Compare commits

...

130 Commits

Author SHA1 Message Date
5b47da67f6 Merge pull request #582 from cmdr2/beta
Beta
2022-12-01 13:59:13 +05:30
292f68ff97 Typo in css path 2022-12-01 13:57:38 +05:30
3b554d881a Styling changes for the confirm dialog 2022-12-01 13:54:49 +05:30
4bc6e51862 Merge pull request #580 from JeLuF/patch-5
Add Quadro T2000 to force_full_precision list.
2022-12-01 10:35:32 +05:30
427861cf13 Add Quadro T2000 to force_full_precision list. 2022-12-01 00:59:12 +01:00
da3e7a2eb8 Fix the broken image close button 2022-11-30 21:14:18 +05:30
2979f04c82 Use socket.gethostname() instead of socket.getfqdn() 2022-11-30 20:17:18 +05:30
1949d8a50c Tweak modifiers help msg 2022-11-30 16:32:43 +05:30
ee66c799e0 Merge pull request #563 from patriceac/Mouse-wheel-behavior-fixes
Improved Mouse Wheel UX with Image Modifiers
2022-11-30 16:24:05 +05:30
7c50b8bf94 Merge branch 'beta' into Mouse-wheel-behavior-fixes 2022-11-30 16:22:45 +05:30
141ff74ece Merge pull request #557 from madrang/webmanifest
Added web manifest to allow installing the Url as a web app.
2022-11-30 16:19:04 +05:30
321e5f1ed6 Merge pull request #564 from patriceac/Fix-UI-display-when-removing-the-last-task
Fix UI display when removing the last task
2022-11-30 16:14:59 +05:30
6d131d9d8e Merge branch 'beta' into Fix-UI-display-when-removing-the-last-task 2022-11-30 16:14:28 +05:30
7e69b8eb31 Merge branch 'beta' of github.com:cmdr2/stable-diffusion-ui into beta 2022-11-30 16:11:22 +05:30
4e0b33e6a4 Merge pull request #566 from patriceac/Visual-feedback-on-buttons
Visual feedback on button click
2022-11-30 16:11:08 +05:30
54f7e6fcb8 SD2 fix - register buffer on the correct device 2022-11-30 16:05:06 +05:30
529169c4da Merge pull request #541 from patriceac/patch-2
Fix restoration of parallel output setting
2022-11-30 15:54:04 +05:30
a2c8c99215 Merge pull request #541 from patriceac/patch-2
Fix restoration of parallel output setting
2022-11-30 15:53:30 +05:30
e8bf3fd009 Merge pull request #542 from patriceac/patch-1
Fix restoration of model and VAE
2022-11-30 15:52:26 +05:30
465676e9ea Merge pull request #542 from patriceac/patch-1
Fix restoration of model and VAE
2022-11-30 15:51:31 +05:30
af53b57047 Changelog 2022-11-30 15:49:47 +05:30
54b5f75905 Rename auto-scroll to reflect its purpose 2022-11-30 15:47:24 +05:30
4348333497 Don't register listeners for an autosave setting, if they've already been registered 2022-11-30 15:45:30 +05:30
cc31110bcf Merge pull request #537 from patriceac/Generate-screen-layout
Auto-scroll plugin
2022-11-30 15:44:31 +05:30
f7c04bf7a6 bump version 2022-11-30 14:34:42 +05:30
029509ebad Unify IP info with devices, into a system_info table 2022-11-30 14:34:24 +05:30
65102bb64d Merge pull request #536 from JeLuF/serverip
Show network addresses in system settings
2022-11-30 14:00:18 +05:30
b96b55c5ce Merge branch 'beta' into serverip 2022-11-30 14:00:12 +05:30
1f5aba010e Merge branch 'beta' of https://github.com/cmdr2/stable-diffusion-ui.git into webmanifest
# Conflicts:
#	ui/index.html
2022-11-30 03:29:46 -05:00
f0b3bea4e3 Also confirm before the 'Stop All' button acts; Tweak wording of confirm dialog 2022-11-30 13:54:42 +05:30
84fae2d9e0 Merge pull request #531 from JeLuF/confirm
Confirm 'Clear All' and 'Stop Task'
2022-11-30 13:48:14 +05:30
0b96fa112d Merge branch 'beta' into confirm 2022-11-30 13:47:08 +05:30
c64bcd23d3 Picklescanner is mandatory 2022-11-30 13:38:22 +05:30
efd9a22bb5 Merge pull request #530 from madrang/list-models
Scan model once as start, then only if changed.
2022-11-30 13:37:27 +05:30
159c3edfe3 Simplify the logic for toggling modifier cards, no need to loop through the cards, since we already have the card object in hand 2022-11-30 13:33:20 +05:30
f74fa8657b Merge pull request #518 from patriceac/patch-6
Fix duplicate custom modifiers activation states
2022-11-30 13:27:14 +05:30
648b142a4b Merge pull request #571 from madrang/tabs-css
Add a new css rule for screens smaller than 500px.
2022-11-30 13:24:38 +05:30
426f92595e Merge pull request #520 from madrang/fix-gfpgan
Fix the gfpgan fix for multi-gpu
2022-11-30 13:08:10 +05:30
82a8d9b644 Merge pull request #577 from cmdr2/beta
Beta
2022-11-30 12:19:44 +05:30
ff9430b8a2 Tabs to 4 spaces 2022-11-30 12:18:34 +05:30
2e69ffcb5e Merge pull request #576 from cmdr2/beta
v2.4.16 - Remove the use of git-apply
2022-11-30 12:12:17 +05:30
0ea38db7ef Show the SD 2.0 setting only to beta users 2022-11-30 12:05:46 +05:30
2706149399 Tweak left padding of editor panel 2022-11-29 15:27:13 +05:30
3d0cdc1cb6 Bump version 2022-11-29 13:32:29 +05:30
ac605e9352 Typos and minor fixes for sd 2 2022-11-29 13:30:08 +05:30
5432297691 Default to sd-v1-4 when trying to use a SD2 model with SD 1.4, and warn the user. This will eventually be unnecessary 2022-11-29 13:14:58 +05:30
e37be0f954 Remove the need to use yield in the core loop for streaming results. This removes the need to patch the Stable Diffusion code, which can be fragile 2022-11-29 13:03:57 +05:30
a99209b674 Add a new css rule for screens smaller than 500px. 2022-11-28 20:23:17 -05:00
cb02b5ba18 Merge pull request #567 from madrang/tabs-css
Improved tabs flow on small screens.
2022-11-28 18:27:29 +05:30
14714b950d Slight improvement of detection logic 2022-11-28 00:14:12 -08:00
13654cb8c0 Make on_sd_start.sh executable 2022-11-28 13:00:02 +05:30
00276228cf Make on_sd_start.sh executable 2022-11-28 12:59:33 +05:30
8583bb8d7b Improved tabs flow on small screens. 2022-11-27 20:37:20 -05:00
d48951fe00 Visual feedback on button click
When there are too many tasks and the top of the list is not visible, there is no visual feedback that a task has been successfully added to the queue.

Adding a subtle visual feedback on buttons upon click to reflect that the mouse event was taken into account.
2022-11-27 16:26:01 -08:00
99bdcfa0a5 Set theme-color from the current selected theme. 2022-11-27 15:49:54 -05:00
e64e1a92e6 Fix UI display when removing the last task
Clear All button properly shows the "welcome message", but Remove the last task would just result in a blank Preview pane.
2022-11-27 12:42:51 -08:00
e278e639a3 Fix removal of image modifiers with non-zero weights
Properly handles removal of image modifiers that had (((modifiers))) or [[[modifiers]]] updated at runtime.
2022-11-27 03:00:19 -08:00
c4bad5c454 Conciseness
Shortening the sentence.
2022-11-27 01:42:39 -08:00
da41a74efc Require Ctrl+Mouse Wheel for modifier weight adjustment
The current behavior is just too annoying, and scrolling the page is a much more frequent activity than tweaking the weights.
2022-11-27 01:35:47 -08:00
9c91f57b19 Added web manifest to allow installing the Url as a web app. 2022-11-26 15:51:26 -05:00
f14afcd129 Update README.md 2022-11-26 12:44:19 +05:30
5c1a3d82d7 Update README.md 2022-11-26 12:23:03 +05:30
e02a917569 Improved logic for auto-scroll toggle insertion
Updating the insertion logic to prepare for future UI improvements.
2022-11-25 22:51:49 -08:00
347fa0fda1 Update on_sd_start.bat 2022-11-26 01:50:30 +05:30
6510d4cb02 Merge pull request #553 from cmdr2/revert-552-beta
Revert "Patching patch again"
2022-11-26 01:45:57 +05:30
91e4ccf6f8 Update on_sd_start.bat 2022-11-26 01:43:41 +05:30
36249874bc Revert "Patching patch again" 2022-11-26 01:42:16 +05:30
d2b5d6cce9 Merge pull request #552 from jsuelwald/beta
Patching patch again
2022-11-26 01:40:02 +05:30
b2922741c9 Patching patch again 2022-11-25 21:06:19 +01:00
300f3e27db Merge pull request #551 from cmdr2/revert-549-patch-2
Revert "Update ddim_callback_sd2.patch"
2022-11-26 01:25:17 +05:30
d7330b80a9 Revert "Update ddim_callback_sd2.patch" 2022-11-26 01:22:35 +05:30
acdd7667b7 Merge pull request #549 from jsuelwald/patch-2
Update ddim_callback_sd2.patch
2022-11-26 01:19:08 +05:30
8114fa3f5d Update ddim_callback_sd2.patch 2022-11-25 20:46:24 +01:00
4bc5508f38 Rollback 2022-11-26 01:07:55 +05:30
e503c6092e Ddim decode for img2img 2022-11-26 00:55:39 +05:30
6a8985d8dd Update ddim_callback_sd2.patch 2022-11-26 00:49:15 +05:30
bee67fd883 Shape 2022-11-25 23:54:08 +05:30
a1d75d40aa Update runtime.py 2022-11-25 23:36:43 +05:30
29484867ca Typo 2022-11-25 23:32:56 +05:30
7fa983b971 Img2img sd2 attempt 2 2022-11-25 23:28:31 +05:30
617a8b2814 Fix for make_schedule error in sd2 2022-11-25 23:15:22 +05:30
b924d323d4 img2img attempt for sd2 2022-11-25 22:36:02 +05:30
a2efda41d3 Cleaning up the code 2022-11-25 03:50:47 -08:00
642c114501 Working txt2img 2022-11-25 14:29:24 +05:30
02dd3e457d Tweaks to load sd1 models in sd2 code, typos 2022-11-25 13:57:15 +05:30
ea7b28c9d5 Placeholder changes for SD 2.0 support, haven't tested yet 2022-11-25 12:17:44 +05:30
472ab4a9ce Fix restoration of parallel output setting 2022-11-24 14:15:27 -08:00
fca84e3edf Fix restoration of model and VAE
😅
2022-11-24 13:47:35 -08:00
b70235ff92 Set the PYTHONPATH in the developer console, before the prompt shows up 2022-11-24 11:48:27 +05:30
6eff591df7 System settings to disable the 'Are you sure?'-dialogs 2022-11-23 23:05:30 +01:00
d0b2bf736e Auto-scroll off by default 2022-11-23 03:23:51 -08:00
6b6443406d Create Autoscroll.plugin.js 2022-11-23 02:57:07 -08:00
3452d7852a Merge branch 'beta' into serverip 2022-11-23 11:28:05 +01:00
f1fa10badd Show network addresses in system settings
Users sometimes struggle to get the IP address of their PC. This PR adds a button to the system settings pane that will list the server's IP
addresses.
2022-11-23 11:25:36 +01:00
1267621424 Merge pull request #535 from cmdr2/beta
Switch to new custom backend
2022-11-23 15:09:09 +05:30
8a0ec95fe1 Merge branch 'main' into beta 2022-11-23 15:08:34 +05:30
2de96d4dc9 Scan model once as start, then only if changed. 2022-11-22 20:41:08 -05:00
a486f20892 Merge branch 'beta' into confirm 2022-11-22 21:33:18 +01:00
49535deb2e Confirm 'Clear All' and 'Stop Task'
Ask for a confimation before clearing the results pane or stopping a render task. The dialog can be skipped by holding down the shift key while clicking on the button.
2022-11-22 21:27:36 +01:00
7cbf62cf12 Revert whitespace fix 2022-11-22 23:30:03 +05:30
3b0ace3410 Revert whitespace fix 2022-11-22 23:27:46 +05:30
5a9c8e1d87 Warn but don't fix whitespaces in a patch 2022-11-22 23:21:11 +05:30
daaa65dc0a Warn but don't fix whitespaces in a patch 2022-11-22 23:20:24 +05:30
ab4e371524 Fix whitespace during git apply 2022-11-22 22:25:36 +05:30
927fd304b0 Merge branch 'beta' of github.com:cmdr2/stable-diffusion-ui into beta 2022-11-22 22:22:07 +05:30
5af84b8e90 Fix whitespace during git apply 2022-11-22 22:21:54 +05:30
d425dac499 Merge pull request #529 from madrang/dragNdrop
Fixing file drag and drop.
2022-11-22 21:57:34 +05:30
d056459e76 Merge pull request #529 from madrang/dragNdrop
Fixing file drag and drop.
2022-11-22 21:56:07 +05:30
3169485f33 Fixing file drag and drop. 2022-11-22 11:11:06 -05:00
d9b9f80a93 diffusion-kit upgrade 2022-11-22 17:39:51 +05:30
d429505b71 Update version of diffusion-kit 2022-11-22 17:14:20 +05:30
72ee708917 Remove the need to install realesrgan, gfpgan and certain specific package versions, since the new backend should install them directly 2022-11-22 16:50:10 +05:30
93bbfac29a Change the backend to a custom fork of SD, since basujindal's fork is no longer under development. This fork is intended to include the common models/tools used like RealESRGAN, GFPGAN, Codeformer etc, and is meant to be a community-developed project 2022-11-22 16:38:39 +05:30
040d7a6563 Merge pull request #528 from patriceac/patch-1
Add support for custom modifiers to d&d and clipboard
2022-11-22 16:06:26 +05:30
e8dd930a50 Add support for custom modifiers to d&d and clipboard
Add support for custom modifiers to d&d and clipboard and remove now-redundant code in restoreTaskToUI.
2022-11-22 00:06:43 -08:00
31c049ebfe Version css 2022-11-22 11:09:01 +05:30
d343a37fb2 Merge branch 'beta' of github.com:cmdr2/stable-diffusion-ui into beta 2022-11-22 11:08:07 +05:30
7097175c6f CSS tweak for logo and version 2022-11-22 11:07:50 +05:30
8e57c49043 Merge pull request #527 from cmdr2/beta
Beta
2022-11-22 11:00:25 +05:30
9f036ceefd Merge branch 'main' into beta 2022-11-22 10:59:51 +05:30
ff3ca8b36b link to new downloads 2022-11-22 10:48:43 +05:30
87a7b70a27 Shell error code check 2022-11-22 10:40:20 +05:30
9c71c966ca Shell error code check 2022-11-22 10:39:47 +05:30
6dc99e676e Reduce the width of the editor sidebar, regression 2022-11-21 18:45:37 +05:30
3bf5e11f94 Nowarn for fresh installation (git apply whitespace) 2022-11-21 17:19:55 +05:30
eef9af2266 Typo 2022-11-21 17:14:54 +05:30
8316a002da Don't warn about whitespace in the git patch application 2022-11-21 17:11:38 +05:30
c3bf767024 Merge pull request #525 from cmdr2/beta
Beta
2022-11-21 14:08:47 +05:30
0a21a69a9f Updated facexlib fix for usage on multi-gpu. 2022-11-20 13:04:22 -05:00
cbc48e31e1 Fix duplicate custom modifiers activation states
Fixing activation state for custom modifier cards sharing the same tag where only one of the cards gets (de)activated.
2022-11-19 19:25:28 -08:00
30 changed files with 1130 additions and 768 deletions

