Compare commits

..

1 Commits

Author SHA1 Message Date
a0da7f71a2 command : wip in progress, improve guided decoding 2023-02-19 19:39:05 +02:00
16 changed files with 126 additions and 680 deletions

3
.gitignore vendored
View File

@ -1,7 +1,5 @@
*.o
*.a
*.mlmodel
*.mlmodelc
.cache/
.vs/
.vscode/
@ -12,7 +10,6 @@ build-em/
build-debug/
build-release/
build-static/
build-no-accel/
build-sanitize-addr/
build-sanitize-thread/

View File

@ -1,6 +1,6 @@
cmake_minimum_required (VERSION 3.0)
project(whisper.cpp VERSION 1.2.1)
project(whisper.cpp VERSION 1.2.0)
# Add path to modules
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake/")
@ -54,8 +54,6 @@ if (APPLE)
option(WHISPER_NO_AVX "whisper: disable AVX" OFF)
option(WHISPER_NO_AVX2 "whisper: disable AVX2" OFF)
option(WHISPER_NO_FMA "whisper: disable FMA" OFF)
option(WHISPER_COREML "whisper: enable Core ML framework" OFF)
else()
option(WHISPER_SUPPORT_OPENBLAS "whisper: support for OpenBLAS" OFF)
endif()
@ -88,33 +86,16 @@ endif()
find_package(Threads REQUIRED)
# on APPLE
if (APPLE)
# include Accelerate framework
if (NOT WHISPER_NO_ACCELERATE)
find_library(ACCELERATE_FRAMEWORK Accelerate)
# on APPLE - include Accelerate framework
if (APPLE AND NOT WHISPER_NO_ACCELERATE)
find_library(ACCELERATE_FRAMEWORK Accelerate)
if (ACCELERATE_FRAMEWORK)
message(STATUS "Accelerate framework found")
if (ACCELERATE_FRAMEWORK)
message(STATUS "Accelerate framework found")
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ${ACCELERATE_FRAMEWORK})
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_ACCELERATE)
else()
message(WARNING "Accelerate framework not found")
endif()
endif()
if (WHISPER_COREML)
find_library(FOUNDATION_FRAMEWORK Foundation)
find_library(COREML_FRAMEWORK CoreML)
if (COREML_FRAMEWORK)
message(STATUS "CoreML framework found")
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DWHISPER_USE_COREML)
else()
message(WARNING "CoreML framework not found")
endif()
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ${ACCELERATE_FRAMEWORK})
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_ACCELERATE)
else()
message(WARNING "Accelerate framework not found")
endif()
endif()
@ -200,33 +181,6 @@ if (WHISPER_PERF)
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_PERF)
endif()
#
# whisper.coreml - Core ML support
#
if (WHISPER_COREML)
set(TARGET whisper.coreml)
add_library(${TARGET}
coreml/whisper-encoder.h
coreml/whisper-encoder.mm
coreml/whisper-encoder-impl.h
coreml/whisper-encoder-impl.m
)
include(DefaultTargetOptions)
target_include_directories(${TARGET} PUBLIC
.
)
target_link_libraries(${TARGET} PRIVATE ${FOUNDATION_FRAMEWORK} ${COREML_FRAMEWORK})
set_target_properties(${TARGET} PROPERTIES
COMPILE_FLAGS "-fobjc-arc"
)
endif()
#
# whisper - this is the main library of the project
#
@ -246,10 +200,6 @@ target_include_directories(${TARGET} PUBLIC
.
)
if (WHISPER_COREML)
target_link_libraries(${TARGET} PRIVATE whisper.coreml)
endif()
if (MSVC)
target_link_libraries(${TARGET} PRIVATE ${WHISPER_EXTRA_LIBS} ${CMAKE_THREAD_LIBS_INIT})

