Compare commits

...

107 Commits

Author SHA1 Message Date
5bc0d1f762 Merge pull request #1366 from easydiffusion/beta
Fix broken save settings
2023-06-26 15:35:34 +05:30
881fdc58ec debug logging 2023-06-26 15:34:25 +05:30
569431dc72 Merge pull request #1357 from JeLuF/savesettings
Fix saving of network settings
2023-06-26 15:22:35 +05:30
07e30ae4ad Merge pull request #1365 from easydiffusion/beta
Beta
2023-06-26 15:05:40 +05:30
c74be07c33 sdkit 1.0.112 - fix broken inpainting in low vram mode 2023-06-24 15:46:03 +05:30
887d871d26 changelog 2023-06-24 15:22:09 +05:30
4dd1a46efa sdkit 1.0.111 - don't apply a negative lora when testing a newly loaded SD model 2023-06-24 15:21:13 +05:30
eb301a67d4 changelog 2023-06-23 21:43:36 +05:30
d9bddffc42 sdkit 1.0.110 - don't offload latent upscaler to the CPU if not running on a GPU 2023-06-23 21:42:11 +05:30
a43bd2fd3b changelog 2023-06-20 10:50:28 +05:30
aac9acf068 sdkit 1.0.109 - auto-set fp32 attention precision in diffusers if required 2023-06-20 10:49:34 +05:30
65bb01892f remove old code 2023-06-19 21:58:58 +02:00
5b35c47360 Fix saving of network settings 2023-06-19 21:50:56 +02:00
4bf78521ce changelog 2023-06-19 19:58:59 +05:30
2a5b3040e2 sdkit 1.0.108 - potential fix for multi-gpu bug while rendering - the sampler instances weren't thread-local 2023-06-19 19:58:17 +05:30
2c4cd21c8f sdkit 1.0.107 - fix a bug where low VRAM usage mode wasn't working with multiple GPUs 2023-06-16 16:46:32 +05:30
8ced5b7199 Merge pull request #1344 from easydiffusion/beta
Beta
2023-06-13 17:08:46 +05:30
41d8847592 changelog 2023-06-13 13:39:58 +05:30
eb96bfe8a4 sdkit 1.0.106 - fix errors with multi-gpu in low vram mode 2023-06-13 13:39:23 +05:30
3037cceab3 Merge branch 'beta' of github.com:cmdr2/stable-diffusion-ui into beta 2023-06-12 17:22:29 +05:30
324ffdefba changelog 2023-06-12 16:58:11 +05:30
9a81d17d33 Fix for multi-gpu bug in codeformer 2023-06-12 16:57:36 +05:30
0ba9f0549e Merge pull request #1341 from JeLuF/beta
Set PYTHONNOUSERSITE=y in dev console
2023-06-12 14:48:00 +05:30
f83af28e42 Set PYTHONNOUSERSITE=y in dev console
Make behaviour consistent with on_env_start.sh
2023-06-11 21:12:22 +02:00
a2856b2b77 Update README.md 2023-06-08 16:47:50 +05:30
924fee394a A better way to make gfpgan show up at the top 2023-06-08 16:09:11 +05:30
e349fb1a23 fix 2023-06-08 15:55:36 +05:30
4f799a2bf0 Use gfpgan as the default model for face restoration 2023-06-08 15:52:41 +05:30
5398765fd7 Tighten the image editor (to reduce unnecessary empty space and reduce mouse travel) - Thanks @fdwr - #1307 2023-06-08 15:21:16 +05:30
48edce72a9 Log the version numbers of only a few important modules 2023-06-07 16:38:15 +05:30
267c7b85ea Use only realesrgan_x4 (not anime) for upscaling in codeformer 2023-06-07 16:37:44 +05:30
e23f66a697 Fix #1333 - listen_port isn't always present in the config file 2023-06-07 15:45:21 +05:30
9a0031c47b Don't copy check_models.py, it doesn't exist anymore 2023-06-07 15:21:16 +05:30
0d8e73b206 sdkit 1.0.104 - Not all pipelines have vae slicing 2023-06-07 15:10:57 +05:30
9486c03a89 Don't use the default SD model (if the desired model was not found), unless the UI is starting up 2023-06-06 17:10:38 +05:30
c09512bf12 dead code 2023-06-06 16:57:25 +05:30
05c2de9450 Fail with an error if the desired model (non-Stable Diffusion) wasn't found 2023-06-06 16:56:37 +05:30
6ae5cb28cf Set the default codeformer strength to 0.5 2023-06-06 16:37:17 +05:30
cf6c1add1d Merge branch 'beta' of github.com:cmdr2/stable-diffusion-ui into beta 2023-06-06 16:24:42 +05:30
d0184a1598 Allow changing the strength of the codeformer model (1 - fidelity); Improve the styling of the sub-settings 2023-06-06 16:16:21 +05:30
