mirror of
https://github.com/easydiffusion/easydiffusion.git
synced 2025-08-13 17:57:20 +02:00
Compare commits
331 Commits
Author | SHA1 | Date | |
---|---|---|---|
2c861c65d4 | |||
a59bac4b40 | |||
cf214bf367 | |||
75724797f7 | |||
d04aeb55ad | |||
47bd6dc6b8 | |||
5e0f525932 | |||
1f66daf2f3 | |||
ded9cb0358 | |||
04f201933b | |||
f5ec1cb3a4 | |||
6c23e3f534 | |||
e99d54d1f6 | |||
3c71200eb4 | |||
f124cf8318 | |||
9d2b944063 | |||
8e1ec5903b | |||
5cf763d51f | |||
3546859fe5 | |||
6530e45178 | |||
07f0036b2b | |||
5237f55a71 | |||
a108e5067d | |||
a4a24b1a1a | |||
ffe0eb1544 | |||
288e8a65f3 | |||
0ebfbca93e | |||
f22f57495e | |||
8786a9d21d | |||
f06a97d30b | |||
2329c47faf | |||
2967261acb | |||
64ff1ecbb6 | |||
8707f88c07 | |||
36846618ec | |||
0cb2f19e29 | |||
125a50ae87 | |||
9d37ea23f8 | |||
31617ae340 | |||
950614fb81 | |||
14bbd7b7ae | |||
257cd34101 | |||
ab6ec3a9b7 | |||
39814a89b6 | |||
24fbbf8aa8 | |||
338ceffa6d | |||
371e104b00 | |||
d5aba8eaf1 | |||
1d2b3a4ed8 | |||
f904945d40 | |||
027b2e1b88 | |||
d79eb5e1a6 | |||
f6651b03b5 | |||
5f880a179c | |||
ea03fd22db | |||
e252c9ac05 | |||
a212fb35c1 | |||
e561e4de0b | |||
1c3d5cd851 | |||
e59fbac761 | |||
745ea5fb05 | |||
fa16ca4eec | |||
d7757b8b03 | |||
98aefad249 | |||
a19ba40672 | |||
3983cb001f | |||
c17222dbe4 | |||
abd8c69395 | |||
a7fde73df4 | |||
78b464b404 | |||
aa21115e26 | |||
a39f845835 | |||
3fdd8d91e2 | |||
c13bccc7ae | |||
b4f7d6bf25 | |||
fa0c2f7138 | |||
453cc2a951 | |||
bd56795c62 | |||
2c54b7f289 | |||
cd5f847b55 | |||
a25544baea | |||
d1c9db874f | |||
f954542dda | |||
9fec7d236c | |||
67656accf8 | |||
64952a536c | |||
65e0d5f511 | |||
5a06946469 | |||
baef31b2c7 | |||
b9a12d1562 | |||
3f26d03166 | |||
1fed3ad532 | |||
929b245f5f | |||
0da6354825 | |||
716a28891d | |||
93a2e91694 | |||
4913dc1aad | |||
087df18fea | |||
058ce6fe82 | |||
087c10d52d | |||
18292e447c | |||
6c1dda47c0 | |||
ad1fc8f3d8 | |||
bca98269bb | |||
1bebaf933d | |||
166eb996a9 | |||
10fae34754 | |||
aa4d97e8df | |||
dbbb9d7877 | |||
82fda5cb03 | |||
3ff213b3e8 | |||
65587536ab | |||
ad31be8344 | |||
25815c81bf | |||
852a22f86d | |||
69c7f22053 | |||
75a964167a | |||
c5768c81e1 | |||
4eb2b818e7 | |||
f742aad810 | |||
e22b171b7b | |||
d061eb2c64 | |||
69aa115178 | |||
e175b87384 | |||
f216ee739a | |||
16d6644573 | |||
38afc6e6f8 | |||
8f1d214b12 | |||
51fb1a43de | |||
a86b6bfbd6 | |||
1176ddcc85 | |||
fa080e380c | |||
57c3acd9d8 | |||
302cf5b10b | |||
e2a9e81dbc | |||
b1cf7391ce | |||
9bc7521de0 | |||
a68ebd2b76 | |||
47f7c938ae | |||
842e7e559e | |||
67cca3bc00 | |||
90b1609d4e | |||
abbfae2fc0 | |||
b52b854270 | |||
58b759f652 | |||
74ca756a53 | |||
a62ee7850b | |||
d3a90ccc0d | |||
46b13ee664 | |||
cfa6dc7836 | |||
f969bfa7be | |||
3576214920 | |||
f964fe3750 | |||
e86a883d0a | |||
82d764000a | |||
749c72e6a6 | |||
c3129a40f1 | |||
d04aa89812 | |||
d5f854d376 | |||
63dcb8cfe1 | |||
6c57fa078b | |||
c3cc75feff | |||
d2e6011089 | |||
5a18144366 | |||
8a0a22bfb0 | |||
950b226374 | |||
74e64a4387 | |||
59e4c1cf79 | |||
045ad78bb9 | |||
c0350e5be7 | |||
ea7006eec4 | |||
2b3e38f77e | |||
d04fe5d582 | |||
17ab4caa5e | |||
976bc727dd | |||
484e53cc08 | |||
b09b80933d | |||
93b3419737 | |||
19290fe467 | |||
d2f679030b | |||
053bce7a8e | |||
2f208832a9 | |||
268d7495cc | |||
ce16e61e63 | |||
f92bca58fa | |||
83d541b60d | |||
965efc3a13 | |||
d656c34bd4 | |||
7f151cbeba | |||
bc2f9204e9 | |||
a922a93016 | |||
eb596ba866 | |||
2208545612 | |||
f08a875cd2 | |||
d492d3f738 | |||
c687091ce9 | |||
eb994716e6 | |||
70acc8a7c0 | |||
bf97781232 | |||
099727d671 | |||
6229cdb1ba | |||
b7a663ed20 | |||
3bd97352ba | |||
33e25d9241 | |||
fc11018158 | |||
5e22360cb1 | |||
840348b4eb | |||
450fb2553c | |||
cf04738594 | |||
03757632cf | |||
e818f5a93f | |||
ab9b08770a | |||
40df8b68ad | |||
9f5202fee3 | |||
902ccbd203 | |||
4675da4d16 | |||
86da27a7a1 | |||
fc2a6567da | |||
7c611d9b62 | |||
784c7465d1 | |||
301af7bd7a | |||
09c11a385d | |||
ef6f491d94 | |||
9dcef00fbb | |||
e781e5dd43 | |||
d3e672d811 | |||
dad1554ec2 | |||
30bf96c6cd | |||
a8c16e39b8 | |||
79a7cd2938 | |||
26562e445f | |||
0b678b1f16 | |||
79b5e85b15 | |||
2432491bfc | |||
a09ce3e026 | |||
c52fc843f6 | |||
02240bda25 | |||
0185ef7c83 | |||
7d29b9901c | |||
ae553dfed3 | |||
71c6beadb4 | |||
d939629c09 | |||
0a569146a8 | |||
d5a012d49f | |||
22a11769fa | |||
7dc7ba9977 | |||
fa4059a4b9 | |||
7f4786f9dd | |||
5a6e7a46d1 | |||
9f90749f99 | |||
0dfaf9159d | |||
5d8bda1178 | |||
9ad1e0d529 | |||
389e3397ec | |||
284b95213e | |||
952854f64e | |||
554650c18d | |||
01a2fa7c2d | |||
1257e34487 | |||
a45743f443 | |||
7d03719816 | |||
7c5bbca2fa | |||
cf313939aa | |||
873d4bd3f2 | |||
f43f3fc84b | |||
0e1fed86ba | |||
3fb5d886dc | |||
b57cd8d5c2 | |||
5c1bbc08ca | |||
6ba32b95f3 | |||
d3df113fb0 | |||
06c2ab045a | |||
6d43e0951c | |||
ec14429238 | |||
1dc2c6f183 | |||
984b8f7e6f | |||
0f8448b2c0 | |||
ae40b6ba8c | |||
d482427e0d | |||
c41baf3aeb | |||
189d31cc29 | |||
fc875651d3 | |||
0d62123a0b | |||
28fed6281f | |||
8adf965d0b | |||
026dd38480 | |||
364e364429 | |||
46a46877ed | |||
2c1a897c4e | |||
344dd92c85 | |||
4167c65acf | |||
cd6d49860f | |||
8a10fcf7ea | |||
3b5f96a133 | |||
ce2b711b1f | |||
667fb438cb | |||
7befa94e6d | |||
88ef1a3c5b | |||
ccb7a553c2 | |||
1442748f58 | |||
56ed4fe6f2 | |||
849d1d7ebd | |||
fc8660df78 | |||
4e5ddca3bd | |||
3bdc90451a | |||
a036b2981a | |||
8fae83dab7 | |||
ef68e5b13d | |||
21afe077d7 | |||
3fc66ec525 | |||
0da0c6bd77 | |||
6098b196dc | |||
53cdeeff03 | |||
fcdb086daf | |||
cfd6751777 | |||
5e461e9b6b | |||
940236b4a4 | |||
3c8692d06c | |||
04fe81e001 | |||
578b3ba4f4 | |||
e24be913e5 | |||
4d3358ba66 | |||
87f93b34a3 | |||
c92129ac63 | |||
554b67a2f0 | |||
012243a880 | |||
d4a348a2b2 | |||
1d4c5cc96f | |||
41bfb96b6b | |||
994d62ac65 | |||
7c72608e1c |
@ -13,12 +13,11 @@ If you would like to contribute to this project, there is a discord for dicussio
|
||||
This is in-flux, but one way to get a development environment running for editing the UI of this project is:
|
||||
(swap `.sh` or `.bat` in instructions depending on your environment, and be sure to adjust any paths to match where you're working)
|
||||
|
||||
1) `git clone` the repository, e.g. to `/projects/stable-diffusion-ui-repo`
|
||||
2) Download the pre-built end user archive from the link on github, and extract it, e.g. to `/projects/stable-diffusion-ui-archive`
|
||||
3) `cd /projects/stable-diffusion-ui-archive` and run the script to set up and start the project, e.g. `start.sh`
|
||||
4) Check you can view and generate images on `localhost:9000`
|
||||
5) Close the server, and edit `/projects/stable-diffusion-ui-archive/scripts/on_env_start.sh`
|
||||
6) Comment out the lines near the bottom that copies the `files/ui` folder, e.g:
|
||||
1) Install the project to a new location using the [usual installation process](https://github.com/cmdr2/stable-diffusion-ui#installation), e.g. to `/projects/stable-diffusion-ui-archive`
|
||||
2) Start the newly installed project, and check that you can view and generate images on `localhost:9000`
|
||||
3) Next, please clone the project repository using `git clone` (e.g. to `/projects/stable-diffusion-ui-repo`)
|
||||
4) Close the server (started in step 2), and edit `/projects/stable-diffusion-ui-archive/scripts/on_env_start.sh` (or `on_env_start.bat`)
|
||||
5) Comment out the lines near the bottom that copies the `files/ui` folder, e.g:
|
||||
|
||||
for `.sh`
|
||||
```
|
||||
@ -33,13 +32,13 @@ REM @xcopy sd-ui-files\ui ui /s /i /Y
|
||||
REM @copy sd-ui-files\scripts\on_sd_start.bat scripts\ /Y
|
||||
REM @copy "sd-ui-files\scripts\Start Stable Diffusion UI.cmd" . /Y
|
||||
```
|
||||
7) Comment out the line at the top of `/projects/stable-diffusion-ui-archive/scripts/on_sd_start.sh` that copies `on_env_start`. For e.g. `@copy sd-ui-files\scripts\on_env_start.bat scripts\ /Y`
|
||||
6) Next, comment out the line at the top of `/projects/stable-diffusion-ui-archive/scripts/on_sd_start.sh` (or `on_sd_start.bat`) that copies `on_env_start`. For e.g. `@rem @copy sd-ui-files\scripts\on_env_start.bat scripts\ /Y`
|
||||
8) Delete the current `ui` folder at `/projects/stable-diffusion-ui-archive/ui`
|
||||
9) Now make a symlink between the repository clone (where you will be making changes) and this archive (where you will be running stable diffusion):
|
||||
`ln -s /projects/stable-diffusion-ui-repo/ui /projects/stable-diffusion-ui-archive/ui`
|
||||
or for Windows
|
||||
`mklink /D \projects\stable-diffusion-ui-archive\ui \projects\stable-diffusion-ui-repo\ui` (link name first, source repo dir second)
|
||||
9) Run the archive again `start.sh` and ensure you can still use the UI.
|
||||
`mklink /J \projects\stable-diffusion-ui-archive\ui \projects\stable-diffusion-ui-repo\ui` (link name first, source repo dir second)
|
||||
9) Run the project again (like in step 2) and ensure you can still use the UI.
|
||||
10) Congrats, now any changes you make in your repo `ui` folder are linked to this running archive of the app and can be previewed in the browser.
|
||||
|
||||
Check the `ui/frontend/build/README.md` for instructions on running and building the React code.
|
||||
@ -47,9 +46,5 @@ Check the `ui/frontend/build/README.md` for instructions on running and building
|
||||
## Development environment for Installer changes
|
||||
Build the Windows installer using Windows, and the Linux installer using Linux. Don't mix the two, and don't use WSL. An Ubuntu VM is fine for building the Linux installer on a Windows host.
|
||||
|
||||
1. Install Miniconda 3 or Anaconda.
|
||||
2. Install `conda install -c conda-forge -y conda-pack`
|
||||
3. Open the Anaconda Prompt. Do not use WSL if you're building for Windows.
|
||||
4. Run `build.bat` or `./build.sh` depending on whether you're in Windows or Linux.
|
||||
5. Compress the `stable-diffusion-ui` folder created inside the `dist` folder. Make a `zip` for Windows, and `tar.xz` for Linux (smaller files, and Linux users already have tar).
|
||||
6. Make a new GitHub release and upload the Windows and Linux installer builds.
|
||||
1. Run `build.bat` or `./build.sh` depending on whether you're in Windows or Linux.
|
||||
2. Make a new GitHub release and upload the Windows and Linux installer builds created inside the `dist` folder.
|
||||
|
@ -66,12 +66,12 @@ Useful for judging (and stopping) an image quickly, without waiting for it to fi
|
||||
# System Requirements
|
||||
1. Windows 10/11, or Linux. Experimental support for Mac is coming soon.
|
||||
2. An NVIDIA graphics card, preferably with 4GB or more of VRAM. If you don't have a compatible graphics card, it'll automatically run in the slower "CPU Mode".
|
||||
3. Minimum 8 GB of RAM.
|
||||
3. Minimum 8 GB of RAM and 25GB of disk space.
|
||||
|
||||
You don't need to install or struggle with Python, Anaconda, Docker etc. The installer will take care of whatever is needed.
|
||||
|
||||
# Installation
|
||||
1. **Download** [for Windows](https://github.com/cmdr2/stable-diffusion-ui/releases/download/v2.16/stable-diffusion-ui-win64.zip) or [for Linux](https://github.com/cmdr2/stable-diffusion-ui/releases/download/v2.16/stable-diffusion-ui-linux.tar.xz).
|
||||
1. **Download** [for Windows](https://github.com/cmdr2/stable-diffusion-ui/releases/download/v2.3.5/stable-diffusion-ui-windows.zip) or [for Linux](https://github.com/cmdr2/stable-diffusion-ui/releases/download/v2.3.5/stable-diffusion-ui-linux.zip).
|
||||
|
||||
2. **Extract**:
|
||||
- For Windows: After unzipping the file, please move the `stable-diffusion-ui` folder to your `C:` (or any drive like D:, at the top root level), e.g. `C:\stable-diffusion-ui`. This will avoid a common problem with Windows (file path length limits).
|
||||
|
@ -34,14 +34,12 @@ echo. > dist\win\stable-diffusion-ui\scripts\install_status.txt
|
||||
@rem make the zip
|
||||
|
||||
cd dist\win
|
||||
call powershell Compress-Archive -Path stable-diffusion-ui -DestinationPath ..\stable-diffusion-ui-win-x64.zip
|
||||
call powershell Compress-Archive -Path stable-diffusion-ui -DestinationPath ..\stable-diffusion-ui-windows.zip
|
||||
cd ..\..
|
||||
|
||||
@REM cd dist\linux-mac
|
||||
@REM call powershell Compress-Archive -Path stable-diffusion-ui -DestinationPath ..\stable-diffusion-ui-linux-x64.zip
|
||||
@REM call powershell Compress-Archive -Path stable-diffusion-ui -DestinationPath ..\stable-diffusion-ui-linux-arm64.zip
|
||||
@REM call powershell Compress-Archive -Path stable-diffusion-ui -DestinationPath ..\stable-diffusion-ui-mac-x64.zip
|
||||
@REM call powershell Compress-Archive -Path stable-diffusion-ui -DestinationPath ..\stable-diffusion-ui-mac-arm64.zip
|
||||
@REM call powershell Compress-Archive -Path stable-diffusion-ui -DestinationPath ..\stable-diffusion-ui-linux.zip
|
||||
@REM call powershell Compress-Archive -Path stable-diffusion-ui -DestinationPath ..\stable-diffusion-ui-mac.zip
|
||||
@REM cd ..\..
|
||||
|
||||
echo "Build ready. Upload the zip files inside the 'dist' folder."
|
||||
|
9
build.sh
9
build.sh
@ -28,6 +28,7 @@ mkdir -p dist/linux-mac/stable-diffusion-ui/scripts
|
||||
|
||||
cp scripts/on_env_start.sh dist/linux-mac/stable-diffusion-ui/scripts/
|
||||
cp scripts/bootstrap.sh dist/linux-mac/stable-diffusion-ui/scripts/
|
||||
cp scripts/functions.sh dist/linux-mac/stable-diffusion-ui/scripts/
|
||||
cp scripts/start.sh dist/linux-mac/stable-diffusion-ui/
|
||||
cp LICENSE dist/linux-mac/stable-diffusion-ui/
|
||||
cp "CreativeML Open RAIL-M License" dist/linux-mac/stable-diffusion-ui/
|
||||
@ -37,14 +38,12 @@ echo "" > dist/linux-mac/stable-diffusion-ui/scripts/install_status.txt
|
||||
# make the zip
|
||||
|
||||
# cd dist/win
|
||||
# zip -r ../stable-diffusion-ui-win-x64.zip stable-diffusion-ui
|
||||
# zip -r ../stable-diffusion-ui-windows.zip stable-diffusion-ui
|
||||
# cd ../..
|
||||
|
||||
cd dist/linux-mac
|
||||
zip -r ../stable-diffusion-ui-linux-x64.zip stable-diffusion-ui
|
||||
zip -r ../stable-diffusion-ui-linux-arm64.zip stable-diffusion-ui
|
||||
zip -r ../stable-diffusion-ui-mac-x64.zip stable-diffusion-ui
|
||||
zip -r ../stable-diffusion-ui-mac-arm64.zip stable-diffusion-ui
|
||||
zip -r ../stable-diffusion-ui-linux.zip stable-diffusion-ui
|
||||
zip -r ../stable-diffusion-ui-mac.zip stable-diffusion-ui
|
||||
cd ../..
|
||||
|
||||
echo "Build ready. Upload the zip files inside the 'dist' folder."
|
||||
|
@ -8,6 +8,8 @@ set PATH=C:\Windows\System32;%PATH%
|
||||
if exist "installer" set PATH=%cd%\installer;%cd%\installer\Library\bin;%cd%\installer\Scripts;%cd%\installer\Library\usr\bin;%PATH%
|
||||
if exist "installer_files\env" set PATH=%cd%\installer_files\env;%cd%\installer_files\env\Library\bin;%cd%\installer_files\env\Scripts;%cd%\installer_files\Library\usr\bin;%PATH%
|
||||
|
||||
set PYTHONPATH=%cd%\installer;%cd%\installer_files\env
|
||||
|
||||
@rem activate the installer env
|
||||
call conda activate
|
||||
|
||||
|
@ -1,5 +1,6 @@
|
||||
@echo off
|
||||
|
||||
cd /d %~dp0
|
||||
set PATH=C:\Windows\System32;%PATH%
|
||||
|
||||
@rem set legacy installer's PATH, if it exists
|
||||
@ -11,6 +12,8 @@ call scripts\bootstrap.bat
|
||||
@rem set new installer's PATH, if it downloaded any packages
|
||||
if exist "installer_files\env" set PATH=%cd%\installer_files\env;%cd%\installer_files\env\Library\bin;%cd%\installer_files\env\Scripts;%cd%\installer_files\Library\usr\bin;%PATH%
|
||||
|
||||
set PYTHONPATH=%cd%\installer;%cd%\installer_files\env
|
||||
|
||||
@rem Test the bootstrap
|
||||
call where git
|
||||
call git --version
|
||||
|
@ -11,6 +11,12 @@ set MAMBA_ROOT_PREFIX=%cd%\installer_files\mamba
|
||||
set INSTALL_ENV_DIR=%cd%\installer_files\env
|
||||
set LEGACY_INSTALL_ENV_DIR=%cd%\installer
|
||||
set MICROMAMBA_DOWNLOAD_URL=https://github.com/cmdr2/stable-diffusion-ui/releases/download/v1.1/micromamba.exe
|
||||
set umamba_exists=F
|
||||
|
||||
set OLD_APPDATA=%APPDATA%
|
||||
set OLD_USERPROFILE=%USERPROFILE%
|
||||
set APPDATA=%cd%\installer_files\appdata
|
||||
set USERPROFILE=%cd%\profile
|
||||
|
||||
@rem figure out whether git and conda needs to be installed
|
||||
if exist "%INSTALL_ENV_DIR%" set PATH=%INSTALL_ENV_DIR%;%INSTALL_ENV_DIR%\Library\bin;%INSTALL_ENV_DIR%\Scripts;%INSTALL_ENV_DIR%\Library\usr\bin;%PATH%
|
||||
@ -24,14 +30,26 @@ if not exist "%LEGACY_INSTALL_ENV_DIR%\etc\profile.d\conda.sh" (
|
||||
call git --version >.tmp1 2>.tmp2
|
||||
if "%ERRORLEVEL%" NEQ "0" set PACKAGES_TO_INSTALL=%PACKAGES_TO_INSTALL% git
|
||||
|
||||
call "%MAMBA_ROOT_PREFIX%\micromamba.exe" --version >.tmp1 2>.tmp2
|
||||
if "%ERRORLEVEL%" EQU "0" set umamba_exists=T
|
||||
|
||||
@rem (if necessary) install git and conda into a contained environment
|
||||
if "%PACKAGES_TO_INSTALL%" NEQ "" (
|
||||
@rem download micromamba
|
||||
if not exist "%MAMBA_ROOT_PREFIX%\micromamba.exe" (
|
||||
if "%umamba_exists%" == "F" (
|
||||
echo "Downloading micromamba from %MICROMAMBA_DOWNLOAD_URL% to %MAMBA_ROOT_PREFIX%\micromamba.exe"
|
||||
|
||||
mkdir "%MAMBA_ROOT_PREFIX%"
|
||||
call curl -L "%MICROMAMBA_DOWNLOAD_URL%" > "%MAMBA_ROOT_PREFIX%\micromamba.exe"
|
||||
call curl -Lk "%MICROMAMBA_DOWNLOAD_URL%" > "%MAMBA_ROOT_PREFIX%\micromamba.exe"
|
||||
|
||||
@REM if "%ERRORLEVEL%" NEQ "0" (
|
||||
@REM echo "There was a problem downloading micromamba. Cannot continue."
|
||||
@REM pause
|
||||
@REM exit /b
|
||||
@REM )
|
||||
|
||||
mkdir "%APPDATA%"
|
||||
mkdir "%USERPROFILE%"
|
||||
|
||||
@rem test the mamba binary
|
||||
echo Micromamba version:
|
||||
@ -53,3 +71,7 @@ if "%PACKAGES_TO_INSTALL%" NEQ "" (
|
||||
exit /b
|
||||
)
|
||||
)
|
||||
|
||||
@rem revert to the old APPDATA. only needed it for bypassing a bug in micromamba (with special characters)
|
||||
set APPDATA=%OLD_APPDATA%
|
||||
set USERPROFILE=%OLD_USERPROFILE%
|
||||
|
@ -6,6 +6,9 @@
|
||||
|
||||
# This enables a user to install this project without manually installing conda and git.
|
||||
|
||||
source ./scripts/functions.sh
|
||||
|
||||
set -o pipefail
|
||||
|
||||
OS_NAME=$(uname -s)
|
||||
case "${OS_NAME}" in
|
||||
@ -29,6 +32,7 @@ export MAMBA_ROOT_PREFIX="$(pwd)/installer_files/mamba"
|
||||
INSTALL_ENV_DIR="$(pwd)/installer_files/env"
|
||||
LEGACY_INSTALL_ENV_DIR="$(pwd)/installer"
|
||||
MICROMAMBA_DOWNLOAD_URL="https://micro.mamba.pm/api/micromamba/${OS_NAME}-${OS_ARCH}/latest"
|
||||
umamba_exists="F"
|
||||
|
||||
# figure out whether git and conda needs to be installed
|
||||
if [ -e "$INSTALL_ENV_DIR" ]; then export PATH="$INSTALL_ENV_DIR/bin:$PATH"; fi
|
||||
@ -38,15 +42,25 @@ PACKAGES_TO_INSTALL=""
|
||||
if [ ! -e "$LEGACY_INSTALL_ENV_DIR/etc/profile.d/conda.sh" ] && [ ! -e "$INSTALL_ENV_DIR/etc/profile.d/conda.sh" ]; then PACKAGES_TO_INSTALL="$PACKAGES_TO_INSTALL conda"; fi
|
||||
if ! hash "git" &>/dev/null; then PACKAGES_TO_INSTALL="$PACKAGES_TO_INSTALL git"; fi
|
||||
|
||||
if "$MAMBA_ROOT_PREFIX/micromamba" --version &>/dev/null; then umamba_exists="T"; fi
|
||||
|
||||
# (if necessary) install git and conda into a contained environment
|
||||
if [ "$PACKAGES_TO_INSTALL" != "" ]; then
|
||||
# download micromamba
|
||||
if [ ! -e "$MAMBA_ROOT_PREFIX/micromamba" ]; then
|
||||
if [ "$umamba_exists" == "F" ]; then
|
||||
echo "Downloading micromamba from $MICROMAMBA_DOWNLOAD_URL to $MAMBA_ROOT_PREFIX/micromamba"
|
||||
|
||||
mkdir -p "$MAMBA_ROOT_PREFIX"
|
||||
curl -L "$MICROMAMBA_DOWNLOAD_URL" | tar -xvj bin/micromamba -O > "$MAMBA_ROOT_PREFIX/micromamba"
|
||||
|
||||
if [ "$?" != "0" ]; then
|
||||
echo
|
||||
echo "EE micromamba download failed"
|
||||
echo "EE If the lines above contain 'bzip2: Cannot exec', your system doesn't have bzip2 installed"
|
||||
echo "EE If there are network errors, please check your internet setup"
|
||||
fail "micromamba download failed"
|
||||
fi
|
||||
|
||||
chmod u+x "$MAMBA_ROOT_PREFIX/micromamba"
|
||||
|
||||
# test the mamba binary
|
||||
@ -56,15 +70,17 @@ if [ "$PACKAGES_TO_INSTALL" != "" ]; then
|
||||
|
||||
# create the installer env
|
||||
if [ ! -e "$INSTALL_ENV_DIR" ]; then
|
||||
"$MAMBA_ROOT_PREFIX/micromamba" create -y --prefix "$INSTALL_ENV_DIR"
|
||||
"$MAMBA_ROOT_PREFIX/micromamba" create -y --prefix "$INSTALL_ENV_DIR" || fail "unable to create the install environment"
|
||||
fi
|
||||
|
||||
if [ ! -e "$INSTALL_ENV_DIR" ]; then
|
||||
fail "There was a problem while installing$PACKAGES_TO_INSTALL using micromamba. Cannot continue."
|
||||
fi
|
||||
|
||||
echo "Packages to install:$PACKAGES_TO_INSTALL"
|
||||
|
||||
"$MAMBA_ROOT_PREFIX/micromamba" install -y --prefix "$INSTALL_ENV_DIR" -c conda-forge $PACKAGES_TO_INSTALL
|
||||
|
||||
if [ ! -e "$INSTALL_ENV_DIR" ]; then
|
||||
echo "There was a problem while installing$PACKAGES_TO_INSTALL using micromamba. Cannot continue."
|
||||
exit
|
||||
if [ "$?" != "0" ]; then
|
||||
fail "Installation of the packages '$PACKAGES_TO_INSTALL' failed."
|
||||
fi
|
||||
fi
|
||||
|
@ -1,5 +1,7 @@
|
||||
#!/bin/bash
|
||||
|
||||
cd "$(dirname "${BASH_SOURCE[0]}")"
|
||||
|
||||
if [ "$0" == "bash" ]; then
|
||||
echo "Opening Stable Diffusion UI - Developer Console.."
|
||||
echo ""
|
||||
@ -35,5 +37,6 @@ if [ "$0" == "bash" ]; then
|
||||
|
||||
echo ""
|
||||
else
|
||||
bash --init-file developer_console.sh
|
||||
file_name=$(basename "${BASH_SOURCE[0]}")
|
||||
bash --init-file "$file_name"
|
||||
fi
|
||||
|
32
scripts/functions.sh
Normal file
32
scripts/functions.sh
Normal file
@ -0,0 +1,32 @@
|
||||
#
|
||||
# utility functions for all scripts
|
||||
#
|
||||
|
||||
fail() {
|
||||
echo
|
||||
echo "EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE"
|
||||
echo
|
||||
if [ "$1" != "" ]; then
|
||||
echo ERROR: $1
|
||||
else
|
||||
echo An error occurred.
|
||||
fi
|
||||
cat <<EOF
|
||||
|
||||
Error downloading Stable Diffusion UI. Sorry about that, please try to:
|
||||
1. Run this installer again.
|
||||
2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting
|
||||
3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB
|
||||
4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues
|
||||
|
||||
Thanks!
|
||||
|
||||
|
||||
EOF
|
||||
read -p "Press any key to continue"
|
||||
exit 1
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
@ -50,7 +50,7 @@ if "%update_branch%"=="" (
|
||||
)
|
||||
)
|
||||
|
||||
@xcopy sd-ui-files\ui ui /s /i /Y
|
||||
@xcopy sd-ui-files\ui ui /s /i /Y /q
|
||||
@copy sd-ui-files\scripts\on_sd_start.bat scripts\ /Y
|
||||
@copy sd-ui-files\scripts\bootstrap.bat scripts\ /Y
|
||||
@copy "sd-ui-files\scripts\Start Stable Diffusion UI.cmd" . /Y
|
||||
|
@ -1,5 +1,7 @@
|
||||
#!/bin/bash
|
||||
|
||||
source ./scripts/functions.sh
|
||||
|
||||
printf "\n\nStable Diffusion UI\n\n"
|
||||
|
||||
if [ -f "scripts/config.sh" ]; then
|
||||
@ -27,9 +29,7 @@ else
|
||||
if git clone -b "$update_branch" https://github.com/cmdr2/stable-diffusion-ui.git sd-ui-files ; then
|
||||
echo sd_ui_git_cloned >> scripts/install_status.txt
|
||||
else
|
||||
printf "\n\nError downloading Stable Diffusion UI. Sorry about that, please try to:\n 1. Run this installer again.\n 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting\n 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB\n 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues\nThanks!\n\n"
|
||||
read -p "Press any key to continue"
|
||||
exit
|
||||
fail "git clone failed"
|
||||
fi
|
||||
fi
|
||||
|
||||
|
@ -71,6 +71,8 @@ if exist "Open Developer Console.cmd" del "Open Developer Console.cmd"
|
||||
set TMP=%cd%\tmp
|
||||
set TEMP=%cd%\tmp
|
||||
|
||||
set PYTHONPATH=%cd%;%cd%\env\lib\site-packages
|
||||
|
||||
@call conda env create --prefix env -f environment.yaml || (
|
||||
@echo. & echo "Error installing the packages necessary for Stable Diffusion. Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!" & echo.
|
||||
pause
|
||||
@ -108,6 +110,8 @@ set PATH=C:\Windows\System32;%PATH%
|
||||
set TMP=%cd%\tmp
|
||||
set TEMP=%cd%\tmp
|
||||
|
||||
set PYTHONPATH=%cd%;%cd%\env\lib\site-packages
|
||||
|
||||
@call pip install -e git+https://github.com/TencentARC/GFPGAN#egg=GFPGAN || (
|
||||
@echo. & echo "Error installing the packages necessary for GFPGAN (Face Correction). Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!" & echo.
|
||||
pause
|
||||
@ -141,6 +145,8 @@ set PATH=C:\Windows\System32;%PATH%
|
||||
set TMP=%cd%\tmp
|
||||
set TEMP=%cd%\tmp
|
||||
|
||||
set PYTHONPATH=%cd%;%cd%\env\lib\site-packages
|
||||
|
||||
@call pip install -e git+https://github.com/xinntao/Real-ESRGAN#egg=realesrgan || (
|
||||
@echo. & echo "Error installing the packages necessary for ESRGAN (Resolution Upscaling). Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!" & echo.
|
||||
pause
|
||||
@ -168,6 +174,8 @@ set PATH=C:\Windows\System32;%PATH%
|
||||
set TMP=%cd%\tmp
|
||||
set TEMP=%cd%\tmp
|
||||
|
||||
set PYTHONPATH=%cd%;%cd%\env\lib\site-packages
|
||||
|
||||
@call conda install -c conda-forge -y --prefix env uvicorn fastapi || (
|
||||
echo "Error installing the packages necessary for Stable Diffusion UI. Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!"
|
||||
pause
|
||||
@ -191,7 +199,9 @@ call WHERE uvicorn > .tmp
|
||||
|
||||
|
||||
if not exist "..\models\stable-diffusion" mkdir "..\models\stable-diffusion"
|
||||
if not exist "..\models\vae" mkdir "..\models\vae"
|
||||
echo. > "..\models\stable-diffusion\Put your custom ckpt files here.txt"
|
||||
echo. > "..\models\vae\Put your VAE files here.txt"
|
||||
|
||||
@if exist "sd-v1-4.ckpt" (
|
||||
for %%I in ("sd-v1-4.ckpt") do if "%%~zI" EQU "4265380512" (
|
||||
@ -213,7 +223,7 @@ echo. > "..\models\stable-diffusion\Put your custom ckpt files here.txt"
|
||||
@if not exist "sd-v1-4.ckpt" (
|
||||
@echo. & echo "Downloading data files (weights) for Stable Diffusion.." & echo.
|
||||
|
||||
@call curl -C - --retry 20 --retry-all-errors --retry-delay 5 -L -k https://me.cmdr2.org/stable-diffusion-ui/sd-v1-4.ckpt > sd-v1-4.ckpt
|
||||
@call curl -L -k https://me.cmdr2.org/stable-diffusion-ui/sd-v1-4.ckpt > sd-v1-4.ckpt
|
||||
|
||||
@if exist "sd-v1-4.ckpt" (
|
||||
for %%I in ("sd-v1-4.ckpt") do if "%%~zI" NEQ "4265380512" (
|
||||
@ -243,7 +253,7 @@ echo. > "..\models\stable-diffusion\Put your custom ckpt files here.txt"
|
||||
@if not exist "GFPGANv1.3.pth" (
|
||||
@echo. & echo "Downloading data files (weights) for GFPGAN (Face Correction).." & echo.
|
||||
|
||||
@call curl -C - --retry 20 --retry-all-errors --retry-delay 5 -L -k https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth > GFPGANv1.3.pth
|
||||
@call curl -L -k https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth > GFPGANv1.3.pth
|
||||
|
||||
@if exist "GFPGANv1.3.pth" (
|
||||
for %%I in ("GFPGANv1.3.pth") do if "%%~zI" NEQ "348632874" (
|
||||
@ -273,7 +283,7 @@ echo. > "..\models\stable-diffusion\Put your custom ckpt files here.txt"
|
||||
@if not exist "RealESRGAN_x4plus.pth" (
|
||||
@echo. & echo "Downloading data files (weights) for ESRGAN (Resolution Upscaling) x4plus.." & echo.
|
||||
|
||||
@call curl -C - --retry 20 --retry-all-errors --retry-delay 5 -L -k https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth > RealESRGAN_x4plus.pth
|
||||
@call curl -L -k https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth > RealESRGAN_x4plus.pth
|
||||
|
||||
@if exist "RealESRGAN_x4plus.pth" (
|
||||
for %%I in ("RealESRGAN_x4plus.pth") do if "%%~zI" NEQ "67040989" (
|
||||
@ -303,7 +313,7 @@ echo. > "..\models\stable-diffusion\Put your custom ckpt files here.txt"
|
||||
@if not exist "RealESRGAN_x4plus_anime_6B.pth" (
|
||||
@echo. & echo "Downloading data files (weights) for ESRGAN (Resolution Upscaling) x4plus_anime.." & echo.