View File

@ -30,8 +30,8 @@ endif
# Compile flags
#
CFLAGS = -I. -O3 -DNDEBUG -std=c11 -fPIC
CXXFLAGS = -I. -I./examples -O3 -DNDEBUG -std=c++11 -fPIC
CFLAGS = -I. -O3 -std=c11 -fPIC
CXXFLAGS = -I. -I./examples -O3 -std=c++11 -fPIC
LDFLAGS =
# OS specific
@ -132,10 +132,6 @@ ifndef WHISPER_NO_ACCELERATE
LDFLAGS += -framework Accelerate
endif
endif
ifdef WHISPER_COREML
CXXFLAGS += -DWHISPER_USE_COREML
LDFLAGS += -framework Foundation -framework CoreML
endif
ifdef WHISPER_OPENBLAS
CFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/openblas
LDFLAGS += -lopenblas
@ -145,8 +141,6 @@ ifdef WHISPER_GPROF
CXXFLAGS += -pg
endif
ifneq ($(filter aarch64%,$(UNAME_M)),)
CFLAGS += -mcpu=native
CXXFLAGS += -mcpu=native
endif
ifneq ($(filter armv6%,$(UNAME_M)),)
# Raspberry Pi 1, 2, 3
@ -188,23 +182,11 @@ ggml.o: ggml.c ggml.h
whisper.o: whisper.cpp whisper.h
$(CXX) $(CXXFLAGS) -c whisper.cpp -o whisper.o
ifndef WHISPER_COREML
WHISPER_OBJ = whisper.o
else
whisper-encoder.o: coreml/whisper-encoder.mm coreml/whisper-encoder.h
$(CXX) -O3 -I . -c coreml/whisper-encoder.mm -o whisper-encoder.o
libwhisper.a: ggml.o whisper.o
$(AR) rcs libwhisper.a ggml.o whisper.o
whisper-encoder-impl.o: coreml/whisper-encoder-impl.m coreml/whisper-encoder-impl.h
$(CXX) -O3 -I . -fobjc-arc -c coreml/whisper-encoder-impl.m -o whisper-encoder-impl.o
WHISPER_OBJ = whisper.o whisper-encoder.o whisper-encoder-impl.o
endif
libwhisper.a: ggml.o $(WHISPER_OBJ)
$(AR) rcs libwhisper.a ggml.o $(WHISPER_OBJ)
libwhisper.so: ggml.o $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) -shared -o libwhisper.so ggml.o $(WHISPER_OBJ) $(LDFLAGS)
libwhisper.so: ggml.o whisper.o
$(CXX) $(CXXFLAGS) -shared -o libwhisper.so ggml.o whisper.o $(LDFLAGS)
clean:
rm -f *.o main stream command talk bench libwhisper.a libwhisper.so
@ -218,21 +200,21 @@ CC_SDL=`sdl2-config --cflags --libs`
SRC_COMMON = examples/common.cpp
SRC_COMMON_SDL = examples/common-sdl.cpp
main: examples/main/main.cpp $(SRC_COMMON) ggml.o $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) examples/main/main.cpp $(SRC_COMMON) ggml.o $(WHISPER_OBJ) -o main $(LDFLAGS)
main: examples/main/main.cpp $(SRC_COMMON) ggml.o whisper.o
$(CXX) $(CXXFLAGS) examples/main/main.cpp $(SRC_COMMON) ggml.o whisper.o -o main $(LDFLAGS)
./main -h
stream: examples/stream/stream.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) examples/stream/stream.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ) -o stream $(CC_SDL) $(LDFLAGS)
stream: examples/stream/stream.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o whisper.o
$(CXX) $(CXXFLAGS) examples/stream/stream.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o whisper.o -o stream $(CC_SDL) $(LDFLAGS)
command: examples/command/command.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) examples/command/command.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ) -o command $(CC_SDL) $(LDFLAGS)
command: examples/command/command.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o whisper.o
$(CXX) $(CXXFLAGS) examples/command/command.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o whisper.o -o command $(CC_SDL) $(LDFLAGS)
talk: examples/talk/talk.cpp examples/talk/gpt-2.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) examples/talk/talk.cpp examples/talk/gpt-2.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ) -o talk $(CC_SDL) $(LDFLAGS)
talk: examples/talk/talk.cpp examples/talk/gpt-2.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o whisper.o
$(CXX) $(CXXFLAGS) examples/talk/talk.cpp examples/talk/gpt-2.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o whisper.o -o talk $(CC_SDL) $(LDFLAGS)
bench: examples/bench/bench.cpp ggml.o $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) examples/bench/bench.cpp ggml.o $(WHISPER_OBJ) -o bench $(LDFLAGS)
bench: examples/bench/bench.cpp ggml.o whisper.o
$(CXX) $(CXXFLAGS) examples/bench/bench.cpp ggml.o whisper.o -o bench $(LDFLAGS)
#
# Audio samples

View File

@ -4,7 +4,7 @@
[![License: MIT](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT)
[![npm](https://img.shields.io/npm/v/whisper.cpp.svg)](https://www.npmjs.com/package/whisper.cpp/)
Stable: [v1.2.1](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.2.1) / [Roadmap | F.A.Q.](https://github.com/ggerganov/whisper.cpp/discussions/126)
Stable: [v1.2.0](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.2.0) / [Roadmap | F.A.Q.](https://github.com/ggerganov/whisper.cpp/discussions/126)
High-performance inference of [OpenAI's Whisper](https://github.com/openai/whisper) automatic speech recognition (ASR) model:
@ -469,9 +469,7 @@ in [models](models).
- [X] .NET: | [#422](https://github.com/ggerganov/whisper.cpp/discussions/422)
- [sandrohanea/whisper.net](https://github.com/sandrohanea/whisper.net)
- [NickDarvey/whisper](https://github.com/NickDarvey/whisper)
- [X] Python: | [#9](https://github.com/ggerganov/whisper.cpp/issues/9)
- [stlukey/whispercpp.py](https://github.com/stlukey/whispercpp.py) (Cython)
- [aarnphm/whispercpp](https://github.com/aarnphm/whispercpp) (Pybind11)
- [ ] Python: soon | [WIP](https://github.com/ggerganov/whisper.cpp/issues/9)
## Examples

