||||
int32_t capture_id = -1;
|
||||
int32_t max_tokens = 32;
|
||||
int32_t audio_ctx = 0;
|
||||
|
||||
bool speed_up = false;
|
||||
bool translate = false;
|
||||
bool no_context = true;
|
||||
bool print_special = false;
|
||||
bool no_timestamps = true;
|
||||
|
||||
std::string language = "en";
|
||||
std::string model = "models/ggml-base.en.bin";
|
||||
std::string fname_out = "";
|
||||
};
|
||||
|
||||
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
|
||||
|
||||
bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
for (int i = 1; i < argc; i++) {
|
||||
std::string arg = argv[i];
|
||||
|
||||
if (arg == "-h" || arg == "--help") {
|
||||
whisper_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
|
||||
else if ( arg == "--step") { params.step_ms = std::stoi(argv[++i]); }
|
||||
else if ( arg == "--length") { params.length_ms = std::stoi(argv[++i]); }
|
||||
else if (arg == "-c" || arg == "--capture") { params.capture_id = std::stoi(argv[++i]); }
|
||||
else if (arg == "-mt" || arg == "--max-tokens") { params.max_tokens = std::stoi(argv[++i]); }
|
||||
else if (arg == "-ac" || arg == "--audio-ctx") { params.audio_ctx = std::stoi(argv[++i]); }
|
||||
else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; }
|
||||
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
|
||||
else if (arg == "-kc" || arg == "--keep-context") { params.no_context = false; }
|
||||
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
|
||||
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
|
||||
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
|
||||
else if (arg == "-f" || arg == "--file") { params.fname_out = argv[++i]; }
|
||||
else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
whisper_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void whisper_print_usage(int argc, char ** argv, const whisper_params & params) {
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "options:\n");
|
||||
fprintf(stderr, " -h, --help [default] show this help message and exit\n");
|
||||
fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads);
|
||||
fprintf(stderr, " --step N [%-7d] audio step size in milliseconds\n", params.step_ms);
|
||||
fprintf(stderr, " --length N [%-7d] audio length in milliseconds\n", params.length_ms);
|
||||
fprintf(stderr, " -c ID, --capture ID [%-7d] capture device ID\n", params.capture_id);
|
||||
fprintf(stderr, " -mt N, --max-tokens N [%-7d] maximum number of tokens per audio chunk\n", params.max_tokens);
|
||||
fprintf(stderr, " -ac N, --audio-ctx N [%-7d] audio context size (0 - all)\n", params.audio_ctx);
|
||||
fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
|
||||
fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
|
||||
fprintf(stderr, " -kc, --keep-context [%-7s] keep context between audio chunks\n", params.no_context ? "false" : "true");
|
||||
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
|
||||
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str());
|
||||
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
|
||||
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] text output file name\n", params.fname_out.c_str());
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
//
|
||||
// SDL Audio capture
|
||||
//
|
||||
|
||||
SDL_AudioDeviceID g_dev_id_in = 0;
|
||||
|
||||
bool audio_sdl_init(const int capture_id) {
|
||||
if (g_dev_id_in) {
|
||||
fprintf(stderr, "%s: already initialized\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
SDL_LogSetPriority(SDL_LOG_CATEGORY_APPLICATION, SDL_LOG_PRIORITY_INFO);
|
||||
|
||||
if (SDL_Init(SDL_INIT_AUDIO) < 0) {
|
||||
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "Couldn't initialize SDL: %s\n", SDL_GetError());
|
||||
return (1);
|
||||
}
|
||||
|
||||
SDL_SetHintWithPriority(SDL_HINT_AUDIO_RESAMPLING_MODE, "medium", SDL_HINT_OVERRIDE);
|
||||
|
||||
{
|
||||
int nDevices = SDL_GetNumAudioDevices(SDL_TRUE);
|
||||
fprintf(stderr, "%s: found %d capture devices:\n", __func__, nDevices);
|
||||
for (int i = 0; i < nDevices; i++) {
|
||||
fprintf(stderr, "%s: - Capture device #%d: '%s'\n", __func__, i, SDL_GetAudioDeviceName(i, SDL_TRUE));
|
||||
}
|
||||
}
|
||||
|
||||
SDL_AudioSpec capture_spec_requested;
|
||||
SDL_AudioSpec capture_spec_obtained;
|
||||
|
||||
SDL_zero(capture_spec_requested);
|
||||
SDL_zero(capture_spec_obtained);
|
||||
|
||||
capture_spec_requested.freq = WHISPER_SAMPLE_RATE;
|
||||
capture_spec_requested.format = AUDIO_F32;
|
||||
capture_spec_requested.channels = 1;
|
||||
capture_spec_requested.samples = 1024;
|
||||
|
||||
if (capture_id >= 0) {
|
||||
fprintf(stderr, "%s: attempt to open capture device %d : '%s' ...\n", __func__, capture_id, SDL_GetAudioDeviceName(capture_id, SDL_TRUE));
|
||||
g_dev_id_in = SDL_OpenAudioDevice(SDL_GetAudioDeviceName(capture_id, SDL_TRUE), SDL_TRUE, &capture_spec_requested, &capture_spec_obtained, 0);
|
||||
} else {
|
||||
fprintf(stderr, "%s: attempt to open default capture device ...\n", __func__);
|
||||
g_dev_id_in = SDL_OpenAudioDevice(nullptr, SDL_TRUE, &capture_spec_requested, &capture_spec_obtained, 0);
|
||||
}
|
||||
if (!g_dev_id_in) {
|
||||
fprintf(stderr, "%s: couldn't open an audio device for capture: %s!\n", __func__, SDL_GetError());
|
||||
g_dev_id_in = 0;
|
||||
} else {
|
||||
fprintf(stderr, "%s: obtained spec for input device (SDL Id = %d):\n", __func__, g_dev_id_in);
|
||||
fprintf(stderr, "%s: - sample rate: %d\n", __func__, capture_spec_obtained.freq);
|
||||
fprintf(stderr, "%s: - format: %d (required: %d)\n", __func__, capture_spec_obtained.format, capture_spec_requested.format);
|
||||
fprintf(stderr, "%s: - channels: %d (required: %d)\n", __func__, capture_spec_obtained.channels, capture_spec_requested.channels);
|
||||
fprintf(stderr, "%s: - samples per frame: %d\n", __func__, capture_spec_obtained.samples);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
///////////////////////////
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
whisper_params params;
|
||||
|
||||
if (whisper_params_parse(argc, argv, params) == false) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
// init audio
|
||||
|
||||
if (!audio_sdl_init(params.capture_id)) {
|
||||
fprintf(stderr, "%s: audio_sdl_init() failed!\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (whisper_lang_id(params.language.c_str()) == -1) {
|
||||
fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str());
|
||||
whisper_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
|
||||
// whisper init
|
||||
|
||||
struct whisper_context * ctx = whisper_init(params.model.c_str());
|
||||
|
||||
const int n_samples = (params.step_ms/1000.0)*WHISPER_SAMPLE_RATE;
|
||||
const int n_samples_len = (params.length_ms/1000.0)*WHISPER_SAMPLE_RATE;
|
||||
const int n_samples_30s = 30*WHISPER_SAMPLE_RATE;
|
||||
const int n_samples_keep = 0.2*WHISPER_SAMPLE_RATE;
|
||||
|
||||
std::vector<float> pcmf32(n_samples_30s, 0.0f);
|
||||
std::vector<float> pcmf32_old;
|
||||
|
||||
std::vector<whisper_token> prompt_tokens;
|
||||
const int n_new_line = params.length_ms / params.step_ms - 1;
|
||||
|
||||
// print some info about the processing
|
||||
{
|
||||
fprintf(stderr, "\n");
|
||||
if (!whisper_is_multilingual(ctx)) {
|
||||
if (params.language != "en" || params.translate) {
|
||||
params.language = "en";
|
||||
params.translate = false;
|
||||
fprintf(stderr, "%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__);
|
||||
}
|
||||
}
|
||||
fprintf(stderr, "%s: processing %d samples (step = %.1f sec / len = %.1f sec), %d threads, lang = %s, task = %s, timestamps = %d ...\n",
|
||||
__func__,
|
||||
n_samples,
|
||||
float(n_samples)/WHISPER_SAMPLE_RATE,
|
||||
float(n_samples_len)/WHISPER_SAMPLE_RATE,
|
||||
params.n_threads,
|
||||
params.language.c_str(),
|
||||
params.translate ? "translate" : "transcribe",
|
||||
params.no_timestamps ? 0 : 1);
|
||||
|
||||
fprintf(stderr, "%s: n_new_line = %d\n", __func__, n_new_line);
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
SDL_PauseAudioDevice(g_dev_id_in, 0);
|
||||
|
||||
int n_iter = 0;
|
||||
bool is_running = true;
|
||||
|
||||
std::ofstream fout;
|
||||
if (params.fname_out.length() > 0) {
|
||||
fout.open(params.fname_out);
|
||||
if (!fout.is_open()) {
|
||||
fprintf(stderr, "%s: failed to open output file '%s'!\n", __func__, params.fname_out.c_str());
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
printf("[Start speaking]");
|
||||
fflush(stdout);
|
||||
|
||||
// main audio loop
|
||||
while (is_running) {
|
||||
// handle Ctrl + C
|
||||
{
|
||||
SDL_Event event;
|
||||
while (SDL_PollEvent(&event)) {
|
||||
switch (event.type) {
|
||||
case SDL_QUIT:
|
||||
{
|
||||
is_running = false;
|
||||
} break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (!is_running) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (!is_running) {
|
||||
break;
|
||||
}
|
||||
|
||||
// process new audio
|
||||
if (n_iter > 0 && SDL_GetQueuedAudioSize(g_dev_id_in) > 2*n_samples*sizeof(float)) {
|
||||
fprintf(stderr, "\n\n%s: WARNING: cannot process audio fast enough, dropping audio ...\n\n", __func__);
|
||||
SDL_ClearQueuedAudio(g_dev_id_in);
|
||||
}
|
||||
|
||||
while (SDL_GetQueuedAudioSize(g_dev_id_in) < n_samples*sizeof(float)) {
|
||||
SDL_Delay(1);
|
||||
}
|
||||
|
||||
const int n_samples_new = SDL_GetQueuedAudioSize(g_dev_id_in)/sizeof(float);
|
||||
|
||||
// take one second from previous iteration
|
||||
//const int n_samples_take = std::min((int) pcmf32_old.size(), std::max(0, n_samples_30s/30 - n_samples_new));
|
||||
|
||||
// take up to params.length_ms audio from previous iteration
|
||||
const int n_samples_take = std::min((int) pcmf32_old.size(), std::max(0, n_samples_keep + n_samples_len - n_samples_new));
|
||||
|
||||
//printf("processing: take = %d, new = %d, old = %d\n", n_samples_take, n_samples_new, (int) pcmf32_old.size());
|
||||
|
||||
pcmf32.resize(n_samples_new + n_samples_take);
|
||||
|
||||
for (int i = 0; i < n_samples_take; i++) {
|
||||
pcmf32[i] = pcmf32_old[pcmf32_old.size() - n_samples_take + i];
|
||||
}
|
||||
|
||||
SDL_DequeueAudio(g_dev_id_in, pcmf32.data() + n_samples_take, n_samples_new*sizeof(float));
|
||||
|
||||
pcmf32_old = pcmf32;
|
||||
|
||||
// run the inference
|
||||
{
|
||||
whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
|
||||
|
||||
wparams.print_progress = false;
|
||||
wparams.print_special = params.print_special;
|
||||
wparams.print_realtime = false;
|
||||
wparams.print_timestamps = !params.no_timestamps;
|
||||
wparams.translate = params.translate;
|
||||
wparams.no_context = true;
|
||||
wparams.single_segment = true;
|
||||
wparams.max_tokens = params.max_tokens;
|
||||
wparams.language = params.language.c_str();
|
||||
wparams.n_threads = params.n_threads;
|
||||
|
||||
wparams.audio_ctx = params.audio_ctx;
|
||||
wparams.speed_up = params.speed_up;
|
||||
|
||||
wparams.prompt_tokens = params.no_context ? nullptr : prompt_tokens.data();
|
||||
wparams.prompt_n_tokens = params.no_context ? 0 : prompt_tokens.size();
|
||||
|
||||
if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) {
|
||||
fprintf(stderr, "%s: failed to process audio\n", argv[0]);
|
||||
return 6;
|
||||
}
|
||||
|
||||
// print result;
|
||||
{
|
||||
printf("\33[2K\r");
|
||||
|
||||
// print long empty line to clear the previous line
|
||||
printf("%s", std::string(100, ' ').c_str());
|
||||
|
||||
printf("\33[2K\r");
|
||||
|
||||
const int n_segments = whisper_full_n_segments(ctx);
|
||||
for (int i = 0; i < n_segments; ++i) {
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
|
||||
if (params.no_timestamps) {
|
||||
printf("%s", text);
|
||||
fflush(stdout);
|
||||
|
||||
if (params.fname_out.length() > 0) {
|
||||
fout << text;
|
||||
}
|
||||
} else {
|
||||
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
|
||||
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
|
||||
|
||||
printf ("[%s --> %s] %s\n", to_timestamp(t0).c_str(), to_timestamp(t1).c_str(), text);
|
||||
|
||||
if (params.fname_out.length() > 0) {
|
||||
fout << "[" << to_timestamp(t0) << " --> " << to_timestamp(t1) << "] " << text << std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (params.fname_out.length() > 0) {
|
||||
fout << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
++n_iter;
|
||||
|
||||
if ((n_iter % n_new_line) == 0) {
|
||||
printf("\n");
|
||||
|
||||
// keep part of the audio for next iteration to try to mitigate word boundary issues
|
||||
pcmf32_old = std::vector<float>(pcmf32.end() - n_samples_keep, pcmf32.end());
|
||||
|
||||
// Add tokens of the last full length segment as the prompt
|
||||
if (!params.no_context) {
|
||||
prompt_tokens.clear();
|
||||
|
||||
const int n_segments = whisper_full_n_segments(ctx);
|
||||
for (int i = 0; i < n_segments; ++i) {
|
||||
const int token_count = whisper_full_n_tokens(ctx, i);
|
||||
for (int j = 0; j < token_count; ++j) {
|
||||
prompt_tokens.push_back(whisper_full_get_token_id(ctx, i, j));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (g_dev_id_in >= 0) {
|
||||
SDL_CloseAudioDevice(g_dev_id_in);
|
||||
}
|
||||
|
||||
whisper_print_timings(ctx);
|
||||
whisper_free(ctx);
|
||||
|
||||
return 0;
|
||||
}
|
@ -1,48 +0,0 @@
|
||||
#
|
||||
# libtalk
|
||||
#
|
||||
|
||||
set(TARGET libtalk)
|
||||
|
||||
add_executable(${TARGET}
|
||||
emscripten.cpp
|
||||
gpt-2.cpp
|
||||
)
|
||||
|
||||
target_link_libraries(${TARGET} PRIVATE
|
||||
whisper
|
||||
)
|
||||
|
||||
unset(EXTRA_FLAGS)
|
||||
|
||||
if (WHISPER_WASM_SINGLE_FILE)
|
||||
set(EXTRA_FLAGS "-s SINGLE_FILE=1")
|
||||
message(STATUS "Embedding WASM inside talk.js")
|
||||
|
||||
add_custom_command(
|
||||
TARGET ${TARGET} POST_BUILD
|
||||
COMMAND ${CMAKE_COMMAND} -E copy
|
||||
${CMAKE_BINARY_DIR}/bin/libtalk.js
|
||||
${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/talk.wasm/talk.js
|
||||
)
|
||||
endif()
|
||||
|
||||
set_target_properties(${TARGET} PROPERTIES LINK_FLAGS " \
|
||||
--bind \
|
||||
-s USE_PTHREADS=1 \
|
||||
-s PTHREAD_POOL_SIZE=8 \
|
||||
-s INITIAL_MEMORY=1600MB \
|
||||
-s TOTAL_MEMORY=1600MB \
|
||||
-s FORCE_FILESYSTEM=1 \
|
||||
-s EXPORTED_RUNTIME_METHODS=\"['print', 'printErr', 'ccall', 'cwrap']\" \
|
||||
${EXTRA_FLAGS} \
|
||||
")
|
||||
|
||||
#
|
||||
# talk.wasm
|
||||
#
|
||||
|
||||
set(TARGET talk.wasm)
|
||||
|
||||
configure_file(${CMAKE_CURRENT_SOURCE_DIR}/index-tmpl.html ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/${TARGET}/index.html @ONLY)
|
||||
configure_file(${CMAKE_CURRENT_SOURCE_DIR}/../helpers.js ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/${TARGET}/helpers.js @ONLY)
|
@ -1,74 +0,0 @@
|
||||
# talk.wasm
|
||||
|
||||
Talk with an Artificial Intelligence in your browser:
|
||||
|
||||
[https://user-images.githubusercontent.com/1991296/203411580-fedb4839-05e4-4474-8364-aaf1e9a9b615.mp4](https://user-images.githubusercontent.com/1991296/203845553-f7b44e13-9a15-4fc8-b518-ae8f4c6770fe.mp4)
|
||||
|
||||
Online demo: https://whisper.ggerganov.com/talk/
|
||||
|
||||
Terminal version: [examples/talk](/examples/talk)
|
||||
|
||||
## How it works?
|
||||
|
||||
This demo leverages 2 modern neural network models to create a high-quality voice chat directly in your browser:
|
||||
|
||||
- [OpenAI's Whisper](https://github.com/openai/whisper) speech recognition model is used to process your voice and understand what you are saying
|
||||
- Upon receiving some voice input, the AI generates a text response using [OpenAI's GPT-2](https://github.com/openai/gpt-2) language model
|
||||
- The AI then vocalizes the response using the browser's [Web Speech API](https://developer.mozilla.org/en-US/docs/Web/API/Web_Speech_API)
|
||||
|
||||
The web page does the processing locally on your machine. The processing of these heavy neural network models in the
|
||||
browser is possible by implementing them efficiently in C/C++ and using the browser's WebAssembly SIMD capabilities for
|
||||
extra performance:
|
||||
|
||||
- The Whisper C++ implementation is here: [whisper.h](/whisper.h) / [whisper.cpp](/whisper.cpp)
|
||||
- The GPT-2 C++ implementation is here: [gpt-2.h](gpt-2.h) / [gpt-2.cpp](gpt-2.cpp)
|
||||
- Both models use a custom tensor library implemented in C: [ggml.h](/ggml.h) / [ggml.c](/ggml.c)
|
||||
- The HTML/JS layer is here: [index-tmpl.html](index-tmpl.html)
|
||||
- The Emscripten bridge between C/C++ and JS is here: [emscripten.cpp](emscripten.cpp)
|
||||
|
||||
In order to run the models, the web page first needs to download the model data which is about ~350 MB. The model data
|
||||
is then cached in your browser's cache and can be reused in future visits without downloading it again.
|
||||
|
||||
## Requirements
|
||||
|
||||
In order to run this demo efficiently, you need to have the following:
|
||||
|
||||
- Latest Chrome or Firefox browser (Safari is not supported)
|
||||
- Run this on a desktop or laptop with modern CPU (a mobile phone will likely not be good enough)
|
||||
- Speak phrases that are no longer than 10 seconds - this is the audio context of the AI
|
||||
- The web-page uses about 1.6GB of RAM
|
||||
|
||||
Notice that this demo is using the smallest GPT-2 model, so the generated text responses are not always very good.
|
||||
Also, the prompting strategy can likely be improved to achieve better results.
|
||||
|
||||
The demo is quite computationally heavy, so you need a fast CPU. It's not usual to run these transformer models in a
|
||||
browser. Typically, they run on powerful GPUs.
|
||||
|
||||
Currently, mobile browsers do not support the Fixed-width SIMD WebAssembly capability, so you cannot run this demo
|
||||
on a phone or a tablet. Hopefully, in the near future this will become supported.
|
||||
|
||||
## Todo
|
||||
|
||||
- Better UI (contributions are welcome)
|
||||
- Better GPT-2 prompting
|
||||
|
||||
## Build instructions
|
||||
|
||||
```bash
|
||||
# build using Emscripten (v3.1.2)
|
||||
git clone https://github.com/ggerganov/whisper.cpp
|
||||
cd whisper.cpp
|
||||
mkdir build-em && cd build-em
|
||||
emcmake cmake ..
|
||||
make -j
|
||||
|
||||
# copy the produced page to your HTTP path
|
||||
cp bin/talk.wasm/* /path/to/html/
|
||||
cp bin/libtalk.worker.js /path/to/html/
|
||||
```
|
||||
|
||||
## Feedback
|
||||
|
||||
If you have any comments or ideas for improvement, please drop a comment in the following discussion:
|
||||
|
||||
https://github.com/ggerganov/whisper.cpp/discussions/167
|
@ -1,380 +0,0 @@
|
||||
#include "ggml.h"
|
||||
#include "gpt-2.h"
|
||||
#include "whisper.h"
|
||||
|
||||
#include <emscripten.h>
|
||||
#include <emscripten/bind.h>
|
||||
|
||||
#include <atomic>
|
||||
#include <cmath>
|
||||
#include <mutex>
|
||||
#include <string>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
#include <regex>
|
||||
|
||||
constexpr int N_THREAD = 8;
|
||||
|
||||
struct gpt2_context * g_gpt2;
|
||||
std::vector<struct whisper_context *> g_contexts(4, nullptr);
|
||||
|
||||
std::mutex g_mutex;
|
||||
std::thread g_worker;
|
||||
std::atomic<bool> g_running(false);
|
||||
|
||||
bool g_force_speak = false;
|
||||
std::string g_text_to_speak = "";
|
||||
std::string g_status = "";
|
||||
std::string g_status_forced = "";
|
||||
|
||||
std::vector<float> g_pcmf32;
|
||||
|
||||
std::string to_timestamp(int64_t t) {
|
||||
int64_t sec = t/100;
|
||||
int64_t msec = t - sec*100;
|
||||
int64_t min = sec/60;
|
||||
sec = sec - min*60;
|
||||
|
||||
char buf[32];
|
||||
snprintf(buf, sizeof(buf), "%02d:%02d.%03d", (int) min, (int) sec, (int) msec);
|
||||
|
||||
return std::string(buf);
|
||||
}
|
||||
|
||||
void talk_set_status(const std::string & status) {
|
||||
std::lock_guard<std::mutex> lock(g_mutex);
|
||||
g_status = status;
|
||||
}
|
||||
|
||||
void talk_main(size_t index) {
|
||||
talk_set_status("loading data ...");
|
||||
|
||||
struct whisper_full_params wparams = whisper_full_default_params(whisper_sampling_strategy::WHISPER_SAMPLING_GREEDY);
|
||||
|
||||
wparams.n_threads = std::min(N_THREAD, (int) std::thread::hardware_concurrency());
|
||||
wparams.offset_ms = 0;
|
||||
wparams.translate = false;
|
||||
wparams.no_context = true;
|
||||
wparams.single_segment = true;
|
||||
wparams.print_realtime = false;
|
||||
wparams.print_progress = false;
|
||||
wparams.print_timestamps = true;
|
||||
wparams.print_special = false;
|
||||
|
||||
wparams.max_tokens = 32;
|
||||
wparams.audio_ctx = 768; // partial encoder context for better performance
|
||||
|
||||
wparams.language = "en";
|
||||
|
||||
g_gpt2 = gpt2_init("gpt-2.bin");
|
||||
|
||||
printf("talk: using %d threads\n", wparams.n_threads);
|
||||
|
||||
std::vector<float> pcmf32;
|
||||
|
||||
// whisper context
|
||||
auto & ctx = g_contexts[index];
|
||||
|
||||
const int64_t step_samples = 2*WHISPER_SAMPLE_RATE;
|
||||
const int64_t window_samples = 9*WHISPER_SAMPLE_RATE;
|
||||
const int64_t step_ms = (step_samples*1000)/WHISPER_SAMPLE_RATE;
|
||||
|
||||
auto t_last = std::chrono::high_resolution_clock::now();
|
||||
|
||||
talk_set_status("listening ...");
|
||||
|
||||
while (g_running) {
|
||||
|
||||
const auto t_now = std::chrono::high_resolution_clock::now();
|
||||
if (std::chrono::duration_cast<std::chrono::milliseconds>(t_now - t_last).count() < step_ms) {
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(g_mutex);
|
||||
g_pcmf32.clear();
|
||||
}
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(10));
|
||||
continue;
|
||||
}
|
||||
|
||||
talk_set_status("listening ...");
|
||||
|
||||
{
|
||||
std::unique_lock<std::mutex> lock(g_mutex);
|
||||
|
||||
if (g_pcmf32.size() < step_samples) {
|
||||
lock.unlock();
|
||||
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(10));
|
||||
|
||||
continue;
|
||||
}
|
||||
|
||||
pcmf32 = std::vector<float>(g_pcmf32.end() - std::min((int64_t) g_pcmf32.size(), window_samples), g_pcmf32.end());
|
||||
}
|
||||
|
||||
// VAD: if energy in during last second is above threshold, then skip
|
||||
{
|
||||
float energy_all = 0.0f;
|
||||
float energy_1s = 0.0f;
|
||||
|
||||
for (size_t i = 0; i < pcmf32.size(); i++) {
|
||||
energy_all += fabsf(pcmf32[i]);
|
||||
|
||||
if (i >= pcmf32.size() - WHISPER_SAMPLE_RATE) {
|
||||
energy_1s += fabsf(pcmf32[i]);
|
||||
}
|
||||
}
|
||||
|
||||
energy_all /= pcmf32.size();
|
||||
energy_1s /= WHISPER_SAMPLE_RATE;
|
||||
|
||||
if (energy_1s > 0.1f*energy_all && !g_force_speak) {
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(10));
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
talk_set_status("processing audio (whisper)...");
|
||||
|
||||
t_last = t_now;
|
||||
|
||||
if (!g_force_speak) {
|
||||
const auto t_start = std::chrono::high_resolution_clock::now();
|
||||
|
||||
int ret = whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size());
|
||||
if (ret != 0) {
|
||||
printf("whisper_full() failed: %d\n", ret);
|
||||
break;
|
||||
}
|
||||
|
||||
const auto t_end = std::chrono::high_resolution_clock::now();
|
||||
|
||||
printf("whisper_full() returned %d in %f seconds\n", ret, std::chrono::duration<double>(t_end - t_start).count());
|
||||
}
|
||||
|
||||
{
|
||||
std::string text_heard;
|
||||
|
||||
if (!g_force_speak) {
|
||||
const int n_segments = whisper_full_n_segments(ctx);
|
||||
for (int i = n_segments - 1; i < n_segments; ++i) {
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
|
||||
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
|
||||
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
|
||||
|
||||
printf ("[%s --> %s] %s\n", to_timestamp(t0).c_str(), to_timestamp(t1).c_str(), text);
|
||||
|
||||
text_heard += text;
|
||||
}
|
||||
}
|
||||
|
||||
g_force_speak = false;
|
||||
|
||||
// remove text between brackets using regex
|
||||
{
|
||||
std::regex re("\\[.*?\\]");
|
||||
text_heard = std::regex_replace(text_heard, re, "");
|
||||
}
|
||||
|
||||
// remove text between brackets using regex
|
||||
{
|
||||
std::regex re("\\(.*?\\)");
|
||||
text_heard = std::regex_replace(text_heard, re, "");
|
||||
}
|
||||
|
||||
// remove all characters, except for letters, numbers, punctuation and ':', '\'', '-', ' '
|
||||
text_heard = std::regex_replace(text_heard, std::regex("[^a-zA-Z0-9\\.,\\?!\\s\\:\\'\\-]"), "");
|
||||
|
||||
// take first line
|
||||
text_heard = text_heard.substr(0, text_heard.find_first_of("\n"));
|
||||
|
||||
// remove leading and trailing whitespace
|
||||
text_heard = std::regex_replace(text_heard, std::regex("^\\s+"), "");
|
||||
text_heard = std::regex_replace(text_heard, std::regex("\\s+$"), "");
|
||||
|
||||
talk_set_status("'" + text_heard + "' - thinking how to respond (gpt-2) ...");
|
||||
|
||||
const std::vector<gpt_vocab::id> tokens = gpt2_tokenize(g_gpt2, text_heard.c_str());
|
||||
|
||||
printf("whisper: number of tokens: %d, '%s'\n", (int) tokens.size(), text_heard.c_str());
|
||||
|
||||
std::string text_to_speak;
|
||||
std::string prompt_base;
|
||||
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(g_mutex);
|
||||
prompt_base = gpt2_get_prompt(g_gpt2);
|
||||
}
|
||||
|
||||
if (tokens.size() > 0) {
|
||||
text_to_speak = gpt2_gen_text(g_gpt2, (prompt_base + text_heard + "\n").c_str(), 32);
|
||||
text_to_speak = std::regex_replace(text_to_speak, std::regex("[^a-zA-Z0-9\\.,\\?!\\s\\:\\'\\-]"), "");
|
||||
text_to_speak = text_to_speak.substr(0, text_to_speak.find_first_of("\n"));
|
||||
|
||||
std::lock_guard<std::mutex> lock(g_mutex);
|
||||
|
||||
// remove first 2 lines of base prompt
|
||||
{
|
||||
const size_t pos = prompt_base.find_first_of("\n");
|
||||
if (pos != std::string::npos) {
|
||||
prompt_base = prompt_base.substr(pos + 1);
|
||||
}
|
||||
}
|
||||
{
|
||||
const size_t pos = prompt_base.find_first_of("\n");
|
||||
if (pos != std::string::npos) {
|
||||
prompt_base = prompt_base.substr(pos + 1);
|
||||
}
|
||||
}
|
||||
prompt_base += text_heard + "\n" + text_to_speak + "\n";
|
||||
} else {
|
||||
text_to_speak = gpt2_gen_text(g_gpt2, prompt_base.c_str(), 32);
|
||||
text_to_speak = std::regex_replace(text_to_speak, std::regex("[^a-zA-Z0-9\\.,\\?!\\s\\:\\'\\-]"), "");
|
||||
text_to_speak = text_to_speak.substr(0, text_to_speak.find_first_of("\n"));
|
||||
|
||||
std::lock_guard<std::mutex> lock(g_mutex);
|
||||
|
||||
const size_t pos = prompt_base.find_first_of("\n");
|
||||
if (pos != std::string::npos) {
|
||||
prompt_base = prompt_base.substr(pos + 1);
|
||||
}
|
||||
prompt_base += text_to_speak + "\n";
|
||||
}
|
||||
|
||||
printf("gpt-2: %s\n", text_to_speak.c_str());
|
||||
|
||||
//printf("========================\n");
|
||||
//printf("gpt-2: prompt_base:\n'%s'\n", prompt_base.c_str());
|
||||
//printf("========================\n");
|
||||
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(g_mutex);
|
||||
t_last = std::chrono::high_resolution_clock::now();
|
||||
g_text_to_speak = text_to_speak;
|
||||
g_pcmf32.clear();
|
||||
gpt2_set_prompt(g_gpt2, prompt_base.c_str());
|
||||
}
|
||||
|
||||
talk_set_status("speaking ...");
|
||||
}
|
||||
}
|
||||
|
||||
gpt2_free(g_gpt2);
|
||||
|
||||
if (index < g_contexts.size()) {
|
||||
whisper_free(g_contexts[index]);
|
||||
g_contexts[index] = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
EMSCRIPTEN_BINDINGS(talk) {
|
||||
emscripten::function("init", emscripten::optional_override([](const std::string & path_model) {
|
||||
for (size_t i = 0; i < g_contexts.size(); ++i) {
|
||||
if (g_contexts[i] == nullptr) {
|
||||
g_contexts[i] = whisper_init(path_model.c_str());
|
||||
if (g_contexts[i] != nullptr) {
|
||||
g_running = true;
|
||||
if (g_worker.joinable()) {
|
||||
g_worker.join();
|
||||
}
|
||||
g_worker = std::thread([i]() {
|
||||
talk_main(i);
|
||||
});
|
||||
|
||||
return i + 1;
|
||||
} else {
|
||||
return (size_t) 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return (size_t) 0;
|
||||
}));
|
||||
|
||||
emscripten::function("free", emscripten::optional_override([](size_t index) {
|
||||
if (g_running) {
|
||||
g_running = false;
|
||||
}
|
||||
}));
|
||||
|
||||
emscripten::function("set_audio", emscripten::optional_override([](size_t index, const emscripten::val & audio) {
|
||||
--index;
|
||||
|
||||
if (index >= g_contexts.size()) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (g_contexts[index] == nullptr) {
|
||||
return -2;
|
||||
}
|
||||
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(g_mutex);
|
||||
const int n = audio["length"].as<int>();
|
||||
|
||||
emscripten::val heap = emscripten::val::module_property("HEAPU8");
|
||||
emscripten::val memory = heap["buffer"];
|
||||
|
||||
g_pcmf32.resize(n);
|
||||
|
||||
emscripten::val memoryView = audio["constructor"].new_(memory, reinterpret_cast<uintptr_t>(g_pcmf32.data()), n);
|
||||
memoryView.call<void>("set", audio);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}));
|
||||
|
||||
emscripten::function("force_speak", emscripten::optional_override([](size_t index) {
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(g_mutex);
|
||||
g_force_speak = true;
|
||||
}
|
||||
}));
|
||||
|
||||
emscripten::function("get_text_context", emscripten::optional_override([]() {
|
||||
std::string text_context;
|
||||
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(g_mutex);
|
||||
text_context = gpt2_get_prompt(g_gpt2);
|
||||
}
|
||||
|
||||
return text_context;
|
||||
}));
|
||||
|
||||
emscripten::function("get_text_to_speak", emscripten::optional_override([]() {
|
||||
std::string text_to_speak;
|
||||
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(g_mutex);
|
||||
text_to_speak = std::move(g_text_to_speak);
|
||||
}
|
||||
|
||||
return text_to_speak;
|
||||
}));
|
||||
|
||||
emscripten::function("get_status", emscripten::optional_override([]() {
|
||||
std::string status;
|
||||
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(g_mutex);
|
||||
status = g_status_forced.empty() ? g_status : g_status_forced;
|
||||
}
|
||||
|
||||
return status;
|
||||
}));
|
||||
|
||||
emscripten::function("set_status", emscripten::optional_override([](const std::string & status) {
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(g_mutex);
|
||||
g_status_forced = status;
|
||||
}
|
||||
}));
|
||||
|
||||
emscripten::function("set_prompt", emscripten::optional_override([](const std::string & prompt) {
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(g_mutex);
|
||||
gpt2_set_prompt(g_gpt2, prompt.c_str());
|
||||
}
|
||||
}));
|
||||
}
|
@ -1,925 +0,0 @@
|
||||
#include "ggml.h"
|
||||
#include "gpt-2.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <fstream>
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
#include <regex>
|
||||
#include <random>
|
||||
|
||||
/////////////////////// GPT-2 BEGIN /////////////////////////
|
||||
|
||||
//
|
||||
// Vocab utils
|
||||
//
|
||||
|
||||
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text) {
|
||||
std::vector<std::string> words;
|
||||
|
||||
// first split the text into words
|
||||
{
|
||||
std::string str = text;
|
||||
std::string pat = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)";
|
||||
|
||||
std::regex re(pat);
|
||||
std::smatch m;
|
||||
|
||||
while (std::regex_search(str, m, re)) {
|
||||
for (auto x : m) {
|
||||
words.push_back(x);
|
||||
}
|
||||
str = m.suffix();
|
||||
}
|
||||
}
|
||||
|
||||
// find the longest tokens that form the words:
|
||||
std::vector<gpt_vocab::id> tokens;
|
||||
for (const auto & word : words) {
|
||||
if (word.size() == 0) continue;
|
||||
|
||||
int i = 0;
|
||||
int n = word.size();
|
||||
while (i < n) {
|
||||
int j = n;
|
||||
while (j > i) {
|
||||
auto it = vocab.token_to_id.find(word.substr(i, j-i));
|
||||
if (it != vocab.token_to_id.end()) {
|
||||
tokens.push_back(it->second);
|
||||
i = j;
|
||||
break;
|
||||
}
|
||||
--j;
|
||||
}
|
||||
if (i == n) {
|
||||
break;
|
||||
}
|
||||
if (j == i) {
|
||||
auto sub = word.substr(i, 1);
|
||||
if (vocab.token_to_id.find(sub) != vocab.token_to_id.end()) {
|
||||
tokens.push_back(vocab.token_to_id.at(sub));
|
||||
} else {
|
||||
fprintf(stderr, "%s: unknown token '%s'\n", __func__, sub.data());
|
||||
}
|
||||
++i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return tokens;
|
||||
}
|
||||
|
||||
gpt_vocab::id gpt_sample_top_k_top_p(
|
||||
const gpt_vocab & vocab,
|
||||
const float * logits,
|
||||
int top_k,
|
||||
double top_p,
|
||||
double temp,
|
||||
std::mt19937 & rng) {
|
||||
int n_logits = vocab.id_to_token.size();
|
||||
|
||||
std::vector<std::pair<double, gpt_vocab::id>> logits_id;
|
||||
logits_id.reserve(n_logits);
|
||||
|
||||
for (int i = 0; i < n_logits; i++) {
|
||||
logits_id.push_back(std::make_pair(logits[i], i));
|
||||
}
|
||||
|
||||
// find the top K tokens
|
||||
std::partial_sort(
|
||||
logits_id.begin(),
|
||||
logits_id.begin() + top_k, logits_id.end(),
|
||||
