forked from extern/whisper.cpp
236 lines
9.4 KiB
Markdown
236 lines
9.4 KiB
Markdown
# whisper.cpp
|
|
|
|
High-performance inference of [OpenAI's Whisper](https://github.com/openai/whisper) automatic speech recognition (ASR) model:
|
|
|
|
- Plain C/C++ implementation without dependencies
|
|
- ARM_NEON and AVX intrinsics support
|
|
- Mixed F16 / F32 precision
|
|
- Low memory usage (Flash Attention + Flash Forward)
|
|
- Zero memory allocations at runtime
|
|
- Runs on the CPU (Mac and Linux)
|
|
- Runs on a Raspberry Pi [#7](https://github.com/ggerganov/whisper.cpp/issues/7)
|
|
|
|
## Usage
|
|
|
|
To build the main program, run `make`. You can then transcribe a `.wav` file like this:
|
|
|
|
```bash
|
|
$ ./main -f input.wav
|
|
```
|
|
|
|
Before running the program, make sure to download one of the ggml Whisper models. For example:
|
|
|
|
```bash
|
|
bash ./download-ggml-model.sh base.en
|
|
```
|
|
|
|
---
|
|
|
|
For a quick demo, simply run `make base.en`:
|
|
|
|
```java
|
|
$ make base.en
|
|
|
|
gcc -pthread -O3 -mavx -mavx2 -mfma -mf16c -c ggml.c
|
|
g++ -pthread -O3 -std=c++11 -c main.cpp
|
|
g++ -pthread -o main ggml.o main.o
|
|
./main -h
|
|
|
|
usage: ./main [options]
|
|
|
|
options:
|
|
-h, --help show this help message and exit
|
|
-s SEED, --seed SEED RNG seed (default: -1)
|
|
-t N, --threads N number of threads to use during computation (default: 4)
|
|
-v, --verbose verbose output
|
|
--translate translate from source language to english
|
|
-ps, --print_special print special tokens
|
|
-nt, --no_timestamps do not print timestamps
|
|
-l LANG, --language LANG spoken language (default: en)
|
|
-m FNAME, --model FNAME model path (default: models/ggml-base.en.bin)
|
|
-f FNAME, --file FNAME input WAV file path (default: samples/jfk.wav)
|
|
|
|
bash ./download-ggml-model.sh base.en
|
|
Downloading ggml model base.en ...
|
|
models/ggml-base.en.bin 100%[=====================================>] 141.11M 8.58MB/s in 22s
|
|
Done! Model 'base.en' saved in 'models/ggml-base.en.bin'
|
|
You can now use it like this:
|
|
|
|
$ ./main -m models/ggml-base.en.bin -f samples/jfk.wav
|
|
|
|
|
|
===============================================
|
|
Running base.en on all samples in ./samples ...
|
|
===============================================
|
|
|
|
----------------------------------------------
|
|
[+] Running base.en on samples/jfk.wav ... (run 'ffplay samples/jfk.wav' to listen)
|
|
----------------------------------------------
|
|
|
|
whisper_model_load: loading model from 'models/ggml-base.en.bin'
|
|
whisper_model_load: n_vocab = 51864
|
|
whisper_model_load: n_audio_ctx = 1500
|
|
whisper_model_load: n_audio_state = 512
|
|
whisper_model_load: n_audio_head = 8
|
|
whisper_model_load: n_audio_layer = 6
|
|
whisper_model_load: n_text_ctx = 448
|
|
whisper_model_load: n_text_state = 512
|
|
whisper_model_load: n_text_head = 8
|
|
whisper_model_load: n_text_layer = 6
|
|
whisper_model_load: n_mels = 80
|
|
whisper_model_load: f16 = 1
|
|
whisper_model_load: type = 2
|
|
whisper_model_load: mem_required = 377.00 MB
|
|
whisper_model_load: adding 1607 extra tokens
|
|
whisper_model_load: ggml ctx size = 163.43 MB
|
|
whisper_model_load: memory size = 22.83 MB
|
|
whisper_model_load: model size = 140.54 MB
|
|
log_mel_spectrogram: n_sample = 176000, n_len = 1100
|
|
log_mel_spectrogram: recording length: 11.000000 s
|
|
|
|
main: processing 176000 samples (11.0 sec), 4 threads, lang = english, task = transcribe, timestamps = 1 ...