View File

@ -1,6 +1,6 @@
{
"name": "whisper.cpp",
"version": "1.2.1",
"version": "1.2.0",
"description": "Whisper speech recognition",
"main": "whisper.js",
"scripts": {

View File

@ -1,142 +0,0 @@
//
// CoremlEncoder.h
//
// This file was automatically generated and should not be edited.
//
#import <Foundation/Foundation.h>
#import <CoreML/CoreML.h>
#include <stdint.h>
#include <os/log.h>
NS_ASSUME_NONNULL_BEGIN
/// Model Prediction Input Type
API_AVAILABLE(macos(10.15), ios(13.0), watchos(6.0), tvos(13.0)) __attribute__((visibility("hidden")))
@interface CoremlEncoderInput : NSObject<MLFeatureProvider>
/// melSegment as 1 × 80 × 3000 3-dimensional array of floats
@property (readwrite, nonatomic, strong) MLMultiArray * melSegment;
- (instancetype)init NS_UNAVAILABLE;
- (instancetype)initWithMelSegment:(MLMultiArray *)melSegment NS_DESIGNATED_INITIALIZER;
@end
/// Model Prediction Output Type
API_AVAILABLE(macos(10.15), ios(13.0), watchos(6.0), tvos(13.0)) __attribute__((visibility("hidden")))
@interface CoremlEncoderOutput : NSObject<MLFeatureProvider>
/// output as multidimensional array of floats
@property (readwrite, nonatomic, strong) MLMultiArray * output;
- (instancetype)init NS_UNAVAILABLE;
- (instancetype)initWithOutput:(MLMultiArray *)output NS_DESIGNATED_INITIALIZER;
@end
/// Class for model loading and prediction
API_AVAILABLE(macos(10.15), ios(13.0), watchos(6.0), tvos(13.0)) __attribute__((visibility("hidden")))
@interface CoremlEncoder : NSObject
@property (readonly, nonatomic, nullable) MLModel * model;
/**
URL of the underlying .mlmodelc directory.
*/
+ (nullable NSURL *)URLOfModelInThisBundle;
/**
Initialize CoremlEncoder instance from an existing MLModel object.
Usually the application does not use this initializer unless it makes a subclass of CoremlEncoder.
Such application may want to use `-[MLModel initWithContentsOfURL:configuration:error:]` and `+URLOfModelInThisBundle` to create a MLModel object to pass-in.
*/
- (instancetype)initWithMLModel:(MLModel *)model NS_DESIGNATED_INITIALIZER;
/**
Initialize CoremlEncoder instance with the model in this bundle.
*/
- (nullable instancetype)init;
/**
Initialize CoremlEncoder instance with the model in this bundle.
@param configuration The model configuration object
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
*/
- (nullable instancetype)initWithConfiguration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error;
/**
Initialize CoremlEncoder instance from the model URL.
@param modelURL URL to the .mlmodelc directory for CoremlEncoder.
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
*/
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL error:(NSError * _Nullable __autoreleasing * _Nullable)error;
/**
Initialize CoremlEncoder instance from the model URL.
@param modelURL URL to the .mlmodelc directory for CoremlEncoder.
@param configuration The model configuration object
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
*/
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error;
/**
Construct CoremlEncoder instance asynchronously with configuration.
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
@param configuration The model configuration
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid CoremlEncoder instance or NSError object.
*/
+ (void)loadWithConfiguration:(MLModelConfiguration *)configuration completionHandler:(void (^)(CoremlEncoder * _Nullable model, NSError * _Nullable error))handler API_AVAILABLE(macos(11.0), ios(14.0), watchos(7.0), tvos(14.0)) __attribute__((visibility("hidden")));
/**
Construct CoremlEncoder instance asynchronously with URL of .mlmodelc directory and optional configuration.
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
@param modelURL The model URL.
@param configuration The model configuration
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid CoremlEncoder instance or NSError object.
*/
+ (void)loadContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration completionHandler:(void (^)(CoremlEncoder * _Nullable model, NSError * _Nullable error))handler API_AVAILABLE(macos(11.0), ios(14.0), watchos(7.0), tvos(14.0)) __attribute__((visibility("hidden")));
/**
Make a prediction using the standard interface
@param input an instance of CoremlEncoderInput to predict from
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
@return the prediction as CoremlEncoderOutput
*/
- (nullable CoremlEncoderOutput *)predictionFromFeatures:(CoremlEncoderInput *)input error:(NSError * _Nullable __autoreleasing * _Nullable)error;
/**
Make a prediction using the standard interface
@param input an instance of CoremlEncoderInput to predict from
@param options prediction options
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
@return the prediction as CoremlEncoderOutput
*/
- (nullable CoremlEncoderOutput *)predictionFromFeatures:(CoremlEncoderInput *)input options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error;
/**
Make a prediction using the convenience interface
@param melSegment as 1 × 80 × 3000 3-dimensional array of floats:
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
@return the prediction as CoremlEncoderOutput
*/
- (nullable CoremlEncoderOutput *)predictionFromMelSegment:(MLMultiArray *)melSegment error:(NSError * _Nullable __autoreleasing * _Nullable)error;
/**
Batch prediction
@param inputArray array of CoremlEncoderInput instances to obtain predictions from
@param options prediction options
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
@return the predictions as NSArray<CoremlEncoderOutput *>
*/
- (nullable NSArray<CoremlEncoderOutput *> *)predictionsFromInputs:(NSArray<CoremlEncoderInput*> *)inputArray options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error;
@end
NS_ASSUME_NONNULL_END