[](const std::pair<double, gpt_vocab::id> & a, const std::pair<double, gpt_vocab::id> & b) {
|
||||
return a.first > b.first;
|
||||
});
|
||||
|
||||
logits_id.resize(top_k);
|
||||
|
||||
// normalize
|
||||
{
|
||||
double sum = 0.0f;
|
||||
for (int i = 0; i < (int)logits_id.size(); i++) {
|
||||
sum += logits_id[i].first;
|
||||
}
|
||||
|
||||
sum = 1.0/sum;
|
||||
for (int i = 0; i < (int)logits_id.size(); i++) {
|
||||
logits_id[i].first *= sum;
|
||||
}
|
||||
}
|
||||
|
||||
if (top_p < 1.0f) {
|
||||
{
|
||||
double cumsum = 0.0f;
|
||||
for (int i = 0; i < top_k; i++) {
|
||||
cumsum += logits_id[i].first;
|
||||
if (cumsum >= top_p) {
|
||||
logits_id.resize(i+1);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// normalize again
|
||||
{
|
||||
double sum = 0.0f;
|
||||
for (int i = 0; i < (int)logits_id.size(); i++) {
|
||||
sum += logits_id[i].first;
|
||||
}
|
||||
|
||||
sum = 1.0/sum;
|
||||
for (int i = 0; i < (int)logits_id.size(); i++) {
|
||||
logits_id[i].first *= sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//printf("\n");
|
||||
//for (int i = 0; i < (int)logits_id.size(); i++) {
|
||||
// printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), logits_id[i].first);
|
||||
//}
|
||||
//exit(0);
|
||||
|
||||
// sample from the obtained distribution
|
||||
std::vector<double> probs;
|
||||
probs.reserve(logits_id.size());
|
||||
|
||||
for (int i = 0; i < (int) logits_id.size(); i++) {
|
||||
probs.push_back(logits_id[i].first);
|
||||
}
|
||||
|
||||
std::discrete_distribution<> dist(probs.begin(), probs.end());
|
||||
int idx = dist(rng);
|
||||
|
||||
return logits_id[idx].second;
|
||||
}
|
||||
|
||||
// default hparams (GPT-2 117M)
|
||||
struct gpt2_hparams {
|
||||
int32_t n_vocab = 50257;
|
||||
int32_t n_ctx = 1024;
|
||||
int32_t n_embd = 768;
|
||||
int32_t n_head = 12;
|
||||
int32_t n_layer = 12;
|
||||
int32_t f16 = 1;
|
||||
};
|
||||
|
||||
struct gpt2_layer {
|
||||
// normalization
|
||||
struct ggml_tensor * ln_1_g;
|
||||
struct ggml_tensor * ln_1_b;
|
||||
|
||||
struct ggml_tensor * ln_2_g;
|
||||
struct ggml_tensor * ln_2_b;
|
||||
|
||||
// attention
|
||||
struct ggml_tensor * c_attn_attn_w;
|
||||
struct ggml_tensor * c_attn_attn_b;
|
||||
|
||||
struct ggml_tensor * c_attn_proj_w;
|
||||
struct ggml_tensor * c_attn_proj_b;
|
||||
|
||||
// mlp
|
||||
struct ggml_tensor * c_mlp_fc_w;
|
||||
struct ggml_tensor * c_mlp_fc_b;
|
||||
|
||||
struct ggml_tensor * c_mlp_proj_w_trans; // transposed for efficiency
|
||||
struct ggml_tensor * c_mlp_proj_b;
|
||||
};
|
||||
|
||||
struct gpt2_model {
|
||||
gpt2_hparams hparams;
|
||||
|
||||
// normalization
|
||||
struct ggml_tensor * ln_f_g;
|
||||
struct ggml_tensor * ln_f_b;
|
||||
|
||||
struct ggml_tensor * wte; // position embedding
|
||||
struct ggml_tensor * wpe; // token embedding
|
||||
|
||||
std::vector<gpt2_layer> layers;
|
||||
|
||||
// key + value memory
|
||||
struct ggml_tensor * memory_k;
|
||||
struct ggml_tensor * memory_v;
|
||||
|
||||
//
|
||||
struct ggml_context * ctx;
|
||||
std::map<std::string, struct ggml_tensor *> tensors;
|
||||
};
|
||||
|
||||
// load the model's weights from a file
|
||||
bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab & vocab) {
|
||||
printf("%s: loading model from '%s'\n", __func__, fname.c_str());
|
||||
|
||||
auto fin = std::ifstream(fname, std::ios::binary);
|
||||
if (!fin) {
|
||||
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
// verify magic
|
||||
{
|
||||
uint32_t magic;
|
||||
fin.read((char *) &magic, sizeof(magic));
|
||||
if (magic != 0x67676d6c) {
|
||||
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// load hparams
|
||||
{
|
||||
auto & hparams = model.hparams;
|
||||
|
||||
fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
|
||||
fin.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
|
||||
fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd));
|
||||
fin.read((char *) &hparams.n_head, sizeof(hparams.n_head));
|
||||
fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
|
||||
fin.read((char *) &hparams.f16, sizeof(hparams.f16));
|
||||
|
||||
printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
|
||||
printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
|
||||
printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
|
||||
printf("%s: n_head = %d\n", __func__, hparams.n_head);
|
||||
printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
|
||||
printf("%s: f16 = %d\n", __func__, hparams.f16);
|
||||
}
|
||||
|
||||
// load vocab
|
||||
{
|
||||
int32_t n_vocab = 0;
|
||||
fin.read((char *) &n_vocab, sizeof(n_vocab));
|
||||
|
||||
if (n_vocab != model.hparams.n_vocab) {
|
||||
fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
|
||||
__func__, fname.c_str(), n_vocab, model.hparams.n_vocab);
|
||||
return false;
|
||||
}
|
||||
|
||||
std::string word;
|
||||
for (int i = 0; i < n_vocab; i++) {
|
||||
uint32_t len;
|
||||
fin.read((char *) &len, sizeof(len));
|
||||
|
||||
word.resize(len);
|
||||
fin.read((char *) word.data(), len);
|
||||
|
||||
vocab.token_to_id[word] = i;
|
||||
vocab.id_to_token[i] = word;
|
||||
}
|
||||
}
|
||||
|
||||
// for the big tensors, we have the option to store the data in 16-bit floats
|
||||
// in order to save memory and also to speed up the computation
|
||||
const ggml_type wtype = model.hparams.f16 ? GGML_TYPE_F16 : GGML_TYPE_F32;
|
||||
|
||||
auto & ctx = model.ctx;
|
||||
|
||||
size_t ctx_size = 0;
|
||||
|
||||
{
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
const int n_embd = hparams.n_embd;
|
||||
const int n_layer = hparams.n_layer;
|
||||
const int n_ctx = hparams.n_ctx;
|
||||
const int n_vocab = hparams.n_vocab;
|
||||
|
||||
ctx_size += n_embd*ggml_type_size(GGML_TYPE_F32); // ln_f_g
|
||||
ctx_size += n_embd*ggml_type_size(GGML_TYPE_F32); // ln_f_b
|
||||
|
||||
ctx_size += n_vocab*n_embd*ggml_type_size(wtype); // wte
|
||||
ctx_size += n_ctx*n_embd*ggml_type_size(GGML_TYPE_F32); // wpe
|
||||
|
||||
ctx_size += n_layer*(n_embd*ggml_type_size(GGML_TYPE_F32)); // ln_1_g
|
||||
ctx_size += n_layer*(n_embd*ggml_type_size(GGML_TYPE_F32)); // ln_1_b
|
||||
|
||||
ctx_size += n_layer*(n_embd*ggml_type_size(GGML_TYPE_F32)); // ln_2_g
|
||||
ctx_size += n_layer*(n_embd*ggml_type_size(GGML_TYPE_F32)); // ln_2_b
|
||||
|
||||
ctx_size += n_layer*(3*n_embd*n_embd*ggml_type_size(wtype)); // c_attn_attn_w
|
||||
ctx_size += n_layer*( 3*n_embd*ggml_type_size(GGML_TYPE_F32)); // c_attn_attn_b
|
||||
|
||||
ctx_size += n_layer*(n_embd*n_embd*ggml_type_size(wtype)); // c_attn_proj_w
|
||||
ctx_size += n_layer*( n_embd*ggml_type_size(GGML_TYPE_F32)); // c_attn_proj_b
|
||||
|
||||
ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_size(wtype)); // c_mlp_fc_w
|
||||
ctx_size += n_layer*( 4*n_embd*ggml_type_size(GGML_TYPE_F32)); // c_mlp_fc_b
|
||||
|
||||
ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_size(wtype)); // c_mlp_proj_w
|
||||
ctx_size += n_layer*( n_embd*ggml_type_size(GGML_TYPE_F32)); // c_mlp_proj_b
|
||||
|
||||
ctx_size += n_ctx*n_layer*n_embd*ggml_type_size(GGML_TYPE_F32); // memory_k
|
||||
ctx_size += n_ctx*n_layer*n_embd*ggml_type_size(GGML_TYPE_F32); // memory_v
|
||||
|
||||
ctx_size += (6 + 12*n_layer)*256; // object overhead
|
||||
|
||||
printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
|
||||
}
|
||||
|
||||
// create the ggml context
|
||||
{
|
||||
struct ggml_init_params params;
|
||||
params.mem_size = ctx_size;
|
||||
params.mem_buffer = NULL;
|
||||
|
||||
model.ctx = ggml_init(params);
|
||||
if (!model.ctx) {
|
||||
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// prepare memory for the weights
|
||||
{
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
const int n_embd = hparams.n_embd;
|
||||
const int n_layer = hparams.n_layer;
|
||||
const int n_ctx = hparams.n_ctx;
|
||||
const int n_vocab = hparams.n_vocab;
|
||||
|
||||
model.layers.resize(n_layer);
|
||||
|
||||
model.ln_f_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
model.ln_f_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
|
||||
model.wte = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
|
||||
model.wpe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ctx);
|
||||
|
||||
// map by name
|
||||
model.tensors["model/ln_f/g"] = model.ln_f_g;
|
||||
model.tensors["model/ln_f/b"] = model.ln_f_b;
|
||||
|
||||
model.tensors["model/wte"] = model.wte;
|
||||
model.tensors["model/wpe"] = model.wpe;
|
||||
|
||||
for (int i = 0; i < n_layer; ++i) {
|
||||
auto & layer = model.layers[i];
|
||||
|
||||
layer.ln_1_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
layer.ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
|
||||
layer.ln_2_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
layer.ln_2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
|
||||
layer.c_attn_attn_w = ggml_new_tensor_2d(ctx, wtype, 3*n_embd, n_embd);
|
||||
layer.c_attn_attn_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 3*n_embd);
|
||||
|
||||
layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
|
||||
layer.c_attn_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
|
||||
layer.c_mlp_fc_w = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd);
|
||||
layer.c_mlp_fc_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_embd);
|
||||
|
||||
layer.c_mlp_proj_w_trans = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd);
|
||||
layer.c_mlp_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
|
||||
// map by name
|
||||
model.tensors["model/h" + std::to_string(i) + "/ln_1/g"] = layer.ln_1_g;
|
||||
model.tensors["model/h" + std::to_string(i) + "/ln_1/b"] = layer.ln_1_b;
|
||||
|
||||
model.tensors["model/h" + std::to_string(i) + "/ln_2/g"] = layer.ln_2_g;
|
||||
model.tensors["model/h" + std::to_string(i) + "/ln_2/b"] = layer.ln_2_b;
|
||||
|
||||
model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/w"] = layer.c_attn_attn_w;
|
||||
model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/b"] = layer.c_attn_attn_b;
|
||||
|
||||
model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/w"] = layer.c_attn_proj_w;
|
||||
model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/b"] = layer.c_attn_proj_b;
|
||||
|
||||
model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/w"] = layer.c_mlp_fc_w;
|
||||
model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/b"] = layer.c_mlp_fc_b;
|
||||
|
||||
model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/w"] = layer.c_mlp_proj_w_trans;
|
||||
model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/b"] = layer.c_mlp_proj_b;
|
||||
}
|
||||
}
|
||||
|
||||
// key + value memory
|
||||
{
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
const int n_embd = hparams.n_embd;
|
||||
const int n_layer = hparams.n_layer;
|
||||
const int n_ctx = hparams.n_ctx;
|
||||
|
||||
const int n_mem = n_layer*n_ctx;
|
||||
const int n_elements = n_embd*n_mem;
|
||||
|
||||
model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
|
||||
model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
|
||||
|
||||
const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v);
|
||||
|
||||
printf("%s: memory size = %8.2f MB, n_mem = %d\n", __func__, memory_size/1024.0/1024.0, n_mem);
|
||||
}
|
||||
|
||||
// load weights
|
||||
{
|
||||
size_t total_size = 0;
|
||||
|
||||
while (true) {
|
||||
int32_t n_dims;
|
||||
int32_t length;
|
||||
int32_t ftype;
|
||||
|
||||
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
|
||||
fin.read(reinterpret_cast<char *>(&length), sizeof(length));
|
||||
fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
|
||||
|
||||
if (fin.eof()) {
|
||||
break;
|
||||
}
|
||||
|
||||
int32_t nelements = 1;
|
||||
int32_t ne[2] = { 1, 1 };
|
||||
for (int i = 0; i < n_dims; ++i) {
|
||||
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
|
||||
nelements *= ne[i];
|
||||
}
|
||||
|
||||
std::string name(length, 0);
|
||||
fin.read(&name[0], length);
|
||||
|
||||
if (model.tensors.find(name.data()) == model.tensors.end()) {
|
||||
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
|
||||
return false;
|
||||
}
|
||||
|
||||
auto tensor = model.tensors[name.data()];
|
||||
if (ggml_nelements(tensor) != nelements) {
|
||||
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
|
||||
return false;
|
||||
}
|
||||
|
||||
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
|
||||
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
|
||||
__func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]);
|
||||
return false;
|
||||
}
|
||||
|
||||
const size_t bpe = (ftype == 0) ? sizeof(float) : sizeof(ggml_fp16_t);
|
||||
|
||||
if (nelements*bpe != ggml_nbytes(tensor)) {
|
||||
fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
|
||||
__func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
|
||||
return false;
|
||||
}
|
||||
|
||||
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
|
||||
|
||||
//printf("%24s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
|
||||
total_size += ggml_nbytes(tensor);
|
||||
}
|
||||
|
||||
printf("%s: model size = %8.2f MB\n", __func__, total_size/1024.0/1024.0);
|
||||
}
|
||||
|
||||
fin.close();
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// evaluate the transformer
|
||||
//
|
||||
// - model: the model
|
||||
// - n_threads: number of threads to use
|
||||
// - n_past: the context size so far
|
||||
// - embd_inp: the embeddings of the tokens in the context
|
||||
// - embd_w: the predicted probabilities of the next token
|
||||
//
|
||||
bool gpt2_eval(
|
||||
const gpt2_model & model,
|
||||
const int n_threads,
|
||||
const int n_past,
|
||||
const std::vector<gpt_vocab::id> & embd_inp,
|
||||
std::vector<float> & embd_w,
|
||||
size_t & mem_per_token) {
|
||||
const int N = embd_inp.size();
|
||||
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
const int n_embd = hparams.n_embd;
|
||||
const int n_layer = hparams.n_layer;
|
||||
const int n_ctx = hparams.n_ctx;
|
||||
const int n_head = hparams.n_head;
|
||||
const int n_vocab = hparams.n_vocab;
|
||||
|
||||
static size_t buf_size = 640u*1024*1024;
|
||||
static void * buf = malloc(buf_size);
|
||||
|
||||
if (mem_per_token > 0 && mem_per_token*N > buf_size) {
|
||||
const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead
|
||||
printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new);
|
||||
|
||||
// reallocate
|
||||
buf_size = buf_size_new;
|
||||
buf = realloc(buf, buf_size);
|
||||
if (buf == nullptr) {
|
||||
fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
struct ggml_init_params params;
|
||||
params.mem_size = buf_size;
|
||||
params.mem_buffer = buf;
|
||||
|
||||
struct ggml_context * ctx0 = ggml_init(params);
|
||||
|
||||
struct ggml_cgraph gf = { };
|
||||
gf.n_threads = n_threads;
|
||||
|
||||
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
||||
memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd));
|
||||
|
||||
struct ggml_tensor * position = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
||||
for (int i = 0; i < N; ++i) {
|
||||
((int32_t *) position->data)[i] = n_past + i;
|
||||
}
|
||||
|
||||
// wte + wpe
|
||||
struct ggml_tensor * inpL =
|
||||
ggml_add(ctx0,
|
||||
ggml_get_rows(ctx0, model.wte, embd),
|
||||
ggml_get_rows(ctx0, model.wpe, position));
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
struct ggml_tensor * cur;
|
||||
|
||||
// norm
|
||||
{
|
||||
// [ 768, N]
|
||||
cur = ggml_norm(ctx0, inpL);
|
||||
|
||||
// cur = ln_1_g*cur + ln_1_b
|
||||
// [ 768, N]
|
||||
cur = ggml_add(ctx0,
|
||||
ggml_mul(ctx0,
|
||||
ggml_repeat(ctx0, model.layers[il].ln_1_g, cur),
|
||||
cur),
|
||||
ggml_repeat(ctx0, model.layers[il].ln_1_b, cur));
|
||||
}
|
||||
|
||||
// attn
|
||||
// [2304, 768] - model.layers[il].c_attn_attn_w
|
||||
// [2304, 1] - model.layers[il].c_attn_attn_b
|
||||
// [ 768, N] - cur (in)
|
||||
// [2304, N] - cur (out)
|
||||
//
|
||||
// cur = attn_w*cur + attn_b
|
||||
// [2304, N]
|
||||
{
|
||||
cur = ggml_mul_mat(ctx0,
|
||||
ggml_transpose(ctx0, model.layers[il].c_attn_attn_w),
|
||||
cur);
|
||||
|
||||
cur = ggml_add(ctx0,
|
||||
ggml_repeat(ctx0, model.layers[il].c_attn_attn_b, cur),
|
||||
cur);
|
||||
}
|
||||
|
||||
// self-attention
|
||||
{
|
||||
struct ggml_tensor * Qcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 0*sizeof(float)*n_embd);
|
||||
struct ggml_tensor * Kcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 1*sizeof(float)*n_embd);
|
||||
struct ggml_tensor * Vcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 2*sizeof(float)*n_embd);
|
||||
|
||||
// store key and value to memory
|
||||
if (N >= 1) {
|
||||
struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_k, N*n_embd, (ggml_element_size(model.memory_k)*n_embd)*(il*n_ctx + n_past));
|
||||
struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_v, N*n_embd, (ggml_element_size(model.memory_v)*n_embd)*(il*n_ctx + n_past));
|
||||
|
||||
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
|
||||
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
|
||||
}
|
||||
|
||||
// Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)
|
||||
// [64, N, 12]
|
||||
struct ggml_tensor * Q =
|
||||
ggml_permute(ctx0,
|
||||
ggml_cpy(ctx0,
|
||||
Qcur,
|
||||
ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd/n_head, n_head, N)),
|
||||
0, 2, 1, 3);
|
||||
|
||||
// K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3)
|
||||
// [64, n_past + N, 12]
|
||||
struct ggml_tensor * K =
|
||||
ggml_permute(ctx0,
|
||||
ggml_reshape_3d(ctx0,
|
||||
ggml_view_1d(ctx0, model.memory_k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_k)*n_embd),
|
||||
n_embd/n_head, n_head, n_past + N),
|
||||
0, 2, 1, 3);
|
||||
|
||||
// GG: flash attention
|
||||
//struct ggml_tensor * V =
|
||||
// ggml_cpy(ctx0,
|
||||
// ggml_permute(ctx0,
|
||||
// ggml_reshape_3d(ctx0,
|
||||
// ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd),
|
||||
// n_embd/n_head, n_head, n_past + N),
|
||||
// 1, 2, 0, 3),
|
||||
// ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_past + N, n_embd/n_head, n_head));
|
||||
|
||||
//struct ggml_tensor * KQV = ggml_flash_attn(ctx0, Q, K, V, true);
|
||||
|
||||
// K * Q
|
||||
// [n_past + N, N, 12]
|
||||
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
|
||||
|
||||
// KQ_scaled = KQ / sqrt(n_embd/n_head)
|
||||
// [n_past + N, N, 12]
|
||||
struct ggml_tensor * KQ_scaled =
|
||||
ggml_scale(ctx0,
|
||||
KQ,
|
||||
ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head))
|
||||
);
|
||||
|
||||
// KQ_masked = mask_past(KQ_scaled)
|
||||
// [n_past + N, N, 12]
|
||||
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);
|
||||
|
||||
// KQ = soft_max(KQ_masked)
|
||||
// [n_past + N, N, 12]
|
||||
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
|
||||
|
||||
// V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()
|
||||
// [n_past + N, 64, 12]
|
||||
struct ggml_tensor * V_trans =
|
||||
ggml_permute(ctx0,
|
||||
ggml_reshape_3d(ctx0,
|
||||
ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd),
|
||||
n_embd/n_head, n_head, n_past + N),
|
||||
1, 2, 0, 3);
|
||||
|
||||
// KQV = transpose(V) * KQ_soft_max
|
||||
// [64, N, 12]
|
||||
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max);
|
||||
|
||||
// KQV_merged = KQV.permute(0, 2, 1, 3)
|
||||
// [64, 12, N]
|
||||
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
|
||||
|
||||
// cur = KQV_merged.contiguous().view(n_embd, N)
|
||||
// [768, N]
|
||||
cur = ggml_cpy(ctx0,
|
||||
KQV_merged,
|
||||
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
|
||||
}
|
||||
|
||||
// projection
|
||||
// [ 768, 768] - model.layers[il].c_attn_proj_w
|
||||
// [ 768, 1] - model.layers[il].c_attn_proj_b
|
||||
// [ 768, N] - cur (in)
|
||||
// [ 768, N] - cur (out)
|
||||
//
|
||||
// cur = proj_w*cur + proj_b
|
||||
// [768, N]
|
||||
{
|
||||
cur = ggml_mul_mat(ctx0,
|
||||
ggml_transpose(ctx0, model.layers[il].c_attn_proj_w),
|
||||
cur);
|
||||
|
||||
cur = ggml_add(ctx0,
|
||||
ggml_repeat(ctx0, model.layers[il].c_attn_proj_b, cur),
|
||||
cur);
|
||||
}
|
||||
|
||||
// add the input
|
||||
cur = ggml_add(ctx0, cur, inpL);
|
||||
|
||||
struct ggml_tensor * inpFF = cur;
|
||||
|
||||
// feed-forward network
|
||||
{
|
||||
// norm
|
||||
{
|
||||
cur = ggml_norm(ctx0, inpFF);
|
||||
|
||||
// cur = ln_2_g*cur + ln_2_b
|
||||
// [ 768, N]
|
||||
cur = ggml_add(ctx0,
|
||||
ggml_mul(ctx0,
|
||||
ggml_repeat(ctx0, model.layers[il].ln_2_g, cur),
|
||||
cur),
|
||||
ggml_repeat(ctx0, model.layers[il].ln_2_b, cur));
|
||||
}
|
||||
|
||||
// fully connected
|
||||
// [3072, 768] - model.layers[il].c_mlp_fc_w
|
||||
// [3072, 1] - model.layers[il].c_mlp_fc_b
|
||||
// [ 768, N] - cur (in)
|
||||
// [3072, N] - cur (out)
|
||||
//
|
||||
// cur = fc_w*cur + fc_b
|
||||
// [3072, N]
|
||||
cur = ggml_mul_mat(ctx0,
|
||||
ggml_transpose(ctx0, model.layers[il].c_mlp_fc_w),
|
||||
cur);
|
||||
|
||||
cur = ggml_add(ctx0,
|
||||
ggml_repeat(ctx0, model.layers[il].c_mlp_fc_b, cur),
|
||||
cur);
|
||||
|
||||
// GELU activation
|
||||
// [3072, N]
|
||||
cur = ggml_gelu(ctx0, cur);
|
||||
|
||||
// projection
|
||||
// [ 768, 3072] - model.layers[il].c_mlp_proj_w
|
||||
// [ 768, 1] - model.layers[il].c_mlp_proj_b
|
||||
// [3072, N] - cur (in)
|
||||
// [ 768, N] - cur (out)
|
||||
//
|
||||
// cur = proj_w*cur + proj_b
|
||||
// [768, N]
|
||||
cur = ggml_mul_mat(ctx0,
|
||||
model.layers[il].c_mlp_proj_w_trans,
|
||||
cur);
|
||||
|
||||
cur = ggml_add(ctx0,
|
||||
ggml_repeat(ctx0, model.layers[il].c_mlp_proj_b, cur),
|
||||
cur);
|
||||
}
|
||||
|
||||
// input for next layer
|
||||
inpL = ggml_add(ctx0, cur, inpFF);
|
||||
}
|
||||
|
||||
// norm
|
||||
{
|
||||
// [ 768, N]
|
||||
inpL = ggml_norm(ctx0, inpL);
|
||||
|
||||
// inpL = ln_f_g*inpL + ln_f_b
|
||||
// [ 768, N]
|
||||
inpL = ggml_add(ctx0,
|
||||
ggml_mul(ctx0,
|
||||
ggml_repeat(ctx0, model.ln_f_g, inpL),
|
||||
inpL),
|
||||
ggml_repeat(ctx0, model.ln_f_b, inpL));
|
||||
}
|
||||
|
||||
// inpL = WTE * inpL
|
||||
// [ 768, 50257] - model.wte
|
||||
// [ 768, N] - inpL
|
||||
inpL = ggml_mul_mat(ctx0, model.wte, inpL);
|
||||
|
||||
// logits -> probs
|
||||
inpL = ggml_soft_max(ctx0, inpL);
|
||||
|
||||
// run the computation
|
||||
ggml_build_forward_expand(&gf, inpL);
|
||||
ggml_graph_compute (ctx0, &gf);
|
||||
|
||||
//if (n_past%100 == 0) {
|
||||
// ggml_graph_print (&gf);
|
||||
// ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot");
|
||||
//}
|
||||
|
||||
//embd_w.resize(n_vocab*N);
|
||||
//memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
|
||||
|
||||
// return result for just the last token
|
||||
embd_w.resize(n_vocab);
|
||||
memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
|
||||
|
||||
if (mem_per_token == 0) {
|
||||
mem_per_token = ggml_used_mem(ctx0)/N;
|
||||
}
|
||||
//printf("used_mem = %zu\n", ggml_used_mem(ctx0));
|
||||
|
||||
ggml_free(ctx0);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/////////////////////////////// GPT-2 END ////////////////////////////////
|
||||
|
||||
constexpr int N_THREAD = 8;
|
||||
|
||||
struct gpt2_context {
|
||||
std::string prompt_base = R"(Hello, how are you?
|
||||
I'm fine, thanks. How are you?
|
||||
Thanks, I'm fine too. What are you doing?
|
||||
I'm just sitting here.
|
||||
It's a lovely day, isn't it?
|
||||
Yes, it is. I love the weather this time of year.
|
||||
I wish it would rain a little bit.
|
||||
Me too.
|
||||
)";
|
||||
|
||||
std::mt19937 rng;
|
||||
|
||||
gpt_vocab vocab;
|
||||
gpt2_model model;
|
||||
|
||||
int32_t n_threads = std::min(N_THREAD, (int) std::thread::hardware_concurrency());
|
||||
|
||||
// sampling parameters
|
||||
int32_t top_k = 40;
|
||||
float top_p = 0.9f;
|
||||
float temp = 1.0f;
|
||||
};
|
||||
|
||||
struct gpt2_context * gpt2_init(const char * path_model) {
|
||||
gpt2_context * ctx = new gpt2_context;
|
||||
|
||||
ctx->rng = std::mt19937(time(NULL));
|
||||
|
||||
// load the model
|
||||
{
|
||||
const int64_t t_start_us = ggml_time_us();
|
||||
|
||||
if (!gpt2_model_load(path_model, ctx->model, ctx->vocab)) {
|
||||
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, "gpt-2.bin");
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
const int64_t t_load_us = ggml_time_us() - t_start_us;
|
||||
|
||||
printf("gpt-2: model loaded in %d ms\n", (int) (t_load_us/1000));
|
||||
}
|
||||
|
||||
return ctx;
|
||||
}
|
||||
|
||||
void gpt2_free(struct gpt2_context * ctx) {
|
||||
delete ctx;
|
||||
}
|
||||
|
||||
const char * gpt2_get_prompt(struct gpt2_context * ctx) {
|
||||
return ctx->prompt_base.c_str();
|
||||
}
|
||||
|
||||
void gpt2_set_prompt(struct gpt2_context * ctx, const char * prompt) {
|
||||
ctx->prompt_base = prompt;
|
||||
}
|
||||
|
||||
std::vector<gpt_vocab::id> gpt2_tokenize(const gpt2_context * ctx, const char * text) {
|
||||
return ::gpt_tokenize(ctx->vocab, text);
|
||||
}
|
||||
|
||||
std::string gpt2_gen_text(gpt2_context * ctx, const char * text, int max_tokens) {
|
||||
int n_past = 0;
|
||||
|
||||
std::vector<float> embd_w;
|
||||
|
||||
// tokenize the prompt
|
||||
std::vector<gpt_vocab::id> embd_inp = ::gpt2_tokenize(ctx, text);
|
||||
|
||||
int n_predict = std::min(max_tokens, ctx->model.hparams.n_ctx - (int) embd_inp.size());
|
||||
|
||||
std::vector<gpt_vocab::id> embd = embd_inp;
|
||||
|
||||
size_t mem_per_token = 3000000;
|
||||
|
||||
std::string result;
|
||||
|
||||
for (int i = embd.size(); i < embd_inp.size() + n_predict; i++) {
|
||||
// predict
|
||||
if (embd.size() > 0) {
|
||||
if (!gpt2_eval(ctx->model, ctx->n_threads, n_past, embd, embd_w, mem_per_token)) {
|
||||
printf("gpt-2: failed to generate text\n");
|
||||
return "";
|
||||
}
|
||||
}
|
||||
|
||||
n_past += embd.size();
|
||||
embd.clear();
|
||||
|
||||
{
|
||||
// sample next token
|
||||
const int top_k = ctx->top_k;
|
||||
const float top_p = ctx->top_p;
|
||||
const float temp = ctx->temp;
|
||||
|
||||
const int n_vocab = ctx->model.hparams.n_vocab;
|
||||
|
||||
const gpt_vocab::id id = gpt_sample_top_k_top_p(ctx->vocab, embd_w.data() + (embd_w.size() - n_vocab), top_k, top_p, temp, ctx->rng);
|
||||
|
||||
// add it to the context
|
||||
embd.push_back(id);
|
||||
}
|
||||
|
||||
result += ctx->vocab.id_to_token[embd[0]];
|
||||
|
||||
// end of text token
|
||||
if (embd.back() == 50256 ||
|
||||
ctx->vocab.id_to_token[embd.back()] == "." ||
|
||||
ctx->vocab.id_to_token[embd.back()] == "!" ||
|
||||
ctx->vocab.id_to_token[embd.back()] == "?") {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
@ -1,27 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
// TODO: Change to C-style API and move to ./examples for easy reuse.
|
||||
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <string>
|
||||
|
||||
struct gpt_vocab {
|
||||
using id = int32_t;
|
||||
using token = std::string;
|
||||
|
||||
std::map<token, id> token_to_id;
|
||||
std::map<id, token> id_to_token;
|
||||
};
|
||||
|
||||
struct gpt2_context;
|
||||
|
||||
struct gpt2_context * gpt2_init(const char * path_model);
|
||||
void gpt2_free(struct gpt2_context * ctx);
|
||||
|
||||
const char * gpt2_get_prompt(struct gpt2_context * ctx);
|
||||
void gpt2_set_prompt(struct gpt2_context * ctx, const char * prompt);
|
||||
|
||||
std::vector<gpt_vocab::id> gpt2_tokenize(const gpt2_context * ctx, const char * text);
|
||||
|
||||
std::string gpt2_gen_text(gpt2_context * ctx, const char * text, int max_tokens);
|
@ -1,829 +0,0 @@
|
||||
<!doctype html>
|
||||
<html lang="en-us">
|
||||
<head>
|
||||
<title>Talk - GPT-2 meets Whisper in WebAssembly</title>
|
||||
|
||||
<style>
|
||||
#output {
|
||||
width: 100%;
|
||||
height: 100%;
|
||||
margin: 0 auto;
|
||||
margin-top: 10px;
|
||||
border-left: 0px;
|
||||
border-right: 0px;
|
||||
padding-left: 0px;
|
||||
padding-right: 0px;
|
||||
display: block;
|
||||
background-color: black;
|
||||
color: white;
|
||||
font-size: 10px;
|
||||
font-family: 'Lucida Console', Monaco, monospace;
|
||||
outline: none;
|
||||
white-space: pre;
|
||||
overflow-wrap: normal;
|
||||
overflow-x: scroll;
|
||||
}
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
<div id="main-container">
|
||||
<b>Talk - GPT-2 meets Whisper in WebAssembly</b>
|
||||
|
||||
<br><br>
|
||||
|
||||
Talk with an Artificial Intelligence in your browser. This demo uses:
|
||||
|
||||
<ul>
|
||||
<li><a href="https://github.com/ggerganov/whisper.cpp">OpenAI's Whisper</a> to listen to you as you speak in the microphone</li>
|
||||
<li><a href="https://github.com/ggerganov/whisper.cpp/tree/master/examples/talk.wasm">OpenAI's GPT-2</a> to generate text responses</li>
|
||||
<li><a href="https://developer.mozilla.org/en-US/docs/Web/API/Web_Speech_API">Web Speech API</a> to vocalize the responses through your speakers</li>
|
||||
</ul>
|
||||
|
||||
All of this runs <b>locally in your browser</b> using WebAssembly.<br>
|
||||
You can find more about this project on <a href="https://github.com/ggerganov/whisper.cpp/tree/master/examples/talk.wasm">GitHub</a>.
|
||||
|
||||
<br><br>
|
||||
|
||||
<hr>
|
||||
|
||||
Select the models you would like to use and click the "Start" button to begin the conversation
|
||||
|
||||
<br><br>
|
||||
|
||||
<div id="model-whisper">
|
||||
Whisper model: <span id="model-whisper-status"></span>
|
||||
<button id="fetch-whisper-tiny-en" onclick="loadWhisper('tiny.en')">tiny.en (75 MB)</button>
|
||||
<button id="fetch-whisper-base-en" onclick="loadWhisper('base.en')">base.en (142 MB)</button>
|
||||
<span id="fetch-whisper-progress"></span>
|
||||
|
||||
<!--
|
||||
<input type="file" id="file" name="file" onchange="loadFile(event, 'whisper.bin')" />
|
||||
-->
|
||||
</div>
|
||||
|
||||
<br>
|
||||
|
||||
<div id="model-gpt-2">
|
||||
GPT-2 model: <span id="model-gpt-2-status"></span>
|
||||
<button id="fetch-gpt-2-small" onclick="loadGPT2('small')">small 117M (240 MB)</button>
|
||||
<!--<button id="fetch-gpt-2-medium" onclick="loadGPT2('medium')">medium 345M (720 MB)</button>-->
|
||||
<span id="fetch-gpt-2-progress"></span>
|
||||
|
||||
<!--
|
||||
<input type="file" id="file" name="file" onchange="loadFile(event, 'gpt-2.bin')" />
|
||||
-->
|
||||
</div>
|
||||
|
||||
<br>
|
||||
|
||||
<div id="input">
|
||||
<button id="start" onclick="onStart()" disabled>Start</button>
|
||||
<button id="stop" onclick="onStop()" disabled>Stop</button>
|
||||
<select id="voice" onchange="onVoiceChange()" disabled>
|
||||
<option value="0">Default</option>
|
||||
</select>
|
||||
<select id="prompt" onchange="onPromptChange()">
|
||||
<option value="0">Casual</option>
|
||||
<option value="1">Robot</option>
|
||||
<option value="2">Scientist</option>
|
||||
<option value="3">Programmer</option>
|
||||
<option value="4">Happy</option>
|
||||
<option value="5">Sad</option>
|
||||
<option value="6">Philosophical</option>
|
||||
<option value="7">Angry</option>
|
||||
<option value="8">Funny</option>
|
||||
<option value="9">Poetic</option>
|
||||
<option value="10">Clever</option>
|
||||
<option value="11">Cute</option>
|
||||
<option value="12">Smart</option>
|
||||
<option value="13">Dumb</option>
|
||||
<option value="14">Boring</option>
|
||||
<option value="15">Exciting</option>
|
||||
<option value="16">Interesting</option>
|
||||
<option value="17">Wiliam Shakespear</option>
|
||||
<option value="18">J.R.R. Tolkien</option>
|
||||
<option value="19">George R.R. Martin</option>
|
||||
<option value="20">Stephen King</option>
|
||||
</select>
|
||||
<button id="speak0" onclick="onSpeak('Hello')">Say hello</button>
|
||||
<button id="speak1" onclick="onSpeakRandom()" disabled>Say something</button>
|
||||
<button id="clear" onclick="clearCache()">Clear Cache</button>
|
||||
</div>
|
||||
|
||||
<br>
|
||||
|
||||
<div id="state">
|
||||
Status: <b><span id="state-status">not started</span></b>
|
||||
|
||||
<pre id="state-context">[The text context will be displayed here]</pre>
|
||||
</div>
|
||||
|
||||
<hr>
|
||||
|
||||
Debug output:
|
||||
<textarea id="output" rows="20"></textarea>
|
||||
|
||||
<br>
|
||||
|
||||
<b>Troubleshooting</b>
|
||||
|
||||
<br><br>
|
||||
|
||||
The page does some heavy computations, so make sure:
|
||||
|
||||
<ul>
|
||||
<li>To use a modern web browser (e.g. Chrome, Firefox)</li>
|
||||
<li>To use a fast desktop or laptop computer (i.e. not a mobile phone)</li>
|
||||
<li>Your browser supports WASM <a href="https://webassembly.org/roadmap/">Fixed-width SIMD</a></li>
|
||||
</ul>
|
||||
|
||||
Note that these neural network models were not meant to be used in a browser, so the performance and <br>
|
||||
quality of the results may not be optimal. If you have any questions or suggestions, checkout the following
|
||||
<a href="https://github.com/ggerganov/whisper.cpp/discussions/167">discussion</a>.