27
3rd-PARTY-LICENSES Normal file
View File

@ -0,0 +1,27 @@
jquery-confirm
==============
https://craftpip.github.io/jquery-confirm/
jquery-confirm is licensed under the MIT license:
The MIT License (MIT)
Copyright (c) 2019 Boniface Pereira
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -19,8 +19,17 @@
- Configuration to prevent the browser from opening on startup
- Lots of minor bug fixes
- A `What's New?` tab in the UI
- Ask for a confimation before clearing the results pane or stopping a render task. The dialog can be skipped by holding down the shift key while clicking on the button.
- Show the network addresses of the server in the systems setting dialog
### Detailed changelog
* 2.4.17 - 30 Nov 2022 - Scroll to generated image. Thanks @patriceac
* 2.4.17 - 30 Nov 2022 - Show the network addresses of the server in the systems setting dialog. Thanks @JeLuf
* 2.4.17 - 30 Nov 2022 - Fix a bug where GFPGAN wouldn't work properly when multiple GPUs tried to run it at the same time. Thanks @madrang
* 2.4.17 - 30 Nov 2022 - Confirm before stopping or clearing all the tasks. Thanks @JeLuf
* 2.4.16 - 29 Nov 2022 - Bug fixes for SD 2.0 - remove the need for patching, default to SD 1.4 model if trying to load an SD2 model in SD1.4.
* 2.4.15 - 25 Nov 2022 - Experimental support for SD 2.0. Uses lots of memory, not optimized, probably GPU-only.
* 2.4.14 - 22 Nov 2022 - Change the backend to a custom fork of Stable Diffusion
* 2.4.13 - 21 Nov 2022 - Change the modifier weight via mouse wheel, drag to reorder selected modifiers, and some more modifier-related fixes. Thanks @patriceac
* 2.4.12 - 21 Nov 2022 - Another fix for improving how long images take to generate. Reduces the time taken for an enqueued task to start processing.
* 2.4.11 - 21 Nov 2022 - Installer improvements: avoid crashing if the username contains a space or special characters, allow moving/renaming the folder after installation on Windows, whitespace fix on git apply

View File

@ -3,6 +3,8 @@
[![Discord Server](https://img.shields.io/discord/1014774730907209781?label=Discord)](https://discord.com/invite/u9yhsFmEkB) (for support, and development discussion) | [Troubleshooting guide for common problems](Troubleshooting.md)
New! Experimental support for Stable Diffusion 2.0 is available in beta!
----
## Step 1: Download the installer
@ -28,7 +30,9 @@ The installer will take care of whatever is needed. A friendly [Discord communit
- **No Dependencies or Technical Knowledge Required**: 1-click install for Windows 10/11 and Linux. *No dependencies*, no need for WSL or Docker or Conda or technical setup. Just download and run!
- **Clutter-free UI**: a friendly and simple UI, while providing a lot of powerful features
- Supports "*Text to Image*" and "*Image to Image*"
- **Stable Diffusion 2.0 support (experimental)** - available in beta channel
- **Custom Models**: Use your own `.ckpt` file, by placing it inside the `models/stable-diffusion` folder!
- **Auto scan for malicious models** - uses picklescan to prevent malicious models
- **Live Preview**: See the image as the AI is drawing it
- **Task Queue**: Queue up all your ideas, without waiting for the current task to finish
- **In-Painting**: Specify areas of your image to paint into
@ -71,7 +75,7 @@ Useful for judging (and stopping) an image quickly, without waiting for it to fi
You don't need to install or struggle with Python, Anaconda, Docker etc. The installer will take care of whatever is needed.
# Installation
1. **Download** [for Windows](https://github.com/cmdr2/stable-diffusion-ui/releases/download/v2.3.5/stable-diffusion-ui-windows.zip) or [for Linux](https://github.com/cmdr2/stable-diffusion-ui/releases/download/v2.3.5/stable-diffusion-ui-linux.zip).
1. **Download** [for Windows](https://github.com/cmdr2/stable-diffusion-ui/releases/download/v2.4.13/stable-diffusion-ui-windows.zip) or [for Linux](https://github.com/cmdr2/stable-diffusion-ui/releases/download/v2.4.13/stable-diffusion-ui-linux.zip).
2. **Extract**:
- For Windows: After unzipping the file, please move the `stable-diffusion-ui` folder to your `C:` (or any drive like D:, at the top root level), e.g. `C:\stable-diffusion-ui`. This will avoid a common problem with Windows (file path length limits).

View File

@ -29,6 +29,18 @@ call conda activate .\stable-diffusion\env
call where python
call python --version
@rem set the PYTHONPATH
cd stable-diffusion
set SD_DIR=%cd%
cd env\lib\site-packages
set PYTHONPATH=%SD_DIR%;%cd%
cd ..\..\..
echo PYTHONPATH=%PYTHONPATH%
cd ..
@rem done
echo.
cmd /k

View File

@ -42,11 +42,11 @@ if "%PACKAGES_TO_INSTALL%" NEQ "" (
mkdir "%MAMBA_ROOT_PREFIX%"
call curl -Lk "%MICROMAMBA_DOWNLOAD_URL%" > "%MAMBA_ROOT_PREFIX%\micromamba.exe"
@REM if "%ERRORLEVEL%" NEQ "0" (
@REM echo "There was a problem downloading micromamba. Cannot continue."
@REM pause
@REM exit /b
@REM )
if "%ERRORLEVEL%" NEQ "0" (
echo "There was a problem downloading micromamba. Cannot continue."
pause
exit /b
)
mkdir "%APPDATA%"
mkdir "%USERPROFILE%"

View File

@ -35,6 +35,15 @@ if [ "$0" == "bash" ]; then
which python
python --version
# set the PYTHONPATH
cd stable-diffusion
SD_PATH=`pwd`
export PYTHONPATH="$SD_PATH:$SD_PATH/env/lib/python3.8/site-packages"
echo "PYTHONPATH=$PYTHONPATH"
cd ..
# done
echo ""
else
file_name=$(basename "${BASH_SOURCE[0]}")

View File

@ -16,35 +16,42 @@ if exist "%cd%\profile" (
@rem activate the installer env
call conda activate
@rem @if "%ERRORLEVEL%" NEQ "0" (
@rem @echo. & echo "Error activating conda for Stable Diffusion. Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!" & echo.
@rem pause
@rem exit /b
@rem )
@if "%ERRORLEVEL%" NEQ "0" (
@echo. & echo "Error activating conda for Stable Diffusion. Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!" & echo.
pause
exit /b
)
@REM remove the old version of the dev console script, if it's still present
if exist "Open Developer Console.cmd" del "Open Developer Console.cmd"
@call python -c "import os; import shutil; frm = 'sd-ui-files\\ui\\hotfix\\9c24e6cd9f499d02c4f21a033736dabd365962dc80fe3aeb57a8f85ea45a20a3.26fead7ea4f0f843f6eb4055dfd25693f1a71f3c6871b184042d4b126244e142'; dst = os.path.join(os.path.expanduser('~'), '.cache', 'huggingface', 'transformers', '9c24e6cd9f499d02c4f21a033736dabd365962dc80fe3aeb57a8f85ea45a20a3.26fead7ea4f0f843f6eb4055dfd25693f1a71f3c6871b184042d4b126244e142'); shutil.copyfile(frm, dst) if os.path.exists(dst) else print(''); print('Hotfixed broken JSON file from OpenAI');"
if NOT DEFINED test_sd2 set test_sd2=N
@>nul findstr /m "sd_git_cloned" scripts\install_status.txt
@if "%ERRORLEVEL%" EQU "0" (
@echo "Stable Diffusion's git repository was already installed. Updating.."
@cd stable-diffusion
@call git remote set-url origin https://github.com/easydiffusion/diffusion-kit.git
@call git reset --hard
@call git pull
@call git -c advice.detachedHead=false checkout f6cfebffa752ee11a7b07497b8529d5971de916c
@call git apply --whitespace=nowarn ..\ui\sd_internal\ddim_callback.patch
@call git apply --whitespace=nowarn ..\ui\sd_internal\env_yaml.patch
if "%test_sd2%" == "N" (
@call git -c advice.detachedHead=false checkout 7f32368ed1030a6e710537047bacd908adea183a
)
if "%test_sd2%" == "Y" (
@call git -c advice.detachedHead=false checkout 5d647c5459f4cd790672512222bc41903c01bb71
)
@cd ..
) else (
@echo. & echo "Downloading Stable Diffusion.." & echo.
@call git clone https://github.com/basujindal/stable-diffusion.git && (
@call git clone https://github.com/easydiffusion/diffusion-kit.git stable-diffusion && (
@echo sd_git_cloned >> scripts\install_status.txt
) || (
@echo "Error downloading Stable Diffusion. Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!"
@ -53,10 +60,7 @@ if exist "Open Developer Console.cmd" del "Open Developer Console.cmd"
)
@cd stable-diffusion
@call git -c advice.detachedHead=false checkout f6cfebffa752ee11a7b07497b8529d5971de916c
@call git apply --whitespace=nowarn ..\ui\sd_internal\ddim_callback.patch
@call git apply --whitespace=nowarn ..\ui\sd_internal\env_yaml.patch
@call git -c advice.detachedHead=false checkout 7f32368ed1030a6e710537047bacd908adea183a
@cd ..
)
@ -88,12 +92,6 @@ if exist "Open Developer Console.cmd" del "Open Developer Console.cmd"
@call conda activate .\env
@call conda install -c conda-forge -y --prefix env antlr4-python3-runtime=4.8 || (
@echo. & echo "Error installing antlr4-python3-runtime for Stable Diffusion. Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!" & echo.
pause
exit /b
)
for /f "tokens=*" %%a in ('python -c "import torch; import ldm; import transformers; import numpy; import antlr4; print(42)"') do if "%%a" NEQ "42" (
@echo. & echo "Dependency test failed! Error installing the packages necessary for Stable Diffusion. Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!" & echo.
pause
@ -117,18 +115,6 @@ set PATH=C:\Windows\System32;%PATH%
set PYTHONPATH=%cd%;%cd%\env\lib\site-packages
@call pip install -e git+https://github.com/TencentARC/GFPGAN#egg=GFPGAN || (
@echo. & echo "Error installing the packages necessary for GFPGAN (Face Correction). Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!" & echo.
pause
exit /b
)
@call pip install basicsr==1.4.2 || (
@echo. & echo "Error installing the basicsr package necessary for GFPGAN (Face Correction). Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!" & echo.
pause
exit /b
)
for /f "tokens=*" %%a in ('python -c "from gfpgan import GFPGANer; print(42)"') do if "%%a" NEQ "42" (
@echo. & echo "Dependency test failed! Error installing the packages necessary for GFPGAN (Face Correction). Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!" & echo.
pause
@ -150,12 +136,6 @@ set PATH=C:\Windows\System32;%PATH%
set PYTHONPATH=%cd%;%cd%\env\lib\site-packages
@call pip install -e git+https://github.com/xinntao/Real-ESRGAN#egg=realesrgan || (
@echo. & echo "Error installing the packages necessary for ESRGAN (Resolution Upscaling). Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!" & echo.
pause
exit /b
)
for /f "tokens=*" %%a in ('python -c "from basicsr.archs.rrdbnet_arch import RRDBNet; from realesrgan import RealESRGANer; print(42)"') do if "%%a" NEQ "42" (
@echo. & echo "Dependency test failed! Error installing the packages necessary for ESRGAN (Resolution Upscaling). Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!" & echo.
pause
@ -370,7 +350,9 @@ echo. > "..\models\vae\Put your VAE files here.txt"
)
)
if "%test_sd2%" == "Y" (
@call pip install open_clip_torch==2.0.2
)
@>nul findstr /m "sd_install_complete" ..\scripts\install_status.txt
@if "%ERRORLEVEL%" NEQ "0" (

View File

@ -21,33 +21,38 @@ python -c "import os; import shutil; frm = 'sd-ui-files/ui/hotfix/9c24e6cd9f499d
# Caution, this file will make your eyes and brain bleed. It's such an unholy mess.
# Note to self: Please rewrite this in Python. For the sake of your own sanity.
if [ "$test_sd2" == "" ]; then
export test_sd2="N"
fi
if [ -e "scripts/install_status.txt" ] && [ `grep -c sd_git_cloned scripts/install_status.txt` -gt "0" ]; then
echo "Stable Diffusion's git repository was already installed. Updating.."
cd stable-diffusion
git remote set-url origin https://github.com/easydiffusion/diffusion-kit.git
git reset --hard
git pull
git -c advice.detachedHead=false checkout f6cfebffa752ee11a7b07497b8529d5971de916c
git apply --whitespace=nowarn ../ui/sd_internal/ddim_callback.patch || fail "ddim patch failed"
git apply --whitespace=nowarn ../ui/sd_internal/env_yaml.patch || fail "yaml patch failed"
if [ "$test_sd2" == "N" ]; then
git -c advice.detachedHead=false checkout 7f32368ed1030a6e710537047bacd908adea183a
elif [ "$test_sd2" == "Y" ]; then
git -c advice.detachedHead=false checkout 5d647c5459f4cd790672512222bc41903c01bb71
fi
cd ..
else
printf "\n\nDownloading Stable Diffusion..\n\n"
if git clone https://github.com/basujindal/stable-diffusion.git ; then
if git clone https://github.com/easydiffusion/diffusion-kit.git stable-diffusion ; then
echo sd_git_cloned >> scripts/install_status.txt
else
fail "git clone of basujindal/stable-diffusion.git failed"
fi
cd stable-diffusion
git -c advice.detachedHead=false checkout f6cfebffa752ee11a7b07497b8529d5971de916c
git apply --whitespace=nowarn ../ui/sd_internal/ddim_callback.patch || fail "ddim patch failed"
git apply --whitespace=nowarn ../ui/sd_internal/env_yaml.patch || fail "yaml patch failed"
git -c advice.detachedHead=false checkout 7f32368ed1030a6e710537047bacd908adea183a
cd ..
fi
@ -74,12 +79,6 @@ else
conda activate ./env || fail "conda activate failed"
if conda install -c conda-forge --prefix ./env -y antlr4-python3-runtime=4.8 ; then
echo "Installed. Testing.."
else
fail "Error installing antlr4-python3-runtime"
fi
out_test=`python -c "import torch; import ldm; import transformers; import numpy; import antlr4; print(42)"`
if [ "$out_test" != "42" ]; then
fail "Dependency test failed"
@ -96,12 +95,6 @@ else
export PYTHONNOUSERSITE=1
export PYTHONPATH="$(pwd):$(pwd)/env/lib/site-packages"
if pip install -e git+https://github.com/TencentARC/GFPGAN#egg=GFPGAN ; then
echo "Installed. Testing.."
else
fail "Error installing the packages necessary for GFPGAN (Face Correction)."
fi
out_test=`python -c "from gfpgan import GFPGANer; print(42)"`
if [ "$out_test" != "42" ]; then
echo "EE The dependency check has failed. This usually means that some system libraries are missing."
@ -121,12 +114,6 @@ else
export PYTHONNOUSERSITE=1
export PYTHONPATH="$(pwd):$(pwd)/env/lib/site-packages"
if pip install -e git+https://github.com/xinntao/Real-ESRGAN#egg=realesrgan ; then
echo "Installed. Testing.."
else
fail "Error installing the packages necessary for ESRGAN"
fi
out_test=`python -c "from basicsr.archs.rrdbnet_arch import RRDBNet; from realesrgan import RealESRGANer; print(42)"`
if [ "$out_test" != "42" ]; then
fail "ESRGAN dependency test failed"
@ -309,6 +296,9 @@ if [ ! -f "../models/vae/vae-ft-mse-840000-ema-pruned.ckpt" ]; then
fi
fi
if [ "$test_sd2" == "Y" ]; then
pip install open_clip_torch==2.0.2
fi
if [ `grep -c sd_install_complete ../scripts/install_status.txt` -gt "0" ]; then
echo sd_weights_downloaded >> ../scripts/install_status.txt