View File

@ -1,197 +0,0 @@
//
// CoremlEncoder.m
//
// This file was automatically generated and should not be edited.
//
#if !__has_feature(objc_arc)
#error This file must be compiled with automatic reference counting enabled (-fobjc-arc)
#endif
#import "whisper-encoder-impl.h"
@implementation CoremlEncoderInput
- (instancetype)initWithMelSegment:(MLMultiArray *)melSegment {
self = [super init];
if (self) {
_melSegment = melSegment;
}
return self;
}
- (NSSet<NSString *> *)featureNames {
return [NSSet setWithArray:@[@"melSegment"]];
}
- (nullable MLFeatureValue *)featureValueForName:(NSString *)featureName {
if ([featureName isEqualToString:@"melSegment"]) {
return [MLFeatureValue featureValueWithMultiArray:self.melSegment];
}
return nil;
}
@end
@implementation CoremlEncoderOutput
- (instancetype)initWithOutput:(MLMultiArray *)output {
self = [super init];
if (self) {
_output = output;
}
return self;
}
- (NSSet<NSString *> *)featureNames {
return [NSSet setWithArray:@[@"output"]];
}
- (nullable MLFeatureValue *)featureValueForName:(NSString *)featureName {
if ([featureName isEqualToString:@"output"]) {
return [MLFeatureValue featureValueWithMultiArray:self.output];
}
return nil;
}
@end
@implementation CoremlEncoder
/**
URL of the underlying .mlmodelc directory.
*/
+ (nullable NSURL *)URLOfModelInThisBundle {
NSString *assetPath = [[NSBundle bundleForClass:[self class]] pathForResource:@"CoremlEncoder" ofType:@"mlmodelc"];
if (nil == assetPath) { os_log_error(OS_LOG_DEFAULT, "Could not load CoremlEncoder.mlmodelc in the bundle resource"); return nil; }
return [NSURL fileURLWithPath:assetPath];
}
/**
Initialize CoremlEncoder instance from an existing MLModel object.
Usually the application does not use this initializer unless it makes a subclass of CoremlEncoder.
Such application may want to use `-[MLModel initWithContentsOfURL:configuration:error:]` and `+URLOfModelInThisBundle` to create a MLModel object to pass-in.
*/
- (instancetype)initWithMLModel:(MLModel *)model {
self = [super init];
if (!self) { return nil; }
_model = model;
if (_model == nil) { return nil; }
return self;
}
/**
Initialize CoremlEncoder instance with the model in this bundle.
*/
- (nullable instancetype)init {
return [self initWithContentsOfURL:(NSURL * _Nonnull)self.class.URLOfModelInThisBundle error:nil];
}
/**
Initialize CoremlEncoder instance with the model in this bundle.
@param configuration The model configuration object
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
*/
- (nullable instancetype)initWithConfiguration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error {
return [self initWithContentsOfURL:(NSURL * _Nonnull)self.class.URLOfModelInThisBundle configuration:configuration error:error];
}
/**
Initialize CoremlEncoder instance from the model URL.
@param modelURL URL to the .mlmodelc directory for CoremlEncoder.
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
*/
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL error:(NSError * _Nullable __autoreleasing * _Nullable)error {
MLModel *model = [MLModel modelWithContentsOfURL:modelURL error:error];
if (model == nil) { return nil; }
return [self initWithMLModel:model];
}
/**
Initialize CoremlEncoder instance from the model URL.
@param modelURL URL to the .mlmodelc directory for CoremlEncoder.
@param configuration The model configuration object
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
*/
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error {
MLModel *model = [MLModel modelWithContentsOfURL:modelURL configuration:configuration error:error];
if (model == nil) { return nil; }
return [self initWithMLModel:model];
}
/**
Construct CoremlEncoder instance asynchronously with configuration.
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
@param configuration The model configuration
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid CoremlEncoder instance or NSError object.
*/
+ (void)loadWithConfiguration:(MLModelConfiguration *)configuration completionHandler:(void (^)(CoremlEncoder * _Nullable model, NSError * _Nullable error))handler {
[self loadContentsOfURL:(NSURL * _Nonnull)[self URLOfModelInThisBundle]
configuration:configuration
completionHandler:handler];
}
/**
Construct CoremlEncoder instance asynchronously with URL of .mlmodelc directory and optional configuration.
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
@param modelURL The model URL.
@param configuration The model configuration
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid CoremlEncoder instance or NSError object.
*/
+ (void)loadContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration completionHandler:(void (^)(CoremlEncoder * _Nullable model, NSError * _Nullable error))handler {
[MLModel loadContentsOfURL:modelURL
configuration:configuration
completionHandler:^(MLModel *model, NSError *error) {
if (model != nil) {
CoremlEncoder *typedModel = [[CoremlEncoder alloc] initWithMLModel:model];
handler(typedModel, nil);
} else {
handler(nil, error);
}
}];
}
- (nullable CoremlEncoderOutput *)predictionFromFeatures:(CoremlEncoderInput *)input error:(NSError * _Nullable __autoreleasing * _Nullable)error {
return [self predictionFromFeatures:input options:[[MLPredictionOptions alloc] init] error:error];
}
- (nullable CoremlEncoderOutput *)predictionFromFeatures:(CoremlEncoderInput *)input options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error {
id<MLFeatureProvider> outFeatures = [self.model predictionFromFeatures:input options:options error:error];
if (!outFeatures) { return nil; }
return [[CoremlEncoderOutput alloc] initWithOutput:(MLMultiArray *)[outFeatures featureValueForName:@"output"].multiArrayValue];
}
- (nullable CoremlEncoderOutput *)predictionFromMelSegment:(MLMultiArray *)melSegment error:(NSError * _Nullable __autoreleasing * _Nullable)error {
CoremlEncoderInput *input_ = [[CoremlEncoderInput alloc] initWithMelSegment:melSegment];
return [self predictionFromFeatures:input_ error:error];
}
- (nullable NSArray<CoremlEncoderOutput *> *)predictionsFromInputs:(NSArray<CoremlEncoderInput*> *)inputArray options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error {
id<MLBatchProvider> inBatch = [[MLArrayBatchProvider alloc] initWithFeatureProviderArray:inputArray];
id<MLBatchProvider> outBatch = [self.model predictionsFromBatch:inBatch options:options error:error];
if (!outBatch) { return nil; }
NSMutableArray<CoremlEncoderOutput*> *results = [NSMutableArray arrayWithCapacity:(NSUInteger)outBatch.count];
for (NSInteger i = 0; i < outBatch.count; i++) {
id<MLFeatureProvider> resultProvider = [outBatch featuresAtIndex:i];
CoremlEncoderOutput * result = [[CoremlEncoderOutput alloc] initWithOutput:(MLMultiArray *)[resultProvider featureValueForName:@"output"].multiArrayValue];
[results addObject:result];
}
return results;
}
@end