|
||||
|
||||
@call curl -C - --retry 20 --retry-all-errors --retry-delay 5 -L -k https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth > RealESRGAN_x4plus_anime_6B.pth
|
||||
@call curl -L -k https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth > RealESRGAN_x4plus_anime_6B.pth
|
||||
|
||||
@if exist "RealESRGAN_x4plus_anime_6B.pth" (
|
||||
for %%I in ("RealESRGAN_x4plus_anime_6B.pth") do if "%%~zI" NEQ "17938799" (
|
||||
@ -321,6 +331,36 @@ echo. > "..\models\stable-diffusion\Put your custom ckpt files here.txt"
|
||||
|
||||
|
||||
|
||||
@if exist "..\models\vae\vae-ft-mse-840000-ema-pruned.ckpt" (
|
||||
for %%I in ("..\models\vae\vae-ft-mse-840000-ema-pruned.ckpt") do if "%%~zI" EQU "334695179" (
|
||||
echo "Data files (weights) necessary for the default VAE (sd-vae-ft-mse-original) were already downloaded"
|
||||
) else (
|
||||
echo. & echo "The default VAE (sd-vae-ft-mse-original) file present at models\vae\vae-ft-mse-840000-ema-pruned.ckpt is invalid. It is only %%~zI bytes in size. Re-downloading.." & echo.
|
||||
del "..\models\vae\vae-ft-mse-840000-ema-pruned.ckpt"
|
||||
)
|
||||
)
|
||||
|
||||
@if not exist "..\models\vae\vae-ft-mse-840000-ema-pruned.ckpt" (
|
||||
@echo. & echo "Downloading data files (weights) for the default VAE (sd-vae-ft-mse-original).." & echo.
|
||||
|
||||
@call curl -L -k https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.ckpt > ..\models\vae\vae-ft-mse-840000-ema-pruned.ckpt
|
||||
|
||||
@if exist "..\models\vae\vae-ft-mse-840000-ema-pruned.ckpt" (
|
||||
for %%I in ("..\models\vae\vae-ft-mse-840000-ema-pruned.ckpt") do if "%%~zI" NEQ "334695179" (
|
||||
echo. & echo "Error: The downloaded default VAE (sd-vae-ft-mse-original) file was invalid! Bytes downloaded: %%~zI" & echo.
|
||||
echo. & echo "Error downloading the data files (weights) for the default VAE (sd-vae-ft-mse-original). Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!" & echo.
|
||||
pause
|
||||
exit /b
|
||||
)
|
||||
) else (
|
||||
@echo. & echo "Error downloading the data files (weights) for the default VAE (sd-vae-ft-mse-original). Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!" & echo.
|
||||
pause
|
||||
exit /b
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
|
||||
@>nul findstr /m "sd_install_complete" ..\scripts\install_status.txt
|
||||
@if "%ERRORLEVEL%" NEQ "0" (
|
||||
@echo sd_weights_downloaded >> ..\scripts\install_status.txt
|
||||
@ -343,6 +383,9 @@ call python --version
|
||||
@set SD_UI_PATH=%cd%\ui
|
||||
@cd stable-diffusion
|
||||
|
||||
@uvicorn server:app --app-dir "%SD_UI_PATH%" --port 9000 --host 0.0.0.0
|
||||
@if NOT DEFINED SD_UI_BIND_PORT set SD_UI_BIND_PORT=9000
|
||||
@if NOT DEFINED SD_UI_BIND_IP set SD_UI_BIND_IP=0.0.0.0
|
||||
@uvicorn server:app --app-dir "%SD_UI_PATH%" --port %SD_UI_BIND_PORT% --host %SD_UI_BIND_IP%
|
||||
|
||||
|
||||
@pause
|
||||
|
@ -1,5 +1,7 @@
|
||||
#!/bin/bash
|
||||
|
||||
source ./scripts/functions.sh
|
||||
|
||||
cp sd-ui-files/scripts/on_env_start.sh scripts/
|
||||
cp sd-ui-files/scripts/bootstrap.sh scripts/
|
||||
|
||||
@ -7,14 +9,14 @@ cp sd-ui-files/scripts/bootstrap.sh scripts/
|
||||
CONDA_BASEPATH=$(conda info --base)
|
||||
source "$CONDA_BASEPATH/etc/profile.d/conda.sh" # avoids the 'shell not initialized' error
|
||||
|
||||
conda activate
|
||||
conda activate || fail "Failed to activate conda"
|
||||
|
||||
# remove the old version of the dev console script, if it's still present
|
||||
if [ -e "open_dev_console.sh" ]; then
|
||||
rm "open_dev_console.sh"
|
||||
fi
|
||||
|
||||
python -c "import os; import shutil; frm = 'sd-ui-files/ui/hotfix/9c24e6cd9f499d02c4f21a033736dabd365962dc80fe3aeb57a8f85ea45a20a3.26fead7ea4f0f843f6eb4055dfd25693f1a71f3c6871b184042d4b126244e142'; dst = os.path.join(os.path.expanduser('~'), '.cache', 'huggingface', 'transformers', '9c24e6cd9f499d02c4f21a033736dabd365962dc80fe3aeb57a8f85ea45a20a3.26fead7ea4f0f843f6eb4055dfd25693f1a71f3c6871b184042d4b126244e142'); shutil.copyfile(frm, dst) if os.path.exists(dst) else print(''); print('Hotfixed broken JSON file from OpenAI');"
|
||||
python -c "import os; import shutil; frm = 'sd-ui-files/ui/hotfix/9c24e6cd9f499d02c4f21a033736dabd365962dc80fe3aeb57a8f85ea45a20a3.26fead7ea4f0f843f6eb4055dfd25693f1a71f3c6871b184042d4b126244e142'; dst = os.path.join(os.path.expanduser('~'), '.cache', 'huggingface', 'transformers', '9c24e6cd9f499d02c4f21a033736dabd365962dc80fe3aeb57a8f85ea45a20a3.26fead7ea4f0f843f6eb4055dfd25693f1a71f3c6871b184042d4b126244e142'); shutil.copyfile(frm, dst) if os.path.exists(dst) else print(''); print('Hotfixed broken JSON file from OpenAI');"
|
||||
|
||||
# Caution, this file will make your eyes and brain bleed. It's such an unholy mess.
|
||||
# Note to self: Please rewrite this in Python. For the sake of your own sanity.
|
||||
@ -28,8 +30,8 @@ if [ -e "scripts/install_status.txt" ] && [ `grep -c sd_git_cloned scripts/insta
|
||||
git pull
|
||||
git -c advice.detachedHead=false checkout f6cfebffa752ee11a7b07497b8529d5971de916c
|
||||
|
||||
git apply ../ui/sd_internal/ddim_callback.patch
|
||||
git apply ../ui/sd_internal/env_yaml.patch
|
||||
git apply ../ui/sd_internal/ddim_callback.patch || fail "ddim patch failed"
|
||||
git apply ../ui/sd_internal/env_yaml.patch || fail "yaml patch failed"
|
||||
|
||||
cd ..
|
||||
else
|
||||
@ -38,16 +40,14 @@ else
|
||||
if git clone https://github.com/basujindal/stable-diffusion.git ; then
|
||||
echo sd_git_cloned >> scripts/install_status.txt
|
||||
else
|
||||
printf "\n\nError downloading Stable Diffusion. Sorry about that, please try to:\n 1. Run this installer again.\n 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting\n 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB\n 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues\nThanks!\n\n"
|
||||
read -p "Press any key to continue"
|
||||
exit
|
||||
fail "git clone of basujindal/stable-diffusion.git failed"
|
||||
fi
|
||||
|
||||
cd stable-diffusion
|
||||
git -c advice.detachedHead=false checkout f6cfebffa752ee11a7b07497b8529d5971de916c
|
||||
|
||||
git apply ../ui/sd_internal/ddim_callback.patch
|
||||
git apply ../ui/sd_internal/env_yaml.patch
|
||||
git apply ../ui/sd_internal/ddim_callback.patch || fail "ddim patch failed"
|
||||
git apply ../ui/sd_internal/env_yaml.patch || fail "yaml patch failed"
|
||||
|
||||
cd ..
|
||||
fi
|
||||
@ -57,37 +57,32 @@ cd stable-diffusion
|
||||
if [ `grep -c conda_sd_env_created ../scripts/install_status.txt` -gt "0" ]; then
|
||||
echo "Packages necessary for Stable Diffusion were already installed"
|
||||
|
||||
conda activate ./env
|
||||
conda activate ./env || fail "conda activate failed"
|
||||
else
|
||||
printf "\n\nDownloading packages necessary for Stable Diffusion..\n"
|
||||
printf "\n\n***** This will take some time (depending on the speed of the Internet connection) and may appear to be stuck, but please be patient ***** ..\n\n"
|
||||
|
||||
# prevent conda from using packages from the user's home directory, to avoid conflicts
|
||||
export PYTHONNOUSERSITE=1
|
||||
export PYTHONPATH="$(pwd):$(pwd)/env/lib/site-packages"
|
||||
|
||||
if conda env create --prefix env --force -f environment.yaml ; then
|
||||
echo "Installed. Testing.."
|
||||
else
|
||||
printf "\n\nError installing the packages necessary for Stable Diffusion. Sorry about that, please try to:\n 1. Run this installer again.\n 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting\n 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB\n 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues\nThanks!\n\n"
|
||||
read -p "Press any key to continue"
|
||||
exit
|
||||
fail "'conda env create' failed"
|
||||
fi
|
||||
|
||||
conda activate ./env
|
||||
conda activate ./env || fail "conda activate failed"
|
||||
|
||||
if conda install -c conda-forge --prefix ./env -y antlr4-python3-runtime=4.8 ; then
|
||||
echo "Installed. Testing.."
|
||||
else
|
||||
printf "\n\nError installing antlr4-python3-runtime for Stable Diffusion. Sorry about that, please try to:\n 1. Run this installer again.\n 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting\n 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB\n 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues\nThanks!\n\n"
|
||||
read -p "Press any key to continue"
|
||||
exit
|
||||
fail "Error installing antlr4-python3-runtime"
|
||||
fi
|
||||
|
||||
out_test=`python -c "import torch; import ldm; import transformers; import numpy; import antlr4; print(42)"`
|
||||
if [ "$out_test" != "42" ]; then
|
||||
printf "\n\nDependency test failed! Error installing the packages necessary for Stable Diffusion. Sorry about that, please try to:\n 1. Run this installer again.\n 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting\n 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB\n 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues\nThanks!\n\n"
|
||||
read -p "Press any key to continue"
|
||||
exit
|
||||
fail "Dependency test failed"
|
||||
fi
|
||||
|
||||
echo conda_sd_env_created >> ../scripts/install_status.txt
|
||||
@ -99,20 +94,20 @@ else
|
||||
printf "\n\nDownloading packages necessary for GFPGAN (Face Correction)..\n"
|
||||
|
||||
export PYTHONNOUSERSITE=1
|
||||
export PYTHONPATH="$(pwd):$(pwd)/env/lib/site-packages"
|
||||
|
||||
if pip install -e git+https://github.com/TencentARC/GFPGAN#egg=GFPGAN ; then
|
||||
echo "Installed. Testing.."
|
||||
else
|
||||
printf "\n\nError installing the packages necessary for GFPGAN (Face Correction). Sorry about that, please try to:\n 1. Run this installer again.\n 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting\n 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB\n 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues\nThanks!\n\n"
|
||||
read -p "Press any key to continue"
|
||||
exit
|
||||
fail "Error installing the packages necessary for GFPGAN (Face Correction)."
|
||||
fi
|
||||
|
||||
out_test=`python -c "from gfpgan import GFPGANer; print(42)"`
|
||||
if [ "$out_test" != "42" ]; then
|
||||
printf "\n\nDependency test failed! Error installing the packages necessary for GFPGAN (Face Correction). Sorry about that, please try to:\n 1. Run this installer again.\n 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting\n 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB\n 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues\nThanks!\n\n"
|
||||
read -p "Press any key to continue"
|
||||
exit
|
||||
echo "EE The dependency check has failed. This usually means that some system libraries are missing."
|
||||
echo "EE On Debian/Ubuntu systems, this are often these packages: libsm6 libxext6 libxrender-dev"
|
||||
echo "EE Other Linux distributions might have different package names for these libraries."
|
||||
fail "GFPGAN dependency test failed"
|
||||
fi
|
||||
|
||||
echo conda_sd_gfpgan_deps_installed >> ../scripts/install_status.txt
|
||||
@ -124,20 +119,17 @@ else
|
||||
printf "\n\nDownloading packages necessary for ESRGAN (Resolution Upscaling)..\n"
|
||||
|
||||
export PYTHONNOUSERSITE=1
|
||||
export PYTHONPATH="$(pwd):$(pwd)/env/lib/site-packages"
|
||||
|
||||
if pip install -e git+https://github.com/xinntao/Real-ESRGAN#egg=realesrgan ; then
|
||||
echo "Installed. Testing.."
|
||||
else
|
||||
printf "\n\nError installing the packages necessary for ESRGAN (Resolution Upscaling). Sorry about that, please try to:\n 1. Run this installer again.\n 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting\n 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB\n 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues\nThanks!\n\n"
|
||||
read -p "Press any key to continue"
|
||||
exit
|
||||
fail "Error installing the packages necessary for ESRGAN"
|
||||
fi
|
||||
|
||||
out_test=`python -c "from basicsr.archs.rrdbnet_arch import RRDBNet; from realesrgan import RealESRGANer; print(42)"`
|
||||
if [ "$out_test" != "42" ]; then
|
||||
printf "\n\nDependency test failed! Error installing the packages necessary for ESRGAN (Resolution Upscaling). Sorry about that, please try to:\n 1. Run this installer again.\n 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting\n 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB\n 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues\nThanks!\n\n"
|
||||
read -p "Press any key to continue"
|
||||
exit
|
||||
fail "ESRGAN dependency test failed"
|
||||
fi
|
||||
|
||||
echo conda_sd_esrgan_deps_installed >> ../scripts/install_status.txt
|
||||
@ -149,19 +141,16 @@ else
|
||||
printf "\n\nDownloading packages necessary for Stable Diffusion UI..\n\n"
|
||||
|
||||
export PYTHONNOUSERSITE=1
|
||||
export PYTHONPATH="$(pwd):$(pwd)/env/lib/site-packages"
|
||||
|
||||
if conda install -c conda-forge --prefix ./env -y uvicorn fastapi ; then
|
||||
echo "Installed. Testing.."
|
||||
else
|
||||
printf "\n\nError installing the packages necessary for Stable Diffusion UI. Sorry about that, please try to:\n 1. Run this installer again.\n 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting\n 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB\n 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues\nThanks!\n\n"
|
||||
read -p "Press any key to continue"
|
||||
exit
|
||||
fail "'conda install uvicorn' failed"
|
||||
fi
|
||||
|
||||
if ! command -v uvicorn &> /dev/null; then
|
||||
printf "\n\nUI packages not found! Error installing the packages necessary for Stable Diffusion UI. Sorry about that, please try to:\n 1. Run this installer again.\n 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting\n 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB\n 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues\nThanks!\n\n"
|
||||
read -p "Press any key to continue"
|
||||
exit
|
||||
fail "UI packages not found!"
|
||||
fi
|
||||
|
||||
echo conda_sd_ui_deps_installed >> ../scripts/install_status.txt
|
||||
@ -170,7 +159,9 @@ fi
|
||||
|
||||
|
||||
mkdir -p "../models/stable-diffusion"
|
||||
mkdir -p "../models/vae"
|
||||
echo "" > "../models/stable-diffusion/Put your custom ckpt files here.txt"
|
||||
echo "" > "../models/vae/Put your VAE files here.txt"
|
||||
|
||||
if [ -f "sd-v1-4.ckpt" ]; then
|
||||
model_size=`find "sd-v1-4.ckpt" -printf "%s"`
|
||||
@ -186,20 +177,15 @@ fi
|
||||
if [ ! -f "sd-v1-4.ckpt" ]; then
|
||||
echo "Downloading data files (weights) for Stable Diffusion.."
|
||||
|
||||
curl -C - --retry 20 --retry-all-errors --retry-delay 5 -L -k https://me.cmdr2.org/stable-diffusion-ui/sd-v1-4.ckpt > sd-v1-4.ckpt
|
||||
curl -L -k https://me.cmdr2.org/stable-diffusion-ui/sd-v1-4.ckpt > sd-v1-4.ckpt
|
||||
|
||||
if [ -f "sd-v1-4.ckpt" ]; then
|
||||
model_size=`find "sd-v1-4.ckpt" -printf "%s"`
|
||||
if [ ! "$model_size" == "4265380512" ]; then
|
||||
printf "\n\nError: The downloaded model file was invalid! Bytes downloaded: $model_size\n\n"
|
||||
printf "\n\nError downloading the data files (weights) for Stable Diffusion. Sorry about that, please try to:\n 1. Run this installer again.\n 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting\n 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB\n 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues\nThanks!\n\n"
|
||||
read -p "Press any key to continue"
|
||||
exit
|
||||
fail "The downloaded model file was invalid! Bytes downloaded: $model_size"
|
||||
fi
|
||||
else
|
||||
printf "\n\nError downloading the data files (weights) for Stable Diffusion. Sorry about that, please try to:\n 1. Run this installer again.\n 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting\n 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB\n 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues\nThanks!\n\n"
|
||||
read -p "Press any key to continue"
|
||||
exit
|
||||
fail "Error downloading the data files (weights) for Stable Diffusion"
|
||||
fi
|
||||
fi
|
||||
|
||||
@ -218,20 +204,15 @@ fi
|
||||
if [ ! -f "GFPGANv1.3.pth" ]; then
|
||||
echo "Downloading data files (weights) for GFPGAN (Face Correction).."
|
||||
|
||||
curl -C - --retry 20 --retry-all-errors --retry-delay 5 -L -k https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth > GFPGANv1.3.pth
|
||||
curl -L -k https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth > GFPGANv1.3.pth
|
||||
|
||||
if [ -f "GFPGANv1.3.pth" ]; then
|
||||
model_size=`find "GFPGANv1.3.pth" -printf "%s"`
|
||||
if [ ! "$model_size" -eq "348632874" ]; then
|
||||
printf "\n\nError: The downloaded GFPGAN model file was invalid! Bytes downloaded: $model_size\n\n"
|
||||
printf "\n\nError downloading the data files (weights) for GFPGAN (Face Correction). Sorry about that, please try to:\n 1. Run this installer again.\n 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting\n 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB\n 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues\nThanks!\n\n"
|
||||
read -p "Press any key to continue"
|
||||
exit
|
||||
fail "The downloaded GFPGAN model file was invalid! Bytes downloaded: $model_size"
|
||||
fi
|
||||
else
|
||||
printf "\n\nError downloading the data files (weights) for GFPGAN (Face Correction). Sorry about that, please try to:\n 1. Run this installer again.\n 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting\n 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB\n 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues\nThanks!\n\n"
|
||||
read -p "Press any key to continue"
|
||||
exit
|
||||
fail "Error downloading the data files (weights) for GFPGAN (Face Correction)."
|
||||
fi
|
||||
fi
|
||||
|
||||
@ -250,20 +231,15 @@ fi
|
||||
if [ ! -f "RealESRGAN_x4plus.pth" ]; then
|
||||
echo "Downloading data files (weights) for ESRGAN (Resolution Upscaling) x4plus.."
|
||||
|
||||
curl -C - --retry 20 --retry-all-errors --retry-delay 5 -L -k https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth > RealESRGAN_x4plus.pth
|
||||
curl -L -k https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth > RealESRGAN_x4plus.pth
|
||||
|
||||
if [ -f "RealESRGAN_x4plus.pth" ]; then
|
||||
model_size=`find "RealESRGAN_x4plus.pth" -printf "%s"`
|
||||
if [ ! "$model_size" -eq "67040989" ]; then
|
||||
printf "\n\nError: The downloaded ESRGAN x4plus model file was invalid! Bytes downloaded: $model_size\n\n"
|
||||
printf "\n\nError downloading the data files (weights) for ESRGAN (Resolution Upscaling) x4plus. Sorry about that, please try to:\n 1. Run this installer again.\n 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting\n 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB\n 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues\nThanks!\n\n"
|
||||
read -p "Press any key to continue"
|
||||
exit
|
||||
fail "The downloaded ESRGAN x4plus model file was invalid! Bytes downloaded: $model_size"
|
||||
fi
|
||||
else
|
||||
printf "\n\nError downloading the data files (weights) for ESRGAN (Resolution Upscaling) x4plus. Sorry about that, please try to:\n 1. Run this installer again.\n 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting\n 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB\n 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues\nThanks!\n\n"
|
||||
read -p "Press any key to continue"
|
||||
exit
|
||||
fail "Error downloading the data files (weights) for ESRGAN (Resolution Upscaling) x4plus"
|
||||
fi
|
||||
fi
|
||||
|
||||
@ -282,18 +258,45 @@ fi
|
||||
if [ ! -f "RealESRGAN_x4plus_anime_6B.pth" ]; then
|
||||
echo "Downloading data files (weights) for ESRGAN (Resolution Upscaling) x4plus_anime.."
|
||||
|
||||
curl -C - --retry 20 --retry-all-errors --retry-delay 5 -L -k https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth > RealESRGAN_x4plus_anime_6B.pth
|
||||
curl -L -k https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth > RealESRGAN_x4plus_anime_6B.pth
|
||||
|
||||
if [ -f "RealESRGAN_x4plus_anime_6B.pth" ]; then
|
||||
model_size=`find "RealESRGAN_x4plus_anime_6B.pth" -printf "%s"`
|
||||
if [ ! "$model_size" -eq "17938799" ]; then
|
||||
printf "\n\nError: The downloaded ESRGAN x4plus_anime model file was invalid! Bytes downloaded: $model_size\n\n"
|
||||
printf "\n\nError downloading the data files (weights) for ESRGAN (Resolution Upscaling) x4plus_anime. Sorry about that, please try to:\n 1. Run this installer again.\n 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting\n 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB\n 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues\nThanks!\n\n"
|
||||
fail "The downloaded ESRGAN x4plus_anime model file was invalid! Bytes downloaded: $model_size"
|
||||
fi
|
||||
else
|
||||
fail "Error downloading the data files (weights) for ESRGAN (Resolution Upscaling) x4plus_anime."
|
||||
fi
|
||||
fi
|
||||
|
||||
|
||||
if [ -f "../models/vae/vae-ft-mse-840000-ema-pruned.ckpt" ]; then
|
||||
model_size=`find ../models/vae/vae-ft-mse-840000-ema-pruned.ckpt -printf "%s"`
|
||||
|
||||
if [ "$model_size" -eq "334695179" ]; then
|
||||
echo "Data files (weights) necessary for the default VAE (sd-vae-ft-mse-original) were already downloaded"
|
||||
else
|
||||
printf "\n\nThe model file present at models/vae/vae-ft-mse-840000-ema-pruned.ckpt is invalid. It is only $model_size bytes in size. Re-downloading.."
|
||||
rm ../models/vae/vae-ft-mse-840000-ema-pruned.ckpt
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ ! -f "../models/vae/vae-ft-mse-840000-ema-pruned.ckpt" ]; then
|
||||
echo "Downloading data files (weights) for the default VAE (sd-vae-ft-mse-original).."
|
||||
|
||||
curl -L -k https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.ckpt > ../models/vae/vae-ft-mse-840000-ema-pruned.ckpt
|
||||
|
||||
if [ -f "../models/vae/vae-ft-mse-840000-ema-pruned.ckpt" ]; then
|
||||
model_size=`find ../models/vae/vae-ft-mse-840000-ema-pruned.ckpt -printf "%s"`
|
||||
if [ ! "$model_size" -eq "334695179" ]; then
|
||||
printf "\n\nError: The downloaded default VAE (sd-vae-ft-mse-original) file was invalid! Bytes downloaded: $model_size\n\n"
|
||||
printf "\n\nError downloading the data files (weights) for the default VAE (sd-vae-ft-mse-original). Sorry about that, please try to:\n 1. Run this installer again.\n 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting\n 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB\n 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues\nThanks!\n\n"
|
||||
read -p "Press any key to continue"
|
||||
exit
|
||||
fi
|
||||
else
|
||||
printf "\n\nError downloading the data files (weights) for ESRGAN (Resolution Upscaling) x4plus_anime. Sorry about that, please try to:\n 1. Run this installer again.\n 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting\n 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB\n 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues\nThanks!\n\n"
|
||||
printf "\n\nError downloading the data files (weights) for the default VAE (sd-vae-ft-mse-original). Sorry about that, please try to:\n 1. Run this installer again.\n 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting\n 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB\n 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues\nThanks!\n\n"
|
||||
read -p "Press any key to continue"
|
||||
exit
|
||||
fi
|
||||
@ -318,6 +321,6 @@ cd ..
|
||||
export SD_UI_PATH=`pwd`/ui
|
||||
cd stable-diffusion
|
||||
|
||||
uvicorn server:app --app-dir "$SD_UI_PATH" --port 9000 --host 0.0.0.0
|
||||
uvicorn server:app --app-dir "$SD_UI_PATH" --port ${SD_UI_BIND_PORT:-9000} --host ${SD_UI_BIND_IP:-0.0.0.0}
|
||||
|
||||
read -p "Press any key to continue"
|
||||
|
@ -1,20 +1,22 @@
|
||||
#!/bin/bash
|
||||
|
||||
cd "$(dirname "${BASH_SOURCE[0]}")"
|
||||
|
||||
# set legacy installer's PATH, if it exists
|
||||
if [ -e "installer" ]; then export PATH="$(pwd)/installer/bin:$PATH"; fi
|
||||
|
||||
# Setup the packages required for the installer
|
||||
scripts/bootstrap.sh
|
||||
scripts/bootstrap.sh || exit 1
|
||||
|
||||
# set new installer's PATH, if it downloaded any packages
|
||||
if [ -e "installer_files/env" ]; then export PATH="$(pwd)/installer_files/env/bin:$PATH"; fi
|
||||
|
||||
# Test the bootstrap
|
||||
which git
|
||||
git --version
|
||||
git --version || exit 1
|
||||
|
||||
which conda
|
||||
conda --version
|
||||
conda --version || exit 1
|
||||
|
||||
# Download the rest of the installer and UI
|
||||
scripts/on_env_start.sh
|
||||
|
224
ui/index.html
224
ui/index.html
@ -1,14 +1,15 @@
|
||||
<!DOCTYPE html>
|
||||
<html>
|
||||
<head>
|
||||
<title>Stable Diffusion UI</title>
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||||
<link rel="icon" type="image/png" href="/media/images/favicon-16x16.png" sizes="16x16">
|
||||
<link rel="icon" type="image/png" href="/media/images/favicon-32x32.png" sizes="32x32">
|
||||
<link rel="stylesheet" href="/media/css/fonts.css?v=1">
|
||||
<link rel="stylesheet" href="/media/css/themes.css?v=1">
|
||||
<link rel="stylesheet" href="/media/css/main.css?v=3">
|
||||
<link rel="stylesheet" href="/media/css/auto-save.css?v=2">
|
||||
<link rel="stylesheet" href="/media/css/modifier-thumbnails.css?v=2">
|
||||
<link rel="stylesheet" href="/media/css/themes.css?v=3">
|
||||
<link rel="stylesheet" href="/media/css/main.css?v=17">
|
||||
<link rel="stylesheet" href="/media/css/auto-save.css?v=5">
|
||||
<link rel="stylesheet" href="/media/css/modifier-thumbnails.css?v=4">
|
||||
<link rel="stylesheet" href="/media/css/fontawesome-all.min.css?v=1">
|
||||
<link rel="stylesheet" href="/media/css/drawingboard.min.css">
|
||||
<script src="/media/js/jquery-3.6.1.min.js"></script>
|
||||
@ -18,58 +19,39 @@
|
||||
<div id="container">
|
||||
<div id="top-nav">
|
||||
<div id="logo">
|
||||
<h1>Stable Diffusion UI <small>v2.3.5 <span id="updateBranchLabel"></span></small></h1>
|
||||
<h1>Stable Diffusion UI <small>v2.4.5 <span id="updateBranchLabel"></span></small></h1>
|
||||
</div>
|
||||
<ul id="top-nav-items">
|
||||
<li class="dropdown">
|
||||
<span><i class="fa fa-comments icon"></i> Help & Community</span>
|
||||
<ul id="community-links" class="dropdown-content">
|
||||
<li><a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" target="_blank"><i class="fa-solid fa-circle-question fa-fw"></i> Usual problems and solutions</a></li>
|
||||
<li><a href="https://discord.com/invite/u9yhsFmEkB" target="_blank"><i class="fa-brands fa-discord fa-fw"></i> Discord user community</a></li>
|
||||
<li><a href="https://www.reddit.com/r/StableDiffusionUI/" target="_blank"><i class="fa-brands fa-reddit fa-fw"></i> Reddit community</a></li>
|
||||
<li><a href="https://github.com/cmdr2/stable-diffusion-ui" target="_blank"><i class="fa-brands fa-github fa-fw"></i> Source code on GitHub</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li class="dropdown">
|
||||
<div id="server-status">
|
||||
<div id="server-status-color">●</div>
|
||||
<span id="server-status-msg">Stable Diffusion is starting..</span>
|
||||
</div>
|
||||
<div id="tab-container">
|
||||
<span id="tab-main" class="tab active">
|
||||
<span><i class="fa fa-image icon"></i> Generate</span>
|
||||
</span>
|
||||
<span id="tab-settings" class="tab">
|
||||
<span><i class="fa fa-gear icon"></i> Settings</span>
|
||||
<div id="system-settings" class="panel-box settings-box dropdown-content">
|
||||
<ul id="system-settings-entries">
|
||||
<li><b class="settings-subheader">System Settings</b></li>
|
||||
<br/>
|
||||
<li><label for="theme">Theme: </label><select id="theme" name="theme"><option value="theme-default">Default</option></select></li>
|
||||
<li><input id="save_to_disk" name="save_to_disk" type="checkbox"> <label for="save_to_disk">Automatically save to <input id="diskPath" name="diskPath" size="40" disabled></label></li>
|
||||
<li><input id="sound_toggle" name="sound_toggle" type="checkbox" checked> <label for="sound_toggle">Play sound on task completion</label></li>
|
||||
<li><input id="turbo" name="turbo" type="checkbox" checked> <label for="turbo">Turbo mode <small>(generates images faster, but uses an additional 1 GB of GPU memory)</small></label></li>
|
||||
<li><input id="use_cpu" name="use_cpu" type="checkbox"> <label for="use_cpu">Use CPU instead of GPU <small>(warning: this will be *very* slow)</small></label></li>
|
||||
<li><input id="use_full_precision" name="use_full_precision" type="checkbox"> <label for="use_full_precision">Use full precision <small>(for GPU-only. warning: this will consume more VRAM)</small></label></li>
|
||||
<li>
|
||||
<input id="auto_save_settings" name="auto_save_settings" checked type="checkbox">
|
||||
<label for="auto_save_settings">Automatically save settings <small>(settings restored on browser load)</small></label>
|
||||
<br/>
|
||||
<button id="configureSettingsSaveBtn">Configure</button>
|
||||
</li>
|
||||
<!-- <li><input id="allow_nsfw" name="allow_nsfw" type="checkbox"> <label for="allow_nsfw">Allow NSFW Content (You confirm you are above 18 years of age)</label></li> -->
|
||||
<br/>
|
||||
<li><input id="use_beta_channel" name="use_beta_channel" type="checkbox"> <label for="use_beta_channel">🔥Beta channel. Get the latest features immediately (but could be less stable). Please restart the program after changing this.</label></li>
|
||||
</ul>
|
||||
</div>
|
||||
</li>
|
||||
</ul>
|
||||
</span>
|
||||
<span id="tab-about" class="tab">
|
||||
<span><i class="fa fa-comments icon"></i> Help & Community</span>
|
||||
</span>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div class="flex-container">
|
||||
<div id="editor" class="col-fixed-10">
|
||||
<div id="server-status">
|
||||
<div id="server-status-color">●</div>
|
||||
<span id="server-status-msg">Stable Diffusion is starting..</span>