|
|
|
|
[00:00.000 --> 00:11.000] And so my fellow Americans ask not what your country can do for you. Ask what you can do for your country.
|
|
|
|
|
|
main: load time = 82.05 ms
|
|
main: mel time = 44.15 ms
|
|
main: sample time = 1.98 ms
|
|
main: encode time = 674.77 ms / 112.46 ms per layer
|
|
main: decode time = 82.91 ms
|
|
main: total time = 886.29 ms
|
|
```
|
|
|
|
The command downloads the `base.en` model converted to custom `ggml` format and runs the inference on all `.wav` samples in the folder `samples`.
|
|
|
|
For detailed usage instructions, run: `./main -h`
|
|
|
|
Note that `whisper.cpp` currently runs only with 16-bit WAV files, so make sure to convert your input before running the tool.
|
|
For example, you can use `ffmpeg` like this:
|
|
|
|
```java
|
|
ffmpeg -i input.mp3 -ar 16000 -ac 1 -c:a pcm_s16le output.wav
|
|
```
|
|
|
|
## More audio samples
|
|
|
|
If you want some extra audio samples to play with, simply run:
|
|
|
|
```
|
|
make samples
|
|
```
|
|
|
|
This will download a few more audio files from Wikipedia and convert them to 16-bit WAV format via `ffmpeg`.
|
|
|
|
You can download and run the other models as follows:
|
|
|
|
```
|
|
make tiny.en
|
|
make tiny
|
|
make base.en
|
|
make base
|
|
make small.en
|
|
make small
|
|
make medium.en
|
|
make medium
|
|
make large
|
|
```
|
|
|
|
## Another example
|
|
|
|
Here is another example of transcribing a [3:24 min speech](https://upload.wikimedia.org/wikipedia/commons/1/1f/George_W_Bush_Columbia_FINAL.ogg)
|
|
in less than a minute on a MacBook M1 Pro, using `medium.en` model:
|
|
|
|
```java
|
|
$ ./main -m models/ggml-medium.en.bin -f samples/gb1.wav -t 8
|
|
|
|
whisper_model_load: loading model from 'models/ggml-medium.en.bin'
|
|
whisper_model_load: n_vocab = 51864
|
|
whisper_model_load: n_audio_ctx = 1500
|
|
whisper_model_load: n_audio_state = 1024
|
|
whisper_model_load: n_audio_head = 16
|
|
whisper_model_load: n_audio_layer = 24
|
|
whisper_model_load: n_text_ctx = 448
|
|
whisper_model_load: n_text_state = 1024
|
|
whisper_model_load: n_text_head = 16
|
|
whisper_model_load: n_text_layer = 24
|
|
whisper_model_load: n_mels = 80
|
|
whisper_model_load: f16 = 1
|
|
whisper_model_load: type = 4
|
|
whisper_model_load: mem_required = 2502.00 MB
|
|
whisper_model_load: adding 1607 extra tokens
|
|
whisper_model_load: ggml ctx size = 1644.97 MB
|
|
whisper_model_load: memory size = 182.62 MB
|
|
whisper_model_load: model size = 1462.12 MB
|
|
log_mel_spectrogram: n_sample = 3179750, n_len = 19873
|
|
log_mel_spectrogram: recording length: 198.734375 s
|
|
|
|
main: processing 3179750 samples (198.7 sec), 8 threads, lang = english, task = transcribe, timestamps = 1 ...
|
|
|
|
[00:00.000 --> 00:08.000] My fellow Americans, this day has brought terrible news and great sadness to our country.
|
|
[00:08.000 --> 00:17.000] At 9 o'clock this morning, Mission Control in Houston lost contact with our Space Shuttle Columbia.
|
|
[00:17.000 --> 00:24.000] A short time later, debris was seen falling from the skies above Texas.
|
|
[00:24.000 --> 00:29.000] The Columbia's lost. There are no survivors.