View File

@ -3,6 +3,7 @@
<head>
<title>Stable Diffusion UI</title>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta name="theme-color" content="#673AB6">
<link rel="icon" type="image/png" href="/media/images/favicon-16x16.png" sizes="16x16">
<link rel="icon" type="image/png" href="/media/images/favicon-32x32.png" sizes="32x32">
<link rel="stylesheet" href="/media/css/fonts.css">
@ -12,7 +13,10 @@
<link rel="stylesheet" href="/media/css/modifier-thumbnails.css">
<link rel="stylesheet" href="/media/css/fontawesome-all.min.css">
<link rel="stylesheet" href="/media/css/drawingboard.min.css">
<link rel="stylesheet" href="/media/css/jquery-confirm.min.css">
<link rel="manifest" href="/media/manifest.webmanifest">
<script src="/media/js/jquery-3.6.1.min.js"></script>
<script src="/media/js/jquery-confirm.min.js"></script>
<script src="/media/js/drawingboard.min.js"></script>
<script src="/media/js/marked.min.js"></script>
</head>
@ -20,7 +24,10 @@
<div id="container">
<div id="top-nav">
<div id="logo">
<h1>Stable Diffusion UI <small>v2.4.13 <span id="updateBranchLabel"></span></small></h1>
<h1>
Stable Diffusion UI
<small>v2.4.17 <span id="updateBranchLabel"></span></small>
</h1>
</div>
<div id="server-status">
<div id="server-status-color"></div>
@ -64,7 +71,7 @@
<div id="init_image_wrapper">
<img id="init_image_preview" src="" />
<span id="init_image_size_box"></span>
<button class="init_image_clear image_clear_btn">X</button>
<button class="init_image_clear image_clear_btn"><i class="fa-solid fa-xmark"></i></button>
</div>
<br/>
@ -79,7 +86,7 @@
</div>
<div id="editor-inputs-tags-container" class="row">
<label>Image Modifiers: <small>(click an Image Modifier to remove it)</small></label>
<label>Image Modifiers <i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip right">click an Image Modifier to remove it, use Ctrl+Mouse Wheel to adjust its weight</span></i>:</label>
<div id="editor-inputs-tags-list"></div>
</div>
@ -247,8 +254,17 @@
<br/><br/>
<div>
<h3><i class="fa fa-microchip icon"></i> System Info</h3>
<div id="system-info"></div>
<div id="system-info">
<table>
<tr><td><label>Processor:</label></td><td id="system-info-cpu" class="value"></td></tr>
<tr><td><label>Compatible Graphics Cards (all):</label></td><td id="system-info-gpus-all" class="value"></td></tr>
<tr><td></td><td>&nbsp;</td></tr>
<tr><td><label>Used for rendering 🔥:</label></td><td id="system-info-rendering-devices" class="value"></td></tr>
<tr><td><label>Server Addresses <i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip right">You can access Stable Diffusion UI from other devices using these addresses</span></i> :</label></td><td id="system-info-server-hosts" class="value"></td></tr>
</table>
</div>
</div>
</div>
</div>
<div id="tab-content-about" class="tab-content">
@ -345,7 +361,7 @@ async function init() {
await getAppConfig()
await loadModifiers()
await loadUIPlugins()
await getDevices()
await getSystemInfo()
setInterval(healthCheck, HEALTH_PING_INTERVAL * 1000)
healthCheck()

9
ui/media/css/jquery-confirm.min.css vendored Normal file

File diff suppressed because one or more lines are too long

View File

@ -64,6 +64,11 @@ code {
top: 0px;
right: 0px;
}
.image_clear_btn:active {
position: absolute;
top: 0px;
left: auto;
}
.settings-box ul {
font-size: 9pt;
margin-bottom: 5px;
@ -210,7 +215,7 @@ code {
}
.collapsible-content {
display: block;
padding-left: 15px;
padding-left: 10px;
}
.collapsible-content h5 {
padding: 5pt 0pt;
@ -658,11 +663,15 @@ input::file-selector-button {
opacity: 1;
}
/* MOBILE SUPPORT */
@media screen and (max-width: 700px) {
/* Small screens */
@media screen and (max-width: 1265px) {
#top-nav {
flex-direction: column;
}
}
/* MOBILE SUPPORT */
@media screen and (max-width: 700px) {
body {
margin: 0px;
}
@ -712,7 +721,7 @@ input::file-selector-button {
padding-right: 0px;
}
#server-status {
display: none;
top: 75%;
}
.popup > div {
padding-left: 5px !important;
@ -730,6 +739,15 @@ input::file-selector-button {
}
}
@media screen and (max-width: 500px) {
#server-status #server-status-msg {
display: none;
}
#server-status:hover #server-status-msg {
display: inline;
}
}
@media (min-width: 700px) {
/* #editor {
max-width: 480px;
@ -997,8 +1015,17 @@ button:hover {
button:active {
transition-duration: 0.1s;
background-color: hsl(var(--accent-hue), 100%, calc(var(--accent-lightness) + 24%));
position: relative;
top: 1px;
left: 1px;
}
button#save-system-settings-btn {
padding: 4pt 8pt;
}
#ip-info a {
color:var(--text-color)
}
#ip-info div {
line-height: 200%;
}

View File

@ -30,6 +30,9 @@
--primary-button-border: none;
--input-switch-padding: 1px;
--input-height: 18px;
/* Main theme color, hex color fallback. */
--theme-color-fallback: #673AB6;
}
.theme-light {
@ -44,6 +47,8 @@
--input-text-color: black;
--input-background-color: #f8f9fa;
--input-border-color: grey;
--theme-color-fallback: #aaaaaa;
}
.theme-discord {
@ -58,6 +63,8 @@
--input-border-size: 2px;
--input-background-color: #202225;
--input-border-color: var(--input-background-color);
--theme-color-fallback: #202225;
}
.theme-cool-blue {
@ -71,8 +78,10 @@
--background-color4: hsl(var(--main-hue), var(--main-saturation), calc(var(--value-base) - (3 * var(--value-step))));
--input-background-color: var(--background-color3);
--accent-hue: 212;
--theme-color-fallback: #0056b8;
}
@ -87,6 +96,8 @@
--background-color4: hsl(var(--main-hue), var(--main-saturation), calc(var(--value-base) - (3 * var(--value-step))));
--input-background-color: var(--background-color3);
--theme-color-fallback: #5300b8;
}
.theme-super-dark {
@ -101,6 +112,8 @@
--input-background-color: var(--background-color3);
--input-border-size: 0px;
--theme-color-fallback: #000000;
}
.theme-wild {
@ -117,8 +130,8 @@
--input-border-size: 1px;
--input-background-color: hsl(222, var(--main-saturation), calc(var(--value-base) - (2 * var(--value-step))));
--input-text-color: red;
--input-border-color: green;
--input-text-color: #FF0000;
--input-border-color: #005E05;
}
.theme-gnomie {
@ -136,6 +149,8 @@
--input-background-color: #2a2a2a;
--input-border-size: 0px;
--input-border-color: var(--input-background-color);
--theme-color-fallback: #2168bf;
}
.theme-gnomie .panel-box {

View File

@ -35,6 +35,7 @@ const SETTINGS_IDS_LIST = [
"sound_toggle",
"turbo",
"use_full_precision",
"confirm_dangerous_actions",
"auto_save_settings"
]
@ -55,6 +56,9 @@ async function initSettings() {
if (!element) {
console.error(`Missing settings element ${id}`)
}
if (id in SETTINGS) { // don't create it again
return
}
SETTINGS[id] = {
key: id,
element: element,

View File

@ -51,6 +51,13 @@ const TASK_MAPPING = {
readUI: () => negativePromptField.value,
parse: (val) => val
},
active_tags: { name: "Image Modifiers",
setUI: (active_tags) => {
refreshModifiersState(active_tags)
},
readUI: () => activeTags.map(x => x.name),
parse: (val) => val
},
width: { name: 'Width',
setUI: (width) => {
const oldVal = widthField.value
@ -185,9 +192,9 @@ const TASK_MAPPING = {
parse: (val) => val
},
numOutputsParallel: { name: 'Parallel Images',
setUI: (numOutputsParallel) => {
numOutputsParallelField.value = numOutputsParallel
num_outputs: { name: 'Parallel Images',
setUI: (num_outputs) => {
numOutputsParallelField.value = num_outputs
},
readUI: () => parseInt(numOutputsParallelField.value),
parse: (val) => val
@ -267,11 +274,6 @@ function restoreTaskToUI(task, fieldsToSkip) {
// restore the original tag
promptField.value = task.reqBody.original_prompt || task.reqBody.prompt
// Restore modifiers
if (task.reqBody.active_tags) {
refreshModifiersState(task.reqBody.active_tags)
}
// properly reset checkboxes
if (!('use_face_correction' in task.reqBody)) {
useFaceCorrectionField.checked = false
@ -326,6 +328,7 @@ function getModelPath(filename, extensions)
filename = filename.slice(0, filename.length - ext.length)
}
})
return filename
}
const TASK_TEXT_MAPPING = {
@ -406,7 +409,7 @@ async function parseContent(text) {
}
async function readFile(file, i) {
console.log(`Event %o reading file[${i}]:${file.name}...`, e)
console.log(`Event %o reading file[${i}]:${file.name}...`)
const fileContent = (await file.text()).trim()
return await parseContent(fileContent)
}

View File

@ -85,14 +85,13 @@ function createModifierGroup(modifierGroup, initiallyExpanded) {
if(typeof modifierCard == 'object') {
modifiersEl.appendChild(modifierCard)
const trimmedName = trimModifiers(modifierName)
modifierCard.addEventListener('click', () => {
if (activeTags.map(x => x.name).includes(modifierName)) {
if (activeTags.map(x => trimModifiers(x.name)).includes(trimmedName)) {
// remove modifier from active array
activeTags = activeTags.filter(x => x.name != modifierName)
modifierCard.classList.remove(activeCardClass)
modifierCard.querySelector('.modifier-card-image-overlay').innerText = '+'
activeTags = activeTags.filter(x => trimModifiers(x.name) != trimmedName)
toggleCardState(modifierCard, false)
} else {
// add modifier to active array
activeTags.push({
@ -101,10 +100,7 @@ function createModifierGroup(modifierGroup, initiallyExpanded) {
'originElement': modifierCard,
'previews': modifierPreviews
})
modifierCard.classList.add(activeCardClass)
modifierCard.querySelector('.modifier-card-image-overlay').innerText = '-'
toggleCardState(modifierCard, true)
}
refreshTagsList()
@ -125,6 +121,10 @@ function createModifierGroup(modifierGroup, initiallyExpanded) {
return e
}
function trimModifiers(tag) {
return tag.replace(/^\(+|\)+$/g, '').replace(/^\[+|\]+$/g, '')
}
async function loadModifiers() {
try {
let res = await fetch('/get/modifiers')
@ -222,8 +222,7 @@ function refreshTagsList() {
let idx = activeTags.indexOf(tag)
if (idx !== -1 && activeTags[idx].originElement !== undefined) {
activeTags[idx].originElement.classList.remove(activeCardClass)
activeTags[idx].originElement.querySelector('.modifier-card-image-overlay').innerText = '+'
toggleCardState(activeTags[idx].originElement, false)
activeTags.splice(idx, 1)
refreshTagsList()
@ -236,6 +235,16 @@ function refreshTagsList() {
editorModifierTagsList.appendChild(brk)
}
function toggleCardState(card, makeActive) {
if (makeActive) {
card.classList.add(activeCardClass)
card.querySelector('.modifier-card-image-overlay').innerText = '-'
} else {
card.classList.remove(activeCardClass)
card.querySelector('.modifier-card-image-overlay').innerText = '+'
}
}
function changePreviewImages(val) {
const previewImages = document.querySelectorAll('.modifier-card-image-container img')

10
ui/media/js/jquery-confirm.min.js vendored Normal file

File diff suppressed because one or more lines are too long

View File

@ -138,6 +138,35 @@ function isServerAvailable() {
}
}
// shiftOrConfirm(e, prompt, fn)
// e : MouseEvent
// prompt : Text to be shown as prompt. Should be a question to which "yes" is a good answer.
// fn : function to be called if the user confirms the dialog or has the shift key pressed
//
// If the user had the shift key pressed while clicking, the function fn will be executed.
// If the setting "confirm_dangerous_actions" in the system settings is disabled, the function
// fn will be executed.
// Otherwise, a confirmation dialog is shown. If the user confirms, the function fn will also
// be executed.
function shiftOrConfirm(e, prompt, fn) {
e.stopPropagation()
if (e.shiftKey || !confirmDangerousActionsField.checked) {
fn(e)
} else {
$.confirm({
theme: 'modern',
title: prompt,
useBootstrap: false,
animateFromElement: false,
content: '<small>Tip: To skip this dialog, use shift-click or disable the "Confirm dangerous actions" setting in the Settings tab.</small>',
buttons: {
yes: () => { fn(e) },
cancel: () => {}
}
});
}
}
function logMsg(msg, level, outputMsg) {
if (outputMsg.hasChildNodes()) {
outputMsg.appendChild(document.createElement('br'))
@ -169,34 +198,6 @@ function playSound() {
})
}
}
function setSystemInfo(devices) {
let cpu = devices.all.cpu.name
let allGPUs = Object.keys(devices.all).filter(d => d != 'cpu')
let activeGPUs = Object.keys(devices.active)
function ID_TO_TEXT(d) {
let info = devices.all[d]
if ("mem_free" in info && "mem_total" in info) {
return `${info.name} <small>(${d}) (${info.mem_free.toFixed(1)}Gb free / ${info.mem_total.toFixed(1)} Gb total)</small>`
} else {
return `${info.name} <small>(${d}) (no memory info)</small>`
}
}
allGPUs = allGPUs.map(ID_TO_TEXT)
activeGPUs = activeGPUs.map(ID_TO_TEXT)
let systemInfo = `
<table>
<tr><td><label>Processor:</label></td><td class="value">${cpu}</td></tr>
<tr><td><label>Compatible Graphics Cards (all):</label></td><td class="value">${allGPUs.join('</br>')}</td></tr>
<tr><td></td><td>&nbsp;</td></tr>
<tr><td><label>Used for rendering 🔥:</label></td><td class="value">${activeGPUs.join('</br>')}</td></tr>
</table>`
let systemInfoEl = document.querySelector('#system-info')
systemInfoEl.innerHTML = systemInfo
}
async function healthCheck() {
try {
@ -231,7 +232,7 @@ async function healthCheck() {
break
}
if (serverState.devices) {
setSystemInfo(serverState.devices)
setDeviceInfo(serverState.devices)
}
serverState.time = Date.now()
} catch (e) {
@ -887,24 +888,26 @@ function createTask(task) {
task['progressBar'] = taskEntry.querySelector('.progress-bar')
task['stopTask'] = taskEntry.querySelector('.stopTask')
task['stopTask'].addEventListener('click', async function(e) {
e.stopPropagation()
if (task['isProcessing']) {
task.isProcessing = false
task.progressBar.classList.remove("active")
try {
let res = await fetch('/image/stop?session_id=' + sessionId)
} catch (e) {
console.log(e)
}
} else {
let idx = taskQueue.indexOf(task)
if (idx >= 0) {
taskQueue.splice(idx, 1)
}
task['stopTask'].addEventListener('click', (e) => {
let question = (task['isProcessing'] ? "Stop this task?" : "Remove this task?")
shiftOrConfirm(e, question, async function(e) {
if (task['isProcessing']) {
task.isProcessing = false
task.progressBar.classList.remove("active")
try {
let res = await fetch('/image/stop?session_id=' + sessionId)
} catch (e) {
console.log(e)
}
} else {
let idx = taskQueue.indexOf(task)
if (idx >= 0) {
taskQueue.splice(idx, 1)
}
taskEntry.remove()
}
removeTask(taskEntry)
}
})
})
task['useSettings'] = taskEntry.querySelector('.useSettings')
@ -934,10 +937,10 @@ function getPrompts() {
prompts = prompts.filter(prompt => prompt !== '')
if (activeTags.length > 0) {
const promptTags = activeTags.map(x => x.name).join(", ")
prompts = prompts.map((prompt) => `${prompt}, ${promptTags}`)
const promptTags = activeTags.map(x => x.name).join(", ")
prompts = prompts.map((prompt) => `${prompt}, ${promptTags}`)
}
let promptsToMake = applySetOperator(prompts)
promptsToMake = applyPermuteOperator(promptsToMake)
@ -1047,21 +1050,25 @@ async function stopAllTasks() {
}
}
clearAllPreviewsBtn.addEventListener('click', async function() {
function removeTask(taskToRemove) {
taskToRemove.remove()
if (document.querySelector('.imageTaskContainer') === null) {
previewTools.style.display = 'none'
initialText.style.display = 'block'
}
}
clearAllPreviewsBtn.addEventListener('click', (e) => { shiftOrConfirm(e, "Clear all the results and tasks in this window?", async function() {
await stopAllTasks()
let taskEntries = document.querySelectorAll('.imageTaskContainer')
taskEntries.forEach(task => {
task.remove()
})
taskEntries.forEach(removeTask)
})})
previewTools.style.display = 'none'
initialText.style.display = 'block'
})
stopImageBtn.addEventListener('click', async function() {
stopImageBtn.addEventListener('click', (e) => { shiftOrConfirm(e, "Stop all the tasks?", async function(e) {
await stopAllTasks()
})
})})
widthField.addEventListener('change', onDimensionChange)
heightField.addEventListener('change', onDimensionChange)