|
||||
</div>
|
||||
<div id="tab-content-wrapper">
|
||||
<div id="tab-content-main" class="tab-content active flex-container">
|
||||
<div id="editor">
|
||||
<div id="editor-inputs">
|
||||
<div id="editor-inputs-prompt" class="row">
|
||||
<label for="prompt"><b>Enter Prompt</b></label> <small>or</small> <button id="promptsFromFileBtn">Load from a file</button>
|
||||
<textarea id="prompt" class="col-free">a photograph of an astronaut riding a horse</textarea>
|
||||
<input id="prompt_from_file" name="prompt_from_file" type="file" /> <!-- hidden -->
|
||||
|
||||
<label for="negative_prompt" class="collapsible" id="negative_prompt_handle">Negative Prompt <small>(optional)</small></label>
|
||||
<label for="negative_prompt" class="collapsible" id="negative_prompt_handle">
|
||||
Negative Prompt
|
||||
<a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/Writing-prompts#negative-prompts" target="_blank"><i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip right">Click to learn more about Negative Prompts</span></i></a>
|
||||
<small>(optional)</small>
|
||||
</label>
|
||||
<div class="collapsible-content">
|
||||
<input id="negative_prompt" name="negative_prompt" placeholder="list the things to remove from the image (e.g. fog, green)">
|
||||
</div>
|
||||
@ -86,7 +68,12 @@
|
||||
</div>
|
||||
|
||||
<br/>
|
||||
<input id="enable_mask" name="enable_mask" type="checkbox"> <label for="enable_mask">In-Painting (beta) <small>(select the area which the AI will paint into)</small></label>
|
||||
<input id="enable_mask" name="enable_mask" type="checkbox">
|
||||
<label for="enable_mask">
|
||||
In-Painting (beta)
|
||||
<a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/Inpainting" target="_blank"><i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip right">Click to learn more about InPainting</span></i></a>
|
||||
<small>(select the area which the AI will paint into)</small>
|
||||
</label>
|
||||
<div id="inpaintingEditor"></div>
|
||||
</div>
|
||||
</div>
|
||||
@ -100,26 +87,33 @@
|
||||
<button id="stopImage" class="secondaryButton">Stop All</button>
|
||||
</div>
|
||||
|
||||
<div class="line-separator"> </div>
|
||||
<span class="line-separator"></span>
|
||||
|
||||
<div id="editor-settings" class="panel-box settings-box">
|
||||
<div id="editor-settings" class="settings-box panel-box">
|
||||
<h4 class="collapsible">
|
||||
Image Settings
|
||||
<i id="reset-image-settings" class="fa-solid fa-arrow-rotate-left">
|
||||
<span class="simple-tooltip right">
|
||||
<i id="reset-image-settings" class="fa-solid fa-arrow-rotate-left section-button">
|
||||
<span class="simple-tooltip left">
|
||||
Reset Image Settings
|
||||
</span>
|
||||
</i>
|
||||
</h4>
|
||||
<ul id="editor-settings-entries" class="collapsible-content">
|
||||
<li><table>
|
||||
<div id="editor-settings-entries" class="collapsible-content">
|
||||
<div><table>
|
||||
<tr><b class="settings-subheader">Image Settings</b></tr>
|
||||
<tr class="pl-5"><td><label for="seed">Seed:</label></td><td><input id="seed" name="seed" size="10" value="30000"> <input id="random_seed" name="random_seed" type="checkbox" checked><label for="random_seed">Random</label></td></tr>
|
||||
<tr class="pl-5"><td><label for="num_outputs_total">Number of Images:</label></td><td><input id="num_outputs_total" name="num_outputs_total" value="1" size="1"> <label><small>(total)</small></label> <input id="num_outputs_parallel" name="num_outputs_parallel" value="1" size="1"> <label for="num_outputs_parallel"><small>(in parallel)</small></label></td></tr>
|
||||
<tr class="pl-5"><td><label for="seed">Seed:</label></td><td><input id="seed" name="seed" size="10" value="30000" onkeypress="preventNonNumericalInput(event)"> <input id="random_seed" name="random_seed" type="checkbox" checked><label for="random_seed">Random</label></td></tr>
|
||||
<tr class="pl-5"><td><label for="num_outputs_total">Number of Images:</label></td><td><input id="num_outputs_total" name="num_outputs_total" value="1" size="1" onkeypress="preventNonNumericalInput(event)"> <label><small>(total)</small></label> <input id="num_outputs_parallel" name="num_outputs_parallel" value="1" size="1" onkeypress="preventNonNumericalInput(event)"> <label for="num_outputs_parallel"><small>(in parallel)</small></label></td></tr>
|
||||
<tr class="pl-5"><td><label for="stable_diffusion_model">Model:</label></td><td>
|
||||
<select id="stable_diffusion_model" name="stable_diffusion_model">
|
||||
<!-- <option value="sd-v1-4" selected>sd-v1-4</option> -->
|
||||
</select>
|
||||
<a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/Custom-Models" target="_blank"><i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip right">Click to learn more about custom models</span></i></a>
|
||||
</td></tr>
|
||||
<tr class="pl-5"><td><label for="vae_model">Custom VAE:</i></label></td><td>
|
||||
<select id="vae_model" name="vae_model">
|
||||
<!-- <option value="" selected>None</option> -->
|
||||
</select>
|
||||
<a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/VAE-Variational-Auto-Encoder" target="_blank"><i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip right">Click to learn more about VAEs</span></i></a>
|
||||
</td></tr>
|
||||
<tr id="samplerSelection" class="pl-5"><td><label for="sampler">Sampler:</label></td><td>
|
||||
<select id="sampler" name="sampler">
|
||||
@ -132,6 +126,7 @@
|
||||
<option value="dpm2_a">dpm2_a</option>
|
||||
<option value="lms">lms</option>
|
||||
</select>
|
||||
<a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/How-to-Use#samplers" target="_blank"><i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip right">Click to learn more about samplers</span></i></a>
|
||||
</td></tr>
|
||||
<tr class="pl-5"><td><label>Image Size: </label></td><td>
|
||||
<select id="width" name="width" value="512">
|
||||
@ -179,22 +174,21 @@
|
||||
</select>
|
||||
<label for="height"><small>(height)</small></label>
|
||||
</td></tr>
|
||||
<tr class="pl-5"><td><label for="num_inference_steps">Inference Steps:</label></td><td> <input id="num_inference_steps" name="num_inference_steps" size="4" value="25"></td></tr>
|
||||
<tr class="pl-5"><td><label for="guidance_scale_slider">Guidance Scale:</label></td><td> <input id="guidance_scale_slider" name="guidance_scale_slider" class="editor-slider" value="75" type="range" min="10" max="500"> <input id="guidance_scale" name="guidance_scale" size="4"></td></tr>
|
||||
<tr id="prompt_strength_container" class="pl-5"><td><label for="prompt_strength_slider">Prompt Strength:</label></td><td> <input id="prompt_strength_slider" name="prompt_strength_slider" class="editor-slider" value="80" type="range" min="0" max="99"> <input id="prompt_strength" name="prompt_strength" size="4"><br/></td></tr></span>
|
||||
<tr class="pl-5"><td><label for="num_inference_steps">Inference Steps:</label></td><td> <input id="num_inference_steps" name="num_inference_steps" size="4" value="25" onkeypress="preventNonNumericalInput(event)"></td></tr>
|
||||
<tr class="pl-5"><td><label for="guidance_scale_slider">Guidance Scale:</label></td><td> <input id="guidance_scale_slider" name="guidance_scale_slider" class="editor-slider" value="75" type="range" min="10" max="500"> <input id="guidance_scale" name="guidance_scale" size="4" pattern="^[0-9\.]+$" onkeypress="preventNonNumericalInput(event)"></td></tr>
|
||||
<tr id="prompt_strength_container" class="pl-5"><td><label for="prompt_strength_slider">Prompt Strength:</label></td><td> <input id="prompt_strength_slider" name="prompt_strength_slider" class="editor-slider" value="80" type="range" min="0" max="99"> <input id="prompt_strength" name="prompt_strength" size="4" pattern="^[0-9\.]+$" onkeypress="preventNonNumericalInput(event)"><br/></td></tr></span>
|
||||
<tr class="pl-5"><td><label for="output_format">Output Format:</label></td><td>
|
||||
<select id="output_format" name="output_format">
|
||||
<option value="jpeg" selected>jpeg</option>
|
||||
<option value="png">png</option>
|
||||
</select>
|
||||
</td></tr>
|
||||
</li></table>
|
||||
|
||||
<br/>
|
||||
</table></div>
|
||||
|
||||
<div><ul>
|
||||
<li><b class="settings-subheader">Render Settings</b></li>
|
||||
<li class="pl-5"><input id="stream_image_progress" name="stream_image_progress" type="checkbox"> <label for="stream_image_progress">Show a live preview <small>(uses more VRAM, slightly slower image creation)</small></label></li>
|
||||
<li class="pl-5"><input id="use_face_correction" name="use_face_correction" type="checkbox" checked> <label for="use_face_correction">Fix incorrect faces and eyes <small>(uses GFPGAN)</small></label></li>
|
||||
<li class="pl-5"><input id="stream_image_progress" name="stream_image_progress" type="checkbox"> <label for="stream_image_progress">Show a live preview <small>(uses more VRAM, and slower image creation)</small></label></li>
|
||||
<li class="pl-5"><input id="use_face_correction" name="use_face_correction" type="checkbox"> <label for="use_face_correction">Fix incorrect faces and eyes <small>(uses GFPGAN)</small></label></li>
|
||||
<li class="pl-5">
|
||||
<input id="use_upscale" name="use_upscale" type="checkbox"> <label for="use_upscale">Upscale image by 4x with </label>
|
||||
<select id="upscale_model" name="upscale_model">
|
||||
@ -203,12 +197,19 @@
|
||||
</select>
|
||||
</li>
|
||||
<li class="pl-5"><input id="show_only_filtered_image" name="show_only_filtered_image" type="checkbox" checked> <label for="show_only_filtered_image">Show only the corrected/upscaled image</label></li>
|
||||
</ul>
|
||||
</ul></div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="editor-modifiers" class="panel-box">
|
||||
<button id="modifier-settings-btn" title="Add custom modifiers"><i class="fa fa-gear"></i></button>
|
||||
<h4 class="collapsible">Image Modifiers (art styles, tags etc)</h4>
|
||||
<h4 class="collapsible">
|
||||
Image Modifiers (art styles, tags etc)
|
||||
<i id="modifier-settings-btn" class="fa-solid fa-gear section-button">
|
||||
<span class="simple-tooltip left">
|
||||
Add Custom Modifiers
|
||||
</span>
|
||||
</i>
|
||||
</h4>
|
||||
<div id="editor-modifiers-entries" class="collapsible-content">
|
||||
<div id="editor-modifiers-entries-toolbar">
|
||||
<label for="preview-image">Image Style:</label>
|
||||
@ -226,27 +227,85 @@
|
||||
|
||||
<div id="preview" class="col-free">
|
||||
<div id="initial-text">
|
||||
Type a prompt and press the "Make Image" button.<br/><br/>You can set an "Initial Image" if you want to guide the AI.<br/><br/>You can also add modifiers like "Realistic", "Pencil Sketch", "ArtStation" etc by browsing through the "Image Modifiers" section and selecting the desired modifiers.<br/><br/>Click "Advanced Settings" for additional settings like seed, image size, number of images to generate etc.<br/><br/>Enjoy! :)
|
||||
Type a prompt and press the "Make Image" button.<br/><br/>You can set an "Initial Image" if you want to guide the AI.<br/><br/>
|
||||
You can also add modifiers like "Realistic", "Pencil Sketch", "ArtStation" etc by browsing through the "Image Modifiers" section
|
||||
and selecting the desired modifiers.<br/><br/>
|
||||
Click "Image Settings" for additional settings like seed, image size, number of images to generate etc.<br/><br/>Enjoy! :)
|
||||
</div>
|
||||
<div id="preview-tools">
|
||||
<button id="clear-all-previews" class="secondaryButton"><i class="fa-solid fa-trash-can"></i> Clear All</button>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="save-settings-config" style="display:none">
|
||||
<div id="tab-content-settings" class="tab-content">
|
||||
<div id="system-settings" class="tab-content-inner">
|
||||
<h1>System Settings</h1>
|
||||
<table class="form-table"></table>
|
||||
<br/>
|
||||
<button id="save-system-settings-btn" class="primaryButton">Save</button>
|
||||
<br/><br/>
|
||||
<div>
|
||||
<h3><i class="fa fa-microchip icon"></i> System Info</h3>
|
||||
<div id="system-info"></div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
<div id="tab-content-about" class="tab-content">
|
||||
<div class="tab-content-inner">
|
||||
<div class="float-container">
|
||||
<div class="float-child">
|
||||
<h1>Help</h1>
|
||||
<ul id="help-links">
|
||||
<li><span class="help-section">Using the software</span>
|
||||
<ul>
|
||||
<li> <a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/How-To-Use" target="_blank"><i class="fa-solid fa-book fa-fw"></i> How to use</a>
|
||||
<li> <a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/UI-Overview" target="_blank"><i class="fa-solid fa-list fa-fw"></i> UI Overview</a>
|
||||
<li> <a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/Writing-Prompts" target="_blank"><i class="fa-solid fa-pen-to-square fa-fw"></i> Writing prompts</a>
|
||||
<li> <a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/Inpainting" target="_blank"><i class="fa-solid fa-paintbrush fa-fw"></i> Inpainting</a>
|
||||
</ul>
|
||||
|
||||
<li><span class="help-section">Installation</span>
|
||||
<ul>
|
||||
<li> <a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" target="_blank"><i class="fa-solid fa-circle-question fa-fw"></i> Troubleshooting</a>
|
||||
</ul>
|
||||
|
||||
<li><span class="help-section">Downloadable Content</span>
|
||||
<ul>
|
||||
<li> <a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/Custom-Models" target="_blank"><i class="fa-solid fa-images fa-fw"></i> Custom Models</a>
|
||||
<li> <a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/UI-Plugins" target="_blank"><i class="fa-solid fa-puzzle-piece fa-fw"></i> UI Plugins</a>
|
||||
<li> <a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/VAE-Variational-Auto-Encoder" target="_blank"><i class="fa-solid fa-hand-sparkles fa-fw"></i> VAE Variational Auto Encoder</a>
|
||||
</ul>
|
||||
</ul>
|
||||
</div>
|
||||
|
||||
<div class="float-child">
|
||||
<h1>Community</h1>
|
||||
<ul id="community-links">
|
||||
<li><a href="https://discord.com/invite/u9yhsFmEkB" target="_blank"><i class="fa-brands fa-discord fa-fw"></i> Discord user community</a></li>
|
||||
<li><a href="https://www.reddit.com/r/StableDiffusionUI/" target="_blank"><i class="fa-brands fa-reddit fa-fw"></i> Reddit community</a></li>
|
||||
<li><a href="https://github.com/cmdr2/stable-diffusion-ui" target="_blank"><i class="fa-brands fa-github fa-fw"></i> Source code on GitHub</a></li>
|
||||
</ul>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
|
||||
<div id="save-settings-config" class="popup">
|
||||
<div>
|
||||
<span id="save-settings-config-close-btn">X</span>
|
||||
<i class="close-button fa-solid fa-xmark"></i>
|
||||
<h1>Save Settings Configuration</h1>
|
||||
<p>Select which settings should be remembered when restarting the browser</p>
|
||||
<table id="save-settings-config-table">
|
||||
<table id="save-settings-config-table" class="form-table">
|
||||
</table>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="modifier-settings-config" style="display:none">
|
||||
<div id="modifier-settings-config" class="popup">
|
||||
<div>
|
||||
<span id="modifier-settings-config-close-btn">X</span>
|
||||
<i class="close-button fa-solid fa-xmark"></i>
|
||||
<h1>Modifier Settings</h1>
|
||||
<p>Set your custom modifiers (one per line)</p>
|
||||
<textarea id="custom-modifiers-input" placeholder="Enter your custom modifiers, one-per-line"></textarea>
|
||||
@ -254,9 +313,9 @@
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div class="line-separator"> </div>
|
||||
|
||||
<div id="footer" class="panel-box">
|
||||
<div id="footer-spacer"></div>
|
||||
<div id="footer">
|
||||
<div class="line-separator"> </div>
|
||||
<p>If you found this project useful and want to help keep it alive, please <a href="https://ko-fi.com/cmdr2_stablediffusion_ui" target="_blank"><img src="/media/images/kofi.png" id="coffeeButton"></a> to help cover the cost of development and maintenance! Thank you for your support!</p>
|
||||
<p>Please feel free to join the <a href="https://discord.com/invite/u9yhsFmEkB" target="_blank">discord community</a> or <a href="https://github.com/cmdr2/stable-diffusion-ui/issues" target="_blank">file an issue</a> if you have any problems or suggestions in using this interface.</p>
|
||||
<div id="footer-legal">
|
||||
@ -268,13 +327,15 @@
|
||||
</div>
|
||||
</body>
|
||||
|
||||
<script src="media/js/parameters.js?v=9"></script>
|
||||
<script src="media/js/plugins.js?v=1"></script>
|
||||
<script src="media/js/utils.js?v=4"></script>
|
||||
<script src="media/js/utils.js?v=6"></script>
|
||||
<script src="media/js/inpainting-editor.js?v=1"></script>
|
||||
<script src="media/js/image-modifiers.js?v=3"></script>
|
||||
<script src="media/js/auto-save.js?v=2"></script>
|
||||
<script src="media/js/main.js?v=5"></script>
|
||||
<script src="media/js/themes.js?v=2"></script>
|
||||
<script src="media/js/image-modifiers.js?v=6"></script>
|
||||
<script src="media/js/auto-save.js?v=8"></script>
|
||||
<script src="media/js/main.js?v=22.1"></script>
|
||||
<script src="media/js/themes.js?v=4"></script>
|
||||
<script src="media/js/dnd.js?v=9"></script>
|
||||
<script>
|
||||
async function init() {
|
||||
await initSettings()
|
||||
@ -283,6 +344,7 @@ async function init() {
|
||||
await getAppConfig()
|
||||
await loadModifiers()
|
||||
await loadUIPlugins()
|
||||
await getDevices()
|
||||
|
||||
setInterval(healthCheck, HEALTH_PING_INTERVAL * 1000)
|
||||
healthCheck()
|
||||
|
@ -6,69 +6,43 @@
|
||||
display: none;
|
||||
}
|
||||
|
||||
#save-settings-config {
|
||||
position: absolute;
|
||||
background: rgba(32, 33, 36, 50%);
|
||||
top: 0px;
|
||||
left: 0px;
|
||||
right: 0px;
|
||||
bottom: 0px;
|
||||
z-index: 1000;
|
||||
}
|
||||
|
||||
#save-settings-config > div {
|
||||
background: var(--background-color3);
|
||||
max-width: 600px;
|
||||
margin: auto;
|
||||
margin-top: 50px;
|
||||
border-radius: 6px;
|
||||
padding: 30px;
|
||||
text-align: center;
|
||||
}
|
||||
|
||||
#save-settings-config-table {
|
||||
.form-table {
|
||||
margin: auto;
|
||||
}
|
||||
|
||||
#save-settings-config-table th {
|
||||
.form-table th {
|
||||
padding-top: 15px;
|
||||
padding-bottom: 5px;
|
||||
}
|
||||
|
||||
#save-settings-config-table td:first-child,
|
||||
#save-settings-config-table th:first-child {
|
||||
.form-table td:first-child > *,
|
||||
.form-table th:first-child > * {
|
||||
float: right;
|
||||
white-space: nowrap;
|
||||
}
|
||||
|
||||
#save-settings-config-table td:last-child,
|
||||
#save-settings-config-table th:last-child {
|
||||
.form-table td:last-child > *,
|
||||
.form-table th:last-child > * {
|
||||
float: left;
|
||||
}
|
||||
|
||||
#save-settings-config-table td small {
|
||||
.form-table small {
|
||||
color: rgb(153, 153, 153);
|
||||
}
|
||||
|
||||
#save-settings-config-close-btn {
|
||||
float: right;
|
||||
cursor: pointer;
|
||||
padding: 10px;
|
||||
transform: translate(50%, -50%) scaleX(130%);
|
||||
#system-settings .form-table td {
|
||||
height: 24px;
|
||||
}
|
||||
|
||||
#reset-image-settings {
|
||||
cursor: pointer;
|
||||
float: right;
|
||||
padding: 8px;
|
||||
opacity: 1;
|
||||
transition: opacity 0.5;
|
||||
#system-settings .form-table td:last-child div {
|
||||
display: flex;
|
||||
align-items: center;
|
||||
}
|
||||
#system-settings .form-table td:last-child div > :not([type="checkbox"]):first-child {
|
||||
margin-left: 3px;
|
||||
}
|
||||
|
||||
.collapsible:not(.active) #reset-image-settings {
|
||||
display: none;
|
||||
}
|
||||
|
||||
#reset-image-settings.hidden {
|
||||
opacity: 0;
|
||||
pointer-events: none;
|
||||
}
|
||||
#system-settings .form-table td:last-child div small {
|
||||
padding-left: 5px;
|
||||
text-align: left;
|
||||
}
|
@ -8,6 +8,7 @@ html {
|
||||
}
|
||||
|
||||
body {
|
||||
margin: 0;
|
||||
font-size: 11pt;
|
||||
background-color: var(--background-color1);
|
||||
color: var(--text-color);
|
||||
@ -26,9 +27,10 @@ label {
|
||||
height: 65pt;
|
||||
font-size: 13px;
|
||||
margin-bottom: 6px;
|
||||
margin-top: 5px;
|
||||
display: block;
|
||||
}
|
||||
.image_preview_container {
|
||||
/* display: none; */
|
||||
margin-top: 10pt;
|
||||
}
|
||||
.image_clear_btn {
|
||||
@ -64,17 +66,17 @@ label {
|
||||
font-size: small;
|
||||
padding-bottom: 3pt;
|
||||
}
|
||||
#progressBar {
|
||||
font-size: small;
|
||||
}
|
||||
#footer {
|
||||
font-size: small;
|
||||
padding-left: 10pt;
|
||||
padding: 10pt;
|
||||
background: none;
|
||||
}
|
||||
#footer-legal {
|
||||
font-size: 8pt;
|
||||
}
|
||||
#footer-spacer {
|
||||
flex: 0.7
|
||||
}
|
||||
.imgSeedLabel {
|
||||
font-size: 0.8em;
|
||||
background-color: var(--background-color2);
|
||||
@ -107,33 +109,42 @@ label {
|
||||
margin-bottom: 7px;
|
||||
}
|
||||
#container {
|
||||
width: 95%;
|
||||
margin-left: auto;
|
||||
margin-right: auto;
|
||||
}
|
||||
@media screen and (max-width: 1800px) {
|
||||
#container {
|
||||
width: 100%;
|
||||
}
|
||||
min-height: 100vh;
|
||||
width: 100%;
|
||||
margin: 0px;
|
||||
display: flex;
|
||||
flex-direction: column;
|
||||
}
|
||||
#logo small {
|
||||
font-size: 11pt;
|
||||
}
|
||||
#editor {
|
||||
padding: 5px;
|
||||
background: var(--background-color1);
|
||||
padding: 16px;
|
||||
display: flex;
|
||||
flex-direction: column;
|
||||
flex: 0 0 370pt;
|
||||
}
|
||||
#editor label {
|
||||
font-weight: normal;
|
||||
}
|
||||
#editor h4 {
|
||||
margin: 0px;
|
||||
white-space: nowrap;
|
||||
}
|
||||
#editor .collapsible-content {
|
||||
width: 100%;
|
||||
}
|
||||
.settings-box label small {
|
||||
color: rgb(153, 153, 153);
|
||||
margin-right: 10px;
|
||||
}
|
||||
#preview {
|
||||
padding: 5px;
|
||||
padding: 8px;
|
||||
background: var(--background-color1);
|
||||
}
|
||||
#editor-inputs {
|
||||
margin-bottom: 20px;
|
||||
#preview .collapsible-content {
|
||||
padding: 0px 15px;
|
||||
}
|
||||
#editor-inputs-prompt {
|
||||
flex: 1;
|
||||
@ -151,7 +162,7 @@ label {
|
||||
#makeImage {
|
||||
flex: 0 0 70px;
|
||||
background: var(--accent-color);
|
||||
border: var(--make-image-border);
|
||||
border: var(--primary-button-border);
|
||||
color: rgb(255, 221, 255);
|
||||
width: 100%;
|
||||
height: 30pt;
|
||||
@ -168,6 +179,7 @@ label {
|
||||
height: 30pt;
|
||||
border-radius: 6px;
|
||||
display: none;
|
||||
margin-top: 2pt;
|
||||
}
|
||||
#stopImage:hover {
|
||||
background: rgb(177, 27, 0);
|
||||
@ -176,12 +188,6 @@ label {
|
||||
display: flex;
|
||||
width: 100%;
|
||||
}
|
||||
.col-50 {
|
||||
flex: 50%;
|
||||
}
|
||||
.col-fixed-10 {
|
||||
flex: 0 0 350pt;
|
||||
}
|
||||
.col-free {
|
||||
flex: 1;
|
||||
}
|
||||
@ -189,7 +195,7 @@ label {
|
||||
cursor: pointer;
|
||||
}
|
||||
.collapsible-content {
|
||||
display: none;
|
||||
display: block;
|
||||
padding-left: 15px;
|
||||
}
|
||||
.collapsible-content h5 {
|
||||
@ -201,50 +207,40 @@ label {
|
||||
color: white;
|
||||
padding-right: 5px;
|
||||
}
|
||||
.panel-box {
|
||||
background: var(--background-color2);
|
||||
border: 1px solid var(--background-color3);
|
||||
border-radius: 7px;
|
||||
padding: 5px;
|
||||
margin-bottom: 15px;
|
||||
box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.15), 0 6px 20px 0 rgba(0, 0, 0, 0.15);
|
||||
.collapsible:not(.active) ~ .collapsible-content {
|
||||
display: none !important;
|
||||
}
|
||||
.panel-box h4 {
|
||||
margin: 0;
|
||||
padding: 2px 0;
|
||||
#editor-modifiers {
|
||||
max-width: 600px;
|
||||
overflow-y: auto;
|
||||
overflow-x: hidden;
|
||||
}
|
||||
#editor-modifiers .editor-modifiers-leaf {
|
||||
padding-top: 10pt;
|
||||
padding-bottom: 10pt;
|
||||
}
|
||||
#preview {
|
||||
margin-left: 10pt;
|
||||
}
|
||||
img {
|
||||
box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.15), 0 6px 20px 0 rgba(0, 0, 0, 0.15);
|
||||
}
|
||||
.line-separator {
|
||||
background: rgb(56, 56, 56);
|
||||
background: var(--background-color3);
|
||||
height: 1pt;
|
||||
margin: 15pt 0;
|
||||
margin: 16px 0px;
|
||||
}
|
||||
#editor-inputs-tags-container {
|
||||
margin-top: 5pt;
|
||||
display: none;
|
||||
}
|
||||
#server-status {
|
||||
display: inline;
|
||||
float: right;
|
||||
transform: translateY(-5pt);
|
||||
position: absolute;
|
||||
right: 16px;
|
||||
top: 50%;
|
||||
transform: translateY(-50%);
|
||||
text-align: right;
|
||||
}
|
||||
#server-status-color {
|
||||
/* width: 8pt;
|
||||
height: 8pt;
|
||||
border-radius: 4pt; */
|
||||
font-size: 14pt;
|
||||
color: rgb(200, 139, 0);
|
||||
/* background-color: rgb(197, 1, 1); */
|
||||
/* transform: translateY(15%); */
|
||||
display: inline;
|
||||
}
|
||||
#server-status-msg {
|
||||
@ -288,16 +284,19 @@ img {
|
||||
}
|
||||
|
||||
#top-nav {
|
||||
padding-top: 3pt;
|
||||
padding-bottom: 15pt;
|
||||
position: relative;
|
||||
background: var(--background-color4);
|
||||
display: flex;
|
||||
}
|
||||
#top-nav .icon {
|
||||
.tab .icon {
|
||||
padding-right: 4pt;
|
||||
font-size: 14pt;
|
||||
transform: translateY(1pt);
|
||||
}
|
||||
#logo {
|
||||
display: inline;
|
||||
padding: 12px;
|
||||
white-space: nowrap;
|
||||
}
|
||||
#logo h1 {
|
||||
display: inline;
|
||||
@ -311,6 +310,8 @@ img {
|
||||
float: left;
|
||||
display: inline;
|
||||
padding-left: 20pt;
|
||||
}
|
||||
#top-nav-items > li:first-child {
|
||||
cursor: default;
|
||||
}
|
||||
#initial-text {
|
||||
@ -324,26 +325,12 @@ img {
|
||||
.pl-5 {
|
||||
padding-left: 5pt;
|
||||
}
|
||||
#system-settings {
|
||||
width: 360pt;
|
||||
transform: translateX(-100%) translateX(70pt);
|
||||
|
||||
padding-top: 10pt;
|
||||
padding-bottom: 10pt;
|
||||
}
|
||||
#system-settings ul {
|
||||
margin: 0;
|
||||
padding: 0;
|
||||
}
|
||||
#system-settings li {
|
||||
padding-left: 5pt;
|
||||
}
|
||||
#community-links {
|
||||
display: inline-block;
|
||||
list-style-type: none;
|
||||
margin: 0;
|
||||
padding: 12pt;
|
||||
padding-bottom: 0pt;
|
||||
transform: translateX(-15%);
|
||||
text-align: left;
|
||||
margin: auto;
|
||||
padding: 0px;
|
||||
}
|
||||
#community-links li {
|
||||
padding-bottom: 12pt;
|
||||
@ -357,6 +344,35 @@ img {
|
||||
color: var(--text-color);
|
||||
text-decoration: none;
|
||||
}
|
||||
.float-child h1 {
|
||||
border-bottom: var(--button-border);
|
||||
}
|
||||
#help-links {
|
||||
display: inline-block;
|
||||
list-style-type: none;
|
||||
text-align: left;
|
||||
margin: auto;
|
||||
padding: 0px;
|
||||
}
|
||||
#help-links li {
|
||||
padding-bottom: 12pt;
|
||||
display: block;
|
||||
font-size: 10pt;
|
||||
}
|
||||
#help-links li .fa-fw {
|
||||
padding-right: 2pt;
|
||||
}
|
||||
#help-links li a {
|
||||
color: var(--text-color);
|
||||
text-decoration: none;
|
||||
}
|
||||
#help-links li ul {
|
||||
padding-inline-start: 10px;
|
||||
margin-top: 8px;
|
||||
}
|
||||
.help-section {
|
||||
font-size: 130%;
|
||||
}
|
||||
.dropdown {
|
||||
overflow: hidden;
|
||||
}
|
||||
@ -383,6 +399,9 @@ img {
|
||||
border-radius: 5pt;
|
||||
box-shadow: 0 20px 28px 0 rgba(0, 0, 0, 0.15), 0 6px 20px 0 rgba(0, 0, 0, 0.15);
|
||||
}
|
||||
.imageTaskContainer > div > .collapsible-handle {
|
||||
display: none;
|
||||
}
|
||||
.taskStatusLabel {
|
||||
float: left;
|
||||
font-size: 8pt;
|
||||
@ -402,6 +421,12 @@ img {
|
||||
border: 1px solid rgb(107, 75, 0);
|
||||
color:rgb(255, 242, 211)
|
||||
}
|
||||
.primaryButton {
|
||||
flex: 0 0 70px;
|
||||
background: var(--accent-color);
|
||||
border: var(--primary-button-border);
|
||||
color: rgb(255, 221, 255);
|
||||
}
|
||||
.secondaryButton {
|
||||
background: rgb(132, 8, 0);
|
||||
border: 1px solid rgb(122, 29, 0);
|
||||
@ -433,6 +458,8 @@ img {
|
||||
#init_image_preview {
|
||||
max-width: 150px;
|
||||
max-height: 150px;
|
||||
height: 100%;
|
||||
width: 100%;
|
||||
object-fit: contain;
|
||||
border-radius: 6px;
|
||||
transition: all 1s ease-in-out;
|
||||
@ -441,6 +468,7 @@ img {
|
||||
#init_image_preview:hover {
|
||||
max-width: 500px;
|
||||
max-height: 1000px;
|
||||
|
||||
transition: all 1s 0.5s ease-in-out;
|
||||
}
|
||||
|
||||
@ -462,6 +490,20 @@ img {
|
||||
border-radius: 6px 0px;
|
||||
}
|
||||
|
||||
#editor-settings-entries {
|
||||
display: flex;
|
||||
flex-direction: column;
|
||||
}
|
||||
|
||||
#editor-settings-entries > div {
|
||||
margin-top: 15px;
|
||||
}
|
||||
|
||||
#editor-settings-entries ul {
|
||||
margin: 0px;
|
||||
padding: 0px;
|
||||
}
|
||||
|
||||
#editor-settings-entries table td {
|
||||
padding: 0px;
|
||||
line-height: 28px;
|
||||
@ -477,6 +519,7 @@ img {
|
||||
width: 100%;
|
||||
}
|
||||
|
||||
/* INPUTS STYLING */
|
||||
button,
|
||||
input[type="file"],
|
||||
input[type="checkbox"],
|
||||
@ -536,13 +579,16 @@ input::file-selector-button {
|
||||
height: 19px;
|
||||
}
|
||||
|
||||
/* MOBILE SUPPORT */
|
||||
@media screen and (max-width: 700px) {
|
||||
#top-nav {
|
||||
flex-direction: column;
|
||||
}
|
||||
body {
|
||||
margin: 0px;
|
||||
}
|
||||
#container {
|
||||
margin: 0px;
|
||||
padding: 10px
|
||||
}
|
||||
.flex-container {
|
||||
flex-direction: column;
|
||||
@ -571,21 +617,98 @@ input::file-selector-button {
|
||||
left: 0px;
|
||||
right: 0px;
|
||||
}
|
||||
#editor {
|
||||
padding: 16px 8px;
|
||||
}
|
||||
.tab-content-inner {
|
||||
margin: 0px;
|
||||
}
|
||||
.tab {
|
||||
font-size: 0;
|
||||
}
|
||||
.tab .icon {
|
||||
padding-right: 0px;
|
||||
}
|
||||
#server-status {
|
||||
display: none;
|
||||
}
|
||||
.popup > div {
|
||||
padding-left: 5px !important;
|
||||
padding-right: 5px !important;
|
||||
}
|
||||
.popup > div input, .popup > div select {
|
||||
max-width: 40vw;
|
||||
}
|
||||
.popup .close-button {
|
||||
padding: 0px !important;
|
||||
margin: 24px !important;
|
||||
}
|