View File

@ -1,22 +0,0 @@
// Wrapper of the Core ML Whisper Encoder model
//
// Code is derived from the work of Github user @wangchou
// ref: https://github.com/wangchou/callCoreMLFromCpp
#if __cplusplus
extern "C" {
#endif
struct whisper_coreml_context;
struct whisper_coreml_context * whisper_coreml_init(const char * path_model);
void whisper_coreml_free(struct whisper_coreml_context * ctx);
void whisper_coreml_encode(
const whisper_coreml_context * ctx,
float * mel,
float * out);
#if __cplusplus
}
#endif

View File

@ -1,61 +0,0 @@
#import "coreml/whisper-encoder.h"
#import "coreml/whisper-encoder-impl.h"
#import <CoreML/CoreML.h>
#include <stdlib.h>
#if __cplusplus
extern "C" {
#endif
struct whisper_coreml_context {
const void * data;
};
struct whisper_coreml_context * whisper_coreml_init(const char * path_model) {
NSString * path_model_str = [[NSString alloc] initWithUTF8String:path_model];
NSURL * url_model = [NSURL fileURLWithPath: path_model_str];
const void * data = CFBridgingRetain([[CoremlEncoder alloc] initWithContentsOfURL:url_model error:nil]);
if (data == NULL) {
return NULL;
}
whisper_coreml_context * ctx = new whisper_coreml_context;
ctx->data = data;
return ctx;
}
void whisper_coreml_free(struct whisper_coreml_context * ctx) {
CFRelease(ctx->data);
delete ctx;
}
void whisper_coreml_encode(
const whisper_coreml_context * ctx,
float * mel,
float * out) {
MLMultiArray * inMultiArray = [
[MLMultiArray alloc] initWithDataPointer: mel
shape: @[@1, @80, @3000]
dataType: MLMultiArrayDataTypeFloat32
strides: @[@(240000), @(3000), @1]
deallocator: nil
error: nil
];
CoremlEncoderOutput * outCoreML = [(__bridge id) ctx->data predictionFromMelSegment:inMultiArray error:nil];
MLMultiArray * outMA = outCoreML.output;
memcpy(out, outMA.dataPointer, outMA.count * sizeof(float));
}
#if __cplusplus
}
#endif