79d6ab9915 Update CHANGES.md 2023-06-06 15:22:27 +05:30
047390873c changelog; show labels next to the lora strength slider 2023-06-05 16:53:18 +05:30
4b36ca75cb Merge pull request #1313 from JeLuF/cloudflared
Share ED via Cloudflare's ArgoTunnel
2023-06-05 16:20:40 +05:30
f7c52b700e Merge pull request #1328 from ogmaresca/negative-lora-strength
Allow LoRA strengths between -2 and 2
2023-06-05 16:18:28 +05:30
c81d98ad0f Merge pull request #1325 from JeLuF/tildl
Tiled image download plugin
2023-06-05 16:17:23 +05:30
046c00d844 changelog 2023-06-05 16:13:41 +05:30
b14653cb9e sdkit 1.0.103 - Pin the versions of diffusers models used; Use cpu offloading for balanced and low while upscaling using latent upscaler 2023-06-05 16:11:48 +05:30
c72b287c82 Show a more helpful error message in the logs when the system runs out of RAM 2023-06-05 15:22:37 +05:30
a10aa92634 Fix a bug where the realesrgan model would get unloaded after the first request in a batch while using Codeformer with upscaling of faces 2023-06-05 15:08:57 +05:30
8a2c09c6de Fix for rabbit hole plugin 2023-06-05 09:00:50 +05:30
401fc30617 Allow LoRA strengths between -2 and 2 2023-06-03 14:54:17 -04:00
6ca7247c02 Enable face upscaling by default 2023-06-03 10:11:03 +05:30
1d5309decb changelog 2023-06-03 10:04:06 +05:30
ab0218050c Merge pull request #1322 from cmdr2/cf
CodeFormer
2023-06-03 09:55:21 +05:30
6dcf7539bb close window 2023-06-03 00:04:13 +02:00
51d52d3a07 Tiled image download plugin 2023-06-02 23:41:53 +02:00
dd95df8f02 Refactor the default model download code, remove check_models.py, don't check in legacy paths since that's already migrated during initialization; Download CodeFormer's model only when it's used for the first time 2023-06-02 16:34:29 +05:30
3045f5211f Merge pull request #1321 from cmdr2/beta
Tiling and other bug fixes
2023-06-01 16:53:51 +05:30
0860e35d17 sdkit 1.0.101 - CodeFormer as an option to improve faces 2023-06-01 16:50:01 +05:30
32c4f10626 Merge pull request #1274 from patriceac/beta
Support for CodeFormer face restoration
2023-06-01 15:28:25 +05:30
3e90eafafb Merge branch 'cf' into beta 2023-06-01 15:27:37 +05:30
16fcb4ed79 Merge pull request #1314 from JeLuF/dndgan
Fix GFPGAN settings import
2023-05-29 15:46:28 +05:30
9be48b3fc5 Merge pull request #1317 from ogmaresca/fix-metadata-SyntaxWarning
Fix SyntaxWarning on startup
2023-05-29 10:15:29 +05:30
7830ec7ca2 Fix SyntaxWarning on startup
Fixes
```
/ssd2/easydiffusion/ui/easydiffusion/utils/save_utils.py:222: SyntaxWarning: "is not" with a literal. Did you mean "!="?
  if task_data.use_upscale is not "latent_upscaler" and "latent_upscaler_steps" in metadata:
  ```
2023-05-28 14:39:36 -04:00
0ebf9df207 Merge pull request #1316 from JeLuF/fix1312
Fix #1312 - invert model A and B ratio in merge
2023-05-28 17:33:26 +05:30
40682405cc Merge pull request #1309 from ogmaresca/add-tiling-to-metadata
Add tiling and latent upscaler steps to metadata
2023-05-28 17:33:00 +05:30
9fdd482811 Merge pull request #1311 from patriceac/patch-3
Fix regression in restore task to UI flow
2023-05-28 17:32:26 +05:30
7202ffba6e Fix #1312 - invert model A and B ratio in merge 2023-05-28 02:36:56 +02:00
30dcc7477f Fix GFPGAN settings import
The word None which many txt metadata files contain as value for the GFPGAN field should not be considered to be a model name.
If the value is None, disable the checkbox
2023-05-28 01:43:58 +02:00
9ce076eb0d Copy address button 2023-05-28 01:18:39 +02:00
2080d6e27b Share ED via Cloudflare's ArgoTunnel
Shares the Easy Diffusion instance via https://try.cloudflare.com/
2023-05-28 00:50:23 +02:00
6826435046 Fix restore task to UI flow
Fixes a regression introduced by https://github.com/cmdr2/stable-diffusion-ui/pull/1304