||||
.simple-tooltip.right {
|
||||
right: initial;
|
||||
left: 0px;
|
||||
top: 50%;
|
||||
transform: translate(calc(-100% + 15%), -50%);
|
||||
}
|
||||
:hover > .simple-tooltip.right {
|
||||
transform: translate(100%, -50%);
|
||||
}
|
||||
}
|
||||
|
||||
@media (min-width: 700px) {
|
||||
/* #editor {
|
||||
max-width: 480px;
|
||||
} */
|
||||
.float-container {
|
||||
padding: 20px;
|
||||
}
|
||||
.float-child {
|
||||
width: 50%;
|
||||
float: left;
|
||||
padding: 20px;
|
||||
}
|
||||
}
|
||||
|
||||
.help-btn {
|
||||
position: relative;
|
||||
}
|
||||
|
||||
#promptsFromFileBtn {
|
||||
font-size: 9pt;
|
||||
}
|
||||
|
||||
#reset-image-settings {
|
||||
.section-button {
|
||||
position: relative;
|
||||
transform: translateY(-13%);
|
||||
}
|
||||
.collapsible:not(.active) #copy-image-settings {
|
||||
display: none;
|
||||
}
|
||||
|
||||
.section-button {
|
||||
cursor: pointer;
|
||||
float: right;
|
||||
padding: 8px;
|
||||
opacity: 1;
|
||||
transition: opacity 0.5;
|
||||
}
|
||||
|
||||
.section-button {
|
||||
cursor: pointer;
|
||||
float: right;
|
||||
padding: 8px;
|
||||
opacity: 1;
|
||||
transition: opacity 0.5;
|
||||
}
|
||||
|
||||
.collapsible:not(.active) .section-button {
|
||||
display: none;
|
||||
}
|
||||
|
||||
/* SIMPLE TOOTIP */
|
||||
.simple-tooltip {
|
||||
border-radius: 3px;
|
||||
font-weight: bold;
|
||||
font-size: 16px;
|
||||
font-size: 12px;
|
||||
background-color: var(--background-color3);
|
||||
|
||||
visibility: hidden;
|
||||
@ -604,8 +727,6 @@ input::file-selector-button {
|
||||
visibility: visible;
|
||||
}
|
||||
}
|
||||
|
||||
/* position specific */
|
||||
.simple-tooltip.right {
|
||||
right: 0px;
|
||||
top: 50%;
|
||||
@ -641,3 +762,154 @@ input::file-selector-button {
|
||||
:hover > .simple-tooltip.bottom {
|
||||
transform: translate(-50%, 100%);
|
||||
}
|
||||
|
||||
/* PROGRESS BAR */
|
||||
.progress-bar {
|
||||
background: var(--background-color3);
|
||||
border-radius: 4px;
|
||||
border: 2px solid var(--background-color3);
|
||||
height: 16px;
|
||||
position: relative;
|
||||
transition: 0.25s 1s border, 0.25s 1s height;
|
||||
}
|
||||
.progress-bar > div {
|
||||
background: var(--accent-color);
|
||||
border-radius: 4px;
|
||||
position: absolute;
|
||||
left: 0;
|
||||
top: 0;
|
||||
bottom: 0;
|
||||
width: 0%;
|
||||
transition: width 1s ease-in-out;
|
||||
}
|
||||
.progress-bar.active {
|
||||
background: repeating-linear-gradient(-65deg,
|
||||
var(--background-color2),
|
||||
var(--background-color2) 4px,
|
||||
var(--background-color3) 5px,
|
||||
var(--background-color3) 9px,
|
||||
var(--background-color2) 10px);
|
||||
background-size: 200% auto;
|
||||
background-position: 0 100%;
|
||||
animation: progress-anim 2s infinite;
|
||||
animation-fill-mode: forwards;
|
||||
animation-timing-function: linear;
|
||||
}
|
||||
|
||||
@keyframes progress-anim {
|
||||
0% { background-position: -55px 0; }
|
||||
100% { background-position: 0 0; }
|
||||
}
|
||||
|
||||
/* POPUPS */
|
||||
.popup:not(.active) {
|
||||
visibility: hidden;
|
||||
opacity: 0;
|
||||
}
|
||||
|
||||
.popup {
|
||||
position: absolute;
|
||||
background: rgba(32, 33, 36, 50%);
|
||||
top: 0px;
|
||||
left: 0px;
|
||||
right: 0px;
|
||||
bottom: 0px;
|
||||
z-index: 1000;
|
||||
opacity: 1;
|
||||
transition: 0s visibility, 0.3s opacity;
|
||||
}
|
||||
|
||||
@media only screen and (min-height: 1050px) {
|
||||
.popup {
|
||||
position: fixed;
|
||||
}
|
||||
}
|
||||
|
||||
.popup > div {
|
||||
position: relative;
|
||||
background: var(--background-color2);
|
||||
border: solid 1px var(--background-color3);
|
||||
max-width: 700px;
|
||||
margin: auto;
|
||||
margin-top: 50px;
|
||||
border-radius: 6px;
|
||||
padding: 30px;
|
||||
text-align: center;
|
||||
box-shadow: 0px 0px 30px black;
|
||||
}
|
||||
|
||||
.popup .close-button {
|
||||
position: absolute;
|
||||
right: 0px;
|
||||
top: 0px;
|
||||
transform: scale(150%);
|
||||
cursor: pointer;
|
||||
padding: 24px;
|
||||
}
|
||||
|
||||
/* TABS */
|
||||
#tab-container {
|
||||
display: flex;
|
||||
align-items: flex-end;
|
||||
}
|
||||
|
||||
.tab {
|
||||
padding: 8px 16px;
|
||||
border-radius: 4px 4px 0px 0px;
|
||||
margin-left: 8px;
|
||||
cursor: pointer;
|
||||
background: var(--background-color1);
|
||||
opacity: 50%;
|
||||
transition: opacity 0.25s;
|
||||
}
|
||||
|
||||
.tab:hover {
|
||||
opacity: 75%;
|
||||
}
|
||||
|
||||
.tab.active {
|
||||
opacity: 100%;
|
||||
}
|
||||
|
||||
.tab-content:not(.active) {
|
||||
display: none;
|
||||
}
|
||||
|
||||
#tab-content-wrapper {
|
||||
border-top: 8px solid var(--background-color1);
|
||||
}
|
||||
|
||||
.tab-content-inner {
|
||||
margin: auto;
|
||||
max-width: 600px;
|
||||
text-align: center;
|
||||
padding: 20px 10px;
|
||||
}
|
||||
|
||||
.panel-box {
|
||||
background: var(--background-color2);
|
||||
border: 1px solid var(--background-color3);
|
||||
border-radius: 7px;
|
||||
padding: 7px;
|
||||
margin-bottom: 15px;
|
||||
box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.15), 0 6px 20px 0 rgba(0, 0, 0, 0.15);
|
||||
}
|
||||
|
||||
i.active {
|
||||
background: var(--accent-color);
|
||||
}
|
||||
#system-info {
|
||||
max-width: 800px;
|
||||
font-size: 10pt;
|
||||
}
|
||||
#system-info .value {
|
||||
text-align: left;
|
||||
padding-left: 10pt;
|
||||
}
|
||||
#system-info label {
|
||||
float: right;
|
||||
font-weight: bold;
|
||||
}
|
||||
#save-system-settings-btn {
|
||||
padding: 4pt 8pt;
|
||||
}
|
||||
|
@ -217,32 +217,6 @@
|
||||
#modifier-settings-btn {
|
||||
float: right;
|
||||
}
|
||||
|
||||
#modifier-settings-config {
|
||||
position: fixed;
|
||||
background: rgba(32, 33, 36, 50%);
|
||||
top: 0px;
|
||||
left: 0px;
|
||||
width: 100vw;
|
||||
height: 100vh;
|
||||
z-index: 1000;
|
||||
}
|
||||
|
||||
#modifier-settings-config > div {
|
||||
background: var(--background-color2);
|
||||
max-width: 600px;
|
||||
margin: auto;
|
||||
margin-top: 100px;
|
||||
border-radius: 6px;
|
||||
padding: 30px;
|
||||
text-align: center;
|
||||
}
|
||||
#modifier-settings-config-close-btn {
|
||||
float: right;
|
||||
cursor: pointer;
|
||||
padding: 10px;
|
||||
transform: translate(50%, -50%) scaleX(130%);
|
||||
}
|
||||
#modifier-settings-config textarea {
|
||||
width: 90%;
|
||||
height: 150px;
|
||||
|
@ -23,12 +23,12 @@
|
||||
--input-border-size: 1px;
|
||||
--accent-color: hsl(var(--accent-hue), 100%, var(--accent-lightness));
|
||||
--accent-color-hover: hsl(var(--accent-hue), 100%, var(--accent-lightness-hover));
|
||||
--make-image-border: 2px solid hsl(var(--accent-hue), 100%, calc(var(--accent-lightness) - 21%));
|
||||
--primary-button-border: none;
|
||||
}
|
||||
|
||||
.theme-light {
|
||||
--background-color1: white;
|
||||
--background-color2: #dddddd;
|
||||
--background-color2: #ececec;
|
||||
--background-color3: #e7e9eb;
|
||||
--background-color4: #cccccc;
|
||||
|
||||
@ -47,7 +47,7 @@
|
||||
|
||||
--accent-hue: 235;
|
||||
--accent-lightness: 65%;
|
||||
--make-image-border: none;
|
||||
--primary-button-border: none;
|
||||
|
||||
--button-color: var(--accent-color);
|
||||
--button-border: none;
|
||||
@ -61,7 +61,7 @@
|
||||
.theme-cool-blue {
|
||||
--main-hue: 222;
|
||||
--main-saturation: 18%;
|
||||
--value-base: 19%;
|
||||
--value-base: 18%;
|
||||
--value-step: 3%;
|
||||
--background-color1: hsl(var(--main-hue), var(--main-saturation), var(--value-base));
|
||||
--background-color2: hsl(var(--main-hue), var(--main-saturation), calc(var(--value-base) - (1 * var(--value-step))));
|
||||
@ -69,7 +69,7 @@
|
||||
--background-color4: hsl(var(--main-hue), var(--main-saturation), calc(var(--value-base) - (3 * var(--value-step))));
|
||||
|
||||
--accent-hue: 212;
|
||||
--make-image-border: none;
|
||||
--primary-button-border: none;
|
||||
|
||||
--button-color: var(--accent-color);
|
||||
--button-border: none;
|
||||
@ -91,7 +91,7 @@
|
||||
--background-color3: hsl(var(--main-hue), var(--main-saturation), calc(var(--value-base) - (2 * var(--value-step))));
|
||||
--background-color4: hsl(var(--main-hue), var(--main-saturation), calc(var(--value-base) - (3 * var(--value-step))));
|
||||
|
||||
--make-image-border: none;
|
||||
--primary-button-border: none;
|
||||
|
||||
--button-color: var(--accent-color);
|
||||
--button-border: none;
|
||||
@ -110,9 +110,9 @@
|
||||
--background-color1: hsl(var(--main-hue), var(--main-saturation), var(--value-base));
|
||||
--background-color2: hsl(var(--main-hue), var(--main-saturation), calc(var(--value-base) + (1 * var(--value-step))));
|
||||
--background-color3: hsl(var(--main-hue), var(--main-saturation), calc(var(--value-base) + (2 * var(--value-step))));
|
||||
--background-color4: hsl(var(--main-hue), var(--main-saturation), calc(var(--value-base) + (3 * var(--value-step))));
|
||||
--background-color4: hsl(var(--main-hue), var(--main-saturation), calc(var(--value-base) + (1.4 * var(--value-step))));
|
||||
|
||||
--make-image-border: none;
|
||||
--primary-button-border: none;
|
||||
|
||||
--button-color: var(--accent-color);
|
||||
--button-border: none;
|
||||
@ -134,7 +134,7 @@
|
||||
--background-color4: hsl(var(--main-hue), var(--main-saturation), calc(var(--value-base) - (3 * var(--value-step))));
|
||||
|
||||
--accent-hue: 212;
|
||||
--make-image-border: none;
|
||||
--primary-button-border: none;
|
||||
|
||||
--button-color: var(--accent-color);
|
||||
--button-border: none;
|
||||
|
@ -13,6 +13,7 @@ const SETTINGS_IDS_LIST = [
|
||||
"num_outputs_total",
|
||||
"num_outputs_parallel",
|
||||
"stable_diffusion_model",
|
||||
"vae_model",
|
||||
"sampler",
|
||||
"width",
|
||||
"height",
|
||||
@ -33,7 +34,6 @@ const SETTINGS_IDS_LIST = [
|
||||
"diskPath",
|
||||
"sound_toggle",
|
||||
"turbo",
|
||||
"use_cpu",
|
||||
"use_full_precision",
|
||||
"auto_save_settings"
|
||||
]
|
||||
@ -52,7 +52,9 @@ const SETTINGS_SECTIONS = [ // gets the "keys" property filled in with an ordere
|
||||
async function initSettings() {
|
||||
SETTINGS_IDS_LIST.forEach(id => {
|
||||
var element = document.getElementById(id)
|
||||
var label = document.querySelector(`label[for='${element.id}']`)
|
||||
if (!element) {
|
||||
console.error(`Missing settings element ${id}`)
|
||||
}
|
||||
SETTINGS[id] = {
|
||||
key: id,
|
||||
element: element,
|
||||
@ -68,7 +70,8 @@ async function initSettings() {
|
||||
SETTINGS_SECTIONS.forEach(section => {
|
||||
var name = section.name
|
||||
var element = document.getElementById(section.id)
|
||||
var children = Array.from(element.querySelectorAll(unsorted_settings_ids.map(id => `#${id}`).join(",")))
|
||||
var unsorted_ids = unsorted_settings_ids.map(id => `#${id}`).join(",")
|
||||
var children = unsorted_ids == "" ? [] : Array.from(element.querySelectorAll(unsorted_ids));
|
||||
section.keys = []
|
||||
children.forEach(e => {
|
||||
section.keys.push(e.id)
|
||||
@ -126,8 +129,12 @@ function loadSettings() {
|
||||
return
|
||||
}
|
||||
CURRENTLY_LOADING_SETTINGS = true
|
||||
saved_settings.map(saved_setting => {
|
||||
saved_settings.forEach(saved_setting => {
|
||||
var setting = SETTINGS[saved_setting.key]
|
||||
if (!setting) {
|
||||
console.warn(`Attempted to load setting ${saved_setting.key}, but no setting found`);
|
||||
return null;
|
||||
}
|
||||
setting.ignore = saved_setting.ignore
|
||||
if (!setting.ignore) {
|
||||
setting.value = saved_setting.value
|
||||
@ -208,20 +215,22 @@ function fillSaveSettingsConfigTable() {
|
||||
})
|
||||
}
|
||||
|
||||
document.getElementById("save-settings-config-close-btn").addEventListener('click', () => {
|
||||
saveSettingsConfigOverlay.style.display = 'none'
|
||||
// configureSettingsSaveBtn
|
||||
|
||||
|
||||
|
||||
|
||||
var autoSaveSettings = document.getElementById("auto_save_settings")
|
||||
var configSettingsButton = document.createElement("button")
|
||||
configSettingsButton.textContent = "Configure"
|
||||
configSettingsButton.style.margin = "0px 5px"
|
||||
autoSaveSettings.insertAdjacentElement("afterend", configSettingsButton)
|
||||
autoSaveSettings.addEventListener("change", () => {
|
||||
configSettingsButton.style.display = autoSaveSettings.checked ? "block" : "none"
|
||||
})
|
||||
document.getElementById("configureSettingsSaveBtn").addEventListener('click', () => {
|
||||
configSettingsButton.addEventListener('click', () => {
|
||||
fillSaveSettingsConfigTable()
|
||||
saveSettingsConfigOverlay.style.display = 'block'
|
||||
})
|
||||
saveSettingsConfigOverlay.addEventListener('click', (event) => {
|
||||
if (event.target.id == saveSettingsConfigOverlay.id) {
|
||||
saveSettingsConfigOverlay.style.display = 'none'
|
||||
}
|
||||
})
|
||||
document.getElementById("save-settings-config-close-btn").addEventListener('click', () => {
|
||||
saveSettingsConfigOverlay.style.display = 'none'
|
||||
saveSettingsConfigOverlay.classList.add("active")
|
||||
})
|
||||
resetImageSettingsButton.addEventListener('click', event => {
|
||||
loadDefaultSettingsSection("editor-settings");
|
||||
@ -273,7 +282,12 @@ function tryLoadOldSettings() {
|
||||
Object.keys(individual_settings_map).forEach(localStorageKey => {
|
||||
var localStorageValue = localStorage.getItem(localStorageKey);
|
||||
if (localStorageValue !== null) {
|
||||
var setting = SETTINGS[individual_settings_map[localStorageKey]]
|
||||
let key = individual_settings_map[localStorageKey]
|
||||
var setting = SETTINGS[key]
|
||||
if (!setting) {
|
||||
console.warn(`Attempted to map old setting ${key}, but no setting found`);
|
||||
return null;
|
||||
}
|
||||
if (setting.element.type == "checkbox" && (typeof localStorageValue === "string" || localStorageValue instanceof String)) {
|
||||
localStorageValue = localStorageValue == "true"
|
||||
}
|
||||
|
469
ui/media/js/dnd.js
Normal file
469
ui/media/js/dnd.js
Normal file
@ -0,0 +1,469 @@
|
||||
"use strict" // Opt in to a restricted variant of JavaScript
|
||||
|
||||
const EXT_REGEX = /(?:\.([^.]+))?$/
|
||||
const TEXT_EXTENSIONS = ['txt', 'json']
|
||||
const IMAGE_EXTENSIONS = ['jpg', 'jpeg', 'png', 'bmp', 'tiff', 'tif', 'tga']
|
||||
|
||||
function parseBoolean(stringValue) {
|
||||
if (typeof stringValue === 'boolean') {
|
||||
return stringValue
|
||||
}
|
||||
if (typeof stringValue === 'number') {
|
||||
return stringValue !== 0
|
||||
}
|
||||
if (typeof stringValue !== 'string') {
|
||||
return false
|
||||
}
|
||||
switch(stringValue?.toLowerCase()?.trim()) {
|
||||
case "true":
|
||||
case "yes":
|
||||
case "on":
|
||||
case "1":
|
||||
return true;
|
||||
|
||||
case "false":
|
||||
case "no":
|
||||
case "off":
|
||||
case "0":
|
||||
case null:
|
||||
case undefined:
|
||||
return false;
|
||||
}
|
||||
try {
|
||||
return Boolean(JSON.parse(stringValue));
|
||||
} catch {
|
||||
return Boolean(stringValue)
|
||||
}
|
||||
}
|
||||
|
||||
const TASK_MAPPING = {
|
||||
prompt: { name: 'Prompt',
|
||||
setUI: (prompt) => {
|
||||
promptField.value = prompt
|
||||
},
|
||||
readUI: () => promptField.value,
|
||||
parse: (val) => val
|
||||
},
|
||||
negative_prompt: { name: 'Negative Prompt',
|
||||
setUI: (negative_prompt) => {
|
||||
negativePromptField.value = negative_prompt
|
||||
},
|
||||
readUI: () => negativePromptField.value,
|
||||
parse: (val) => val
|
||||
},
|
||||
width: { name: 'Width',
|
||||
setUI: (width) => {
|
||||
const oldVal = widthField.value
|
||||
widthField.value = width
|
||||
if (!widthField.value) {
|
||||
widthField.value = oldVal
|
||||
}
|
||||
},
|
||||
readUI: () => parseInt(widthField.value),
|
||||
parse: (val) => parseInt(val)
|
||||
},
|
||||
height: { name: 'Height',
|
||||
setUI: (height) => {
|
||||
const oldVal = heightField.value
|
||||
heightField.value = height
|
||||
if (!heightField.value) {
|
||||
heightField.value = oldVal
|
||||
}
|
||||
},
|
||||
readUI: () => parseInt(heightField.value),
|
||||
parse: (val) => parseInt(val)
|
||||
},
|
||||
seed: { name: 'Seed',
|
||||
setUI: (seed) => {
|
||||
if (!seed) {
|
||||
randomSeedField.checked = true
|
||||
seedField.disabled = true
|
||||
return
|
||||
}
|
||||
randomSeedField.checked = false
|
||||
seedField.disabled = false
|
||||
seedField.value = seed
|
||||
},
|
||||
readUI: () => (randomSeedField.checked ? Math.floor(Math.random() * 10000000) : parseInt(seedField.value)),
|
||||
parse: (val) => parseInt(val)
|
||||
},
|
||||
num_inference_steps: { name: 'Steps',
|
||||
setUI: (num_inference_steps) => {
|
||||
numInferenceStepsField.value = num_inference_steps
|
||||
},
|
||||
readUI: () => parseInt(numInferenceStepsField.value),
|
||||
parse: (val) => parseInt(val)
|
||||
},
|
||||
guidance_scale: { name: 'Guidance Scale',
|
||||
setUI: (guidance_scale) => {
|
||||
guidanceScaleField.value = guidance_scale
|
||||
updateGuidanceScaleSlider()
|
||||
},
|
||||
readUI: () => parseFloat(guidanceScaleField.value),
|
||||
parse: (val) => parseFloat(val)
|
||||
},
|
||||
prompt_strength: { name: 'Prompt Strength',
|
||||
setUI: (prompt_strength) => {
|
||||
promptStrengthField.value = prompt_strength
|
||||
updatePromptStrengthSlider()
|
||||
},
|
||||
readUI: () => parseFloat(promptStrengthField.value),
|
||||
parse: (val) => parseFloat(val)
|
||||
},
|
||||
|
||||
init_image: { name: 'Initial Image',
|
||||
setUI: (init_image) => {
|
||||
initImagePreview.src = init_image
|
||||
},
|
||||
readUI: () => initImagePreview.src,
|
||||
parse: (val) => val
|
||||
},
|
||||
mask: { name: 'Mask',
|
||||
setUI: (mask) => {
|
||||
inpaintingEditor.setImg(mask)
|
||||
maskSetting.checked = Boolean(mask)
|
||||
},
|
||||
readUI: () => (maskSetting.checked ? inpaintingEditor.getImg() : undefined),
|
||||
parse: (val) => val
|
||||
},
|
||||
|
||||
use_face_correction: { name: 'Use Face Correction',
|
||||
setUI: (use_face_correction) => {
|
||||
useFaceCorrectionField.checked = parseBoolean(use_face_correction)
|
||||
},
|
||||
readUI: () => useFaceCorrectionField.checked,
|
||||
parse: (val) => parseBoolean(val)
|
||||
},
|
||||
use_upscale: { name: 'Use Upscaling',
|
||||
setUI: (use_upscale) => {
|
||||
const oldVal = upscaleModelField.value
|
||||
upscaleModelField.value = use_upscale
|
||||
if (upscaleModelField.value) { // Is a valid value for the field.
|
||||
useUpscalingField.checked = true
|
||||
upscaleModelField.disabled = false
|
||||
} else { // Not a valid value, restore the old value and disable the filter.
|
||||
upscaleModelField.disabled = true
|
||||
upscaleModelField.value = oldVal
|
||||
useUpscalingField.checked = false
|
||||
}
|
||||
},
|
||||
readUI: () => (useUpscalingField.checked ? upscaleModelField.value : undefined),
|
||||
parse: (val) => val
|
||||
},
|
||||
sampler: { name: 'Sampler',
|
||||
setUI: (sampler) => {
|
||||
samplerField.value = sampler
|
||||
},
|
||||
readUI: () => samplerField.value,
|
||||
parse: (val) => val
|
||||
},
|
||||
use_stable_diffusion_model: { name: 'Stable Diffusion model',
|
||||
setUI: (use_stable_diffusion_model) => {
|
||||
const oldVal = stableDiffusionModelField.value
|
||||
|
||||
let pathIdx = use_stable_diffusion_model.lastIndexOf('/') // Linux, Mac paths
|
||||
if (pathIdx < 0) {
|
||||
pathIdx = use_stable_diffusion_model.lastIndexOf('\\') // Windows paths.
|
||||
}
|
||||
if (pathIdx >= 0) {
|
||||
use_stable_diffusion_model = use_stable_diffusion_model.slice(pathIdx + 1)
|
||||
}
|
||||
const modelExt = '.ckpt'
|
||||
if (use_stable_diffusion_model.endsWith(modelExt)) {
|
||||
use_stable_diffusion_model = use_stable_diffusion_model.slice(0, use_stable_diffusion_model.length - modelExt.length)
|
||||
}
|
||||
|
||||
stableDiffusionModelField.value = use_stable_diffusion_model
|
||||
|
||||
if (!stableDiffusionModelField.value) {
|
||||
stableDiffusionModelField.value = oldVal
|
||||
}
|
||||
},
|
||||
readUI: () => stableDiffusionModelField.value,
|
||||
parse: (val) => val
|
||||
},
|
||||
|
||||
numOutputsParallel: { name: 'Parallel Images',
|
||||
setUI: (numOutputsParallel) => {
|
||||
numOutputsParallelField.value = numOutputsParallel
|
||||
},
|
||||
readUI: () => parseInt(numOutputsParallelField.value),
|
||||
parse: (val) => val
|
||||
},
|
||||
|
||||
use_cpu: { name: 'Use CPU',
|
||||
setUI: (use_cpu) => {
|
||||
useCPUField.checked = use_cpu
|
||||
},
|
||||
readUI: () => useCPUField.checked,
|
||||
parse: (val) => val
|
||||
},
|
||||
turbo: { name: 'Turbo',
|
||||
setUI: (turbo) => {
|
||||
turboField.checked = turbo
|
||||
},
|
||||
readUI: () => turboField.checked,
|
||||
parse: (val) => Boolean(val)
|
||||
},
|
||||
use_full_precision: { name: 'Use Full Precision',
|
||||
setUI: (use_full_precision) => {
|
||||
useFullPrecisionField.checked = use_full_precision
|
||||
},
|
||||
readUI: () => useFullPrecisionField.checked,
|
||||
parse: (val) => Boolean(val)
|
||||
},
|
||||
|
||||
stream_image_progress: { name: 'Stream Image Progress',
|
||||
setUI: (stream_image_progress) => {
|
||||
streamImageProgressField.checked = (parseInt(numOutputsTotalField.value) > 50 ? false : stream_image_progress)
|
||||
},
|
||||
readUI: () => streamImageProgressField.checked,
|
||||
parse: (val) => Boolean(val)
|
||||
},
|
||||
show_only_filtered_image: { name: 'Show only the corrected/upscaled image',
|
||||
setUI: (show_only_filtered_image) => {
|
||||
showOnlyFilteredImageField.checked = show_only_filtered_image
|
||||
},
|
||||
readUI: () => showOnlyFilteredImageField.checked,
|
||||
parse: (val) => Boolean(val)
|
||||
},
|
||||
output_format: { name: 'Output Format',
|
||||
setUI: (output_format) => {
|
||||
outputFormatField.value = output_format
|
||||
},
|
||||
readUI: () => outputFormatField.value,
|
||||
parse: (val) => val
|
||||
},
|
||||
save_to_disk_path: { name: 'Save to disk path',
|
||||
setUI: (save_to_disk_path) => {
|
||||
saveToDiskField.checked = Boolean(save_to_disk_path)
|
||||
diskPathField.value = save_to_disk_path
|
||||
},
|
||||
readUI: () => diskPathField.value,
|
||||
parse: (val) => val
|
||||
}
|
||||
}
|
||||
function restoreTaskToUI(task) {
|
||||
if ('numOutputsTotal' in task) {
|
||||
numOutputsTotalField.value = task.numOutputsTotal
|
||||
}
|
||||
if ('seed' in task) {
|
||||
randomSeedField.checked = false
|
||||
seedField.value = task.seed
|
||||
}
|
||||
if (!('reqBody' in task)) {
|
||||
return
|
||||
}
|
||||
for (const key in TASK_MAPPING) {
|
||||
if (key in task.reqBody) {
|
||||
TASK_MAPPING[key].setUI(task.reqBody[key])
|
||||
}
|
||||
}
|
||||
}
|
||||
function readUI() {
|
||||
const reqBody = {}
|
||||
for (const key in TASK_MAPPING) {
|
||||
reqBody[key] = TASK_MAPPING[key].readUI()
|
||||
}
|
||||
return {
|
||||
'numOutputsTotal': parseInt(numOutputsTotalField.value),
|
||||
'seed': TASK_MAPPING['seed'].readUI(),
|
||||
'reqBody': reqBody
|
||||
}
|
||||
}
|
||||
|
||||
const TASK_TEXT_MAPPING = {
|
||||
width: 'Width',
|
||||
height: 'Height',
|
||||
seed: 'Seed',
|
||||
num_inference_steps: 'Steps',
|
||||
guidance_scale: 'Guidance Scale',
|
||||
prompt_strength: 'Prompt Strength',
|
||||
use_face_correction: 'Use Face Correction',
|
||||
use_upscale: 'Use Upscaling',
|
||||
sampler: 'Sampler',
|
||||
negative_prompt: 'Negative Prompt',
|
||||
use_stable_diffusion_model: 'Stable Diffusion model'
|
||||
}
|
||||
const afterPromptRe = /^\s*Width\s*:\s*\d+\s*(?:\r\n|\r|\n)+\s*Height\s*:\s*\d+\s*(\r\n|\r|\n)+Seed\s*:\s*\d+\s*$/igm
|
||||
function parseTaskFromText(str) {
|
||||
const taskReqBody = {}
|
||||
|
||||
// Prompt
|
||||
afterPromptRe.lastIndex = 0
|
||||
const match = afterPromptRe.exec(str)
|
||||
if (match) {
|
||||
let prompt = str.slice(0, match.index)
|
||||
str = str.slice(prompt.length)
|
||||
taskReqBody.prompt = prompt.trim()
|
||||
console.log('Prompt:', taskReqBody.prompt)
|
||||
}
|
||||
for (const key in TASK_TEXT_MAPPING) {
|
||||
const name = TASK_TEXT_MAPPING[key];
|
||||
let val = undefined
|
||||
|
||||
const reName = new RegExp(`${name}\\ *:\\ *(.*)(?:\\r\\n|\\r|\\n)*`, 'igm')
|
||||
const match = reName.exec(str);
|
||||
if (match) {
|
||||
str = str.slice(0, match.index) + str.slice(match.index + match[0].length)
|
||||
val = match[1]
|
||||
}
|
||||
if (val !== undefined) {
|
||||
taskReqBody[key] = TASK_MAPPING[key].parse(val.trim())
|
||||
console.log(TASK_MAPPING[key].name + ':', taskReqBody[key])
|
||||
if (!str) {
|
||||
break
|
||||
}
|
||||
}
|
||||
}
|
||||
if (Object.keys(taskReqBody).length <= 0) {
|
||||
return undefined
|
||||
}
|
||||
const task = { reqBody: taskReqBody }
|
||||
if ('seed' in taskReqBody) {
|
||||
task.seed = taskReqBody.seed
|
||||
}
|
||||
return task
|
||||
}
|
||||
|
||||
async function readFile(file, i) {
|
||||
const fileContent = (await file.text()).trim()
|
||||
|
||||
// JSON File.
|
||||
if (fileContent.startsWith('{') && fileContent.endsWith('}')) {
|
||||
try {
|
||||
const task = JSON.parse(fileContent)
|
||||
restoreTaskToUI(task)
|
||||
} catch (e) {
|
||||
console.warn(`file[${i}]:${file.name} - File couldn't be parsed.`, e)
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// Normal txt file.
|
||||
const task = parseTaskFromText(fileContent)
|
||||
if (task) {
|
||||
restoreTaskToUI(task)
|
||||
} else {
|
||||
console.warn(`file[${i}]:${file.name} - File couldn't be parsed.`)
|
||||
}
|
||||
}
|
||||
|
||||
function dropHandler(ev) {
|
||||
console.log('Content dropped...')
|
||||
let items = []
|
||||
|
||||
if (ev?.dataTransfer?.items) { // Use DataTransferItemList interface
|
||||
items = Array.from(ev.dataTransfer.items)
|
||||
items = items.filter(item => item.kind === 'file')
|
||||
items = items.map(item => item.getAsFile())
|
||||
} else if (ev?.dataTransfer?.files) { // Use DataTransfer interface
|
||||
items = Array.from(ev.dataTransfer.files)
|
||||
}
|
||||
|
||||
items.forEach(item => {item.file_ext = EXT_REGEX.exec(item.name.toLowerCase())[1]})
|
||||
|
||||
let text_items = items.filter(item => TEXT_EXTENSIONS.includes(item.file_ext))
|
||||
let image_items = items.filter(item => IMAGE_EXTENSIONS.includes(item.file_ext))
|
||||
|
||||
if (image_items.length > 0 && ev.target == initImageSelector) {
|
||||
return // let the event bubble up, so that the Init Image filepicker can receive this
|
||||
}
|
||||
|
||||
ev.preventDefault() // Prevent default behavior (Prevent file/content from being opened)
|
||||
text_items.forEach(readFile)
|
||||
}
|
||||
function dragOverHandler(ev) {
|
||||
console.log('Content in drop zone')
|
||||
|
||||
// Prevent default behavior (Prevent file/content from being opened)
|
||||
ev.preventDefault()
|
||||
|
||||
ev.dataTransfer.dropEffect = "copy"
|
||||
|
||||
let img = new Image()
|
||||
img.src = location.host + '/media/images/favicon-32x32.png'
|
||||
ev.dataTransfer.setDragImage(img, 16, 16)
|
||||
}
|
||||
|
||||
document.addEventListener("drop", dropHandler)
|
||||
document.addEventListener("dragover", dragOverHandler)
|
||||
|
||||
const TASK_REQ_NO_EXPORT = [
|
||||
"use_cpu",
|
||||
"turbo",
|
||||
"use_full_precision",
|
||||
"save_to_disk_path"
|
||||
]
|
||||
|
||||
// Retrieve clipboard content and try to parse it
|
||||
async function pasteFromClipboard() {
|
||||
//const text = await navigator.clipboard.readText()
|
||||
let text = await navigator.clipboard.readText();
|
||||
text=text.trim();
|
||||
if (text.startsWith('{') && text.endsWith('}')) {
|
||||
try {
|
||||
const task = JSON.parse(text)
|
||||
restoreTaskToUI(task)
|
||||
} catch (e) {
|
||||
console.warn(`Clipboard JSON couldn't be parsed.`, e)
|
||||
}
|
||||
return
|
||||
}
|
||||
// Normal txt file.
|
||||
const task = parseTaskFromText(text)
|
||||
if (task) {
|
||||
restoreTaskToUI(task)
|
||||
} else {
|
||||
console.warn(`Clipboard content - File couldn't be parsed.`)
|
||||
}
|
||||
}
|
||||
|
||||
// Adds a copy and a paste icon if the browser grants permission to write to clipboard.
|
||||
function checkWriteToClipboardPermission (result) {
|
||||
if (result.state == "granted" || result.state == "prompt") {
|
||||
const resetSettings = document.getElementById('reset-image-settings')
|
||||
|
||||
// COPY ICON
|
||||
const copyIcon = document.createElement('i')
|
||||
copyIcon.className = 'fa-solid fa-clipboard section-button'
|
||||
copyIcon.innerHTML = `<span class="simple-tooltip right">Copy Image Settings</span>`
|
||||
copyIcon.addEventListener('click', (event) => {
|
||||
event.stopPropagation()
|
||||
// Add css class 'active'
|
||||
copyIcon.classList.add('active')
|
||||
// In 1000 ms remove the 'active' class
|
||||
asyncDelay(1000).then(() => copyIcon.classList.remove('active'))
|
||||
const uiState = readUI()
|
||||
TASK_REQ_NO_EXPORT.forEach((key) => delete uiState.reqBody[key])
|
||||
if (uiState.reqBody.init_image && !IMAGE_REGEX.test(uiState.reqBody.init_image)) {
|
||||
delete uiState.reqBody.init_image
|
||||
delete uiState.reqBody.prompt_strength
|
||||
}
|
||||
navigator.clipboard.writeText(JSON.stringify(uiState, undefined, 4))
|
||||
})
|
||||
resetSettings.parentNode.insertBefore(copyIcon, resetSettings)
|
||||
|
||||
// PASTE ICON
|
||||
const pasteIcon = document.createElement('i')
|
||||
pasteIcon.className = 'fa-solid fa-paste section-button'
|
||||
pasteIcon.innerHTML = `<span class="simple-tooltip right">Paste Image Settings</span>`
|
||||
pasteIcon.addEventListener('click', (event) => {
|
||||
event.stopPropagation()
|
||||
// Add css class 'active'
|
||||
pasteIcon.classList.add('active')
|
||||
// In 1000 ms remove the 'active' class
|
||||
asyncDelay(1000).then(() => pasteIcon.classList.remove('active'))
|
||||
pasteFromClipboard()
|
||||
})
|
||||
resetSettings.parentNode.insertBefore(pasteIcon, resetSettings)
|
||||
}
|
||||
}
|
||||
|
||||
// Determine which access we have to the clipboard. Clipboard access is only available on localhost or via TLS.