View File

@ -5,9 +5,9 @@
*/
var ParameterType = {
checkbox: "checkbox",
select: "select",
select_multiple: "select_multiple",
custom: "custom",
select: "select",
select_multiple: "select_multiple",
custom: "custom",
};
/**
@ -23,166 +23,182 @@
/** @type {Array.<Parameter>} */
var PARAMETERS = [
{
id: "theme",
type: ParameterType.select,
label: "Theme",
default: "theme-default",
note: "customize the look and feel of the ui",
options: [ // Note: options expanded dynamically
{
value: "theme-default",
label: "Default"
}
],
icon: "fa-palette"
},
{
id: "save_to_disk",
type: ParameterType.checkbox,
label: "Auto-Save Images",
note: "automatically saves images to the specified location",
icon: "fa-download",
default: false,
},
{
id: "diskPath",
type: ParameterType.custom,
label: "Save Location",
render: (parameter) => {
return `<input id="${parameter.id}" name="${parameter.id}" size="30" disabled>`
}
},
{
id: "sound_toggle",
type: ParameterType.checkbox,
label: "Enable Sound",
note: "plays a sound on task completion",
icon: "fa-volume-low",
default: true,
},
{
id: "ui_open_browser_on_start",
type: ParameterType.checkbox,
label: "Open browser on startup",
note: "starts the default browser on startup",
icon: "fa-window-restore",
default: true,
},
{
id: "turbo",
type: ParameterType.checkbox,
label: "Turbo Mode",
note: "generates images faster, but uses an additional 1 GB of GPU memory",
icon: "fa-forward",
default: true,
},
{
id: "use_cpu",
type: ParameterType.checkbox,
label: "Use CPU (not GPU)",
note: "warning: this will be *very* slow",
icon: "fa-microchip",
default: false,
},
{
id: "auto_pick_gpus",
type: ParameterType.checkbox,
label: "Automatically pick the GPUs (experimental)",
default: false,
},
{
id: "use_gpus",
type: ParameterType.select_multiple,
label: "GPUs to use (experimental)",
note: "to process in parallel",
default: false,
},
{
id: "use_full_precision",
type: ParameterType.checkbox,
label: "Use Full Precision",
note: "for GPU-only. warning: this will consume more VRAM",
icon: "fa-crosshairs",
default: false,
},
{
id: "auto_save_settings",
type: ParameterType.checkbox,
label: "Auto-Save Settings",
note: "restores settings on browser load",
icon: "fa-gear",
default: true,
},
{
id: "listen_to_network",
type: ParameterType.checkbox,
label: "Make Stable Diffusion available on your network",
note: "Other devices on your network can access this web page",
icon: "fa-network-wired",
default: true,
},
{
id: "listen_port",
type: ParameterType.custom,
label: "Network port",
note: "Port that this server listens to. The '9000' part in 'http://localhost:9000'",
icon: "fa-anchor",
render: (parameter) => {
return `<input id="${parameter.id}" name="${parameter.id}" size="6" value="9000" onkeypress="preventNonNumericalInput(event)">`
}
},
{
id: "use_beta_channel",
type: ParameterType.checkbox,
label: "Beta channel",
note: "Get the latest features immediately (but could be less stable). Please restart the program after changing this.",
icon: "fa-fire",
default: false,
},
{
id: "theme",
type: ParameterType.select,
label: "Theme",
default: "theme-default",
note: "customize the look and feel of the ui",
options: [ // Note: options expanded dynamically
{
value: "theme-default",
label: "Default"
}
],
icon: "fa-palette"
},
{
id: "save_to_disk",
type: ParameterType.checkbox,
label: "Auto-Save Images",
note: "automatically saves images to the specified location",
icon: "fa-download",
default: false,
},
{
id: "diskPath",
type: ParameterType.custom,
label: "Save Location",
render: (parameter) => {
return `<input id="${parameter.id}" name="${parameter.id}" size="30" disabled>`
}
},
{
id: "sound_toggle",
type: ParameterType.checkbox,
label: "Enable Sound",
note: "plays a sound on task completion",
icon: "fa-volume-low",
default: true,
},
{
id: "ui_open_browser_on_start",
type: ParameterType.checkbox,
label: "Open browser on startup",
note: "starts the default browser on startup",
icon: "fa-window-restore",
default: true,
},
{
id: "turbo",
type: ParameterType.checkbox,
label: "Turbo Mode",
note: "generates images faster, but uses an additional 1 GB of GPU memory",
icon: "fa-forward",
default: true,
},
{
id: "use_cpu",
type: ParameterType.checkbox,
label: "Use CPU (not GPU)",
note: "warning: this will be *very* slow",
icon: "fa-microchip",
default: false,
},
{
id: "auto_pick_gpus",
type: ParameterType.checkbox,
label: "Automatically pick the GPUs (experimental)",
default: false,
},
{
id: "use_gpus",
type: ParameterType.select_multiple,
label: "GPUs to use (experimental)",
note: "to process in parallel",
default: false,
},
{
id: "use_full_precision",
type: ParameterType.checkbox,
label: "Use Full Precision",
note: "for GPU-only. warning: this will consume more VRAM",
icon: "fa-crosshairs",
default: false,
},
{
id: "auto_save_settings",
type: ParameterType.checkbox,
label: "Auto-Save Settings",
note: "restores settings on browser load",
icon: "fa-gear",
default: true,
},
{
id: "confirm_dangerous_actions",
type: ParameterType.checkbox,
label: "Confirm dangerous actions",
note: "Actions that might lead to data loss must either be clicked with the shift key pressed, or confirmed in an 'Are you sure?' dialog",
icon: "fa-check-double",
default: true,
},
{
id: "listen_to_network",
type: ParameterType.checkbox,
label: "Make Stable Diffusion available on your network",
note: "Other devices on your network can access this web page",
icon: "fa-network-wired",
default: true,
},
{
id: "listen_port",
type: ParameterType.custom,
label: "Network port",
note: "Port that this server listens to. The '9000' part in 'http://localhost:9000'",
icon: "fa-anchor",
render: (parameter) => {
return `<input id="${parameter.id}" name="${parameter.id}" size="6" value="9000" onkeypress="preventNonNumericalInput(event)">`
}
},
{
id: "test_sd2",
type: ParameterType.checkbox,
label: "Test SD 2.0",
note: "Experimental! High memory usage! GPU-only! Not the final version! Please restart the program after changing this.",
icon: "fa-fire",
default: false,
},
{
id: "use_beta_channel",
type: ParameterType.checkbox,
label: "Beta channel",
note: "Get the latest features immediately (but could be less stable). Please restart the program after changing this.",
icon: "fa-fire",
default: false,
},
];
function getParameterSettingsEntry(id) {
let parameter = PARAMETERS.filter(p => p.id === id)
if (parameter.length === 0) {
return
}
return parameter[0].settingsEntry
let parameter = PARAMETERS.filter(p => p.id === id)
if (parameter.length === 0) {
return
}
return parameter[0].settingsEntry
}
function getParameterElement(parameter) {
switch (parameter.type) {
case ParameterType.checkbox:
var is_checked = parameter.default ? " checked" : "";
return `<input id="${parameter.id}" name="${parameter.id}"${is_checked} type="checkbox">`
case ParameterType.select:
case ParameterType.select_multiple:
var options = (parameter.options || []).map(option => `<option value="${option.value}">${option.label}</option>`).join("")
var multiple = (parameter.type == ParameterType.select_multiple ? 'multiple' : '')
return `<select id="${parameter.id}" name="${parameter.id}" ${multiple}>${options}</select>`
case ParameterType.custom:
return parameter.render(parameter)
default:
console.error(`Invalid type for parameter ${parameter.id}`);
return "ERROR: Invalid Type"
}
switch (parameter.type) {
case ParameterType.checkbox:
var is_checked = parameter.default ? " checked" : "";
return `<input id="${parameter.id}" name="${parameter.id}"${is_checked} type="checkbox">`
case ParameterType.select:
case ParameterType.select_multiple:
var options = (parameter.options || []).map(option => `<option value="${option.value}">${option.label}</option>`).join("")
var multiple = (parameter.type == ParameterType.select_multiple ? 'multiple' : '')
return `<select id="${parameter.id}" name="${parameter.id}" ${multiple}>${options}</select>`
case ParameterType.custom:
return parameter.render(parameter)
default:
console.error(`Invalid type for parameter ${parameter.id}`);
return "ERROR: Invalid Type"
}
}
let parametersTable = document.querySelector("#system-settings .parameters-table")
/* fill in the system settings popup table */
function initParameters() {
PARAMETERS.forEach(parameter => {
var element = getParameterElement(parameter)
var note = parameter.note ? `<small>${parameter.note}</small>` : "";
var icon = parameter.icon ? `<i class="fa ${parameter.icon}"></i>` : "";
var newrow = document.createElement('div')
newrow.innerHTML = `
<div>${icon}</div>
<div><label for="${parameter.id}">${parameter.label}</label>${note}</div>
<div>${element}</div>`
parametersTable.appendChild(newrow)
parameter.settingsEntry = newrow
})
PARAMETERS.forEach(parameter => {
var element = getParameterElement(parameter)
var note = parameter.note ? `<small>${parameter.note}</small>` : "";
var icon = parameter.icon ? `<i class="fa ${parameter.icon}"></i>` : "";
var newrow = document.createElement('div')
newrow.innerHTML = `
<div>${icon}</div>
<div><label for="${parameter.id}">${parameter.label}</label>${note}</div>
<div>${element}</div>`
parametersTable.appendChild(newrow)
parameter.settingsEntry = newrow
})
}
initParameters()
@ -196,11 +212,14 @@ let saveToDiskField = document.querySelector('#save_to_disk')
let diskPathField = document.querySelector('#diskPath')
let listenToNetworkField = document.querySelector("#listen_to_network")
let listenPortField = document.querySelector("#listen_port")
let testSD2Field = document.querySelector("#test_sd2")
let useBetaChannelField = document.querySelector("#use_beta_channel")
let uiOpenBrowserOnStartField = document.querySelector("#ui_open_browser_on_start")
let confirmDangerousActionsField = document.querySelector("#confirm_dangerous_actions")
let saveSettingsBtn = document.querySelector('#save-system-settings-btn')
async function changeAppConfig(configDelta) {
try {
let res = await fetch('/app_config', {
@ -230,12 +249,18 @@ async function getAppConfig() {
if (config.ui && config.ui.open_browser_on_start === false) {
uiOpenBrowserOnStartField.checked = false
}
if (config.net && config.net.listen_to_network === false) {
listenToNetworkField.checked = false
}
if (config.net && config.net.listen_port !== undefined) {
listenPortField.value = config.net.listen_port
}
if ('test_sd2' in config) {
testSD2Field.checked = config['test_sd2']
}
let testSD2SettingEntry = getParameterSettingsEntry('test_sd2')
testSD2SettingEntry.style.display = (config.update_branch === 'beta' ? '' : 'none')
if (config.net && config.net.listen_to_network === false) {
listenToNetworkField.checked = false
}
if (config.net && config.net.listen_port !== undefined) {
listenPortField.value = config.net.listen_port
}
console.log('get config status response', config)
} catch (e) {
@ -263,7 +288,6 @@ function getCurrentRenderDeviceSelection() {
useCPUField.addEventListener('click', function() {
let gpuSettingEntry = getParameterSettingsEntry('use_gpus')
let autoPickGPUSettingEntry = getParameterSettingsEntry('auto_pick_gpus')
console.log("hello", this.checked);
if (this.checked) {
gpuSettingEntry.style.display = 'none'
autoPickGPUSettingEntry.style.display = 'none'
@ -313,14 +337,45 @@ async function getDiskPath() {
}
}
async function getDevices() {
function setDeviceInfo(devices) {
let cpu = devices.all.cpu.name
let allGPUs = Object.keys(devices.all).filter(d => d != 'cpu')
let activeGPUs = Object.keys(devices.active)
function ID_TO_TEXT(d) {
let info = devices.all[d]
if ("mem_free" in info && "mem_total" in info) {
return `${info.name} <small>(${d}) (${info.mem_free.toFixed(1)}Gb free / ${info.mem_total.toFixed(1)} Gb total)</small>`
} else {
return `${info.name} <small>(${d}) (no memory info)</small>`
}
}
allGPUs = allGPUs.map(ID_TO_TEXT)
activeGPUs = activeGPUs.map(ID_TO_TEXT)
let systemInfoEl = document.querySelector('#system-info')
systemInfoEl.querySelector('#system-info-cpu').innerText = cpu
systemInfoEl.querySelector('#system-info-gpus-all').innerHTML = allGPUs.join('</br>')
systemInfoEl.querySelector('#system-info-rendering-devices').innerHTML = activeGPUs.join('</br>')
}
function setHostInfo(hosts) {
let port = listenPortField.value
hosts = hosts.map(addr => `http://${addr}:${port}/`).map(url => `<div><a href="${url}">${url}</a></div>`)
document.querySelector('#system-info-server-hosts').innerHTML = hosts.join('')
}
async function getSystemInfo() {
try {
let res = await fetch('/get/devices')
let res = await fetch('/get/system_info')
if (res.status === 200) {
res = await res.json()
let devices = res['devices']
let hosts = res['hosts']
let allDeviceIds = Object.keys(res['all']).filter(d => d !== 'cpu')
let activeDeviceIds = Object.keys(res['active']).filter(d => d !== 'cpu')
let allDeviceIds = Object.keys(devices['all']).filter(d => d !== 'cpu')
let activeDeviceIds = Object.keys(devices['active']).filter(d => d !== 'cpu')
if (activeDeviceIds.length === 0) {
useCPUField.checked = true
@ -338,11 +393,11 @@ async function getDevices() {
useCPUField.disabled = true // no compatible GPUs, so make the CPU mandatory
}
autoPickGPUsField.checked = (res['config'] === 'auto')
autoPickGPUsField.checked = (devices['config'] === 'auto')
useGPUsField.innerHTML = ''
allDeviceIds.forEach(device => {
let deviceName = res['all'][device]['name']
let deviceName = devices['all'][device]['name']
let deviceOption = `<option value="${device}">${deviceName} (${device})</option>`
useGPUsField.insertAdjacentHTML('beforeend', deviceOption)
})
@ -353,6 +408,9 @@ async function getDevices() {
} else {
$('#use_gpus').val(activeDeviceIds)
}
setDeviceInfo(devices)
setHostInfo(hosts)
}
} catch (e) {
console.log('error fetching devices', e)
@ -360,22 +418,23 @@ async function getDevices() {
}
saveSettingsBtn.addEventListener('click', function() {
let updateBranch = (useBetaChannelField.checked ? 'beta' : 'main')
let updateBranch = (useBetaChannelField.checked ? 'beta' : 'main')
if (listenPortField.value == '') {
alert('The network port field must not be empty.')
} else if (listenPortField.value<1 || listenPortField.value>65535) {
alert('The network port must be a number from 1 to 65535')
} else {
changeAppConfig({
'render_devices': getCurrentRenderDeviceSelection(),
'update_branch': updateBranch,
'ui_open_browser_on_start': uiOpenBrowserOnStartField.checked,
'listen_to_network': listenToNetworkField.checked,
'listen_port': listenPortField.value
})
}
if (listenPortField.value == '') {
alert('The network port field must not be empty.')
} else if (listenPortField.value<1 || listenPortField.value>65535) {
alert('The network port must be a number from 1 to 65535')
} else {
changeAppConfig({
'render_devices': getCurrentRenderDeviceSelection(),
'update_branch': updateBranch,
'ui_open_browser_on_start': uiOpenBrowserOnStartField.checked,
'listen_to_network': listenToNetworkField.checked,
'listen_port': listenPortField.value,
'test_sd2': testSD2Field.checked
})
}
saveSettingsBtn.classList.add('active')
asyncDelay(300).then(() => saveSettingsBtn.classList.remove('active'))
saveSettingsBtn.classList.add('active')
asyncDelay(300).then(() => saveSettingsBtn.classList.remove('active'))
})