2023-05-27 00:26:25 -07:00
69d937e0b1 Add tiling and latent upscaler steps to metadata
Also fix txt metadata labels when also embedding metadata
2023-05-26 19:51:30 -04:00
edd92b724f UniPC TU 2 isn't working with diffusers either 2023-05-26 19:47:00 +05:30
41ecc822df Merge pull request #1305 from JeLuF/patch-27
Update "How to install and run.txt"
2023-05-26 15:25:31 +05:30
0990d8fc4d Merge pull request #1304 from JeLuF/dndfix
Remove warning when reusing settings - Fixes #1290
2023-05-26 15:24:56 +05:30
ce2a42ca13 Update "How to install and run.txt" 2023-05-25 20:18:19 +02:00
1da35e89f6 Capitalization 2023-05-25 18:38:40 +05:30
d818107953 Remove warning when reusing settings - Fixes #1290 2023-05-25 13:36:45 +02:00
b3f65c0b3c changelog 2023-05-25 15:52:05 +05:30
59c322dc3b Show seamless tiling only in diffusers mode 2023-05-25 15:41:41 +05:30
096f9ad3a6 Merge branch 'beta' of github.com:cmdr2/stable-diffusion-ui into beta 2023-05-25 15:39:02 +05:30
5c8965b3ab changelog 2023-05-25 15:38:49 +05:30
090f8f6070 Merge pull request #1300 from JeLuF/tile
Add seamless tiling support
2023-05-25 15:38:15 +05:30
5f4fc63645 Merge branch 'beta' of github.com:cmdr2/stable-diffusion-ui into beta 2023-05-25 15:37:37 +05:30
a0b3b5af53 sdkit 1.0.98 - seamless tiling 2023-05-25 15:36:27 +05:30
351dd97500 Merge pull request #1303 from cmdr2/main
Main
2023-05-25 15:05:05 +05:30
b511000441 Merge pull request #1302 from cmdr2/beta
Beta
2023-05-25 14:57:51 +05:30
523131de79 Merge pull request #1298 from JeLuF/confix
Fix confirmation dialog
2023-05-25 07:19:21 +05:30
9dfa300083 Add seamless tiling support 2023-05-25 00:16:14 +02:00
3ea74af76d Fix confirmation dialog
By splitting the confirmation function into two halves, the closure was lost
2023-05-24 19:29:54 +02:00
3d7e16cfd9 changelog 2023-05-24 16:29:58 +05:30
db265309a5 Show an explanation for why the CPU toggle is disabled; utility class for alert() and confirm() that matches the ED theme; code formatting 2023-05-24 16:24:29 +05:30
8554b0eab2 Better reporting of model load errors - sends the report to the browser UI during the next image rendering task 2023-05-24 16:02:53 +05:30
f641e6e69d Merge branch 'beta' of github.com:cmdr2/stable-diffusion-ui into beta 2023-05-24 15:40:26 +05:30
30c07eab6b Cleaner reporting of errors in the UI; Suggest increasing the page size if that's the error 2023-05-24 15:30:55 +05:30
eba83386c1 make a note about a flood fill library 2023-05-24 10:08:00 +05:30
d3334f9dfa Merge branch 'beta' of github.com:cmdr2/stable-diffusion-ui into beta 2023-05-23 16:55:52 +05:30
a87dca1ef4 changelog 2023-05-23 16:55:42 +05:30
2bab4341a3 Add 'Latent Upscaler' as an option in the upscaling dropdown 2023-05-23 16:53:53 +05:30
01fb2fde47 Merge pull request #1293 from JeLuF/edready
Add 'ED is ready, go to localhost:9000' msg to log
2023-05-23 15:15:08 +05:30
0127714929 Add 'ED is ready, go to localhost:9000' msg to log
Sometimes the browser window does not open (esp. on Linux and Mac).
Show a prominent message to the log so that users don't wait for hours.
2023-05-22 21:19:31 +02:00
a5a1d33589 Fix face restoration model selection 2023-05-21 18:32:48 -07:00
a25364732b Support for CodeFormer
Depends on https://github.com/easydiffusion/sdkit/pull/34.
2023-05-17 02:04:20 -07:00
0adaf6c0a0 Merge branch 'beta' of https://github.com/patriceac/stable-diffusion-ui into beta 2023-05-16 18:20:46 -07:00
654749de40 Revert "Toast notifications for ED"
This reverts commit dde51c0cef.
2023-04-29 19:26:11 -07:00
dde51c0cef Toast notifications for ED
Adding support for toast notifications for use in Core and user plugins.
2023-04-29 19:25:10 -07:00
31 changed files with 1090 additions and 305 deletions