|
||||
navigator.permissions.query({ name: "clipboard-write" }).then(checkWriteToClipboardPermission, (e) => {
|
||||
if (e instanceof TypeError && typeof navigator?.clipboard?.writeText === 'function') {
|
||||
// Fix for firefox https://bugzilla.mozilla.org/show_bug.cgi?id=1560373
|
||||
checkWriteToClipboardPermission({state:"granted"})
|
||||
}
|
||||
})
|
@ -75,7 +75,6 @@ function createModifierGroup(modifierGroup, initiallyExpanded) {
|
||||
|
||||
if (initiallyExpanded === true) {
|
||||
titleEl.className += ' active'
|
||||
modifiersEl.style.display = 'block'
|
||||
}
|
||||
|
||||
modifiers.forEach(modObj => {
|
||||
@ -245,16 +244,9 @@ function resizeModifierCards(val) {
|
||||
modifierCardSizeSlider.onchange = () => resizeModifierCards(modifierCardSizeSlider.value)
|
||||
previewImageField.onchange = () => changePreviewImages(previewImageField.value)
|
||||
|
||||
modifierSettingsBtn.addEventListener('click', function() {
|
||||
modifierSettingsOverlay.style.display = 'block'
|
||||
})
|
||||
document.getElementById("modifier-settings-config-close-btn").addEventListener('click', () => {
|
||||
modifierSettingsOverlay.style.display = 'none'
|
||||
})
|
||||
modifierSettingsOverlay.addEventListener('click', (event) => {
|
||||
if (event.target.id == modifierSettingsOverlay.id) {
|
||||
modifierSettingsOverlay.style.display = 'none'
|
||||
}
|
||||
modifierSettingsBtn.addEventListener('click', function(e) {
|
||||
modifierSettingsOverlay.classList.add("active")
|
||||
e.stopPropagation()
|
||||
})
|
||||
|
||||
function saveCustomModifiers() {
|
||||
|
@ -1,6 +1,7 @@
|
||||
"use strict" // Opt in to a restricted variant of JavaScript
|
||||
const HEALTH_PING_INTERVAL = 5 // seconds
|
||||
const MAX_INIT_IMAGE_DIMENSION = 768
|
||||
const MIN_GPUS_TO_SHOW_SELECTION = 2
|
||||
|
||||
const IMAGE_REGEX = new RegExp('data:image/[A-Za-z]+;base64')
|
||||
|
||||
@ -24,13 +25,6 @@ let initImagePreview = document.querySelector("#init_image_preview")
|
||||
let initImageSizeBox = document.querySelector("#init_image_size_box")
|
||||
let maskImageSelector = document.querySelector("#mask")
|
||||
let maskImagePreview = document.querySelector("#mask_preview")
|
||||
let turboField = document.querySelector('#turbo')
|
||||
let useCPUField = document.querySelector('#use_cpu')
|
||||
let useFullPrecisionField = document.querySelector('#use_full_precision')
|
||||
let saveToDiskField = document.querySelector('#save_to_disk')
|
||||
let diskPathField = document.querySelector('#diskPath')
|
||||
// let allowNSFWField = document.querySelector("#allow_nsfw")
|
||||
let useBetaChannelField = document.querySelector("#use_beta_channel")
|
||||
let promptStrengthSlider = document.querySelector('#prompt_strength_slider')
|
||||
let promptStrengthField = document.querySelector('#prompt_strength')
|
||||
let samplerField = document.querySelector('#sampler')
|
||||
@ -39,6 +33,7 @@ let useFaceCorrectionField = document.querySelector("#use_face_correction")
|
||||
let useUpscalingField = document.querySelector("#use_upscale")
|
||||
let upscaleModelField = document.querySelector("#upscale_model")
|
||||
let stableDiffusionModelField = document.querySelector('#stable_diffusion_model')
|
||||
let vaeModelField = document.querySelector('#vae_model')
|
||||
let outputFormatField = document.querySelector('#output_format')
|
||||
let showOnlyFilteredImageField = document.querySelector("#show_only_filtered_image")
|
||||
let updateBranchLabel = document.querySelector("#updateBranchLabel")
|
||||
@ -56,22 +51,10 @@ let initialText = document.querySelector("#initial-text")
|
||||
let previewTools = document.querySelector("#preview-tools")
|
||||
let clearAllPreviewsBtn = document.querySelector("#clear-all-previews")
|
||||
|
||||
// let maskSetting = document.querySelector('#editor-inputs-mask_setting')
|
||||
// let maskImagePreviewContainer = document.querySelector('#mask_preview_container')
|
||||
// let maskImageClearBtn = document.querySelector('#mask_clear')
|
||||
let maskSetting = document.querySelector('#enable_mask')
|
||||
|
||||
let imagePreview = document.querySelector("#preview")
|
||||
|
||||
// let previewPrompt = document.querySelector('#preview-prompt')
|
||||
|
||||
let showConfigToggle = document.querySelector('#configToggleBtn')
|
||||
// let configBox = document.querySelector('#config')
|
||||
// let outputMsg = document.querySelector('#outputMsg')
|
||||
// let progressBar = document.querySelector("#progressBar")
|
||||
|
||||
let soundToggle = document.querySelector('#sound_toggle')
|
||||
|
||||
let serverStatusColor = document.querySelector('#server-status-color')
|
||||
let serverStatusMsg = document.querySelector('#server-status-msg')
|
||||
|
||||
@ -85,7 +68,6 @@ maskResetButton.style.fontWeight = 'normal'
|
||||
maskResetButton.style.fontSize = '10pt'
|
||||
|
||||
let serverState = {'status': 'Offline', 'time': Date.now()}
|
||||
let lastPromptUsed = ''
|
||||
let bellPending = false
|
||||
|
||||
let taskQueue = []
|
||||
@ -187,6 +169,34 @@ function playSound() {
|
||||
})
|
||||
}
|
||||
}
|
||||
function setSystemInfo(devices) {
|
||||
let cpu = devices.all.cpu.name
|
||||
let allGPUs = Object.keys(devices.all).filter(d => d != 'cpu')
|
||||
let activeGPUs = Object.keys(devices.active)
|
||||
|
||||
function ID_TO_TEXT(d) {
|
||||
let info = devices.all[d]
|
||||
if ("mem_free" in info && "mem_total" in info) {
|
||||
return `${info.name} <small>(${d}) (${info.mem_free.toFixed(1)}Gb free / ${info.mem_total.toFixed(1)} Gb total)</small>`
|
||||
} else {
|
||||
return `${info.name} <small>(${d}) (no memory info)</small>`
|
||||
}
|
||||
}
|
||||
|
||||
allGPUs = allGPUs.map(ID_TO_TEXT)
|
||||
activeGPUs = activeGPUs.map(ID_TO_TEXT)
|
||||
|
||||
let systemInfo = `
|
||||
<table>
|
||||
<tr><td><label>Processor:</label></td><td class="value">${cpu}</td></tr>
|
||||
<tr><td><label>Compatible Graphics Cards (all):</label></td><td class="value">${allGPUs.join('</br>')}</td></tr>
|
||||
<tr><td></td><td> </td></tr>
|
||||
<tr><td><label>Used for rendering 🔥:</label></td><td class="value">${activeGPUs.join('</br>')}</td></tr>
|
||||
</table>`
|
||||
|
||||
let systemInfoEl = document.querySelector('#system-info')
|
||||
systemInfoEl.innerHTML = systemInfo
|
||||
}
|
||||
|
||||
async function healthCheck() {
|
||||
try {
|
||||
@ -220,8 +230,12 @@ async function healthCheck() {
|
||||
setServerStatus('error', serverState.status.toLowerCase())
|
||||
break
|
||||
}
|
||||
if (serverState.devices) {
|
||||
setSystemInfo(serverState.devices)
|
||||
}
|
||||
serverState.time = Date.now()
|
||||
} catch (e) {
|
||||
console.log(e)
|
||||
serverState = {'status': 'Offline', 'time': Date.now()}
|
||||
setServerStatus('error', 'offline')
|
||||
}
|
||||
@ -340,10 +354,10 @@ function onDownloadImageClick(req, img) {
|
||||
imgDownload.click()
|
||||
}
|
||||
|
||||
function modifyCurrentRequest(req, ...reqDiff) {
|
||||
function modifyCurrentRequest(...reqDiff) {
|
||||
const newTaskRequest = getCurrentUserRequest()
|
||||
|
||||
newTaskRequest.reqBody = Object.assign({}, req, ...reqDiff, {
|
||||
newTaskRequest.reqBody = Object.assign(newTaskRequest.reqBody, ...reqDiff, {
|
||||
use_cpu: useCPUField.checked
|
||||
})
|
||||
newTaskRequest.seed = newTaskRequest.reqBody.seed
|
||||
@ -410,7 +424,7 @@ async function doMakeImage(task) {
|
||||
const RETRY_DELAY_IF_BUFFER_IS_EMPTY = 1000 // ms
|
||||
const RETRY_DELAY_IF_SERVER_IS_BUSY = 30 * 1000 // ms, status_code 503, already a task running
|
||||
const TASK_START_DELAY_ON_SERVER = 1500 // ms
|
||||
const SERVER_STATE_VALIDITY_DURATION = 10 * 1000 // ms
|
||||
const SERVER_STATE_VALIDITY_DURATION = 90 * 1000 // ms
|
||||
|
||||
const reqBody = task.reqBody
|
||||
const batchCount = task.batchCount
|
||||
@ -422,10 +436,10 @@ async function doMakeImage(task) {
|
||||
const outputMsg = task['outputMsg']
|
||||
const previewPrompt = task['previewPrompt']
|
||||
const progressBar = task['progressBar']
|
||||
const progressBarInner = progressBar.querySelector("div")
|
||||
|
||||
let res = undefined
|
||||
try {
|
||||
const lastTask = serverState.task
|
||||
let renderRequest = undefined
|
||||
do {
|
||||
res = await fetch('/render', {
|
||||
@ -561,6 +575,13 @@ async function doMakeImage(task) {
|
||||
outputMsg.innerHTML += `. Time remaining (approx): ${timeRemaining}`
|
||||
outputMsg.style.display = 'block'
|
||||
|
||||
progressBarInner.style.width = `${percent}%`
|
||||
if (percent == 100) {
|
||||
task.progressBar.style.height = "0px"
|
||||
task.progressBar.style.border = "0px solid var(--background-color3)"
|
||||
task.progressBar.classList.remove("active")
|
||||
}
|
||||
|
||||
if (stepUpdate.output !== undefined) {
|
||||
showImages(reqBody, stepUpdate, outputContainer, true)
|
||||
}
|
||||
@ -620,17 +641,14 @@ async function doMakeImage(task) {
|
||||
let msg = `Unexpected Read Error:<br/><pre>Response: ${res}<br/>StepUpdate: ${typeof stepUpdate === 'object' ? JSON.stringify(stepUpdate, undefined, 4) : stepUpdate}</pre>`
|
||||
logError(msg, res, outputMsg)
|
||||
}
|
||||
progressBar.style.display = 'none'
|
||||
return false
|
||||
}
|
||||
|
||||
lastPromptUsed = reqBody['prompt']
|
||||
showImages(reqBody, stepUpdate, outputContainer, false)
|
||||
} catch (e) {
|
||||
console.log('request error', e)
|
||||
logError('Stable Diffusion had an error. Please check the logs in the command-line window. <br/><br/>' + e + '<br/><pre>' + e.stack + '</pre>', res, outputMsg)
|
||||
setStatus('request', 'error', 'error')
|
||||
progressBar.style.display = 'none'
|
||||
return false
|
||||
}
|
||||
return true
|
||||
@ -713,6 +731,9 @@ async function checkTasks() {
|
||||
|
||||
if (successCount === task.batchCount) {
|
||||
task.outputMsg.innerText = 'Processed ' + task.numOutputsTotal + ' images in ' + time + ' seconds'
|
||||
task.progressBar.style.height = "0px"
|
||||
task.progressBar.style.border = "0px solid var(--background-color3)"
|
||||
task.progressBar.classList.remove("active")
|
||||
// setStatus('request', 'done', 'success')
|
||||
} else {
|
||||
if (task.outputMsg.innerText.toLowerCase().indexOf('error') === -1) {
|
||||
@ -762,9 +783,9 @@ function getCurrentUserRequest() {
|
||||
height: heightField.value,
|
||||
// allow_nsfw: allowNSFWField.checked,
|
||||
turbo: turboField.checked,
|
||||
use_cpu: useCPUField.checked,
|
||||
use_full_precision: useFullPrecisionField.checked,
|
||||
use_stable_diffusion_model: stableDiffusionModelField.value,
|
||||
use_vae_model: vaeModelField.value,
|
||||
stream_progress_updates: true,
|
||||
stream_image_progress: (numOutputsTotal > 50 ? false : streamImageProgressField.checked),
|
||||
show_only_filtered_image: showOnlyFilteredImageField.checked,
|
||||
@ -813,29 +834,34 @@ function makeImage() {
|
||||
}
|
||||
|
||||
function createTask(task) {
|
||||
let taskConfig = `Seed: ${task.seed}, Sampler: ${task.reqBody.sampler}, Inference Steps: ${task.reqBody.num_inference_steps}, Guidance Scale: ${task.reqBody.guidance_scale}, Model: ${task.reqBody.use_stable_diffusion_model}`
|
||||
if (negativePromptField.value.trim() !== '') {
|
||||
taskConfig += `, Negative Prompt: ${task.reqBody.negative_prompt}`
|
||||
let taskConfig = `<b>Seed:</b> ${task.seed}, <b>Sampler:</b> ${task.reqBody.sampler}, <b>Inference Steps:</b> ${task.reqBody.num_inference_steps}, <b>Guidance Scale:</b> ${task.reqBody.guidance_scale}, <b>Model:</b> ${task.reqBody.use_stable_diffusion_model}`
|
||||
if (task.reqBody.use_vae_model.trim() !== '') {
|
||||
taskConfig += `, <b>VAE:</b> ${task.reqBody.use_vae_model}`
|
||||
}
|
||||
if (task.reqBody.negative_prompt.trim() !== '') {
|
||||
taskConfig += `, <b>Negative Prompt:</b> ${task.reqBody.negative_prompt}`
|
||||
}
|
||||
if (task.reqBody.init_image !== undefined) {
|
||||
taskConfig += `, Prompt Strength: ${task.reqBody.prompt_strength}`
|
||||
taskConfig += `, <b>Prompt Strength:</b> ${task.reqBody.prompt_strength}`
|
||||
}
|
||||
if (task.reqBody.use_face_correction) {
|
||||
taskConfig += `, Fix Faces: ${task.reqBody.use_face_correction}`
|
||||
taskConfig += `, <b>Fix Faces:</b> ${task.reqBody.use_face_correction}`
|
||||
}
|
||||
if (task.reqBody.use_upscale) {
|
||||
taskConfig += `, Upscale: ${task.reqBody.use_upscale}`
|
||||
taskConfig += `, <b>Upscale:</b> ${task.reqBody.use_upscale}`
|
||||
}
|
||||
|
||||
let taskEntry = document.createElement('div')
|
||||
taskEntry.className = 'imageTaskContainer'
|
||||
taskEntry.innerHTML = ` <div class="taskStatusLabel">Enqueued</div>
|
||||
<button class="secondaryButton stopTask"><i class="fa-solid fa-trash-can"></i> Remove</button>
|
||||
<div class="preview-prompt collapsible active"></div>
|
||||
<div class="taskConfig">${taskConfig}</div>
|
||||
<div class="collapsible-content" style="display: block">
|
||||
taskEntry.innerHTML = ` <div class="header-content panel collapsible active">
|
||||
<div class="taskStatusLabel">Enqueued</div>
|
||||
<button class="secondaryButton stopTask"><i class="fa-solid fa-trash-can"></i> Remove</button>
|
||||
<div class="preview-prompt collapsible active"></div>
|
||||
<div class="taskConfig">${taskConfig}</div>
|
||||
<div class="outputMsg"></div>
|
||||
<div class="progressBar"></div>
|
||||
<div class="progress-bar active"><div></div></div>
|
||||
</div>
|
||||
<div class="collapsible-content">
|
||||
<div class="img-preview">
|
||||
</div>`
|
||||
|
||||
@ -845,12 +871,14 @@ function createTask(task) {
|
||||
task['outputContainer'] = taskEntry.querySelector('.img-preview')
|
||||
task['outputMsg'] = taskEntry.querySelector('.outputMsg')
|
||||
task['previewPrompt'] = taskEntry.querySelector('.preview-prompt')
|
||||
task['progressBar'] = taskEntry.querySelector('.progressBar')
|
||||
task['progressBar'] = taskEntry.querySelector('.progress-bar')
|
||||
task['stopTask'] = taskEntry.querySelector('.stopTask')
|
||||
|
||||
task['stopTask'].addEventListener('click', async function() {
|
||||
task['stopTask'].addEventListener('click', async function(e) {
|
||||
e.stopPropagation()
|
||||
if (task['isProcessing']) {
|
||||
task.isProcessing = false
|
||||
task.progressBar.classList.remove("active")
|
||||
try {
|
||||
let res = await fetch('/image/stop?session_id=' + sessionId)
|
||||
} catch (e) {
|
||||
@ -886,15 +914,15 @@ function getPrompts() {
|
||||
prompts = prompts.map(prompt => prompt.trim())
|
||||
prompts = prompts.filter(prompt => prompt !== '')
|
||||
|
||||
if (activeTags.length > 0) {
|
||||
const promptTags = activeTags.map(x => x.name).join(", ")
|
||||
prompts = prompts.map((prompt) => `${prompt}, ${promptTags}`)
|
||||
}
|
||||
|
||||
let promptsToMake = applySetOperator(prompts)
|
||||
promptsToMake = applyPermuteOperator(promptsToMake)
|
||||
|
||||
if (activeTags.length <= 0) {
|
||||
return promptsToMake
|
||||
}
|
||||
|
||||
const promptTags = activeTags.map(x => x.name).join(", ")
|
||||
return promptsToMake.map((prompt) => `${prompt}, ${promptTags}`)
|
||||
return promptsToMake
|
||||
}
|
||||
|
||||
function applySetOperator(prompts) {
|
||||
@ -1044,16 +1072,25 @@ function onDimensionChange() {
|
||||
resizeInpaintingEditor(widthValue, heightValue)
|
||||
}
|
||||
|
||||
saveToDiskField.addEventListener('click', function(e) {
|
||||
diskPathField.disabled = !this.checked
|
||||
})
|
||||
diskPathField.disabled = !saveToDiskField.checked
|
||||
|
||||
useUpscalingField.addEventListener('click', function(e) {
|
||||
upscaleModelField.disabled = !useUpscalingField.checked
|
||||
useUpscalingField.addEventListener('change', function(e) {
|
||||
upscaleModelField.disabled = !this.checked
|
||||
})
|
||||
|
||||
if (useBetaChannelField.checked) {
|
||||
updateBranchLabel.innerText = "(beta)"
|
||||
}
|
||||
|
||||
makeImageBtn.addEventListener('click', makeImage)
|
||||
|
||||
document.onkeydown = function(e) {
|
||||
if (e.ctrlKey && e.code === 'Enter') {
|
||||
makeImage()
|
||||
e.preventDefault()
|
||||
}
|
||||
}
|
||||
|
||||
function updateGuidanceScale() {
|
||||
guidanceScaleField.value = guidanceScaleSlider.value / 10
|
||||
@ -1095,80 +1132,44 @@ promptStrengthSlider.addEventListener('input', updatePromptStrength)
|
||||
promptStrengthField.addEventListener('input', updatePromptStrengthSlider)
|
||||
updatePromptStrength()
|
||||
|
||||
useBetaChannelField.addEventListener('click', async function(e) {
|
||||
if (!isServerAvailable()) {
|
||||
// logError('The server is still starting up..')
|
||||
alert('The server is still starting up..')
|
||||
e.preventDefault()
|
||||
return false
|
||||
}
|
||||
|
||||
let updateBranch = (this.checked ? 'beta' : 'main')
|
||||
|
||||
try {
|
||||
let res = await fetch('/app_config', {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
'Content-Type': 'application/json'
|
||||
},
|
||||
body: JSON.stringify({
|
||||
'update_branch': updateBranch
|
||||
})
|
||||
})
|
||||
res = await res.json()
|
||||
|
||||
console.log('set config status response', res)
|
||||
} catch (e) {
|
||||
console.log('set config status error', e)
|
||||
}
|
||||
})
|
||||
|
||||
async function getAppConfig() {
|
||||
try {
|
||||
let res = await fetch('/get/app_config')
|
||||
const config = await res.json()
|
||||
|
||||
if (config.update_branch === 'beta') {
|
||||
useBetaChannelField.checked = true
|
||||
updateBranchLabel.innerText = "(beta)"
|
||||
}
|
||||
|
||||
console.log('get config status response', config)
|
||||
} catch (e) {
|
||||
console.log('get config status error', e)
|
||||
}
|
||||
}
|
||||
|
||||
async function getModels() {
|
||||
try {
|
||||
var model_setting_key = "stable_diffusion_model"
|
||||
var selectedModel = SETTINGS[model_setting_key].value
|
||||
var sd_model_setting_key = "stable_diffusion_model"
|
||||
var vae_model_setting_key = "vae_model"
|
||||
var selectedSDModel = SETTINGS[sd_model_setting_key].value
|
||||
var selectedVaeModel = SETTINGS[vae_model_setting_key].value
|
||||
let res = await fetch('/get/models')
|
||||
const models = await res.json()
|
||||
|
||||
// let activeModel = models['active']
|
||||
console.log('get models response', models)
|
||||
|
||||
let modelOptions = models['options']
|
||||
let stableDiffusionOptions = modelOptions['stable-diffusion']
|
||||
let vaeOptions = modelOptions['vae']
|
||||
vaeOptions.unshift('') // add a None option
|
||||
|
||||
stableDiffusionOptions.forEach(modelName => {
|
||||
let modelOption = document.createElement('option')
|
||||
modelOption.value = modelName
|
||||
modelOption.innerText = modelName
|
||||
function createModelOptions(modelField, selectedModel) {
|
||||
return function(modelName) {
|
||||
let modelOption = document.createElement('option')
|
||||
modelOption.value = modelName
|
||||
modelOption.innerText = modelName !== '' ? modelName : 'None'
|
||||
|
||||
if (modelName === selectedModel) {
|
||||
modelOption.selected = true
|
||||
if (modelName === selectedModel) {
|
||||
modelOption.selected = true
|
||||
}
|
||||
|
||||
modelField.appendChild(modelOption)
|
||||
}
|
||||
|
||||
stableDiffusionModelField.appendChild(modelOption)
|
||||
})
|
||||
|
||||
// TODO: set default for model here too
|
||||
SETTINGS[model_setting_key].default = stableDiffusionOptions[0]
|
||||
if (getSetting(model_setting_key) == '' || SETTINGS[model_setting_key].value == '') {
|
||||
setSetting(model_setting_key, stableDiffusionOptions[0])
|
||||
}
|
||||
|
||||
console.log('get models response', models)
|
||||
stableDiffusionOptions.forEach(createModelOptions(stableDiffusionModelField, selectedSDModel))
|
||||
vaeOptions.forEach(createModelOptions(vaeModelField, selectedVaeModel))
|
||||
|
||||
// TODO: set default for model here too
|
||||
SETTINGS[sd_model_setting_key].default = stableDiffusionOptions[0]
|
||||
if (getSetting(sd_model_setting_key) == '' || SETTINGS[sd_model_setting_key].value == '') {
|
||||
setSetting(sd_model_setting_key, stableDiffusionOptions[0])
|
||||
}
|
||||
} catch (e) {
|
||||
console.log('get models error', e)
|
||||
}
|
||||
@ -1267,21 +1268,56 @@ promptsFromFileSelector.addEventListener('change', function() {
|
||||
}
|
||||
})
|
||||
|
||||
async function getDiskPath() {
|
||||
try {
|
||||
var diskPath = getSetting("diskPath")
|
||||
if (diskPath == '' || diskPath == undefined || diskPath == "undefined") {
|
||||
let res = await fetch('/get/output_dir')
|
||||
if (res.status === 200) {
|
||||
res = await res.json()
|
||||
res = res.output_dir
|
||||
|
||||
setSetting("diskPath", res)
|
||||
}
|
||||
/* setup popup handlers */
|
||||
document.querySelectorAll('.popup').forEach(popup => {
|
||||
popup.addEventListener('click', event => {
|
||||
if (event.target == popup) {
|
||||
popup.classList.remove("active")
|
||||
}
|
||||
} catch (e) {
|
||||
console.log('error fetching output dir path', e)
|
||||
})
|
||||
var closeButton = popup.querySelector(".close-button")
|
||||
if (closeButton) {
|
||||
closeButton.addEventListener('click', () => {
|
||||
popup.classList.remove("active")
|
||||
})
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
var tabElements = [];
|
||||
document.querySelectorAll(".tab").forEach(tab => {
|
||||
var name = tab.id.replace("tab-", "");
|
||||
var content = document.getElementById(`tab-content-${name}`)
|
||||
tabElements.push({
|
||||
name: name,
|
||||
tab: tab,
|
||||
content: content
|
||||
})
|
||||
|
||||
tab.addEventListener("click", event => {
|
||||
if (!tab.classList.contains("active")) {
|
||||
tabElements.forEach(tabInfo => {
|
||||
if (tabInfo.tab.classList.contains("active")) {
|
||||
tabInfo.tab.classList.toggle("active")
|
||||
tabInfo.content.classList.toggle("active")
|
||||
}
|
||||
})
|
||||
tab.classList.toggle("active")
|
||||
content.classList.toggle("active")
|
||||
}
|
||||
})
|
||||
})
|
||||
|
||||
window.addEventListener("beforeunload", function(e) {
|
||||
const msg = "Unsaved pictures will be lost!";
|
||||
|
||||
let elementList = document.getElementsByClassName("imageTaskContainer");
|
||||
if (elementList.length != 0) {
|
||||
e.preventDefault();
|
||||
(e || window.event).returnValue = msg;
|
||||
return msg;
|
||||
} else {
|
||||
return true;
|
||||
}
|
||||
});
|
||||
|
||||
createCollapsibles()
|
||||
|
330
ui/media/js/parameters.js
Normal file
330
ui/media/js/parameters.js
Normal file
@ -0,0 +1,330 @@
|
||||
/**
|
||||
* Enum of parameter types
|
||||
* @readonly
|
||||
* @enum {string}
|
||||
*/
|
||||
var ParameterType = {
|
||||
checkbox: "checkbox",
|
||||
select: "select",
|
||||
select_multiple: "select_multiple",
|
||||
custom: "custom",
|
||||
};
|
||||
|
||||
/**
|
||||
* JSDoc style
|
||||
* @typedef {object} Parameter
|
||||
* @property {string} id
|
||||
* @property {ParameterType} type
|
||||
* @property {string} label
|
||||
* @property {?string} note
|
||||
* @property {number|boolean|string} default
|
||||
*/
|
||||
|
||||
|
||||
/** @type {Array.<Parameter>} */
|
||||
var PARAMETERS = [
|
||||
{
|
||||
id: "theme",
|
||||
type: ParameterType.select,
|
||||
label: "Theme",
|
||||
default: "theme-default",
|
||||
options: [ // Note: options expanded dynamically
|
||||
{
|
||||
value: "theme-default",
|
||||
label: "Default"
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
id: "save_to_disk",
|
||||
type: ParameterType.checkbox,
|
||||
label: "Auto-Save Images",
|
||||
note: "automatically saves images to the specified location",
|
||||
default: false,
|
||||
},
|
||||
{
|
||||
id: "diskPath",
|
||||
type: ParameterType.custom,
|
||||
label: "Save Location",
|
||||
render: (parameter) => {
|
||||
return `<input id="${parameter.id}" name="${parameter.id}" size="30" disabled>`
|
||||
}
|
||||
},
|
||||
{
|
||||
id: "sound_toggle",
|
||||
type: ParameterType.checkbox,
|
||||
label: "Enable Sound",
|
||||
note: "plays a sound on task completion",
|
||||
default: true,
|
||||
},
|
||||
{
|
||||
id: "ui_open_browser_on_start",
|
||||
type: ParameterType.checkbox,
|
||||
label: "Open browser on startup",
|
||||
note: "starts the default browser on startup",
|
||||
default: true,
|
||||
},
|
||||
{
|
||||
id: "turbo",
|
||||
type: ParameterType.checkbox,
|
||||
label: "Turbo Mode",
|
||||
default: true,
|
||||
note: "generates images faster, but uses an additional 1 GB of GPU memory",
|
||||
},
|
||||
{
|
||||
id: "use_cpu",
|
||||
type: ParameterType.checkbox,
|
||||
label: "Use CPU (not GPU)",
|
||||
note: "warning: this will be *very* slow",
|
||||
default: false,
|
||||
},
|
||||
{
|
||||
id: "auto_pick_gpus",
|
||||
type: ParameterType.checkbox,
|
||||
label: "Automatically pick the GPUs (experimental)",
|
||||
default: false,
|
||||
},
|
||||
{
|
||||
id: "use_gpus",
|
||||
type: ParameterType.select_multiple,
|
||||
label: "GPUs to use (experimental)",
|
||||
note: "to process in parallel",
|
||||
default: false,
|
||||
},
|
||||
{
|
||||
id: "use_full_precision",
|
||||
type: ParameterType.checkbox,
|
||||
label: "Use Full Precision",
|
||||
note: "for GPU-only. warning: this will consume more VRAM",
|
||||
default: false,
|
||||
},
|
||||
{
|
||||
id: "auto_save_settings",
|
||||
type: ParameterType.checkbox,
|
||||
label: "Auto-Save Settings",
|
||||
note: "restores settings on browser load",
|
||||
default: true,
|
||||
},
|
||||
{
|
||||
id: "use_beta_channel",
|
||||
type: ParameterType.checkbox,
|
||||
label: "🔥Beta channel",
|
||||
note: "Get the latest features immediately (but could be less stable). Please restart the program after changing this.",
|
||||
default: false,
|
||||
},
|
||||
];
|
||||
|
||||
function getParameterSettingsEntry(id) {
|
||||
let parameter = PARAMETERS.filter(p => p.id === id)
|
||||
if (parameter.length === 0) {
|
||||
return
|
||||
}
|
||||
return parameter[0].settingsEntry
|
||||
}
|
||||
|
||||
function getParameterElement(parameter) {
|
||||
switch (parameter.type) {
|
||||
case ParameterType.checkbox:
|
||||
var is_checked = parameter.default ? " checked" : "";
|
||||
return `<input id="${parameter.id}" name="${parameter.id}"${is_checked} type="checkbox">`
|
||||
case ParameterType.select:
|
||||
case ParameterType.select_multiple:
|
||||
var options = (parameter.options || []).map(option => `<option value="${option.value}">${option.label}</option>`).join("")
|
||||
var multiple = (parameter.type == ParameterType.select_multiple ? 'multiple' : '')
|
||||
return `<select id="${parameter.id}" name="${parameter.id}" ${multiple}>${options}</select>`
|
||||
case ParameterType.custom:
|
||||
return parameter.render(parameter)
|
||||
default:
|
||||
console.error(`Invalid type for parameter ${parameter.id}`);
|
||||
return "ERROR: Invalid Type"
|
||||
}
|
||||
}
|
||||
|
||||
let parametersTable = document.querySelector("#system-settings table")
|
||||
/* fill in the system settings popup table */
|
||||
function initParameters() {
|
||||
PARAMETERS.forEach(parameter => {
|
||||
var element = getParameterElement(parameter)
|
||||
var note = parameter.note ? `<small>${parameter.note}</small>` : "";
|
||||
var newrow = document.createElement('tr')
|
||||
newrow.innerHTML = `
|
||||
<td><label for="${parameter.id}">${parameter.label}</label></td>
|
||||
<td><div>${element}${note}<div></td>`
|
||||
parametersTable.appendChild(newrow)
|
||||
parameter.settingsEntry = newrow
|
||||
})
|
||||
}
|
||||
|
||||
initParameters()
|
||||
|
||||
let turboField = document.querySelector('#turbo')
|
||||
let useCPUField = document.querySelector('#use_cpu')
|
||||
let autoPickGPUsField = document.querySelector('#auto_pick_gpus')
|
||||
let useGPUsField = document.querySelector('#use_gpus')
|
||||
let useFullPrecisionField = document.querySelector('#use_full_precision')
|
||||
let saveToDiskField = document.querySelector('#save_to_disk')
|
||||
let diskPathField = document.querySelector('#diskPath')
|
||||
let useBetaChannelField = document.querySelector("#use_beta_channel")
|
||||
let uiOpenBrowserOnStartField = document.querySelector("#ui_open_browser_on_start")
|
||||
|
||||
let saveSettingsBtn = document.querySelector('#save-system-settings-btn')
|
||||
|
||||
async function changeAppConfig(configDelta) {
|
||||
try {
|
||||
let res = await fetch('/app_config', {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
'Content-Type': 'application/json'
|
||||
},
|
||||
body: JSON.stringify(configDelta)
|
||||
})
|
||||
res = await res.json()
|
||||
|
||||
console.log('set config status response', res)
|
||||
} catch (e) {
|
||||
console.log('set config status error', e)
|
||||
}
|
||||
}
|
||||
|
||||
async function getAppConfig() {
|
||||
try {
|
||||
let res = await fetch('/get/app_config')
|
||||
const config = await res.json()
|
||||
|
||||
if (config.update_branch === 'beta') {
|
||||
useBetaChannelField.checked = true
|
||||
}
|
||||
if (config.ui && config.ui.open_browser_on_start === false) {
|
||||
uiOpenBrowserOnStartField.checked = false
|
||||
}
|
||||
|
||||
console.log('get config status response', config)
|
||||
} catch (e) {
|
||||
console.log('get config status error', e)
|
||||
}
|
||||
}
|
||||
|
||||
saveToDiskField.addEventListener('change', function(e) {
|
||||
diskPathField.disabled = !this.checked
|
||||
})
|
||||
|
||||
function getCurrentRenderDeviceSelection() {
|
||||
let selectedGPUs = $('#use_gpus').val()
|
||||
|
||||
if (useCPUField.checked && !autoPickGPUsField.checked) {
|
||||
return 'cpu'
|
||||
}
|
||||
if (autoPickGPUsField.checked || selectedGPUs.length == 0) {
|
||||
return 'auto'
|
||||
}
|
||||
|
||||
return selectedGPUs.join(',')
|
||||
}
|
||||
|
||||
useCPUField.addEventListener('click', function() {
|
||||
let gpuSettingEntry = getParameterSettingsEntry('use_gpus')
|
||||
let autoPickGPUSettingEntry = getParameterSettingsEntry('auto_pick_gpus')
|
||||
if (this.checked) {
|
||||
gpuSettingEntry.style.display = 'none'
|
||||
autoPickGPUSettingEntry.style.display = 'none'
|
||||
autoPickGPUsField.setAttribute('data-old-value', autoPickGPUsField.checked)
|
||||
autoPickGPUsField.checked = false
|
||||
} else if (useGPUsField.options.length >= MIN_GPUS_TO_SHOW_SELECTION) {
|
||||
gpuSettingEntry.style.display = ''
|
||||
autoPickGPUSettingEntry.style.display = ''
|
||||
let oldVal = autoPickGPUsField.getAttribute('data-old-value')
|
||||
if (oldVal === null || oldVal === undefined) { // the UI started with CPU selected by default
|
||||
autoPickGPUsField.checked = true
|
||||
} else {
|
||||
autoPickGPUsField.checked = (oldVal === 'true')
|
||||
}
|
||||
gpuSettingEntry.style.display = (autoPickGPUsField.checked ? 'none' : '')
|
||||
}
|
||||
})
|
||||
|
||||
useGPUsField.addEventListener('click', function() {
|
||||
let selectedGPUs = $('#use_gpus').val()
|
||||
autoPickGPUsField.checked = (selectedGPUs.length === 0)
|
||||
})
|
||||
|
||||
autoPickGPUsField.addEventListener('click', function() {
|
||||
if (this.checked) {
|
||||
$('#use_gpus').val([])
|
||||
}
|
||||
|
||||
let gpuSettingEntry = getParameterSettingsEntry('use_gpus')
|
||||
gpuSettingEntry.style.display = (this.checked ? 'none' : '')
|
||||
})
|
||||
|
||||
async function getDiskPath() {
|
||||
try {
|
||||
var diskPath = getSetting("diskPath")
|
||||
if (diskPath == '' || diskPath == undefined || diskPath == "undefined") {
|
||||
let res = await fetch('/get/output_dir')
|
||||
if (res.status === 200) {
|
||||
res = await res.json()
|
||||
res = res.output_dir
|
||||
|
||||
setSetting("diskPath", res)
|
||||
}
|
||||
}
|
||||
} catch (e) {
|
||||
console.log('error fetching output dir path', e)
|
||||
}
|
||||
}
|
||||
|
||||
async function getDevices() {
|
||||
try {
|
||||
let res = await fetch('/get/devices')
|
||||
if (res.status === 200) {
|
||||
res = await res.json()
|
||||
|
||||
let allDeviceIds = Object.keys(res['all']).filter(d => d !== 'cpu')
|
||||
let activeDeviceIds = Object.keys(res['active']).filter(d => d !== 'cpu')
|
||||
|
||||
if (activeDeviceIds.length === 0) {
|
||||
useCPUField.checked = true
|
||||
}
|
||||
|
||||
if (allDeviceIds.length < MIN_GPUS_TO_SHOW_SELECTION || useCPUField.checked) {
|
||||
let gpuSettingEntry = getParameterSettingsEntry('use_gpus')
|
||||
gpuSettingEntry.style.display = 'none'
|
||||
let autoPickGPUSettingEntry = getParameterSettingsEntry('auto_pick_gpus')
|
||||
autoPickGPUSettingEntry.style.display = 'none'
|
||||
}
|
||||
|
||||
if (allDeviceIds.length === 0) {
|
||||
useCPUField.checked = true
|
||||
useCPUField.disabled = true // no compatible GPUs, so make the CPU mandatory
|
||||
}
|
||||
|
||||
autoPickGPUsField.checked = (res['config'] === 'auto')
|
||||
|
||||
useGPUsField.innerHTML = ''
|
||||
allDeviceIds.forEach(device => {
|
||||
let deviceName = res['all'][device]['name']
|
||||
let deviceOption = `<option value="${device}">${deviceName} (${device})</option>`
|
||||
useGPUsField.insertAdjacentHTML('beforeend', deviceOption)
|
||||
})
|
||||
|
||||
if (autoPickGPUsField.checked) {
|
||||
let gpuSettingEntry = getParameterSettingsEntry('use_gpus')
|
||||
gpuSettingEntry.style.display = 'none'
|
||||
} else {
|
||||
$('#use_gpus').val(activeDeviceIds)
|
||||
}
|
||||
}
|
||||
} catch (e) {
|
||||
console.log('error fetching devices', e)
|
||||
}
|
||||
}
|
||||
|
||||
saveSettingsBtn.addEventListener('click', function() {
|
||||
let updateBranch = (useBetaChannelField.checked ? 'beta' : 'main')
|
||||
|
||||
changeAppConfig({
|
||||
'render_devices': getCurrentRenderDeviceSelection(),
|
||||
'update_branch': updateBranch,
|
||||
'ui_open_browser_on_start': uiOpenBrowserOnStartField.checked
|
||||
})
|
||||
})
|
@ -29,12 +29,16 @@ function toggleCollapsible(element) {
|
||||
var handle = element.querySelector(".collapsible-handle");
|
||||
collapsibleHeader.classList.toggle("active")
|
||||
let content = getNextSibling(collapsibleHeader, '.collapsible-content')
|
||||
if (content.style.display === "block") {
|
||||
if (!collapsibleHeader.classList.contains("active")) {
|
||||
content.style.display = "none"
|
||||
handle.innerHTML = '➕' // plus
|
||||
if (handle != null) { // render results don't have a handle
|
||||
handle.innerHTML = '➕' // plus
|
||||
}
|
||||
} else {
|
||||
content.style.display = "block"
|
||||
handle.innerHTML = '➖' // minus
|
||||
if (handle != null) { // render results don't have a handle
|
||||
handle.innerHTML = '➖' // minus
|
||||
}
|
||||
}
|
||||
|
||||
if (COLLAPSIBLES_INITIALIZED && COLLAPSIBLE_PANELS.includes(element)) {
|
||||
@ -65,7 +69,7 @@ function createCollapsibles(node) {
|
||||
let handle = document.createElement('span')
|
||||
handle.className = 'collapsible-handle'
|
||||
|
||||
if (c.className.indexOf('active') !== -1) {
|
||||
if (c.classList.contains("active")) {
|
||||
handle.innerHTML = '➖' // minus
|
||||
} else {
|
||||
handle.innerHTML = '➕' // plus
|
||||
@ -342,3 +346,15 @@ function asyncDelay(timeout) {
|
||||
setTimeout(resolve, timeout, true)
|
||||
})
|
||||
}
|
||||
|
||||
function preventNonNumericalInput(e) {
|
||||
e = e || window.event;
|
||||
let charCode = (typeof e.which == "undefined") ? e.keyCode : e.which;
|
||||
let charStr = String.fromCharCode(charCode);
|
||||
let re = e.target.getAttribute('pattern') || '^[0-9]+$'
|
||||
re = new RegExp(re)
|
||||
|
||||
if (!charStr.match(re)) {
|
||||
e.preventDefault();
|
||||
}
|
||||
}
|
||||
|
@ -18,11 +18,11 @@ class Request:
|
||||
precision: str = "autocast" # or "full"
|
||||
save_to_disk_path: str = None
|
||||
turbo: bool = True
|
||||
use_cpu: bool = False
|
||||
use_full_precision: bool = False
|
||||
use_face_correction: str = None # or "GFPGANv1.3"
|
||||
use_upscale: str = None # or "RealESRGAN_x4plus" or "RealESRGAN_x4plus_anime_6B"
|
||||
use_stable_diffusion_model: str = "sd-v1-4"
|
||||
use_vae_model: str = None
|
||||
show_only_filtered_image: bool = False
|
||||
output_format: str = "jpeg" # or "png"
|
||||
|
||||
@ -45,10 +45,11 @@ class Request:
|
||||
"use_face_correction": self.use_face_correction,
|
||||
"use_upscale": self.use_upscale,
|
||||
"use_stable_diffusion_model": self.use_stable_diffusion_model,
|
||||
"use_vae_model": self.use_vae_model,
|
||||
"output_format": self.output_format,
|
||||
}
|
||||
|
||||
def to_string(self):
|
||||
def __str__(self):
|
||||
return f'''
|
||||
session_id: {self.session_id}
|
||||
prompt: {self.prompt}
|
||||
@ -62,11 +63,11 @@ class Request:
|
||||
precision: {self.precision}
|
||||
save_to_disk_path: {self.save_to_disk_path}
|
||||
turbo: {self.turbo}
|
||||
use_cpu: {self.use_cpu}
|
||||
use_full_precision: {self.use_full_precision}
|
||||
use_face_correction: {self.use_face_correction}
|
||||
use_upscale: {self.use_upscale}
|
||||
use_stable_diffusion_model: {self.use_stable_diffusion_model}
|
||||
use_vae_model: {self.use_vae_model}
|
||||
show_only_filtered_image: {self.show_only_filtered_image}
|
||||
output_format: {self.output_format}
|
||||
|
||||
|
168
ui/sd_internal/device_manager.py
Normal file
168
ui/sd_internal/device_manager.py
Normal file
@ -0,0 +1,168 @@
|
||||
import os
|
||||
import torch
|
||||
import traceback
|
||||
import re
|
||||
|
||||
COMPARABLE_GPU_PERCENTILE = 0.65 # if a GPU's free_mem is within this % of the GPU with the most free_mem, it will be picked
|
||||
|
||||
mem_free_threshold = 0
|
||||
|
||||
def get_device_delta(render_devices, active_devices):
|
||||
'''
|
||||
render_devices: 'cpu', or 'auto' or ['cuda:N'...]