View File

@ -60,6 +60,7 @@ function themeFieldChanged() {
body.style = "";
var theme = THEMES.find(t => t.key == theme_key);
let borderColor = undefined
if (theme) {
// refresh variables incase they are back referencing
Array.from(DEFAULT_THEME.rule.style)
@ -67,7 +68,14 @@ function themeFieldChanged() {
.forEach(cssVariable => {
body.style.setProperty(cssVariable, DEFAULT_THEME.rule.style.getPropertyValue(cssVariable));
});
borderColor = theme.rule.style.getPropertyValue('--input-border-color').trim()
if (!borderColor.startsWith('#')) {
borderColor = theme.rule.style.getPropertyValue('--theme-color-fallback')
}
} else {
borderColor = DEFAULT_THEME.rule.style.getPropertyValue('--theme-color-fallback')
}
document.querySelector('meta[name="theme-color"]').setAttribute("content", borderColor)
}
themeField.addEventListener('change', themeFieldChanged);

View File

@ -1,17 +1,17 @@
// https://gomakethings.com/finding-the-next-and-previous-sibling-elements-that-match-a-selector-with-vanilla-js/
function getNextSibling(elem, selector) {
// Get the next sibling element
var sibling = elem.nextElementSibling
// Get the next sibling element
var sibling = elem.nextElementSibling
// If there's no selector, return the first sibling
if (!selector) return sibling
// If there's no selector, return the first sibling
if (!selector) return sibling
// If the sibling matches our selector, use it
// If not, jump to the next sibling and continue the loop
while (sibling) {
if (sibling.matches(selector)) return sibling
sibling = sibling.nextElementSibling
}
// If the sibling matches our selector, use it
// If not, jump to the next sibling and continue the loop
while (sibling) {
if (sibling.matches(selector)) return sibling
sibling = sibling.nextElementSibling
}
}

View File

@ -0,0 +1,8 @@
{
"name": "Stable Diffusion UI",
"display": "standalone",
"display_override": [
"window-controls-overlay"
],
"theme_color": "#000000"
}

View File

@ -0,0 +1,42 @@
(function () {
"use strict"
var styleSheet = document.createElement("style");
styleSheet.textContent = `
.auto-scroll {
float: right;
}
`;
document.head.appendChild(styleSheet);
const autoScrollControl = document.createElement('div');
autoScrollControl.innerHTML = `<input id="auto_scroll" name="auto_scroll" type="checkbox">
<label for="auto_scroll">Scroll to generated image</label>`
autoScrollControl.className = "auto-scroll"
clearAllPreviewsBtn.parentNode.insertBefore(autoScrollControl, clearAllPreviewsBtn.nextSibling)
prettifyInputs(document);
let autoScroll = document.querySelector("#auto_scroll")
SETTINGS_IDS_LIST.push("auto_scroll")
initSettings()
// observe for changes in the preview pane
var observer = new MutationObserver(function (mutations) {
mutations.forEach(function (mutation) {
if (mutation.target.className == 'img-batch') {
Autoscroll(mutation.target)
}
})
})
observer.observe(document.getElementById('preview'), {
childList: true,
subtree: true
})
function Autoscroll(target) {
if (autoScroll.checked && target !== null) {
target.parentElement.parentElement.parentElement.scrollIntoView();
}
}
})()

View File

@ -18,40 +18,42 @@
let overlays = document.querySelector('#editor-inputs-tags-list').querySelectorAll('.modifier-card-overlay')
overlays.forEach (i => {
i.onwheel = (e) => {
e.preventDefault()
const delta = Math.sign(event.deltaY)
let s = i.parentElement.getElementsByClassName('modifier-card-label')[0].getElementsByTagName("p")[0].innerText
if (delta < 0) {
// wheel scrolling up
if (s.substring(0, 1) == '[' && s.substring(s.length-1) == ']') {
s = s.substring(1, s.length - 1)
}
else
{
if (s.substring(0, 10) !== '('.repeat(10) && s.substring(s.length-10) !== ')'.repeat(10)) {
s = '(' + s + ')'
if (e.ctrlKey == true) {
e.preventDefault()
const delta = Math.sign(event.deltaY)
let s = i.parentElement.getElementsByClassName('modifier-card-label')[0].getElementsByTagName("p")[0].innerText
if (delta < 0) {
// wheel scrolling up
if (s.substring(0, 1) == '[' && s.substring(s.length-1) == ']') {
s = s.substring(1, s.length - 1)
}
else
{
if (s.substring(0, 10) !== '('.repeat(10) && s.substring(s.length-10) !== ')'.repeat(10)) {
s = '(' + s + ')'
}
}
}
}
else{
// wheel scrolling down
if (s.substring(0, 1) == '(' && s.substring(s.length-1) == ')') {
s = s.substring(1, s.length - 1)
}
else
{
if (s.substring(0, 10) !== '['.repeat(10) && s.substring(s.length-10) !== ']'.repeat(10)) {
s = '[' + s + ']'
else{
// wheel scrolling down
if (s.substring(0, 1) == '(' && s.substring(s.length-1) == ')') {
s = s.substring(1, s.length - 1)
}
else
{
if (s.substring(0, 10) !== '['.repeat(10) && s.substring(s.length-10) !== ']'.repeat(10)) {
s = '[' + s + ']'
}
}
}
}
i.parentElement.getElementsByClassName('modifier-card-label')[0].getElementsByTagName("p")[0].innerText = s
// update activeTags
for (let it = 0; it < overlays.length; it++) {
if (i == overlays[it]) {
activeTags[it].name = s
break
i.parentElement.getElementsByClassName('modifier-card-label')[0].getElementsByTagName("p")[0].innerText = s
// update activeTags
for (let it = 0; it < overlays.length; it++) {
if (i == overlays[it]) {
activeTags[it].name = s
break
}
}
}
}