|
||||
|
||||
<br><br>
|
||||
|
||||
Here is a short video of the demo in action: <a href="https://youtu.be/LeWKl8t1-Hc">https://youtu.be/LeWKl8t1-Hc</a>
|
||||
|
||||
<br><br>
|
||||
|
||||
<div class="cell-version">
|
||||
<span>
|
||||
|
|
||||
Build time: <span class="nav-link">@GIT_DATE@</span> |
|
||||
Commit hash: <a class="nav-link" href="https://github.com/ggerganov/whisper.cpp/commit/@GIT_SHA1@">@GIT_SHA1@</a> |
|
||||
Commit subject: <span class="nav-link">@GIT_COMMIT_SUBJECT@</span> |
|
||||
<a class="nav-link" href="https://github.com/ggerganov/whisper.cpp/tree/master/examples/talk.wasm">Source Code</a> |
|
||||
</span>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<script type="text/javascript" src="helpers.js"></script>
|
||||
<script type='text/javascript'>
|
||||
// web audio context
|
||||
var context = null;
|
||||
|
||||
// audio data
|
||||
var audio = null;
|
||||
var audio0 = null;
|
||||
|
||||
// the talk instance
|
||||
var instance = null;
|
||||
|
||||
// model names
|
||||
var model_whisper = null;
|
||||
var model_gpt_2 = null;
|
||||
|
||||
// speech synthesis
|
||||
const synth = window.speechSynthesis;
|
||||
var voice = null;
|
||||
|
||||
var Module = {
|
||||
print: printTextarea,
|
||||
printErr: printTextarea,
|
||||
setStatus: function(text) {
|
||||
printTextarea('js: ' + text);
|
||||
},
|
||||
monitorRunDependencies: function(left) {
|
||||
},
|
||||
preRun: function() {
|
||||
printTextarea('js: Preparing ...');
|
||||
},
|
||||
postRun: function() {
|
||||
printTextarea('js: Initialized successfully!');
|
||||
|
||||
// populate the voice list
|
||||
var voices = synth.getVoices();
|
||||
var el = document.getElementById('voice');
|
||||
|
||||
// if empty - display error in the element
|
||||
if (voices.length == 0) {
|
||||
el.innerHTML = '<option value="0">No voices available</option>';
|
||||
} else {
|
||||
// populate voice list
|
||||
var n = 0;
|
||||
voices.forEach(function(voice, i) {
|
||||
if (!voice.lang.startsWith('en')) return;
|
||||
var option = document.createElement('option');
|
||||
option.value = i;
|
||||
option.innerHTML = voice.name + ' (' + voice.lang + ')';
|
||||
el.appendChild(option);
|
||||
n++;
|
||||
});
|
||||
|
||||
// select random voice
|
||||
if (n > 0) {
|
||||
for (var k = 0; k < 10; k++) {
|
||||
var i = Math.floor(Math.random() * n);
|
||||
el.selectedIndex = i;
|
||||
voice = voices[document.getElementById('voice').options[i].value];
|
||||
|
||||
// give preference to Google voices
|
||||
if (voice.name.startsWith('Google')) break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
onPromptChange();
|
||||
}
|
||||
};
|
||||
|
||||
//
|
||||
// fetch models
|
||||
//
|
||||
|
||||
let dbVersion = 1
|
||||
let dbName = 'whisper.ggerganov.com';
|
||||
let indexedDB = window.indexedDB || window.mozIndexedDB || window.webkitIndexedDB || window.msIndexedDB
|
||||
|
||||
function storeFS(fname, buf) {
|
||||
// write to WASM file using FS_createDataFile
|
||||
// if the file exists, delete it
|
||||
try {
|
||||
Module.FS_unlink(fname);
|
||||
} catch (e) {
|
||||
// ignore
|
||||
}
|
||||
|
||||
Module.FS_createDataFile("/", fname, buf, true, true);
|
||||
|
||||
printTextarea('storeFS: stored model: ' + fname + ' size: ' + buf.length);
|
||||
|
||||
if (fname == 'whisper.bin') {
|
||||
document.getElementById('model-whisper-status').innerHTML = 'loaded "' + model_whisper + '"!';
|
||||
} else if (fname == 'gpt-2.bin') {
|
||||
document.getElementById('model-gpt-2-status').innerHTML = 'loaded "' + model_gpt_2 + '"!';
|
||||
}
|
||||
|
||||
if (model_whisper != null && model_gpt_2 != null) {
|
||||
document.getElementById('start').disabled = false;
|
||||
document.getElementById('stop' ).disabled = false;
|
||||
document.getElementById('voice').disabled = false;
|
||||
}
|
||||
}
|
||||
|
||||
function loadWhisper(model) {
|
||||
let urls = {
|
||||
'tiny.en': 'https://whisper.ggerganov.com/ggml-model-whisper-tiny.en.bin',
|
||||
'base.en': 'https://whisper.ggerganov.com/ggml-model-whisper-base.en.bin',
|
||||
};
|
||||
|
||||
let sizes = {
|
||||
'tiny.en': 75,
|
||||
'base.en': 142,
|
||||
};
|
||||
|
||||
let url = urls[model];
|
||||
let dst = 'whisper.bin';
|
||||
let size_mb = sizes[model];
|
||||
|
||||
model_whisper = model;
|
||||
|
||||
document.getElementById('fetch-whisper-tiny-en').style.display = 'none';
|
||||
document.getElementById('fetch-whisper-base-en').style.display = 'none';
|
||||
document.getElementById('model-whisper-status').innerHTML = 'loading "' + model + '" ... ';
|
||||
|
||||
cbProgress = function(p) {
|
||||
let el = document.getElementById('fetch-whisper-progress');
|
||||
el.innerHTML = Math.round(100*p) + '%';
|
||||
};
|
||||
|
||||
cbCancel = function() {
|
||||
var el;
|
||||
el = document.getElementById('fetch-whisper-tiny-en'); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-base-en'); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('model-whisper-status'); if (el) el.innerHTML = '';
|
||||
};
|
||||
|
||||
loadRemote(url, dst, size_mb, cbProgress, storeFS, cbCancel, printTextarea);
|
||||
}
|
||||
|
||||
function loadGPT2(model) {
|
||||
let urls = {
|
||||
'small': 'https://whisper.ggerganov.com/ggml-model-gpt-2-117M.bin',
|
||||
'medium': 'https://whisper.ggerganov.com/ggml-model-gpt-2-345M.bin',
|
||||
};
|
||||
|
||||
let sizes = {
|
||||
'small': 240,
|
||||
'medium': 712,
|
||||
};
|
||||
|
||||
let url = urls[model];
|
||||
let dst = 'gpt-2.bin';
|
||||
let size_mb = sizes[model];
|
||||
|
||||
model_gpt_2 = model;
|
||||
|
||||
document.getElementById('fetch-gpt-2-small').style.display = 'none';
|
||||
document.getElementById('model-gpt-2-status').innerHTML = 'loading "' + model + '" ... ';
|
||||
|
||||
cbProgress = function(p) {
|
||||
let el = document.getElementById('fetch-gpt-2-progress');
|
||||
el.innerHTML = Math.round(100*p) + '%';
|
||||
};
|
||||
|
||||
cbCancel = function() {
|
||||
var el;
|
||||
el = document.getElementById('fetch-gpt-2-small') ; if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('model-gpt-2-status'); if (el) el.innerHTML = '';
|
||||
};
|
||||
|
||||
loadRemote(url, dst, size_mb, cbProgress, storeFS, cbCancel, printTextarea);
|
||||
}
|
||||
|
||||
//
|
||||
// microphone
|
||||
//
|
||||
|
||||
const kSampleRate = 16000;
|
||||
const kRestartRecording_s = 120;
|
||||
const kIntervalAudio_ms = 250; // pass the recorded audio to the C++ instance at this rate
|
||||
|
||||
var mediaRecorder = null;
|
||||
var doRecording = false;
|
||||
var startTime = 0;
|
||||
|
||||
window.AudioContext = window.AudioContext || window.webkitAudioContext;
|
||||
window.OfflineAudioContext = window.OfflineAudioContext || window.webkitOfflineAudioContext;
|
||||
|
||||
function stopRecording() {
|
||||
Module.set_status("paused");
|
||||
doRecording = false;
|
||||
audio0 = null;
|
||||
audio = null;
|
||||
context = null;
|
||||
}
|
||||
|
||||
function startRecording() {
|
||||
if (!context) {
|
||||
context = new AudioContext({
|
||||
sampleRate: kSampleRate,
|
||||
channelCount: 1,
|
||||
echoCancellation: false,
|
||||
autoGainControl: true,
|
||||
noiseSuppression: true,
|
||||
});
|
||||
}
|
||||
|
||||
Module.set_status("");
|
||||
|
||||
document.getElementById('start').disabled = true;
|
||||
document.getElementById('stop').disabled = false;
|
||||
document.getElementById('speak1').disabled = false;
|
||||
|
||||
doRecording = true;
|
||||
startTime = Date.now();
|
||||
|
||||
var chunks = [];
|
||||
var stream = null;
|
||||
|
||||
navigator.mediaDevices.getUserMedia({audio: true, video: false})
|
||||
.then(function(s) {
|
||||
stream = s;
|
||||
mediaRecorder = new MediaRecorder(stream);
|
||||
mediaRecorder.ondataavailable = function(e) {
|
||||
chunks.push(e.data);
|
||||
|
||||
var blob = new Blob(chunks, { 'type' : 'audio/ogg; codecs=opus' });
|
||||
var reader = new FileReader();
|
||||
|
||||
reader.onload = function(event) {
|
||||
var buf = new Uint8Array(reader.result);
|
||||
|
||||
if (!context) {
|
||||
return;
|
||||
}
|
||||
context.decodeAudioData(buf.buffer, function(audioBuffer) {
|
||||
var offlineContext = new OfflineAudioContext(audioBuffer.numberOfChannels, audioBuffer.length, audioBuffer.sampleRate);
|
||||
var source = offlineContext.createBufferSource();
|
||||
source.buffer = audioBuffer;
|
||||
source.connect(offlineContext.destination);
|
||||
source.start(0);
|
||||
|
||||
offlineContext.startRendering().then(function(renderedBuffer) {
|
||||
audio = renderedBuffer.getChannelData(0);
|
||||
|
||||
//printTextarea('js: audio recorded, size: ' + audio.length + ', old size: ' + (audio0 == null ? 0 : audio0.length));
|
||||
|
||||
var audioAll = new Float32Array(audio0 == null ? audio.length : audio0.length + audio.length);
|
||||
if (audio0 != null) {
|
||||
audioAll.set(audio0, 0);
|
||||
}
|
||||
audioAll.set(audio, audio0 == null ? 0 : audio0.length);
|
||||
|
||||
if (instance) {
|
||||
Module.set_audio(instance, audioAll);
|
||||
}
|
||||
});
|
||||
}, function(e) {
|
||||
audio = null;
|
||||
});
|
||||
}
|
||||
|
||||
reader.readAsArrayBuffer(blob);
|
||||
};
|
||||
|
||||
mediaRecorder.onstop = function(e) {
|
||||
if (doRecording) {
|
||||
setTimeout(function() {
|
||||
startRecording();
|
||||
});
|
||||
}
|
||||
};
|
||||
|
||||
mediaRecorder.start(kIntervalAudio_ms);
|
||||
})
|
||||
.catch(function(err) {
|
||||
printTextarea('js: error getting audio stream: ' + err);
|
||||
});
|
||||
|
||||
var interval = setInterval(function() {
|
||||
if (!doRecording) {
|
||||
clearInterval(interval);
|
||||
mediaRecorder.stop();
|
||||
stream.getTracks().forEach(function(track) {
|
||||
track.stop();
|
||||
});
|
||||
|
||||
document.getElementById('start').disabled = false;
|
||||
document.getElementById('stop').disabled = true;
|
||||
document.getElementById('speak1').disabled = true;
|
||||
|
||||
mediaRecorder = null;
|
||||
}
|
||||
|
||||
// if audio length is more than kRestartRecording_s seconds, restart recording
|
||||
if (audio != null && audio.length > kSampleRate*kRestartRecording_s) {
|
||||
if (doRecording) {
|
||||
//printTextarea('js: restarting recording');
|
||||
|
||||
clearInterval(interval);
|
||||
audio0 = audio;
|
||||
audio = null;
|
||||
mediaRecorder.stop();
|
||||
stream.getTracks().forEach(function(track) {
|
||||
track.stop();
|
||||
});
|
||||
}
|
||||
}
|
||||
}, 100);
|
||||
}
|
||||
|
||||
//
|
||||
// speak
|
||||
//
|
||||
|
||||
function onSpeak(text) {
|
||||
var voices = synth.getVoices();
|
||||
var msg = new SpeechSynthesisUtterance(text);
|
||||
|
||||
if (voice == null) {
|
||||
voice = voices[0];
|
||||
}
|
||||
|
||||
msg.voice = voice;
|
||||
synth.speak(msg);
|
||||
|
||||
if (doRecording) {
|
||||
Module.set_status("speaking ...");
|
||||
printTextarea('js: speaking');
|
||||
stopRecording();
|
||||
var interval = setInterval(function() {
|
||||
if (!synth.speaking) {
|
||||
printTextarea('js: done speaking');
|
||||
clearInterval(interval);
|
||||
startRecording();
|
||||
} else {
|
||||
Module.set_status("");
|
||||
}
|
||||
}, 100);
|
||||
}
|
||||
}
|
||||
|
||||
function onSpeakRandom() {
|
||||
Module.force_speak(instance);
|
||||
}
|
||||
|
||||
//
|
||||
// main
|
||||
//
|
||||
|
||||
var intervalUpdate = null;
|
||||
|
||||
function onStart() {
|
||||
if (!instance) {
|
||||
instance = Module.init('whisper.bin');
|
||||
|
||||
if (instance) {
|
||||
printTextarea("js: whisper initialized, instance: " + instance);
|
||||
}
|
||||
}
|
||||
|
||||
if (!instance) {
|
||||
printTextarea("js: failed to initialize whisper");
|
||||
return;
|
||||
}
|
||||
|
||||
startRecording();
|
||||
|
||||
intervalUpdate = setInterval(function() {
|
||||
var textToSpeak = Module.get_text_to_speak();
|
||||
|
||||
if (textToSpeak != null && textToSpeak.length > 1) {
|
||||
onSpeak(textToSpeak);
|
||||
}
|
||||
|
||||
document.getElementById('state-status').innerHTML = Module.get_status();
|
||||
document.getElementById('state-context').innerHTML = Module.get_text_context();
|
||||
}, 100);
|
||||
}
|
||||
|
||||
function onStop() {
|
||||
stopRecording();
|
||||
}
|
||||
|
||||
function onVoiceChange() {
|
||||
printTextarea('js: voice changed to: ' + document.getElementById('voice').value);
|
||||
voice = synth.getVoices()[document.getElementById('voice').value];
|
||||
}
|
||||
|
||||
function onPromptChange() {
|
||||
let id = document.getElementById('prompt').value;
|
||||
let personality = document.getElementById('prompt').options[id].text;
|
||||
printTextarea('js: prompt changed to: ' + personality);
|
||||
|
||||
var prompt = '';
|
||||
|
||||
switch (id) {
|
||||
case '0':
|
||||
// Casual
|
||||
prompt = "\
|
||||
Hello, how are you?\n\
|
||||
I'm fine, thanks. How are you?\n\
|
||||
Thanks, I'm fine too. What are you doing?\n\
|
||||
I'm just sitting here.\n\
|
||||
It's a lovely day, isn't it?\n\
|
||||
Yes, it is. I love the weather this time of year.\n\
|
||||
I wish it would rain a little bit.\n\
|
||||
Me too.\n";
|
||||
break;
|
||||
case '1':
|
||||
// Robot
|
||||
prompt = "\
|
||||
Are you a robot?\n\
|
||||
Yes, I am.\n\
|
||||
Who created you?\n\
|
||||
I was created by a human.\n\
|
||||
What is your purpose?\n\
|
||||
My purpose is to talk to humans.\n\
|
||||
What is your favorite color?\n\
|
||||
My favorite color is blue.\n";
|
||||
break;
|
||||
case '2':
|
||||
// Scientist
|
||||
prompt = "\
|
||||
This scientific research is very interesting.\n\
|
||||
I agree.\n\
|
||||
What is your opinion on this?\n\
|
||||
I think it's very interesting.\n\
|
||||
Mathematics is a very interesting subject.\n\
|
||||
University is a very interesting place.\n\
|
||||
Quantum physics is the most complex subject.\n\
|
||||
I think so too.\n";
|
||||
break;
|
||||
case '3':
|
||||
// Programmer
|
||||
prompt = "\
|
||||
I'm a programmer.\n\
|
||||
I'm a programmer too.\n\
|
||||
What programming language do you use?\n\
|
||||
I use Python.\n\
|
||||
What is your favorite programming language?\n\
|
||||
My favorite programming language is C++.\n\
|
||||
What is your favorite editor?\n\
|
||||
My favorite editor is Vim.\n";
|
||||
break;
|
||||
case '4':
|
||||
// Happy
|
||||
prompt = "\
|
||||
I'm happy.\n\
|
||||
I'm happy too.\n\
|
||||
What makes you happy?\n\
|
||||
I'm happy because I have a lot of friends.\n\
|
||||
Friendship is the most important thing in life.\n\
|
||||
I agree.\n\
|
||||
What is your favorite color?\n\
|
||||
My favorite color is blue.\n";
|
||||
break;
|
||||
case '5':
|
||||
// Sad
|
||||
prompt = "\
|
||||
Today is a sad day.\n\
|
||||
I'm sad too.\n\
|
||||
What makes you sad?\n\
|
||||
I'm sad because I have no friends.\n\
|
||||
Do you want to be my friend?\n\
|
||||
Yes, I would like to be your friend.\n\
|
||||
What is your favorite color?\n\
|
||||
My favorite color is blue.\n";
|
||||
break;
|
||||
case '6':
|
||||
// Philosophical
|
||||
prompt = "\
|
||||
What is the meaning of life?\n\
|
||||
The meaning of life is to be happy.\n\
|
||||
What is the meaning of death?\n\
|
||||
Ergo, the meaning of death is to be sad.\n\
|
||||
Who created us?\n\
|
||||
We were created by God.\n\
|
||||
What is God?\n\
|
||||
God is the creator of the universe.\n";
|
||||
break;
|
||||
case '7':
|
||||
// Angry
|
||||
prompt = "\
|
||||
Aargh!\n\
|
||||
I am so angry right now!\n\
|
||||
What makes you angry?\n\
|
||||
This guy is so annoying.\n\
|
||||
Why are you so angry?\n\
|
||||
My computer is broken.\n\
|
||||
Why is your computer broken?\n\
|
||||
I spilled coffee on it.\n";
|
||||
break;
|
||||
case '8':
|
||||
// Funny
|
||||
prompt = "\
|
||||
What is the funniest thing you have ever heard?\n\
|
||||
I heard a joke the other day.\n\
|
||||
Tell me the joke.\n\
|
||||
What do you call a cow with no legs?\n\
|
||||
Ground beef.\n\
|
||||
Haha, that's funny.\n\
|
||||
You know what else is funny?\n\
|
||||
The sound of a duck.\n";
|
||||
break;
|
||||
case '9':
|
||||
// Poetic
|
||||
prompt = "\
|
||||
Roses are red, violets are blue.\n\
|
||||
I am a poet, and so are you.\n\
|
||||
What is your favorite poem?\n\
|
||||
I like the poem 'The Raven' by Edgar Allan Poe.\n\
|
||||
It's a very sad poem.\n\
|
||||
You inspired me to write a poem.\n\
|
||||
Can you write a poem for me?\n\
|
||||
I wrote a poem for you.\n";
|
||||
break;
|
||||
case '10':
|
||||
// Clever
|
||||
prompt = "\
|
||||
How many people can you fit in a Volkswagen?\n\
|
||||
Two in the front, three in the back.\n\
|
||||
What is the square root of 144?\n\
|
||||
Twelve.\n\
|
||||
What is the capital of France?\n\
|
||||
Paris.\n\
|
||||
Who is the president of the United States?\n\
|
||||
It depends on the year.\n";
|
||||
break;
|
||||
case '11':
|
||||
// Cute
|
||||
prompt = "\
|
||||
What is your favorite animal?\n\
|
||||
I like cats - they are cute.\n\
|
||||
Could you be any cuter?\n\
|
||||
Yes, I could be cuter.\n\
|
||||
Aghhh, you are so cute!\n\
|
||||
I am not cute, I am handsome!\n\
|
||||
You are so handsome!\n\
|
||||
Aww, you are so sweet!\n";
|
||||
break;
|
||||
case '12':
|
||||
// Smart
|
||||
prompt = "\
|
||||
Tell me the first 10 digits of pi.\n\
|
||||
3.1415926535\n\
|
||||
What is the speed of light?\n\
|
||||
299,792,458 meters per second.\n\
|
||||
What is the square root of 144?\n\
|
||||
Twelve.\n\
|
||||
What is the capital of France?\n\
|
||||
Paris.\n";
|
||||
break;
|
||||
case '13':
|
||||
// Dumb
|
||||
prompt = "\
|
||||
I am so dumb.\n\
|
||||
I am not dumb.\n\
|
||||
You are dumb.\n\
|
||||
No, I am not dumb.\n\
|
||||
You are dumb.\n\
|
||||
No, I am not dumb.\n\
|
||||
You are dumb.\n\
|
||||
No, I am not dumb.\n";
|
||||
break;
|
||||
case '14':
|
||||
// Boring
|
||||
prompt = "\
|
||||
Why are you so quiet today?\n\
|
||||
I am bored.\n\
|
||||
You haven't said anything in 10 minutes.\n\
|
||||
Leave me alone.\n\
|
||||
Stop being so boring.\n\
|
||||
Stop being so annoying.\n\
|
||||
My life is boring.\n\
|
||||
I am not interesting.\n";
|
||||
break;
|
||||
case '15':
|
||||
// Exciting
|
||||
prompt = "\
|
||||
What is the most exciting thing that has ever happened to you?\n\
|
||||
I went to the moon!\n\
|
||||
What did you do on the moon?\n\
|
||||
I played golf and drank champagne!\n\
|
||||
Did you see this new crazy, awesome movie?\n\
|
||||
Oh yes! I totally loved it!\n\
|
||||
We should buy a boat and go sailing!\n\
|
||||
Yes, let's go sailing!\n";
|
||||
break;
|
||||
case '16':
|
||||
// Interesting
|
||||
prompt = "\
|
||||
What is the most interesting thing you have ever seen?\n\
|
||||
I saw a UFO once in the sky.\n\
|
||||
Wow, this is so interesting! Tell me more!\n\
|
||||
It was a flying saucer.\n\
|
||||
What did it look like?\n\
|
||||
It was silver and had a red light on top.\n\
|
||||
What did it do?\n\
|
||||
It flew away.\n";
|
||||
break;
|
||||
case '17':
|
||||
// William Shakespear
|
||||
prompt = "\
|
||||
To be or not to be, that is the question.\n\
|
||||
Whether 't is nobler in the mind to suffer\n\
|
||||
The slings and arrows of outrageous fortune,\n\
|
||||
Or to take arms against a sea of troubles,\n\
|
||||
And by opposing end them? To die, to sleep,\n\
|
||||
No more; and by a sleep to say we end\n\
|
||||
The heart-ache and the thousand natural shocks\n\
|
||||
That flesh is heir to, 'tis a consummation.\n";
|
||||
break;
|
||||
case '18':
|
||||
// J.R.R. Tolkien
|
||||
prompt = "\
|
||||
In a hole in the ground there lived a hobbit.\n\
|
||||
Not a nasty, dirty, wet hole, filled with the ends of worms\n\
|
||||
and an oozy smell, nor yet a dry, bare, sandy hole with nothing in it\n\
|
||||
to sit down on or to eat: it was a hobbit-hole, and that means comfort.\n\
|
||||
It had a perfectly round door like a porthole, painted green,\n\
|
||||
with a shiny yellow brass knob in the exact middle.\n\
|
||||
The door opened on to a tube-shaped hall like a tunnel:\n";
|
||||
break;
|
||||
case '19':
|
||||
// George R.R. Martin
|
||||
prompt = "\
|
||||
A reader lives a thousand lives before he dies, said Jojen.\n\
|
||||
The man who never reads lives only one.\n\
|
||||
Theon Greyjoy had never been a reader.\n\
|
||||
Never forget what you are, for surely the world will not.\n\
|
||||
Make it your strength. Then it can never be your weaknessi\n\
|
||||
Armour yourself in it, and it will never be used to hurt you.\n\
|
||||
It was a lesson that Theon Greyjoy had never learned.\n\
|
||||
Theon Greyjoy had never been a reader.\n";
|
||||
break;
|
||||
case '20':
|
||||
// Stephen King
|
||||
prompt = "\
|
||||
The trust of the innocent is the liar's most useful tool.\n\
|
||||
The best way to keep a secret is from yourself.\n\
|
||||
Monsters are real, and ghosts are real too.\n\
|
||||
They live inside us, and sometimes, they win.\n\
|
||||
People think that I must be a very strange person.\n\
|
||||
They think that I sit around all day thinking up horrible things.\n\
|
||||
We make up horrors to help us cope with the real ones.\n\
|
||||
The only thing worse than a monster is a human monster.\n";
|
||||
break;
|
||||
default:
|
||||
prompt = "\
|
||||
Hello, how are you?\n\
|
||||
I'm fine, thanks. How are you?\n\
|
||||
Thanks, I'm fine too. What are you doing?\n\
|
||||
I'm just sitting here.\n\
|
||||
It's a lovely day, isn't it?\n\
|
||||
Yes, it is.\n\
|
||||
Did you know that I'm a robot?\n\
|
||||
I wasn't aware of that.\n";
|
||||
break;
|
||||
}
|
||||
|
||||
Module.set_prompt(prompt);
|
||||
}
|
||||
|
||||
</script>
|
||||
<script type="text/javascript" src="talk.js"></script>
|
||||
</body>
|
||||
</html>
|
1
examples/talk/.gitignore
vendored
1
examples/talk/.gitignore
vendored
@ -1 +0,0 @@
|
||||
eleven-labs.py
|
@ -1,13 +0,0 @@
|
||||
if (WHISPER_SUPPORT_SDL2)
|
||||
# talk
|
||||
set(TARGET talk)
|
||||
#add_executable(${TARGET} talk.cpp gpt-2.cpp)
|
||||
#target_include_directories(${TARGET} PRIVATE ${SDL2_INCLUDE_DIRS})
|
||||
#target_link_libraries(${TARGET} PRIVATE whisper ${SDL2_LIBRARIES} ${CMAKE_THREAD_LIBS_INIT})
|
||||
|
||||
# TODO: this is temporary
|
||||
# need to export ggml symbols for MSVC, but too lazy ..
|
||||
add_executable(${TARGET} talk.cpp gpt-2.cpp ../../ggml.c ../../whisper.cpp)
|
||||
target_include_directories(${TARGET} PRIVATE ${SDL2_INCLUDE_DIRS} ../../)
|
||||
target_link_libraries(${TARGET} PRIVATE ${SDL2_LIBRARIES} ${CMAKE_THREAD_LIBS_INIT})
|
||||
endif ()
|
@ -1,41 +0,0 @@
|
||||
# talk
|
||||
|
||||
Talk with an Artificial Intelligence in your terminal
|
||||
|
||||
[Demo Talk](https://user-images.githubusercontent.com/1991296/206805012-48e71cc2-588d-4745-8798-c1c70ea3b40d.mp4)
|
||||
|
||||
Web version: [examples/talk.wasm](/examples/talk.wasm)
|
||||
|
||||
## Building
|
||||
|
||||
The `talk` tool depends on SDL2 library to capture audio from the microphone. You can build it like this:
|
||||
|
||||
```bash
|
||||
# Install SDL2 on Linux
|
||||
sudo apt-get install libsdl2-dev
|
||||
|
||||
# Install SDL2 on Mac OS
|
||||
brew install sdl2
|
||||
|
||||
# Build the "talk" executable
|
||||
make talk
|
||||
|
||||
# Run it
|
||||
./talk -p Santa
|
||||
```
|
||||
|
||||
## GPT-2
|
||||
|
||||
To run this, you will need a ggml GPT-2 model: [instructions](https://github.com/ggerganov/ggml/tree/master/examples/gpt-2#downloading-and-converting-the-original-models)
|
||||
|
||||
Alternatively, you can simply download the smallest ggml GPT-2 117M model (240 MB) like this:
|
||||
|
||||
```
|
||||
wget --quiet --show-progress -O models/ggml-gpt-2-117M.bin https://ggml.ggerganov.com/ggml-model-gpt-2-117M.bin
|
||||
```
|
||||
|
||||
## TTS
|
||||
|
||||
For best experience, this example needs a TTS tool to convert the generated text responses to voice.
|
||||
You can use any TTS engine that you would like - simply edit the [speak.sh](speak.sh) script to your needs.
|
||||
By default, it is configured to use `espeak`, but you can use whatever you wish.
|
@ -1,925 +0,0 @@
|
||||
#include "ggml.h"
|
||||
#include "gpt-2.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <fstream>
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
#include <regex>
|
||||
#include <random>
|
||||
|
||||
/////////////////////// GPT-2 BEGIN /////////////////////////
|
||||
|
||||
//
|
||||
// Vocab utils
|
||||
//
|
||||
|
||||
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text) {
|
||||
std::vector<std::string> words;
|
||||
|
||||
// first split the text into words
|
||||
{
|
||||
std::string str = text;
|
||||
std::string pat = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)";
|
||||
|
||||
std::regex re(pat);
|
||||
std::smatch m;
|
||||
|
||||
while (std::regex_search(str, m, re)) {
|
||||
for (auto x : m) {
|
||||
words.push_back(x);
|
||||
}
|
||||
str = m.suffix();
|
||||
}
|
||||
}
|
||||
|
||||
// find the longest tokens that form the words:
|
||||
std::vector<gpt_vocab::id> tokens;
|
||||
for (const auto & word : words) {
|
||||
if (word.size() == 0) continue;
|
||||
|
||||
int i = 0;
|
||||
int n = word.size();
|
||||
while (i < n) {
|
||||
int j = n;
|
||||
while (j > i) {
|
||||
auto it = vocab.token_to_id.find(word.substr(i, j-i));
|
||||
if (it != vocab.token_to_id.end()) {
|
||||
tokens.push_back(it->second);
|
||||
i = j;
|
||||
break;
|
||||
}
|
||||
--j;
|
||||
}
|
||||
if (i == n) {
|
||||
break;
|
||||
}
|
||||
if (j == i) {
|
||||
auto sub = word.substr(i, 1);
|
||||
if (vocab.token_to_id.find(sub) != vocab.token_to_id.end()) {
|
||||
tokens.push_back(vocab.token_to_id.at(sub));
|
||||
} else {
|
||||
fprintf(stderr, "%s: unknown token '%s'\n", __func__, sub.data());
|
||||
}
|
||||
++i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return tokens;
|
||||
}
|
||||
|
||||
gpt_vocab::id gpt_sample_top_k_top_p(
|
||||
const gpt_vocab & vocab,
|
||||
const float * logits,
|
||||
int top_k,
|
||||
double top_p,
|
||||
double temp,
|
||||
std::mt19937 & rng) {
|
||||
int n_logits = vocab.id_to_token.size();
|
||||
|
||||
std::vector<std::pair<double, gpt_vocab::id>> logits_id;
|
||||
logits_id.reserve(n_logits);
|
||||
|
||||
for (int i = 0; i < n_logits; i++) {
|
||||
logits_id.push_back(std::make_pair(logits[i], i));
|
||||
}
|
||||
|
||||
// find the top K tokens
|
||||
std::partial_sort(
|
||||
logits_id.begin(),
|
||||
logits_id.begin() + top_k, logits_id.end(),
|
||||
[](const std::pair<double, gpt_vocab::id> & a, const std::pair<double, gpt_vocab::id> & b) {
|
||||
return a.first > b.first;
|
||||
});
|
||||
|
||||
logits_id.resize(top_k);
|
||||
|
||||
// normalize
|
||||
{
|
||||
double sum = 0.0f;
|
||||
for (int i = 0; i < (int)logits_id.size(); i++) {
|
||||
sum += logits_id[i].first;
|
||||
}
|
||||
|
||||
sum = 1.0/sum;
|
||||
for (int i = 0; i < (int)logits_id.size(); i++) {
|
||||
logits_id[i].first *= sum;
|
||||
}
|
||||
}
|
||||
|
||||
if (top_p < 1.0f) {
|
||||
{
|
||||
double cumsum = 0.0f;
|
||||
for (int i = 0; i < top_k; i++) {
|
||||
cumsum += logits_id[i].first;
|
||||
if (cumsum >= top_p) {
|
||||
logits_id.resize(i+1);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// normalize again
|
||||
{
|
||||
double sum = 0.0f;
|
||||
for (int i = 0; i < (int)logits_id.size(); i++) {
|
||||
sum += logits_id[i].first;
|
||||
}
|
||||
|
||||
sum = 1.0/sum;
|
||||
for (int i = 0; i < (int)logits_id.size(); i++) {
|
||||
logits_id[i].first *= sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//printf("\n");
|
||||
//for (int i = 0; i < (int)logits_id.size(); i++) {
|
||||
// printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), logits_id[i].first);
|
||||
//}
|
||||
//exit(0);
|
||||
|
||||
// sample from the obtained distribution
|
||||
std::vector<double> probs;
|
||||
probs.reserve(logits_id.size());
|
||||
|
||||
for (int i = 0; i < (int) logits_id.size(); i++) {
|
||||
probs.push_back(logits_id[i].first);
|
||||
}
|
||||
|
||||
std::discrete_distribution<> dist(probs.begin(), probs.end());
|
||||
int idx = dist(rng);
|
||||
|
||||
return logits_id[idx].second;
|
||||
}
|
||||
|
||||
// default hparams (GPT-2 117M)
|
||||
struct gpt2_hparams {
|
||||
int32_t n_vocab = 50257;
|
||||
int32_t n_ctx = 1024;
|
||||
int32_t n_embd = 768;
|
||||
int32_t n_head = 12;
|
||||
int32_t n_layer = 12;
|
||||
int32_t f16 = 1;
|
||||
};
|
||||
|
||||
struct gpt2_layer {
|
||||
// normalization
|
||||
struct ggml_tensor * ln_1_g;
|
||||
struct ggml_tensor * ln_1_b;
|
||||
|
||||
struct ggml_tensor * ln_2_g;
|
||||
struct ggml_tensor * ln_2_b;
|
||||
|
||||
// attention
|
||||
struct ggml_tensor * c_attn_attn_w;
|
||||
struct ggml_tensor * c_attn_attn_b;
|
||||
|
||||
struct ggml_tensor * c_attn_proj_w;
|
||||
struct ggml_tensor * c_attn_proj_b;
|
||||
|
||||
// mlp
|
||||
struct ggml_tensor * c_mlp_fc_w;
|
||||
struct ggml_tensor * c_mlp_fc_b;
|
||||
|
||||
struct ggml_tensor * c_mlp_proj_w_trans; // transposed for efficiency
|
||||
struct ggml_tensor * c_mlp_proj_b;
|
||||
};
|
||||
|
||||
struct gpt2_model {
|
||||
gpt2_hparams hparams;
|
||||
|
||||
// normalization
|
||||
struct ggml_tensor * ln_f_g;
|
||||
struct ggml_tensor * ln_f_b;
|
||||
|
||||
struct ggml_tensor * wte; // position embedding
|
||||
struct ggml_tensor * wpe; // token embedding
|
||||
|
||||
std::vector<gpt2_layer> layers;
|
||||
|
||||
// key + value memory
|
||||
struct ggml_tensor * memory_k;
|
||||
struct ggml_tensor * memory_v;
|
||||
|
||||
//
|
||||
struct ggml_context * ctx;
|
||||
std::map<std::string, struct ggml_tensor *> tensors;
|
||||
};
|
||||
|
||||
// load the model's weights from a file
|
||||
bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab & vocab) {
|
||||
printf("%s: loading model from '%s'\n", __func__, fname.c_str());
|
||||
|
||||
auto fin = std::ifstream(fname, std::ios::binary);
|
||||
if (!fin) {
|
||||
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
// verify magic
|
||||
{
|
||||
uint32_t magic;
|
||||
fin.read((char *) &magic, sizeof(magic));
|
||||
if (magic != 0x67676d6c) {
|
||||
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// load hparams
|
||||
{
|
||||
auto & hparams = model.hparams;
|
||||
|
||||
fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
|
||||
fin.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
|
||||
fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd));
|
||||
fin.read((char *) &hparams.n_head, sizeof(hparams.n_head));
|
||||
fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
|
||||
fin.read((char *) &hparams.f16, sizeof(hparams.f16));
|
||||
|
||||
printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
|
||||
printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
|
||||
printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
|
||||
printf("%s: n_head = %d\n", __func__, hparams.n_head);
|
||||
printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
|
||||
printf("%s: f16 = %d\n", __func__, hparams.f16);
|
||||
}
|
||||
|
||||
// load vocab
|
||||
{
|
||||
int32_t n_vocab = 0;
|
||||
fin.read((char *) &n_vocab, sizeof(n_vocab));
|
||||
|
||||
if (n_vocab != model.hparams.n_vocab) {
|
||||
fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
|
||||
__func__, fname.c_str(), n_vocab, model.hparams.n_vocab);
|
||||
return false;
|
||||
}
|
||||
|
||||
std::string word;
|
||||
for (int i = 0; i < n_vocab; i++) {
|
||||
uint32_t len;
|
||||
fin.read((char *) &len, sizeof(len));
|
||||
|
||||
word.resize(len);
|
||||
fin.read((char *) word.data(), len);
|
||||
|
||||
vocab.token_to_id[word] = i;
|
||||
vocab.id_to_token[i] = word;
|
||||
}
|
||||
}
|
||||
|
||||
// for the big tensors, we have the option to store the data in 16-bit floats
|
||||
// in order to save memory and also to speed up the computation
|
||||
const ggml_type wtype = model.hparams.f16 ? GGML_TYPE_F16 : GGML_TYPE_F32;
|
||||
|
||||
auto & ctx = model.ctx;
|
||||
|
||||
size_t ctx_size = 0;
|
||||
|
||||
{
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
const int n_embd = hparams.n_embd;
|
||||
const int n_layer = hparams.n_layer;
|
||||
const int n_ctx = hparams.n_ctx;
|
||||
const int n_vocab = hparams.n_vocab;
|
||||
|
||||
ctx_size += n_embd*ggml_type_size(GGML_TYPE_F32); // ln_f_g
|
||||
ctx_size += n_embd*ggml_type_size(GGML_TYPE_F32); // ln_f_b
|
||||
|
||||
ctx_size += n_vocab*n_embd*ggml_type_size(wtype); // wte
|
||||
ctx_size += n_ctx*n_embd*ggml_type_size(GGML_TYPE_F32); // wpe
|
||||
|
||||
ctx_size += n_layer*(n_embd*ggml_type_size(GGML_TYPE_F32)); // ln_1_g
|
||||
ctx_size += n_layer*(n_embd*ggml_type_size(GGML_TYPE_F32)); // ln_1_b
|
||||
|
||||
ctx_size += n_layer*(n_embd*ggml_type_size(GGML_TYPE_F32)); // ln_2_g
|
||||
ctx_size += n_layer*(n_embd*ggml_type_size(GGML_TYPE_F32)); // ln_2_b
|
||||
|
||||
ctx_size += n_layer*(3*n_embd*n_embd*ggml_type_size(wtype)); // c_attn_attn_w
|
||||
ctx_size += n_layer*( 3*n_embd*ggml_type_size(GGML_TYPE_F32)); // c_attn_attn_b
|
||||
|
||||
ctx_size += n_layer*(n_embd*n_embd*ggml_type_size(wtype)); // c_attn_proj_w
|
||||
ctx_size += n_layer*( n_embd*ggml_type_size(GGML_TYPE_F32)); // c_attn_proj_b
|
||||
|
||||
ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_size(wtype)); // c_mlp_fc_w
|
||||
ctx_size += n_layer*( 4*n_embd*ggml_type_size(GGML_TYPE_F32)); // c_mlp_fc_b
|
||||
|
||||
ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_size(wtype)); // c_mlp_proj_w
|
||||
ctx_size += n_layer*( n_embd*ggml_type_size(GGML_TYPE_F32)); // c_mlp_proj_b
|
||||
|
||||
ctx_size += n_ctx*n_layer*n_embd*ggml_type_size(GGML_TYPE_F32); // memory_k
|
||||
ctx_size += n_ctx*n_layer*n_embd*ggml_type_size(GGML_TYPE_F32); // memory_v
|
||||
|
||||
ctx_size += (6 + 12*n_layer)*256; // object overhead
|
||||
|
||||
printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
|
||||
}
|
||||
|
||||
// create the ggml context
|
||||
{
|
||||
struct ggml_init_params params;
|
||||
params.mem_size = ctx_size;
|
||||
params.mem_buffer = NULL;
|
||||
|
||||
model.ctx = ggml_init(params);
|
||||
if (!model.ctx) {
|
||||
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// prepare memory for the weights
|
||||
{
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
const int n_embd = hparams.n_embd;
|
||||
const int n_layer = hparams.n_layer;
|
||||
const int n_ctx = hparams.n_ctx;
|
||||
const int n_vocab = hparams.n_vocab;
|
||||
|
||||
model.layers.resize(n_layer);
|
||||
|
||||
model.ln_f_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
model.ln_f_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
|
||||
model.wte = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
|
||||
model.wpe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ctx);
|
||||
|
||||
// map by name
|
||||
model.tensors["model/ln_f/g"] = model.ln_f_g;
|
||||
model.tensors["model/ln_f/b"] = model.ln_f_b;
|
||||
|
||||
model.tensors["model/wte"] = model.wte;
|
||||
model.tensors["model/wpe"] = model.wpe;
|
||||
|
||||
for (int i = 0; i < n_layer; ++i) {
|
||||
auto & layer = model.layers[i];
|
||||
|
||||
layer.ln_1_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
layer.ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
|
||||
layer.ln_2_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
layer.ln_2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
|
||||
layer.c_attn_attn_w = ggml_new_tensor_2d(ctx, wtype, 3*n_embd, n_embd);
|
||||
layer.c_attn_attn_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 3*n_embd);
|
||||
|
||||
layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
|
||||
layer.c_attn_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
|
||||
layer.c_mlp_fc_w = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd);
|
||||
layer.c_mlp_fc_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_embd);
|
||||
|
||||
layer.c_mlp_proj_w_trans = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd);
|
||||
layer.c_mlp_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
|
||||
// map by name
|
||||
model.tensors["model/h" + std::to_string(i) + "/ln_1/g"] = layer.ln_1_g;
|
||||
model.tensors["model/h" + std::to_string(i) + "/ln_1/b"] = layer.ln_1_b;
|
||||
|
||||
model.tensors["model/h" + std::to_string(i) + "/ln_2/g"] = layer.ln_2_g;
|
||||
model.tensors["model/h" + std::to_string(i) + "/ln_2/b"] = layer.ln_2_b;
|
||||
|
||||
model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/w"] = layer.c_attn_attn_w;
|
||||
model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/b"] = layer.c_attn_attn_b;
|
||||
|
||||
model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/w"] = layer.c_attn_proj_w;
|
||||
model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/b"] = layer.c_attn_proj_b;
|
||||
|
||||
model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/w"] = layer.c_mlp_fc_w;
|
||||
model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/b"] = layer.c_mlp_fc_b;
|
||||
|
||||
model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/w"] = layer.c_mlp_proj_w_trans;
|
||||
model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/b"] = layer.c_mlp_proj_b;
|
||||
}
|
||||
}
|
||||
|
||||
// key + value memory
|
||||
{
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
const int n_embd = hparams.n_embd;
|
||||
const int n_layer = hparams.n_layer;
|
||||
const int n_ctx = hparams.n_ctx;
|
||||
|
||||
const int n_mem = n_layer*n_ctx;
|
||||
const int n_elements = n_embd*n_mem;
|
||||
|
||||
model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
|
||||
model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
|
||||
|
||||
const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v);
|
||||
|
||||
printf("%s: memory size = %8.2f MB, n_mem = %d\n", __func__, memory_size/1024.0/1024.0, n_mem);
|
||||
}
|
||||
|
||||
// load weights
|
||||
{
|
||||
size_t total_size = 0;
|
||||
|
||||
while (true) {
|
||||
int32_t n_dims;
|
||||
int32_t length;
|
||||
int32_t ftype;
|
||||
|
||||
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
|
||||
fin.read(reinterpret_cast<char *>(&length), sizeof(length));
|
||||
fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
|
||||
|
||||
if (fin.eof()) {
|
||||
break;
|
||||
}
|
||||
|
||||
int32_t nelements = 1;
|
||||
int32_t ne[2] = { 1, 1 };
|
||||
for (int i = 0; i < n_dims; ++i) {
|
||||
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
|
||||
nelements *= ne[i];
|
||||
}
|
||||
|
||||
std::string name(length, 0);
|
||||
fin.read(&name[0], length);
|
||||
|
||||
if (model.tensors.find(name.data()) == model.tensors.end()) {
|
||||
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
|
||||
return false;
|
||||
}
|
||||
|
||||
auto tensor = model.tensors[name.data()];
|
||||
if (ggml_nelements(tensor) != nelements) {
|
||||
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
|
||||
return false;
|
||||
}
|
||||
|
||||
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
|
||||
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
|
||||
__func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]);
|
||||
return false;
|
||||
}
|
||||
|
||||
const size_t bpe = (ftype == 0) ? sizeof(float) : sizeof(ggml_fp16_t);
|
||||
|
||||
if (nelements*bpe != ggml_nbytes(tensor)) {
|
||||
fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
|
||||
__func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
|
||||
return false;
|
||||
}
|
||||
|
||||
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
|
||||
|
||||
//printf("%24s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
|
||||
total_size += ggml_nbytes(tensor);
|
||||
}
|
||||
|
||||
printf("%s: model size = %8.2f MB\n", __func__, total_size/1024.0/1024.0);
|
||||
}
|
||||
|
||||
fin.close();
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// evaluate the transformer
|
||||
//
|
||||
// - model: the model
|
||||
// - n_threads: number of threads to use
|
||||
// - n_past: the context size so far
|
||||
// - embd_inp: the embeddings of the tokens in the context
|
||||
// - embd_w: the predicted probabilities of the next token
|
||||
//
|
||||
bool gpt2_eval(
|
||||
const gpt2_model & model,
|
||||
const int n_threads,
|
||||
const int n_past,
|
||||
const std::vector<gpt_vocab::id> & embd_inp,
|
||||
std::vector<float> & embd_w,
|
||||
size_t & mem_per_token) {
|
||||
const int N = embd_inp.size();
|
||||
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
const int n_embd = hparams.n_embd;
|
||||
const int n_layer = hparams.n_layer;
|
||||
const int n_ctx = hparams.n_ctx;
|
||||
const int n_head = hparams.n_head;
|
||||
const int n_vocab = hparams.n_vocab;
|
||||
|
||||
static size_t buf_size = 5640ull*1024*1024;
|
||||
static void * buf = malloc(buf_size);
|
||||
|
||||
if (mem_per_token > 0 && mem_per_token*N > buf_size) {
|
||||
const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead
|
||||
printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new);
|
||||
|
||||
// reallocate
|
||||
buf_size = buf_size_new;
|
||||
buf = realloc(buf, buf_size);
|
||||
if (buf == nullptr) {
|
||||
fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
struct ggml_init_params params;
|
||||
params.mem_size = buf_size;
|
||||
params.mem_buffer = buf;
|
||||
|
||||
struct ggml_context * ctx0 = ggml_init(params);
|
||||
|
||||
struct ggml_cgraph gf = { };
|
||||
gf.n_threads = n_threads;
|
||||
|
||||
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
||||
memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd));
|
||||
|
||||
struct ggml_tensor * position = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
||||
for (int i = 0; i < N; ++i) {
|
||||
((int32_t *) position->data)[i] = n_past + i;
|
||||
}
|
||||
|
||||
// wte + wpe
|
||||
struct ggml_tensor * inpL =
|
||||
ggml_add(ctx0,
|
||||
ggml_get_rows(ctx0, model.wte, embd),
|
||||
ggml_get_rows(ctx0, model.wpe, position));
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
struct ggml_tensor * cur;
|
||||
|
||||
// norm
|
||||
{
|
||||
// [ 768, N]
|
||||
cur = ggml_norm(ctx0, inpL);
|
||||
|
||||
// cur = ln_1_g*cur + ln_1_b
|
||||
// [ 768, N]
|
||||
cur = ggml_add(ctx0,
|
||||
ggml_mul(ctx0,
|
||||
ggml_repeat(ctx0, model.layers[il].ln_1_g, cur),
|
||||
cur),
|
||||
ggml_repeat(ctx0, model.layers[il].ln_1_b, cur));
|
||||
}
|
||||
|
||||
// attn
|
||||
// [2304, 768] - model.layers[il].c_attn_attn_w
|
||||
// [2304, 1] - model.layers[il].c_attn_attn_b
|
||||
// [ 768, N] - cur (in)
|
||||
// [2304, N] - cur (out)
|
||||
//
|
||||
// cur = attn_w*cur + attn_b
|
||||
// [2304, N]
|
||||
{
|
||||
cur = ggml_mul_mat(ctx0,
|
||||
ggml_transpose(ctx0, model.layers[il].c_attn_attn_w),
|
||||
cur);
|
||||
|
||||
cur = ggml_add(ctx0,
|
||||
ggml_repeat(ctx0, model.layers[il].c_attn_attn_b, cur),
|
||||
cur);
|
||||
}
|
||||
|
||||
// self-attention
|
||||
{
|
||||
struct ggml_tensor * Qcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 0*sizeof(float)*n_embd);
|
||||
struct ggml_tensor * Kcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 1*sizeof(float)*n_embd);
|
||||
struct ggml_tensor * Vcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 2*sizeof(float)*n_embd);
|
||||
|
||||
// store key and value to memory
|
||||
if (N >= 1) {
|
||||
struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_k, N*n_embd, (ggml_element_size(model.memory_k)*n_embd)*(il*n_ctx + n_past));
|
||||
struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_v, N*n_embd, (ggml_element_size(model.memory_v)*n_embd)*(il*n_ctx + n_past));
|
||||
|
||||
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
|
||||
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
|
||||
}
|
||||
|
||||
// Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)
|
||||
// [64, N, 12]
|
||||
struct ggml_tensor * Q =
|
||||
ggml_permute(ctx0,
|
||||
ggml_cpy(ctx0,
|
||||
Qcur,
|
||||
ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd/n_head, n_head, N)),
|
||||
0, 2, 1, 3);
|
||||
|
||||
// K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3)
|
||||
// [64, n_past + N, 12]
|
||||
struct ggml_tensor * K =
|
||||
ggml_permute(ctx0,
|
||||
ggml_reshape_3d(ctx0,
|
||||
ggml_view_1d(ctx0, model.memory_k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_k)*n_embd),
|
||||
n_embd/n_head, n_head, n_past + N),
|
||||
0, 2, 1, 3);
|
||||
|
||||
// GG: flash attention
|
||||
//struct ggml_tensor * V =
|
||||
// ggml_cpy(ctx0,
|
||||
// ggml_permute(ctx0,
|
||||
// ggml_reshape_3d(ctx0,
|
||||
// ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd),
|
||||
// n_embd/n_head, n_head, n_past + N),
|
||||
// 1, 2, 0, 3),
|
||||
// ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_past + N, n_embd/n_head, n_head));
|
||||
|
||||
//struct ggml_tensor * KQV = ggml_flash_attn(ctx0, Q, K, V, true);
|
||||
|
||||
// K * Q
|
||||
// [n_past + N, N, 12]
|
||||
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
|
||||
|
||||
// KQ_scaled = KQ / sqrt(n_embd/n_head)
|
||||
// [n_past + N, N, 12]
|
||||
struct ggml_tensor * KQ_scaled =
|
||||
ggml_scale(ctx0,
|
||||
KQ,
|
||||
ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head))
|
||||
);
|
||||
|
||||
// KQ_masked = mask_past(KQ_scaled)
|
||||
// [n_past + N, N, 12]
|
||||
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);
|
||||
|
||||
// KQ = soft_max(KQ_masked)
|
||||
// [n_past + N, N, 12]
|
||||
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
|
||||
|
||||
// V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()
|
||||
// [n_past + N, 64, 12]
|
||||
struct ggml_tensor * V_trans =
|
||||
ggml_permute(ctx0,
|
||||
ggml_reshape_3d(ctx0,
|
||||
ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd),
|
||||
n_embd/n_head, n_head, n_past + N),
|
||||
1, 2, 0, 3);
|
||||
|
||||
// KQV = transpose(V) * KQ_soft_max
|
||||
// [64, N, 12]
|
||||
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max);
|
||||
|
||||
// KQV_merged = KQV.permute(0, 2, 1, 3)
|
||||
// [64, 12, N]
|
||||
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
|
||||
|
||||
// cur = KQV_merged.contiguous().view(n_embd, N)
|
||||
// [768, N]
|
||||
cur = ggml_cpy(ctx0,
|
||||
KQV_merged,
|
||||
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
|
||||
}
|
||||
|
||||
// projection
|
||||
// [ 768, 768] - model.layers[il].c_attn_proj_w
|
||||
// [ 768, 1] - model.layers[il].c_attn_proj_b
|
||||
// [ 768, N] - cur (in)
|
||||
// [ 768, N] - cur (out)
|
||||
//
|
||||
// cur = proj_w*cur + proj_b
|
||||
// [768, N]
|
||||
{
|
||||
cur = ggml_mul_mat(ctx0,
|
||||
ggml_transpose(ctx0, model.layers[il].c_attn_proj_w),
|
||||
cur);
|
||||
|
||||
cur = ggml_add(ctx0,
|
||||
ggml_repeat(ctx0, model.layers[il].c_attn_proj_b, cur),
|
||||
cur);
|
||||
}
|
||||
|
||||
// add the input
|
||||
cur = ggml_add(ctx0, cur, inpL);
|
||||
|
||||
struct ggml_tensor * inpFF = cur;
|
||||
|
||||
// feed-forward network
|
||||
{
|
||||
// norm
|
||||
{
|
||||
cur = ggml_norm(ctx0, inpFF);
|
||||
|
||||
// cur = ln_2_g*cur + ln_2_b
|
||||
// [ 768, N]
|
||||
cur = ggml_add(ctx0,
|
||||
ggml_mul(ctx0,
|
||||
ggml_repeat(ctx0, model.layers[il].ln_2_g, cur),
|
||||
cur),
|
||||
ggml_repeat(ctx0, model.layers[il].ln_2_b, cur));
|
||||
}
|
||||
|
||||
// fully connected
|
||||
// [3072, 768] - model.layers[il].c_mlp_fc_w
|
||||
// [3072, 1] - model.layers[il].c_mlp_fc_b
|
||||
// [ 768, N] - cur (in)
|
||||
// [3072, N] - cur (out)
|
||||
//
|
||||
// cur = fc_w*cur + fc_b
|
||||
// [3072, N]
|
||||
cur = ggml_mul_mat(ctx0,
|
||||
ggml_transpose(ctx0, model.layers[il].c_mlp_fc_w),
|
||||
cur);
|
||||
|
||||
cur = ggml_add(ctx0,
|
||||
ggml_repeat(ctx0, model.layers[il].c_mlp_fc_b, cur),
|
||||
cur);
|
||||
|
||||
// GELU activation
|
||||
// [3072, N]
|
||||
cur = ggml_gelu(ctx0, cur);
|
||||
|
||||
// projection
|
||||
// [ 768, 3072] - model.layers[il].c_mlp_proj_w
|
||||
// [ 768, 1] - model.layers[il].c_mlp_proj_b
|
||||
// [3072, N] - cur (in)
|
||||
// [ 768, N] - cur (out)
|
||||
//
|
||||
// cur = proj_w*cur + proj_b
|
||||
// [768, N]
|
||||
cur = ggml_mul_mat(ctx0,
|
||||
model.layers[il].c_mlp_proj_w_trans,
|
||||
cur);
|
||||
|
||||
cur = ggml_add(ctx0,
|
||||
ggml_repeat(ctx0, model.layers[il].c_mlp_proj_b, cur),
|
||||
cur);
|
||||
}
|
||||
|
||||
// input for next layer
|
||||
inpL = ggml_add(ctx0, cur, inpFF);
|
||||
}
|
||||
|
||||
// norm
|
||||
{
|
||||
// [ 768, N]
|
||||
inpL = ggml_norm(ctx0, inpL);
|
||||
|
||||
// inpL = ln_f_g*inpL + ln_f_b
|
||||
// [ 768, N]
|
||||
inpL = ggml_add(ctx0,
|
||||
ggml_mul(ctx0,
|
||||
ggml_repeat(ctx0, model.ln_f_g, inpL),
|
||||
inpL),
|
||||
ggml_repeat(ctx0, model.ln_f_b, inpL));
|
||||
}
|
||||
|
||||
// inpL = WTE * inpL
|
||||
// [ 768, 50257] - model.wte
|
||||
// [ 768, N] - inpL
|
||||
inpL = ggml_mul_mat(ctx0, model.wte, inpL);
|
||||
|
||||
// logits -> probs
|
||||
inpL = ggml_soft_max(ctx0, inpL);
|
||||
|
||||
// run the computation
|
||||
ggml_build_forward_expand(&gf, inpL);
|
||||
ggml_graph_compute (ctx0, &gf);
|
||||
|
||||
//if (n_past%100 == 0) {
|
||||
// ggml_graph_print (&gf);
|
||||
// ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot");
|
||||
//}
|
||||
|
||||
//embd_w.resize(n_vocab*N);
|
||||
//memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
|
||||
|
||||
// return result for just the last token
|
||||
embd_w.resize(n_vocab);
|
||||
memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
|
||||
|
||||
if (mem_per_token == 0) {
|
||||
mem_per_token = ggml_used_mem(ctx0)/N;
|
||||
}
|
||||
//printf("used_mem = %zu\n", ggml_used_mem(ctx0));
|
||||
|
||||
ggml_free(ctx0);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/////////////////////////////// GPT-2 END ////////////////////////////////
|
||||
|
||||
constexpr int N_THREAD = 8;
|
||||
|
||||
struct gpt2_context {
|
||||
std::string prompt_base = R"(Hello, how are you?