|
||||
active_devices: ['cpu', 'cuda:N'...]
|
||||
'''
|
||||
|
||||
if render_devices in ('cpu', 'auto'):
|
||||
render_devices = [render_devices]
|
||||
elif render_devices is not None:
|
||||
if isinstance(render_devices, str):
|
||||
render_devices = [render_devices]
|
||||
if isinstance(render_devices, list) and len(render_devices) > 0:
|
||||
render_devices = list(filter(lambda x: x.startswith('cuda:'), render_devices))
|
||||
if len(render_devices) == 0:
|
||||
raise Exception('Invalid render_devices value in config.json. Valid: {"render_devices": ["cuda:0", "cuda:1"...]}, or {"render_devices": "cpu"} or {"render_devices": "auto"}')
|
||||
|
||||
render_devices = list(filter(lambda x: is_device_compatible(x), render_devices))
|
||||
if len(render_devices) == 0:
|
||||
raise Exception('Sorry, none of the render_devices configured in config.json are compatible with Stable Diffusion')
|
||||
else:
|
||||
raise Exception('Invalid render_devices value in config.json. Valid: {"render_devices": ["cuda:0", "cuda:1"...]}, or {"render_devices": "cpu"} or {"render_devices": "auto"}')
|
||||
else:
|
||||
render_devices = ['auto']
|
||||
|
||||
if 'auto' in render_devices:
|
||||
render_devices = auto_pick_devices(active_devices)
|
||||
if 'cpu' in render_devices:
|
||||
print('WARNING: Could not find a compatible GPU. Using the CPU, but this will be very slow!')
|
||||
|
||||
active_devices = set(active_devices)
|
||||
render_devices = set(render_devices)
|
||||
|
||||
devices_to_start = render_devices - active_devices
|
||||
devices_to_stop = active_devices - render_devices
|
||||
|
||||
return devices_to_start, devices_to_stop
|
||||
|
||||
def auto_pick_devices(currently_active_devices):
|
||||
global mem_free_threshold
|
||||
|
||||
if not torch.cuda.is_available(): return ['cpu']
|
||||
|
||||
device_count = torch.cuda.device_count()
|
||||
if device_count == 1:
|
||||
return ['cuda:0'] if is_device_compatible('cuda:0') else ['cpu']
|
||||
|
||||
print('Autoselecting GPU. Using most free memory.')
|
||||
devices = []
|
||||
for device in range(device_count):
|
||||
device = f'cuda:{device}'
|
||||
if not is_device_compatible(device):
|
||||
continue
|
||||
|
||||
mem_free, mem_total = torch.cuda.mem_get_info(device)
|
||||
mem_free /= float(10**9)
|
||||
mem_total /= float(10**9)
|
||||
device_name = torch.cuda.get_device_name(device)
|
||||
print(f'{device} detected: {device_name} - Memory (free/total): {round(mem_free, 2)}Gb / {round(mem_total, 2)}Gb')
|
||||
devices.append({'device': device, 'device_name': device_name, 'mem_free': mem_free})
|
||||
|
||||
devices.sort(key=lambda x:x['mem_free'], reverse=True)
|
||||
max_mem_free = devices[0]['mem_free']
|
||||
curr_mem_free_threshold = COMPARABLE_GPU_PERCENTILE * max_mem_free
|
||||
mem_free_threshold = max(curr_mem_free_threshold, mem_free_threshold)
|
||||
|
||||
# Auto-pick algorithm:
|
||||
# 1. Pick the top 75 percentile of the GPUs, sorted by free_mem.
|
||||
# 2. Also include already-running devices (GPU-only), otherwise their free_mem will
|
||||
# always be very low (since their VRAM contains the model).
|
||||
# These already-running devices probably aren't terrible, since they were picked in the past.
|
||||
# Worst case, the user can restart the program and that'll get rid of them.
|
||||
devices = list(filter((lambda x: x['mem_free'] > mem_free_threshold or x['device'] in currently_active_devices), devices))
|
||||
devices = list(map(lambda x: x['device'], devices))
|
||||
return devices
|
||||
|
||||
def device_init(thread_data, device):
|
||||
'''
|
||||
This function assumes the 'device' has already been verified to be compatible.
|
||||
`get_device_delta()` has already filtered out incompatible devices.
|
||||
'''
|
||||
|
||||
validate_device_id(device, log_prefix='device_init')
|
||||
|
||||
if device == 'cpu':
|
||||
thread_data.device = 'cpu'
|
||||
thread_data.device_name = get_processor_name()
|
||||
print('Render device CPU available as', thread_data.device_name)
|
||||
return
|
||||
|
||||
thread_data.device_name = torch.cuda.get_device_name(device)
|
||||
thread_data.device = device
|
||||
|
||||
# Force full precision on 1660 and 1650 NVIDIA cards to avoid creating green images
|
||||
device_name = thread_data.device_name.lower()
|
||||
thread_data.force_full_precision = ('nvidia' in device_name or 'geforce' in device_name) and (' 1660' in device_name or ' 1650' in device_name)
|
||||
if thread_data.force_full_precision:
|
||||
print('forcing full precision on NVIDIA 16xx cards, to avoid green images. GPU detected: ', thread_data.device_name)
|
||||
# Apply force_full_precision now before models are loaded.
|
||||
thread_data.precision = 'full'
|
||||
|
||||
print(f'Setting {device} as active')
|
||||
torch.cuda.device(device)
|
||||
|
||||
return
|
||||
|
||||
def validate_device_id(device, log_prefix=''):
|
||||
def is_valid():
|
||||
if not isinstance(device, str):
|
||||
return False
|
||||
if device == 'cpu':
|
||||
return True
|
||||
if not device.startswith('cuda:') or not device[5:].isnumeric():
|
||||
return False
|
||||
return True
|
||||
|
||||
if not is_valid():
|
||||
raise EnvironmentError(f"{log_prefix}: device id should be 'cpu', or 'cuda:N' (where N is an integer index for the GPU). Got: {device}")
|
||||
|
||||
def is_device_compatible(device):
|
||||
'''
|
||||
Returns True/False, and prints any compatibility errors
|
||||
'''
|
||||
try:
|
||||
validate_device_id(device, log_prefix='is_device_compatible')
|
||||
except:
|
||||
print(str(e))
|
||||
return False
|
||||
|
||||
if device == 'cpu': return True
|
||||
# Memory check
|
||||
try:
|
||||
_, mem_total = torch.cuda.mem_get_info(device)
|
||||
mem_total /= float(10**9)
|
||||
if mem_total < 3.0:
|
||||
print(f'GPU {device} with less than 3 GB of VRAM is not compatible with Stable Diffusion')
|
||||
return False
|
||||
except RuntimeError as e:
|
||||
print(str(e))
|
||||
return False
|
||||
return True
|
||||
|
||||
def get_processor_name():
|
||||
try:
|
||||
import platform, subprocess
|
||||
if platform.system() == "Windows":
|
||||
return platform.processor()
|
||||
elif platform.system() == "Darwin":
|
||||
os.environ['PATH'] = os.environ['PATH'] + os.pathsep + '/usr/sbin'
|
||||
command = "sysctl -n machdep.cpu.brand_string"
|
||||
return subprocess.check_output(command).strip()
|
||||
elif platform.system() == "Linux":
|
||||
command = "cat /proc/cpuinfo"
|
||||
all_info = subprocess.check_output(command, shell=True).decode().strip()
|
||||
for line in all_info.split("\n"):
|
||||
if "model name" in line:
|
||||
return re.sub(".*model name.*:", "", line, 1).strip()
|
||||
except:
|
||||
print(traceback.format_exc())
|
||||
return "cpu"
|
@ -1,8 +1,15 @@
|
||||
"""runtime.py: torch device owned by a thread.
|
||||
Notes:
|
||||
Avoid device switching, transfering all models will get too complex.
|
||||
To use a diffrent device signal the current render device to exit
|
||||
And then start a new clean thread for the new device.
|
||||
"""
|
||||
import json
|
||||
import os, re
|
||||
import traceback
|
||||
import torch
|
||||
import numpy as np
|
||||
from gc import collect as gc_collect
|
||||
from omegaconf import OmegaConf
|
||||
from PIL import Image, ImageOps
|
||||
from tqdm import tqdm, trange
|
||||
@ -28,70 +35,64 @@ logging.set_verbosity_error()
|
||||
# consts
|
||||
config_yaml = "optimizedSD/v1-inference.yaml"
|
||||
filename_regex = re.compile('[^a-zA-Z0-9]')
|
||||
force_gfpgan_to_cuda0 = True # workaround: gfpgan currently works only on cuda:0
|
||||
|
||||
# api stuff
|
||||
from sd_internal import device_manager
|
||||
from . import Request, Response, Image as ResponseImage
|
||||
import base64
|
||||
from io import BytesIO
|
||||
#from colorama import Fore
|
||||
|
||||
# local
|
||||
stop_processing = False
|
||||
temp_images = {}
|
||||
from threading import local as LocalThreadVars
|
||||
thread_data = LocalThreadVars()
|
||||
|
||||
ckpt_file = None
|
||||
gfpgan_file = None
|
||||
real_esrgan_file = None
|
||||
def thread_init(device):
|
||||
# Thread bound properties
|
||||
thread_data.stop_processing = False
|
||||
thread_data.temp_images = {}
|
||||
|
||||
model = None
|
||||
modelCS = None
|
||||
modelFS = None
|
||||
model_gfpgan = None
|
||||
model_real_esrgan = None
|
||||
thread_data.ckpt_file = None
|
||||
thread_data.vae_file = None
|
||||
thread_data.gfpgan_file = None
|
||||
thread_data.real_esrgan_file = None
|
||||
|
||||
model_is_half = False
|
||||
model_fs_is_half = False
|
||||
device = None
|
||||
unet_bs = 1
|
||||
precision = 'autocast'
|
||||
sampler_plms = None
|
||||
sampler_ddim = None
|
||||
thread_data.model = None
|
||||
thread_data.modelCS = None
|
||||
thread_data.modelFS = None
|
||||
thread_data.model_gfpgan = None
|
||||
thread_data.model_real_esrgan = None
|
||||
|
||||
has_valid_gpu = False
|
||||
force_full_precision = False
|
||||
try:
|
||||
gpu = torch.cuda.current_device()
|
||||
gpu_name = torch.cuda.get_device_name(gpu)
|
||||
print('GPU detected: ', gpu_name)
|
||||
thread_data.model_is_half = False
|
||||
thread_data.model_fs_is_half = False
|
||||
thread_data.device = None
|
||||
thread_data.device_name = None
|
||||
thread_data.unet_bs = 1
|
||||
thread_data.precision = 'autocast'
|
||||
thread_data.sampler_plms = None
|
||||
thread_data.sampler_ddim = None
|
||||
|
||||
force_full_precision = ('nvidia' in gpu_name.lower() or 'geforce' in gpu_name.lower()) and (' 1660' in gpu_name or ' 1650' in gpu_name) # otherwise these NVIDIA cards create green images
|
||||
if force_full_precision:
|
||||
print('forcing full precision on NVIDIA 16xx cards, to avoid green images. GPU detected: ', gpu_name)
|
||||
thread_data.turbo = False
|
||||
thread_data.force_full_precision = False
|
||||
thread_data.reduced_memory = True
|
||||
|
||||
mem_free, mem_total = torch.cuda.mem_get_info(gpu)
|
||||
mem_total /= float(10**9)
|
||||
if mem_total < 3.0:
|
||||
print("GPUs with less than 3 GB of VRAM are not compatible with Stable Diffusion")
|
||||
raise Exception()
|
||||
device_manager.device_init(thread_data, device)
|
||||
|
||||
has_valid_gpu = True
|
||||
except:
|
||||
print('WARNING: No compatible GPU found. Using the CPU, but this will be very slow!')
|
||||
pass
|
||||
def load_model_ckpt():
|
||||
if not thread_data.ckpt_file: raise ValueError(f'Thread ckpt_file is undefined.')
|
||||
if not os.path.exists(thread_data.ckpt_file + '.ckpt'): raise FileNotFoundError(f'Cannot find {thread_data.ckpt_file}.ckpt')
|
||||
|
||||
def load_model_ckpt(ckpt_to_use, device_to_use='cuda', turbo=False, unet_bs_to_use=1, precision_to_use='autocast'):
|
||||
global ckpt_file, model, modelCS, modelFS, model_is_half, device, unet_bs, precision, model_fs_is_half
|
||||
if not thread_data.precision:
|
||||
thread_data.precision = 'full' if thread_data.force_full_precision else 'autocast'
|
||||
|
||||
device = device_to_use if has_valid_gpu else 'cpu'
|
||||
precision = precision_to_use if not force_full_precision else 'full'
|
||||
unet_bs = unet_bs_to_use
|
||||
if not thread_data.unet_bs:
|
||||
thread_data.unet_bs = 1
|
||||
|
||||
unload_model()
|
||||
if thread_data.device == 'cpu':
|
||||
thread_data.precision = 'full'
|
||||
|
||||
if device == 'cpu':
|
||||
precision = 'full'
|
||||
|
||||
sd = load_model_from_config(f"{ckpt_to_use}.ckpt")
|
||||
print('loading', thread_data.ckpt_file + '.ckpt', 'to device', thread_data.device, 'using precision', thread_data.precision)
|
||||
sd = load_model_from_config(thread_data.ckpt_file + '.ckpt')
|
||||
li, lo = [], []
|
||||
for key, value in sd.items():
|
||||
sp = key.split(".")
|
||||
@ -114,114 +115,205 @@ def load_model_ckpt(ckpt_to_use, device_to_use='cuda', turbo=False, unet_bs_to_u
|
||||
model = instantiate_from_config(config.modelUNet)
|
||||
_, _ = model.load_state_dict(sd, strict=False)
|
||||
model.eval()
|
||||
model.cdevice = device
|
||||
model.unet_bs = unet_bs
|
||||
model.turbo = turbo
|
||||
model.cdevice = torch.device(thread_data.device)
|
||||
model.unet_bs = thread_data.unet_bs
|
||||
model.turbo = thread_data.turbo
|
||||
if thread_data.device != 'cpu':
|
||||
model.to(thread_data.device)
|
||||
#if thread_data.reduced_memory:
|
||||
#model.model1.to("cpu")
|
||||
#model.model2.to("cpu")
|
||||
thread_data.model = model
|
||||
|
||||
modelCS = instantiate_from_config(config.modelCondStage)
|
||||
_, _ = modelCS.load_state_dict(sd, strict=False)
|
||||
modelCS.eval()
|
||||
modelCS.cond_stage_model.device = device
|
||||
modelCS.cond_stage_model.device = torch.device(thread_data.device)
|
||||
if thread_data.device != 'cpu':
|
||||
if thread_data.reduced_memory:
|
||||
modelCS.to('cpu')
|
||||
else:
|
||||
modelCS.to(thread_data.device) # Preload on device if not already there.
|
||||
thread_data.modelCS = modelCS
|
||||
|
||||
modelFS = instantiate_from_config(config.modelFirstStage)
|
||||
_, _ = modelFS.load_state_dict(sd, strict=False)
|
||||
|
||||
if thread_data.vae_file is not None:
|
||||
for model_extension in ['.ckpt', '.vae.pt']:
|
||||
if os.path.exists(thread_data.vae_file + model_extension):
|
||||
print(f"Loading VAE weights from: {thread_data.vae_file}{model_extension}")
|
||||
vae_ckpt = torch.load(thread_data.vae_file + model_extension, map_location="cpu")
|
||||
vae_dict = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss"}
|
||||
modelFS.first_stage_model.load_state_dict(vae_dict, strict=False)
|
||||
break
|
||||
else:
|
||||
print(f'Cannot find VAE file: {thread_data.vae_file}{model_extension}')
|
||||
|
||||
modelFS.eval()
|
||||
if thread_data.device != 'cpu':
|
||||
if thread_data.reduced_memory:
|
||||
modelFS.to('cpu')
|
||||
else:
|
||||
modelFS.to(thread_data.device) # Preload on device if not already there.
|
||||
thread_data.modelFS = modelFS
|
||||
del sd
|
||||
|
||||
if device != "cpu" and precision == "autocast":
|
||||
model.half()
|
||||
modelCS.half()
|
||||
modelFS.half()
|
||||
model_is_half = True
|
||||
model_fs_is_half = True
|
||||
if thread_data.device != "cpu" and thread_data.precision == "autocast":
|
||||
thread_data.model.half()
|
||||
thread_data.modelCS.half()
|
||||
thread_data.modelFS.half()
|
||||
thread_data.model_is_half = True
|
||||
thread_data.model_fs_is_half = True
|
||||
else:
|
||||
model_is_half = False
|
||||
model_fs_is_half = False
|
||||
thread_data.model_is_half = False
|
||||
thread_data.model_fs_is_half = False
|
||||
|
||||
ckpt_file = ckpt_to_use
|
||||
print(f'''loaded model
|
||||
model file: {thread_data.ckpt_file}.ckpt
|
||||
model.device: {model.device}
|
||||
modelCS.device: {modelCS.cond_stage_model.device}
|
||||
modelFS.device: {thread_data.modelFS.device}
|
||||
using precision: {thread_data.precision}''')
|
||||
|
||||
print('loaded ', ckpt_file, 'to', device, 'precision', precision)
|
||||
def unload_filters():
|
||||
if thread_data.model_gfpgan is not None:
|
||||
if thread_data.device != 'cpu': thread_data.model_gfpgan.gfpgan.to('cpu')
|
||||
|
||||
def unload_model():
|
||||
global model, modelCS, modelFS
|
||||
del thread_data.model_gfpgan
|
||||
thread_data.model_gfpgan = None
|
||||
|
||||
if model is not None:
|
||||
del model
|
||||
del modelCS
|
||||
del modelFS
|
||||
if thread_data.model_real_esrgan is not None:
|
||||
if thread_data.device != 'cpu': thread_data.model_real_esrgan.model.to('cpu')
|
||||
|
||||
model = None
|
||||
modelCS = None
|
||||
modelFS = None
|
||||
del thread_data.model_real_esrgan
|
||||
thread_data.model_real_esrgan = None
|
||||
|
||||
def load_model_gfpgan(gfpgan_to_use):
|
||||
global gfpgan_file, model_gfpgan
|
||||
gc()
|
||||
|
||||
if gfpgan_to_use is None:
|
||||
return
|
||||
def unload_models():
|
||||
if thread_data.model is not None:
|
||||
print('Unloading models...')
|
||||
if thread_data.device != 'cpu':
|
||||
thread_data.modelFS.to('cpu')
|
||||
thread_data.modelCS.to('cpu')
|
||||
thread_data.model.model1.to("cpu")
|
||||
thread_data.model.model2.to("cpu")
|
||||
|
||||
gfpgan_file = gfpgan_to_use
|
||||
model_path = gfpgan_to_use + ".pth"
|
||||
del thread_data.model
|
||||
del thread_data.modelCS
|
||||
del thread_data.modelFS
|
||||
|
||||
if device == 'cpu':
|
||||
model_gfpgan = GFPGANer(model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=torch.device('cpu'))
|
||||
else:
|
||||
model_gfpgan = GFPGANer(model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=torch.device('cuda'))
|
||||
thread_data.model = None
|
||||
thread_data.modelCS = None
|
||||
thread_data.modelFS = None
|
||||
|
||||
print('loaded ', gfpgan_to_use, 'to', device, 'precision', precision)
|
||||
gc()
|
||||
|
||||
def load_model_real_esrgan(real_esrgan_to_use):
|
||||
global real_esrgan_file, model_real_esrgan
|
||||
def wait_model_move_to(model, target_device): # Send to target_device and wait until complete.
|
||||
if thread_data.device == target_device: return
|
||||
start_mem = torch.cuda.memory_allocated(thread_data.device) / 1e6
|
||||
if start_mem <= 0: return
|
||||
model_name = model.__class__.__name__
|
||||
print(f'Device {thread_data.device} - Sending model {model_name} to {target_device} | Memory transfer starting. Memory Used: {round(start_mem)}Mb')
|
||||
start_time = time.time()
|
||||
model.to(target_device)
|
||||
time_step = start_time
|
||||
WARNING_TIMEOUT = 1.5 # seconds - Show activity in console after timeout.
|
||||
last_mem = start_mem
|
||||
is_transfering = True
|
||||
while is_transfering:
|
||||
time.sleep(0.5) # 500ms
|
||||
mem = torch.cuda.memory_allocated(thread_data.device) / 1e6
|
||||
is_transfering = bool(mem > 0 and mem < last_mem) # still stuff loaded, but less than last time.
|
||||
last_mem = mem
|
||||
if not is_transfering:
|
||||
break;
|
||||
if time.time() - time_step > WARNING_TIMEOUT: # Long delay, print to console to show activity.
|
||||
print(f'Device {thread_data.device} - Waiting for Memory transfer. Memory Used: {round(mem)}Mb, Transfered: {round(start_mem - mem)}Mb')
|
||||
time_step = time.time()
|
||||
print(f'Device {thread_data.device} - {model_name} Moved: {round(start_mem - last_mem)}Mb in {round(time.time() - start_time, 3)} seconds to {target_device}')
|
||||
|
||||
if real_esrgan_to_use is None:
|
||||
return
|
||||
def load_model_gfpgan():
|
||||
if thread_data.gfpgan_file is None: raise ValueError(f'Thread gfpgan_file is undefined.')
|
||||
model_path = thread_data.gfpgan_file + ".pth"
|
||||
device = 'cuda:0' if force_gfpgan_to_cuda0 else thread_data.device
|
||||
thread_data.model_gfpgan = GFPGANer(device=torch.device(device), model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None)
|
||||
print('loaded', thread_data.gfpgan_file, 'to', thread_data.model_gfpgan.device, 'precision', thread_data.precision)
|
||||
|
||||
real_esrgan_file = real_esrgan_to_use
|
||||
model_path = real_esrgan_to_use + ".pth"
|
||||
def load_model_real_esrgan():
|
||||
if thread_data.real_esrgan_file is None: raise ValueError(f'Thread real_esrgan_file is undefined.')
|
||||
model_path = thread_data.real_esrgan_file + ".pth"
|
||||
|
||||
RealESRGAN_models = {
|
||||
'RealESRGAN_x4plus': RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4),
|
||||
'RealESRGAN_x4plus_anime_6B': RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
|
||||
}
|
||||
|
||||
model_to_use = RealESRGAN_models[real_esrgan_to_use]
|
||||
model_to_use = RealESRGAN_models[thread_data.real_esrgan_file]
|
||||
|
||||
if device == 'cpu':
|
||||
model_real_esrgan = RealESRGANer(scale=2, model_path=model_path, model=model_to_use, pre_pad=0, half=False) # cpu does not support half
|
||||
model_real_esrgan.device = torch.device('cpu')
|
||||
model_real_esrgan.model.to('cpu')
|
||||
if thread_data.device == 'cpu':
|
||||
thread_data.model_real_esrgan = RealESRGANer(device=torch.device(thread_data.device), scale=2, model_path=model_path, model=model_to_use, pre_pad=0, half=False) # cpu does not support half
|
||||
#thread_data.model_real_esrgan.device = torch.device(thread_data.device)
|
||||
thread_data.model_real_esrgan.model.to('cpu')
|
||||
else:
|
||||
model_real_esrgan = RealESRGANer(scale=2, model_path=model_path, model=model_to_use, pre_pad=0, half=model_is_half)
|
||||
thread_data.model_real_esrgan = RealESRGANer(device=torch.device(thread_data.device), scale=2, model_path=model_path, model=model_to_use, pre_pad=0, half=thread_data.model_is_half)
|
||||
|
||||
model_real_esrgan.model.name = real_esrgan_to_use
|
||||
thread_data.model_real_esrgan.model.name = thread_data.real_esrgan_file
|
||||
print('loaded ', thread_data.real_esrgan_file, 'to', thread_data.model_real_esrgan.device, 'precision', thread_data.precision)
|
||||
|
||||
print('loaded ', real_esrgan_to_use, 'to', device, 'precision', precision)
|
||||
|
||||
def get_session_out_path(disk_path, session_id):
|
||||
if disk_path is None: return None
|
||||
if session_id is None: return None
|
||||
|
||||
session_out_path = os.path.join(disk_path, filename_regex.sub('_',session_id))
|
||||
os.makedirs(session_out_path, exist_ok=True)
|
||||
return session_out_path
|
||||
|
||||
def get_base_path(disk_path, session_id, prompt, img_id, ext, suffix=None):
|
||||
if disk_path is None: return None
|
||||
if session_id is None: return None
|
||||
if ext is None: raise Exception('Missing ext')
|
||||
|
||||
session_out_path = os.path.join(disk_path, session_id)
|
||||
os.makedirs(session_out_path, exist_ok=True)
|
||||
session_out_path = get_session_out_path(disk_path, session_id)
|
||||
|
||||
prompt_flattened = filename_regex.sub('_', prompt)[:50]
|
||||
|
||||
|
||||
if suffix is not None:
|
||||
return os.path.join(session_out_path, f"{prompt_flattened}_{img_id}_{suffix}.{ext}")
|
||||
return os.path.join(session_out_path, f"{prompt_flattened}_{img_id}.{ext}")
|
||||
|
||||
def apply_filters(filter_name, image_data):
|
||||
def apply_filters(filter_name, image_data, model_path=None):
|
||||
print(f'Applying filter {filter_name}...')
|
||||
gc()
|
||||
gc() # Free space before loading new data.
|
||||
|
||||
if filter_name == 'gfpgan':
|
||||
_, _, output = model_gfpgan.enhance(image_data[:,:,::-1], has_aligned=False, only_center_face=False, paste_back=True)
|
||||
if isinstance(image_data, torch.Tensor):
|
||||
image_data.to('cuda:0' if force_gfpgan_to_cuda0 else thread_data.device)
|
||||
|
||||
if model_path is not None and model_path != thread_data.gfpgan_file:
|
||||
thread_data.gfpgan_file = model_path
|
||||
load_model_gfpgan()
|
||||
elif not thread_data.model_gfpgan:
|
||||
load_model_gfpgan()
|
||||
if thread_data.model_gfpgan is None: raise Exception('Model "gfpgan" not loaded.')
|
||||
print('enhance with', thread_data.gfpgan_file, 'on', thread_data.model_gfpgan.device, 'precision', thread_data.precision)
|
||||
_, _, output = thread_data.model_gfpgan.enhance(image_data[:,:,::-1], has_aligned=False, only_center_face=False, paste_back=True)
|
||||
image_data = output[:,:,::-1]
|
||||
|
||||
if filter_name == 'real_esrgan':
|
||||
output, _ = model_real_esrgan.enhance(image_data[:,:,::-1])
|
||||
if isinstance(image_data, torch.Tensor):
|
||||
image_data.to(thread_data.device)
|
||||
|
||||
if model_path is not None and model_path != thread_data.real_esrgan_file:
|
||||
thread_data.real_esrgan_file = model_path
|
||||
load_model_real_esrgan()
|
||||
elif not thread_data.model_real_esrgan:
|
||||
load_model_real_esrgan()
|
||||
if thread_data.model_real_esrgan is None: raise Exception('Model "gfpgan" not loaded.')
|
||||
print('enhance with', thread_data.real_esrgan_file, 'on', thread_data.model_real_esrgan.device, 'precision', thread_data.precision)
|
||||
output, _ = thread_data.model_real_esrgan.enhance(image_data[:,:,::-1])
|
||||
image_data = output[:,:,::-1]
|
||||
|
||||
return image_data
|
||||
@ -232,83 +324,102 @@ def mk_img(req: Request):
|
||||
except Exception as e:
|
||||
print(traceback.format_exc())
|
||||
|
||||
gc()
|
||||
|
||||
if device != "cpu":
|
||||
modelFS.to("cpu")
|
||||
modelCS.to("cpu")
|
||||
|
||||
model.model1.to("cpu")
|
||||
model.model2.to("cpu")
|
||||
|
||||
gc()
|
||||
if thread_data.device != 'cpu':
|
||||
thread_data.modelFS.to('cpu')
|
||||
thread_data.modelCS.to('cpu')
|
||||
thread_data.model.model1.to("cpu")
|
||||
thread_data.model.model2.to("cpu")
|
||||
|
||||
gc() # Release from memory.
|
||||
yield json.dumps({
|
||||
"status": 'failed',
|
||||
"detail": str(e)
|
||||
})
|
||||
|
||||
def do_mk_img(req: Request):
|
||||
global ckpt_file
|
||||
global model, modelCS, modelFS, device
|
||||
global model_gfpgan, model_real_esrgan
|
||||
global stop_processing
|
||||
def update_temp_img(req, x_samples):
|
||||
partial_images = []
|
||||
for i in range(req.num_outputs):
|
||||
x_sample_ddim = thread_data.modelFS.decode_first_stage(x_samples[i].unsqueeze(0))
|
||||
x_sample = torch.clamp((x_sample_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
x_sample = 255.0 * rearrange(x_sample[0].cpu().numpy(), "c h w -> h w c")
|
||||
x_sample = x_sample.astype(np.uint8)
|
||||
img = Image.fromarray(x_sample)
|
||||
buf = BytesIO()
|
||||
img.save(buf, format='JPEG')
|
||||
buf.seek(0)
|
||||
|
||||
stop_processing = False
|
||||
del img, x_sample, x_sample_ddim
|
||||
# don't delete x_samples, it is used in the code that called this callback
|
||||
|
||||
thread_data.temp_images[str(req.session_id) + '/' + str(i)] = buf
|
||||
partial_images.append({'path': f'/image/tmp/{req.session_id}/{i}'})
|
||||
return partial_images
|
||||
|
||||
# Build and return the apropriate generator for do_mk_img
|
||||
def get_image_progress_generator(req, extra_props=None):
|
||||
if not req.stream_progress_updates:
|
||||
def empty_callback(x_samples, i): return x_samples
|
||||
return empty_callback
|
||||
|
||||
thread_data.partial_x_samples = None
|
||||
last_callback_time = -1
|
||||
def img_callback(x_samples, i):
|
||||
nonlocal last_callback_time
|
||||
|
||||
thread_data.partial_x_samples = x_samples
|
||||
step_time = time.time() - last_callback_time if last_callback_time != -1 else -1
|
||||
last_callback_time = time.time()
|
||||
|
||||
progress = {"step": i, "step_time": step_time}
|
||||
if extra_props is not None:
|
||||
progress.update(extra_props)
|
||||
|
||||
if req.stream_image_progress and i % 5 == 0:
|
||||
progress['output'] = update_temp_img(req, x_samples)
|
||||
|
||||
yield json.dumps(progress)
|
||||
|
||||
if thread_data.stop_processing:
|
||||
raise UserInitiatedStop("User requested that we stop processing")
|
||||
return img_callback
|
||||
|
||||
def do_mk_img(req: Request):
|
||||
thread_data.stop_processing = False
|
||||
|
||||
res = Response()
|
||||
res.request = req
|
||||
res.images = []
|
||||
|
||||
temp_images.clear()
|
||||
thread_data.temp_images.clear()
|
||||
|
||||
# custom model support:
|
||||
# the req.use_stable_diffusion_model needs to be a valid path
|
||||
# to the ckpt file (without the extension).
|
||||
if not os.path.exists(req.use_stable_diffusion_model + '.ckpt'): raise FileNotFoundError(f'Cannot find {req.use_stable_diffusion_model}.ckpt')
|
||||
|
||||
needs_model_reload = False
|
||||
ckpt_to_use = ckpt_file
|
||||
if ckpt_to_use != req.use_stable_diffusion_model:
|
||||
ckpt_to_use = req.use_stable_diffusion_model
|
||||
if not thread_data.model or thread_data.ckpt_file != req.use_stable_diffusion_model or thread_data.vae_file != req.use_vae_model:
|
||||
thread_data.ckpt_file = req.use_stable_diffusion_model
|
||||
thread_data.vae_file = req.use_vae_model
|
||||
needs_model_reload = True
|
||||
|
||||
model.turbo = req.turbo
|
||||
if req.use_cpu:
|
||||
if device != 'cpu':
|
||||
device = 'cpu'
|
||||
|
||||
if model_is_half:
|
||||
load_model_ckpt(ckpt_to_use, device)
|
||||
needs_model_reload = False
|
||||
|
||||
load_model_gfpgan(gfpgan_file)
|
||||
load_model_real_esrgan(real_esrgan_file)
|
||||
else:
|
||||
if has_valid_gpu:
|
||||
prev_device = device
|
||||
device = 'cuda'
|
||||
|
||||
if (precision == 'autocast' and (req.use_full_precision or not model_is_half)) or \
|
||||
(precision == 'full' and not req.use_full_precision and not force_full_precision):
|
||||
|
||||
load_model_ckpt(ckpt_to_use, device, req.turbo, unet_bs, ('full' if req.use_full_precision else 'autocast'))
|
||||
needs_model_reload = False
|
||||
|
||||
if prev_device != device:
|
||||
load_model_gfpgan(gfpgan_file)
|
||||
load_model_real_esrgan(real_esrgan_file)
|
||||
if thread_data.device != 'cpu':
|
||||
if (thread_data.precision == 'autocast' and (req.use_full_precision or not thread_data.model_is_half)) or \
|
||||
(thread_data.precision == 'full' and not req.use_full_precision and not thread_data.force_full_precision):
|
||||
thread_data.precision = 'full' if req.use_full_precision else 'autocast'
|
||||
needs_model_reload = True
|
||||
|
||||
if needs_model_reload:
|
||||
load_model_ckpt(ckpt_to_use, device, req.turbo, unet_bs, precision)
|
||||
unload_models()
|
||||
unload_filters()
|
||||
load_model_ckpt()
|
||||
|
||||
if req.use_face_correction != gfpgan_file:
|
||||
load_model_gfpgan(req.use_face_correction)
|
||||
if thread_data.turbo != req.turbo:
|
||||
thread_data.turbo = req.turbo
|
||||
thread_data.model.turbo = req.turbo
|
||||
|
||||
if req.use_upscale != real_esrgan_file:
|
||||
load_model_real_esrgan(req.use_upscale)
|
||||
|
||||
model.cdevice = device
|
||||
modelCS.cond_stage_model.device = device
|
||||
# Start by cleaning memory, loading and unloading things can leave memory allocated.
|
||||
gc()
|
||||
|
||||
opt_prompt = req.prompt
|
||||
opt_seed = req.seed
|
||||
@ -316,11 +427,9 @@ def do_mk_img(req: Request):
|
||||
opt_C = 4
|
||||
opt_f = 8
|
||||
opt_ddim_eta = 0.0
|
||||
opt_init_img = req.init_image
|
||||
|
||||
print(req.to_string(), '\n device', device)
|
||||
|
||||
print('\n\n Using precision:', precision)
|
||||
print(req, '\n device', torch.device(thread_data.device), "as", thread_data.device_name)
|
||||
print('\n\n Using precision:', thread_data.precision)
|
||||
|
||||
seed_everything(opt_seed)
|
||||
|
||||
@ -329,7 +438,7 @@ def do_mk_img(req: Request):
|
||||
assert prompt is not None
|
||||
data = [batch_size * [prompt]]
|
||||
|
||||
if precision == "autocast" and device != "cpu":
|
||||
if thread_data.precision == "autocast" and thread_data.device != "cpu":
|
||||
precision_scope = autocast
|
||||
else:
|
||||
precision_scope = nullcontext
|
||||
@ -345,46 +454,46 @@ def do_mk_img(req: Request):
|
||||
handler = _img2img
|
||||
|
||||
init_image = load_img(req.init_image, req.width, req.height)
|
||||
init_image = init_image.to(device)
|
||||
init_image = init_image.to(thread_data.device)
|
||||
|
||||
if device != "cpu" and precision == "autocast":
|
||||
if thread_data.device != "cpu" and thread_data.precision == "autocast":
|
||||
init_image = init_image.half()
|
||||
|
||||
modelFS.to(device)
|
||||
thread_data.modelFS.to(thread_data.device)
|
||||
|
||||
init_image = repeat(init_image, '1 ... -> b ...', b=batch_size)
|
||||
init_latent = modelFS.get_first_stage_encoding(modelFS.encode_first_stage(init_image)) # move to latent space
|
||||
init_latent = thread_data.modelFS.get_first_stage_encoding(thread_data.modelFS.encode_first_stage(init_image)) # move to latent space
|
||||
|
||||
if req.mask is not None:
|
||||
mask = load_mask(req.mask, req.width, req.height, init_latent.shape[2], init_latent.shape[3], True).to(device)
|
||||
mask = load_mask(req.mask, req.width, req.height, init_latent.shape[2], init_latent.shape[3], True).to(thread_data.device)
|
||||
mask = mask[0][0].unsqueeze(0).repeat(4, 1, 1).unsqueeze(0)
|
||||
mask = repeat(mask, '1 ... -> b ...', b=batch_size)
|
||||
|
||||
if device != "cpu" and precision == "autocast":
|
||||
if thread_data.device != "cpu" and thread_data.precision == "autocast":
|
||||
mask = mask.half()
|
||||
|
||||
move_fs_to_cpu()
|
||||
# Send to CPU and wait until complete.
|
||||
wait_model_move_to(thread_data.modelFS, 'cpu')
|
||||
|
||||
assert 0. <= req.prompt_strength <= 1., 'can only work with strength in [0.0, 1.0]'
|
||||
t_enc = int(req.prompt_strength * req.num_inference_steps)
|
||||
print(f"target t_enc is {t_enc} steps")
|
||||
|
||||
if req.save_to_disk_path is not None:
|
||||
session_out_path = os.path.join(req.save_to_disk_path, req.session_id)
|
||||
os.makedirs(session_out_path, exist_ok=True)
|
||||
session_out_path = get_session_out_path(req.save_to_disk_path, req.session_id)
|
||||
else:
|
||||
session_out_path = None
|
||||
|
||||
seeds = ""
|
||||
with torch.no_grad():
|
||||
for n in trange(opt_n_iter, desc="Sampling"):
|
||||
for prompts in tqdm(data, desc="data"):
|
||||
|
||||
with precision_scope("cuda"):
|
||||
modelCS.to(device)
|
||||
if thread_data.reduced_memory:
|
||||
thread_data.modelCS.to(thread_data.device)
|
||||
uc = None
|
||||
if req.guidance_scale != 1.0:
|
||||
uc = modelCS.get_learned_conditioning(batch_size * [req.negative_prompt])
|
||||
uc = thread_data.modelCS.get_learned_conditioning(batch_size * [req.negative_prompt])
|
||||
if isinstance(prompts, tuple):
|
||||
prompts = list(prompts)
|
||||
|
||||
@ -397,85 +506,65 @@ def do_mk_img(req: Request):
|
||||
weight = weights[i]
|
||||
# if not skip_normalize:
|
||||
weight = weight / totalWeight
|
||||
c = torch.add(c, modelCS.get_learned_conditioning(subprompts[i]), alpha=weight)
|
||||
c = torch.add(c, thread_data.modelCS.get_learned_conditioning(subprompts[i]), alpha=weight)
|
||||
else:
|
||||
c = modelCS.get_learned_conditioning(prompts)
|
||||
c = thread_data.modelCS.get_learned_conditioning(prompts)
|
||||
|
||||
modelFS.to(device)
|
||||
if thread_data.reduced_memory:
|
||||
thread_data.modelFS.to(thread_data.device)
|
||||
|
||||
partial_x_samples = None
|
||||
last_callback_time = -1
|
||||
def img_callback(x_samples, i):
|
||||
nonlocal partial_x_samples, last_callback_time
|
||||
|
||||
partial_x_samples = x_samples
|
||||
|
||||
if req.stream_progress_updates:
|
||||
n_steps = req.num_inference_steps if req.init_image is None else t_enc
|
||||
step_time = time.time() - last_callback_time if last_callback_time != -1 else -1
|
||||
last_callback_time = time.time()
|
||||
|
||||
progress = {"step": i, "total_steps": n_steps, "step_time": step_time}
|
||||
|
||||
if req.stream_image_progress and i % 5 == 0:
|
||||
partial_images = []
|
||||
|
||||
for i in range(batch_size):
|
||||
x_samples_ddim = modelFS.decode_first_stage(x_samples[i].unsqueeze(0))
|
||||
x_sample = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
x_sample = 255.0 * rearrange(x_sample[0].cpu().numpy(), "c h w -> h w c")
|
||||
x_sample = x_sample.astype(np.uint8)
|
||||
img = Image.fromarray(x_sample)
|
||||
buf = BytesIO()
|
||||
img.save(buf, format='JPEG')
|
||||
buf.seek(0)
|
||||
|
||||
del img, x_sample, x_samples_ddim
|
||||
# don't delete x_samples, it is used in the code that called this callback
|
||||
|
||||
temp_images[str(req.session_id) + '/' + str(i)] = buf
|
||||
partial_images.append({'path': f'/image/tmp/{req.session_id}/{i}'})
|
||||
|
||||
progress['output'] = partial_images
|
||||
|
||||
yield json.dumps(progress)
|
||||
|
||||
if stop_processing:
|
||||
raise UserInitiatedStop("User requested that we stop processing")
|
||||
n_steps = req.num_inference_steps if req.init_image is None else t_enc
|
||||
img_callback = get_image_progress_generator(req, {"total_steps": n_steps})
|
||||
|
||||
# run the handler
|
||||
try:
|
||||
print('Running handler...')