View File

@ -1,72 +1,13 @@
diff --git a/optimizedSD/ddpm.py b/optimizedSD/ddpm.py
index b967b55..35ef520 100644
index 79058bc..a473411 100644
--- a/optimizedSD/ddpm.py
+++ b/optimizedSD/ddpm.py
@@ -22,7 +22,7 @@ from ldm.util import exists, default, instantiate_from_config
from ldm.modules.diffusionmodules.util import make_beta_schedule
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
-from samplers import CompVisDenoiser, get_ancestral_step, to_d, append_dims,linear_multistep_coeff
+from .samplers import CompVisDenoiser, get_ancestral_step, to_d, append_dims,linear_multistep_coeff
@@ -564,12 +564,12 @@ class UNet(DDPM):
unconditional_guidance_scale=unconditional_guidance_scale,
callback=callback, img_callback=img_callback)
def disabled_train(self):
"""Overwrite model.train with this function to make sure train/eval mode
@@ -506,6 +506,8 @@ class UNet(DDPM):
x_latent = noise if x0 is None else x0
# sampling
+ if sampler in ('ddim', 'dpm2', 'heun', 'dpm2_a', 'lms') and not hasattr(self, 'ddim_timesteps'):
+ self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=False)
if sampler == "plms":
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=False)
@@ -528,39 +530,46 @@ class UNet(DDPM):
elif sampler == "ddim":
samples = self.ddim_sampling(x_latent, conditioning, S, unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=unconditional_conditioning,
- mask = mask,init_latent=x_T,use_original_steps=False)
+ mask = mask,init_latent=x_T,use_original_steps=False,
+ callback=callback, img_callback=img_callback)
elif sampler == "euler":
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=False)
samples = self.euler_sampling(self.alphas_cumprod,x_latent, S, conditioning, unconditional_conditioning=unconditional_conditioning,
- unconditional_guidance_scale=unconditional_guidance_scale)
+ unconditional_guidance_scale=unconditional_guidance_scale,
+ img_callback=img_callback)
elif sampler == "euler_a":
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=False)
samples = self.euler_ancestral_sampling(self.alphas_cumprod,x_latent, S, conditioning, unconditional_conditioning=unconditional_conditioning,
- unconditional_guidance_scale=unconditional_guidance_scale)
+ unconditional_guidance_scale=unconditional_guidance_scale,
+ img_callback=img_callback)
elif sampler == "dpm2":
samples = self.dpm_2_sampling(self.alphas_cumprod,x_latent, S, conditioning, unconditional_conditioning=unconditional_conditioning,
- unconditional_guidance_scale=unconditional_guidance_scale)
+ unconditional_guidance_scale=unconditional_guidance_scale,
+ img_callback=img_callback)
elif sampler == "heun":
samples = self.heun_sampling(self.alphas_cumprod,x_latent, S, conditioning, unconditional_conditioning=unconditional_conditioning,
- unconditional_guidance_scale=unconditional_guidance_scale)
+ unconditional_guidance_scale=unconditional_guidance_scale,
+ img_callback=img_callback)
elif sampler == "dpm2_a":
samples = self.dpm_2_ancestral_sampling(self.alphas_cumprod,x_latent, S, conditioning, unconditional_conditioning=unconditional_conditioning,
- unconditional_guidance_scale=unconditional_guidance_scale)
+ unconditional_guidance_scale=unconditional_guidance_scale,
+ img_callback=img_callback)
elif sampler == "lms":
samples = self.lms_sampling(self.alphas_cumprod,x_latent, S, conditioning, unconditional_conditioning=unconditional_conditioning,
- unconditional_guidance_scale=unconditional_guidance_scale)
+ unconditional_guidance_scale=unconditional_guidance_scale,
+ img_callback=img_callback)
+
+ yield from samples
+
if(self.turbo):
self.model1.to("cpu")
self.model2.to("cpu")
@ -76,7 +17,7 @@ index b967b55..35ef520 100644
@torch.no_grad()
def plms_sampling(self, cond,b, img,
ddim_use_original_steps=False,
@@ -599,10 +608,10 @@ class UNet(DDPM):
@@ -608,10 +608,10 @@ class UNet(DDPM):
old_eps.append(e_t)
if len(old_eps) >= 4:
old_eps.pop(0)
@ -90,23 +31,15 @@ index b967b55..35ef520 100644
@torch.no_grad()
def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
@@ -706,7 +715,8 @@ class UNet(DDPM):
@torch.no_grad()
def ddim_sampling(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
- mask = None,init_latent=None,use_original_steps=False):
+ mask = None,init_latent=None,use_original_steps=False,
+ callback=None, img_callback=None):
timesteps = self.ddim_timesteps
timesteps = timesteps[:t_start]
@@ -730,10 +740,13 @@ class UNet(DDPM):
@@ -740,13 +740,13 @@ class UNet(DDPM):
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=unconditional_conditioning)
- if callback: callback(i)
- if img_callback: img_callback(x_dec, i)
+ if callback: yield from callback(i)
+ if img_callback: yield from img_callback(x_dec, i)
+
if mask is not None:
- return x0 * mask + (1. - mask) * x_dec
+ x_dec = x0 * mask + (1. - mask) * x_dec
@ -116,217 +49,114 @@ index b967b55..35ef520 100644
@torch.no_grad()
@@ -779,13 +792,16 @@ class UNet(DDPM):
@@ -820,12 +820,12 @@ class UNet(DDPM):
@torch.no_grad()
- def euler_sampling(self, ac, x, S, cond, unconditional_conditioning = None, unconditional_guidance_scale = 1,extra_args=None,callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
+ def euler_sampling(self, ac, x, S, cond, unconditional_conditioning = None, unconditional_guidance_scale = 1,extra_args=None,callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.,
+ img_callback=None):
"""Implements Algorithm 2 (Euler steps) from Karras et al. (2022)."""
extra_args = {} if extra_args is None else extra_args
cvd = CompVisDenoiser(ac)
sigmas = cvd.get_sigmas(S)
x = x*sigmas[0]
+ print(f"Running Euler Sampling with {len(sigmas) - 1} timesteps")
+
s_in = x.new_ones([x.shape[0]]).half()
for i in trange(len(sigmas) - 1, disable=disable):
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
@@ -807,13 +823,18 @@ class UNet(DDPM):
d = to_d(x, sigma_hat, denoised)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
+
- if callback: callback(i)
- if img_callback: img_callback(x, i)
+ if callback: yield from callback(i)
+ if img_callback: yield from img_callback(x, i)
+
dt = sigmas[i + 1] - sigma_hat
# Euler method
x = x + d * dt
- return x
+
+ yield from img_callback(x, len(sigmas)-1)
@torch.no_grad()
- def euler_ancestral_sampling(self,ac,x, S, cond, unconditional_conditioning = None, unconditional_guidance_scale = 1,extra_args=None, callback=None, disable=None):
+ def euler_ancestral_sampling(self,ac,x, S, cond, unconditional_conditioning = None, unconditional_guidance_scale = 1,extra_args=None, callback=None, disable=None,
+ img_callback=None):
"""Ancestral sampling with Euler method steps."""
extra_args = {} if extra_args is None else extra_args
def euler_ancestral_sampling(self,ac,x, S, cond, unconditional_conditioning = None, unconditional_guidance_scale = 1,extra_args=None, callback=None, disable=None, img_callback=None):
@@ -852,14 +852,14 @@ class UNet(DDPM):
denoised = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
@@ -822,6 +843,8 @@ class UNet(DDPM):
sigmas = cvd.get_sigmas(S)
x = x*sigmas[0]
+ print(f"Running Euler Ancestral Sampling with {len(sigmas) - 1} timesteps")
+
s_in = x.new_ones([x.shape[0]]).half()
for i in trange(len(sigmas) - 1, disable=disable):
@@ -837,17 +860,22 @@ class UNet(DDPM):
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1])
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
+
- if callback: callback(i)
- if img_callback: img_callback(x, i)
+ if callback: yield from callback(i)
+ if img_callback: yield from img_callback(x, i)
+
d = to_d(x, sigmas[i], denoised)
# Euler method
dt = sigma_down - sigmas[i]
x = x + d * dt
x = x + torch.randn_like(x) * sigma_up
- return x
+
+ yield from img_callback(x, len(sigmas)-1)
@torch.no_grad()
- def heun_sampling(self, ac, x, S, cond, unconditional_conditioning = None, unconditional_guidance_scale = 1, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
+ def heun_sampling(self, ac, x, S, cond, unconditional_conditioning = None, unconditional_guidance_scale = 1, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.,
+ img_callback=None):
"""Implements Algorithm 2 (Heun steps) from Karras et al. (2022)."""
extra_args = {} if extra_args is None else extra_args
@@ -892,8 +892,8 @@ class UNet(DDPM):
denoised = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
@@ -855,6 +883,8 @@ class UNet(DDPM):
sigmas = cvd.get_sigmas(S)
x = x*sigmas[0]
+ print(f"Running Heun Sampling with {len(sigmas) - 1} timesteps")
+
s_in = x.new_ones([x.shape[0]]).half()
for i in trange(len(sigmas) - 1, disable=disable):
@@ -876,6 +906,9 @@ class UNet(DDPM):
d = to_d(x, sigma_hat, denoised)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
+
- if callback: callback(i)
- if img_callback: img_callback(x, i)
+ if callback: yield from callback(i)
+ if img_callback: yield from img_callback(x, i)
+
dt = sigmas[i + 1] - sigma_hat
if sigmas[i + 1] == 0:
# Euler method
@@ -895,11 +928,13 @@ class UNet(DDPM):
@@ -913,7 +913,7 @@ class UNet(DDPM):
d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
d_prime = (d + d_2) / 2
x = x + d_prime * dt
- return x
+
+ yield from img_callback(x, len(sigmas)-1)
@torch.no_grad()
- def dpm_2_sampling(self,ac,x, S, cond, unconditional_conditioning = None, unconditional_guidance_scale = 1,extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
+ def dpm_2_sampling(self,ac,x, S, cond, unconditional_conditioning = None, unconditional_guidance_scale = 1,extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.,
+ img_callback=None):
"""A sampler inspired by DPM-Solver-2 and Algorithm 2 from Karras et al. (2022)."""
extra_args = {} if extra_args is None else extra_args
@@ -907,6 +942,8 @@ class UNet(DDPM):
sigmas = cvd.get_sigmas(S)
x = x*sigmas[0]
+ print(f"Running DPM2 Sampling with {len(sigmas) - 1} timesteps")
+
s_in = x.new_ones([x.shape[0]]).half()
for i in trange(len(sigmas) - 1, disable=disable):
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
@@ -924,7 +961,7 @@ class UNet(DDPM):
@@ -944,8 +944,8 @@ class UNet(DDPM):
e_t_uncond, e_t = (x_in + eps * c_out).chunk(2)
denoised = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
-
- if callback: callback(i)
- if img_callback: img_callback(x, i)
+ if callback: yield from callback(i)
+ if img_callback: yield from img_callback(x, i)
d = to_d(x, sigma_hat, denoised)
# Midpoint method, where the midpoint is chosen according to a rho=3 Karras schedule
@@ -945,11 +982,13 @@ class UNet(DDPM):
@@ -966,7 +966,7 @@ class UNet(DDPM):
d_2 = to_d(x_2, sigma_mid, denoised_2)
x = x + d_2 * dt_2
- return x
+
+ yield from img_callback(x, len(sigmas)-1)
@torch.no_grad()
- def dpm_2_ancestral_sampling(self,ac,x, S, cond, unconditional_conditioning = None, unconditional_guidance_scale = 1, extra_args=None, callback=None, disable=None):
+ def dpm_2_ancestral_sampling(self,ac,x, S, cond, unconditional_conditioning = None, unconditional_guidance_scale = 1, extra_args=None, callback=None, disable=None,
+ img_callback=None):
"""Ancestral sampling with DPM-Solver inspired second-order steps."""
extra_args = {} if extra_args is None else extra_args
@@ -994,8 +994,8 @@ class UNet(DDPM):
@@ -957,6 +996,8 @@ class UNet(DDPM):
sigmas = cvd.get_sigmas(S)
x = x*sigmas[0]
+ print(f"Running DPM2 Ancestral Sampling with {len(sigmas) - 1} timesteps")
+
s_in = x.new_ones([x.shape[0]]).half()
for i in trange(len(sigmas) - 1, disable=disable):
@@ -973,6 +1014,9 @@ class UNet(DDPM):
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1])
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
+
- if callback: callback(i)
- if img_callback: img_callback(x, i)
+ if callback: yield from callback(i)
+ if img_callback: yield from img_callback(x, i)
+
d = to_d(x, sigmas[i], denoised)
# Midpoint method, where the midpoint is chosen according to a rho=3 Karras schedule
sigma_mid = ((sigmas[i] ** (1 / 3) + sigma_down ** (1 / 3)) / 2) ** 3
@@ -993,11 +1037,13 @@ class UNet(DDPM):
@@ -1016,7 +1016,7 @@ class UNet(DDPM):
d_2 = to_d(x_2, sigma_mid, denoised_2)
x = x + d_2 * dt_2
x = x + torch.randn_like(x) * sigma_up
- return x
+
+ yield from img_callback(x, len(sigmas)-1)
@torch.no_grad()
- def lms_sampling(self,ac,x, S, cond, unconditional_conditioning = None, unconditional_guidance_scale = 1, extra_args=None, callback=None, disable=None, order=4):
+ def lms_sampling(self,ac,x, S, cond, unconditional_conditioning = None, unconditional_guidance_scale = 1, extra_args=None, callback=None, disable=None, order=4,
+ img_callback=None):
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
@@ -1005,6 +1051,8 @@ class UNet(DDPM):
sigmas = cvd.get_sigmas(S)
x = x*sigmas[0]
+ print(f"Running LMS Sampling with {len(sigmas) - 1} timesteps")
+
ds = []
for i in trange(len(sigmas) - 1, disable=disable):
@@ -1017,6 +1065,7 @@ class UNet(DDPM):
@@ -1042,8 +1042,8 @@ class UNet(DDPM):
e_t_uncond, e_t = (x_in + eps * c_out).chunk(2)
denoised = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
- if callback: callback(i)
- if img_callback: img_callback(x, i)
+ if callback: yield from callback(i)
+ if img_callback: yield from img_callback(x, i)
d = to_d(x, sigmas[i], denoised)
ds.append(d)
@@ -1027,4 +1076,5 @@ class UNet(DDPM):
@@ -1054,4 +1054,4 @@ class UNet(DDPM):
cur_order = min(i + 1, order)
coeffs = [linear_multistep_coeff(cur_order, sigmas.cpu(), i, j) for j in range(cur_order)]
x = x + sum(coeff * d for coeff, d in zip(coeffs, reversed(ds)))
- return x
+
+ yield from img_callback(x, len(sigmas)-1)
diff --git a/optimizedSD/openaimodelSplit.py b/optimizedSD/openaimodelSplit.py
index abc3098..7a32ffe 100644
--- a/optimizedSD/openaimodelSplit.py
+++ b/optimizedSD/openaimodelSplit.py
@@ -13,7 +13,7 @@ from ldm.modules.diffusionmodules.util import (
normalization,
timestep_embedding,
)
-from splitAttention import SpatialTransformer
+from .splitAttention import SpatialTransformer
class AttentionPool2d(nn.Module):

View File

@ -0,0 +1,84 @@
diff --git a/ldm/models/diffusion/ddim.py b/ldm/models/diffusion/ddim.py
index 27ead0e..6215939 100644
--- a/ldm/models/diffusion/ddim.py
+++ b/ldm/models/diffusion/ddim.py
@@ -100,7 +100,7 @@ class DDIMSampler(object):
size = (batch_size, C, H, W)
print(f'Data shape for DDIM sampling is {size}, eta {eta}')
- samples, intermediates = self.ddim_sampling(conditioning, size,
+ samples = self.ddim_sampling(conditioning, size,
callback=callback,
img_callback=img_callback,
quantize_denoised=quantize_x0,
@@ -117,7 +117,8 @@ class DDIMSampler(object):
dynamic_threshold=dynamic_threshold,
ucg_schedule=ucg_schedule
)
- return samples, intermediates
+ # return samples, intermediates
+ yield from samples
@torch.no_grad()
def ddim_sampling(self, cond, shape,
@@ -168,14 +169,15 @@ class DDIMSampler(object):
unconditional_conditioning=unconditional_conditioning,
dynamic_threshold=dynamic_threshold)
img, pred_x0 = outs
- if callback: callback(i)
- if img_callback: img_callback(pred_x0, i)
+ if callback: yield from callback(i)
+ if img_callback: yield from img_callback(pred_x0, i)
if index % log_every_t == 0 or index == total_steps - 1:
intermediates['x_inter'].append(img)
intermediates['pred_x0'].append(pred_x0)
- return img, intermediates
+ # return img, intermediates
+ yield from img_callback(pred_x0, len(iterator)-1)
@torch.no_grad()
def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
diff --git a/ldm/models/diffusion/plms.py b/ldm/models/diffusion/plms.py
index 7002a36..0951f39 100644
--- a/ldm/models/diffusion/plms.py
+++ b/ldm/models/diffusion/plms.py
@@ -96,7 +96,7 @@ class PLMSSampler(object):
size = (batch_size, C, H, W)
print(f'Data shape for PLMS sampling is {size}')
- samples, intermediates = self.plms_sampling(conditioning, size,
+ samples = self.plms_sampling(conditioning, size,
callback=callback,
img_callback=img_callback,
quantize_denoised=quantize_x0,
@@ -112,7 +112,8 @@ class PLMSSampler(object):
unconditional_conditioning=unconditional_conditioning,
dynamic_threshold=dynamic_threshold,
)
- return samples, intermediates
+ #return samples, intermediates
+ yield from samples
@torch.no_grad()
def plms_sampling(self, cond, shape,
@@ -165,14 +166,15 @@ class PLMSSampler(object):
old_eps.append(e_t)
if len(old_eps) >= 4:
old_eps.pop(0)
- if callback: callback(i)
- if img_callback: img_callback(pred_x0, i)
+ if callback: yield from callback(i)
+ if img_callback: yield from img_callback(pred_x0, i)
if index % log_every_t == 0 or index == total_steps - 1:
intermediates['x_inter'].append(img)
intermediates['pred_x0'].append(pred_x0)
- return img, intermediates
+ # return img, intermediates
+ yield from img_callback(pred_x0, len(iterator)-1)
@torch.no_grad()
def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,

View File

@ -101,7 +101,7 @@ def device_init(thread_data, device):
# Force full precision on 1660 and 1650 NVIDIA cards to avoid creating green images
device_name = thread_data.device_name.lower()
thread_data.force_full_precision = ('nvidia' in device_name or 'geforce' in device_name) and (' 1660' in device_name or ' 1650' in device_name)
thread_data.force_full_precision = (('nvidia' in device_name or 'geforce' in device_name) and (' 1660' in device_name or ' 1650' in device_name)) or ('Quadro T2000' in device_name)
if thread_data.force_full_precision:
print('forcing full precision on NVIDIA 16xx cards, to avoid green images. GPU detected: ', thread_data.device_name)
# Apply force_full_precision now before models are loaded.

View File

@ -1,13 +0,0 @@
diff --git a/environment.yaml b/environment.yaml
index 7f25da8..306750f 100644
--- a/environment.yaml
+++ b/environment.yaml
@@ -23,6 +23,8 @@ dependencies:
- torch-fidelity==0.3.0
- transformers==4.19.2
- torchmetrics==0.6.0
+ - pywavelets==1.3.0
+ - pandas==1.4.4
- kornia==0.6
- -e git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers
- -e git+https://github.com/openai/CLIP.git@main#egg=clip