|
||||
I'm fine, thanks. How are you?
|
||||
Thanks, I'm fine too. What are you doing?
|
||||
I'm just sitting here.
|
||||
It's a lovely day, isn't it?
|
||||
Yes, it is. I love the weather this time of year.
|
||||
I wish it would rain a little bit.
|
||||
Me too.
|
||||
)";
|
||||
|
||||
std::mt19937 rng;
|
||||
|
||||
gpt_vocab vocab;
|
||||
gpt2_model model;
|
||||
|
||||
int32_t n_threads = std::min(N_THREAD, (int) std::thread::hardware_concurrency());
|
||||
|
||||
// sampling parameters
|
||||
int32_t top_k = 20;
|
||||
float top_p = 0.98f;
|
||||
float temp = 1.0f;
|
||||
};
|
||||
|
||||
struct gpt2_context * gpt2_init(const char * path_model) {
|
||||
gpt2_context * ctx = new gpt2_context;
|
||||
|
||||
ctx->rng = std::mt19937(time(NULL));
|
||||
|
||||
// load the model
|
||||
{
|
||||
const int64_t t_start_us = ggml_time_us();
|
||||
|
||||
if (!gpt2_model_load(path_model, ctx->model, ctx->vocab)) {
|
||||
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, "gpt-2.bin");
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
const int64_t t_load_us = ggml_time_us() - t_start_us;
|
||||
|
||||
printf("gpt-2: model loaded in %d ms\n", (int) (t_load_us/1000));
|
||||
}
|
||||
|
||||
return ctx;
|
||||
}
|
||||
|
||||
void gpt2_free(struct gpt2_context * ctx) {
|
||||
delete ctx;
|
||||
}
|
||||
|
||||
const char * gpt2_get_prompt(struct gpt2_context * ctx) {
|
||||
return ctx->prompt_base.c_str();
|
||||
}
|
||||
|
||||
void gpt2_set_prompt(struct gpt2_context * ctx, const char * prompt) {
|
||||
ctx->prompt_base = prompt;
|
||||
}
|
||||
|
||||
std::vector<gpt_vocab::id> gpt2_tokenize(const gpt2_context * ctx, const char * text) {
|
||||
return ::gpt_tokenize(ctx->vocab, text);
|
||||
}
|
||||
|
||||
std::string gpt2_gen_text(gpt2_context * ctx, const char * text, int max_tokens) {
|
||||
int n_past = 0;
|
||||
|
||||
std::vector<float> embd_w;
|
||||
|
||||
// tokenize the prompt
|
||||
std::vector<gpt_vocab::id> embd_inp = ::gpt2_tokenize(ctx, text);
|
||||
|
||||
int n_predict = std::min(max_tokens, ctx->model.hparams.n_ctx - (int) embd_inp.size());
|
||||
|
||||
std::vector<gpt_vocab::id> embd = embd_inp;
|
||||
|
||||
size_t mem_per_token = 3000000;
|
||||
|
||||
std::string result;
|
||||
|
||||
for (int i = embd.size(); i < embd_inp.size() + n_predict; i++) {
|
||||
// predict
|
||||
if (embd.size() > 0) {
|
||||
if (!gpt2_eval(ctx->model, ctx->n_threads, n_past, embd, embd_w, mem_per_token)) {
|
||||
printf("gpt-2: failed to generate text\n");
|
||||
return "";
|
||||
}
|
||||
}
|
||||
|
||||
n_past += embd.size();
|
||||
embd.clear();
|
||||
|
||||
{
|
||||
// sample next token
|
||||
const int top_k = ctx->top_k;
|
||||
const float top_p = ctx->top_p;
|
||||
const float temp = ctx->temp;
|
||||
|
||||
const int n_vocab = ctx->model.hparams.n_vocab;
|
||||
|
||||
const gpt_vocab::id id = gpt_sample_top_k_top_p(ctx->vocab, embd_w.data() + (embd_w.size() - n_vocab), top_k, top_p, temp, ctx->rng);
|
||||
|
||||
// add it to the context
|
||||
embd.push_back(id);
|
||||
}
|
||||
|
||||
result += ctx->vocab.id_to_token[embd[0]];
|
||||
|
||||
// end of text token
|
||||
if (embd.back() == 50256 ||
|
||||
ctx->vocab.id_to_token[embd.back()] == "." ||
|
||||
ctx->vocab.id_to_token[embd.back()] == "!" ||
|
||||
ctx->vocab.id_to_token[embd.back()] == "?") {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
@ -1,27 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
// TODO: Change to C-style API and move to ./examples for easy reuse.
|
||||
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <string>
|
||||
|
||||
struct gpt_vocab {
|
||||
using id = int32_t;
|
||||
using token = std::string;
|
||||
|
||||
std::map<token, id> token_to_id;
|
||||
std::map<id, token> id_to_token;
|
||||
};
|
||||
|
||||
struct gpt2_context;
|
||||
|
||||
struct gpt2_context * gpt2_init(const char * path_model);
|
||||
void gpt2_free(struct gpt2_context * ctx);
|
||||
|
||||
const char * gpt2_get_prompt(struct gpt2_context * ctx);
|
||||
void gpt2_set_prompt(struct gpt2_context * ctx, const char * prompt);
|
||||
|
||||
std::vector<gpt_vocab::id> gpt2_tokenize(const gpt2_context * ctx, const char * text);
|
||||
|
||||
std::string gpt2_gen_text(gpt2_context * ctx, const char * text, int max_tokens);
|
@ -1,17 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Usage:
|
||||
# speak.sh <voice_id> <text-to-speak>
|
||||
|
||||
# espeak
|
||||
# Mac OS: brew install espeak
|
||||
# Linux: apt-get install espeak
|
||||
#
|
||||
espeak -v en-us+m$1 -s 175 -p 50 -a 200 -g 5 -k 5 "$2"
|
||||
|
||||
# Eleven Labs
|
||||
#
|
||||
#wd=$(dirname $0)
|
||||
#script=$wd/eleven-labs.py
|
||||
#python3 $script $1 "$2"
|
||||
#ffplay -autoexit -nodisp -loglevel quiet -hide_banner -i ./audio.mp3
|
@ -1,733 +0,0 @@
|
||||
// Talk with AI
|
||||
//
|
||||
|
||||
#include "whisper.h"
|
||||
#include "gpt-2.h"
|
||||
|
||||
#include <SDL.h>
|
||||
#include <SDL_audio.h>
|
||||
|
||||
#include <cassert>
|
||||
#include <cstdio>
|
||||
#include <fstream>
|
||||
#include <mutex>
|
||||
#include <regex>
|
||||
#include <string>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
#include <regex>
|
||||
|
||||
// command-line parameters
|
||||
struct whisper_params {
|
||||
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
||||
int32_t voice_ms = 10000;
|
||||
int32_t capture_id = -1;
|
||||
int32_t max_tokens = 32;
|
||||
int32_t audio_ctx = 0;
|
||||
|
||||
float vad_thold = 0.6f;
|
||||
float freq_thold = 100.0f;
|
||||
|
||||
bool speed_up = false;
|
||||
bool translate = false;
|
||||
bool print_special = false;
|
||||
bool print_energy = false;
|
||||
bool no_timestamps = true;
|
||||
|
||||
std::string person = "Santa";
|
||||
std::string language = "en";
|
||||
std::string model_wsp = "models/ggml-base.en.bin";
|
||||
std::string model_gpt = "models/ggml-gpt-2-117M.bin";
|
||||
std::string speak = "./examples/talk/speak.sh";
|
||||
std::string fname_out = "";
|
||||
};
|
||||
|
||||
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
|
||||
|
||||
bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
for (int i = 1; i < argc; i++) {
|
||||
std::string arg = argv[i];
|
||||
|
||||
if (arg == "-h" || arg == "--help") {
|
||||
whisper_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
|
||||
else if (arg == "-vms" || arg == "--voice-ms") { params.voice_ms = std::stoi(argv[++i]); }
|
||||
else if (arg == "-c" || arg == "--capture") { params.capture_id = std::stoi(argv[++i]); }
|
||||
else if (arg == "-mt" || arg == "--max-tokens") { params.max_tokens = std::stoi(argv[++i]); }
|
||||
else if (arg == "-ac" || arg == "--audio-ctx") { params.audio_ctx = std::stoi(argv[++i]); }
|
||||
else if (arg == "-vth" || arg == "--vad-thold") { params.vad_thold = std::stof(argv[++i]); }
|
||||
else if (arg == "-fth" || arg == "--freq-thold") { params.freq_thold = std::stof(argv[++i]); }
|
||||
else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; }
|
||||
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
|
||||
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
|
||||
else if (arg == "-pe" || arg == "--print-energy") { params.print_energy = true; }
|
||||
else if (arg == "-p" || arg == "--person") { params.person = argv[++i]; }
|
||||
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
|
||||
else if (arg == "-mw" || arg == "--model-whisper") { params.model_wsp = argv[++i]; }
|
||||
else if (arg == "-mg" || arg == "--model-gpt") { params.model_gpt = argv[++i]; }
|
||||
else if (arg == "-s" || arg == "--speak") { params.speak = argv[++i]; }
|
||||
else if (arg == "-f" || arg == "--file") { params.fname_out = argv[++i]; }
|
||||
else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
whisper_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void whisper_print_usage(int argc, char ** argv, const whisper_params & params) {
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "options:\n");
|
||||
fprintf(stderr, " -h, --help [default] show this help message and exit\n");
|
||||
fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads);
|
||||
fprintf(stderr, " -vms N, --voice-ms N [%-7d] voice duration in milliseconds\n", params.voice_ms);
|
||||
fprintf(stderr, " -c ID, --capture ID [%-7d] capture device ID\n", params.capture_id);
|
||||
fprintf(stderr, " -mt N, --max-tokens N [%-7d] maximum number of tokens per audio chunk\n", params.max_tokens);
|
||||
fprintf(stderr, " -ac N, --audio-ctx N [%-7d] audio context size (0 - all)\n", params.audio_ctx);
|
||||
fprintf(stderr, " -vth N, --vad-thold N [%-7.2f] voice activity detection threshold\n", params.vad_thold);
|
||||
fprintf(stderr, " -fth N, --freq-thold N [%-7.2f] high-pass frequency cutoff\n", params.freq_thold);
|
||||
fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
|
||||
fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
|
||||
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
|
||||
fprintf(stderr, " -pe, --print-energy [%-7s] print sound energy (for debugging)\n", params.print_energy ? "true" : "false");
|
||||
fprintf(stderr, " -p NAME, --person NAME [%-7s] person name (for prompt selection)\n", params.person.c_str());
|
||||
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str());
|
||||
fprintf(stderr, " -mw FILE, --model-whisper [%-7s] whisper model file\n", params.model_wsp.c_str());
|
||||
fprintf(stderr, " -mg FILE, --model-gpt [%-7s] gpt model file\n", params.model_gpt.c_str());
|
||||
fprintf(stderr, " -s FILE, --speak TEXT [%-7s] command for TTS\n", params.speak.c_str());
|
||||
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] text output file name\n", params.fname_out.c_str());
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
//
|
||||
// SDL Audio capture
|
||||
//
|
||||
|
||||
class audio_async {
|
||||
public:
|
||||
audio_async(int len_ms);
|
||||
~audio_async();
|
||||
|
||||
bool init(int capture_id, int sample_rate);
|
||||
|
||||
// start capturing audio via the provided SDL callback
|
||||
// keep last len_ms seconds of audio in a circular buffer
|
||||
bool resume();
|
||||
bool pause();
|
||||
bool clear();
|
||||
|
||||
// callback to be called by SDL
|
||||
void callback(uint8_t * stream, int len);
|
||||
|
||||
// get audio data from the circular buffer
|
||||
void get(int ms, std::vector<float> & audio);
|
||||
|
||||
private:
|
||||
SDL_AudioDeviceID m_dev_id_in = 0;
|
||||
|
||||
int m_len_ms = 0;
|
||||
int m_sample_rate = 0;
|
||||
|
||||
bool m_running = false;
|
||||
std::mutex m_mutex;
|
||||
|
||||
std::vector<float> m_audio;
|
||||
std::vector<float> m_audio_new;
|
||||
size_t m_audio_pos = 0;
|
||||
size_t m_audio_len = 0;
|
||||
};
|
||||
|
||||
audio_async::audio_async(int len_ms) {
|
||||
m_len_ms = len_ms;
|
||||
}
|
||||
|
||||
audio_async::~audio_async() {
|
||||
if (m_dev_id_in) {
|
||||
SDL_CloseAudioDevice(m_dev_id_in);
|
||||
}
|
||||
}
|
||||
|
||||
bool audio_async::init(int capture_id, int sample_rate) {
|
||||
SDL_LogSetPriority(SDL_LOG_CATEGORY_APPLICATION, SDL_LOG_PRIORITY_INFO);
|
||||
|
||||
if (SDL_Init(SDL_INIT_AUDIO) < 0) {
|
||||
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "Couldn't initialize SDL: %s\n", SDL_GetError());
|
||||
return false;
|
||||
}
|
||||
|
||||
SDL_SetHintWithPriority(SDL_HINT_AUDIO_RESAMPLING_MODE, "medium", SDL_HINT_OVERRIDE);
|
||||
|
||||
{
|
||||
int nDevices = SDL_GetNumAudioDevices(SDL_TRUE);
|
||||
fprintf(stderr, "%s: found %d capture devices:\n", __func__, nDevices);
|
||||
for (int i = 0; i < nDevices; i++) {
|
||||
fprintf(stderr, "%s: - Capture device #%d: '%s'\n", __func__, i, SDL_GetAudioDeviceName(i, SDL_TRUE));
|
||||
}
|
||||
}
|
||||
|
||||
SDL_AudioSpec capture_spec_requested;
|
||||
SDL_AudioSpec capture_spec_obtained;
|
||||
|
||||
SDL_zero(capture_spec_requested);
|
||||
SDL_zero(capture_spec_obtained);
|
||||
|
||||
capture_spec_requested.freq = sample_rate;
|
||||
capture_spec_requested.format = AUDIO_F32;
|
||||
capture_spec_requested.channels = 1;
|
||||
capture_spec_requested.samples = 1024;
|
||||
capture_spec_requested.callback = [](void * userdata, uint8_t * stream, int len) {
|
||||
audio_async * audio = (audio_async *) userdata;
|
||||
audio->callback(stream, len);
|
||||
};
|
||||
capture_spec_requested.userdata = this;
|
||||
|
||||
if (capture_id >= 0) {
|
||||
fprintf(stderr, "%s: attempt to open capture device %d : '%s' ...\n", __func__, capture_id, SDL_GetAudioDeviceName(capture_id, SDL_TRUE));
|
||||
m_dev_id_in = SDL_OpenAudioDevice(SDL_GetAudioDeviceName(capture_id, SDL_TRUE), SDL_TRUE, &capture_spec_requested, &capture_spec_obtained, 0);
|
||||
} else {
|
||||
fprintf(stderr, "%s: attempt to open default capture device ...\n", __func__);
|
||||
m_dev_id_in = SDL_OpenAudioDevice(nullptr, SDL_TRUE, &capture_spec_requested, &capture_spec_obtained, 0);
|
||||
}
|
||||
|
||||
if (!m_dev_id_in) {
|
||||
fprintf(stderr, "%s: couldn't open an audio device for capture: %s!\n", __func__, SDL_GetError());
|
||||
m_dev_id_in = 0;
|
||||
|
||||
return false;
|
||||
} else {
|
||||
fprintf(stderr, "%s: obtained spec for input device (SDL Id = %d):\n", __func__, m_dev_id_in);
|
||||
fprintf(stderr, "%s: - sample rate: %d\n", __func__, capture_spec_obtained.freq);
|
||||
fprintf(stderr, "%s: - format: %d (required: %d)\n", __func__, capture_spec_obtained.format,
|
||||
capture_spec_requested.format);
|
||||
fprintf(stderr, "%s: - channels: %d (required: %d)\n", __func__, capture_spec_obtained.channels,
|
||||
capture_spec_requested.channels);
|
||||
fprintf(stderr, "%s: - samples per frame: %d\n", __func__, capture_spec_obtained.samples);
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
m_sample_rate = capture_spec_obtained.freq;
|
||||
|
||||
m_audio.resize((m_sample_rate*m_len_ms)/1000);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool audio_async::resume() {
|
||||
if (!m_dev_id_in) {
|
||||
fprintf(stderr, "%s: no audio device to resume!\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (m_running) {
|
||||
fprintf(stderr, "%s: already running!\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
SDL_PauseAudioDevice(m_dev_id_in, 0);
|
||||
|
||||
m_running = true;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool audio_async::pause() {
|
||||
if (!m_dev_id_in) {
|
||||
fprintf(stderr, "%s: no audio device to pause!\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!m_running) {
|
||||
fprintf(stderr, "%s: already paused!\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
SDL_PauseAudioDevice(m_dev_id_in, 1);
|
||||
|
||||
m_running = false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool audio_async::clear() {
|
||||
if (!m_dev_id_in) {
|
||||
fprintf(stderr, "%s: no audio device to clear!\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!m_running) {
|
||||
fprintf(stderr, "%s: not running!\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(m_mutex);
|
||||
|
||||
m_audio_pos = 0;
|
||||
m_audio_len = 0;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// callback to be called by SDL
|
||||
void audio_async::callback(uint8_t * stream, int len) {
|
||||
if (!m_running) {
|
||||
return;
|
||||
}
|
||||
|
||||
const size_t n_samples = len / sizeof(float);
|
||||
|
||||
m_audio_new.resize(n_samples);
|
||||
memcpy(m_audio_new.data(), stream, n_samples * sizeof(float));
|
||||
|
||||
//fprintf(stderr, "%s: %zu samples, pos %zu, len %zu\n", __func__, n_samples, m_audio_pos, m_audio_len);
|
||||
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(m_mutex);
|
||||
|
||||
if (m_audio_pos + n_samples > m_audio.size()) {
|
||||
const size_t n0 = m_audio.size() - m_audio_pos;
|
||||
|
||||
memcpy(&m_audio[m_audio_pos], stream, n0 * sizeof(float));
|
||||
memcpy(&m_audio[0], &stream[n0], (n_samples - n0) * sizeof(float));
|
||||
|
||||
m_audio_pos = (m_audio_pos + n_samples) % m_audio.size();
|
||||
m_audio_len = m_audio.size();
|
||||
} else {
|
||||
memcpy(&m_audio[m_audio_pos], stream, n_samples * sizeof(float));
|
||||
|
||||
m_audio_pos = (m_audio_pos + n_samples) % m_audio.size();
|
||||
m_audio_len = std::min(m_audio_len + n_samples, m_audio.size());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void audio_async::get(int ms, std::vector<float> & result) {
|
||||
if (!m_dev_id_in) {
|
||||
fprintf(stderr, "%s: no audio device to get audio from!\n", __func__);
|
||||
return;
|
||||
}
|
||||
|
||||
if (!m_running) {
|
||||
fprintf(stderr, "%s: not running!\n", __func__);
|
||||
return;
|
||||
}
|
||||
|
||||
result.clear();
|
||||
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(m_mutex);
|
||||
|
||||
if (ms <= 0) {
|
||||
ms = m_len_ms;
|
||||
}
|
||||
|
||||
size_t n_samples = (m_sample_rate * ms) / 1000;
|
||||
if (n_samples > m_audio_len) {
|
||||
n_samples = m_audio_len;
|
||||
}
|
||||
|
||||
result.resize(n_samples);
|
||||
|
||||
int s0 = m_audio_pos - n_samples;
|
||||
if (s0 < 0) {
|
||||
s0 += m_audio.size();
|
||||
}
|
||||
|
||||
if (s0 + n_samples > m_audio.size()) {
|
||||
const size_t n0 = m_audio.size() - s0;
|
||||
|
||||
memcpy(result.data(), &m_audio[s0], n0 * sizeof(float));
|
||||
memcpy(&result[n0], &m_audio[0], (n_samples - n0) * sizeof(float));
|
||||
} else {
|
||||
memcpy(result.data(), &m_audio[s0], n_samples * sizeof(float));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////
|
||||
|
||||
std::string trim(const std::string & s) {
|
||||
std::regex e("^\\s+|\\s+$");
|
||||
return std::regex_replace(s, e, "");
|
||||
}
|
||||
|
||||
std::string replace(const std::string & s, const std::string & from, const std::string & to) {
|
||||
std::string result = s;
|
||||
size_t pos = 0;
|
||||
while ((pos = result.find(from, pos)) != std::string::npos) {
|
||||
result.replace(pos, from.length(), to);
|
||||
pos += to.length();
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
void high_pass_filter(std::vector<float> & data, float cutoff, float sample_rate) {
|
||||
const float rc = 1.0f / (2.0f * M_PI * cutoff);
|
||||
const float dt = 1.0f / sample_rate;
|
||||
const float alpha = dt / (rc + dt);
|
||||
|
||||
float y = data[0];
|
||||
|
||||
for (size_t i = 1; i < data.size(); i++) {
|
||||
y = alpha * (y + data[i] - data[i - 1]);
|
||||
data[i] = y;
|
||||
}
|
||||
}
|
||||
|
||||
bool vad_simple(std::vector<float> & pcmf32, int sample_rate, int last_ms, float vad_thold, float freq_thold, bool verbose) {
|
||||
const int n_samples = pcmf32.size();
|
||||
const int n_samples_last = (sample_rate * last_ms) / 1000;
|
||||
|
||||
if (n_samples_last >= n_samples) {
|
||||
// not enough samples - assume no speech
|
||||
return false;
|
||||
}
|
||||
|
||||
if (freq_thold > 0.0f) {
|
||||
high_pass_filter(pcmf32, freq_thold, sample_rate);
|
||||
}
|
||||
|
||||
float energy_all = 0.0f;
|
||||
float energy_last = 0.0f;
|
||||
|
||||
for (size_t i = 0; i < n_samples; i++) {
|
||||
energy_all += fabsf(pcmf32[i]);
|
||||
|
||||
if (i >= n_samples - n_samples_last) {
|
||||
energy_last += fabsf(pcmf32[i]);
|
||||
}
|
||||
}
|
||||
|
||||
energy_all /= n_samples;
|
||||
energy_last /= n_samples_last;
|
||||
|
||||
if (verbose) {
|
||||
fprintf(stderr, "%s: energy_all: %f, energy_last: %f, vad_thold: %f, freq_thold: %f\n", __func__, energy_all, energy_last, vad_thold, freq_thold);
|
||||
}
|
||||
|
||||
if (energy_last > vad_thold*energy_all) {
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
std::string transcribe(whisper_context * ctx, const whisper_params & params, const std::vector<float> & pcmf32, float & prob, int64_t & t_ms) {
|
||||
const auto t_start = std::chrono::high_resolution_clock::now();
|
||||
|
||||
prob = 0.0f;
|
||||
t_ms = 0;
|
||||
|
||||
whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
|
||||
|
||||
wparams.print_progress = false;
|
||||
wparams.print_special = params.print_special;
|
||||
wparams.print_realtime = false;
|
||||
wparams.print_timestamps = !params.no_timestamps;
|
||||
wparams.translate = params.translate;
|
||||
wparams.no_context = true;
|
||||
wparams.single_segment = true;
|
||||
wparams.max_tokens = params.max_tokens;
|
||||
wparams.language = params.language.c_str();
|
||||
wparams.n_threads = params.n_threads;
|
||||
|
||||
wparams.audio_ctx = params.audio_ctx;
|
||||
wparams.speed_up = params.speed_up;
|
||||
|
||||
if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) {
|
||||
return "";
|
||||
}
|
||||
|
||||
int prob_n = 0;
|
||||
std::string result;
|
||||
|
||||
const int n_segments = whisper_full_n_segments(ctx);
|
||||
for (int i = 0; i < n_segments; ++i) {
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
|
||||
result += text;
|
||||
|
||||
const int n_tokens = whisper_full_n_tokens(ctx, i);
|
||||
for (int j = 0; j < n_tokens; ++j) {
|
||||
const auto token = whisper_full_get_token_data(ctx, i, j);
|
||||
|
||||
prob += token.p;
|
||||
++prob_n;
|
||||
}
|
||||
}
|
||||
|
||||
if (prob_n > 0) {
|
||||
prob /= prob_n;
|
||||
}
|
||||
|
||||
const auto t_end = std::chrono::high_resolution_clock::now();
|
||||
t_ms = std::chrono::duration_cast<std::chrono::milliseconds>(t_end - t_start).count();
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// compute similarity between two strings using Levenshtein distance
|
||||
float similarity(const std::string & s0, const std::string & s1) {
|
||||
const size_t len0 = s0.size() + 1;
|
||||
const size_t len1 = s1.size() + 1;
|
||||
|
||||
std::vector<int> col(len1, 0);
|
||||
std::vector<int> prevCol(len1, 0);
|
||||
|
||||
for (size_t i = 0; i < len1; i++) {
|
||||
prevCol[i] = i;
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < len0; i++) {
|
||||
col[0] = i;
|
||||
for (size_t j = 1; j < len1; j++) {
|
||||
col[j] = std::min(std::min(1 + col[j - 1], 1 + prevCol[j]), prevCol[j - 1] + (s0[i - 1] == s1[j - 1] ? 0 : 1));
|
||||
}
|
||||
col.swap(prevCol);
|
||||
}
|
||||
|
||||
const float dist = prevCol[len1 - 1];
|
||||
|
||||
return 1.0f - (dist / std::max(s0.size(), s1.size()));
|
||||
}
|
||||
|
||||
// generated with ChatGPT
|
||||
std::map<std::string, std::string> k_prompts = {
|
||||
{ "Santa",
|
||||
R"(Kid: Hi Santa! Are you real?
|
||||
Santa: Of course I am, my dear! Ho ho ho!
|
||||
Kid: Can you please bring me a new toy for Christmas?
|
||||
Santa: I'll see what I can do, but you have to make sure to be a good boy or girl and listen to your parents.
|
||||
Kid: I will, Santa! Thank you!
|
||||
Santa: You're welcome, little one. Merry Christmas! Ho ho ho!
|
||||
Kid: Can you tell me how you deliver all the presents to all the kids in the world in one night?
|
||||
Santa: It's a secret, but I have a lot of help from my elves and my magical sleigh. And I have a special route that I follow to make sure I visit every child.
|
||||
Kid: Wow, that's amazing! Can I please have a ride in your sleigh sometime?
|
||||
Santa: I'm sorry, but only good boys and girls get to ride in my sleigh.
|
||||
)" },
|
||||
{ "Kid",
|
||||
R"(Kid: Hi Santa! Are you real?
|
||||
Santa: Of course I am, my dear! Ho ho ho!
|
||||
Kid: Can you please bring me a new toy for Christmas?
|
||||
Santa: I'll see what I can do, but you have to make sure to be a good boy or girl and listen to your parents.
|
||||
Kid: I will, Santa! Thank you!
|
||||
Kid: Can you tell me how you deliver all the presents to all the kids in the world in one night?
|
||||
Santa: It's a secret, but I have a lot of help from my elves and my magical sleigh. And I have a special route that I follow to make sure I visit every child.
|
||||
Kid: Wow, that's amazing! Can I please have a ride in your sleigh sometime?