|
|
[00:29.000 --> 00:32.000] On board was a crew of seven.
|
|
[00:32.000 --> 00:43.000] Colonel Rick Husband, Lieutenant Colonel Michael Anderson, Commander Laurel Clark, Captain David Brown, Commander William McCool,
|
|
[00:43.000 --> 00:52.000] Dr. Kultner Aschavla, and Elon Ramon, a Colonel in the Israeli Air Force.
|
|
[00:52.000 --> 00:58.000] These men and women assumed great risk in the service to all humanity.
|
|
[00:58.000 --> 01:06.000] In an age when space flight has come to seem almost routine, it is easy to overlook the dangers of travel by rocket
|
|
[01:06.000 --> 01:12.000] and the difficulties of navigating the fierce outer atmosphere of the Earth.
|
|
[01:12.000 --> 01:22.000] These astronauts knew the dangers, and they faced them willingly, knowing they had a high and noble purpose in life.
|
|
[01:22.000 --> 01:30.000] Because of their courage, endearing, and idealism, we will miss them all the more.
|
|
[01:30.000 --> 01:40.000] All Americans today are thinking as well of the families of these men and women who have been given this sudden shock and grief.
|
|
[01:40.000 --> 01:45.000] You're not alone. Our entire nation agrees with you.
|
|
[01:45.000 --> 01:52.000] And those you love will always have the respect and gratitude of this country.
|
|
[01:52.000 --> 01:56.000] The cause in which they died will continue.
|
|
[01:56.000 --> 02:07.000] Mankind is led into the darkness beyond our world by the inspiration of discovery and the longing to understand.
|
|
[02:07.000 --> 02:11.000] Our journey into space will go on.
|
|
[02:11.000 --> 02:16.000] In the skies today, we saw destruction and tragedy.
|
|
[02:16.000 --> 02:22.000] Yet farther than we can see, there is comfort and hope.
|
|
[02:22.000 --> 02:31.000] In the words of the prophet Isaiah, "Lift your eyes and look to the heavens who created all these.
|
|
[02:31.000 --> 02:39.000] He who brings out the starry hosts one by one and calls them each by name."
|
|
[02:39.000 --> 02:46.000] Because of his great power and mighty strength, not one of them is missing.
|
|
[02:46.000 --> 02:55.000] The same creator who names the stars also knows the names of the seven souls we mourn today.
|
|
[02:55.000 --> 03:05.000] The crew of the shuttle Columbia did not return safely to Earth, yet we can pray that all are safely home.
|
|
[03:05.000 --> 03:14.000] May God bless the grieving families and may God continue to bless America.
|
|
[03:14.000 --> 03:24.000] [Music]
|
|
|
|
|
|
main: load time = 522.18 ms
|
|
main: mel time = 423.43 ms
|
|
main: sample time = 31.42 ms
|
|
main: encode time = 41518.51 ms / 1729.94 ms per layer
|
|
main: decode time = 14907.22 ms
|
|
main: total time = 57416.63 ms
|
|
```
|
|
|
|
## Limitations
|
|
|
|
- Very basic greedy sampling scheme - always pick up the top token
|
|
- Only 16-bit WAV at 16 kHz is supported
|
|
- Inference only
|
|
- No GPU support
|
|
|
|
## Memory usage
|
|
|
|
| Model | Disk | Mem |
|
|
| --- | --- | --- |
|
|
| tiny | 75 MB | ~240 MB |
|
|
| base | 142 MB | ~380 MB |
|
|
| small | 466 MB | ~970 MB |
|
|
| medium | 1.5 GB | ~2.5 GB |
|
|
| large | 2.9 GB | ~4.6 GB |
|
|
|
|
## ggml format
|
|
|
|
The original models are converted to a custom binary format. This allows to pack everything needed into a single file:
|
|
|
|
- model parameters
|
|
- mel filters
|
|
- vocabulary
|
|
- weights
|
|
|
|
You can download the converted models using the [download-ggml-model.sh](download-ggml-model.sh) script.
|
|
|
|
For more details, see the conversion script [convert-pt-to-ggml.py](convert-pt-to-ggml.py)
|