View File

@ -72,7 +72,7 @@ int timestamp_to_sample(int64_t t, int n_samples) {
return std::max(0, std::min((int) n_samples - 1, (int) ((t*WHISPER_SAMPLE_RATE)/100)));
}
void whisper_print_segment_callback(struct whisper_context * ctx, int n_new, void * user_data) {
void whisper_print_segment(struct whisper_context * ctx, int n_new, void * user_data) {
const auto & params = *((whisper_print_user_data *) user_data)->params;
const auto & pcmf32s = *((whisper_print_user_data *) user_data)->pcmf32s;
@ -250,7 +250,7 @@ int run(whisper_params &params, std::vector<std::vector<std::string>> &result) {
// this callback is called on each new segment
if (!wparams.print_realtime) {
wparams.new_segment_callback = whisper_print_segment_callback;
wparams.new_segment_callback = whisper_print_segment;
wparams.new_segment_callback_user_data = &user_data;
}

View File

@ -109,6 +109,73 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, "\n");
}
struct whisper_logits_filter_user_data {
std::vector<std::string> * allowed_commands;
std::vector<std::vector<whisper_token>> * allowed_tokens;
};
void whisper_logits_filter(
struct whisper_context * ctx,
const whisper_token_data * tokens,
int n_tokens,
float * logits,
void * user_data){
const auto & allowed_tokens = *((whisper_logits_filter_user_data *) user_data)->allowed_tokens;
printf("n_tokens = %d\n", n_tokens);
for (int i = 0; i < n_tokens; i++) {
printf(" - '%s' (%.2f)\n", whisper_token_to_str(ctx, tokens[i].id), logits[i]);
}
if (n_tokens == 0) {
return;
}
std::vector<std::pair<whisper_token, float>> pool;
for (int i = 0; i < (int) allowed_tokens.size(); i++) {
const int n = (int) allowed_tokens[i].size();
if (n_tokens > n) {
continue;
}
const whisper_token id = allowed_tokens[i][n_tokens - 1];
pool.push_back({ id, logits[id] });
}
if (pool.empty()) {
return;
}
printf("applying logits filter, pool size = %d\n", (int) pool.size());
const int ibeg = whisper_token_beg(ctx);
double sum_all = 0.0;
for (int i = 0; i < ibeg; ++i) {
if (logits[i] == -INFINITY) {
continue;
}
sum_all += logits[i];
}
double sum_pool = 0.0;
for (int i = 0; i < (int) pool.size(); ++i) {
sum_pool += pool[i].second;
}
printf("sum_all = %.2f, sum_pool = %.2f\n", sum_all, sum_pool);
for (int i = 0; i < ibeg; ++i) {
logits[i] = -INFINITY;
}
for (int i = 0; i < (int) pool.size(); ++i) {
//logits[pool[i].first] = pool[i].second / sum_pool * sum_all;
logits[pool[i].first] = pool[i].second;
printf(" - '%s' (%.2f)\n", whisper_token_to_str(ctx, pool[i].first), logits[pool[i].first]);
}
}
std::string transcribe(whisper_context * ctx, const whisper_params & params, const std::vector<float> & pcmf32, float & prob, int64_t & t_ms) {
const auto t_start = std::chrono::high_resolution_clock::now();
@ -131,6 +198,8 @@ std::string transcribe(whisper_context * ctx, const whisper_params & params, con
wparams.audio_ctx = params.audio_ctx;
wparams.speed_up = params.speed_up;
wparams.temperature_inc = -1.0f;
if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) {
return "";
}
@ -334,22 +403,31 @@ int process_command_list(struct whisper_context * ctx, audio_async &audio, const
wparams.translate = params.translate;
wparams.no_context = true;
wparams.single_segment = true;
wparams.max_tokens = 1;
//wparams.max_tokens = 1;
wparams.language = params.language.c_str();
wparams.n_threads = params.n_threads;
wparams.audio_ctx = params.audio_ctx;
wparams.speed_up = params.speed_up;
wparams.temperature_inc = -1.0f;
wparams.prompt_tokens = k_tokens.data();
wparams.prompt_n_tokens = k_tokens.size();
whisper_logits_filter_user_data user_data = { &allowed_commands, &allowed_tokens };
wparams.logits_filter_callback = whisper_logits_filter;
wparams.logits_filter_callback_user_data = &user_data;
// run the transformer and a single decoding pass
if (whisper_full(ctx, wparams, pcmf32_cur.data(), pcmf32_cur.size()) != 0) {
fprintf(stderr, "%s: ERROR: whisper_full() failed\n", __func__);
break;
}
fprintf(stdout, "%s: text - '%s'\n", __func__, whisper_full_get_segment_text(ctx, 0));
// estimate command probability
// NOTE: not optimal
{
@ -436,7 +514,7 @@ int process_command_list(struct whisper_context * ctx, audio_async &audio, const
// always-prompt mode
// transcribe the voice into text after valid prompt
int always_prompt_transcription(struct whisper_context * ctx, audio_async & audio, const whisper_params & params) {
int process_always_prompt(struct whisper_context * ctx, audio_async & audio, const whisper_params & params) {
bool is_running = true;
bool ask_prompt = true;
@ -496,7 +574,7 @@ int always_prompt_transcription(struct whisper_context * ctx, audio_async & audi
const float sim = similarity(prompt, k_prompt);
//debug
//fprintf(stdout, "command size: %i\n", command_length);
//fprintf(stdout, "command size: %d, sim: %f\n", (int) command.size(), sim);
if ((sim > 0.7f) && (command.size() > 0)) {
fprintf(stdout, "%s: Command '%s%s%s', (t = %d ms)\n", __func__, "\033[1m", command.c_str(), "\033[0m", (int) t_ms);
@ -676,7 +754,7 @@ int main(int argc, char ** argv) {
if (!params.commands.empty()) {
ret_val = process_command_list(ctx, audio, params);
} else if (!params.prompt.empty()) {
ret_val = always_prompt_transcription(ctx, audio, params);
ret_val = process_always_prompt(ctx, audio, params);
} else {
ret_val = process_general_transcription(ctx, audio, params);
}