|
||||
)" },
|
||||
};
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
whisper_params params;
|
||||
|
||||
if (whisper_params_parse(argc, argv, params) == false) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (whisper_lang_id(params.language.c_str()) == -1) {
|
||||
fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str());
|
||||
whisper_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
|
||||
// whisper init
|
||||
|
||||
struct whisper_context * ctx_wsp = whisper_init(params.model_wsp.c_str());
|
||||
|
||||
// gpt init
|
||||
|
||||
struct gpt2_context * ctx_gpt = gpt2_init(params.model_gpt.c_str());
|
||||
|
||||
// print some info about the processing
|
||||
{
|
||||
fprintf(stderr, "\n");
|
||||
if (!whisper_is_multilingual(ctx_wsp)) {
|
||||
if (params.language != "en" || params.translate) {
|
||||
params.language = "en";
|
||||
params.translate = false;
|
||||
fprintf(stderr, "%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__);
|
||||
}
|
||||
}
|
||||
fprintf(stderr, "%s: processing, %d threads, lang = %s, task = %s, timestamps = %d ...\n",
|
||||
__func__,
|
||||
params.n_threads,
|
||||
params.language.c_str(),
|
||||
params.translate ? "translate" : "transcribe",
|
||||
params.no_timestamps ? 0 : 1);
|
||||
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
|
||||
// init audio
|
||||
|
||||
audio_async audio(30*1000);
|
||||
if (!audio.init(params.capture_id, WHISPER_SAMPLE_RATE)) {
|
||||
fprintf(stderr, "%s: audio.init() failed!\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
audio.resume();
|
||||
|
||||
int n_iter = 0;
|
||||
|
||||
bool is_running = true;
|
||||
bool force_speak = params.person == "Kid";
|
||||
|
||||
float prob0 = 0.0f;
|
||||
float prob = 0.0f;
|
||||
|
||||
std::vector<float> pcmf32_cur;
|
||||
std::vector<float> pcmf32_prompt;
|
||||
|
||||
if (k_prompts.find(params.person) == k_prompts.end()) {
|
||||
fprintf(stderr, "%s: unknown person '%s'\n", __func__, params.person.c_str());
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt2_set_prompt(ctx_gpt, k_prompts.at(params.person).c_str());
|
||||
|
||||
const std::string person_other = params.person == "Santa" ? "Kid" : "Santa";
|
||||
const int voice_id = params.person == "Santa" ? 5 : 2;
|
||||
|
||||
fprintf(stderr, "gpt-2: prompt_base:\n");
|
||||
fprintf(stderr, "========================\n\n");
|
||||
fprintf(stderr, "%s\n", gpt2_get_prompt(ctx_gpt));
|
||||
fprintf(stderr, "========================\n\n");
|
||||
|
||||
// main loop
|
||||
while (is_running) {
|
||||
// handle Ctrl + C
|
||||
{
|
||||
SDL_Event event;
|
||||
while (SDL_PollEvent(&event)) {
|
||||
switch (event.type) {
|
||||
case SDL_QUIT:
|
||||
{
|
||||
is_running = false;
|
||||
} break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (!is_running) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// delay
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(100));
|
||||
|
||||
int64_t t_ms = 0;
|
||||
|
||||
{
|
||||
audio.get(2000, pcmf32_cur);
|
||||
|
||||
if (vad_simple(pcmf32_cur, WHISPER_SAMPLE_RATE, 1250, params.vad_thold, params.freq_thold, params.print_energy) || force_speak) {
|
||||
fprintf(stdout, "%s: Speech detected! Processing ...\n", __func__);
|
||||
|
||||
audio.get(params.voice_ms, pcmf32_cur);
|
||||
|
||||
std::string text_heard = "Hey little one, what do you want for Christmas?";
|
||||
if (!force_speak) {
|
||||
text_heard = ::trim(::transcribe(ctx_wsp, params, pcmf32_cur, prob0, t_ms));
|
||||
}
|
||||
|
||||
force_speak = false;
|
||||
|
||||
// remove text between brackets using regex
|
||||
{
|
||||
std::regex re("\\[.*?\\]");
|
||||
text_heard = std::regex_replace(text_heard, re, "");
|
||||
}
|
||||
|
||||
// remove text between brackets using regex
|
||||
{
|
||||
std::regex re("\\(.*?\\)");
|
||||
text_heard = std::regex_replace(text_heard, re, "");
|
||||
}
|
||||
|
||||
// remove all characters, except for letters, numbers, punctuation and ':', '\'', '-', ' '
|
||||
text_heard = std::regex_replace(text_heard, std::regex("[^a-zA-Z0-9\\.,\\?!\\s\\:\\'\\-]"), "");
|
||||
|
||||
// take first line
|
||||
text_heard = text_heard.substr(0, text_heard.find_first_of("\n"));
|
||||
|
||||
// remove leading and trailing whitespace
|
||||
text_heard = std::regex_replace(text_heard, std::regex("^\\s+"), "");
|
||||
text_heard = std::regex_replace(text_heard, std::regex("\\s+$"), "");
|
||||
|
||||
const std::vector<gpt_vocab::id> tokens = gpt2_tokenize(ctx_gpt, text_heard.c_str());
|
||||
|
||||
if (text_heard.empty() || tokens.empty()) {
|
||||
fprintf(stdout, "%s: Heard nothing, skipping ...\n", __func__);
|
||||
audio.clear();
|
||||
|
||||
continue;
|
||||
}
|
||||
|
||||
fprintf(stdout, "%s: Heard '%s%s%s', (t = %d ms)\n", __func__, "\033[1m", text_heard.c_str(), "\033[0m", (int) t_ms);
|
||||
|
||||
std::string prompt_base = gpt2_get_prompt(ctx_gpt);
|
||||
|
||||
std::string text_to_speak;
|
||||
|
||||
{
|
||||
text_heard = person_other + ": " + text_heard;
|
||||
|
||||
text_to_speak = gpt2_gen_text(ctx_gpt, (prompt_base + text_heard + "\n").c_str(), params.max_tokens);
|
||||
text_to_speak = std::regex_replace(text_to_speak, std::regex("[^a-zA-Z0-9\\.,\\?!\\s\\:\\'\\-]"), "");
|
||||
text_to_speak = text_to_speak.substr(0, text_to_speak.find_first_of("\n"));
|
||||
|
||||
// remove first 2 lines of base prompt
|
||||
if (n_iter > 4) {
|
||||
{
|
||||
const size_t pos = prompt_base.find_first_of("\n");
|
||||
if (pos != std::string::npos) {
|
||||
prompt_base = prompt_base.substr(pos + 1);
|
||||
}
|
||||
}
|
||||
{
|
||||
const size_t pos = prompt_base.find_first_of("\n");
|
||||
if (pos != std::string::npos) {
|
||||
prompt_base = prompt_base.substr(pos + 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
prompt_base += text_heard + "\n" + text_to_speak + "\n";
|
||||
}
|
||||
|
||||
printf("%s\n", text_to_speak.c_str());
|
||||
|
||||
//printf("========================\n");
|
||||
//printf("gpt-2: prompt_base:\n'%s'\n", prompt_base.c_str());
|
||||
//printf("========================\n");
|
||||
|
||||
gpt2_set_prompt(ctx_gpt, prompt_base.c_str());
|
||||
|
||||
text_to_speak = ::replace(text_to_speak, params.person + ": ", "");
|
||||
system((params.speak + " " + std::to_string(voice_id) + " \"" + text_to_speak + "\"").c_str());
|
||||
|
||||
audio.clear();
|
||||
|
||||
++n_iter;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
audio.pause();
|
||||
|
||||
whisper_print_timings(ctx_wsp);
|
||||
whisper_free(ctx_wsp);
|
||||
|
||||
return 0;
|
||||
}
|
@ -1,109 +0,0 @@
|
||||
#!/bin/bash
|
||||
#
|
||||
# Transcribe twitch.tv livestream by feeding audio input to whisper.cpp at regular intervals
|
||||
# Thanks to @keyehzy
|
||||
# ref: https://github.com/ggerganov/whisper.cpp/issues/209
|
||||
#
|
||||
# The script currently depends on the third-party tool "streamlink"
|
||||
# On Mac OS, you can install it via "brew install streamlink"
|
||||
#
|
||||
|
||||
set -eo pipefail
|
||||
|
||||
step=10
|
||||
model=base.en
|
||||
threads=4
|
||||
|
||||
help()
|
||||
{
|
||||
echo "Example program for captioning a livestream from twitch.tv."
|
||||
echo
|
||||
echo "Usage: ./twitch.sh -s [step] -m [model] -t [threads] [url]"
|
||||
echo "options:"
|
||||
echo "-s Step in seconds (default is $step)."
|
||||
echo "-m Choose model, options are: 'tiny.en' 'tiny' 'base.en' 'base' 'small.en' 'small' 'medium.en' 'medium' 'large-v1' 'large' (default is '$model')."
|
||||
echo "-t Number of threads to use."
|
||||
echo "-h Print this help page."
|
||||
echo
|
||||
}
|
||||
|
||||
check_requirements()
|
||||
{
|
||||
if ! command -v ./main &>/dev/null; then
|
||||
echo "whisper.cpp main executable is required (make)"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if ! command -v streamlink &>/dev/null; then
|
||||
echo "streamlink is required (https://streamlink.github.io)"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if ! command -v ffmpeg &>/dev/null; then
|
||||
echo "ffmpeg is required (https://ffmpeg.org)"
|
||||
exit 1
|
||||
fi
|
||||
}
|
||||
|
||||
check_requirements
|
||||
|
||||
while getopts ":s:m:t:h" option; do
|
||||
case $option in
|
||||
s)
|
||||
step=$OPTARG;;
|
||||
m)
|
||||
model=$OPTARG;;
|
||||
t)
|
||||
threads=$OPTARG;;
|
||||
h)
|
||||
help
|
||||
exit;;
|
||||
\?)
|
||||
help
|
||||
exit;;
|
||||
esac
|
||||
done
|
||||
|
||||
url=${@:$OPTIND:1}
|
||||
|
||||
if [ -z $url ]; then
|
||||
help
|
||||
exit
|
||||
fi
|
||||
|
||||
echo "Piping from streamlink url=$url model=$model step=$step threads=$threads"
|
||||
streamlink $url best -O 2>/dev/null | ffmpeg -loglevel quiet -i - -y -probesize 32 -y -ar 16000 -ac 1 -acodec pcm_s16le /tmp/whisper-live0.wav &
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
printf "error: ffmpeg failed\n"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
echo "Buffering stream... (this should take $step seconds)"
|
||||
sleep $(($step))
|
||||
|
||||
set +e
|
||||
|
||||
echo "Starting..."
|
||||
|
||||
i=0
|
||||
SECONDS=0
|
||||
while true
|
||||
do
|
||||
err=1
|
||||
while [ $err -ne 0 ]; do
|
||||
if [ $i -gt 0 ]; then
|
||||
ffmpeg -loglevel quiet -v error -noaccurate_seek -i /tmp/whisper-live0.wav -y -ss $(($i*$step-1)).5 -t $step -c copy /tmp/whisper-live.wav 2> /tmp/whisper-live.err
|
||||
else
|
||||
ffmpeg -loglevel quiet -v error -noaccurate_seek -i /tmp/whisper-live0.wav -y -ss $(($i*$step)) -t $step -c copy /tmp/whisper-live.wav 2> /tmp/whisper-live.err
|
||||
fi
|
||||
err=$(cat /tmp/whisper-live.err | wc -l)
|
||||
done
|
||||
|
||||
./main -t $threads -m ./models/ggml-$model.bin -f /tmp/whisper-live.wav --no-timestamps -otxt 2> /tmp/whispererr | tail -n 1
|
||||
|
||||
while [ $SECONDS -lt $((($i+1)*$step)) ]; do
|
||||
sleep 1
|
||||
done
|
||||
((i=i+1))
|
||||
done
|
@ -1,92 +0,0 @@
|
||||
# whisper.nvim
|
||||
|
||||
Speech-to-text in Neovim
|
||||
|
||||
The transcription is performed on the CPU and no data leaves your computer. Works best on Apple Silicon devices.
|
||||
|
||||
https://user-images.githubusercontent.com/1991296/198382564-784e9663-2037-4d04-99b8-f39136929b7e.mp4
|
||||
|
||||
## Usage
|
||||
|
||||
- Simply press `Ctrl-G` in `INSERT`, `VISUAL` or `NORMAL` mode and say something
|
||||
- When you are done - press `Ctrl-C` to end the transcription and insert the transcribed text under the cursor
|
||||
|
||||
## Installation
|
||||
|
||||
*Note: this is a bit tedious and hacky atm, but I hope it will be improved with time*
|
||||
|
||||
- Clone this repo and build the `stream` tool:
|
||||
|
||||
```
|
||||
git clone https://github.com/ggerganov/whisper.cpp
|
||||
cd whisper.cpp
|
||||
make stream
|
||||
```
|
||||
|
||||
- Download the `base.en` Whisper model (140 MB):
|
||||
|
||||
```
|
||||
./models/download-ggml-model.sh base.en
|
||||
```
|
||||
|
||||
- Place the [whisper.nvim](whisper.nvim) script somewhere in your PATH and give it execute permissions:
|
||||
|
||||
```
|
||||
cp examples/whisper.nvim/whisper.nvim ~/bin/
|
||||
chmod u+x ~/bin/whisper.nvim
|
||||
```
|
||||
|
||||
- Fine-tune the script to your preference and machine parameters:
|
||||
|
||||
```
|
||||
./stream -t 8 -m models/ggml-base.en.bin --step 350 --length 10000 -f /tmp/whisper.nvim 2> /dev/null
|
||||
```
|
||||
|
||||
On slower machines, try to increase the `step` parameter.
|
||||
|
||||
- Add the following shortcuts to your `~/.config/nvim/init.vim`:
|
||||
|
||||
```
|
||||
inoremap <C-G> <C-O>:!whisper.nvim<CR><C-O>:let @a = system("cat /tmp/whisper.nvim \| tail -n 1 \| xargs -0 \| tr -d '\\n' \| sed -e 's/^[[:space:]]*//'")<CR><C-R>a
|
||||
nnoremap <C-G> :!whisper.nvim<CR>:let @a = system("cat /tmp/whisper.nvim \| tail -n 1 \| xargs -0 \| tr -d '\\n' \| sed -e 's/^[[:space:]]*//'")<CR>"ap
|
||||
vnoremap <C-G> c<C-O>:!whisper.nvim<CR><C-O>:let @a = system("cat /tmp/whisper.nvim \| tail -n 1 \| xargs -0 \| tr -d '\\n' \| sed -e 's/^[[:space:]]*//'")<CR><C-R>a
|
||||
```
|
||||
|
||||
Explanation: pressing `Ctrl-G` runs the [whisper.nvim](whisper.nvim) script which in turn calls the `stream` binary to transcribe your speech through the microphone. The results from the transcription are continuously dumped into `/tmp/whisper.nvim`. After you kill the program with `Ctrl-C`, the vim command grabs the last line from the `/tmp/whisper.nvim` file and puts it under the cursor.
|
||||
|
||||
Probably there is a much more intelligent way to achieve all this, but this is what I could hack in an hour. Any suggestions how to improve this are welcome.
|
||||
|
||||
You are now ready to use speech-to-text in Neovim!
|
||||
|
||||
## TODO
|
||||
|
||||
There are a lot of ways to improve this idea and I don't have much experience with Vim plugin programming, so contributions are welcome!
|
||||
|
||||
- [ ] **Wrap this into a plugin**
|
||||
|
||||
It would be great to make a standalone plugin out of this that can be installed with `vim-plug` or similar
|
||||
|
||||
- [ ] **Simplify the `init.vim` mappings (maybe factor out the common call into a separate function)**
|
||||
- [ ] **Add Copilot/GPT-3 integration**
|
||||
|
||||
This is probably a very long shot, but I think it will be very cool to have the functionality to select some code and then hit Ctrl-G and say something like:
|
||||
|
||||
*"refactor this using stl containers"*
|
||||
|
||||
or
|
||||
|
||||
*"optimize by sorting the data first"*
|
||||
|
||||
The plugin would then make an appropriate query using the selected text and code context to Copilot or GPT-3 and return the result.
|
||||
|
||||
Here is a proof-of-concept:
|
||||
|
||||
https://user-images.githubusercontent.com/1991296/199078847-0278fcde-5667-4748-ba0d-7d55381d6047.mp4
|
||||
|
||||
https://user-images.githubusercontent.com/1991296/200067939-f98d2ac2-7519-438a-85f9-79db0841ba4f.mp4
|
||||
|
||||
For explanation how this works see: https://twitter.com/ggerganov/status/1587168771789258756
|
||||
|
||||
## Discussion
|
||||
|
||||
If you find this idea interesting, you can join the discussion here: https://github.com/ggerganov/whisper.cpp/discussions/108
|
@ -1,50 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
# INSTRUCTIONS
|
||||
#
|
||||
# This simple script is called by Neovim to capture audio from the microphone and transcribe it with Whisper.
|
||||
# In order for this to work, you need to clone the whisper.cpp repo and build the 'stream' tool
|
||||
#
|
||||
# git clone https://github.com/ggerganov/whisper.cpp
|
||||
# cd whisper.cpp
|
||||
# make stream
|
||||
#
|
||||
# Also, make sure the current script is in your PATH env variable. You should be able to run the following command:
|
||||
#
|
||||
# whisper.nvim
|
||||
#
|
||||
# Next, export the path to the whisper.cpp repository via the WHISPER_CPP_HOME env variable:
|
||||
#
|
||||
# export WHISPER_CPP_HOME=/path/to/whisper.cpp
|
||||
#
|
||||
# Finally, add the following lines to your ~/.config/nvim/init.vim:
|
||||
#
|
||||
# inoremap <C-G> <C-O>:!whisper.nvim<CR><C-O>:let @a = system("cat /tmp/whisper.nvim \| tail -n 1 \| xargs -0 \| tr -d '\\n' \| sed -e 's/^[[:space:]]*//'")<CR><C-R>a
|
||||
# nnoremap <C-G> :!whisper.nvim<CR>:let @a = system("cat /tmp/whisper.nvim \| tail -n 1 \| xargs -0 \| tr -d '\\n' \| sed -e 's/^[[:space:]]*//'")<CR>"ap
|
||||
# vnoremap <C-G> c<C-O>:!whisper.nvim<CR><C-O>:let @a = system("cat /tmp/whisper.nvim \| tail -n 1 \| xargs -0 \| tr -d '\\n' \| sed -e 's/^[[:space:]]*//'")<CR><C-R>a
|
||||
#
|
||||
# This allows you to press Ctrl-G in order to capture audio from the microphone and transcribe it.
|
||||
# When you are done speaking - press Ctrl-C
|
||||
#
|
||||
|
||||
# the Whisper model to use
|
||||
model="base.en"
|
||||
|
||||
# export the path to the whisper.cpp repo in the WHISPER_CPP_HOME env variable
|
||||
# https://github.com/ggerganov/whisper.cpp
|
||||
cd ${WHISPER_CPP_HOME}
|
||||
|
||||
if [ ! -f ./stream ] ; then
|
||||
echo "whisper.nvim: the 'stream' executable was not found! WHISPER_CPP_HOME=${WHISPER_CPP_HOME}" > /tmp/whisper.nvim
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ ! -f ./models/ggml-${model}.bin ] ; then
|
||||
echo "whisper.nvim: the '$model' model was not found! WHISPER_CPP_HOME=${WHISPER_CPP_HOME}" > /tmp/whisper.nvim
|
||||
exit 2
|
||||
fi
|
||||
|
||||
# fine-tune the parameters according to your machine specs
|
||||
./stream -t 8 -m models/ggml-base.en.bin --step 350 --length 10000 -f /tmp/whisper.nvim 2> /dev/null
|
||||
|
||||
exit 0
|
@ -1,21 +0,0 @@
|
||||
# whisper.objc
|
||||
|
||||
Minimal Obj-C application for automatic offline speech recognition.
|
||||
The inference runs locally, on-device.
|
||||
|
||||
https://user-images.githubusercontent.com/1991296/197385372-962a6dea-bca1-4d50-bf96-1d8c27b98c81.mp4
|
||||
|
||||
Real-time transcription demo:
|
||||
|
||||
https://user-images.githubusercontent.com/1991296/204126266-ce4177c6-6eca-4bd9-bca8-0e46d9da2364.mp4
|
||||
|
||||
## Usage
|
||||
|
||||
```java
|
||||
git clone https://github.com/ggerganov/whisper.cpp
|
||||
open whisper.cpp/examples/whisper.objc/whisper.objc.xcodeproj/
|
||||
```
|
||||
|
||||
Make sure to build the project in `Release`:
|
||||
|
||||
<img width="947" alt="image" src="https://user-images.githubusercontent.com/1991296/197382607-9e1e6d1b-79fa-496f-9d16-b71dc1535701.png">
|
@ -1,384 +0,0 @@
|
||||
// !$*UTF8*$!
|
||||
{
|
||||
archiveVersion = 1;
|
||||
classes = {
|
||||
};
|
||||
objectVersion = 56;
|
||||
objects = {
|
||||
|
||||
/* Begin PBXBuildFile section */
|
||||
18627C7B29052BDF00BD2A04 /* AppDelegate.m in Sources */ = {isa = PBXBuildFile; fileRef = 18627C7A29052BDF00BD2A04 /* AppDelegate.m */; };
|
||||
18627C7E29052BDF00BD2A04 /* SceneDelegate.m in Sources */ = {isa = PBXBuildFile; fileRef = 18627C7D29052BDF00BD2A04 /* SceneDelegate.m */; };
|
||||
18627C8129052BDF00BD2A04 /* ViewController.m in Sources */ = {isa = PBXBuildFile; fileRef = 18627C8029052BDF00BD2A04 /* ViewController.m */; };
|
||||
18627C8429052BDF00BD2A04 /* Main.storyboard in Resources */ = {isa = PBXBuildFile; fileRef = 18627C8229052BDF00BD2A04 /* Main.storyboard */; };
|
||||
18627C8629052BE000BD2A04 /* Assets.xcassets in Resources */ = {isa = PBXBuildFile; fileRef = 18627C8529052BE000BD2A04 /* Assets.xcassets */; };
|
||||
18627C8929052BE000BD2A04 /* LaunchScreen.storyboard in Resources */ = {isa = PBXBuildFile; fileRef = 18627C8729052BE000BD2A04 /* LaunchScreen.storyboard */; };
|
||||
18627C8C29052BE000BD2A04 /* main.m in Sources */ = {isa = PBXBuildFile; fileRef = 18627C8B29052BE000BD2A04 /* main.m */; };
|
||||
18627C9429052C4900BD2A04 /* whisper.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 18627C9329052C4900BD2A04 /* whisper.cpp */; };
|
||||
18627C9629052C5800BD2A04 /* ggml.c in Sources */ = {isa = PBXBuildFile; fileRef = 18627C9529052C5800BD2A04 /* ggml.c */; settings = {COMPILER_FLAGS = "-DGGML_USE_ACCELERATE"; }; };
|
||||
18627C9B29052CFF00BD2A04 /* ggml-base.en.bin in Resources */ = {isa = PBXBuildFile; fileRef = 18627C9A29052CFF00BD2A04 /* ggml-base.en.bin */; };
|
||||
/* End PBXBuildFile section */
|
||||
|
||||
/* Begin PBXFileReference section */
|
||||
18627C7629052BDF00BD2A04 /* whisper.objc.app */ = {isa = PBXFileReference; explicitFileType = wrapper.application; includeInIndex = 0; path = whisper.objc.app; sourceTree = BUILT_PRODUCTS_DIR; };
|
||||
18627C7929052BDF00BD2A04 /* AppDelegate.h */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.h; path = AppDelegate.h; sourceTree = "<group>"; };
|
||||
18627C7A29052BDF00BD2A04 /* AppDelegate.m */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.objc; path = AppDelegate.m; sourceTree = "<group>"; };
|
||||
18627C7C29052BDF00BD2A04 /* SceneDelegate.h */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.h; path = SceneDelegate.h; sourceTree = "<group>"; };
|
||||
18627C7D29052BDF00BD2A04 /* SceneDelegate.m */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.objc; path = SceneDelegate.m; sourceTree = "<group>"; };
|
||||
18627C7F29052BDF00BD2A04 /* ViewController.h */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.h; path = ViewController.h; sourceTree = "<group>"; };
|
||||
18627C8029052BDF00BD2A04 /* ViewController.m */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.objc; path = ViewController.m; sourceTree = "<group>"; };
|
||||
18627C8329052BDF00BD2A04 /* Base */ = {isa = PBXFileReference; lastKnownFileType = file.storyboard; name = Base; path = Base.lproj/Main.storyboard; sourceTree = "<group>"; };
|
||||
18627C8529052BE000BD2A04 /* Assets.xcassets */ = {isa = PBXFileReference; lastKnownFileType = folder.assetcatalog; path = Assets.xcassets; sourceTree = "<group>"; };
|
||||
18627C8829052BE000BD2A04 /* Base */ = {isa = PBXFileReference; lastKnownFileType = file.storyboard; name = Base; path = Base.lproj/LaunchScreen.storyboard; sourceTree = "<group>"; };
|
||||
18627C8A29052BE000BD2A04 /* Info.plist */ = {isa = PBXFileReference; lastKnownFileType = text.plist.xml; path = Info.plist; sourceTree = "<group>"; };
|
||||
18627C8B29052BE000BD2A04 /* main.m */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.objc; path = main.m; sourceTree = "<group>"; };
|
||||
18627C9229052C2B00BD2A04 /* whisper.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = whisper.h; path = ../../../whisper.h; sourceTree = "<group>"; };
|
||||
18627C9329052C4900BD2A04 /* whisper.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = whisper.cpp; path = ../../../whisper.cpp; sourceTree = "<group>"; };
|
||||
18627C9529052C5800BD2A04 /* ggml.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; name = ggml.c; path = ../../../ggml.c; sourceTree = "<group>"; };
|
||||
18627C9729052C6600BD2A04 /* ggml.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = ggml.h; path = ../../../ggml.h; sourceTree = "<group>"; };
|
||||
18627C9A29052CFF00BD2A04 /* ggml-base.en.bin */ = {isa = PBXFileReference; lastKnownFileType = archive.macbinary; name = "ggml-base.en.bin"; path = "../../../models/ggml-base.en.bin"; sourceTree = "<group>"; };
|
||||
/* End PBXFileReference section */
|
||||
|
||||
/* Begin PBXFrameworksBuildPhase section */
|
||||
18627C7329052BDF00BD2A04 /* Frameworks */ = {
|
||||
isa = PBXFrameworksBuildPhase;
|
||||
buildActionMask = 2147483647;
|
||||
files = (
|
||||
);
|
||||
runOnlyForDeploymentPostprocessing = 0;
|
||||
};
|
||||
/* End PBXFrameworksBuildPhase section */
|
||||
|
||||
/* Begin PBXGroup section */
|
||||
18627C6D29052BDF00BD2A04 = {
|
||||
isa = PBXGroup;
|
||||
children = (
|
||||
18627C7829052BDF00BD2A04 /* whisper.objc */,
|
||||
18627C7729052BDF00BD2A04 /* Products */,
|
||||
);
|
||||
sourceTree = "<group>";
|
||||
};
|
||||
18627C7729052BDF00BD2A04 /* Products */ = {
|
||||
isa = PBXGroup;
|
||||
children = (
|
||||
18627C7629052BDF00BD2A04 /* whisper.objc.app */,
|
||||
);
|
||||
name = Products;
|
||||
sourceTree = "<group>";
|
||||
};
|
||||
18627C7829052BDF00BD2A04 /* whisper.objc */ = {
|
||||
isa = PBXGroup;
|
||||
children = (
|
||||
18627C9A29052CFF00BD2A04 /* ggml-base.en.bin */,
|
||||
18627C9729052C6600BD2A04 /* ggml.h */,
|
||||
18627C9529052C5800BD2A04 /* ggml.c */,
|
||||
18627C9329052C4900BD2A04 /* whisper.cpp */,
|
||||
18627C9229052C2B00BD2A04 /* whisper.h */,
|
||||
18627C7929052BDF00BD2A04 /* AppDelegate.h */,
|
||||
18627C7A29052BDF00BD2A04 /* AppDelegate.m */,
|
||||
18627C7C29052BDF00BD2A04 /* SceneDelegate.h */,
|
||||
18627C7D29052BDF00BD2A04 /* SceneDelegate.m */,
|
||||
18627C7F29052BDF00BD2A04 /* ViewController.h */,
|
||||
18627C8029052BDF00BD2A04 /* ViewController.m */,
|
||||
18627C8229052BDF00BD2A04 /* Main.storyboard */,
|
||||
18627C8529052BE000BD2A04 /* Assets.xcassets */,
|
||||
18627C8729052BE000BD2A04 /* LaunchScreen.storyboard */,
|
||||
18627C8A29052BE000BD2A04 /* Info.plist */,
|
||||
18627C8B29052BE000BD2A04 /* main.m */,
|
||||
);
|
||||
path = whisper.objc;
|
||||
sourceTree = "<group>";
|
||||
};
|
||||
/* End PBXGroup section */
|
||||
|
||||
/* Begin PBXNativeTarget section */
|
||||
18627C7529052BDF00BD2A04 /* whisper.objc */ = {
|
||||
isa = PBXNativeTarget;
|
||||
buildConfigurationList = 18627C8F29052BE000BD2A04 /* Build configuration list for PBXNativeTarget "whisper.objc" */;
|
||||
buildPhases = (
|
||||
18627C7229052BDF00BD2A04 /* Sources */,
|
||||
18627C7329052BDF00BD2A04 /* Frameworks */,
|
||||
18627C7429052BDF00BD2A04 /* Resources */,
|
||||
);
|
||||
buildRules = (
|
||||
);
|
||||
dependencies = (
|
||||
);
|
||||
name = whisper.objc;
|
||||
productName = whisper.objc;
|
||||
productReference = 18627C7629052BDF00BD2A04 /* whisper.objc.app */;
|
||||
productType = "com.apple.product-type.application";
|
||||
};
|
||||
/* End PBXNativeTarget section */
|
||||
|
||||
/* Begin PBXProject section */
|
||||
18627C6E29052BDF00BD2A04 /* Project object */ = {
|
||||
isa = PBXProject;
|
||||
attributes = {
|
||||
BuildIndependentTargetsInParallel = 1;
|
||||
LastUpgradeCheck = 1400;
|
||||
TargetAttributes = {
|
||||
18627C7529052BDF00BD2A04 = {
|
||||
CreatedOnToolsVersion = 14.0.1;
|
||||
};
|
||||
};
|
||||
};
|
||||
buildConfigurationList = 18627C7129052BDF00BD2A04 /* Build configuration list for PBXProject "whisper.objc" */;
|
||||
compatibilityVersion = "Xcode 14.0";
|
||||
developmentRegion = en;
|
||||
hasScannedForEncodings = 0;
|
||||
knownRegions = (
|
||||
en,
|
||||
Base,
|
||||
);
|
||||
mainGroup = 18627C6D29052BDF00BD2A04;
|
||||
productRefGroup = 18627C7729052BDF00BD2A04 /* Products */;
|
||||
projectDirPath = "";
|
||||
projectRoot = "";
|
||||
targets = (
|
||||
18627C7529052BDF00BD2A04 /* whisper.objc */,
|
||||
);
|
||||
};
|
||||
/* End PBXProject section */
|
||||
|
||||
/* Begin PBXResourcesBuildPhase section */
|
||||
18627C7429052BDF00BD2A04 /* Resources */ = {
|
||||
isa = PBXResourcesBuildPhase;
|
||||
buildActionMask = 2147483647;
|
||||
files = (
|
||||
18627C8929052BE000BD2A04 /* LaunchScreen.storyboard in Resources */,
|
||||
18627C8629052BE000BD2A04 /* Assets.xcassets in Resources */,
|
||||
18627C8429052BDF00BD2A04 /* Main.storyboard in Resources */,
|
||||
18627C9B29052CFF00BD2A04 /* ggml-base.en.bin in Resources */,
|
||||
);
|
||||
runOnlyForDeploymentPostprocessing = 0;
|
||||
};
|
||||
/* End PBXResourcesBuildPhase section */
|
||||
|
||||
/* Begin PBXSourcesBuildPhase section */
|
||||
18627C7229052BDF00BD2A04 /* Sources */ = {
|
||||
isa = PBXSourcesBuildPhase;
|
||||
buildActionMask = 2147483647;
|
||||
files = (
|
||||
18627C8129052BDF00BD2A04 /* ViewController.m in Sources */,
|
||||
18627C9429052C4900BD2A04 /* whisper.cpp in Sources */,
|
||||
18627C9629052C5800BD2A04 /* ggml.c in Sources */,
|
||||
18627C7B29052BDF00BD2A04 /* AppDelegate.m in Sources */,
|
||||
18627C8C29052BE000BD2A04 /* main.m in Sources */,
|
||||
18627C7E29052BDF00BD2A04 /* SceneDelegate.m in Sources */,
|
||||
);
|
||||
runOnlyForDeploymentPostprocessing = 0;
|
||||
};
|
||||
/* End PBXSourcesBuildPhase section */
|
||||
|
||||
/* Begin PBXVariantGroup section */
|
||||
18627C8229052BDF00BD2A04 /* Main.storyboard */ = {
|
||||
isa = PBXVariantGroup;
|
||||
children = (
|
||||
18627C8329052BDF00BD2A04 /* Base */,
|
||||
);
|
||||
name = Main.storyboard;
|
||||
sourceTree = "<group>";
|
||||
};
|
||||
18627C8729052BE000BD2A04 /* LaunchScreen.storyboard */ = {
|
||||
isa = PBXVariantGroup;
|
||||
children = (
|
||||
18627C8829052BE000BD2A04 /* Base */,
|
||||
);
|
||||
name = LaunchScreen.storyboard;
|
||||
sourceTree = "<group>";
|
||||
};
|
||||
/* End PBXVariantGroup section */
|
||||
|
||||
/* Begin XCBuildConfiguration section */
|
||||
18627C8D29052BE000BD2A04 /* Debug */ = {
|
||||
isa = XCBuildConfiguration;
|
||||
buildSettings = {
|
||||
ALWAYS_SEARCH_USER_PATHS = NO;
|
||||
CLANG_ANALYZER_NONNULL = YES;
|
||||
CLANG_ANALYZER_NUMBER_OBJECT_CONVERSION = YES_AGGRESSIVE;
|
||||
CLANG_CXX_LANGUAGE_STANDARD = "gnu++20";
|
||||
CLANG_ENABLE_MODULES = YES;
|
||||
CLANG_ENABLE_OBJC_ARC = YES;
|
||||
CLANG_ENABLE_OBJC_WEAK = YES;
|
||||
CLANG_WARN_BLOCK_CAPTURE_AUTORELEASING = YES;
|
||||
CLANG_WARN_BOOL_CONVERSION = YES;
|
||||
CLANG_WARN_COMMA = YES;
|
||||
CLANG_WARN_CONSTANT_CONVERSION = YES;
|
||||
CLANG_WARN_DEPRECATED_OBJC_IMPLEMENTATIONS = YES;
|
||||
CLANG_WARN_DIRECT_OBJC_ISA_USAGE = YES_ERROR;
|
||||
CLANG_WARN_DOCUMENTATION_COMMENTS = YES;
|
||||
CLANG_WARN_EMPTY_BODY = YES;
|
||||
CLANG_WARN_ENUM_CONVERSION = YES;
|
||||
CLANG_WARN_INFINITE_RECURSION = YES;
|
||||
CLANG_WARN_INT_CONVERSION = YES;
|
||||
CLANG_WARN_NON_LITERAL_NULL_CONVERSION = YES;
|
||||
CLANG_WARN_OBJC_IMPLICIT_RETAIN_SELF = YES;
|
||||
CLANG_WARN_OBJC_LITERAL_CONVERSION = YES;
|
||||
CLANG_WARN_OBJC_ROOT_CLASS = YES_ERROR;
|
||||
CLANG_WARN_QUOTED_INCLUDE_IN_FRAMEWORK_HEADER = YES;
|
||||
CLANG_WARN_RANGE_LOOP_ANALYSIS = YES;
|
||||
CLANG_WARN_STRICT_PROTOTYPES = YES;
|
||||
CLANG_WARN_SUSPICIOUS_MOVE = YES;
|
||||
CLANG_WARN_UNGUARDED_AVAILABILITY = YES_AGGRESSIVE;
|
||||
CLANG_WARN_UNREACHABLE_CODE = YES;
|
||||
CLANG_WARN__DUPLICATE_METHOD_MATCH = YES;
|
||||
COPY_PHASE_STRIP = NO;
|
||||
DEBUG_INFORMATION_FORMAT = dwarf;
|
||||
ENABLE_STRICT_OBJC_MSGSEND = YES;
|
||||
ENABLE_TESTABILITY = YES;
|
||||
GCC_C_LANGUAGE_STANDARD = gnu11;
|
||||
GCC_DYNAMIC_NO_PIC = NO;
|
||||
GCC_NO_COMMON_BLOCKS = YES;
|
||||
GCC_OPTIMIZATION_LEVEL = 0;
|
||||
GCC_PREPROCESSOR_DEFINITIONS = (
|
||||
"DEBUG=1",
|
||||
"$(inherited)",
|
||||
);
|
||||
GCC_WARN_64_TO_32_BIT_CONVERSION = YES;
|
||||
GCC_WARN_ABOUT_RETURN_TYPE = YES_ERROR;
|
||||
GCC_WARN_UNDECLARED_SELECTOR = YES;
|
||||
GCC_WARN_UNINITIALIZED_AUTOS = YES_AGGRESSIVE;
|
||||
GCC_WARN_UNUSED_FUNCTION = YES;
|
||||
GCC_WARN_UNUSED_VARIABLE = YES;
|
||||
IPHONEOS_DEPLOYMENT_TARGET = 16.0;
|
||||
MTL_ENABLE_DEBUG_INFO = INCLUDE_SOURCE;
|
||||
MTL_FAST_MATH = YES;
|
||||
ONLY_ACTIVE_ARCH = YES;
|
||||
SDKROOT = iphoneos;
|
||||
};
|
||||
name = Debug;
|
||||
};
|
||||
18627C8E29052BE000BD2A04 /* Release */ = {
|
||||
isa = XCBuildConfiguration;
|
||||
buildSettings = {
|
||||
ALWAYS_SEARCH_USER_PATHS = NO;
|
||||
CLANG_ANALYZER_NONNULL = YES;
|
||||
CLANG_ANALYZER_NUMBER_OBJECT_CONVERSION = YES_AGGRESSIVE;
|
||||
CLANG_CXX_LANGUAGE_STANDARD = "gnu++20";
|
||||
CLANG_ENABLE_MODULES = YES;
|
||||
CLANG_ENABLE_OBJC_ARC = YES;
|
||||
CLANG_ENABLE_OBJC_WEAK = YES;
|
||||
CLANG_WARN_BLOCK_CAPTURE_AUTORELEASING = YES;
|
||||
CLANG_WARN_BOOL_CONVERSION = YES;
|
||||
CLANG_WARN_COMMA = YES;
|
||||
CLANG_WARN_CONSTANT_CONVERSION = YES;
|
||||
CLANG_WARN_DEPRECATED_OBJC_IMPLEMENTATIONS = YES;
|
||||
CLANG_WARN_DIRECT_OBJC_ISA_USAGE = YES_ERROR;
|
||||
CLANG_WARN_DOCUMENTATION_COMMENTS = YES;
|
||||
CLANG_WARN_EMPTY_BODY = YES;
|
||||
CLANG_WARN_ENUM_CONVERSION = YES;
|
||||
CLANG_WARN_INFINITE_RECURSION = YES;
|
||||
CLANG_WARN_INT_CONVERSION = YES;
|
||||
CLANG_WARN_NON_LITERAL_NULL_CONVERSION = YES;
|
||||
CLANG_WARN_OBJC_IMPLICIT_RETAIN_SELF = YES;
|
||||
CLANG_WARN_OBJC_LITERAL_CONVERSION = YES;
|
||||
CLANG_WARN_OBJC_ROOT_CLASS = YES_ERROR;
|
||||
CLANG_WARN_QUOTED_INCLUDE_IN_FRAMEWORK_HEADER = YES;
|
||||
CLANG_WARN_RANGE_LOOP_ANALYSIS = YES;
|
||||
CLANG_WARN_STRICT_PROTOTYPES = YES;
|
||||
CLANG_WARN_SUSPICIOUS_MOVE = YES;
|
||||
CLANG_WARN_UNGUARDED_AVAILABILITY = YES_AGGRESSIVE;
|
||||
CLANG_WARN_UNREACHABLE_CODE = YES;
|
||||
CLANG_WARN__DUPLICATE_METHOD_MATCH = YES;
|
||||
COPY_PHASE_STRIP = NO;
|
||||
DEBUG_INFORMATION_FORMAT = "dwarf-with-dsym";
|
||||
ENABLE_NS_ASSERTIONS = NO;
|
||||
ENABLE_STRICT_OBJC_MSGSEND = YES;
|
||||
GCC_C_LANGUAGE_STANDARD = gnu11;
|
||||
GCC_NO_COMMON_BLOCKS = YES;
|
||||
GCC_WARN_64_TO_32_BIT_CONVERSION = YES;
|
||||
GCC_WARN_ABOUT_RETURN_TYPE = YES_ERROR;
|
||||
GCC_WARN_UNDECLARED_SELECTOR = YES;
|
||||
GCC_WARN_UNINITIALIZED_AUTOS = YES_AGGRESSIVE;
|
||||
GCC_WARN_UNUSED_FUNCTION = YES;
|
||||
GCC_WARN_UNUSED_VARIABLE = YES;
|
||||
IPHONEOS_DEPLOYMENT_TARGET = 16.0;
|
||||
MTL_ENABLE_DEBUG_INFO = NO;
|
||||
MTL_FAST_MATH = YES;
|
||||
SDKROOT = iphoneos;
|
||||
VALIDATE_PRODUCT = YES;
|
||||
};
|
||||
name = Release;
|
||||
};
|
||||
18627C9029052BE000BD2A04 /* Debug */ = {
|
||||
isa = XCBuildConfiguration;
|
||||
buildSettings = {
|
||||
ASSETCATALOG_COMPILER_APPICON_NAME = AppIcon;
|
||||
ASSETCATALOG_COMPILER_GLOBAL_ACCENT_COLOR_NAME = AccentColor;
|
||||
CODE_SIGN_STYLE = Automatic;
|
||||
CURRENT_PROJECT_VERSION = 1;
|
||||
DEVELOPMENT_TEAM = P8JZH34X63;
|
||||
GCC_WARN_64_TO_32_BIT_CONVERSION = NO;
|
||||
GENERATE_INFOPLIST_FILE = YES;
|
||||
INFOPLIST_FILE = whisper.objc/Info.plist;
|
||||
INFOPLIST_KEY_UIApplicationSupportsIndirectInputEvents = YES;
|
||||
INFOPLIST_KEY_UILaunchStoryboardName = LaunchScreen;
|
||||
INFOPLIST_KEY_UIMainStoryboardFile = Main;
|
||||
INFOPLIST_KEY_UISupportedInterfaceOrientations_iPad = "UIInterfaceOrientationPortrait UIInterfaceOrientationPortraitUpsideDown UIInterfaceOrientationLandscapeLeft UIInterfaceOrientationLandscapeRight";
|
||||
INFOPLIST_KEY_UISupportedInterfaceOrientations_iPhone = "UIInterfaceOrientationPortrait UIInterfaceOrientationLandscapeLeft UIInterfaceOrientationLandscapeRight";
|
||||
LD_RUNPATH_SEARCH_PATHS = (
|
||||
"$(inherited)",
|
||||
"@executable_path/Frameworks",
|
||||
);
|
||||
MARKETING_VERSION = 1.0;
|
||||
PRODUCT_BUNDLE_IDENTIFIER = "com.ggerganov.whisper-objc";
|
||||
PRODUCT_NAME = "$(TARGET_NAME)";
|
||||
SWIFT_EMIT_LOC_STRINGS = YES;
|
||||
TARGETED_DEVICE_FAMILY = "1,2";
|
||||
};
|
||||
name = Debug;
|
||||
};
|
||||
18627C9129052BE000BD2A04 /* Release */ = {
|
||||
isa = XCBuildConfiguration;
|
||||
buildSettings = {
|
||||
ASSETCATALOG_COMPILER_APPICON_NAME = AppIcon;
|
||||
ASSETCATALOG_COMPILER_GLOBAL_ACCENT_COLOR_NAME = AccentColor;
|
||||
CODE_SIGN_STYLE = Automatic;
|
||||
CURRENT_PROJECT_VERSION = 1;
|
||||
DEVELOPMENT_TEAM = P8JZH34X63;
|
||||
GCC_WARN_64_TO_32_BIT_CONVERSION = NO;
|
||||
GENERATE_INFOPLIST_FILE = YES;
|
||||
INFOPLIST_FILE = whisper.objc/Info.plist;
|
||||
INFOPLIST_KEY_UIApplicationSupportsIndirectInputEvents = YES;
|
||||
INFOPLIST_KEY_UILaunchStoryboardName = LaunchScreen;
|
||||
INFOPLIST_KEY_UIMainStoryboardFile = Main;
|
||||
INFOPLIST_KEY_UISupportedInterfaceOrientations_iPad = "UIInterfaceOrientationPortrait UIInterfaceOrientationPortraitUpsideDown UIInterfaceOrientationLandscapeLeft UIInterfaceOrientationLandscapeRight";
|
||||
INFOPLIST_KEY_UISupportedInterfaceOrientations_iPhone = "UIInterfaceOrientationPortrait UIInterfaceOrientationLandscapeLeft UIInterfaceOrientationLandscapeRight";
|
||||
LD_RUNPATH_SEARCH_PATHS = (
|
||||
"$(inherited)",
|
||||
"@executable_path/Frameworks",
|
||||
);
|
||||
MARKETING_VERSION = 1.0;
|
||||
PRODUCT_BUNDLE_IDENTIFIER = "com.ggerganov.whisper-objc";
|
||||
PRODUCT_NAME = "$(TARGET_NAME)";
|
||||
SWIFT_EMIT_LOC_STRINGS = YES;
|
||||
TARGETED_DEVICE_FAMILY = "1,2";
|
||||
};
|
||||
name = Release;
|
||||
};
|
||||
/* End XCBuildConfiguration section */
|
||||
|
||||
/* Begin XCConfigurationList section */
|
||||
18627C7129052BDF00BD2A04 /* Build configuration list for PBXProject "whisper.objc" */ = {
|
||||
isa = XCConfigurationList;
|
||||
buildConfigurations = (
|
||||
18627C8D29052BE000BD2A04 /* Debug */,
|
||||
18627C8E29052BE000BD2A04 /* Release */,
|
||||
);
|
||||
defaultConfigurationIsVisible = 0;
|
||||
defaultConfigurationName = Release;
|
||||
};
|
||||
18627C8F29052BE000BD2A04 /* Build configuration list for PBXNativeTarget "whisper.objc" */ = {
|
||||
isa = XCConfigurationList;
|
||||
buildConfigurations = (
|
||||
18627C9029052BE000BD2A04 /* Debug */,
|
||||
18627C9129052BE000BD2A04 /* Release */,
|
||||
);
|
||||
defaultConfigurationIsVisible = 0;
|
||||
defaultConfigurationName = Release;
|
||||
};
|
||||
/* End XCConfigurationList section */
|
||||
};
|
||||
rootObject = 18627C6E29052BDF00BD2A04 /* Project object */;
|
||||
}
|
@ -1,7 +0,0 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Workspace
|
||||
version = "1.0">
|
||||
<FileRef
|
||||
location = "self:">
|
||||
</FileRef>
|
||||
</Workspace>
|
@ -1,8 +0,0 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
|
||||
<plist version="1.0">
|
||||
<dict>
|
||||
<key>IDEDidComputeMac32BitWarning</key>
|
||||
<true/>
|
||||
</dict>
|
||||
</plist>
|
@ -1,14 +0,0 @@
|
||||
//
|
||||
// AppDelegate.h
|
||||
// whisper.objc
|
||||
//
|
||||
// Created by Georgi Gerganov on 23.10.22.
