Commit Graph

854 Commits

Author SHA1 Message Date
000d65befb use LOG_WARN to replace std::cerr (llama/13657) 2025-05-27 18:03:00 +03:00
f0803e6646 sycl : Remove waits from function calls (llama/13702)
* removes the waits in async memcpy functions
2025-05-27 18:03:00 +03:00
730a00be8a SYCL: Avoid using with SYCL-Graph for unsupported nodes (llama/13587)
Currently on a CUDA backend to SYCL when running
`GGML_SYCL_DISABLE_GRAPH=0 ./bin/test-backend-ops -b SYCL0` there
are two operations that throw an exception from the blocking
waits during queue recording.

* `-o CONCAT` : Use of blocking waits on a queue that's being recorded https://github.com/ggml-org/llama.cpp/blob/master/ggml/src/ggml-sycl/concat.cpp#L185-L187
* `-o MUL_MAT_ID`: Blocking wait on a recording queue for a copy to host memory https://github.com/ggml-org/llama.cpp/blob/master/ggml/src/ggml-sycl/ggml-sycl.cpp#L3072-L3074

We've noticed that `ggml-cuda.cu` has the
[check_node_graph_compatibility_and_refresh_copy_ops](39e73ae0d6/ggml/src/ggml-cuda/ggml-cuda.cu (L2458-L2458))
method for checking if a graph can be used, even if enabled. I've taken a
similar approach in this PR by adding a method to `ggml-sycl.cpp` for checking
if a graph can be used for the operations even if a user has asked for it to be
enabled.
2025-05-27 18:03:00 +03:00
316600e8ee opencl: Add support for multiple devices (llama/12622)
* opencl: Add support for multiple devices

... but limited to one platform. A platform with a GPU will be preferred.

Additionally:

* Filter out devices that lack capabilities needed by the backend
  implementation (half support, OpenCL 2.0+, etc).

* Make ggml_backend_opencl_reg() thread-safe.

* fixup: fix an error in sync_with_other_backends

... when there is only one OpenCL device available.
2025-05-27 18:03:00 +03:00
42f2b3bb65 opencl: fix couple crashes (llama/12795)
* opencl: fix couple crashes

* fix kernel launches failed on devices which do not support
  non-uniform work-groups. When non-uniform work-groups are not
  supported, set `local_work_size` to NULL (= let driver choose the
  work-group sizes). This patch does not cover everything - just the
  cases tested by test-backend-ops.

* fix sub-buffer creation failed due to `cl_buffer_region::origin` not
  being aligned to `CL_DEVICE_MEM_BASE_ADDR_ALIGN`.

* OpenCL: query non-uniform WG sizes only on OpenCL 3.0+
2025-05-27 18:03:00 +03:00
dd6ef64060 ggml : add ggml_gelu_erf() (llama/13667)
* ggml : add ggml_gelu_na (not approximated)

* fix naming order

* rename na --> erf

* apply review suggesions

* revert naming order
2025-05-27 18:03:00 +03:00
131ee546ca musa: Upgrade MUSA SDK version to rc4.0.1 and use mudnn::Unary::IDENTITY op to accelerate D2D memory copy (llama/13647)
* musa: fix build warning (unused parameter)

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* musa: upgrade MUSA SDK version to rc4.0.1

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* musa: use mudnn::Unary::IDENTITY op to accelerate D2D memory copy

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* Update ggml/src/ggml-cuda/cpy.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* musa: remove MUDNN_CHECK_GEN and use CUDA_CHECK_GEN instead in MUDNN_CHECK

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

---------

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-05-27 18:03:00 +03:00
Eve
4712f7b663 vulkan: fix warnings (llama/13626)
* small fixes

* remove ifdef
2025-05-27 18:03:00 +03:00
926fe234e9 CUDA: skip fully masked-out KV in FA vec kernel (llama/13584)
* CUDA: skip fully masked-out KV in FA vec kernel
2025-05-27 18:03:00 +03:00
f44b53480f sycl: disable reorder for sycl mulmat (llama/13536) 2025-05-27 18:03:00 +03:00
e04e8f1c79 metal : fix typo in FA kernel comments (llama/13651) 2025-05-27 18:03:00 +03:00
ee3f177cba sycl : Overcoming workaround for mmap() allocation on Windows (llama/13482)
* Remove mmap workaround on windows

After some testing I found that mmap is supported on windows and for
many GPUs on Linux. Therefore I remove the workaround for windows since
it is not necessary.