|
||||
if handler == _txt2img:
|
||||
x_samples = _txt2img(req.width, req.height, req.num_outputs, req.num_inference_steps, req.guidance_scale, None, opt_C, opt_f, opt_ddim_eta, c, uc, opt_seed, img_callback, mask, req.sampler)
|
||||
else:
|
||||
x_samples = _img2img(init_latent, t_enc, batch_size, req.guidance_scale, c, uc, req.num_inference_steps, opt_ddim_eta, opt_seed, img_callback, mask)
|
||||
|
||||
yield from x_samples
|
||||
|
||||
x_samples = partial_x_samples
|
||||
if req.stream_progress_updates:
|
||||
yield from x_samples
|
||||
if hasattr(thread_data, 'partial_x_samples'):
|
||||
if thread_data.partial_x_samples is not None:
|
||||
x_samples = thread_data.partial_x_samples
|
||||
del thread_data.partial_x_samples
|
||||
except UserInitiatedStop:
|
||||
if partial_x_samples is None:
|
||||
if not hasattr(thread_data, 'partial_x_samples'):
|
||||
continue
|
||||
if thread_data.partial_x_samples is None:
|
||||
del thread_data.partial_x_samples
|
||||
continue
|
||||
x_samples = thread_data.partial_x_samples
|
||||
del thread_data.partial_x_samples
|
||||
|
||||
x_samples = partial_x_samples
|
||||
|
||||
print("saving images")
|
||||
print("decoding images")
|
||||
img_data = [None] * batch_size
|
||||
for i in range(batch_size):
|
||||
img_id = base64.b64encode(int(time.time()+i).to_bytes(8, 'big')).decode() # Generate unique ID based on time.
|
||||
img_id = img_id.translate({43:None, 47:None, 61:None})[-8:] # Remove + / = and keep last 8 chars.
|
||||
|
||||
x_samples_ddim = modelFS.decode_first_stage(x_samples[i].unsqueeze(0))
|
||||
x_samples_ddim = thread_data.modelFS.decode_first_stage(x_samples[i].unsqueeze(0))
|
||||
x_sample = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
x_sample = 255.0 * rearrange(x_sample[0].cpu().numpy(), "c h w -> h w c")
|
||||
x_sample = x_sample.astype(np.uint8)
|
||||
img = Image.fromarray(x_sample)
|
||||
img_data[i] = x_sample
|
||||
del x_samples, x_samples_ddim, x_sample
|
||||
|
||||
if thread_data.reduced_memory:
|
||||
# Send to CPU and wait until complete.
|
||||
wait_model_move_to(thread_data.modelFS, 'cpu')
|
||||
|
||||
print("saving images")
|
||||
for i in range(batch_size):
|
||||
img = Image.fromarray(img_data[i])
|
||||
img_id = base64.b64encode(int(time.time()+i).to_bytes(8, 'big')).decode() # Generate unique ID based on time.
|
||||
img_id = img_id.translate({43:None, 47:None, 61:None})[-8:] # Remove + / = and keep last 8 chars.
|
||||
|
||||
has_filters = (req.use_face_correction is not None and req.use_face_correction.startswith('GFPGAN')) or \
|
||||
(req.use_upscale is not None and req.use_upscale.startswith('RealESRGAN'))
|
||||
|
||||
return_orig_img = not has_filters or not req.show_only_filtered_image
|
||||
|
||||
if stop_processing:
|
||||
if thread_data.stop_processing:
|
||||
return_orig_img = True
|
||||
|
||||
if req.save_to_disk_path is not None:
|
||||
@ -486,25 +575,24 @@ def do_mk_img(req: Request):
|
||||
save_metadata(meta_out_path, req, prompts[0], opt_seed)
|
||||
|
||||
if return_orig_img:
|
||||
img_data = img_to_base64_str(img, req.output_format)
|
||||
res_image_orig = ResponseImage(data=img_data, seed=opt_seed)
|
||||
img_str = img_to_base64_str(img, req.output_format)
|
||||
res_image_orig = ResponseImage(data=img_str, seed=opt_seed)
|
||||
res.images.append(res_image_orig)
|
||||
|
||||
if req.save_to_disk_path is not None:
|
||||
res_image_orig.path_abs = img_out_path
|
||||
|
||||
del img
|
||||
|
||||
if has_filters and not stop_processing:
|
||||
if has_filters and not thread_data.stop_processing:
|
||||
filters_applied = []
|
||||
if req.use_face_correction:
|
||||
x_sample = apply_filters('gfpgan', x_sample)
|
||||
img_data[i] = apply_filters('gfpgan', img_data[i], req.use_face_correction)
|
||||
filters_applied.append(req.use_face_correction)
|
||||
if req.use_upscale:
|
||||
x_sample = apply_filters('real_esrgan', x_sample)
|
||||
img_data[i] = apply_filters('real_esrgan', img_data[i], req.use_upscale)
|
||||
filters_applied.append(req.use_upscale)
|
||||
if (len(filters_applied) > 0):
|
||||
filtered_image = Image.fromarray(x_sample)
|
||||
filtered_image = Image.fromarray(img_data[i])
|
||||
filtered_img_data = img_to_base64_str(filtered_image, req.output_format)
|
||||
response_image = ResponseImage(data=filtered_img_data, seed=opt_seed)
|
||||
res.images.append(response_image)
|
||||
@ -513,17 +601,17 @@ def do_mk_img(req: Request):
|
||||
save_image(filtered_image, filtered_img_out_path)
|
||||
response_image.path_abs = filtered_img_out_path
|
||||
del filtered_image
|
||||
|
||||
seeds += str(opt_seed) + ","
|
||||
# Filter Applied, move to next seed
|
||||
opt_seed += 1
|
||||
|
||||
move_fs_to_cpu()
|
||||
# if thread_data.reduced_memory:
|
||||
# unload_filters()
|
||||
del img_data
|
||||
gc()
|
||||
del x_samples, x_samples_ddim, x_sample
|
||||
print("memory_final = ", torch.cuda.memory_allocated() / 1e6)
|
||||
if thread_data.device != 'cpu':
|
||||
print(f'memory_final = {round(torch.cuda.memory_allocated(thread_data.device) / 1e6, 2)}Mb')
|
||||
|
||||
print('Task completed')
|
||||
|
||||
yield json.dumps(res.json())
|
||||
|
||||
def save_image(img, img_out_path):
|
||||
@ -533,7 +621,7 @@ def save_image(img, img_out_path):
|
||||
print('could not save the file', traceback.format_exc())
|
||||
|
||||
def save_metadata(meta_out_path, req, prompt, opt_seed):
|
||||
metadata = f"""{prompt}
|
||||
metadata = f'''{prompt}
|
||||
Width: {req.width}
|
||||
Height: {req.height}
|
||||
Seed: {opt_seed}
|
||||
@ -544,8 +632,9 @@ Use Face Correction: {req.use_face_correction}
|
||||
Use Upscaling: {req.use_upscale}
|
||||
Sampler: {req.sampler}
|
||||
Negative Prompt: {req.negative_prompt}
|
||||
Stable Diffusion Model: {req.use_stable_diffusion_model + '.ckpt'}
|
||||
"""
|
||||
Stable Diffusion model: {req.use_stable_diffusion_model + '.ckpt'}
|
||||
VAE model: {req.use_vae_model}
|
||||
'''
|
||||
try:
|
||||
with open(meta_out_path, 'w', encoding='utf-8') as f:
|
||||
f.write(metadata)
|
||||
@ -555,16 +644,13 @@ Stable Diffusion Model: {req.use_stable_diffusion_model + '.ckpt'}
|
||||
def _txt2img(opt_W, opt_H, opt_n_samples, opt_ddim_steps, opt_scale, start_code, opt_C, opt_f, opt_ddim_eta, c, uc, opt_seed, img_callback, mask, sampler_name):
|
||||
shape = [opt_n_samples, opt_C, opt_H // opt_f, opt_W // opt_f]
|
||||
|
||||
if device != "cpu":
|
||||
mem = torch.cuda.memory_allocated() / 1e6
|
||||
modelCS.to("cpu")
|
||||
while torch.cuda.memory_allocated() / 1e6 >= mem:
|
||||
time.sleep(1)
|
||||
# Send to CPU and wait until complete.
|
||||
wait_model_move_to(thread_data.modelCS, 'cpu')
|
||||
|
||||
if sampler_name == 'ddim':
|
||||
model.make_schedule(ddim_num_steps=opt_ddim_steps, ddim_eta=opt_ddim_eta, verbose=False)
|
||||
thread_data.model.make_schedule(ddim_num_steps=opt_ddim_steps, ddim_eta=opt_ddim_eta, verbose=False)
|
||||
|
||||
samples_ddim = model.sample(
|
||||
samples_ddim = thread_data.model.sample(
|
||||
S=opt_ddim_steps,
|
||||
conditioning=c,
|
||||
seed=opt_seed,
|
||||
@ -578,14 +664,13 @@ def _txt2img(opt_W, opt_H, opt_n_samples, opt_ddim_steps, opt_scale, start_code,
|
||||
mask=mask,
|
||||
sampler = sampler_name,
|
||||
)
|
||||
|
||||
yield from samples_ddim
|
||||
|
||||
def _img2img(init_latent, t_enc, batch_size, opt_scale, c, uc, opt_ddim_steps, opt_ddim_eta, opt_seed, img_callback, mask):
|
||||
# encode (scaled latent)
|
||||
z_enc = model.stochastic_encode(
|
||||
z_enc = thread_data.model.stochastic_encode(
|
||||
init_latent,
|
||||
torch.tensor([t_enc] * batch_size).to(device),
|
||||
torch.tensor([t_enc] * batch_size).to(thread_data.device),
|
||||
opt_seed,
|
||||
opt_ddim_eta,
|
||||
opt_ddim_steps,
|
||||
@ -593,7 +678,7 @@ def _img2img(init_latent, t_enc, batch_size, opt_scale, c, uc, opt_ddim_steps, o
|
||||
x_T = None if mask is None else init_latent
|
||||
|
||||
# decode it
|
||||
samples_ddim = model.sample(
|
||||
samples_ddim = thread_data.model.sample(
|
||||
t_enc,
|
||||
c,
|
||||
z_enc,
|
||||
@ -604,20 +689,12 @@ def _img2img(init_latent, t_enc, batch_size, opt_scale, c, uc, opt_ddim_steps, o
|
||||
x_T=x_T,
|
||||
sampler = 'ddim'
|
||||
)
|
||||
|
||||
yield from samples_ddim
|
||||
|
||||
def move_fs_to_cpu():
|
||||
if device != "cpu":
|
||||
mem = torch.cuda.memory_allocated() / 1e6
|
||||
modelFS.to("cpu")
|
||||
while torch.cuda.memory_allocated() / 1e6 >= mem:
|
||||
time.sleep(1)
|
||||
|
||||
def gc():
|
||||
if device == 'cpu':
|
||||
gc_collect()
|
||||
if thread_data.device == 'cpu':
|
||||
return
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.ipc_collect()
|
||||
|
||||
@ -627,7 +704,6 @@ def chunk(it, size):
|
||||
it = iter(it)
|
||||
return iter(lambda: tuple(islice(it, size)), ())
|
||||
|
||||
|
||||
def load_model_from_config(ckpt, verbose=False):
|
||||
print(f"Loading model from {ckpt}")
|
||||
pl_sd = torch.load(ckpt, map_location="cpu")
|
||||
@ -685,12 +761,18 @@ def img_to_base64_str(img, output_format="PNG"):
|
||||
img.save(buffered, format=output_format)
|
||||
buffered.seek(0)
|
||||
img_byte = buffered.getvalue()
|
||||
img_str = "data:image/png;base64," + base64.b64encode(img_byte).decode()
|
||||
mime_type = "image/png" if output_format.lower() == "png" else "image/jpeg"
|
||||
img_str = f"data:{mime_type};base64," + base64.b64encode(img_byte).decode()
|
||||
return img_str
|
||||
|
||||
def base64_str_to_img(img_str):
|
||||
img_str = img_str[len("data:image/png;base64,"):]
|
||||
def base64_str_to_buffer(img_str):
|
||||
mime_type = "image/png" if img_str.startswith("data:image/png;") else "image/jpeg"
|
||||
img_str = img_str[len(f"data:{mime_type};base64,"):]
|
||||
data = base64.b64decode(img_str)
|
||||
buffered = BytesIO(data)
|
||||
return buffered
|
||||
|
||||
def base64_str_to_img(img_str):
|
||||
buffered = base64_str_to_buffer(img_str)
|
||||
img = Image.open(buffered)
|
||||
return img
|
||||
|
@ -1,13 +1,27 @@
|
||||
"""task_manager.py: manage tasks dispatching and render threads.
|
||||
Notes:
|
||||
render_threads should be the only hard reference held by the manager to the threads.
|
||||
Use weak_thread_data to store all other data using weak keys.
|
||||
This will allow for garbage collection after the thread dies.
|
||||
"""
|
||||
import json
|
||||
import traceback
|
||||
|
||||
TASK_TTL = 15 * 60 # seconds, Discard last session's task timeout
|
||||
|
||||
import queue, threading, time
|
||||
import torch
|
||||
import queue, threading, time, weakref
|
||||
from typing import Any, Generator, Hashable, Optional, Union
|
||||
|
||||
from pydantic import BaseModel
|
||||
from sd_internal import Request, Response
|
||||
from sd_internal import Request, Response, runtime, device_manager
|
||||
|
||||
THREAD_NAME_PREFIX = 'Runtime-Render/'
|
||||
ERR_LOCK_FAILED = ' failed to acquire lock within timeout.'
|
||||
LOCK_TIMEOUT = 15 # Maximum locking time in seconds before failing a task.
|
||||
# It's better to get an exception than a deadlock... ALWAYS use timeout in critical paths.
|
||||
|
||||
DEVICE_START_TIMEOUT = 60 # seconds - Maximum time to wait for a render device to init.
|
||||
|
||||
class SymbolClass(type): # Print nicely formatted Symbol names.
|
||||
def __repr__(self): return self.__qualname__
|
||||
@ -25,7 +39,8 @@ class RenderTask(): # Task with output queue and completion lock.
|
||||
def __init__(self, req: Request):
|
||||
self.request: Request = req # Initial Request
|
||||
self.response: Any = None # Copy of the last reponse
|
||||
self.temp_images:[] = [None] * req.num_outputs * (1 if req.show_only_filtered_image else 2)
|
||||
self.render_device = None # Select the task affinity. (Not used to change active devices).
|
||||
self.temp_images:list = [None] * req.num_outputs * (1 if req.show_only_filtered_image else 2)
|
||||
self.error: Exception = None
|
||||
self.lock: threading.Lock = threading.Lock() # Locks at task start and unlocks when task is completed
|
||||
self.buffer_queue: queue.Queue = queue.Queue() # Queue of JSON string segments
|
||||
@ -55,28 +70,43 @@ class ImageRequest(BaseModel):
|
||||
# allow_nsfw: bool = False
|
||||
save_to_disk_path: str = None
|
||||
turbo: bool = True
|
||||
use_cpu: bool = False
|
||||
use_cpu: bool = False ##TODO Remove after UI and plugins transition.
|
||||
render_device: str = None # Select the task affinity. (Not used to change active devices).
|
||||
use_full_precision: bool = False
|
||||
use_face_correction: str = None # or "GFPGANv1.3"
|
||||
use_upscale: str = None # or "RealESRGAN_x4plus" or "RealESRGAN_x4plus_anime_6B"
|
||||
use_stable_diffusion_model: str = "sd-v1-4"
|
||||
use_vae_model: str = None
|
||||
show_only_filtered_image: bool = False
|
||||
output_format: str = "jpeg" # or "png"
|
||||
|
||||
stream_progress_updates: bool = False
|
||||
stream_image_progress: bool = False
|
||||
|
||||
class FilterRequest(BaseModel):
|
||||
session_id: str = "session"
|
||||
model: str = None
|
||||
name: str = ""
|
||||
init_image: str = None # base64
|
||||
width: int = 512
|
||||
height: int = 512
|
||||
save_to_disk_path: str = None
|
||||
turbo: bool = True
|
||||
render_device: str = None
|
||||
use_full_precision: bool = False
|
||||
output_format: str = "jpeg" # or "png"
|
||||
|
||||
# Temporary cache to allow to query tasks results for a short time after they are completed.
|
||||
class TaskCache():
|
||||
def __init__(self):
|
||||
self._base = dict()
|
||||
self._lock: threading.Lock = threading.RLock()
|
||||
self._lock: threading.Lock = threading.Lock()
|
||||
def _get_ttl_time(self, ttl: int) -> int:
|
||||
return int(time.time()) + ttl
|
||||
def _is_expired(self, timestamp: int) -> bool:
|
||||
return int(time.time()) >= timestamp
|
||||
def clean(self) -> None:
|
||||
if not self._lock.acquire(blocking=True, timeout=10): raise Exception('TaskCache.clean failed to acquire lock within timeout.')
|
||||
if not self._lock.acquire(blocking=True, timeout=LOCK_TIMEOUT): raise Exception('TaskCache.clean' + ERR_LOCK_FAILED)
|
||||
try:
|
||||
# Create a list of expired keys to delete
|
||||
to_delete = []
|
||||
@ -91,11 +121,11 @@ class TaskCache():
|
||||
finally:
|
||||
self._lock.release()
|
||||
def clear(self) -> None:
|
||||
if not self._lock.acquire(blocking=True, timeout=10): raise Exception('TaskCache.clear failed to acquire lock within timeout.')
|
||||
if not self._lock.acquire(blocking=True, timeout=LOCK_TIMEOUT): raise Exception('TaskCache.clear' + ERR_LOCK_FAILED)
|
||||
try: self._base.clear()
|
||||
finally: self._lock.release()
|
||||
def delete(self, key: Hashable) -> bool:
|
||||
if not self._lock.acquire(blocking=True, timeout=10): raise Exception('TaskCache.delete failed to acquire lock within timeout.')
|
||||
if not self._lock.acquire(blocking=True, timeout=LOCK_TIMEOUT): raise Exception('TaskCache.delete' + ERR_LOCK_FAILED)
|
||||
try:
|
||||
if key not in self._base:
|
||||
return False
|
||||
@ -104,7 +134,7 @@ class TaskCache():
|
||||
finally:
|
||||
self._lock.release()
|
||||
def keep(self, key: Hashable, ttl: int) -> bool:
|
||||
if not self._lock.acquire(blocking=True, timeout=10): raise Exception('TaskCache.keep failed to acquire lock within timeout.')
|
||||
if not self._lock.acquire(blocking=True, timeout=LOCK_TIMEOUT): raise Exception('TaskCache.keep' + ERR_LOCK_FAILED)
|
||||
try:
|
||||
if key in self._base:
|
||||
_, value = self._base.get(key)
|
||||
@ -114,7 +144,7 @@ class TaskCache():
|
||||
finally:
|
||||
self._lock.release()
|
||||
def put(self, key: Hashable, value: Any, ttl: int) -> bool:
|
||||
if not self._lock.acquire(blocking=True, timeout=10): raise Exception('TaskCache.put failed to acquire lock within timeout.')
|
||||
if not self._lock.acquire(blocking=True, timeout=LOCK_TIMEOUT): raise Exception('TaskCache.put' + ERR_LOCK_FAILED)
|
||||
try:
|
||||
self._base[key] = (
|
||||
self._get_ttl_time(ttl), value
|
||||
@ -128,131 +158,343 @@ class TaskCache():
|
||||
finally:
|
||||
self._lock.release()
|
||||
def tryGet(self, key: Hashable) -> Any:
|
||||
if not self._lock.acquire(blocking=True, timeout=10): raise Exception('TaskCache.tryGet failed to acquire lock within timeout.')
|
||||
if not self._lock.acquire(blocking=True, timeout=LOCK_TIMEOUT): raise Exception('TaskCache.tryGet' + ERR_LOCK_FAILED)
|
||||
try:
|
||||
ttl, value = self._base.get(key, (None, None))
|
||||
if ttl is not None and self._is_expired(ttl):
|
||||
print(f'Session {key} expired. Discarding data.')
|
||||
self.delete(key)
|
||||
del self._base[key]
|
||||
return None
|
||||
return value
|
||||
finally:
|
||||
self._lock.release()
|
||||
|
||||
manager_lock = threading.RLock()
|
||||
render_threads = []
|
||||
current_state = ServerStates.Init
|
||||
current_state_error:Exception = None
|
||||
current_model_path = None
|
||||
tasks_queue = queue.Queue()
|
||||
current_vae_path = None
|
||||
tasks_queue = []
|
||||
task_cache = TaskCache()
|
||||
default_model_to_load = None
|
||||
default_vae_to_load = None
|
||||
weak_thread_data = weakref.WeakKeyDictionary()
|
||||
|
||||
def preload_model(file_path=None):
|
||||
global current_state, current_state_error, current_model_path
|
||||
if file_path == None:
|
||||
file_path = default_model_to_load
|
||||
if file_path == current_model_path:
|
||||
def preload_model(ckpt_file_path=None, vae_file_path=None):
|
||||
global current_state, current_state_error, current_model_path, current_vae_path
|
||||
if ckpt_file_path == None:
|
||||
ckpt_file_path = default_model_to_load
|
||||
if vae_file_path == None:
|
||||
vae_file_path = default_vae_to_load
|
||||
if ckpt_file_path == current_model_path and vae_file_path == current_vae_path:
|
||||
return
|
||||
current_state = ServerStates.LoadingModel
|
||||
try:
|
||||
from . import runtime
|
||||
runtime.load_model_ckpt(ckpt_to_use=file_path)
|
||||
current_model_path = file_path
|
||||
runtime.thread_data.ckpt_file = ckpt_file_path
|
||||
runtime.thread_data.vae_file = vae_file_path
|
||||
runtime.load_model_ckpt()
|
||||
current_model_path = ckpt_file_path
|
||||
current_vae_path = vae_file_path
|
||||
current_state_error = None
|
||||
current_state = ServerStates.Online
|
||||
except Exception as e:
|
||||
current_model_path = None
|
||||
current_vae_path = None
|
||||
current_state_error = e
|
||||
current_state = ServerStates.Unavailable
|
||||
print(traceback.format_exc())
|
||||
|
||||
def thread_render():
|
||||
global current_state, current_state_error, current_model_path
|
||||
def thread_get_next_task():
|
||||
from . import runtime
|
||||
current_state = ServerStates.Online
|
||||
preload_model()
|
||||
if not manager_lock.acquire(blocking=True, timeout=LOCK_TIMEOUT):
|
||||
print('Render thread on device', runtime.thread_data.device, 'failed to acquire manager lock.')
|
||||
return None
|
||||
if len(tasks_queue) <= 0:
|
||||
manager_lock.release()
|
||||
return None
|
||||
task = None
|
||||
try: # Select a render task.
|
||||
for queued_task in tasks_queue:
|
||||
if queued_task.request.use_face_correction and runtime.thread_data.device == 'cpu' and is_alive() == 1:
|
||||
queued_task.error = Exception('The CPU cannot be used to run this task currently. Please remove "Fix incorrect faces" from Image Settings and try again.')
|
||||
task = queued_task
|
||||
break
|
||||
if queued_task.render_device and runtime.thread_data.device != queued_task.render_device:
|
||||
# Is asking for a specific render device.
|
||||
if is_alive(queued_task.render_device) > 0:
|
||||
continue # requested device alive, skip current one.
|
||||
else:
|
||||
# Requested device is not active, return error to UI.
|
||||
queued_task.error = Exception(queued_task.render_device + ' is not currently active.')
|
||||
task = queued_task
|
||||
break
|
||||
if not queued_task.render_device and runtime.thread_data.device == 'cpu' and is_alive() > 1:
|
||||
# not asking for any specific devices, cpu want to grab task but other render devices are alive.
|
||||
continue # Skip Tasks, don't run on CPU unless there is nothing else or user asked for it.
|
||||
task = queued_task
|
||||
break
|
||||
if task is not None:
|
||||
del tasks_queue[tasks_queue.index(task)]
|
||||
return task
|
||||
finally:
|
||||
manager_lock.release()
|
||||
|
||||
def thread_render(device):
|
||||
global current_state, current_state_error, current_model_path, current_vae_path
|
||||
from . import runtime
|
||||
try:
|
||||
runtime.thread_init(device)
|
||||
except Exception as e:
|
||||
print(traceback.format_exc())
|
||||
weak_thread_data[threading.current_thread()] = {
|
||||
'error': e
|
||||
}
|
||||
return
|
||||
weak_thread_data[threading.current_thread()] = {
|
||||
'device': runtime.thread_data.device,
|
||||
'device_name': runtime.thread_data.device_name,
|
||||
'alive': True
|
||||
}
|
||||
if runtime.thread_data.device != 'cpu' or is_alive() == 1:
|
||||
preload_model()
|
||||
current_state = ServerStates.Online
|
||||
while True:
|
||||
task_cache.clean()
|
||||
if not weak_thread_data[threading.current_thread()]['alive']:
|
||||
print(f'Shutting down thread for device {runtime.thread_data.device}')
|
||||
runtime.unload_models()
|
||||
runtime.unload_filters()
|
||||
return
|
||||
if isinstance(current_state_error, SystemExit):
|
||||
current_state = ServerStates.Unavailable
|
||||
return
|
||||
task = None
|
||||
try:
|
||||
task = tasks_queue.get(timeout=1)
|
||||
except queue.Empty as e:
|
||||
if isinstance(current_state_error, SystemExit):
|
||||
current_state = ServerStates.Unavailable
|
||||
return
|
||||
else: continue
|
||||
#if current_model_path != task.request.use_stable_diffusion_model:
|
||||
# preload_model(task.request.use_stable_diffusion_model)
|
||||
task = thread_get_next_task()
|
||||
if task is None:
|
||||
time.sleep(1)
|
||||
continue
|
||||
if task.error is not None:
|
||||
print(task.error)
|
||||
task.response = {"status": 'failed', "detail": str(task.error)}
|
||||
task.buffer_queue.put(json.dumps(task.response))
|
||||
continue
|
||||
if current_state_error:
|
||||
task.error = current_state_error
|
||||
task.response = {"status": 'failed', "detail": str(task.error)}
|
||||
task.buffer_queue.put(json.dumps(task.response))
|
||||
continue
|
||||
print(f'Session {task.request.session_id} starting task {id(task)}')
|
||||
print(f'Session {task.request.session_id} starting task {id(task)} on {runtime.thread_data.device_name}')
|
||||
if not task.lock.acquire(blocking=False): raise Exception('Got locked task from queue.')
|
||||
try:
|
||||
task.lock.acquire(blocking=False)
|
||||
if runtime.thread_data.device == 'cpu' and is_alive() > 1:
|
||||
# CPU is not the only device. Keep track of active time to unload resources later.
|
||||
runtime.thread_data.lastActive = time.time()
|
||||
# Open data generator.
|
||||
res = runtime.mk_img(task.request)
|
||||
if current_model_path == task.request.use_stable_diffusion_model:
|
||||
current_state = ServerStates.Rendering
|
||||
else:
|
||||
current_state = ServerStates.LoadingModel
|
||||
# Start reading from generator.
|
||||
dataQueue = None
|
||||
if task.request.stream_progress_updates:
|
||||
dataQueue = task.buffer_queue
|
||||
for result in res:
|
||||
if current_state == ServerStates.LoadingModel:
|
||||
current_state = ServerStates.Rendering
|
||||
current_model_path = task.request.use_stable_diffusion_model
|
||||
current_vae_path = task.request.use_vae_model
|
||||
if isinstance(current_state_error, SystemExit) or isinstance(current_state_error, StopAsyncIteration) or isinstance(task.error, StopAsyncIteration):
|
||||
runtime.thread_data.stop_processing = True
|
||||
if isinstance(current_state_error, StopAsyncIteration):
|
||||
task.error = current_state_error
|
||||
current_state_error = None
|
||||
print(f'Session {task.request.session_id} sent cancel signal for task {id(task)}')
|
||||
if dataQueue:
|
||||
dataQueue.put(result)
|
||||
if isinstance(result, str):
|
||||
result = json.loads(result)
|
||||
task.response = result
|
||||
if 'output' in result:
|
||||
for out_obj in result['output']:
|
||||
if 'path' in out_obj:
|
||||
img_id = out_obj['path'][out_obj['path'].rindex('/') + 1:]
|
||||
task.temp_images[int(img_id)] = runtime.thread_data.temp_images[out_obj['path'][11:]]
|
||||
elif 'data' in out_obj:
|
||||
buf = runtime.base64_str_to_buffer(out_obj['data'])
|
||||
task.temp_images[result['output'].index(out_obj)] = buf
|
||||
# Before looping back to the generator, mark cache as still alive.
|
||||
task_cache.keep(task.request.session_id, TASK_TTL)
|
||||
except Exception as e:
|
||||
task.error = e
|
||||
task.lock.release()
|
||||
tasks_queue.task_done()
|
||||
print(traceback.format_exc())
|
||||
continue
|
||||
dataQueue = None
|
||||
if task.request.stream_progress_updates:
|
||||
dataQueue = task.buffer_queue
|
||||
for result in res:
|
||||
if current_state == ServerStates.LoadingModel:
|
||||
current_state = ServerStates.Rendering
|
||||
current_model_path = task.request.use_stable_diffusion_model
|
||||
if isinstance(current_state_error, SystemExit) or isinstance(current_state_error, StopAsyncIteration) or isinstance(task.error, StopAsyncIteration):
|
||||
runtime.stop_processing = True
|
||||
if isinstance(current_state_error, StopAsyncIteration):
|
||||
task.error = current_state_error
|
||||
current_state_error = None
|
||||
print(f'Session {task.request.session_id} sent cancel signal for task {id(task)}')
|
||||
if dataQueue:
|
||||
dataQueue.put(result)
|
||||
if isinstance(result, str):
|
||||
result = json.loads(result)
|
||||
task.response = result
|
||||
if 'output' in result:
|
||||
for out_obj in result['output']:
|
||||
if 'path' in out_obj:
|
||||
img_id = out_obj['path'][out_obj['path'].rindex('/') + 1:]
|
||||
task.temp_images[int(img_id)] = runtime.temp_images[out_obj['path'][11:]]
|
||||
elif 'data' in out_obj:
|
||||
task.temp_images[result['output'].index(out_obj)] = out_obj['data']
|
||||
task_cache.keep(task.request.session_id, TASK_TTL)
|
||||
# Task completed
|
||||
task.lock.release()
|
||||
tasks_queue.task_done()
|
||||
finally:
|
||||
# Task completed
|
||||
task.lock.release()
|
||||
task_cache.keep(task.request.session_id, TASK_TTL)
|
||||
if isinstance(task.error, StopAsyncIteration):
|
||||
print(f'Session {task.request.session_id} task {id(task)} cancelled!')
|
||||
elif task.error is not None:
|
||||
print(f'Session {task.request.session_id} task {id(task)} failed!')
|
||||
else:
|
||||
print(f'Session {task.request.session_id} task {id(task)} completed.')
|
||||
print(f'Session {task.request.session_id} task {id(task)} completed by {runtime.thread_data.device_name}.')