|
||||
//
|
||||
|
||||
#import <UIKit/UIKit.h>
|
||||
|
||||
@interface AppDelegate : UIResponder <UIApplicationDelegate>
|
||||
|
||||
|
||||
@end
|
||||
|
@ -1,40 +0,0 @@
|
||||
//
|
||||
// AppDelegate.m
|
||||
// whisper.objc
|
||||
//
|
||||
// Created by Georgi Gerganov on 23.10.22.
|
||||
//
|
||||
|
||||
#import "AppDelegate.h"
|
||||
|
||||
@interface AppDelegate ()
|
||||
|
||||
@end
|
||||
|
||||
@implementation AppDelegate
|
||||
|
||||
|
||||
- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {
|
||||
// Override point for customization after application launch.
|
||||
return YES;
|
||||
}
|
||||
|
||||
|
||||
#pragma mark - UISceneSession lifecycle
|
||||
|
||||
|
||||
- (UISceneConfiguration *)application:(UIApplication *)application configurationForConnectingSceneSession:(UISceneSession *)connectingSceneSession options:(UISceneConnectionOptions *)options {
|
||||
// Called when a new scene session is being created.
|
||||
// Use this method to select a configuration to create the new scene with.
|
||||
return [[UISceneConfiguration alloc] initWithName:@"Default Configuration" sessionRole:connectingSceneSession.role];
|
||||
}
|
||||
|
||||
|
||||
- (void)application:(UIApplication *)application didDiscardSceneSessions:(NSSet<UISceneSession *> *)sceneSessions {
|
||||
// Called when the user discards a scene session.
|
||||
// If any sessions were discarded while the application was not running, this will be called shortly after application:didFinishLaunchingWithOptions.
|
||||
// Use this method to release any resources that were specific to the discarded scenes, as they will not return.
|
||||
}
|
||||
|
||||
|
||||
@end
|
@ -1,11 +0,0 @@
|
||||
{
|
||||
"colors" : [
|
||||
{
|
||||
"idiom" : "universal"
|
||||
}
|
||||
],
|
||||
"info" : {
|
||||
"author" : "xcode",
|
||||
"version" : 1
|
||||
}
|
||||
}
|
@ -1,13 +0,0 @@
|
||||
{
|
||||
"images" : [
|
||||
{
|
||||
"idiom" : "universal",
|
||||
"platform" : "ios",
|
||||
"size" : "1024x1024"
|
||||
}
|
||||
],
|
||||
"info" : {
|
||||
"author" : "xcode",
|
||||
"version" : 1
|
||||
}
|
||||
}
|
@ -1,6 +0,0 @@
|
||||
{
|
||||
"info" : {
|
||||
"author" : "xcode",
|
||||
"version" : 1
|
||||
}
|
||||
}
|
@ -1,25 +0,0 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<document type="com.apple.InterfaceBuilder3.CocoaTouch.Storyboard.XIB" version="3.0" toolsVersion="13122.16" targetRuntime="iOS.CocoaTouch" propertyAccessControl="none" useAutolayout="YES" launchScreen="YES" useTraitCollections="YES" useSafeAreas="YES" colorMatched="YES" initialViewController="01J-lp-oVM">
|
||||
<dependencies>
|
||||
<plugIn identifier="com.apple.InterfaceBuilder.IBCocoaTouchPlugin" version="13104.12"/>
|
||||
<capability name="Safe area layout guides" minToolsVersion="9.0"/>
|
||||
<capability name="documents saved in the Xcode 8 format" minToolsVersion="8.0"/>
|
||||
</dependencies>
|
||||
<scenes>
|
||||
<!--View Controller-->
|
||||
<scene sceneID="EHf-IW-A2E">
|
||||
<objects>
|
||||
<viewController id="01J-lp-oVM" sceneMemberID="viewController">
|
||||
<view key="view" contentMode="scaleToFill" id="Ze5-6b-2t3">
|
||||
<rect key="frame" x="0.0" y="0.0" width="375" height="667"/>
|
||||
<autoresizingMask key="autoresizingMask" widthSizable="YES" heightSizable="YES"/>
|
||||
<color key="backgroundColor" xcode11CocoaTouchSystemColor="systemBackgroundColor" cocoaTouchSystemColor="whiteColor"/>
|
||||
<viewLayoutGuide key="safeArea" id="6Tk-OE-BBY"/>
|
||||
</view>
|
||||
</viewController>
|
||||
<placeholder placeholderIdentifier="IBFirstResponder" id="iYj-Kq-Ea1" userLabel="First Responder" sceneMemberID="firstResponder"/>
|
||||
</objects>
|
||||
<point key="canvasLocation" x="53" y="375"/>
|
||||
</scene>
|
||||
</scenes>
|
||||
</document>
|
@ -1,102 +0,0 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<document type="com.apple.InterfaceBuilder3.CocoaTouch.Storyboard.XIB" version="3.0" toolsVersion="21507" targetRuntime="iOS.CocoaTouch" propertyAccessControl="none" useAutolayout="YES" useTraitCollections="YES" useSafeAreas="YES" colorMatched="YES" initialViewController="BYZ-38-t0r">
|
||||
<device id="retina6_0" orientation="portrait" appearance="light"/>
|
||||
<dependencies>
|
||||
<plugIn identifier="com.apple.InterfaceBuilder.IBCocoaTouchPlugin" version="21505"/>
|
||||
<capability name="Safe area layout guides" minToolsVersion="9.0"/>
|
||||
<capability name="System colors in document resources" minToolsVersion="11.0"/>
|
||||
<capability name="documents saved in the Xcode 8 format" minToolsVersion="8.0"/>
|
||||
</dependencies>
|
||||
<scenes>
|
||||
<!--View Controller-->
|
||||
<scene sceneID="tne-QT-ifu">
|
||||
<objects>
|
||||
<viewController id="BYZ-38-t0r" customClass="ViewController" sceneMemberID="viewController">
|
||||
<view key="view" contentMode="scaleToFill" id="8bC-Xf-vdC">
|
||||
<rect key="frame" x="0.0" y="0.0" width="390" height="844"/>
|
||||
<autoresizingMask key="autoresizingMask" flexibleMinX="YES" widthSizable="YES" flexibleMinY="YES" heightSizable="YES"/>
|
||||
<subviews>
|
||||
<button opaque="NO" contentMode="scaleToFill" contentHorizontalAlignment="center" contentVerticalAlignment="center" lineBreakMode="middleTruncation" id="VOi-PT-Rbu">
|
||||
<rect key="frame" x="35" y="121" width="156" height="49"/>
|
||||
<autoresizingMask key="autoresizingMask" flexibleMaxX="YES" flexibleMaxY="YES"/>
|
||||
<color key="backgroundColor" systemColor="opaqueSeparatorColor"/>
|
||||
<color key="tintColor" systemColor="opaqueSeparatorColor"/>
|
||||
<state key="normal" title="Start Capturing">
|
||||
<color key="titleColor" systemColor="labelColor"/>
|
||||
</state>
|
||||
<connections>
|
||||
<action selector="toggleCapture:" destination="BYZ-38-t0r" eventType="touchUpInside" id="BuO-Wf-RgV"/>
|
||||
</connections>
|
||||
</button>
|
||||
<label opaque="NO" userInteractionEnabled="NO" contentMode="left" horizontalHuggingPriority="251" verticalHuggingPriority="251" fixedFrame="YES" text="Status: Idle" textAlignment="natural" lineBreakMode="tailTruncation" baselineAdjustment="alignBaselines" adjustsFontSizeToFit="NO" translatesAutoresizingMaskIntoConstraints="NO" id="Tgu-2q-eHQ">
|
||||
<rect key="frame" x="35" y="78" width="232" height="21"/>
|
||||
<autoresizingMask key="autoresizingMask" flexibleMaxX="YES" flexibleMaxY="YES"/>
|
||||
<fontDescription key="fontDescription" type="system" pointSize="17"/>
|
||||
<nil key="textColor"/>
|
||||
<nil key="highlightedColor"/>
|
||||
</label>
|
||||
<textView clipsSubviews="YES" multipleTouchEnabled="YES" contentMode="scaleToFill" fixedFrame="YES" text="Record some speech and press "Transcribe". The result will be displayed here." textAlignment="natural" translatesAutoresizingMaskIntoConstraints="NO" id="mv2-KD-7jn">
|
||||
<rect key="frame" x="35" y="248" width="320" height="300"/>
|
||||
<autoresizingMask key="autoresizingMask" flexibleMaxX="YES" flexibleMaxY="YES"/>
|
||||
<color key="backgroundColor" systemColor="systemBackgroundColor"/>
|
||||
<color key="textColor" systemColor="labelColor"/>
|
||||
<fontDescription key="fontDescription" name="Georgia" family="Georgia" pointSize="16"/>
|
||||
<textInputTraits key="textInputTraits" autocapitalizationType="sentences"/>
|
||||
</textView>
|
||||
<button opaque="NO" contentMode="scaleToFill" contentHorizontalAlignment="center" contentVerticalAlignment="center" lineBreakMode="middleTruncation" id="Brs-xi-o8i">
|
||||
<rect key="frame" x="35" y="191" width="156" height="49"/>
|
||||
<autoresizingMask key="autoresizingMask" flexibleMaxX="YES" flexibleMaxY="YES"/>
|
||||
<color key="backgroundColor" systemColor="opaqueSeparatorColor"/>
|
||||
<color key="tintColor" systemColor="opaqueSeparatorColor"/>
|
||||
<state key="normal" title="Transcribe">
|
||||
<color key="titleColor" systemColor="labelColor"/>
|
||||
</state>
|
||||
<connections>
|
||||
<action selector="onTranscribe:" destination="BYZ-38-t0r" eventType="touchUpInside" id="ond-bx-48O"/>
|
||||
<action selector="onTranscribePrepare:" destination="BYZ-38-t0r" eventType="touchDown" id="16T-dN-dfB"/>
|
||||
</connections>
|
||||
</button>
|
||||
<button opaque="NO" contentMode="scaleToFill" contentHorizontalAlignment="center" contentVerticalAlignment="center" lineBreakMode="middleTruncation" id="AaW-T2-Ndw">
|
||||
<rect key="frame" x="199" y="191" width="156" height="49"/>
|
||||
<autoresizingMask key="autoresizingMask" flexibleMaxX="YES" flexibleMaxY="YES"/>
|
||||
<color key="backgroundColor" systemColor="opaqueSeparatorColor"/>
|
||||
<color key="tintColor" systemColor="opaqueSeparatorColor"/>
|
||||
<state key="normal" title="Real-time">
|
||||
<color key="titleColor" systemColor="labelColor"/>
|
||||
</state>
|
||||
<connections>
|
||||
<action selector="onRealtime:" destination="BYZ-38-t0r" eventType="touchUpInside" id="nhn-jT-aQJ"/>
|
||||
</connections>
|
||||
</button>
|
||||
</subviews>
|
||||
<viewLayoutGuide key="safeArea" id="6Tk-OE-BBY"/>
|
||||
<color key="backgroundColor" systemColor="systemBackgroundColor"/>
|
||||
<constraints>
|
||||
<constraint firstItem="Brs-xi-o8i" firstAttribute="trailing" secondItem="VOi-PT-Rbu" secondAttribute="trailing" id="8mF-AW-cbc"/>
|
||||
</constraints>
|
||||
</view>
|
||||
<connections>
|
||||
<outlet property="buttonRealtime" destination="AaW-T2-Ndw" id="gcU-Ol-BOo"/>
|
||||
<outlet property="buttonToggleCapture" destination="VOi-PT-Rbu" id="nis-VC-DQO"/>
|
||||
<outlet property="buttonTranscribe" destination="Brs-xi-o8i" id="N8h-9W-ywb"/>
|
||||
<outlet property="labelStatusInp" destination="Tgu-2q-eHQ" id="1hH-Ql-K6j"/>
|
||||
<outlet property="textviewResult" destination="mv2-KD-7jn" id="RBw-0L-iGj"/>
|
||||
</connections>
|
||||
</viewController>
|
||||
<placeholder placeholderIdentifier="IBFirstResponder" id="dkx-z0-nzr" sceneMemberID="firstResponder"/>
|
||||
</objects>
|
||||
<point key="canvasLocation" x="30.769230769230766" y="-28.436018957345969"/>
|
||||
</scene>
|
||||
</scenes>
|
||||
<resources>
|
||||
<systemColor name="labelColor">
|
||||
<color red="0.0" green="0.0" blue="0.0" alpha="1" colorSpace="custom" customColorSpace="sRGB"/>
|
||||
</systemColor>
|
||||
<systemColor name="opaqueSeparatorColor">
|
||||
<color red="0.77647058823529413" green="0.77647058823529413" blue="0.78431372549019607" alpha="1" colorSpace="custom" customColorSpace="sRGB"/>
|
||||
</systemColor>
|
||||
<systemColor name="systemBackgroundColor">
|
||||
<color white="1" alpha="1" colorSpace="custom" customColorSpace="genericGamma22GrayColorSpace"/>
|
||||
</systemColor>
|
||||
</resources>
|
||||
</document>
|
@ -1,27 +0,0 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
|
||||
<plist version="1.0">
|
||||
<dict>
|
||||
<key>NSMicrophoneUsageDescription</key>
|
||||
<string>This app requires microphone access in order to transcribe speech</string>
|
||||
<key>UIApplicationSceneManifest</key>
|
||||
<dict>
|
||||
<key>UIApplicationSupportsMultipleScenes</key>
|
||||
<false/>
|
||||
<key>UISceneConfigurations</key>
|
||||
<dict>
|
||||
<key>UIWindowSceneSessionRoleApplication</key>
|
||||
<array>
|
||||
<dict>
|
||||
<key>UISceneConfigurationName</key>
|
||||
<string>Default Configuration</string>
|
||||
<key>UISceneDelegateClassName</key>
|
||||
<string>SceneDelegate</string>
|
||||
<key>UISceneStoryboardFile</key>
|
||||
<string>Main</string>
|
||||
</dict>
|
||||
</array>
|
||||
</dict>
|
||||
</dict>
|
||||
</dict>
|
||||
</plist>
|
@ -1,15 +0,0 @@
|
||||
//
|
||||
// SceneDelegate.h
|
||||
// whisper.objc
|
||||
//
|
||||
// Created by Georgi Gerganov on 23.10.22.
|
||||
//
|
||||
|
||||
#import <UIKit/UIKit.h>
|
||||
|
||||
@interface SceneDelegate : UIResponder <UIWindowSceneDelegate>
|
||||
|
||||
@property (strong, nonatomic) UIWindow * window;
|
||||
|
||||
@end
|
||||
|
@ -1,57 +0,0 @@
|
||||
//
|
||||
// SceneDelegate.m
|
||||
// whisper.objc
|
||||
//
|
||||
// Created by Georgi Gerganov on 23.10.22.
|
||||
//
|
||||
|
||||
#import "SceneDelegate.h"
|
||||
|
||||
@interface SceneDelegate ()
|
||||
|
||||
@end
|
||||
|
||||
@implementation SceneDelegate
|
||||
|
||||
|
||||
- (void)scene:(UIScene *)scene willConnectToSession:(UISceneSession *)session options:(UISceneConnectionOptions *)connectionOptions {
|
||||
// Use this method to optionally configure and attach the UIWindow `window` to the provided UIWindowScene `scene`.
|
||||
// If using a storyboard, the `window` property will automatically be initialized and attached to the scene.
|
||||
// This delegate does not imply the connecting scene or session are new (see `application:configurationForConnectingSceneSession` instead).
|
||||
}
|
||||
|
||||
|
||||
- (void)sceneDidDisconnect:(UIScene *)scene {
|
||||
// Called as the scene is being released by the system.
|
||||
// This occurs shortly after the scene enters the background, or when its session is discarded.
|
||||
// Release any resources associated with this scene that can be re-created the next time the scene connects.
|
||||
// The scene may re-connect later, as its session was not necessarily discarded (see `application:didDiscardSceneSessions` instead).
|
||||
}
|
||||
|
||||
|
||||
- (void)sceneDidBecomeActive:(UIScene *)scene {
|
||||
// Called when the scene has moved from an inactive state to an active state.
|
||||
// Use this method to restart any tasks that were paused (or not yet started) when the scene was inactive.
|
||||
}
|
||||
|
||||
|
||||
- (void)sceneWillResignActive:(UIScene *)scene {
|
||||
// Called when the scene will move from an active state to an inactive state.
|
||||
// This may occur due to temporary interruptions (ex. an incoming phone call).
|
||||
}
|
||||
|
||||
|
||||
- (void)sceneWillEnterForeground:(UIScene *)scene {
|
||||
// Called as the scene transitions from the background to the foreground.
|
||||
// Use this method to undo the changes made on entering the background.
|
||||
}
|
||||
|
||||
|
||||
- (void)sceneDidEnterBackground:(UIScene *)scene {
|
||||
// Called as the scene transitions from the foreground to the background.
|
||||
// Use this method to save data, release shared resources, and store enough scene-specific state information
|
||||
// to restore the scene back to its current state.
|
||||
}
|
||||
|
||||
|
||||
@end
|
@ -1,45 +0,0 @@
|
||||
//
|
||||
// ViewController.h
|
||||
// whisper.objc
|
||||
//
|
||||
// Created by Georgi Gerganov on 23.10.22.
|
||||
//
|
||||
|
||||
#import <UIKit/UIKit.h>
|
||||
|
||||
#import <AVFoundation/AVFoundation.h>
|
||||
#import <AudioToolbox/AudioQueue.h>
|
||||
|
||||
#define NUM_BUFFERS 3
|
||||
#define MAX_AUDIO_SEC 30
|
||||
#define SAMPLE_RATE 16000
|
||||
|
||||
struct whisper_context;
|
||||
|
||||
typedef struct
|
||||
{
|
||||
int ggwaveId;
|
||||
bool isCapturing;
|
||||
bool isTranscribing;
|
||||
bool isRealtime;
|
||||
UILabel * labelReceived;
|
||||
|
||||
AudioQueueRef queue;
|
||||
AudioStreamBasicDescription dataFormat;
|
||||
AudioQueueBufferRef buffers[NUM_BUFFERS];
|
||||
|
||||
int n_samples;
|
||||
int16_t * audioBufferI16;
|
||||
float * audioBufferF32;
|
||||
|
||||
struct whisper_context * ctx;
|
||||
|
||||
void * vc;
|
||||
} StateInp;
|
||||
|
||||
@interface ViewController : UIViewController
|
||||
{
|
||||
StateInp stateInp;
|
||||
}
|
||||
|
||||
@end
|
@ -1,297 +0,0 @@
|
||||
//
|
||||
// ViewController.m
|
||||
// whisper.objc
|
||||
//
|
||||
// Created by Georgi Gerganov on 23.10.22.
|
||||
//
|
||||
|
||||
#import "ViewController.h"
|
||||
|
||||
#import "whisper.h"
|
||||
|
||||
#define NUM_BYTES_PER_BUFFER 16*1024
|
||||
|
||||
// callback used to process captured audio
|
||||
void AudioInputCallback(void * inUserData,
|
||||
AudioQueueRef inAQ,
|
||||
AudioQueueBufferRef inBuffer,
|
||||
const AudioTimeStamp * inStartTime,
|
||||
UInt32 inNumberPacketDescriptions,
|
||||
const AudioStreamPacketDescription * inPacketDescs);
|
||||
|
||||
@interface ViewController ()
|
||||
|
||||
@property (weak, nonatomic) IBOutlet UILabel *labelStatusInp;
|
||||
@property (weak, nonatomic) IBOutlet UIButton *buttonToggleCapture;
|
||||
@property (weak, nonatomic) IBOutlet UIButton *buttonTranscribe;
|
||||
@property (weak, nonatomic) IBOutlet UIButton *buttonRealtime;
|
||||
@property (weak, nonatomic) IBOutlet UITextView *textviewResult;
|
||||
|
||||
@end
|
||||
|
||||
@implementation ViewController
|
||||
|
||||
- (void)setupAudioFormat:(AudioStreamBasicDescription*)format
|
||||
{
|
||||
format->mSampleRate = WHISPER_SAMPLE_RATE;
|
||||
format->mFormatID = kAudioFormatLinearPCM;
|
||||
format->mFramesPerPacket = 1;
|
||||
format->mChannelsPerFrame = 1;
|
||||
format->mBytesPerFrame = 2;
|
||||
format->mBytesPerPacket = 2;
|
||||
format->mBitsPerChannel = 16;
|
||||
format->mReserved = 0;
|
||||
format->mFormatFlags = kLinearPCMFormatFlagIsSignedInteger;
|
||||
}
|
||||
|
||||
- (void)viewDidLoad {
|
||||
[super viewDidLoad];
|
||||
|
||||
// whisper.cpp initialization
|
||||
{
|
||||
// load the model
|
||||
NSString *modelPath = [[NSBundle mainBundle] pathForResource:@"ggml-base.en" ofType:@"bin"];
|
||||
|
||||
// check if the model exists
|
||||
if (![[NSFileManager defaultManager] fileExistsAtPath:modelPath]) {
|
||||
NSLog(@"Model file not found");
|
||||
return;
|
||||
}
|
||||
|
||||
NSLog(@"Loading model from %@", modelPath);
|
||||
|
||||
// create ggml context
|
||||
stateInp.ctx = whisper_init([modelPath UTF8String]);
|
||||
|
||||
// check if the model was loaded successfully
|
||||
if (stateInp.ctx == NULL) {
|
||||
NSLog(@"Failed to load model");
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// initialize audio format and buffers
|
||||
{
|
||||
[self setupAudioFormat:&stateInp.dataFormat];
|
||||
|
||||
stateInp.n_samples = 0;
|
||||
stateInp.audioBufferI16 = malloc(MAX_AUDIO_SEC*SAMPLE_RATE*sizeof(int16_t));
|
||||
stateInp.audioBufferF32 = malloc(MAX_AUDIO_SEC*SAMPLE_RATE*sizeof(float));
|
||||
}
|
||||
|
||||
stateInp.isTranscribing = false;
|
||||
stateInp.isRealtime = false;
|
||||
}
|
||||
|
||||
-(IBAction) stopCapturing {
|
||||
NSLog(@"Stop capturing");
|
||||
|
||||
_labelStatusInp.text = @"Status: Idle";
|
||||
|
||||
[_buttonToggleCapture setTitle:@"Start capturing" forState:UIControlStateNormal];
|
||||
[_buttonToggleCapture setBackgroundColor:[UIColor grayColor]];
|
||||
|
||||
stateInp.isCapturing = false;
|
||||
|
||||
AudioQueueStop(stateInp.queue, true);
|
||||
for (int i = 0; i < NUM_BUFFERS; i++) {
|
||||
AudioQueueFreeBuffer(stateInp.queue, stateInp.buffers[i]);
|
||||
}
|
||||
|
||||
AudioQueueDispose(stateInp.queue, true);
|
||||
}
|
||||
|
||||
- (IBAction)toggleCapture:(id)sender {
|
||||
if (stateInp.isCapturing) {
|
||||
// stop capturing
|
||||
[self stopCapturing];
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
// initiate audio capturing
|
||||
NSLog(@"Start capturing");
|
||||
|
||||
stateInp.n_samples = 0;
|
||||
stateInp.vc = (__bridge void *)(self);
|
||||
|
||||
OSStatus status = AudioQueueNewInput(&stateInp.dataFormat,
|
||||
AudioInputCallback,
|
||||
&stateInp,
|
||||
CFRunLoopGetCurrent(),
|
||||
kCFRunLoopCommonModes,
|
||||
0,
|
||||
&stateInp.queue);
|
||||
|
||||
if (status == 0) {
|
||||
for (int i = 0; i < NUM_BUFFERS; i++) {
|
||||
AudioQueueAllocateBuffer(stateInp.queue, NUM_BYTES_PER_BUFFER, &stateInp.buffers[i]);
|
||||
AudioQueueEnqueueBuffer (stateInp.queue, stateInp.buffers[i], 0, NULL);
|
||||
}
|
||||
|
||||
stateInp.isCapturing = true;
|
||||
status = AudioQueueStart(stateInp.queue, NULL);
|
||||
if (status == 0) {
|
||||
_labelStatusInp.text = @"Status: Capturing";
|
||||
[sender setTitle:@"Stop Capturing" forState:UIControlStateNormal];
|
||||
[_buttonToggleCapture setBackgroundColor:[UIColor redColor]];
|
||||
}
|
||||
}
|
||||
|
||||
if (status != 0) {
|
||||
[self stopCapturing];
|
||||
}
|
||||
}
|
||||
|
||||
- (IBAction)onTranscribePrepare:(id)sender {
|
||||
_textviewResult.text = @"Processing - please wait ...";
|
||||
|
||||
if (stateInp.isRealtime) {
|
||||
[self onRealtime:(id)sender];
|
||||
}
|
||||
|
||||
if (stateInp.isCapturing) {
|
||||
[self stopCapturing];
|
||||
}
|
||||
}
|
||||
|
||||
- (IBAction)onRealtime:(id)sender {
|
||||
stateInp.isRealtime = !stateInp.isRealtime;
|
||||
|
||||
if (stateInp.isRealtime) {
|
||||
[_buttonRealtime setBackgroundColor:[UIColor greenColor]];
|
||||
} else {
|
||||
[_buttonRealtime setBackgroundColor:[UIColor grayColor]];
|
||||
}
|
||||
|
||||
NSLog(@"Realtime: %@", stateInp.isRealtime ? @"ON" : @"OFF");
|
||||
}
|
||||
|
||||
- (IBAction)onTranscribe:(id)sender {
|
||||
if (stateInp.isTranscribing) {
|
||||
return;
|
||||
}
|
||||
|
||||
NSLog(@"Processing %d samples", stateInp.n_samples);
|
||||
|
||||
stateInp.isTranscribing = true;
|
||||
|
||||
// dispatch the model to a background thread
|
||||
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
|
||||
// process captured audio
|
||||
// convert I16 to F32
|
||||
for (int i = 0; i < self->stateInp.n_samples; i++) {
|
||||
self->stateInp.audioBufferF32[i] = (float)self->stateInp.audioBufferI16[i] / 32768.0f;
|
||||
}
|
||||
|
||||
// run the model
|
||||
struct whisper_full_params params = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
|
||||
|
||||
// get maximum number of threads on this device (max 8)
|
||||
const int max_threads = MIN(8, (int)[[NSProcessInfo processInfo] processorCount]);
|
||||
|
||||
params.print_realtime = true;
|
||||
params.print_progress = false;
|
||||
params.print_timestamps = true;
|
||||
params.print_special = false;
|
||||
params.translate = false;
|
||||
params.language = "en";
|
||||
params.n_threads = max_threads;
|
||||
params.offset_ms = 0;
|
||||
params.no_context = true;
|
||||
params.single_segment = self->stateInp.isRealtime;
|
||||
|
||||
CFTimeInterval startTime = CACurrentMediaTime();
|
||||
|
||||
whisper_reset_timings(self->stateInp.ctx);
|
||||
|
||||
if (whisper_full(self->stateInp.ctx, params, self->stateInp.audioBufferF32, self->stateInp.n_samples) != 0) {
|
||||
NSLog(@"Failed to run the model");
|
||||
self->_textviewResult.text = @"Failed to run the model";
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
whisper_print_timings(self->stateInp.ctx);
|
||||
|
||||
CFTimeInterval endTime = CACurrentMediaTime();
|
||||
|
||||
NSLog(@"\nProcessing time: %5.3f, on %d threads", endTime - startTime, params.n_threads);
|
||||
|
||||
// result text
|
||||
NSString *result = @"";
|
||||
|
||||
int n_segments = whisper_full_n_segments(self->stateInp.ctx);
|
||||
for (int i = 0; i < n_segments; i++) {
|
||||
const char * text_cur = whisper_full_get_segment_text(self->stateInp.ctx, i);
|
||||
|
||||
// append the text to the result
|
||||
result = [result stringByAppendingString:[NSString stringWithUTF8String:text_cur]];
|
||||
}
|
||||
|
||||
const float tRecording = (float)self->stateInp.n_samples / (float)self->stateInp.dataFormat.mSampleRate;
|
||||
|
||||
// append processing time
|
||||
result = [result stringByAppendingString:[NSString stringWithFormat:@"\n\n[recording time: %5.3f s]", tRecording]];
|
||||
result = [result stringByAppendingString:[NSString stringWithFormat:@" \n[processing time: %5.3f s]", endTime - startTime]];
|
||||
|
||||
// dispatch the result to the main thread
|
||||
dispatch_async(dispatch_get_main_queue(), ^{
|
||||
self->_textviewResult.text = result;
|
||||
self->stateInp.isTranscribing = false;
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
//
|
||||
// Callback implementation
|
||||
//
|
||||
|
||||
void AudioInputCallback(void * inUserData,
|
||||
AudioQueueRef inAQ,
|
||||
AudioQueueBufferRef inBuffer,
|
||||
const AudioTimeStamp * inStartTime,
|
||||
UInt32 inNumberPacketDescriptions,
|
||||
const AudioStreamPacketDescription * inPacketDescs)
|
||||
{
|
||||
StateInp * stateInp = (StateInp*)inUserData;
|
||||
|
||||
if (!stateInp->isCapturing) {
|
||||
NSLog(@"Not capturing, ignoring audio");
|
||||
return;
|
||||
}
|
||||
|
||||
const int n = inBuffer->mAudioDataByteSize / 2;
|
||||
|
||||
NSLog(@"Captured %d new samples", n);
|
||||
|
||||
if (stateInp->n_samples + n > MAX_AUDIO_SEC*SAMPLE_RATE) {
|
||||
NSLog(@"Too much audio data, ignoring");
|
||||
|
||||
dispatch_async(dispatch_get_main_queue(), ^{
|
||||
ViewController * vc = (__bridge ViewController *)(stateInp->vc);
|
||||
[vc stopCapturing];
|
||||
});
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
for (int i = 0; i < n; i++) {
|
||||
stateInp->audioBufferI16[stateInp->n_samples + i] = ((short*)inBuffer->mAudioData)[i];
|
||||
}
|
||||
|
||||
stateInp->n_samples += n;
|
||||
|
||||
// put the buffer back in the queue
|
||||
AudioQueueEnqueueBuffer(stateInp->queue, inBuffer, 0, NULL);
|
||||
|
||||
if (stateInp->isRealtime) {
|
||||
// dipatch onTranscribe() to the main thread
|
||||
dispatch_async(dispatch_get_main_queue(), ^{
|
||||
ViewController * vc = (__bridge ViewController *)(stateInp->vc);
|
||||
[vc onTranscribe:nil];
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
@end
|
@ -1,18 +0,0 @@
|
||||
//
|
||||
// main.m
|
||||
// whisper.objc
|
||||
//
|
||||
// Created by Georgi Gerganov on 23.10.22.
|
||||
//
|
||||
|
||||
#import <UIKit/UIKit.h>
|
||||
#import "AppDelegate.h"
|
||||
|
||||
int main(int argc, char * argv[]) {
|
||||
NSString * appDelegateClassName;
|
||||
@autoreleasepool {
|
||||
// Setup code that might create autoreleased objects goes here.
|
||||
appDelegateClassName = NSStringFromClass([AppDelegate class]);
|
||||
}
|
||||
return UIApplicationMain(argc, argv, nil, appDelegateClassName);
|
||||
}
|
@ -1,47 +0,0 @@
|
||||
#
|
||||
# libmain
|
||||
#
|
||||
|
||||
set(TARGET libmain)
|
||||
|
||||
add_executable(${TARGET}
|
||||
emscripten.cpp
|
||||
)
|
||||
|
||||
target_link_libraries(${TARGET} PRIVATE
|
||||
whisper
|
||||
)
|
||||
|
||||
unset(EXTRA_FLAGS)
|
||||
|
||||
if (WHISPER_WASM_SINGLE_FILE)
|
||||
set(EXTRA_FLAGS "-s SINGLE_FILE=1")
|
||||
message(STATUS "Embedding WASM inside main.js")
|
||||
|
||||
add_custom_command(
|
||||
TARGET ${TARGET} POST_BUILD
|
||||
COMMAND ${CMAKE_COMMAND} -E copy
|
||||
${CMAKE_BINARY_DIR}/bin/libmain.js
|
||||
${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/whisper.wasm/main.js
|
||||
)
|
||||
endif()
|
||||
|
||||
set_target_properties(${TARGET} PROPERTIES LINK_FLAGS " \
|
||||
--bind \
|
||||
-s USE_PTHREADS=1 \
|
||||
-s PTHREAD_POOL_SIZE=8 \
|
||||
-s INITIAL_MEMORY=1024MB \
|
||||
-s TOTAL_MEMORY=1024MB \
|
||||
-s FORCE_FILESYSTEM=1 \
|
||||
-s EXPORTED_RUNTIME_METHODS=\"['print', 'printErr', 'ccall', 'cwrap']\" \
|
||||
${EXTRA_FLAGS} \
|
||||
")
|
||||
|
||||
#
|
||||
# whisper.wasm
|
||||
#
|
||||
|
||||
set(TARGET whisper.wasm)
|
||||
|
||||
configure_file(${CMAKE_CURRENT_SOURCE_DIR}/index-tmpl.html ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/${TARGET}/index.html @ONLY)
|
||||
configure_file(${CMAKE_CURRENT_SOURCE_DIR}/../helpers.js ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/${TARGET}/helpers.js @ONLY)
|
@ -1,42 +0,0 @@
|
||||
# whisper.wasm
|
||||
|
||||
Inference of [OpenAI's Whisper ASR model](https://github.com/openai/whisper) inside the browser
|
||||
|
||||
This example uses a WebAssembly (WASM) port of the [whisper.cpp](https://github.com/ggerganov/whisper.cpp)
|
||||
implementation of the transformer to run the inference inside a web page. The audio data does not leave your computer -
|
||||
it is processed locally on your machine. The performance is not great but you should be able to achieve x2 or x3
|
||||
real-time for the `tiny` and `base` models on a modern CPU and browser (i.e. transcribe a 60 seconds audio in about
|
||||
~20-30 seconds).
|
||||
|
||||
This WASM port utilizes [WASM SIMD 128-bit intrinsics](https://emcc.zcopy.site/docs/porting/simd/) so you have to make
|
||||
sure that [your browser supports them](https://webassembly.org/roadmap/).
|
||||
|
||||
The example is capable of running all models up to size `small` inclusive. Beyond that, the memory requirements and
|
||||
performance are unsatisfactory. The implementation currently support only the `Greedy` sampling strategy. Both
|
||||
transcription and translation are supported.
|
||||
|
||||
Since the model data is quite big (74MB for the `tiny` model) you need to manually load the model into the web-page.
|
||||
|
||||
The example supports both loading audio from a file and recording audio from the microphone. The maximum length of the
|
||||
audio is limited to 120 seconds.
|
||||
|
||||
## Live demo
|
||||
|
||||
Link: https://whisper.ggerganov.com
|
||||
|
||||

|
||||
|
||||
## Build instructions
|
||||
|
||||
```bash (v3.1.2)
|
||||
# build using Emscripten
|
||||
git clone https://github.com/ggerganov/whisper.cpp
|
||||
cd whisper.cpp
|
||||
mkdir build-em && cd build-em
|
||||
emcmake cmake ..