* Update llama-bench README

SYCL backend introduced a workaround that allows execution of
llama-bench also without specifying `--mmp 0` flag
2025-05-27 18:03:00 +03:00
0b69f74e15 Vulkan: Add f32 accumulator support to quantized mul mat to fix GLM4 32B incoherence (llama/13607) 2025-05-27 18:03:00 +03:00
9da3fc27be CANN: Support MOE Model MUL_MAT_ID (llama/13042)
Signed-off-by: noemotiovon <757486878@qq.com>
2025-05-19 14:58:39 +03:00
2c13651e08 cmake: use the current build config for vulkan-shaders-gen (llama/13595)
* fix: use the current build config for `vulkan-shaders-gen`

* fix: only pass a valid build type to `--config`
2025-05-19 14:58:39 +03:00
13dca86c56 vulkan: move common FA code to flash_attn_base.comp (llama/13556)
* vulkan: move common FA code to flash_attn_base.comp

* vulkan: move common FA index/stride setup code to flash_attn_base.comp

* build fix
2025-05-19 14:58:39 +03:00
6d61a09bc4 vulkan: use scalar FA rather than coopmat2 when N==1 (llama/13554) 2025-05-19 14:58:39 +03:00
4fedad988b metal : add FA-vec kernel for head size 64 (llama/13583)
ggml-ci
2025-05-19 14:58:39 +03:00
a8e17a244d sycl : fixed compilation warnings (llama/13582) 2025-05-19 14:58:39 +03:00
0c76acd08a gguf : use ggml log system (llama/13571)
* gguf : use ggml log system

* llama : remove unnecessary new lines in exception messages
2025-05-19 14:58:39 +03:00
27964db1be sycl: simplify bin_bcast_kernel (llama/13383) 2025-05-19 14:58:39 +03:00
8081e7a23d sycl: reordered Q4_K MMVQ (llama/13109) 2025-05-19 14:58:39 +03:00
d807c497a4 sycl: use oneDNN for matrices multiplication (llama/12972) 2025-05-19 14:58:39 +03:00
8e9bf548f4 arm64: optimize q6_k_q8_k kernel with i8mm (llama/13519)
This PR improves q6_k_q8_k gemm kernel with arm64 i8mm instruction.

Tested on neoverse-n2 with llama3 8b q6_k quantization model.
- 40% ~ 54% S_PP uplift for all batch sizes
- 16% ~ 47% S_TG uplift for batch size 4 and above

Perplexity doesn't change with this PR.

```
// tested on neoverse-n2
$ llama-batched-bench \
      -m Meta-Llama-3-8B-Instruct-Q6_K.gguf \
      --no-mmap -fa \
      -c 8192 -b 4096 -ub 512 -npp 128 -ntg 128 \
      -npl 1,2,4,8,16,32 \
      -t 64

---------------------------------------------------------------------
|    PP |     TG |    B |       S_PP t/s      |       S_TG t/s      |
|       |        |      | original |  this pr | original |  this pr |
|-------|--------|------|----------|----------|----------|----------|
|   128 |    128 |    1 |    78.52 |   109.18 |    18.63 |    18.88 |
|   128 |    128 |    2 |    84.62 |   123.94 |    34.54 |    36.92 |
|   128 |    128 |    4 |    84.36 |   122.49 |    52.65 |    61.32 |
|   128 |    128 |    8 |    90.52 |   138.87 |    63.46 |    84.41 |
|   128 |    128 |   16 |    90.11 |   138.56 |    71.04 |   101.33 |
|   128 |    128 |   32 |    89.81 |   137.79 |    75.14 |   110.47 |
---------------------------------------------------------------------
```
2025-05-19 14:58:39 +03:00
0dda27bc0b CUDA: fix crash on large batch size for quant. MoE (llama/13537) 2025-05-19 14:58:39 +03:00
ffa4720f25 CUDA: faster Deepseek FA, add Turing support (llama/13435) 2025-05-19 14:58:39 +03:00
9b8eea28b5 cmake: simplify vulkan shader test logic (llama/13263) 2025-05-19 14:58:39 +03:00
162bbe8220 vulkan: KHR_coopmat flash attention (llama/13506)
This shader uses coopmat1 to do the Q*K^T multiply. The P*V multiply is more
difficult for various reasons so I haven't done it. Performance for this
shader is around 2.5x better than for the scalar shader when doing prompt
processing. Some of the benefit may be from other optimizations like staging
through shared memory, or splitting by rows.
2025-05-19 14:58:39 +03:00
a221288dc6 vulkan: workaround FA compile failures on macos (llama/13517) 2025-05-19 14:58:39 +03:00
08436716ae metal : use FA-vec kernel up to batch size 20 (llama/13496)
* batched-bench : fix pp batch contents

* metal : optimize multi-sequence FA vec kernel

ggml-ci

* metal : use FA-vec kernel up to batch size 20

ggml-ci
2025-05-19 14:58:39 +03:00
e11fc21e6c metal : optimize multi-sequence FA vec kernel (llama/13493)
* batched-bench : fix pp batch contents