View File

@ -1,13 +1,13 @@
#pragma once
#include <SDL.h>
#include <SDL_audio.h>
#include <atomic>
#include <cstdint>
#include <vector>
#include <mutex>
#include <SDL.h>
#include <SDL_audio.h>
//
// SDL Audio capture
//

View File

@ -193,7 +193,7 @@ struct whisper_print_user_data {
const std::vector<std::vector<float>> * pcmf32s;
};
void whisper_print_segment_callback(struct whisper_context * ctx, int n_new, void * user_data) {
void whisper_print_segment(struct whisper_context * ctx, int n_new, void * user_data) {
const auto & params = *((whisper_print_user_data *) user_data)->params;
const auto & pcmf32s = *((whisper_print_user_data *) user_data)->pcmf32s;
@ -352,14 +352,13 @@ bool output_csv(struct whisper_context * ctx, const char * fname) {
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
const int n_segments = whisper_full_n_segments(ctx);
fout << "start,end,text\n";
for (int i = 0; i < n_segments; ++i) {
const char * text = whisper_full_get_segment_text(ctx, i);
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
//need to multiply times returned from whisper_full_get_segment_t{0,1}() by 10 to get milliseconds.
fout << 10 * t0 << "," << 10 * t1 << ",\"" << text << "\"\n";
fout << 10 * t0 << ", " << 10 * t1 << ", \"" << text << "\"\n";
}
return true;
@ -598,7 +597,7 @@ int main(int argc, char ** argv) {
// this callback is called on each new segment
if (!wparams.print_realtime) {
wparams.new_segment_callback = whisper_print_segment_callback;
wparams.new_segment_callback = whisper_print_segment;
wparams.new_segment_callback_user_data = &user_data;
}

View File

@ -1,82 +0,0 @@
#!/bin/bash
# This script downloads Whisper model files that have already been converted to Core ML format.
# This way you don't have to convert them yourself.
src="https://huggingface.co/datasets/ggerganov/whisper.cpp-coreml"
pfx="resolve/main/ggml"
# get the path of this script
function get_script_path() {
if [ -x "$(command -v realpath)" ]; then
echo "$(dirname $(realpath $0))"
else
local ret="$(cd -- "$(dirname "$0")" >/dev/null 2>&1 ; pwd -P)"
echo "$ret"
fi
}
models_path="$(get_script_path)"
# Whisper models
models=( "tiny.en" "tiny" "base.en" "base" "small.en" "small" "medium.en" "medium" "large-v1" "large" )
# list available models
function list_models {
printf "\n"
printf " Available models:"
for model in "${models[@]}"; do
printf " $model"
done
printf "\n\n"
}
if [ "$#" -ne 1 ]; then
printf "Usage: $0 <model>\n"
list_models
exit 1
fi
model=$1
if [[ ! " ${models[@]} " =~ " ${model} " ]]; then
printf "Invalid model: $model\n"
list_models
exit 1
fi
# download Core ML model
printf "Downloading Core ML model $model from '$src' ...\n"
cd $models_path
if [ -f "ggml-$model.mlmodel" ]; then
printf "Model $model already exists. Skipping download.\n"
exit 0
fi
if [ -x "$(command -v wget)" ]; then
wget --quiet --show-progress -O ggml-$model.mlmodel $src/$pfx-$model.mlmodel
elif [ -x "$(command -v curl)" ]; then
curl -L --output ggml-$model.mlmodel $src/$pfx-$model.mlmodel
else
printf "Either wget or curl is required to download models.\n"
exit 1
fi
if [ $? -ne 0 ]; then
printf "Failed to download Core ML model $model \n"
printf "Please try again later or download the original Whisper model files and convert them yourself.\n"
exit 1
fi
printf "Done! Model '$model' saved in 'models/ggml-$model.mlmodel'\n"
printf "Run the following command to compile it:\n\n"
printf " $ xcrun coremlc compile ./models/ggml-$model.mlmodel ./models\n\n"
printf "You can now use it like this:\n\n"
printf " $ ./main -m models/ggml-$model.bin -f samples/jfk.wav\n"
printf "\n"