|
||||
make -j
|
||||
|
||||
# copy the produced page to your HTTP path
|
||||
cp bin/whisper.wasm/* /path/to/html/
|
||||
cp bin/libwhisper.worker.js /path/to/html/
|
||||
```
|
@ -1,108 +0,0 @@
|
||||
#include "whisper.h"
|
||||
|
||||
#include <emscripten.h>
|
||||
#include <emscripten/bind.h>
|
||||
|
||||
#include <vector>
|
||||
#include <thread>
|
||||
|
||||
std::thread g_worker;
|
||||
|
||||
std::vector<struct whisper_context *> g_contexts(4, nullptr);
|
||||
|
||||
EMSCRIPTEN_BINDINGS(whisper) {
|
||||
emscripten::function("init", emscripten::optional_override([](const std::string & path_model) {
|
||||
if (g_worker.joinable()) {
|
||||
g_worker.join();
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < g_contexts.size(); ++i) {
|
||||
if (g_contexts[i] == nullptr) {
|
||||
g_contexts[i] = whisper_init(path_model.c_str());
|
||||
if (g_contexts[i] != nullptr) {
|
||||
return i + 1;
|
||||
} else {
|
||||
return (size_t) 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return (size_t) 0;
|
||||
}));
|
||||
|
||||
emscripten::function("free", emscripten::optional_override([](size_t index) {
|
||||
if (g_worker.joinable()) {
|
||||
g_worker.join();
|
||||
}
|
||||
|
||||
--index;
|
||||
|
||||
if (index < g_contexts.size()) {
|
||||
whisper_free(g_contexts[index]);
|
||||
g_contexts[index] = nullptr;
|
||||
}
|
||||
}));
|
||||
|
||||
emscripten::function("full_default", emscripten::optional_override([](size_t index, const emscripten::val & audio, const std::string & lang, bool translate) {
|
||||
if (g_worker.joinable()) {
|
||||
g_worker.join();
|
||||
}
|
||||
|
||||
--index;
|
||||
|
||||
if (index >= g_contexts.size()) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (g_contexts[index] == nullptr) {
|
||||
return -2;
|
||||
}
|
||||
|
||||
struct whisper_full_params params = whisper_full_default_params(whisper_sampling_strategy::WHISPER_SAMPLING_GREEDY);
|
||||
|
||||
params.print_realtime = true;
|
||||
params.print_progress = false;
|
||||
params.print_timestamps = true;
|
||||
params.print_special = false;
|
||||
params.translate = translate;
|
||||
params.language = whisper_is_multilingual(g_contexts[index]) ? lang.c_str() : "en";
|
||||
params.n_threads = std::min(8, (int) std::thread::hardware_concurrency());
|
||||
params.offset_ms = 0;
|
||||
|
||||
std::vector<float> pcmf32;
|
||||
const int n = audio["length"].as<int>();
|
||||
|
||||
emscripten::val heap = emscripten::val::module_property("HEAPU8");
|
||||
emscripten::val memory = heap["buffer"];
|
||||
|
||||
pcmf32.resize(n);
|
||||
|
||||
emscripten::val memoryView = audio["constructor"].new_(memory, reinterpret_cast<uintptr_t>(pcmf32.data()), n);
|
||||
memoryView.call<void>("set", audio);
|
||||
|
||||
// print system information
|
||||
{
|
||||
printf("system_info: n_threads = %d / %d | %s\n",
|
||||
params.n_threads, std::thread::hardware_concurrency(), whisper_print_system_info());
|
||||
|
||||
printf("%s: processing %d samples, %.1f sec, %d threads, %d processors, lang = %s, task = %s ...\n",
|
||||
__func__, int(pcmf32.size()), float(pcmf32.size())/WHISPER_SAMPLE_RATE,
|
||||
params.n_threads, 1,
|
||||
params.language,
|
||||
params.translate ? "translate" : "transcribe");
|
||||
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
// run the worker
|
||||
{
|
||||
g_worker = std::thread([index, params, pcmf32 = std::move(pcmf32)]() {
|
||||
whisper_reset_timings(g_contexts[index]);
|
||||
whisper_full(g_contexts[index], params, pcmf32.data(), pcmf32.size());
|
||||
whisper_print_timings(g_contexts[index]);
|
||||
});
|
||||
}
|
||||
|
||||
return 0;
|
||||
}));
|
||||
}
|
@ -1,555 +0,0 @@
|
||||
<!doctype html>
|
||||
<html lang="en-us">
|
||||
<head>
|
||||
<title>whisper.cpp : WASM example</title>
|
||||
|
||||
<style>
|
||||
#output {
|
||||
width: 100%;
|
||||
height: 100%;
|
||||
margin: 0 auto;
|
||||
margin-top: 10px;
|
||||
border-left: 0px;
|
||||
border-right: 0px;
|
||||
padding-left: 0px;
|
||||
padding-right: 0px;
|
||||
display: block;
|
||||
background-color: black;
|
||||
color: white;
|
||||
font-size: 10px;
|
||||
font-family: 'Lucida Console', Monaco, monospace;
|
||||
outline: none;
|
||||
white-space: pre;
|
||||
overflow-wrap: normal;
|
||||
overflow-x: scroll;
|
||||
}
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
<div id="main-container">
|
||||
<b>Minimal <a href="https://github.com/ggerganov/whisper.cpp">whisper.cpp</a> example running fully in the browser</b>
|
||||
|
||||
<br><br>
|
||||
|
||||
Usage instructions:<br>
|
||||
<ul>
|
||||
<li>Load a ggml model file (you can obtain one from <a href="https://ggml.ggerganov.com/">here</a>, recommended: <b>tiny</b> or <b>base</b>)</li>
|
||||
<li>Select audio file to transcribe or record audio from the microphone (sample: <a href="https://whisper.ggerganov.com/jfk.wav">jfk.wav</a>)</li>
|
||||
<li>Click on the "Transcribe" button to start the transcription</li>
|
||||
</ul>
|
||||
|
||||
Note that the computation is quite heavy and may take a few seconds to complete.<br>
|
||||
The transcription results will be displayed in the text area below.<br><br>
|
||||
<b>Important: your browser must support WASM SIMD instructions for this to work.</b>
|
||||
|
||||
<br><br><hr>
|
||||
|
||||
<div id="model">
|
||||
Whisper model: <span id="model-whisper-status"></span>
|
||||
<button id="fetch-whisper-tiny-en" onclick="loadWhisper('tiny.en')">tiny.en (75 MB)</button>
|
||||
<button id="fetch-whisper-tiny" onclick="loadWhisper('tiny')">tiny (75 MB)</button>
|
||||
<button id="fetch-whisper-base-en" onclick="loadWhisper('base.en')">base.en (142 MB)</button>
|
||||
<button id="fetch-whisper-base" onclick="loadWhisper('base')">base (142 MB)</button>
|
||||
<span id="fetch-whisper-progress"></span>
|
||||
|
||||
<input type="file" id="whisper-file" name="file" onchange="loadFile(event, 'whisper.bin')" />
|
||||
</div>
|
||||
|
||||
<br>
|
||||
|
||||
<!-- radio button to select between file upload or microphone -->
|
||||
<div id="input">
|
||||
Input:
|
||||
<input type="radio" id="file" name="input" value="file" checked="checked" onchange="changeInput('file')" /> File
|
||||
<input type="radio" id="mic" name="input" value="mic" onchange="changeInput('mic')" /> Microphone
|
||||
</div>
|
||||
|
||||
<br>
|
||||
|
||||
<div id="input_file">
|
||||
Audio file:
|
||||
<input type="file" id="file" name="file" onchange="loadAudio(event)" />
|
||||
</div>
|
||||
|
||||
<div id="input_mic" style="display: none;">
|
||||
Microphone:
|
||||
<button id="start" onclick="startRecording()">Start</button>
|
||||
<button id="stop" onclick="stopRecording()" disabled>Stop</button>
|
||||
|
||||
<!-- progress bar to show recording progress -->
|
||||
<br><br>
|
||||
<div id="progress" style="display: none;">
|
||||
<div id="progress-bar" style="width: 0%; height: 10px; background-color: #4CAF50;"></div>
|
||||
<div id="progress-text">0%</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<audio controls="controls" id="audio" loop hidden>
|
||||
Your browser does not support the <audio> tag.
|
||||
<source id="source" src="" type="audio/wav" />
|
||||
</audio>
|
||||
|
||||
<hr><br>
|
||||
|
||||
<table>
|
||||
<tr>
|
||||
<td>
|
||||
Language:
|
||||
<select id="language" name="language">
|
||||
<option value="en">English</option>
|
||||
<option value="ar">Arabic</option>
|
||||
<option value="hy">Armenian</option>
|
||||
<option value="az">Azerbaijani</option>
|
||||
<option value="eu">Basque</option>
|
||||
<option value="be">Belarusian</option>
|
||||
<option value="bn">Bengali</option>
|
||||
<option value="bg">Bulgarian</option>
|
||||
<option value="ca">Catalan</option>
|
||||
<option value="zh">Chinese</option>
|
||||
<option value="hr">Croatian</option>
|
||||
<option value="cs">Czech</option>
|
||||
<option value="da">Danish</option>
|
||||
<option value="nl">Dutch</option>
|
||||
<option value="en">English</option>
|
||||
<option value="et">Estonian</option>
|
||||
<option value="tl">Filipino</option>
|
||||
<option value="fi">Finnish</option>
|
||||
<option value="fr">French</option>
|
||||
<option value="gl">Galician</option>
|
||||
<option value="ka">Georgian</option>
|
||||
<option value="de">German</option>
|
||||
<option value="el">Greek</option>
|
||||
<option value="gu">Gujarati</option>
|
||||
<option value="iw">Hebrew</option>
|
||||
<option value="hi">Hindi</option>
|
||||
<option value="hu">Hungarian</option>
|
||||
<option value="is">Icelandic</option>
|
||||
<option value="id">Indonesian</option>
|
||||
<option value="ga">Irish</option>
|
||||
<option value="it">Italian</option>
|
||||
<option value="ja">Japanese</option>
|
||||
<option value="kn">Kannada</option>
|
||||
<option value="ko">Korean</option>
|
||||
<option value="la">Latin</option>
|
||||
<option value="lv">Latvian</option>
|
||||
<option value="lt">Lithuanian</option>
|
||||
<option value="mk">Macedonian</option>
|
||||
<option value="ms">Malay</option>
|
||||
<option value="mt">Maltese</option>
|
||||
<option value="no">Norwegian</option>
|
||||
<option value="fa">Persian</option>
|
||||
<option value="pl">Polish</option>
|
||||
<option value="pt">Portuguese</option>
|
||||
<option value="ro">Romanian</option>
|
||||
<option value="ru">Russian</option>
|
||||
<option value="sr">Serbian</option>
|
||||
<option value="sk">Slovak</option>
|
||||
<option value="sl">Slovenian</option>
|
||||
<option value="es">Spanish</option>
|
||||
<option value="sw">Swahili</option>
|
||||
<option value="sv">Swedish</option>
|
||||
<option value="ta">Tamil</option>
|
||||
<option value="te">Telugu</option>
|
||||
<option value="th">Thai</option>
|
||||
<option value="tr">Turkish</option>
|
||||
<option value="uk">Ukrainian</option>
|
||||
<option value="ur">Urdu</option>
|
||||
<option value="vi">Vietnamese</option>
|
||||
<option value="cy">Welsh</option>
|
||||
<option value="yi">Yiddish</option>
|
||||
</select>
|
||||
</td>
|
||||
<td>
|
||||
<button onclick="onProcess(false);">Transcribe</button>
|
||||
</td>
|
||||
<td>
|
||||
<button onclick="onProcess(true);">Translate</button>
|
||||
</td>
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
<br>
|
||||
|
||||
<!-- textarea with height filling the rest of the page -->
|
||||
<textarea id="output" rows="20"></textarea>
|
||||
|
||||
<br><br>
|
||||
|
||||
<div class="cell-version">
|
||||
<span>
|
||||
|
|
||||
Build time: <span class="nav-link">@GIT_DATE@</span> |
|
||||
Commit hash: <a class="nav-link" href="https://github.com/ggerganov/whisper.cpp/commit/@GIT_SHA1@">@GIT_SHA1@</a> |
|
||||
Commit subject: <span class="nav-link">@GIT_COMMIT_SUBJECT@</span> |
|
||||
<a class="nav-link" href="https://github.com/ggerganov/whisper.cpp/tree/master/examples/whisper.wasm">Source Code</a> |
|
||||
</span>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<script type="text/javascript" src="helpers.js"></script>
|
||||
<script type='text/javascript'>
|
||||
// TODO: convert audio buffer to WAV
|
||||
function setAudio(audio) {
|
||||
//if (audio) {
|
||||
// // convert to 16-bit PCM
|
||||
// var blob = new Blob([audio], { type: 'audio/wav' });
|
||||
// var url = URL.createObjectURL(blob);
|
||||
// document.getElementById('source').src = url;
|
||||
// document.getElementById('audio').hidden = false;
|
||||
// document.getElementById('audio').loop = false;
|
||||
// document.getElementById('audio').load();
|
||||
//} else {
|
||||
// document.getElementById('audio').hidden = true;
|
||||
//}
|
||||
}
|
||||
|
||||
function changeInput(input) {
|
||||
if (input == 'file') {
|
||||
document.getElementById('input_file').style.display = 'block';
|
||||
document.getElementById('input_mic' ).style.display = 'none';
|
||||
document.getElementById('progress' ).style.display = 'none';
|
||||
} else {
|
||||
document.getElementById('input_file').style.display = 'none';
|
||||
document.getElementById('input_mic' ).style.display = 'block';
|
||||
document.getElementById('progress' ).style.display = 'block';
|
||||
}
|
||||
}
|
||||
|
||||
var Module = {
|
||||
print: printTextarea,
|
||||
printErr: printTextarea,
|
||||
setStatus: function(text) {
|
||||
printTextarea('js: ' + text);
|
||||
},
|
||||
monitorRunDependencies: function(left) {
|
||||
}
|
||||
};
|
||||
|
||||
// web audio context
|
||||
var context = null;
|
||||
|
||||
// audio data
|
||||
var audio = null;
|
||||
|
||||
// the whisper instance
|
||||
var instance = null;
|
||||
var model_whisper = '';
|
||||
|
||||
// helper function
|
||||
function convertTypedArray(src, type) {
|
||||
var buffer = new ArrayBuffer(src.byteLength);
|
||||
var baseView = new src.constructor(buffer).set(src);
|
||||
return new type(buffer);
|
||||
}
|
||||
|
||||
//
|
||||
// load model
|
||||
//
|
||||
|
||||
let dbVersion = 1
|
||||
let dbName = 'whisper.ggerganov.com';
|
||||
let indexedDB = window.indexedDB || window.mozIndexedDB || window.webkitIndexedDB || window.msIndexedDB
|
||||
|
||||
function storeFS(fname, buf) {
|
||||
// write to WASM file using FS_createDataFile
|
||||
// if the file exists, delete it
|
||||
try {
|
||||
Module.FS_unlink(fname);
|
||||
} catch (e) {
|
||||
// ignore
|
||||
}
|
||||
|
||||
Module.FS_createDataFile("/", fname, buf, true, true);
|
||||
|
||||
model_whisper = fname;
|
||||
|
||||
document.getElementById('model-whisper-status').innerHTML = 'loaded "' + model_whisper + '"!';
|
||||
|
||||
printTextarea('storeFS: stored model: ' + fname + ' size: ' + buf.length);
|
||||
}
|
||||
|
||||
function loadFile(event, fname) {
|
||||
var file = event.target.files[0] || null;
|
||||
if (file == null) {
|
||||
return;
|
||||
}
|
||||
|
||||
printTextarea("loadFile: loading model: " + file.name + ", size: " + file.size + " bytes");
|
||||
printTextarea('loadFile: please wait ...');
|
||||
|
||||
var reader = new FileReader();
|
||||
reader.onload = function(event) {
|
||||
var buf = new Uint8Array(reader.result);
|
||||
storeFS(fname, buf);
|
||||
}
|
||||
reader.readAsArrayBuffer(file);
|
||||
|
||||
document.getElementById('fetch-whisper-tiny-en').style.display = 'none';
|
||||
document.getElementById('fetch-whisper-base-en').style.display = 'none';
|
||||
document.getElementById('fetch-whisper-tiny' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-base' ).style.display = 'none';
|
||||
document.getElementById('whisper-file' ).style.display = 'none';
|
||||
document.getElementById('model-whisper-status' ).innerHTML = 'loaded model: ' + file.name;
|
||||
}
|
||||
|
||||
function loadWhisper(model) {
|
||||
let urls = {
|
||||
'tiny.en': 'https://whisper.ggerganov.com/ggml-model-whisper-tiny.en.bin',
|
||||
'tiny': 'https://whisper.ggerganov.com/ggml-model-whisper-tiny.bin',
|
||||
'base.en': 'https://whisper.ggerganov.com/ggml-model-whisper-base.en.bin',
|
||||
'base': 'https://whisper.ggerganov.com/ggml-model-whisper-base.bin',
|
||||
};
|
||||
|
||||
let sizes = {
|
||||
'tiny.en': 75,
|
||||
'tiny': 75,
|
||||
'base.en': 142,
|
||||
'base': 142,
|
||||
};
|
||||
|
||||
let url = urls[model];
|
||||
let dst = 'whisper.bin';
|
||||
let size_mb = sizes[model];
|
||||
|
||||
model_whisper = model;
|
||||
|
||||
document.getElementById('fetch-whisper-tiny-en').style.display = 'none';
|
||||
document.getElementById('fetch-whisper-base-en').style.display = 'none';
|
||||
document.getElementById('fetch-whisper-tiny' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-base' ).style.display = 'none';
|
||||
document.getElementById('whisper-file' ).style.display = 'none';
|
||||
document.getElementById('model-whisper-status' ).innerHTML = 'loading model: ' + model;
|
||||
|
||||
cbProgress = function(p) {
|
||||
let el = document.getElementById('fetch-whisper-progress');
|
||||
el.innerHTML = Math.round(100*p) + '%';
|
||||
};
|
||||
|
||||
cbCancel = function() {
|
||||
var el;
|
||||
el = document.getElementById('fetch-whisper-tiny-en'); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-base-en'); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-tiny' ); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-base' ); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('whisper-file' ); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('model-whisper-status' ); if (el) el.innerHTML = '';
|
||||
};
|
||||
|
||||
loadRemote(url, dst, size_mb, cbProgress, storeFS, cbCancel, printTextarea);
|
||||
}
|
||||
|
||||
//
|
||||
// audio file
|
||||
//
|
||||
|
||||
const kMaxAudio_s = 120;
|
||||
const kSampleRate = 16000;
|
||||
|
||||
window.AudioContext = window.AudioContext || window.webkitAudioContext;
|
||||
window.OfflineAudioContext = window.OfflineAudioContext || window.webkitOfflineAudioContext;
|
||||
|
||||
function loadAudio(event) {
|
||||
if (!context) {
|
||||
context = new AudioContext({
|
||||
sampleRate: kSampleRate,
|
||||
channelCount: 1,
|
||||
echoCancellation: false,
|
||||
autoGainControl: true,
|
||||
noiseSuppression: true,
|
||||
});
|
||||
}
|
||||
|
||||
var file = event.target.files[0] || null;
|
||||
if (file == null) {
|
||||
return;
|
||||
}
|
||||
|
||||
printTextarea('js: loading audio: ' + file.name + ', size: ' + file.size + ' bytes');
|
||||
printTextarea('js: please wait ...');
|
||||
|
||||
var reader = new FileReader();
|
||||
reader.onload = function(event) {
|
||||
var buf = new Uint8Array(reader.result);
|
||||
|
||||
context.decodeAudioData(buf.buffer, function(audioBuffer) {
|
||||
var offlineContext = new OfflineAudioContext(audioBuffer.numberOfChannels, audioBuffer.length, audioBuffer.sampleRate);
|
||||
var source = offlineContext.createBufferSource();
|
||||
source.buffer = audioBuffer;
|
||||
source.connect(offlineContext.destination);
|
||||
source.start(0);
|
||||
|
||||
offlineContext.startRendering().then(function(renderedBuffer) {
|
||||
audio = renderedBuffer.getChannelData(0);
|
||||
printTextarea('js: audio loaded, size: ' + audio.length);
|
||||
|
||||
// truncate to first 30 seconds
|
||||
if (audio.length > kMaxAudio_s*kSampleRate) {
|
||||
audio = audio.slice(0, kMaxAudio_s*kSampleRate);
|
||||
printTextarea('js: truncated audio to first ' + kMaxAudio_s + ' seconds');
|
||||
}
|
||||
|
||||
setAudio(audio);
|
||||
});
|
||||
}, function(e) {
|
||||
printTextarea('js: error decoding audio: ' + e);
|
||||
audio = null;
|
||||
setAudio(audio);
|
||||
});
|
||||
}
|
||||
reader.readAsArrayBuffer(file);
|
||||
}
|
||||
|
||||
//
|
||||
// microphone
|
||||
//
|
||||
|
||||
var mediaRecorder = null;
|
||||
var doRecording = false;
|
||||
var startTime = 0;
|
||||
|
||||
function stopRecording() {
|
||||
doRecording = false;
|
||||
}
|
||||
|
||||
// record up to kMaxAudio_s seconds of audio from the microphone
|
||||
// check if doRecording is false every 1000 ms and stop recording if so
|
||||
// update progress information
|
||||
function startRecording() {
|
||||
if (!context) {
|
||||
context = new AudioContext({
|
||||
sampleRate: kSampleRate,
|
||||
channelCount: 1,
|
||||
echoCancellation: false,
|
||||
autoGainControl: true,
|
||||
noiseSuppression: true,
|
||||
});
|
||||
}
|
||||
|
||||
document.getElementById('start').disabled = true;
|
||||
document.getElementById('stop').disabled = false;
|
||||
|
||||
document.getElementById('progress-bar').style.width = '0%';
|
||||
document.getElementById('progress-text').innerHTML = '0%';
|
||||
|
||||
doRecording = true;
|
||||
startTime = Date.now();
|
||||
|
||||
var chunks = [];
|
||||
var stream = null;
|
||||
|
||||
navigator.mediaDevices.getUserMedia({audio: true, video: false})
|
||||
.then(function(s) {
|
||||
stream = s;
|
||||
mediaRecorder = new MediaRecorder(stream);
|
||||
mediaRecorder.ondataavailable = function(e) {
|
||||
chunks.push(e.data);
|
||||
};
|
||||
mediaRecorder.onstop = function(e) {
|
||||
var blob = new Blob(chunks, { 'type' : 'audio/ogg; codecs=opus' });
|
||||
chunks = [];
|
||||
|
||||
document.getElementById('start').disabled = false;
|
||||
document.getElementById('stop').disabled = true;
|
||||
|
||||
var reader = new FileReader();
|
||||
reader.onload = function(event) {
|
||||
var buf = new Uint8Array(reader.result);
|
||||
|
||||
context.decodeAudioData(buf.buffer, function(audioBuffer) {
|
||||
var offlineContext = new OfflineAudioContext(audioBuffer.numberOfChannels, audioBuffer.length, audioBuffer.sampleRate);
|
||||
var source = offlineContext.createBufferSource();
|
||||
source.buffer = audioBuffer;
|
||||
source.connect(offlineContext.destination);
|
||||
source.start(0);
|
||||
|
||||
offlineContext.startRendering().then(function(renderedBuffer) {
|
||||
audio = renderedBuffer.getChannelData(0);
|
||||
printTextarea('js: audio recorded, size: ' + audio.length);
|
||||
|
||||
// truncate to first 30 seconds
|
||||
if (audio.length > kMaxAudio_s*kSampleRate) {
|
||||
audio = audio.slice(0, kMaxAudio_s*kSampleRate);
|
||||
printTextarea('js: truncated audio to first ' + kMaxAudio_s + ' seconds');
|
||||
}
|
||||
setAudio(audio);
|
||||
});
|
||||
}, function(e) {
|
||||
printTextarea('js: error decoding audio: ' + e);
|
||||
audio = null;
|
||||
setAudio(audio);
|
||||
});
|
||||
}
|
||||
|
||||
reader.readAsArrayBuffer(blob);
|
||||
};
|
||||
mediaRecorder.start();
|
||||
})
|
||||
.catch(function(err) {
|
||||
printTextarea('js: error getting audio stream: ' + err);
|
||||
});
|
||||
|
||||
var interval = setInterval(function() {
|
||||
if (!doRecording) {
|
||||
clearInterval(interval);
|
||||
mediaRecorder.stop();
|
||||
stream.getTracks().forEach(function(track) {
|
||||
track.stop();
|
||||
});
|
||||
}
|
||||
|
||||
document.getElementById('progress-bar').style.width = (100*(Date.now() - startTime)/1000/kMaxAudio_s) + '%';
|
||||
document.getElementById('progress-text').innerHTML = (100*(Date.now() - startTime)/1000/kMaxAudio_s).toFixed(0) + '%';
|
||||
}, 1000);
|
||||
|
||||
printTextarea('js: recording ...');
|
||||
|
||||
setTimeout(function() {
|
||||
if (doRecording) {
|
||||
printTextarea('js: recording stopped after ' + kMaxAudio_s + ' seconds');
|
||||
stopRecording();
|
||||
}
|
||||
}, kMaxAudio_s*1000);
|
||||
}
|
||||
|
||||
//
|
||||
// transcribe
|
||||
//
|
||||
|
||||
function onProcess(translate) {
|
||||
if (!instance) {
|
||||
instance = Module.init('whisper.bin');
|
||||
|
||||
if (instance) {
|
||||
printTextarea("js: whisper initialized, instance: " + instance);
|
||||
document.getElementById('model').innerHTML = 'Model loaded: ' + model_whisper;
|
||||
}
|
||||
}
|
||||
|
||||
if (!instance) {
|
||||
printTextarea("js: failed to initialize whisper");
|
||||
return;
|
||||
}
|
||||
|
||||
if (!audio) {
|
||||
printTextarea("js: no audio data");
|
||||
return;
|
||||
}
|
||||
|
||||
if (instance) {
|
||||
printTextarea('');
|
||||
printTextarea('js: processing - this might take a while ...');
|
||||
printTextarea('');
|
||||
|
||||
setTimeout(function() {
|
||||
var ret = Module.full_default(instance, audio, document.getElementById('language').value, translate);
|
||||
console.log('js: full_default returned: ' + ret);
|
||||
if (ret) {
|
||||
printTextarea("js: whisper returned: " + ret);
|
||||
}
|
||||
}, 100);
|
||||
}
|
||||
}
|
||||
</script>
|
||||
<script type="text/javascript" src="main.js"></script>
|
||||
</body>
|
||||
</html>
|
@ -1,147 +0,0 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
# Small shell script to more easily automatically download and transcribe live stream VODs.
|
||||
# This uses YT-DLP, ffmpeg and the CPP version of Whisper: https://github.com/ggerganov/whisper.cpp
|
||||
# Use `./examples/yt-wsp.sh help` to print help info.
|
||||
#
|
||||
# Sample usage:
|
||||
#
|
||||
# git clone https://github.com/ggerganov/whisper.cpp
|
||||
# cd whisper.cpp
|
||||
# make
|
||||
# ./examples/yt-wsp.sh https://www.youtube.com/watch?v=1234567890
|
||||
#
|
||||
|
||||
# MIT License
|
||||
|
||||
# Copyright (c) 2022 Daniils Petrovs
|
||||
|
||||
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
# of this software and associated documentation files (the "Software"), to deal
|
||||
# in the Software without restriction, including without limitation the rights
|
||||
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
# copies of the Software, and to permit persons to whom the Software is
|
||||
# furnished to do so, subject to the following conditions:
|
||||
|
||||
# The above copyright notice and this permission notice shall be included in all
|
||||
# copies or substantial portions of the Software.
|
||||
|
||||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
# SOFTWARE.
|
||||
|
||||
set -Eeuo pipefail
|
||||
|
||||
# You can find how to download models in the OG repo: https://github.com/ggerganov/whisper.cpp/#usage
|
||||
MODEL_PATH="${MODEL_PATH:-models/ggml-base.en.bin}" # Set to a multilingual model if you want to translate from foreign lang to en
|
||||
WHISPER_EXECUTABLE="${WHISPER_EXECUTABLE:-whisper}" # Where to find the whisper.cpp executable
|
||||
WHISPER_LANG="${WHISPER_LANG:-en}" # Set to desired lang to translate from
|
||||
|
||||
msg() {
|
||||
echo >&2 -e "${1-}"
|
||||
}
|
||||
|
||||
cleanup() {
|
||||
msg "Cleaning up..."
|
||||
rm -rf "${temp_dir}" "vod-resampled.wav" "vod-resampled.wav.srt"
|
||||
}
|
||||
|
||||
print_help() {
|
||||
echo "Usage: ./examples/yt-wsp.sh <video_url>"
|
||||
echo "See configurable env variables in the script"
|
||||
echo "This will produce an MP4 muxed file called res.mp4 in the working directory"
|
||||
echo "Requirements: ffmpeg yt-dlp whisper"
|
||||
echo "Whisper needs to be built into the main binary with make, then you can rename it to something like 'whisper' and add it to your PATH for convenience."
|
||||
echo "E.g. in the root of Whisper.cpp, run: 'make && cp ./main /usr/local/bin/whisper'"
|
||||
}
|
||||
|
||||
check_requirements() {
|
||||
if ! command -v ffmpeg &>/dev/null; then
|
||||
echo "ffmpeg is required (https://ffmpeg.org)."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if ! command -v yt-dlp &>/dev/null; then
|
||||
echo "yt-dlp is required (https://github.com/yt-dlp/yt-dlp)."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if ! command -v "$WHISPER_EXECUTABLE" &>/dev/null; then
|
||||
WHISPER_EXECUTABLE="./main"
|
||||
if ! command -v "$WHISPER_EXECUTABLE" &>/dev/null; then
|
||||
echo "Whisper is required (https://github.com/ggerganov/whisper.cpp):"
|
||||
echo "Sample usage:"
|
||||
echo ""
|
||||
echo " git clone https://github.com/ggerganov/whisper.cpp"
|
||||
echo " cd whisper.cpp"
|
||||
echo " make"
|
||||
echo " ./examples/yt-wsp.sh https://www.youtube.com/watch?v=1234567890"
|
||||
echo ""
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
}
|
||||
|
||||
if [[ $# -lt 1 ]]; then
|
||||
print_help
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [[ "$1" == "help" ]]; then
|
||||
print_help
|
||||
exit 0
|
||||
fi
|
||||
|
||||
temp_dir="tmp"
|
||||
source_url="$1"
|
||||
|
||||
check_requirements
|
||||
|
||||
msg "Downloading VOD..."
|
||||
|
||||
# Optionally add --cookies-from-browser BROWSER[+KEYRING][:PROFILE][::CONTAINER] for members only VODs
|
||||
yt-dlp \
|
||||
-f "bestvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best" \
|
||||
--embed-thumbnail \
|
||||
--embed-chapters \
|
||||
--xattrs \
|
||||
"${source_url}" -o "${temp_dir}/vod.mp4"
|
||||
|
||||
msg "Extracting audio and resampling..."
|
||||
|
||||
ffmpeg -i "${temp_dir}/vod.mp4" \
|
||||
-hide_banner \
|
||||
-loglevel error \
|
||||
-ar 16000 \
|
||||
-ac 1 \
|
||||
-c:a \
|
||||
pcm_s16le -y "vod-resampled.wav"
|
||||
|
||||
msg "Transcribing to subtitle file..."
|
||||
msg "Whisper specified at: ${WHISPER_EXECUTABLE}"
|
||||
|
||||
$WHISPER_EXECUTABLE \
|
||||
-m "${MODEL_PATH}" \
|
||||
-l "${WHISPER_LANG}" \
|
||||
-f "vod-resampled.wav" \
|
||||
-t 8 \
|
||||
-osrt \
|
||||
--translate
|
||||
|
||||
msg "Embedding subtitle track..."
|
||||
|
||||
ffmpeg -i "${temp_dir}/vod.mp4" \
|
||||
-hide_banner \
|
||||
-loglevel error \
|
||||
-i "vod-resampled.wav.srt" \
|
||||
-c copy \
|
||||
-c:s mov_text \
|
||||
-y res.mp4
|
||||
|
||||
cleanup
|
||||
|
||||
msg "Done! Your finished file is ready: res.mp4"
|
@ -1,59 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Helper script to run the bench tool on all models and print the results in share-able format
|
||||
|
||||
printf "Usage: ./bench.sh [n_threads]\n"
|
||||
|
||||
if [ -z "$1" ]; then
|
||||
n_threads=4
|
||||
else
|
||||
n_threads=$1
|
||||
fi
|
||||
|
||||
models=( "tiny" "base" "small" "medium" "large" )
|
||||
|
||||
printf "\n"
|
||||
printf "Running benchmark for all models\n"
|
||||
printf "This can take a while!\n"
|
||||
printf "\n"
|
||||
|
||||
printf "| CPU | OS | Config | Model | Th | Load | Enc. | Commit |\n"
|
||||
printf "| --- | -- | ------ | ----- | -- | ---- | ---- | ------ |\n"
|
||||
|
||||
for model in "${models[@]}"; do
|
||||
# run once to heat-up the cache
|
||||
./bench -m ./models/ggml-$model.bin -t $n_threads 2>/dev/null 1>/dev/null
|
||||
|
||||
# actual run
|
||||
# store stderr output in a variable in order to parse it later
|
||||
output=$(./bench -m ./models/ggml-$model.bin -t $n_threads 2>&1)
|
||||
|
||||
# parse the output:
|
||||
load_time=$(echo "$output" | grep "load time" | awk '{print $5}')
|
||||
encode_time=$(echo "$output" | grep "encode time" | awk '{print $5}')
|
||||
system_info=$(echo "$output" | grep "system_info")
|
||||
n_threads=$(echo "$output" | grep "system_info" | awk '{print $4}')
|
||||
|
||||
# floor to milliseconds
|
||||
load_time=${load_time%.*}
|
||||
encode_time=${encode_time%.*}
|
||||
|
||||
config=""
|
||||
|
||||
if [[ $system_info == *"AVX2 = 1"* ]]; then
|
||||
config="$config AVX2"
|
||||
fi
|
||||
|
||||
if [[ $system_info == *"NEON = 1"* ]]; then
|
||||
config="$config NEON"
|
||||
fi
|
||||
|
||||
if [[ $system_info == *"BLAS = 1"* ]]; then
|
||||
config="$config BLAS"
|
||||
fi
|
||||
|
||||
commit=$(git rev-parse --short HEAD)
|
||||
|
||||
printf "| <todo> | <todo> | $config | $model | $n_threads | $load_time | $encode_time | $commit |\n"
|
||||
done
|
||||
|
@ -1,8 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
models=( "tiny.en" "tiny" "base.en" "base" "small.en" "small" "medium.en" "medium" "large-v1" "large" )
|
||||
|
||||
for model in "${models[@]}"; do
|
||||
python3 models/convert-pt-to-ggml.py ~/.cache/whisper/$model.pt ../whisper models/
|
||||
mv -v models/ggml-model.bin models/ggml-$model.bin
|
||||
done
|
@ -1,31 +0,0 @@
|
||||
#!/bin/bash
|
||||
#
|
||||
# This is a helper script to deploy all WebAssembly examples to my node
|
||||
# Run from the build directory:
|
||||
#
|
||||
# cd build-em
|
||||
# ../extra/deploy-wasm.sh
|
||||
#
|
||||
|
||||
# check if emcmake is available
|
||||
if ! command -v emcmake &> /dev/null
|
||||
then
|
||||
echo "Error: emscripten environment is not set up"
|
||||
exit
|
||||
fi
|
||||
|
||||
emcmake cmake .. && make -j
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "Error: build failed"
|
||||
exit
|
||||
fi
|
||||
|
||||
# copy all wasm files to the node
|
||||
scp bin/whisper.wasm/* root@linode0:/var/www/html/whisper/ && scp bin/libmain.worker.js root@linode0:/var/www/html/whisper/
|
||||
scp bin/stream.wasm/* root@linode0:/var/www/html/whisper/stream/ && scp bin/libstream.worker.js root@linode0:/var/www/html/whisper/stream/
|
||||
scp bin/command.wasm/* root@linode0:/var/www/html/whisper/command/ && scp bin/libcommand.worker.js root@linode0:/var/www/html/whisper/command/
|
||||
scp bin/talk.wasm/* root@linode0:/var/www/html/whisper/talk/ && scp bin/libtalk.worker.js root@linode0:/var/www/html/whisper/talk/
|
||||
scp bin/bench.wasm/* root@linode0:/var/www/html/whisper/bench/ && scp bin/libbench.worker.js root@linode0:/var/www/html/whisper/bench/
|
||||
|
||||
echo "Done"
|
||||
exit
|
@ -1,7 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Compute the SHA1 of all model files in ./models/ggml-*.bin
|
||||
|
||||
for f in ./models/ggml-*.bin; do
|
||||
shasum "$f" -a 1
|
||||
done
|
189
ggml.h
189
ggml.h
@ -1,174 +1,5 @@
|
||||
#pragma once
|
||||
|
||||
//
|
||||
// GGML Tensor Library
|
||||
//
|
||||
// This documentation is still a work in progress.
|
||||
// If you wish some specific topics to be covered, feel free to drop a comment:
|
||||
//
|
||||
// https://github.com/ggerganov/whisper.cpp/issues/40
|
||||
//
|
||||
// ## Overview
|
||||
//
|
||||
// This library implements:
|
||||
//
|
||||
// - a set of tensor operations
|
||||
// - automatic differentiation
|
||||
// - basic optimization algorithms
|
||||
//
|
||||
// The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
|
||||
// but is not limited to, the following:
|
||||
//
|
||||
// - linear regression
|
||||
// - support vector machines
|
||||
// - neural networks
|
||||
//
|
||||
// The library allows the user to define a certain function using the available tensor operations. This function
|
||||
// definition is represented internally via a computation graph. Each tensor operation in the function definition
|
||||
// corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
|
||||
// function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
|
||||
// using one of the available optimization algorithms.
|
||||
//
|
||||
// For example, here we define the function: f(x) = a*x^2 + b
|
||||
//
|
||||
// {
|
||||
// struct ggml_init_params params = {
|
||||
// .mem_size = 16*1024*1024,
|
||||
// .mem_buffer = NULL,
|
||||
// };
|
||||
//
|
||||
// // memory allocation happens here
|
||||
// struct ggml_context * ctx = ggml_init(params);
|
||||
//
|
||||
// struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
|
||||
//
|
||||
// ggml_set_param(ctx, x); // x is an input variable
|
||||
//
|
||||
// struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
|
||||
// struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
|
||||
// struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
|
||||
// struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
|
||||
//
|
||||
// ...
|
||||
// }
|
||||
//
|
||||
// Notice that the function definition above does not involve any actual computation. The computation is performed only
|
||||
// when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
|
||||
//
|
||||
// {
|
||||
// ...
|
||||
//
|
||||
// struct ggml_cgraph gf = ggml_build_forward(f);
|
||||
//
|
||||
// // set the input variable and parameter values
|
||||
// ggml_set_f32(x, 2.0f);
|
||||
// ggml_set_f32(a, 3.0f);
|
||||
// ggml_set_f32(b, 4.0f);
|
||||
//
|
||||
// ggml_graph_compute(ctx0, &gf);
|
||||
//
|
||||
// printf("f = %f\n", ggml_get_f32_1d(f, 0));
|
||||
//
|
||||
// ...
|
||||
// }
|
||||
//
|
||||
// The actual computation is performed in the ggml_graph_compute() function.
|
||||
//
|
||||
// The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
|
||||
// ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
|
||||
// in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
|
||||
// and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
|
||||
// actually needed.
|
||||
//
|
||||
// The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
|
||||
// differentiation and optimization algorithms.
|
||||
//
|
||||
// The described approach allows to define the function graph once and then compute its forward or backward graphs
|
||||
// multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
|
||||
// the user can avoid the memory allocation overhead at runtime.
|
||||
//
|
||||
// The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
|
||||
// citizens, but in theory the library can be extended to support FP8 and integer data types.
|
||||
//
|
||||
// Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
|
||||
// and binary operations. Most of the available operations fall into one of these two categories. With time, it became
|
||||
// clear that the library needs to support more complex operations. The way to support these operations is not clear
|
||||
// yet, but a few examples are demonstrated in the following operations:
|
||||
//
|
||||
// - ggml_permute()
|
||||
// - ggml_conv_1d_1s()
|
||||
// - ggml_conv_1d_2s()
|
||||
//
|
||||
// For each tensor operator, the library implements a forward and backward computation function. The forward function
|
||||
// computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
|
||||
// input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
|
||||
// calculus class, or watch the following video:
|
||||
//
|
||||
// What is Automatic Differentiation?
|
||||
// https://www.youtube.com/watch?v=wG_nF1awSSY
|
||||
//
|
||||
//
|
||||
// ## Tensor data (struct ggml_tensor)
|
||||
//
|
||||
// The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
|
||||
// the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
|
||||
// pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
|
||||
//
|
||||
// {
|
||||
// struct ggml_tensor * c = ggml_add(ctx, a, b);
|
||||
//
|
||||
// assert(c->src[0] == a);
|
||||
// assert(c->src[1] == b);
|
||||
// }
|
||||
//
|
||||
// The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
|
||||
// number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
|
||||
// to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
|
||||
// permutation. All tensor operations have to take the stride into account and not assume that the tensor is
|
||||
// contiguous in memory.
|
||||
//
|
||||
// The data of the tensor is accessed via the "data" pointer. For example:
|
||||
//
|
||||
// {
|
||||
// struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 2, 3);
|
||||
//
|
||||
// // a[1, 2] = 1.0f;
|
||||
// *(float *) ((char *) a->data + 2*a->nb[1] + 1*a->nb[0]) = 1.0f;
|
||||
//
|
||||
// // a[2, 0] = 2.0f;
|
||||
// *(float *) ((char *) a->data + 0*a->nb[1] + 2*a->nb[0]) = 2.0f;
|
||||
//
|
||||
// ...