* metal : optimize multi-sequence FA vec kernel

ggml-ci
2025-05-19 14:58:39 +03:00
a77a924b20 ggml-cpu: Update KleidiAI to v1.6 and fix include directives (llama/13509)
Signed-off-by: Dan Johansson <dan.johansson@arm.com>
2025-05-19 14:58:39 +03:00
405b9c77ad mnist: fix segmentation fault (ggml/1227) 2025-05-19 14:58:39 +03:00
9c3bfc1499 ggml : fix apple OS check in ggml_print_backtrace (ggml/1229) 2025-05-19 14:58:39 +03:00
5b7797f674 ggml : Fix missing backtrace on Linux (ggml/1228)
* Modern Linux defaults /proc/sys/kernel/yama/ptrace_scope to 1
* Fixed lldb attach
* Simplify by having the child do ggml_print_backtrace_symbols
2025-05-19 14:58:39 +03:00
75e9a840c5 ggml : add mrope kernel for metal (llama/13457) 2025-05-13 13:59:21 +03:00
41ed62bdbc metal : optimize MoE for large batches (llama/13388) 2025-05-13 13:59:21 +03:00
029c8837f8 opencl: remove unnecessary assert for add (llama/13257) 2025-05-13 13:59:21 +03:00
5d8b068249 llama/ggml: add LLM training support (llama/10544)
* llama/ggml: add LLM training support

more compact progress bar

llama_save_model_to_file

llama_opt_param_filter

ggml_graph_dup force_grads

refactor ggml_opt, fix test-opt

* remove logits_all

* refactor CUDA implementation for ACC

* reset graph at beginning of opt period
2025-05-13 13:59:21 +03:00
93ef22657e ggml-cpu: Integrate fp32=bf16xbf16 SME KleidiAI kernel (llama/13053)
* ggml-cpu: Integrate fp32=bf16xbf16 SME KleidiAI kernel

Signed-off-by: Dan Johansson <dan.johansson@arm.com>

* * code review fixes

Signed-off-by: Dan Johansson <dan.johansson@arm.com>

* * adds a comment that clarifies barrier usage

Signed-off-by: Dan Johansson <dan.johansson@arm.com>

---------

Signed-off-by: Dan Johansson <dan.johansson@arm.com>
Co-authored-by: Charles Xu <charles.xu@arm.com>
2025-05-13 13:59:21 +03:00
866f685bbc CUDA: fix misaligned synchronization in FA (llama/13469) 2025-05-13 13:59:21 +03:00
250bcc041a enable dpcpp nightly builds with libraries (llama/13406) 2025-05-13 13:59:21 +03:00
90b17a99bf CUDA: fix crash with partial offloading of MoE (llama/13439) 2025-05-13 13:59:21 +03:00
e1b2ace0f8 Add --no-op-offload to improve -ot pp perf in MoE models like llama4 400B (llama/13386) 2025-05-13 13:59:21 +03:00
6db0e01db6 CUDA: fix race conditions FlashAttention kernels (llama/13438) 2025-05-13 13:59:21 +03:00
16f3546f38 CUDA: fix FlashAttention on Turing (llama/13415) 2025-05-13 13:59:21 +03:00
a04b329ad1 vulkan: scalar flash attention implementation (llama/13324)
* vulkan: scalar flash attention implementation

* vulkan: always use fp32 for scalar flash attention

* vulkan: use vector loads in scalar flash attention shader

* vulkan: remove PV matrix, helps with register usage

* vulkan: reduce register usage in scalar FA, but perf may be slightly worse

* vulkan: load each Q value once. optimize O reduction. more tuning

* vulkan: support q4_0/q8_0 KV in scalar FA

* CI: increase timeout to accommodate newly-supported tests

* vulkan: for scalar FA, select between 1 and 8 rows

* vulkan: avoid using Float16 capability in scalar FA
2025-05-13 13:59:21 +03:00
45d8b2352e sycl : implementation of reordered Q4_0 MMVQ for Intel GPUs (llama/12858)
* sycl : Implemented reorder Q4_0 mmvq

Signed-off-by: Alberto Cabrera <alberto.cabrera@codeplay.com>

* sycl : Fixed mmvq being called when reorder is disabled

* sycl : Improved comments in the quants header

Signed-off-by: Alberto Cabrera <alberto.cabrera@codeplay.com>

* Use static_assert

* safe_div -> ceil_div

* Clarify qi comment

* change the reorder tensor from init to execute OP

* dbg

* Undo changes to test-backend-ops

* Refactor changes on top of q4_0 reorder fix

* Missing Reverts

* Refactored opt_for_reorder logic to simplify code path

* Explicit inlining and unroll

* Renamed mul_mat_algo enum for consistency

---------

Signed-off-by: Alberto Cabrera <alberto.cabrera@codeplay.com>
Co-authored-by: romain.biessy <romain.biessy@codeplay.com>
2025-05-13 13:59:21 +03:00
2d436bfbfb CUDA: FA support for Deepseek (Ampere or newer) (llama/13306)
* CUDA: FA support for Deepseek (Ampere or newer)

* do loop unrolling via C++ template
2025-05-13 13:59:21 +03:00
4b7cbb62ef CUDA: fix crash on large batch size for MoE models (llama/13384) 2025-05-13 13:59:21 +03:00