|
||||
current_state = ServerStates.Online
|
||||
|
||||
render_thread = threading.Thread(target=thread_render)
|
||||
def get_cached_task(session_id:str, update_ttl:bool=False):
|
||||
# By calling keep before tryGet, wont discard if was expired.
|
||||
if update_ttl and not task_cache.keep(session_id, TASK_TTL):
|
||||
# Failed to keep task, already gone.
|
||||
return None
|
||||
return task_cache.tryGet(session_id)
|
||||
|
||||
def start_render_thread():
|
||||
# Start Rendering Thread
|
||||
render_thread.daemon = True
|
||||
render_thread.start()
|
||||
def get_devices():
|
||||
devices = {
|
||||
'all': {},
|
||||
'active': {},
|
||||
}
|
||||
|
||||
def get_device_info(device):
|
||||
if device == 'cpu':
|
||||
return {'name': device_manager.get_processor_name()}
|
||||
|
||||
mem_free, mem_total = torch.cuda.mem_get_info(device)
|
||||
mem_free /= float(10**9)
|
||||
mem_total /= float(10**9)
|
||||
|
||||
return {
|
||||
'name': torch.cuda.get_device_name(device),
|
||||
'mem_free': mem_free,
|
||||
'mem_total': mem_total,
|
||||
}
|
||||
|
||||
# list the compatible devices
|
||||
gpu_count = torch.cuda.device_count()
|
||||
for device in range(gpu_count):
|
||||
device = f'cuda:{device}'
|
||||
if not device_manager.is_device_compatible(device):
|
||||
continue
|
||||
|
||||
devices['all'].update({device: get_device_info(device)})
|
||||
|
||||
devices['all'].update({'cpu': get_device_info('cpu')})
|
||||
|
||||
# list the activated devices
|
||||
if not manager_lock.acquire(blocking=True, timeout=LOCK_TIMEOUT): raise Exception('get_devices' + ERR_LOCK_FAILED)
|
||||
try:
|
||||
for rthread in render_threads:
|
||||
if not rthread.is_alive():
|
||||
continue
|
||||
weak_data = weak_thread_data.get(rthread)
|
||||
if not weak_data or not 'device' in weak_data or not 'device_name' in weak_data:
|
||||
continue
|
||||
device = weak_data['device']
|
||||
devices['active'].update({device: get_device_info(device)})
|
||||
finally:
|
||||
manager_lock.release()
|
||||
|
||||
return devices
|
||||
|
||||
def is_alive(device=None):
|
||||
if not manager_lock.acquire(blocking=True, timeout=LOCK_TIMEOUT): raise Exception('is_alive' + ERR_LOCK_FAILED)
|
||||
nbr_alive = 0
|
||||
try:
|
||||
for rthread in render_threads:
|
||||
if device is not None:
|
||||
weak_data = weak_thread_data.get(rthread)
|
||||
if weak_data is None or not 'device' in weak_data or weak_data['device'] is None:
|
||||
continue
|
||||
thread_device = weak_data['device']
|
||||
if thread_device != device:
|
||||
continue
|
||||
if rthread.is_alive():
|
||||
nbr_alive += 1
|
||||
return nbr_alive
|
||||
finally:
|
||||
manager_lock.release()
|
||||
|
||||
def start_render_thread(device):
|
||||
if not manager_lock.acquire(blocking=True, timeout=LOCK_TIMEOUT): raise Exception('start_render_thread' + ERR_LOCK_FAILED)
|
||||
print('Start new Rendering Thread on device', device)
|
||||
try:
|
||||
rthread = threading.Thread(target=thread_render, kwargs={'device': device})
|
||||
rthread.daemon = True
|
||||
rthread.name = THREAD_NAME_PREFIX + device
|
||||
rthread.start()
|
||||
render_threads.append(rthread)
|
||||
finally:
|
||||
manager_lock.release()
|
||||
timeout = DEVICE_START_TIMEOUT
|
||||
while not rthread.is_alive() or not rthread in weak_thread_data or not 'device' in weak_thread_data[rthread]:
|
||||
if rthread in weak_thread_data and 'error' in weak_thread_data[rthread]:
|
||||
print(rthread, device, 'error:', weak_thread_data[rthread]['error'])
|
||||
return False
|
||||
if timeout <= 0:
|
||||
return False
|
||||
timeout -= 1
|
||||
time.sleep(1)
|
||||
return True
|
||||
|
||||
def stop_render_thread(device):
|
||||
try:
|
||||
device_manager.validate_device_id(device, log_prefix='stop_render_thread')
|
||||
except:
|
||||
print(traceback.format_exec())
|
||||
return False
|
||||
|
||||
if not manager_lock.acquire(blocking=True, timeout=LOCK_TIMEOUT): raise Exception('stop_render_thread' + ERR_LOCK_FAILED)
|
||||
print('Stopping Rendering Thread on device', device)
|
||||
|
||||
try:
|
||||
thread_to_remove = None
|
||||
for rthread in render_threads:
|
||||
weak_data = weak_thread_data.get(rthread)
|
||||
if weak_data is None or not 'device' in weak_data or weak_data['device'] is None:
|
||||
continue
|
||||
thread_device = weak_data['device']
|
||||
if thread_device == device:
|
||||
weak_data['alive'] = False
|
||||
thread_to_remove = rthread
|
||||
break
|
||||
if thread_to_remove is not None:
|
||||
render_threads.remove(rthread)
|
||||
return True
|
||||
finally:
|
||||
manager_lock.release()
|
||||
|
||||
return False
|
||||
|
||||
def update_render_threads(render_devices, active_devices):
|
||||
devices_to_start, devices_to_stop = device_manager.get_device_delta(render_devices, active_devices)
|
||||
print('devices_to_start', devices_to_start)
|
||||
print('devices_to_stop', devices_to_stop)
|
||||
|
||||
for device in devices_to_stop:
|
||||
if is_alive(device) <= 0:
|
||||
print(device, 'is not alive')
|
||||
continue
|
||||
if not stop_render_thread(device):
|
||||
print(device, 'could not stop render thread')
|
||||
|
||||
for device in devices_to_start:
|
||||
if is_alive(device) >= 1:
|
||||
print(device, 'already registered.')
|
||||
continue
|
||||
if not start_render_thread(device):
|
||||
print(device, 'failed to start.')
|
||||
|
||||
if is_alive() <= 0: # No running devices, probably invalid user config.
|
||||
raise EnvironmentError('ERROR: No active render devices! Please verify the "render_devices" value in config.json')
|
||||
|
||||
print('active devices', get_devices()['active'])
|
||||
|
||||
def shutdown_event(): # Signal render thread to close on shutdown
|
||||
global current_state_error
|
||||
current_state_error = SystemExit('Application shutting down.')
|
||||
|
||||
def render(req : ImageRequest):
|
||||
if not render_thread.is_alive(): # Render thread is dead
|
||||
if is_alive() <= 0: # Render thread is dead
|
||||
raise ChildProcessError('Rendering thread has died.')
|
||||
# Alive, check if task in cache
|
||||
task = task_cache.tryGet(req.session_id)
|
||||
@ -277,12 +519,12 @@ def render(req : ImageRequest):
|
||||
r.sampler = req.sampler
|
||||
# r.allow_nsfw = req.allow_nsfw
|
||||
r.turbo = req.turbo
|
||||
r.use_cpu = req.use_cpu
|
||||
r.use_full_precision = req.use_full_precision
|
||||
r.save_to_disk_path = req.save_to_disk_path
|
||||
r.use_upscale: str = req.use_upscale
|
||||
r.use_face_correction = req.use_face_correction
|
||||
r.use_stable_diffusion_model = req.use_stable_diffusion_model
|
||||
r.use_vae_model = req.use_vae_model
|
||||
r.show_only_filtered_image = req.show_only_filtered_image
|
||||
r.output_format = req.output_format
|
||||
|
||||
@ -293,7 +535,14 @@ def render(req : ImageRequest):
|
||||
r.stream_image_progress = False
|
||||
|
||||
new_task = RenderTask(r)
|
||||
|
||||
if task_cache.put(r.session_id, new_task, TASK_TTL):
|
||||
tasks_queue.put(new_task, block=True, timeout=30)
|
||||
return new_task
|
||||
# Use twice the normal timeout for adding user requests.
|
||||
# Tries to force task_cache.put to fail before tasks_queue.put would.
|
||||
if manager_lock.acquire(blocking=True, timeout=LOCK_TIMEOUT * 2):
|
||||
try:
|
||||
tasks_queue.append(new_task)
|
||||
return new_task
|
||||
finally:
|
||||
manager_lock.release()
|
||||
raise RuntimeError('Failed to add task to cache.')
|
||||
|
473
ui/server.py
473
ui/server.py
@ -1,3 +1,7 @@
|
||||
"""server.py: FastAPI SD-UI Web Host.
|
||||
Notes:
|
||||
async endpoints always run on the main thread. Without they run on the thread pool.
|
||||
"""
|
||||
import json
|
||||
import traceback
|
||||
|
||||
@ -16,14 +20,27 @@ UI_PLUGINS_DIR = os.path.abspath(os.path.join(SD_DIR, '..', 'plugins', 'ui'))
|
||||
|
||||
OUTPUT_DIRNAME = "Stable Diffusion UI" # in the user's home folder
|
||||
TASK_TTL = 15 * 60 # Discard last session's task timeout
|
||||
APP_CONFIG_DEFAULTS = {
|
||||
# auto: selects the cuda device with the most free memory, cuda: use the currently active cuda device.
|
||||
'render_devices': 'auto', # valid entries: 'auto', 'cpu' or 'cuda:N' (where N is a GPU index)
|
||||
'update_branch': 'main',
|
||||
'ui': {
|
||||
'open_browser_on_start': True,
|
||||
},
|
||||
}
|
||||
APP_CONFIG_DEFAULT_MODELS = [
|
||||
# needed to support the legacy installations
|
||||
'custom-model', # Check if user has a custom model, use it first.
|
||||
'sd-v1-4', # Default fallback.
|
||||
]
|
||||
|
||||
from fastapi import FastAPI, HTTPException
|
||||
from fastapi.staticfiles import StaticFiles
|
||||
from starlette.responses import FileResponse, JSONResponse, StreamingResponse
|
||||
from pydantic import BaseModel
|
||||
import logging
|
||||
import queue, threading, time
|
||||
from typing import Any, Generator, Hashable, Optional, Union
|
||||
#import queue, threading, time
|
||||
from typing import Any, Generator, Hashable, List, Optional, Union
|
||||
|
||||
from sd_internal import Request, Response, task_manager
|
||||
|
||||
@ -42,171 +59,7 @@ NOCACHE_HEADERS={"Cache-Control": "no-cache, no-store, must-revalidate", "Pragma
|
||||
app.mount('/media', StaticFiles(directory=os.path.join(SD_UI_DIR, 'media')), name="media")
|
||||
app.mount('/plugins', StaticFiles(directory=UI_PLUGINS_DIR), name="plugins")
|
||||
|
||||
class SetAppConfigRequest(BaseModel):
|
||||
update_branch: str = "main"
|
||||
|
||||
# needs to support the legacy installations
|
||||
def get_initial_model_to_load():
|
||||
custom_weight_path = os.path.join(SD_DIR, 'custom-model.ckpt')
|
||||
ckpt_to_use = "sd-v1-4" if not os.path.exists(custom_weight_path) else "custom-model"
|
||||
|
||||
ckpt_to_use = os.path.join(SD_DIR, ckpt_to_use)
|
||||
|
||||
config = getConfig()
|
||||
if 'model' in config and 'stable-diffusion' in config['model']:
|
||||
model_name = config['model']['stable-diffusion']
|
||||
model_path = resolve_model_to_use(model_name)
|
||||
|
||||
if os.path.exists(model_path + '.ckpt'):
|
||||
ckpt_to_use = model_path
|
||||
else:
|
||||
print('Could not find the configured custom model at:', model_path + '.ckpt', '. Using the default one:', ckpt_to_use + '.ckpt')
|
||||
return ckpt_to_use
|
||||
|
||||
def resolve_model_to_use(model_name):
|
||||
if model_name in ('sd-v1-4', 'custom-model'):
|
||||
model_path = os.path.join(MODELS_DIR, 'stable-diffusion', model_name)
|
||||
|
||||
legacy_model_path = os.path.join(SD_DIR, model_name)
|
||||
if not os.path.exists(model_path + '.ckpt') and os.path.exists(legacy_model_path + '.ckpt'):
|
||||
model_path = legacy_model_path
|
||||
else:
|
||||
model_path = os.path.join(MODELS_DIR, 'stable-diffusion', model_name)
|
||||
return model_path
|
||||
|
||||
@app.on_event("shutdown")
|
||||
def shutdown_event(): # Signal render thread to close on shutdown
|
||||
task_manager.current_state_error = SystemExit('Application shutting down.')
|
||||
|
||||
@app.get('/')
|
||||
def read_root():
|
||||
return FileResponse(os.path.join(SD_UI_DIR, 'index.html'), headers=NOCACHE_HEADERS)
|
||||
|
||||
@app.get('/ping') # Get server and optionally session status.
|
||||
def ping(session_id:str=None):
|
||||
if not task_manager.render_thread.is_alive(): # Render thread is dead.
|
||||
if task_manager.current_state_error: raise HTTPException(status_code=500, detail=str(task_manager.current_state_error))
|
||||
raise HTTPException(status_code=500, detail='Render thread is dead.')
|
||||
if task_manager.current_state_error and not isinstance(task_manager.current_state_error, StopAsyncIteration): raise HTTPException(status_code=500, detail=str(task_manager.current_state_error))
|
||||
# Alive
|
||||
response = {'status': str(task_manager.current_state)}
|
||||
if session_id:
|
||||
task = task_manager.task_cache.tryGet(session_id)
|
||||
if task:
|
||||
response['task'] = id(task)
|
||||
if task.lock.locked():
|
||||
response['session'] = 'running'
|
||||
elif isinstance(task.error, StopAsyncIteration):
|
||||
response['session'] = 'stopped'
|
||||
elif task.error:
|
||||
response['session'] = 'error'
|
||||
elif not task.buffer_queue.empty():
|
||||
response['session'] = 'buffer'
|
||||
elif task.response:
|
||||
response['session'] = 'completed'
|
||||
else:
|
||||
response['session'] = 'pending'
|
||||
return JSONResponse(response, headers=NOCACHE_HEADERS)
|
||||
|
||||
def save_model_to_config(model_name):
|
||||
config = getConfig()
|
||||
if 'model' not in config:
|
||||
config['model'] = {}
|
||||
|
||||
config['model']['stable-diffusion'] = model_name
|
||||
setConfig(config)
|
||||
|
||||
@app.post('/render')
|
||||
def render(req : task_manager.ImageRequest):
|
||||
try:
|
||||
save_model_to_config(req.use_stable_diffusion_model)
|
||||
req.use_stable_diffusion_model = resolve_model_to_use(req.use_stable_diffusion_model)
|
||||
new_task = task_manager.render(req)
|
||||
response = {
|
||||
'status': str(task_manager.current_state),
|
||||
'queue': task_manager.tasks_queue.qsize(),
|
||||
'stream': f'/image/stream/{req.session_id}/{id(new_task)}',
|
||||
'task': id(new_task)
|
||||
}
|
||||
return JSONResponse(response, headers=NOCACHE_HEADERS)
|
||||
except ChildProcessError as e: # Render thread is dead
|
||||
raise HTTPException(status_code=500, detail=f'Rendering thread has died.') # HTTP500 Internal Server Error
|
||||
except ConnectionRefusedError as e: # Unstarted task pending, deny queueing more than one.
|
||||
raise HTTPException(status_code=503, detail=f'Session {req.session_id} has an already pending task.') # HTTP503 Service Unavailable
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
@app.get('/image/stream/{session_id:str}/{task_id:int}')
|
||||
def stream(session_id:str, task_id:int):
|
||||
#TODO Move to WebSockets ??
|
||||
task = task_manager.task_cache.tryGet(session_id)
|
||||
if not task: raise HTTPException(status_code=410, detail='No request received.') # HTTP410 Gone
|
||||
if (id(task) != task_id): raise HTTPException(status_code=409, detail=f'Wrong task id received. Expected:{id(task)}, Received:{task_id}') # HTTP409 Conflict
|
||||
if task.buffer_queue.empty() and not task.lock.locked():
|
||||
if task.response:
|
||||
#print(f'Session {session_id} sending cached response')
|
||||
return JSONResponse(task.response, headers=NOCACHE_HEADERS)
|
||||
raise HTTPException(status_code=425, detail='Too Early, task not started yet.') # HTTP425 Too Early
|
||||
#print(f'Session {session_id} opened live render stream {id(task.buffer_queue)}')
|
||||
return StreamingResponse(task.read_buffer_generator(), media_type='application/json')
|
||||
|
||||
@app.get('/image/stop')
|
||||
def stop(session_id:str=None):
|
||||
if not session_id:
|
||||
if task_manager.current_state == task_manager.ServerStates.Online or task_manager.current_state == task_manager.ServerStates.Unavailable:
|
||||
raise HTTPException(status_code=409, detail='Not currently running any tasks.') # HTTP409 Conflict
|
||||
task_manager.current_state_error = StopAsyncIteration('')
|
||||
return {'OK'}
|
||||
task = task_manager.task_cache.tryGet(session_id)
|
||||
if not task: raise HTTPException(status_code=404, detail=f'Session {session_id} has no active task.') # HTTP404 Not Found
|
||||
if isinstance(task.error, StopAsyncIteration): raise HTTPException(status_code=409, detail=f'Session {session_id} task is already stopped.') # HTTP409 Conflict
|
||||
task.error = StopAsyncIteration('')
|
||||
return {'OK'}
|
||||
|
||||
@app.get('/image/tmp/{session_id}/{img_id:int}')
|
||||
def get_image(session_id, img_id):
|
||||
task = task_manager.task_cache.tryGet(session_id)
|
||||
if not task: raise HTTPException(status_code=410, detail=f'Session {session_id} has not submitted a task.') # HTTP410 Gone
|
||||
if not task.temp_images[img_id]: raise HTTPException(status_code=425, detail='Too Early, task data is not available yet.') # HTTP425 Too Early
|
||||
try:
|
||||
img_data = task.temp_images[img_id]
|
||||
if isinstance(img_data, str):
|
||||
return img_data
|
||||
img_data.seek(0)
|
||||
return StreamingResponse(img_data, media_type='image/jpeg')
|
||||
except KeyError as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
@app.post('/app_config')
|
||||
async def setAppConfig(req : SetAppConfigRequest):
|
||||
try:
|
||||
config = {
|
||||
'update_branch': req.update_branch
|
||||
}
|
||||
|
||||
config_json_str = json.dumps(config)
|
||||
config_bat_str = f'@set update_branch={req.update_branch}'
|
||||
config_sh_str = f'export update_branch={req.update_branch}'
|
||||
|
||||
config_json_path = os.path.join(CONFIG_DIR, 'config.json')
|
||||
config_bat_path = os.path.join(CONFIG_DIR, 'config.bat')
|
||||
config_sh_path = os.path.join(CONFIG_DIR, 'config.sh')
|
||||
|
||||
with open(config_json_path, 'w', encoding='utf-8') as f:
|
||||
f.write(config_json_str)
|
||||
|
||||
with open(config_bat_path, 'w', encoding='utf-8') as f:
|
||||
f.write(config_bat_str)
|
||||
|
||||
with open(config_sh_path, 'w', encoding='utf-8') as f:
|
||||
f.write(config_sh_str)
|
||||
|
||||
return {'OK'}
|
||||
except Exception as e:
|
||||
print(traceback.format_exc())
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
def getConfig(default_val={}):
|
||||
def getConfig(default_val=APP_CONFIG_DEFAULTS):
|
||||
try:
|
||||
config_json_path = os.path.join(CONFIG_DIR, 'config.json')
|
||||
if not os.path.exists(config_json_path):
|
||||
@ -219,41 +72,152 @@ def getConfig(default_val={}):
|
||||
return default_val
|
||||
|
||||
def setConfig(config):
|
||||
try:
|
||||
try: # config.json
|
||||
config_json_path = os.path.join(CONFIG_DIR, 'config.json')
|
||||
with open(config_json_path, 'w', encoding='utf-8') as f:
|
||||
return json.dump(config, f)
|
||||
except Exception as e:
|
||||
print(str(e))
|
||||
json.dump(config, f)
|
||||
except:
|
||||
print(traceback.format_exc())
|
||||
|
||||
try: # config.bat
|
||||
config_bat_path = os.path.join(CONFIG_DIR, 'config.bat')
|
||||
config_bat = []
|
||||
|
||||
if 'update_branch' in config:
|
||||
config_bat.append(f"@set update_branch={config['update_branch']}")
|
||||
if os.getenv('SD_UI_BIND_PORT') is not None:
|
||||
config_bat.append(f"@set SD_UI_BIND_PORT={os.getenv('SD_UI_BIND_PORT')}")
|
||||
if os.getenv('SD_UI_BIND_IP') is not None:
|
||||
config_bat.append(f"@set SD_UI_BIND_IP={os.getenv('SD_UI_BIND_IP')}")
|
||||
|
||||
if len(config_bat) > 0:
|
||||
with open(config_bat_path, 'w', encoding='utf-8') as f:
|
||||
f.write('\r\n'.join(config_bat))
|
||||
except:
|
||||
print(traceback.format_exc())
|
||||
|
||||
try: # config.sh
|
||||
config_sh_path = os.path.join(CONFIG_DIR, 'config.sh')
|
||||
config_sh = ['#!/bin/bash']
|
||||
|
||||
if 'update_branch' in config:
|
||||
config_sh.append(f"export update_branch={config['update_branch']}")
|
||||
if os.getenv('SD_UI_BIND_PORT') is not None:
|
||||
config_sh.append(f"export SD_UI_BIND_PORT={os.getenv('SD_UI_BIND_PORT')}")
|
||||
if os.getenv('SD_UI_BIND_IP') is not None:
|
||||
config_sh.append(f"export SD_UI_BIND_IP={os.getenv('SD_UI_BIND_IP')}")
|
||||
|
||||
if len(config_sh) > 1:
|
||||
with open(config_sh_path, 'w', encoding='utf-8') as f:
|
||||
f.write('\n'.join(config_sh))
|
||||
except:
|
||||
print(traceback.format_exc())
|
||||
|
||||
def resolve_model_to_use(model_name:str, model_type:str, model_dir:str, model_extensions:list, default_models=[]):
|
||||
model_dirs = [os.path.join(MODELS_DIR, model_dir), SD_DIR]
|
||||
if not model_name: # When None try user configured model.
|
||||
config = getConfig()
|
||||
if 'model' in config and model_type in config['model']:
|
||||
model_name = config['model'][model_type]
|
||||
if model_name:
|
||||
# Check models directory
|
||||
models_dir_path = os.path.join(MODELS_DIR, model_dir, model_name)
|
||||
for model_extension in model_extensions:
|
||||
if os.path.exists(models_dir_path + model_extension):
|
||||
return models_dir_path
|
||||
if os.path.exists(model_name + model_extension):
|
||||
# Direct Path to file
|
||||
model_name = os.path.abspath(model_name)
|
||||
return model_name
|
||||
# Default locations
|
||||
if model_name in default_models:
|
||||
default_model_path = os.path.join(SD_DIR, model_name)
|
||||
for model_extension in model_extensions:
|
||||
if os.path.exists(default_model_path + model_extension):
|
||||
return default_model_path
|
||||
# Can't find requested model, check the default paths.
|
||||
for default_model in default_models:
|
||||
for model_dir in model_dirs:
|
||||
default_model_path = os.path.join(model_dir, default_model)
|
||||
for model_extension in model_extensions:
|
||||
if os.path.exists(default_model_path + model_extension):
|
||||
if model_name is not None:
|
||||
print(f'Could not find the configured custom model {model_name}{model_extension}. Using the default one: {default_model_path}{model_extension}')
|
||||
return default_model_path
|
||||
raise Exception('No valid models found.')
|
||||
|
||||
def resolve_ckpt_to_use(model_name:str=None):
|
||||
return resolve_model_to_use(model_name, model_type='stable-diffusion', model_dir='stable-diffusion', model_extensions=['.ckpt'], default_models=APP_CONFIG_DEFAULT_MODELS)
|
||||
|
||||
def resolve_vae_to_use(model_name:str=None):
|
||||
try:
|
||||
return resolve_model_to_use(model_name, model_type='vae', model_dir='vae', model_extensions=['.vae.pt', '.ckpt'], default_models=[])
|
||||
except:
|
||||
return None
|
||||
|
||||
class SetAppConfigRequest(BaseModel):
|
||||
update_branch: str = None
|
||||
render_devices: Union[List[str], List[int], str, int] = None
|
||||
model_vae: str = None
|
||||
ui_open_browser_on_start: bool = None
|
||||
|
||||
@app.post('/app_config')
|
||||
async def setAppConfig(req : SetAppConfigRequest):
|
||||
config = getConfig()
|
||||
if req.update_branch is not None:
|
||||
config['update_branch'] = req.update_branch
|
||||
if req.render_devices is not None:
|
||||
update_render_devices_in_config(config, req.render_devices)
|
||||
if req.ui_open_browser_on_start is not None:
|
||||
if 'ui' not in config:
|
||||
config['ui'] = {}
|
||||
config['ui']['open_browser_on_start'] = req.ui_open_browser_on_start
|
||||
try:
|
||||
setConfig(config)
|
||||
|
||||
if req.render_devices:
|
||||
update_render_threads()
|
||||
|
||||
return JSONResponse({'status': 'OK'}, headers=NOCACHE_HEADERS)
|
||||
except Exception as e:
|
||||
print(traceback.format_exc())
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
def getModels():
|
||||
models = {
|
||||
'active': {
|
||||
'stable-diffusion': 'sd-v1-4',
|
||||
'vae': '',
|
||||
},
|
||||
'options': {
|
||||
'stable-diffusion': ['sd-v1-4'],
|
||||
'vae': [],
|
||||
},
|
||||
}
|
||||
|
||||
def listModels(models_dirname, model_type, model_extensions):
|
||||
models_dir = os.path.join(MODELS_DIR, models_dirname)
|
||||
if not os.path.exists(models_dir):
|
||||
os.makedirs(models_dir)
|
||||
|
||||
for file in os.listdir(models_dir):
|
||||
for model_extension in model_extensions:
|
||||
if file.endswith(model_extension):
|
||||
model_name = file[:-len(model_extension)]
|
||||
models['options'][model_type].append(model_name)
|
||||
|
||||
models['options'][model_type] = [*set(models['options'][model_type])] # remove duplicates
|
||||
models['options'][model_type].sort()
|
||||
|
||||
# custom models
|
||||
sd_models_dir = os.path.join(MODELS_DIR, 'stable-diffusion')
|
||||
for file in os.listdir(sd_models_dir):
|
||||
if file.endswith('.ckpt'):
|
||||
model_name = os.path.splitext(file)[0]
|
||||
models['options']['stable-diffusion'].append(model_name)
|
||||
listModels(models_dirname='stable-diffusion', model_type='stable-diffusion', model_extensions=['.ckpt'])
|
||||
listModels(models_dirname='vae', model_type='vae', model_extensions=['.vae.pt', '.ckpt'])
|
||||
|
||||
# legacy
|
||||
custom_weight_path = os.path.join(SD_DIR, 'custom-model.ckpt')
|
||||
if os.path.exists(custom_weight_path):
|
||||
models['active']['stable-diffusion'] = 'custom-model'
|
||||
models['options']['stable-diffusion'].append('custom-model')
|
||||
|
||||
config = getConfig()
|
||||
if 'model' in config and 'stable-diffusion' in config['model']:
|
||||
models['active']['stable-diffusion'] = config['model']['stable-diffusion']
|
||||
|
||||
return models
|
||||
|
||||
def getUIPlugins():
|
||||
@ -272,8 +236,13 @@ def read_web_data(key:str=None):
|
||||
elif key == 'app_config':
|
||||
config = getConfig(default_val=None)
|
||||
if config is None:
|
||||
raise HTTPException(status_code=500, detail="Config file is missing or unreadable")
|
||||
config = APP_CONFIG_DEFAULTS
|
||||
return JSONResponse(config, headers=NOCACHE_HEADERS)
|
||||
elif key == 'devices':
|
||||
config = getConfig()
|
||||
devices = task_manager.get_devices()
|
||||
devices['config'] = config.get('render_devices', "auto")
|
||||
return JSONResponse(devices, headers=NOCACHE_HEADERS)
|
||||
elif key == 'models':
|
||||
return JSONResponse(getModels(), headers=NOCACHE_HEADERS)
|
||||
elif key == 'modifiers': return FileResponse(os.path.join(SD_UI_DIR, 'modifiers.json'), headers=NOCACHE_HEADERS)
|
||||
@ -282,6 +251,123 @@ def read_web_data(key:str=None):
|
||||
else:
|
||||
raise HTTPException(status_code=404, detail=f'Request for unknown {key}') # HTTP404 Not Found
|
||||
|
||||
@app.get('/ping') # Get server and optionally session status.
|
||||
def ping(session_id:str=None):
|
||||
if task_manager.is_alive() <= 0: # Check that render threads are alive.
|
||||
if task_manager.current_state_error: raise HTTPException(status_code=500, detail=str(task_manager.current_state_error))
|
||||
raise HTTPException(status_code=500, detail='Render thread is dead.')
|
||||
if task_manager.current_state_error and not isinstance(task_manager.current_state_error, StopAsyncIteration): raise HTTPException(status_code=500, detail=str(task_manager.current_state_error))
|
||||
# Alive
|
||||
response = {'status': str(task_manager.current_state)}
|
||||
if session_id:
|
||||
task = task_manager.get_cached_task(session_id, update_ttl=True)
|
||||
if task:
|
||||
response['task'] = id(task)
|
||||
if task.lock.locked():
|
||||
response['session'] = 'running'
|
||||
elif isinstance(task.error, StopAsyncIteration):
|
||||
response['session'] = 'stopped'
|
||||
elif task.error:
|
||||
response['session'] = 'error'
|
||||
elif not task.buffer_queue.empty():
|
||||
response['session'] = 'buffer'
|
||||
elif task.response:
|
||||
response['session'] = 'completed'
|
||||
else:
|
||||
response['session'] = 'pending'
|
||||
response['devices'] = task_manager.get_devices()
|
||||
return JSONResponse(response, headers=NOCACHE_HEADERS)
|
||||
|
||||
def save_model_to_config(ckpt_model_name, vae_model_name):
|
||||
config = getConfig()
|
||||
if 'model' not in config:
|
||||
config['model'] = {}
|
||||
|
||||
config['model']['stable-diffusion'] = ckpt_model_name
|
||||
config['model']['vae'] = vae_model_name
|
||||
|
||||
if vae_model_name is None or vae_model_name == "":
|
||||
del config['model']['vae']
|
||||
|
||||
setConfig(config)
|
||||
|
||||
def update_render_devices_in_config(config, render_devices):
|
||||
if render_devices not in ('cpu', 'auto') and not render_devices.startswith('cuda:'):
|
||||
raise HTTPException(status_code=400, detail=f'Invalid render device requested: {render_devices}')
|
||||
|
||||
if render_devices.startswith('cuda:'):
|
||||
render_devices = render_devices.split(',')
|
||||
|
||||
config['render_devices'] = render_devices
|
||||
|
||||
@app.post('/render')
|
||||
def render(req : task_manager.ImageRequest):
|
||||
try:
|
||||
save_model_to_config(req.use_stable_diffusion_model, req.use_vae_model)
|
||||
req.use_stable_diffusion_model = resolve_ckpt_to_use(req.use_stable_diffusion_model)
|
||||
req.use_vae_model = resolve_vae_to_use(req.use_vae_model)
|
||||
new_task = task_manager.render(req)
|
||||
response = {
|
||||
'status': str(task_manager.current_state),
|
||||
'queue': len(task_manager.tasks_queue),
|
||||
'stream': f'/image/stream/{req.session_id}/{id(new_task)}',
|
||||
'task': id(new_task)
|
||||
}
|
||||
return JSONResponse(response, headers=NOCACHE_HEADERS)
|
||||
except ChildProcessError as e: # Render thread is dead
|
||||
raise HTTPException(status_code=500, detail=f'Rendering thread has died.') # HTTP500 Internal Server Error
|
||||
except ConnectionRefusedError as e: # Unstarted task pending, deny queueing more than one.
|
||||
raise HTTPException(status_code=503, detail=f'Session {req.session_id} has an already pending task.') # HTTP503 Service Unavailable
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
@app.get('/image/stream/{session_id:str}/{task_id:int}')
|
||||
def stream(session_id:str, task_id:int):
|
||||
#TODO Move to WebSockets ??
|
||||
task = task_manager.get_cached_task(session_id, update_ttl=True)
|
||||
if not task: raise HTTPException(status_code=410, detail='No request received.') # HTTP410 Gone
|
||||
if (id(task) != task_id): raise HTTPException(status_code=409, detail=f'Wrong task id received. Expected:{id(task)}, Received:{task_id}') # HTTP409 Conflict
|
||||
if task.buffer_queue.empty() and not task.lock.locked():
|
||||
if task.response:
|
||||
#print(f'Session {session_id} sending cached response')
|
||||
return JSONResponse(task.response, headers=NOCACHE_HEADERS)
|
||||
raise HTTPException(status_code=425, detail='Too Early, task not started yet.') # HTTP425 Too Early
|
||||
#print(f'Session {session_id} opened live render stream {id(task.buffer_queue)}')
|
||||
return StreamingResponse(task.read_buffer_generator(), media_type='application/json')
|
||||
|
||||
@app.get('/image/stop')
|
||||
def stop(session_id:str=None):
|
||||
if not session_id:
|
||||
if task_manager.current_state == task_manager.ServerStates.Online or task_manager.current_state == task_manager.ServerStates.Unavailable:
|
||||
raise HTTPException(status_code=409, detail='Not currently running any tasks.') # HTTP409 Conflict
|
||||
task_manager.current_state_error = StopAsyncIteration('')
|
||||
return {'OK'}
|
||||
task = task_manager.get_cached_task(session_id, update_ttl=False)
|
||||
if not task: raise HTTPException(status_code=404, detail=f'Session {session_id} has no active task.') # HTTP404 Not Found
|
||||
if isinstance(task.error, StopAsyncIteration): raise HTTPException(status_code=409, detail=f'Session {session_id} task is already stopped.') # HTTP409 Conflict
|
||||
task.error = StopAsyncIteration('')
|
||||
return {'OK'}
|
||||
|
||||
@app.get('/image/tmp/{session_id}/{img_id:int}')
|
||||
def get_image(session_id, img_id):
|
||||
task = task_manager.get_cached_task(session_id, update_ttl=True)
|
||||
if not task: raise HTTPException(status_code=410, detail=f'Session {session_id} has not submitted a task.') # HTTP410 Gone
|
||||
if not task.temp_images[img_id]: raise HTTPException(status_code=425, detail='Too Early, task data is not available yet.') # HTTP425 Too Early
|
||||
try:
|
||||
img_data = task.temp_images[img_id]
|
||||
img_data.seek(0)
|
||||
return StreamingResponse(img_data, media_type='image/jpeg')
|
||||
except KeyError as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
@app.get('/')
|
||||
def read_root():
|
||||
return FileResponse(os.path.join(SD_UI_DIR, 'index.html'), headers=NOCACHE_HEADERS)
|
||||
|
||||
@app.on_event("shutdown")
|
||||
def shutdown_event(): # Signal render thread to close on shutdown
|
||||
task_manager.current_state_error = SystemExit('Application shutting down.')
|
||||
|
||||
# don't log certain requests
|
||||
class LogSuppressFilter(logging.Filter):
|
||||
def filter(self, record: logging.LogRecord) -> bool:
|
||||
@ -292,8 +378,25 @@ class LogSuppressFilter(logging.Filter):
|
||||
return True
|
||||
logging.getLogger('uvicorn.access').addFilter(LogSuppressFilter())
|
||||
|
||||
task_manager.default_model_to_load = get_initial_model_to_load()
|
||||
task_manager.start_render_thread()
|
||||
# Start the task_manager
|
||||
task_manager.default_model_to_load = resolve_ckpt_to_use()
|
||||
task_manager.default_vae_to_load = resolve_vae_to_use()
|
||||
|
||||
def update_render_threads():
|
||||
config = getConfig()
|
||||
render_devices = config.get('render_devices', 'auto')
|
||||
active_devices = task_manager.get_devices()['active'].keys()
|
||||
|
||||
print('requesting for render_devices', render_devices)
|
||||
task_manager.update_render_threads(render_devices, active_devices)
|
||||
|
||||
update_render_threads()
|
||||
|
||||
# start the browser ui
|
||||
import webbrowser; webbrowser.open('http://localhost:9000')
|
||||
def open_browser():
|
||||
config = getConfig()
|
||||
ui = config.get('ui', {})
|
||||
if ui.get('open_browser_on_start', True):
|
||||
import webbrowser; webbrowser.open('http://localhost:9000')
|
||||
|
||||
open_browser()
|
||||
|
Reference in New Issue
Block a user