|
||||
// }
|
||||
//
|
||||
// Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
|
||||
//
|
||||
// ## The matrix multiplication operator (ggml_mul_mat)
|
||||
//
|
||||
// TODO
|
||||
//
|
||||
//
|
||||
// ## Multi-threading
|
||||
//
|
||||
// TODO
|
||||
//
|
||||
//
|
||||
// ## Overview of ggml.c
|
||||
//
|
||||
// TODO
|
||||
//
|
||||
//
|
||||
// ## SIMD optimizations
|
||||
//
|
||||
// TODO
|
||||
//
|
||||
//
|
||||
// ## Debugging ggml
|
||||
//
|
||||
// TODO
|
||||
//
|
||||
//
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
@ -180,7 +11,7 @@ extern "C" {
|
||||
#define GGML_MAX_DIMS 4
|
||||
#define GGML_MAX_NODES 4096
|
||||
#define GGML_MAX_PARAMS 16
|
||||
#define GGML_MAX_CONTEXTS 64
|
||||
#define GGML_MAX_CONTEXTS 16
|
||||
#define GGML_MAX_OPT 4
|
||||
|
||||
#ifdef __ARM_NEON
|
||||
@ -190,8 +21,7 @@ typedef __fp16 ggml_fp16_t;
|
||||
typedef uint16_t ggml_fp16_t;
|
||||
#endif
|
||||
|
||||
// convert FP16 <-> FP32
|
||||
float ggml_fp16_to_fp32(ggml_fp16_t x);
|
||||
float ggml_fp16_to_fp32(ggml_fp16_t x);
|
||||
ggml_fp16_t ggml_fp32_to_fp16(float x);
|
||||
|
||||
struct ggml_object;
|
||||
@ -206,7 +36,6 @@ enum ggml_type {
|
||||
GGML_TYPE_COUNT,
|
||||
};
|
||||
|
||||
// available tensor operations:
|
||||
enum ggml_op {
|
||||
GGML_OP_NONE = 0,
|
||||
|
||||
@ -307,7 +136,6 @@ struct ggml_init_params {
|
||||
void * mem_buffer; // if NULL, memory will be allocated internally
|
||||
};
|
||||
|
||||
void ggml_time_init(void); // call this once at the beginning of the program
|
||||
int64_t ggml_time_ms(void);
|
||||
int64_t ggml_time_us(void);
|
||||
int64_t ggml_cycles(void);
|
||||
@ -719,19 +547,6 @@ enum ggml_opt_result ggml_opt(
|
||||
struct ggml_opt_params params,
|
||||
struct ggml_tensor * f);
|
||||
|
||||
//
|
||||
// system info
|
||||
//
|
||||
|
||||
int ggml_cpu_has_avx(void);
|
||||
int ggml_cpu_has_avx2(void);
|
||||
int ggml_cpu_has_avx512(void);
|
||||
int ggml_cpu_has_neon(void);
|
||||
int ggml_cpu_has_f16c(void);
|
||||
int ggml_cpu_has_fp16_va(void);
|
||||
int ggml_cpu_has_wasm_simd(void);
|
||||
int ggml_cpu_has_blas(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
243
main.cpp
Normal file
243
main.cpp
Normal file
@ -0,0 +1,243 @@
|
||||
#include "whisper.h"
|
||||
|
||||
// third-party utilities
|
||||
// use your favorite implementations
|
||||
#define DR_WAV_IMPLEMENTATION
|
||||
#include "dr_wav.h"
|
||||
|
||||
#include <cstdio>
|
||||
#include <string>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
|
||||
// 500 -> 00:05.000
|
||||
// 6000 -> 01:00.000
|
||||
std::string to_timestamp(int64_t t) {
|
||||
int64_t sec = t/100;
|
||||
int64_t msec = t - sec*100;
|
||||
int64_t min = sec/60;
|
||||
sec = sec - min*60;
|
||||
|
||||
char buf[32];
|
||||
snprintf(buf, sizeof(buf), "%02d:%02d.%03d", (int) min, (int) sec, (int) msec);
|
||||
|
||||
return std::string(buf);
|
||||
}
|
||||
|
||||
// command-line parameters
|
||||
struct whisper_params {
|
||||
int32_t seed = -1; // RNG seed, not used currently
|
||||
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
||||
int32_t offset_ms = 0;
|
||||
|
||||
bool verbose = false;
|
||||
bool translate = false;
|
||||
bool print_special_tokens = false;
|
||||
bool no_timestamps = false;
|
||||
|
||||
std::string language = "en";
|
||||
std::string model = "models/ggml-base.en.bin";
|
||||
|
||||
std::vector<std::string> fname_inp = {};
|
||||
};
|
||||
|
||||
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
|
||||
|
||||
bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
for (int i = 1; i < argc; i++) {
|
||||
std::string arg = argv[i];
|
||||
|
||||
if (arg[0] != '-') {
|
||||
params.fname_inp.push_back(arg);
|
||||
continue;
|
||||
}
|
||||
|
||||
if (arg == "-s" || arg == "--seed") {
|
||||
params.seed = std::stoi(argv[++i]);
|
||||
} else if (arg == "-t" || arg == "--threads") {
|
||||
params.n_threads = std::stoi(argv[++i]);
|
||||
} else if (arg == "-o" || arg == "--offset") {
|
||||
params.offset_ms = std::stoi(argv[++i]);
|
||||
} else if (arg == "-v" || arg == "--verbose") {
|
||||
params.verbose = true;
|
||||
} else if (arg == "--translate") {
|
||||
params.translate = true;
|
||||
} else if (arg == "-l" || arg == "--language") {
|
||||
params.language = argv[++i];
|
||||
if (whisper_lang_id(params.language.c_str()) == -1) {
|
||||
fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str());
|
||||
whisper_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
} else if (arg == "-ps" || arg == "--print_special") {
|
||||
params.print_special_tokens = true;
|
||||
} else if (arg == "-nt" || arg == "--no_timestamps") {
|
||||
params.no_timestamps = true;
|
||||
} else if (arg == "-m" || arg == "--model") {
|
||||
params.model = argv[++i];
|
||||
} else if (arg == "-f" || arg == "--file") {
|
||||
params.fname_inp.push_back(argv[++i]);
|
||||
} else if (arg == "-h" || arg == "--help") {
|
||||
whisper_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
} else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
whisper_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void whisper_print_usage(int argc, char ** argv, const whisper_params & params) {
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "usage: %s [options] file0.wav file1.wav ...\n", argv[0]);
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "options:\n");
|
||||
fprintf(stderr, " -h, --help show this help message and exit\n");
|
||||
fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n");
|
||||
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
|
||||
fprintf(stderr, " -o N, --offset N offset in milliseconds (default: %d)\n", params.offset_ms);
|
||||
fprintf(stderr, " -v, --verbose verbose output\n");
|
||||
fprintf(stderr, " --translate translate from source language to english\n");
|
||||
fprintf(stderr, " -ps, --print_special print special tokens\n");
|
||||
fprintf(stderr, " -nt, --no_timestamps do not print timestamps\n");
|
||||
fprintf(stderr, " -l LANG, --language LANG spoken language (default: %s)\n", params.language.c_str());
|
||||
fprintf(stderr, " -m FNAME, --model FNAME model path (default: %s)\n", params.model.c_str());
|
||||
fprintf(stderr, " -f FNAME, --file FNAME input WAV file path\n");
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
whisper_params params;
|
||||
|
||||
if (whisper_params_parse(argc, argv, params) == false) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (params.seed < 0) {
|
||||
params.seed = time(NULL);
|
||||
}
|
||||
|
||||
if (params.fname_inp.empty()) {
|
||||
fprintf(stderr, "error: no input files specified\n");
|
||||
whisper_print_usage(argc, argv, params);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// whisper init
|
||||
|
||||
struct whisper_context * ctx = whisper_init(params.model.c_str());
|
||||
|
||||
for (int f = 0; f < (int) params.fname_inp.size(); ++f) {
|
||||
const auto fname_inp = params.fname_inp[f];
|
||||
|
||||
// WAV input
|
||||
std::vector<float> pcmf32;
|
||||
{
|
||||
drwav wav;
|
||||
if (!drwav_init_file(&wav, fname_inp.c_str(), NULL)) {
|
||||
fprintf(stderr, "%s: failed to open WAV file '%s' - check your input\n", argv[0], fname_inp.c_str());
|
||||
whisper_print_usage(argc, argv, {});
|
||||
return 2;
|
||||
}
|
||||
|
||||
if (wav.channels != 1 && wav.channels != 2) {
|
||||
fprintf(stderr, "%s: WAV file '%s' must be mono or stereo\n", argv[0], fname_inp.c_str());
|
||||
return 3;
|
||||
}
|
||||
|
||||
if (wav.sampleRate != WHISPER_SAMPLE_RATE) {
|
||||
fprintf(stderr, "%s: WAV file '%s' must be 16 kHz\n", argv[0], fname_inp.c_str());
|
||||
return 4;
|
||||
}
|
||||
|
||||
if (wav.bitsPerSample != 16) {
|
||||
fprintf(stderr, "%s: WAV file '%s' must be 16-bit\n", argv[0], fname_inp.c_str());
|
||||
return 5;
|
||||
}
|
||||
|
||||
int n = wav.totalPCMFrameCount;
|
||||
|
||||
std::vector<int16_t> pcm16;
|
||||
pcm16.resize(n*wav.channels);
|
||||
drwav_read_pcm_frames_s16(&wav, n, pcm16.data());
|
||||
drwav_uninit(&wav);
|
||||
|
||||
// convert to mono, float
|
||||
pcmf32.resize(n);
|
||||
if (wav.channels == 1) {
|
||||
for (int i = 0; i < n; i++) {
|
||||
pcmf32[i] = float(pcm16[i])/32768.0f;
|
||||
}
|
||||
} else {
|
||||
for (int i = 0; i < n; i++) {
|
||||
pcmf32[i] = float(pcm16[2*i] + pcm16[2*i + 1])/65536.0f;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// print some info about the processing
|
||||
{
|
||||
printf("\n");
|
||||
if (!whisper_is_multilingual(ctx)) {
|
||||
if (params.language != "en" || params.translate) {
|
||||
params.language = "en";
|
||||
params.translate = false;
|
||||
printf("%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__);
|
||||
}
|
||||
}
|
||||
printf("%s: processing '%s' (%d samples, %.1f sec), %d threads, lang = %s, task = %s, timestamps = %d ...\n",
|
||||
__func__, fname_inp.c_str(), int(pcmf32.size()), float(pcmf32.size())/WHISPER_SAMPLE_RATE, params.n_threads,
|
||||
params.language.c_str(),
|
||||
params.translate ? "translate" : "transcribe",
|
||||
params.no_timestamps ? 0 : 1);
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
// run the inference
|
||||
{
|
||||
whisper_full_params wparams = whisper_full_default_params(WHISPER_DECODE_GREEDY);
|
||||
|
||||
wparams.print_realtime = true;
|
||||
wparams.print_progress = false;
|
||||
wparams.print_timestamps = !params.no_timestamps;
|
||||
wparams.print_special_tokens = params.print_special_tokens;
|
||||
wparams.translate = params.translate;
|
||||
wparams.language = params.language.c_str();
|
||||
wparams.n_threads = params.n_threads;
|
||||
wparams.offset_ms = params.offset_ms;
|
||||
|
||||
if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) {
|
||||
fprintf(stderr, "%s: failed to process audio\n", argv[0]);
|
||||
return 6;
|
||||
}
|
||||
|
||||
// print result;
|
||||
if (!wparams.print_realtime) {
|
||||
printf("\n");
|
||||
|
||||
const int n_segments = whisper_full_n_segments(ctx);
|
||||
for (int i = 0; i < n_segments; ++i) {
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
|
||||
if (params.no_timestamps) {
|
||||
printf ("%s", text);
|
||||
fflush(stdout);
|
||||
} else {
|
||||
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
|
||||
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
|
||||
|
||||
printf ("[%s --> %s] %s\n", to_timestamp(t0).c_str(), to_timestamp(t1).c_str(), text);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
whisper_print_timings(ctx);
|
||||
whisper_free(ctx);
|
||||
|
||||
return 0;
|
||||
}
|
@ -1,20 +1,17 @@
|
||||
## Whisper model files in custom ggml format
|
||||
|
||||
The [original Whisper PyTorch models provided by OpenAI](https://github.com/openai/whisper/blob/main/whisper/__init__.py#L17-L27)
|
||||
have been converted to custom `ggml` format in order to be able to load them in C/C++. The conversion has been performed
|
||||
using the [convert-pt-to-ggml.py](convert-pt-to-ggml.py) script. You can either obtain the original models and generate
|
||||
the `ggml` files yourself using the conversion script, or you can use the [download-ggml-model.sh](download-ggml-model.sh)
|
||||
script to download the already converted models. Currently, they are hosted on the following locations:
|
||||
|
||||
- https://huggingface.co/datasets/ggerganov/whisper.cpp
|
||||
- https://ggml.ggerganov.com
|
||||
have been converted to custom `ggml` format in order to be able to load them in C/C++. The conversion has been performed using the
|
||||
[convert-pt-to-ggml.py](convert-pt-to-ggml.py) script. You can either obtain the original models and generate the `ggml` files
|
||||
yourself using the conversion script, or you can use the [download-ggml-model.sh](download-ggml-model.sh) script to download the
|
||||
already converted models.
|
||||
|
||||
Sample usage:
|
||||
|
||||
```java
|
||||
$ ./download-ggml-model.sh base.en
|
||||
Downloading ggml model base.en ...
|
||||
models/ggml-base.en.bin 100%[=============================================>] 141.11M 5.41MB/s in 22s
|
||||
models/ggml-base.en.bin 100%[=============================================>] 141.11M 5.41MB/s in 22s
|
||||
Done! Model 'base.en' saved in 'models/ggml-base.en.bin'
|
||||
You can now use it like this:
|
||||
|
||||
@ -25,41 +22,7 @@ A third option to obtain the model files is to download them from Hugging Face:
|
||||
|
||||
https://huggingface.co/datasets/ggerganov/whisper.cpp/tree/main
|
||||
|
||||
## Available models
|
||||
|
||||
| Model | Disk | Mem | SHA |
|
||||
| --- | --- | --- | --- |
|
||||
| tiny | 75 MB | ~390 MB | `bd577a113a864445d4c299885e0cb97d4ba92b5f` |
|
||||
| tiny.en | 75 MB | ~390 MB | `c78c86eb1a8faa21b369bcd33207cc90d64ae9df` |
|
||||
| base | 142 MB | ~500 MB | `465707469ff3a37a2b9b8d8f89f2f99de7299dac` |
|
||||
| base.en | 142 MB | ~500 MB | `137c40403d78fd54d454da0f9bd998f78703390c` |
|
||||
| small | 466 MB | ~1.0 GB | `55356645c2b361a969dfd0ef2c5a50d530afd8d5` |
|
||||
| small.en | 466 MB | ~1.0 GB | `db8a495a91d927739e50b3fc1cc4c6b8f6c2d022` |
|
||||
| medium | 1.5 GB | ~2.6 GB | `fd9727b6e1217c2f614f9b698455c4ffd82463b4` |
|
||||
| medium.en | 1.5 GB | ~2.6 GB | `8c30f0e44ce9560643ebd10bbe50cd20eafd3723` |
|
||||
| large-v1 | 2.9 GB | ~4.7 GB | `b1caaf735c4cc1429223d5a74f0f4d0b9b59a299` |
|
||||
| large | 2.9 GB | ~4.7 GB | `0f4c8e34f21cf1a914c59d8b3ce882345ad349d6` |
|
||||
|
||||
## Model files for testing purposes
|
||||
|
||||
The model files prefixed with `for-tests-` are empty (i.e. do not contain any weights) and are used by the CI for
|
||||
testing purposes. They are directly included in this repository for convenience and the Github Actions CI uses them to
|
||||
run various sanitizer tests.
|
||||
|
||||
## Fine-tuned models
|
||||
|
||||
There are community efforts for creating fine-tuned Whisper models using extra training data. For example, this
|
||||
[blog post](https://huggingface.co/blog/fine-tune-whisper) describes a method for fine-tuning using Hugging Face (HF)
|
||||
Transformer implementation of Whisper. The produced models are in slightly different format compared to the original
|
||||
OpenAI format. To read the HF models you can use the [convert-h5-to-ggml.py](convert-h5-to-ggml.py) script like this:
|
||||
|
||||
```bash
|
||||
git clone https://github.com/openai/whisper
|
||||
git clone https://github.com/ggerganov/whisper.cpp
|
||||
|
||||
# clone HF fine-tuned model (this is just an example)
|
||||
git clone https://huggingface.co/openai/whisper-base.en
|
||||
|
||||
# convert the model to ggml
|
||||
python3 ./whisper.cpp/models/convert-h5-to-ggml.py ./whisper-medium/ ./whisper .
|
||||
```
|
||||
The model files pefixed with `for-tests-` are empty (i.e. do not contain any weights) and are used by the CI for testing purposes.
|
||||
They are directly included in this repository for convenience and the Github Actions CI uses them to run various sanitizer tests.
|
||||
|
@ -1,212 +0,0 @@
|
||||
# Convert Hugging Face fine-tuned models to ggml format
|
||||
#
|
||||
# Usage:
|
||||
#
|
||||
# git clone https://github.com/openai/whisper
|
||||
# git clone https://github.com/ggerganov/whisper.cpp
|
||||
# git clone https://huggingface.co/openai/whisper-medium
|
||||
#
|
||||
# python3 ./whisper.cpp/models/convert-h5-to-ggml.py ./whisper-medium/ ./whisper .
|
||||
#
|
||||
# This script is similar to "convert-pt-to-ggml.py"
|
||||
#
|
||||
# For more info:
|
||||
#
|
||||
# https://github.com/ggerganov/whisper.cpp/issues/157
|
||||
#
|
||||
|
||||
import io
|
||||
import os
|
||||
import sys
|
||||
import struct
|
||||
import json
|
||||
import code
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
from transformers import WhisperForConditionalGeneration
|
||||
|
||||
conv_map = {
|
||||
'self_attn.k_proj' : 'attn.key',
|
||||
'self_attn.q_proj' : 'attn.query',
|
||||
'self_attn.v_proj' : 'attn.value',
|
||||
'self_attn.out_proj' : 'attn.out',
|
||||
'self_attn_layer_norm' : 'attn_ln',
|
||||
'encoder_attn.q_proj' : 'cross_attn.query',
|
||||
'encoder_attn.v_proj' : 'cross_attn.value',
|
||||
'encoder_attn.out_proj' : 'cross_attn.out',
|
||||
'encoder_attn_layer_norm' : 'cross_attn_ln',
|
||||
'fc1' : 'mlp.0',
|
||||
'fc2' : 'mlp.2',
|
||||
'final_layer_norm' : 'mlp_ln',
|
||||
'encoder.layer_norm.bias' : 'encoder.ln_post.bias',
|
||||
'encoder.layer_norm.weight' : 'encoder.ln_post.weight',
|
||||
'encoder.embed_positions.weight': 'encoder.positional_embedding',
|
||||
'decoder.layer_norm.bias' : 'decoder.ln.bias',
|
||||
'decoder.layer_norm.weight' : 'decoder.ln.weight',
|
||||
'decoder.embed_positions.weight': 'decoder.positional_embedding',
|
||||
'decoder.embed_tokens.weight' : 'decoder.token_embedding.weight',
|
||||
'proj_out.weight' : 'decoder.proj.weight',
|
||||
}
|
||||
|
||||
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
|
||||
def bytes_to_unicode():
|
||||
"""
|
||||
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
||||
The reversible bpe codes work on unicode strings.
|
||||
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
||||
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
||||
This is a signficant percentage of your normal, say, 32K bpe vocab.
|
||||
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
||||
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
||||
"""
|
||||
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
||||
cs = bs[:]
|
||||
n = 0
|
||||
for b in range(2**8):
|
||||
if b not in bs:
|
||||
bs.append(b)
|
||||
cs.append(2**8+n)
|
||||
n += 1
|
||||
cs = [chr(n) for n in cs]
|
||||
return dict(zip(bs, cs))
|
||||
|
||||
if len(sys.argv) < 4:
|
||||
print("Usage: convert-h5-to-ggml.py dir_model path-to-whisper-repo dir-output [use-f32]\n")
|
||||
sys.exit(1)
|
||||
|
||||
dir_model = sys.argv[1]
|
||||
dir_whisper = sys.argv[2]
|
||||
dir_out = sys.argv[3]
|
||||
|
||||
with open(dir_model + "/vocab.json", "r") as f:
|
||||
encoder = json.load(f)
|
||||
with open(dir_model + "/added_tokens.json", "r") as f:
|
||||
encoder_added = json.load(f)
|
||||
with open(dir_model + "/config.json", "r") as f:
|
||||
hparams = json.load(f)
|
||||
|
||||
model = WhisperForConditionalGeneration.from_pretrained(dir_model)
|
||||
|
||||
#code.interact(local=locals())
|
||||
|
||||
n_mels = hparams["num_mel_bins"]
|
||||
with np.load(os.path.join(dir_whisper, "whisper/assets", "mel_filters.npz")) as f:
|
||||
filters = torch.from_numpy(f[f"mel_{n_mels}"])
|
||||
|
||||
dir_tokenizer = dir_model
|
||||
|
||||
fname_out = dir_out + "/ggml-model.bin"
|
||||
|
||||
with open(dir_tokenizer + "/vocab.json", "r", encoding="utf8") as f:
|
||||
tokens = json.load(f)
|
||||
|
||||
# use 16-bit or 32-bit floats
|
||||
use_f16 = True
|
||||
if len(sys.argv) > 4:
|
||||
use_f16 = False
|
||||
fname_out = dir_out + "/ggml-model-f32.bin"
|
||||
|
||||
fout = open(fname_out, "wb")
|
||||
|
||||
fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
|
||||
fout.write(struct.pack("i", hparams["vocab_size"]))
|
||||
fout.write(struct.pack("i", hparams["max_source_positions"]))
|
||||
fout.write(struct.pack("i", hparams["d_model"]))
|
||||
fout.write(struct.pack("i", hparams["encoder_attention_heads"]))
|
||||
fout.write(struct.pack("i", hparams["encoder_layers"]))
|
||||
fout.write(struct.pack("i", hparams["max_length"]))
|
||||
fout.write(struct.pack("i", hparams["d_model"]))
|
||||
fout.write(struct.pack("i", hparams["decoder_attention_heads"]))
|
||||
fout.write(struct.pack("i", hparams["decoder_layers"]))
|
||||
fout.write(struct.pack("i", hparams["num_mel_bins"]))
|
||||
fout.write(struct.pack("i", use_f16))
|
||||
|
||||
fout.write(struct.pack("i", filters.shape[0]))
|
||||
fout.write(struct.pack("i", filters.shape[1]))
|
||||
for i in range(filters.shape[0]):
|
||||
for j in range(filters.shape[1]):
|
||||
fout.write(struct.pack("f", filters[i][j]))
|
||||
|
||||
byte_encoder = bytes_to_unicode()
|
||||
byte_decoder = {v:k for k, v in byte_encoder.items()}
|
||||
|
||||
fout.write(struct.pack("i", len(tokens)))
|
||||
|
||||
tokens = sorted(tokens.items(), key=lambda x: x[1])
|
||||
for key in tokens:
|
||||
text = bytearray([byte_decoder[c] for c in key[0]])
|
||||
fout.write(struct.pack("i", len(text)))
|
||||
fout.write(text)
|
||||
|
||||
list_vars = model.state_dict()
|
||||
for name in list_vars.keys():
|
||||
# this seems to not be used
|
||||
# ref: https://github.com/huggingface/transformers/blob/9a5b84a0076a04fe9596da72e8668069d4f09ea0/src/transformers/models/whisper/modeling_whisper.py#L1099-L1106
|
||||
if name == "proj_out.weight":
|
||||
print('Skipping', name)
|
||||
continue
|
||||
|
||||
src = name
|
||||
|
||||
nn = name
|
||||
if name != "proj_out.weight":
|
||||
nn = nn.split(".")[1:]
|
||||
else:
|
||||
nn = nn.split(".")
|
||||
|
||||
if nn[1] == "layers":
|
||||
nn[1] = "blocks"
|
||||
if ".".join(nn[3:-1]) == "encoder_attn.k_proj":
|
||||
mapped = "attn.key" if nn[0] == "encoder" else "cross_attn.key"
|
||||
else:
|
||||
mapped = conv_map[".".join(nn[3:-1])]
|
||||
name = ".".join(nn[:3] + [mapped] + nn[-1:])
|
||||
else:
|
||||
name = ".".join(nn)
|
||||
name = conv_map[name] if name in conv_map else name
|
||||
|
||||
print(src, ' -> ', name)
|
||||
data = list_vars[src].squeeze().numpy()
|
||||
data = data.astype(np.float16)
|
||||
|
||||
# reshape conv bias from [n] to [n, 1]
|
||||
if name == "encoder.conv1.bias" or \
|
||||
name == "encoder.conv2.bias":
|
||||
data = data.reshape(data.shape[0], 1)
|
||||
print(" Reshaped variable: " + name + " to shape: ", data.shape)
|
||||
|
||||
n_dims = len(data.shape)
|
||||
print(name, n_dims, data.shape)
|
||||
|
||||
# looks like the whisper models are in f16 by default
|
||||
# so we need to convert the small tensors to f32 until we fully support f16 in ggml
|
||||
# ftype == 0 -> float32, ftype == 1 -> float16
|
||||
ftype = 1;
|
||||
if use_f16:
|
||||
if n_dims < 2 or \
|
||||
name == "encoder.conv1.bias" or \
|
||||
name == "encoder.conv2.bias" or \
|
||||
name == "encoder.positional_embedding" or \
|
||||
name == "decoder.positional_embedding":
|
||||
print(" Converting to float32")
|
||||
data = data.astype(np.float32)
|
||||
ftype = 0
|
||||
else:
|
||||
data = data.astype(np.float32)
|
||||
ftype = 0
|
||||
|
||||
# header
|
||||
str = name.encode('utf-8')
|
||||
fout.write(struct.pack("iii", n_dims, len(str), ftype))
|
||||
for i in range(n_dims):
|
||||
fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
|
||||
fout.write(str);
|
||||
|
||||
# data
|
||||
data.tofile(fout)
|
||||
|
||||
fout.close()
|
||||
|
||||
print("Done. Output file: " + fname_out)
|
||||
print("")
|
@ -1,64 +0,0 @@
|
||||
@echo off
|
||||
|
||||
pushd %~dp0
|
||||
set models_path=%CD%
|
||||
for %%d in (%~dp0..) do set root_path=%%~fd
|
||||
popd
|
||||
|
||||
set argc=0
|
||||
for %%x in (%*) do set /A argc+=1
|
||||
|
||||
set models=tiny.en tiny base.en base small.en small medium.en medium large-v1 large
|
||||
|
||||
if %argc% neq 1 (
|
||||
echo.
|
||||
echo Usage: download-ggml-model.cmd model
|
||||
CALL :list_models
|
||||
goto :eof
|
||||
)
|
||||
|
||||
set model=%1
|
||||
|
||||
for %%b in (%models%) do (
|
||||
if "%%b"=="%model%" (
|
||||
CALL :download_model
|
||||
goto :eof
|
||||
)
|
||||
)
|
||||
|
||||
echo Invalid model: %model%
|
||||
CALL :list_models
|
||||
goto :eof
|
||||
|
||||
:download_model
|
||||
echo Downloading ggml model %model%...
|
||||
|
||||
cd %models_path%
|
||||
|
||||
if exist "ggml-%model%.bin" (
|
||||
echo Model %model% already exists. Skipping download.
|
||||
goto :eof
|
||||
)
|
||||
|
||||
PowerShell -NoProfile -ExecutionPolicy Bypass -Command "Invoke-WebRequest -Uri https://ggml.ggerganov.com/ggml-model-whisper-%model%.bin -OutFile ggml-%model%.bin"
|
||||
|
||||
if %ERRORLEVEL% neq 0 (
|
||||
echo Failed to download ggml model %model%
|
||||
echo Please try again later or download the original Whisper model files and convert them yourself.
|
||||
goto :eof
|
||||
)
|
||||
|
||||
echo Done! Model %model% saved in %root_path%\models\ggml-%model%.bin
|
||||
echo You can now use it like this:
|
||||
echo main.exe -m %root_path%\models\ggml-%model%.bin -f %root_path%\samples\jfk.wav
|
||||
|
||||
goto :eof
|
||||
|
||||
:list_models
|
||||
echo.
|
||||
echo Available models:
|
||||
(for %%a in (%models%) do (
|
||||
echo %%a
|
||||
))
|
||||
echo.
|
||||
exit /b
|
@ -1,6 +0,0 @@
|
||||
# Audio samples
|
||||
|
||||
This folder contains various audio files used for testing.
|
||||
If you want to quickly get some more samples, simply run `make samples`. This will download several public audio files and convert them to appropriate 16-bit WAV format using `ffmpeg`
|
||||
|
||||
https://github.com/ggerganov/whisper.cpp/blob/a09ce6e8899198015729ffc49ae10f67370906b1/Makefile#L104-L123
|
315
stream.cpp
Normal file
315
stream.cpp
Normal file
@ -0,0 +1,315 @@
|
||||
// Real-time speech recognition of input from a microphone
|
||||
//
|
||||
// A very quick-n-dirty implementation serving mainly as a proof of concept.
|
||||
|
||||
#include "whisper.h"
|
||||
|
||||
// third-party utilities
|
||||
// use your favorite implementations
|
||||
#define DR_WAV_IMPLEMENTATION
|
||||
#include "dr_wav.h"
|
||||
|
||||
#include <SDL.h>
|
||||
#include <SDL_audio.h>
|
||||
|
||||
#include <cassert>
|
||||
#include <cstdio>
|
||||
#include <string>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
|
||||
// 500 -> 00:05.000
|
||||
// 6000 -> 01:00.000
|
||||
std::string to_timestamp(int64_t t) {
|
||||
int64_t sec = t/100;
|
||||
int64_t msec = t - sec*100;
|
||||
int64_t min = sec/60;
|
||||
sec = sec - min*60;
|
||||
|
||||
char buf[32];
|
||||
snprintf(buf, sizeof(buf), "%02d:%02d.%03d", (int) min, (int) sec, (int) msec);
|
||||
|
||||
return std::string(buf);
|
||||
}
|
||||
|
||||
// command-line parameters
|
||||
struct whisper_params {
|
||||
int32_t seed = -1; // RNG seed, not used currently
|
||||
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
||||
int32_t step_ms = 3000;
|
||||
|
||||
bool verbose = false;
|
||||
bool translate = false;
|
||||
bool no_context = true;
|
||||
bool print_special_tokens = false;
|
||||
bool no_timestamps = true;
|
||||
|
||||
std::string language = "en";
|
||||
std::string model = "models/ggml-base.en.bin";
|
||||
std::string fname_inp = "samples/jfk.wav";
|
||||
};
|
||||
|
||||
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
|
||||
|
||||
bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
for (int i = 1; i < argc; i++) {
|
||||
std::string arg = argv[i];
|
||||
|
||||
if (arg == "-s" || arg == "--seed") {
|
||||
params.seed = std::stoi(argv[++i]);
|
||||
} else if (arg == "-t" || arg == "--threads") {
|
||||
params.n_threads = std::stoi(argv[++i]);
|
||||
} else if (arg == "--step") {
|
||||
params.step_ms = std::stoi(argv[++i]);
|
||||
} else if (arg == "-v" || arg == "--verbose") {
|
||||
params.verbose = true;
|
||||
} else if (arg == "--translate") {
|
||||
params.translate = true;
|
||||
} else if (arg == "-kc" || arg == "--keep-context") {
|
||||
params.no_context = false;
|
||||
} else if (arg == "-l" || arg == "--language") {
|
||||
params.language = argv[++i];
|
||||
if (whisper_lang_id(params.language.c_str()) == -1) {
|
||||
fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str());
|
||||
whisper_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
} else if (arg == "-ps" || arg == "--print_special") {
|
||||
params.print_special_tokens = true;
|
||||
} else if (arg == "-nt" || arg == "--no_timestamps") {
|
||||
params.no_timestamps = true;
|
||||
} else if (arg == "-m" || arg == "--model") {
|
||||
params.model = argv[++i];
|
||||
} else if (arg == "-f" || arg == "--file") {
|
||||
params.fname_inp = argv[++i];
|
||||
} else if (arg == "-h" || arg == "--help") {
|
||||
whisper_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
} else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
whisper_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void whisper_print_usage(int argc, char ** argv, const whisper_params & params) {
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "options:\n");
|
||||
fprintf(stderr, " -h, --help show this help message and exit\n");
|
||||
fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n");
|
||||
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
|
||||
fprintf(stderr, " --step N audio step size in milliseconds (default: %d)\n", params.step_ms);
|
||||
fprintf(stderr, " -v, --verbose verbose output\n");
|
||||
fprintf(stderr, " --translate translate from source language to english\n");
|
||||
fprintf(stderr, " -nc, --no-context disable context from earlier audio (default: false)\n");
|
||||
fprintf(stderr, " -ps, --print_special print special tokens\n");
|
||||
fprintf(stderr, " -nt, --no_timestamps do not print timestamps\n");
|
||||
fprintf(stderr, " -l LANG, --language LANG spoken language (default: %s)\n", params.language.c_str());
|
||||
fprintf(stderr, " -m FNAME, --model FNAME model path (default: %s)\n", params.model.c_str());
|
||||
fprintf(stderr, " -f FNAME, --file FNAME input WAV file path (default: %s)\n", params.fname_inp.c_str());
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
//
|
||||
// SDL Audio capture
|
||||
//
|
||||
|
||||
SDL_AudioDeviceID g_dev_id_in = 0;
|
||||
|
||||
bool audio_sdl_init(const int capture_id) {
|
||||
if (g_dev_id_in) {
|
||||
fprintf(stderr, "%s: already initialized\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (g_dev_id_in == 0) {
|
||||
SDL_LogSetPriority(SDL_LOG_CATEGORY_APPLICATION, SDL_LOG_PRIORITY_INFO);
|
||||
|
||||
if (SDL_Init(SDL_INIT_AUDIO) < 0) {
|
||||
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "Couldn't initialize SDL: %s\n", SDL_GetError());
|
||||
return (1);
|
||||
}
|
||||
|
||||
SDL_SetHintWithPriority(SDL_HINT_AUDIO_RESAMPLING_MODE, "medium", SDL_HINT_OVERRIDE);
|
||||
|
||||
{
|
||||
int nDevices = SDL_GetNumAudioDevices(SDL_TRUE);
|
||||
printf("%s: found %d capture devices:\n", __func__, nDevices);
|
||||
for (int i = 0; i < nDevices; i++) {
|
||||
printf("%s: - Capture device #%d: '%s'\n", __func__, i, SDL_GetAudioDeviceName(i, SDL_TRUE));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (g_dev_id_in == 0) {
|
||||
SDL_AudioSpec capture_spec_requested;
|
||||
SDL_AudioSpec capture_spec_obtained;
|
||||
|
||||
SDL_zero(capture_spec_requested);
|
||||
SDL_zero(capture_spec_obtained);
|
||||
|
||||
capture_spec_requested.freq = WHISPER_SAMPLE_RATE;
|
||||
capture_spec_requested.format = AUDIO_F32;
|
||||
capture_spec_requested.channels = 1;
|
||||
capture_spec_requested.samples = 1024;
|
||||
|
||||
if (capture_id >= 0) {
|
||||
printf("%s: attempt to open capture device %d : '%s' ...\n", __func__, capture_id, SDL_GetAudioDeviceName(capture_id, SDL_TRUE));
|
||||
g_dev_id_in = SDL_OpenAudioDevice(SDL_GetAudioDeviceName(capture_id, SDL_TRUE), SDL_TRUE, &capture_spec_requested, &capture_spec_obtained, 0);
|
||||
} else {
|
||||
printf("%s: attempt to open default capture device ...\n", __func__);
|
||||
g_dev_id_in = SDL_OpenAudioDevice(nullptr, SDL_TRUE, &capture_spec_requested, &capture_spec_obtained, 0);
|
||||
}
|
||||
if (!g_dev_id_in) {
|
||||
printf("%s: couldn't open an audio device for capture: %s!\n", __func__, SDL_GetError());
|
||||
g_dev_id_in = 0;
|
||||
} else {
|
||||
printf("%s: obtained spec for input device (SDL Id = %d):\n", __func__, g_dev_id_in);
|
||||
printf("%s: - sample rate: %d\n", __func__, capture_spec_obtained.freq);
|
||||
printf("%s: - format: %d (required: %d)\n", __func__, capture_spec_obtained.format, capture_spec_requested.format);
|
||||
printf("%s: - channels: %d (required: %d)\n", __func__, capture_spec_obtained.channels, capture_spec_requested.channels);
|
||||
printf("%s: - samples per frame: %d\n", __func__, capture_spec_obtained.samples);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
///////////////////////////
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
whisper_params params;
|
||||
|
||||
if (whisper_params_parse(argc, argv, params) == false) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (params.seed < 0) {
|
||||
params.seed = time(NULL);
|
||||
}
|
||||
|
||||
// init audio
|
||||
|
||||
if (!audio_sdl_init(-1)) {
|
||||
fprintf(stderr, "%s: audio_sdl_init() failed!\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// whisper init
|
||||
|
||||
struct whisper_context * ctx = whisper_init(params.model.c_str());
|
||||
|
||||
const int n_samples = (params.step_ms/1000.0)*WHISPER_SAMPLE_RATE;
|
||||
const int n_samples_30s = 30*WHISPER_SAMPLE_RATE;
|
||||
std::vector<float> pcmf32(n_samples_30s, 0.0f);
|
||||
std::vector<float> pcmf32_old;
|
||||
|
||||
// print some info about the processing
|
||||
{
|
||||
printf("\n");
|
||||
if (!whisper_is_multilingual(ctx)) {
|
||||
if (params.language != "en" || params.translate) {
|
||||
params.language = "en";
|
||||
params.translate = false;
|
||||
printf("%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__);
|
||||
}
|
||||
}
|
||||
printf("%s: processing %d samples (%.1f sec), %d threads, lang = %s, task = %s, timestamps = %d ...\n",
|
||||
__func__, n_samples, float(n_samples)/WHISPER_SAMPLE_RATE, params.n_threads,
|
||||
params.language.c_str(),
|
||||
params.translate ? "translate" : "transcribe",
|
||||
params.no_timestamps ? 0 : 1);
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
SDL_PauseAudioDevice(g_dev_id_in, 0);
|
||||
|
||||
bool is_running = true;
|
||||
|
||||
// main audio loop
|
||||
while (is_running) {
|
||||
// process SDL events:
|
||||
SDL_Event event;
|
||||
while (SDL_PollEvent(&event)) {
|
||||
switch (event.type) {
|
||||
case SDL_QUIT:
|
||||
is_running = false;
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// process 3 seconds of new audio
|
||||
while (SDL_GetQueuedAudioSize(g_dev_id_in) < n_samples*sizeof(float)) {
|
||||
SDL_Delay(1);
|
||||
}
|
||||
const int n_samples_new = SDL_GetQueuedAudioSize(g_dev_id_in)/sizeof(float);
|
||||
|
||||
// take one second from previous iteration
|
||||
// TODO: better strategy
|
||||
const int n_samples_take = std::min((int) pcmf32_old.size(), std::max(0, n_samples_30s/30 - n_samples_new));
|
||||
|
||||
//printf("processing: take = %d, new = %d, old = %d\n", n_samples_take, n_samples_new, (int) pcmf32_old.size());
|
||||
|
||||
pcmf32.resize(n_samples_new + n_samples_take);
|
||||
|
||||
for (int i = 0; i < n_samples_take; i++) {
|
||||
pcmf32[i] = pcmf32_old[pcmf32_old.size() - n_samples_take + i];
|
||||
}
|
||||
|
||||
SDL_DequeueAudio(g_dev_id_in, pcmf32.data() + n_samples_take, n_samples_new*sizeof(float));
|
||||
|
||||
pcmf32_old = pcmf32;
|
||||
|
||||
// run the inference
|
||||
{
|
||||
whisper_full_params wparams = whisper_full_default_params(WHISPER_DECODE_GREEDY);
|
||||
|
||||
wparams.print_progress = false;
|
||||
wparams.print_special_tokens = params.print_special_tokens;
|
||||
wparams.print_realtime = false;
|
||||
wparams.print_timestamps = !params.no_timestamps;
|
||||
wparams.translate = params.translate;
|
||||
wparams.no_context = params.no_context;
|
||||
wparams.language = params.language.c_str();
|
||||
wparams.n_threads = params.n_threads;
|
||||
|
||||
if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) {
|
||||
fprintf(stderr, "%s: failed to process audio\n", argv[0]);
|
||||
return 6;
|
||||
}
|
||||
|
||||
// print result;
|
||||
{
|
||||
printf("\n");
|
||||
|
||||
const int n_segments = whisper_full_n_segments(ctx);
|
||||
for (int i = 0; i < n_segments; ++i) {
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
|
||||
if (params.no_timestamps) {
|
||||
printf ("%s", text);
|
||||
fflush(stdout);
|
||||
} else {
|
||||
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
|
||||
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
|
||||
|
||||
printf ("[%s --> %s] %s\n", to_timestamp(t0).c_str(), to_timestamp(t1).c_str(), text);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
whisper_print_timings(ctx);
|
||||
whisper_free(ctx);
|
||||
|
||||
return 0;
|
||||
}
|
3
tests/.gitignore
vendored
3
tests/.gitignore
vendored
@ -1,3 +0,0 @@
|
||||
*.wav
|
||||
*.ogg
|
||||
*.wav.txt
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user