View File

@ -7,6 +7,7 @@ Notes:
import json
import os, re
import traceback
import queue
import torch
import numpy as np
from gc import collect as gc_collect
@ -21,13 +22,14 @@ from torch import autocast
from contextlib import nullcontext
from einops import rearrange, repeat
from ldm.util import instantiate_from_config
from optimizedSD.optimUtils import split_weighted_subprompts
from transformers import logging
from gfpgan import GFPGANer
from basicsr.archs.rrdbnet_arch import RRDBNet
from realesrgan import RealESRGANer
from threading import Lock
import uuid
logging.set_verbosity_error()
@ -35,7 +37,7 @@ logging.set_verbosity_error()
# consts
config_yaml = "optimizedSD/v1-inference.yaml"
filename_regex = re.compile('[^a-zA-Z0-9]')
force_gfpgan_to_cuda0 = True # workaround: gfpgan currently works only on cuda:0
gfpgan_temp_device_lock = Lock() # workaround: gfpgan currently can only start on one device at a time.
# api stuff
from sd_internal import device_manager
@ -76,8 +78,24 @@ def thread_init(device):
thread_data.force_full_precision = False
thread_data.reduced_memory = True
thread_data.test_sd2 = isSD2()
device_manager.device_init(thread_data, device)
# temp hack, will remove soon
def isSD2():
try:
SD_UI_DIR = os.getenv('SD_UI_PATH', None)
CONFIG_DIR = os.path.abspath(os.path.join(SD_UI_DIR, '..', 'scripts'))
config_json_path = os.path.join(CONFIG_DIR, 'config.json')
if not os.path.exists(config_json_path):
return False
with open(config_json_path, 'r', encoding='utf-8') as f:
config = json.load(f)
return config.get('test_sd2', False)
except Exception as e:
return False
def load_model_ckpt():
if not thread_data.ckpt_file: raise ValueError(f'Thread ckpt_file is undefined.')
if not os.path.exists(thread_data.ckpt_file + '.ckpt'): raise FileNotFoundError(f'Cannot find {thread_data.ckpt_file}.ckpt')
@ -92,6 +110,13 @@ def load_model_ckpt():
thread_data.precision = 'full'
print('loading', thread_data.ckpt_file + '.ckpt', 'to device', thread_data.device, 'using precision', thread_data.precision)
if thread_data.test_sd2:
load_model_ckpt_sd2()
else:
load_model_ckpt_sd1()
def load_model_ckpt_sd1():
sd = load_model_from_config(thread_data.ckpt_file + '.ckpt')
li, lo = [], []
for key, value in sd.items():
@ -185,6 +210,38 @@ def load_model_ckpt():
modelFS.device: {thread_data.modelFS.device}
using precision: {thread_data.precision}''')
def load_model_ckpt_sd2():
config_file = 'configs/stable-diffusion/v2-inference-v.yaml' if 'sd2_' in thread_data.ckpt_file else "configs/stable-diffusion/v1-inference.yaml"
config = OmegaConf.load(config_file)
verbose = False
sd = load_model_from_config(thread_data.ckpt_file + '.ckpt')
thread_data.model = instantiate_from_config(config.model)
m, u = thread_data.model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print("missing keys:")
print(m)
if len(u) > 0 and verbose:
print("unexpected keys:")
print(u)
thread_data.model.to(thread_data.device)
thread_data.model.eval()
del sd
if thread_data.device != "cpu" and thread_data.precision == "autocast":
thread_data.model.half()
thread_data.model_is_half = True
thread_data.model_fs_is_half = True
else:
thread_data.model_is_half = False
thread_data.model_fs_is_half = False
print(f'''loaded model
model file: {thread_data.ckpt_file}.ckpt
using precision: {thread_data.precision}''')
def unload_filters():
if thread_data.model_gfpgan is not None:
if thread_data.device != 'cpu': thread_data.model_gfpgan.gfpgan.to('cpu')
@ -204,10 +261,11 @@ def unload_models():
if thread_data.model is not None:
print('Unloading models...')
if thread_data.device != 'cpu':
thread_data.modelFS.to('cpu')
thread_data.modelCS.to('cpu')
thread_data.model.model1.to("cpu")
thread_data.model.model2.to("cpu")
if not thread_data.test_sd2:
thread_data.modelFS.to('cpu')
thread_data.modelCS.to('cpu')
thread_data.model.model1.to("cpu")
thread_data.model.model2.to("cpu")
del thread_data.model
del thread_data.modelCS
@ -253,12 +311,6 @@ def move_to_cpu(model):
def load_model_gfpgan():
if thread_data.gfpgan_file is None: raise ValueError(f'Thread gfpgan_file is undefined.')
# hack for a bug in facexlib: https://github.com/xinntao/facexlib/pull/19/files
from facexlib.detection import retinaface
retinaface.device = torch.device(thread_data.device)
print('forced retinaface.device to', thread_data.device)
model_path = thread_data.gfpgan_file + ".pth"
thread_data.model_gfpgan = GFPGANer(device=torch.device(thread_data.device), model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None)
print('loaded', thread_data.gfpgan_file, 'to', thread_data.model_gfpgan.device, 'precision', thread_data.precision)
@ -314,15 +366,23 @@ def apply_filters(filter_name, image_data, model_path=None):
image_data.to(thread_data.device)
if filter_name == 'gfpgan':
if model_path is not None and model_path != thread_data.gfpgan_file:
thread_data.gfpgan_file = model_path
load_model_gfpgan()
elif not thread_data.model_gfpgan:
load_model_gfpgan()
if thread_data.model_gfpgan is None: raise Exception('Model "gfpgan" not loaded.')
print('enhance with', thread_data.gfpgan_file, 'on', thread_data.model_gfpgan.device, 'precision', thread_data.precision)
_, _, output = thread_data.model_gfpgan.enhance(image_data[:,:,::-1], has_aligned=False, only_center_face=False, paste_back=True)
image_data = output[:,:,::-1]
# This lock is only ever used here. No need to use timeout for the request. Should never deadlock.
with gfpgan_temp_device_lock: # Wait for any other devices to complete before starting.
# hack for a bug in facexlib: https://github.com/xinntao/facexlib/pull/19/files
from facexlib.detection import retinaface
retinaface.device = torch.device(thread_data.device)
print('forced retinaface.device to', thread_data.device)
if model_path is not None and model_path != thread_data.gfpgan_file:
thread_data.gfpgan_file = model_path
load_model_gfpgan()
elif not thread_data.model_gfpgan:
load_model_gfpgan()
if thread_data.model_gfpgan is None: raise Exception('Model "gfpgan" not loaded.')
print('enhance with', thread_data.gfpgan_file, 'on', thread_data.model_gfpgan.device, 'precision', thread_data.precision)
_, _, output = thread_data.model_gfpgan.enhance(image_data[:,:,::-1], has_aligned=False, only_center_face=False, paste_back=True)
image_data = output[:,:,::-1]
if filter_name == 'real_esrgan':
if model_path is not None and model_path != thread_data.real_esrgan_file:
@ -337,45 +397,73 @@ def apply_filters(filter_name, image_data, model_path=None):
return image_data
def mk_img(req: Request):
def is_model_reload_necessary(req: Request):
# custom model support:
# the req.use_stable_diffusion_model needs to be a valid path
# to the ckpt file (without the extension).
if not os.path.exists(req.use_stable_diffusion_model + '.ckpt'): raise FileNotFoundError(f'Cannot find {req.use_stable_diffusion_model}.ckpt')
needs_model_reload = False
if not thread_data.model or thread_data.ckpt_file != req.use_stable_diffusion_model or thread_data.vae_file != req.use_vae_model:
thread_data.ckpt_file = req.use_stable_diffusion_model
thread_data.vae_file = req.use_vae_model
needs_model_reload = True
if thread_data.device != 'cpu':
if (thread_data.precision == 'autocast' and (req.use_full_precision or not thread_data.model_is_half)) or \
(thread_data.precision == 'full' and not req.use_full_precision and not thread_data.force_full_precision):
thread_data.precision = 'full' if req.use_full_precision else 'autocast'
needs_model_reload = True
return needs_model_reload
def reload_model():
unload_models()
unload_filters()
load_model_ckpt()
def mk_img(req: Request, data_queue: queue.Queue, task_temp_images: list, step_callback):
try:
yield from do_mk_img(req)
return do_mk_img(req, data_queue, task_temp_images, step_callback)
except Exception as e:
print(traceback.format_exc())
if thread_data.device != 'cpu':
if thread_data.device != 'cpu' and not thread_data.test_sd2:
thread_data.modelFS.to('cpu')
thread_data.modelCS.to('cpu')
thread_data.model.model1.to("cpu")
thread_data.model.model2.to("cpu")
gc() # Release from memory.
yield json.dumps({
data_queue.put(json.dumps({
"status": 'failed',
"detail": str(e)
})
}))
raise e
def update_temp_img(req, x_samples):
def update_temp_img(req, x_samples, task_temp_images: list):
partial_images = []
for i in range(req.num_outputs):
x_sample_ddim = thread_data.modelFS.decode_first_stage(x_samples[i].unsqueeze(0))
if thread_data.test_sd2:
x_sample_ddim = thread_data.model.decode_first_stage(x_samples[i].unsqueeze(0))
else:
x_sample_ddim = thread_data.modelFS.decode_first_stage(x_samples[i].unsqueeze(0))
x_sample = torch.clamp((x_sample_ddim + 1.0) / 2.0, min=0.0, max=1.0)
x_sample = 255.0 * rearrange(x_sample[0].cpu().numpy(), "c h w -> h w c")
x_sample = x_sample.astype(np.uint8)
img = Image.fromarray(x_sample)
buf = BytesIO()
img.save(buf, format='JPEG')
buf.seek(0)
buf = img_to_buffer(img, output_format='JPEG')
del img, x_sample, x_sample_ddim
# don't delete x_samples, it is used in the code that called this callback
thread_data.temp_images[str(req.session_id) + '/' + str(i)] = buf
task_temp_images[i] = buf
partial_images.append({'path': f'/image/tmp/{req.session_id}/{i}'})
return partial_images
# Build and return the apropriate generator for do_mk_img
def get_image_progress_generator(req, extra_props=None):
def get_image_progress_generator(req, data_queue: queue.Queue, task_temp_images: list, step_callback, extra_props=None):
if not req.stream_progress_updates:
def empty_callback(x_samples, i): return x_samples
return empty_callback
@ -394,15 +482,17 @@ def get_image_progress_generator(req, extra_props=None):
progress.update(extra_props)
if req.stream_image_progress and i % 5 == 0:
progress['output'] = update_temp_img(req, x_samples)
progress['output'] = update_temp_img(req, x_samples, task_temp_images)
yield json.dumps(progress)
data_queue.put(json.dumps(progress))
step_callback()
if thread_data.stop_processing:
raise UserInitiatedStop("User requested that we stop processing")
return img_callback
def do_mk_img(req: Request):
def do_mk_img(req: Request, data_queue: queue.Queue, task_temp_images: list, step_callback):
thread_data.stop_processing = False
res = Response()
@ -411,29 +501,7 @@ def do_mk_img(req: Request):
thread_data.temp_images.clear()
# custom model support:
# the req.use_stable_diffusion_model needs to be a valid path
# to the ckpt file (without the extension).
if not os.path.exists(req.use_stable_diffusion_model + '.ckpt'): raise FileNotFoundError(f'Cannot find {req.use_stable_diffusion_model}.ckpt')
needs_model_reload = False
if not thread_data.model or thread_data.ckpt_file != req.use_stable_diffusion_model or thread_data.vae_file != req.use_vae_model:
thread_data.ckpt_file = req.use_stable_diffusion_model
thread_data.vae_file = req.use_vae_model
needs_model_reload = True
if thread_data.device != 'cpu':
if (thread_data.precision == 'autocast' and (req.use_full_precision or not thread_data.model_is_half)) or \
(thread_data.precision == 'full' and not req.use_full_precision and not thread_data.force_full_precision):
thread_data.precision = 'full' if req.use_full_precision else 'autocast'
needs_model_reload = True
if needs_model_reload:
unload_models()
unload_filters()
load_model_ckpt()
if thread_data.turbo != req.turbo:
if thread_data.turbo != req.turbo and not thread_data.test_sd2:
thread_data.turbo = req.turbo
thread_data.model.turbo = req.turbo
@ -478,10 +546,14 @@ def do_mk_img(req: Request):
if thread_data.device != "cpu" and thread_data.precision == "autocast":
init_image = init_image.half()
thread_data.modelFS.to(thread_data.device)
if not thread_data.test_sd2:
thread_data.modelFS.to(thread_data.device)
init_image = repeat(init_image, '1 ... -> b ...', b=batch_size)
init_latent = thread_data.modelFS.get_first_stage_encoding(thread_data.modelFS.encode_first_stage(init_image)) # move to latent space
if thread_data.test_sd2:
init_latent = thread_data.model.get_first_stage_encoding(thread_data.model.encode_first_stage(init_image)) # move to latent space
else:
init_latent = thread_data.modelFS.get_first_stage_encoding(thread_data.modelFS.encode_first_stage(init_image)) # move to latent space
if req.mask is not None:
mask = load_mask(req.mask, req.width, req.height, init_latent.shape[2], init_latent.shape[3], True).to(thread_data.device)
@ -493,7 +565,8 @@ def do_mk_img(req: Request):
# Send to CPU and wait until complete.
# wait_model_move_to(thread_data.modelFS, 'cpu')
move_to_cpu(thread_data.modelFS)
if not thread_data.test_sd2:
move_to_cpu(thread_data.modelFS)
assert 0. <= req.prompt_strength <= 1., 'can only work with strength in [0.0, 1.0]'
t_enc = int(req.prompt_strength * req.num_inference_steps)
@ -509,11 +582,14 @@ def do_mk_img(req: Request):
for prompts in tqdm(data, desc="data"):
with precision_scope("cuda"):
if thread_data.reduced_memory:
if thread_data.reduced_memory and not thread_data.test_sd2:
thread_data.modelCS.to(thread_data.device)
uc = None
if req.guidance_scale != 1.0:
uc = thread_data.modelCS.get_learned_conditioning(batch_size * [req.negative_prompt])
if thread_data.test_sd2:
uc = thread_data.model.get_learned_conditioning(batch_size * [req.negative_prompt])
else:
uc = thread_data.modelCS.get_learned_conditioning(batch_size * [req.negative_prompt])
if isinstance(prompts, tuple):
prompts = list(prompts)
@ -526,15 +602,21 @@ def do_mk_img(req: Request):
weight = weights[i]
# if not skip_normalize:
weight = weight / totalWeight
c = torch.add(c, thread_data.modelCS.get_learned_conditioning(subprompts[i]), alpha=weight)
if thread_data.test_sd2:
c = torch.add(c, thread_data.model.get_learned_conditioning(subprompts[i]), alpha=weight)
else:
c = torch.add(c, thread_data.modelCS.get_learned_conditioning(subprompts[i]), alpha=weight)
else:
c = thread_data.modelCS.get_learned_conditioning(prompts)
if thread_data.test_sd2:
c = thread_data.model.get_learned_conditioning(prompts)
else:
c = thread_data.modelCS.get_learned_conditioning(prompts)
if thread_data.reduced_memory:
if thread_data.reduced_memory and not thread_data.test_sd2:
thread_data.modelFS.to(thread_data.device)
n_steps = req.num_inference_steps if req.init_image is None else t_enc
img_callback = get_image_progress_generator(req, {"total_steps": n_steps})
img_callback = get_image_progress_generator(req, data_queue, task_temp_images, step_callback, {"total_steps": n_steps})
# run the handler
try:
@ -542,14 +624,7 @@ def do_mk_img(req: Request):
if handler == _txt2img:
x_samples = _txt2img(req.width, req.height, req.num_outputs, req.num_inference_steps, req.guidance_scale, None, opt_C, opt_f, opt_ddim_eta, c, uc, opt_seed, img_callback, mask, req.sampler)
else:
x_samples = _img2img(init_latent, t_enc, batch_size, req.guidance_scale, c, uc, req.num_inference_steps, opt_ddim_eta, opt_seed, img_callback, mask)
if req.stream_progress_updates:
yield from x_samples
if hasattr(thread_data, 'partial_x_samples'):
if thread_data.partial_x_samples is not None:
x_samples = thread_data.partial_x_samples
del thread_data.partial_x_samples
x_samples = _img2img(init_latent, t_enc, batch_size, req.guidance_scale, c, uc, req.num_inference_steps, opt_ddim_eta, opt_seed, img_callback, mask, opt_C, req.height, req.width, opt_f)
except UserInitiatedStop:
if not hasattr(thread_data, 'partial_x_samples'):
continue
@ -562,7 +637,10 @@ def do_mk_img(req: Request):
print("decoding images")
img_data = [None] * batch_size
for i in range(batch_size):
x_samples_ddim = thread_data.modelFS.decode_first_stage(x_samples[i].unsqueeze(0))
if thread_data.test_sd2:
x_samples_ddim = thread_data.model.decode_first_stage(x_samples[i].unsqueeze(0))
else:
x_samples_ddim = thread_data.modelFS.decode_first_stage(x_samples[i].unsqueeze(0))
x_sample = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
x_sample = 255.0 * rearrange(x_sample[0].cpu().numpy(), "c h w -> h w c")
x_sample = x_sample.astype(np.uint8)
@ -591,9 +669,11 @@ def do_mk_img(req: Request):
save_metadata(meta_out_path, req, prompts[0], opt_seed)
if return_orig_img:
img_str = img_to_base64_str(img, req.output_format)
img_buffer = img_to_buffer(img, req.output_format)
img_str = buffer_to_base64_str(img_buffer, req.output_format)
res_image_orig = ResponseImage(data=img_str, seed=opt_seed)
res.images.append(res_image_orig)
task_temp_images[i] = img_buffer
if req.save_to_disk_path is not None:
res_image_orig.path_abs = img_out_path
@ -609,9 +689,11 @@ def do_mk_img(req: Request):
filters_applied.append(req.use_upscale)
if (len(filters_applied) > 0):
filtered_image = Image.fromarray(img_data[i])
filtered_img_data = img_to_base64_str(filtered_image, req.output_format)
filtered_buffer = img_to_buffer(filtered_image, req.output_format)
filtered_img_data = buffer_to_base64_str(filtered_buffer, req.output_format)
response_image = ResponseImage(data=filtered_img_data, seed=opt_seed)
res.images.append(response_image)
task_temp_images[i] = filtered_buffer
if req.save_to_disk_path is not None:
filtered_img_out_path = get_base_path(req.save_to_disk_path, req.session_id, prompts[0], img_id, req.output_format, "_".join(filters_applied))
save_image(filtered_image, filtered_img_out_path)
@ -622,14 +704,18 @@ def do_mk_img(req: Request):
# if thread_data.reduced_memory:
# unload_filters()
move_to_cpu(thread_data.modelFS)
if not thread_data.test_sd2:
move_to_cpu(thread_data.modelFS)
del img_data
gc()
if thread_data.device != 'cpu':
print(f'memory_final = {round(torch.cuda.memory_allocated(thread_data.device) / 1e6, 2)}Mb')
print('Task completed')
yield json.dumps(res.json())
res = res.json()
data_queue.put(json.dumps(res))
return res
def save_image(img, img_out_path):
try:
@ -664,51 +750,109 @@ def _txt2img(opt_W, opt_H, opt_n_samples, opt_ddim_steps, opt_scale, start_code,
# Send to CPU and wait until complete.
# wait_model_move_to(thread_data.modelCS, 'cpu')
move_to_cpu(thread_data.modelCS)
if not thread_data.test_sd2:
move_to_cpu(thread_data.modelCS)
if sampler_name == 'ddim':
thread_data.model.make_schedule(ddim_num_steps=opt_ddim_steps, ddim_eta=opt_ddim_eta, verbose=False)
if thread_data.test_sd2 and sampler_name not in ('plms', 'ddim'):
raise Exception('Only plms and ddim samplers are supported right now, in SD 2.0')
samples_ddim = thread_data.model.sample(
S=opt_ddim_steps,
conditioning=c,
seed=opt_seed,
shape=shape,
verbose=False,
unconditional_guidance_scale=opt_scale,
unconditional_conditioning=uc,
eta=opt_ddim_eta,
x_T=start_code,
img_callback=img_callback,
mask=mask,
sampler = sampler_name,
)
yield from samples_ddim
def _img2img(init_latent, t_enc, batch_size, opt_scale, c, uc, opt_ddim_steps, opt_ddim_eta, opt_seed, img_callback, mask):
# samples, _ = sampler.sample(S=opt.steps,
# conditioning=c,
# batch_size=opt.n_samples,
# shape=shape,
# verbose=False,
# unconditional_guidance_scale=opt.scale,
# unconditional_conditioning=uc,
# eta=opt.ddim_eta,
# x_T=start_code)
if thread_data.test_sd2:
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
shape = [opt_C, opt_H // opt_f, opt_W // opt_f]
if sampler_name == 'plms':
sampler = PLMSSampler(thread_data.model)
elif sampler_name == 'ddim':
sampler = DDIMSampler(thread_data.model)
sampler.make_schedule(ddim_num_steps=opt_ddim_steps, ddim_eta=opt_ddim_eta, verbose=False)
samples_ddim, intermediates = sampler.sample(
S=opt_ddim_steps,
conditioning=c,
batch_size=opt_n_samples,
seed=opt_seed,
shape=shape,
verbose=False,
unconditional_guidance_scale=opt_scale,
unconditional_conditioning=uc,
eta=opt_ddim_eta,
x_T=start_code,
img_callback=img_callback,
mask=mask,
sampler = sampler_name,
)
else:
if sampler_name == 'ddim':
thread_data.model.make_schedule(ddim_num_steps=opt_ddim_steps, ddim_eta=opt_ddim_eta, verbose=False)
samples_ddim = thread_data.model.sample(
S=opt_ddim_steps,
conditioning=c,
seed=opt_seed,
shape=shape,
verbose=False,
unconditional_guidance_scale=opt_scale,
unconditional_conditioning=uc,
eta=opt_ddim_eta,
x_T=start_code,
img_callback=img_callback,
mask=mask,
sampler = sampler_name,
)
return samples_ddim
def _img2img(init_latent, t_enc, batch_size, opt_scale, c, uc, opt_ddim_steps, opt_ddim_eta, opt_seed, img_callback, mask, opt_C=1, opt_H=1, opt_W=1, opt_f=1):
# encode (scaled latent)
z_enc = thread_data.model.stochastic_encode(
init_latent,
torch.tensor([t_enc] * batch_size).to(thread_data.device),
opt_seed,
opt_ddim_eta,
opt_ddim_steps,
)
x_T = None if mask is None else init_latent
# decode it
samples_ddim = thread_data.model.sample(
t_enc,
c,
z_enc,
unconditional_guidance_scale=opt_scale,
unconditional_conditioning=uc,
img_callback=img_callback,
mask=mask,
x_T=x_T,
sampler = 'ddim'
)
yield from samples_ddim
if thread_data.test_sd2:
from ldm.models.diffusion.ddim import DDIMSampler
sampler = DDIMSampler(thread_data.model)
sampler.make_schedule(ddim_num_steps=opt_ddim_steps, ddim_eta=opt_ddim_eta, verbose=False)
z_enc = sampler.stochastic_encode(init_latent, torch.tensor([t_enc] * batch_size).to(thread_data.device))
samples_ddim = sampler.decode(z_enc, c, t_enc, unconditional_guidance_scale=opt_scale,unconditional_conditioning=uc, img_callback=img_callback)
else:
z_enc = thread_data.model.stochastic_encode(
init_latent,
torch.tensor([t_enc] * batch_size).to(thread_data.device),
opt_seed,
opt_ddim_eta,
opt_ddim_steps,
)
# decode it
samples_ddim = thread_data.model.sample(
t_enc,
c,
z_enc,
unconditional_guidance_scale=opt_scale,
unconditional_conditioning=uc,
img_callback=img_callback,
mask=mask,
x_T=x_T,
sampler = 'ddim'
)
return samples_ddim
def gc():
gc_collect()
@ -776,8 +920,16 @@ def load_mask(mask_str, h0, w0, newH, newW, invert=False):
# https://stackoverflow.com/a/61114178
def img_to_base64_str(img, output_format="PNG"):
buffered = img_to_buffer(img, output_format)
return buffer_to_base64_str(buffered, output_format)
def img_to_buffer(img, output_format="PNG"):
buffered = BytesIO()
img.save(buffered, format=output_format)
buffered.seek(0)
return buffered
def buffer_to_base64_str(buffered, output_format="PNG"):
buffered.seek(0)
img_byte = buffered.getvalue()
mime_type = "image/png" if output_format.lower() == "png" else "image/jpeg"
@ -795,3 +947,48 @@ def base64_str_to_img(img_str):
buffered = base64_str_to_buffer(img_str)
img = Image.open(buffered)
return img
def split_weighted_subprompts(text):
"""
grabs all text up to the first occurrence of ':'
uses the grabbed text as a sub-prompt, and takes the value following ':' as weight
if ':' has no value defined, defaults to 1.0
repeats until no text remaining
"""
remaining = len(text)
prompts = []
weights = []
while remaining > 0:
if ":" in text:
idx = text.index(":") # first occurrence from start
# grab up to index as sub-prompt
prompt = text[:idx]
remaining -= idx
# remove from main text
text = text[idx+1:]
# find value for weight
if " " in text:
idx = text.index(" ") # first occurence
else: # no space, read to end
idx = len(text)
if idx != 0:
try:
weight = float(text[:idx])
except: # couldn't treat as float
print(f"Warning: '{text[:idx]}' is not a value, are you missing a space?")
weight = 1.0
else: # no value found
weight = 1.0
# remove from main text
remaining -= idx
text = text[idx+1:]
# append the sub-prompt and its weight
prompts.append(prompt)
weights.append(weight)
else: # no : found
if len(text) > 0: # there is still text though
# take remainder as weight 1
prompts.append(text)
weights.append(1.0)
remaining = 0
return prompts, weights