View File

@ -1,8 +1,5 @@
#define WHISPER_BUILD
#include "whisper.h"
#if WHISPER_USE_COREML
#include "coreml/whisper-encoder.h"
#endif
#include "ggml.h"
@ -595,21 +592,16 @@ struct whisper_context {
mutable std::mt19937 rng; // used for sampling at t > 0.0
int lang_id = 0; // english by default
std::string path_model; // populated by whisper_init_from_file()
#ifdef WHISPER_USE_COREML
whisper_coreml_context * ctx_coreml;
#endif
int lang_id;
// [EXPERIMENTAL] token-level timestamps data
int64_t t_beg = 0;
int64_t t_last = 0;
int64_t t_beg;
int64_t t_last;
whisper_token tid_last;
std::vector<float> energy; // PCM signal energy
// [EXPERIMENTAL] speed-up techniques
int32_t exp_n_audio_ctx = 0; // 0 - use default
int32_t exp_n_audio_ctx; // 0 - use default
void use_buf(struct ggml_context * ctx, int i) {
#if defined(WHISPER_USE_SCRATCH)
@ -1405,7 +1397,6 @@ static bool whisper_encode(
}
}
#ifndef WHISPER_USE_COREML
struct ggml_tensor * cur;
// convolution + gelu
@ -1714,13 +1705,6 @@ static bool whisper_encode(
//ggml_graph_print(&gf);
}
#else
wctx.use_buf(ctx0, -1);
struct ggml_tensor * cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_state, n_ctx);
whisper_coreml_encode(wctx.ctx_coreml, (float *) mel->data, (float *) cur->data);
#endif
// cur
//{
@ -2523,20 +2507,6 @@ static std::vector<whisper_vocab::id> tokenize(const whisper_vocab & vocab, cons
// interface implementation
//
#ifdef WHISPER_USE_COREML
// replace .bin with .mlmodelc
static std::string whisper_get_coreml_path(std::string path_bin) {
auto pos = path_bin.rfind('.');
if (pos != std::string::npos) {
path_bin = path_bin.substr(0, pos);
}
path_bin += ".mlmodelc";
return path_bin;
}
#endif
struct whisper_context * whisper_init_from_file(const char * path_model) {
whisper_model_loader loader = {};
@ -2549,7 +2519,6 @@ struct whisper_context * whisper_init_from_file(const char * path_model) {
}
loader.context = &fin;
loader.read = [](void * ctx, void * output, size_t read_size) {
std::ifstream * fin = (std::ifstream*)ctx;
fin->read((char *)output, read_size);
@ -2566,26 +2535,7 @@ struct whisper_context * whisper_init_from_file(const char * path_model) {
fin->close();
};
auto ctx = whisper_init(&loader);
if (ctx) {
ctx->path_model = path_model;
#ifdef WHISPER_USE_COREML
const auto path_coreml = whisper_get_coreml_path(ctx->path_model);
fprintf(stderr, "%s: loading Core ML model from '%s'\n", __func__, path_coreml.c_str());
fprintf(stderr, "%s: first run on a device may take a while ...\n", __func__);
ctx->ctx_coreml = whisper_coreml_init(path_coreml.c_str());
if (!ctx->ctx_coreml) {
fprintf(stderr, "%s: failed to load Core ML model from '%s'\n", __func__, path_coreml.c_str());
return nullptr;
}
fprintf(stderr, "%s: Core ML model loaded\n", __func__);
#endif
}
return ctx;
return whisper_init(&loader);
}
struct whisper_context * whisper_init_from_buffer(void * buffer, size_t buffer_size) {
@ -2657,10 +2607,6 @@ void whisper_free(struct whisper_context * ctx) {
ggml_free(ctx->decoders[i].kv_self.ctx);
}
}
#ifdef WHISPER_USE_COREML
whisper_coreml_free(ctx->ctx_coreml);
ctx->ctx_coreml = nullptr;
#endif
delete ctx;
}
}
@ -4393,7 +4339,7 @@ int whisper_full_n_segments(struct whisper_context * ctx) {
}
int whisper_full_lang_id(struct whisper_context * ctx) {
return ctx->lang_id;
return ctx->lang_id;
}
int64_t whisper_full_get_segment_t0(struct whisper_context * ctx, int i_segment) {