View File

@ -283,45 +283,26 @@ def thread_render(device):
print(f'Session {task.request.session_id} starting task {id(task)} on {runtime.thread_data.device_name}')
if not task.lock.acquire(blocking=False): raise Exception('Got locked task from queue.')
try:
if runtime.thread_data.device == 'cpu' and is_alive() > 1:
# CPU is not the only device. Keep track of active time to unload resources later.
runtime.thread_data.lastActive = time.time()
# Open data generator.
res = runtime.mk_img(task.request)
if current_model_path == task.request.use_stable_diffusion_model:
current_state = ServerStates.Rendering
else:
if runtime.is_model_reload_necessary(task.request):
current_state = ServerStates.LoadingModel
# Start reading from generator.
dataQueue = None
if task.request.stream_progress_updates:
dataQueue = task.buffer_queue
for result in res:
if current_state == ServerStates.LoadingModel:
current_state = ServerStates.Rendering
current_model_path = task.request.use_stable_diffusion_model
current_vae_path = task.request.use_vae_model
runtime.reload_model()
current_model_path = task.request.use_stable_diffusion_model
current_vae_path = task.request.use_vae_model
def step_callback():
global current_state_error
if isinstance(current_state_error, SystemExit) or isinstance(current_state_error, StopAsyncIteration) or isinstance(task.error, StopAsyncIteration):
runtime.thread_data.stop_processing = True
if isinstance(current_state_error, StopAsyncIteration):
task.error = current_state_error
current_state_error = None
print(f'Session {task.request.session_id} sent cancel signal for task {id(task)}')
if dataQueue:
dataQueue.put(result)
if isinstance(result, str):
result = json.loads(result)
task.response = result
if 'output' in result:
for out_obj in result['output']:
if 'path' in out_obj:
img_id = out_obj['path'][out_obj['path'].rindex('/') + 1:]
task.temp_images[int(img_id)] = runtime.thread_data.temp_images[out_obj['path'][11:]]
elif 'data' in out_obj:
buf = runtime.base64_str_to_buffer(out_obj['data'])
task.temp_images[result['output'].index(out_obj)] = buf
# Before looping back to the generator, mark cache as still alive.
task_cache.keep(task.request.session_id, TASK_TTL)
task_cache.keep(task.request.session_id, TASK_TTL)
current_state = ServerStates.Rendering
task.response = runtime.mk_img(task.request, task.buffer_queue, task.temp_images, step_callback)
except Exception as e:
task.error = e
print(traceback.format_exc())

View File

@ -7,6 +7,7 @@ import traceback
import sys
import os
import socket
import picklescan.scanner
import rich
@ -116,6 +117,8 @@ def setConfig(config):
bind_ip = '0.0.0.0' if config['net']['listen_to_network'] else '127.0.0.1'
config_bat.append(f"@set SD_UI_BIND_IP={bind_ip}")
config_bat.append(f"@set test_sd2={'Y' if config.get('test_sd2', False) else 'N'}")
if len(config_bat) > 0:
with open(config_bat_path, 'w', encoding='utf-8') as f:
f.write('\r\n'.join(config_bat))
@ -133,6 +136,8 @@ def setConfig(config):
bind_ip = '0.0.0.0' if config['net']['listen_to_network'] else '127.0.0.1'
config_sh.append(f"export SD_UI_BIND_IP={bind_ip}")
config_sh.append(f"export test_sd2=\"{'Y' if config.get('test_sd2', False) else 'N'}\"")
if len(config_sh) > 1:
with open(config_sh_path, 'w', encoding='utf-8') as f:
f.write('\n'.join(config_sh))
@ -140,12 +145,19 @@ def setConfig(config):
print(traceback.format_exc())
def resolve_model_to_use(model_name:str, model_type:str, model_dir:str, model_extensions:list, default_models=[]):
config = getConfig()
model_dirs = [os.path.join(MODELS_DIR, model_dir), SD_DIR]
if not model_name: # When None try user configured model.
config = getConfig()
# config = getConfig()
if 'model' in config and model_type in config['model']:
model_name = config['model'][model_type]
if model_name:
is_sd2 = config.get('test_sd2', False)
if model_name.startswith('sd2_') and not is_sd2: # temp hack, until SD2 is unified with 1.4
print('ERROR: Cannot use SD 2.0 models with SD 1.0 code. Using the sd-v1-4 model instead!')
model_name = 'sd-v1-4'
# Check models directory
models_dir_path = os.path.join(MODELS_DIR, model_dir, model_name)
for model_extension in model_extensions:
@ -188,6 +200,7 @@ class SetAppConfigRequest(BaseModel):
ui_open_browser_on_start: bool = None
listen_to_network: bool = None
listen_port: int = None
test_sd2: bool = None
@app.post('/app_config')
async def setAppConfig(req : SetAppConfigRequest):
@ -208,6 +221,8 @@ async def setAppConfig(req : SetAppConfigRequest):
if 'net' not in config:
config['net'] = {}
config['net']['listen_port'] = int(req.listen_port)
if req.test_sd2 is not None:
config['test_sd2'] = req.test_sd2
try:
setConfig(config)
@ -230,9 +245,9 @@ def is_malicious_model(file_path):
return False
except Exception as e:
print('error while scanning', file_path, 'error:', e)
return False
known_models = {}
def getModels():
models = {
'active': {
@ -255,9 +270,14 @@ def getModels():
if not file.endswith(model_extension):
continue
if is_malicious_model(os.path.join(models_dir, file)):
models['scan-error'] = file
return
model_path = os.path.join(models_dir, file)
mtime = os.path.getmtime(model_path)
mod_time = known_models[model_path] if model_path in known_models else -1
if mod_time != mtime:
if is_malicious_model(model_path):
models['scan-error'] = file
return
known_models[model_path] = mtime
model_name = file[:-len(model_extension)]
models['options'][model_type].append(model_name)
@ -286,6 +306,11 @@ def getUIPlugins():
return plugins
def getIPConfig():
ips = socket.gethostbyname_ex(socket.gethostname())
ips[2].append(ips[0])
return ips[2]
@app.get('/get/{key:path}')
def read_web_data(key:str=None):
if not key: # /get without parameters, stable-diffusion easter egg.
@ -295,11 +320,14 @@ def read_web_data(key:str=None):
if config is None:
config = APP_CONFIG_DEFAULTS
return JSONResponse(config, headers=NOCACHE_HEADERS)
elif key == 'devices':
elif key == 'system_info':
config = getConfig()
devices = task_manager.get_devices()
devices['config'] = config.get('render_devices', "auto")
return JSONResponse(devices, headers=NOCACHE_HEADERS)
system_info = {
'devices': task_manager.get_devices(),
'hosts': getIPConfig(),
}
system_info['devices']['config'] = config.get('render_devices', "auto")
return JSONResponse(system_info, headers=NOCACHE_HEADERS)
elif key == 'models':
return JSONResponse(getModels(), headers=NOCACHE_HEADERS)
elif key == 'modifiers': return FileResponse(os.path.join(SD_UI_DIR, 'modifiers.json'), headers=NOCACHE_HEADERS)
@ -435,6 +463,9 @@ class LogSuppressFilter(logging.Filter):
return True
logging.getLogger('uvicorn.access').addFilter(LogSuppressFilter())
# Check models and prepare cache for UI open
getModels()
# Start the task_manager
task_manager.default_model_to_load = resolve_ckpt_to_use()
task_manager.default_vae_to_load = resolve_vae_to_use()