View File

@ -22,6 +22,23 @@
Our focus continues to remain on an easy installation experience, and an easy user-interface. While still remaining pretty powerful, in terms of features and speed.
### Detailed changelog
* 2.5.41 - 24 Jun 2023 - (beta-only) Fix broken inpainting in low VRAM usage mode.
* 2.5.41 - 24 Jun 2023 - (beta-only) Fix a recent regression where the LoRA would not get applied when changing SD models.
* 2.5.41 - 23 Jun 2023 - Fix a regression where latent upscaler stopped working on PCs without a graphics card.
* 2.5.41 - 20 Jun 2023 - Automatically fix black images if fp32 attention precision is required in diffusers.
* 2.5.41 - 19 Jun 2023 - Another fix for multi-gpu rendering (in all VRAM usage modes).
* 2.5.41 - 13 Jun 2023 - Fix multi-gpu bug with "low" VRAM usage mode while generating images.
* 2.5.41 - 12 Jun 2023 - Fix multi-gpu bug with CodeFormer.
* 2.5.41 - 6 Jun 2023 - Allow changing the strength of CodeFormer, and slightly improved styling of the CodeFormer options.
* 2.5.41 - 5 Jun 2023 - Allow sharing an Easy Diffusion instance via https://try.cloudflare.com/ . You can find this option at the bottom of the Settings tab. Thanks @JeLuf.
* 2.5.41 - 5 Jun 2023 - Show an option to download for tiled images. Shows a button on the generated image. Creates larger images by tiling them with the image generated by Easy Diffusion. Thanks @JeLuf.
* 2.5.41 - 5 Jun 2023 - (beta-only) Allow LoRA strengths between -2 and 2. Thanks @ogmaresca.
* 2.5.40 - 5 Jun 2023 - Reduce the VRAM usage of Latent Upscaling when using "balanced" VRAM usage mode.
* 2.5.40 - 5 Jun 2023 - Fix the "realesrgan" key error when using CodeFormer with more than 1 image in a batch.
* 2.5.40 - 3 Jun 2023 - Added CodeFormer as another option for fixing faces and eyes. CodeFormer tends to perform better than GFPGAN for many images. Thanks @patriceac for the implementation, and for contacting the CodeFormer team (who were supportive of it being integrated into Easy Diffusion).
* 2.5.39 - 25 May 2023 - (beta-only) Seamless Tiling - make seamlessly tiled images, e.g. rock and grass textures. Thanks @JeLuf.
* 2.5.38 - 24 May 2023 - Better reporting of errors, and show an explanation if the user cannot disable the "Use CPU" setting.
* 2.5.38 - 23 May 2023 - Add Latent Upscaler as another option for upscaling images. Thanks @JeLuf for the implementation of the Latent Upscaler model.
* 2.5.37 - 19 May 2023 - (beta-only) Two more samplers: DDPM and DEIS. Also disables the samplers that aren't working yet in the Diffusers version. Thanks @ogmaresca.
* 2.5.37 - 19 May 2023 - (beta-only) Support CLIP-Skip. You can set this option under the models dropdown. Thanks @JeLuf.
* 2.5.37 - 19 May 2023 - (beta-only) More VRAM optimizations for all modes in diffusers. The VRAM usage for diffusers in "low" and "balanced" should now be equal or less than the non-diffusers version. Performs softmax in half precision, like sdkit does.

View File

@ -5,10 +5,10 @@ If you haven't downloaded Stable Diffusion UI yet, please download from https://
After downloading, to install please follow these instructions:
For Windows:
- Please double-click the "Start Stable Diffusion UI.cmd" file inside the "stable-diffusion-ui" folder.
- Please double-click the "Easy-Diffusion-Windows.exe" file and follow the instructions.
For Linux:
- Please open a terminal, and go to the "stable-diffusion-ui" directory. Then run ./start.sh
- Please open a terminal, unzip the Easy-Diffusion-Linux.zip file and go to the "easy-diffusion" directory. Then run ./start.sh
That file will automatically install everything. After that it will start the Stable Diffusion interface in a web browser.
@ -21,4 +21,4 @@ If you have any problems, please:
3. Or, file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues
Thanks
cmdr2 (and contributors to the project)
cmdr2 (and contributors to the project)

View File

@ -23,6 +23,7 @@ Click the download button for your operating system:
- Minimum 8 GB of system RAM.
- Atleast 25 GB of space on the hard disk.
The installer will take care of whatever is needed. If you face any problems, you can join the friendly [Discord community](https://discord.com/invite/u9yhsFmEkB) and ask for assistance.
## On Windows:

View File

@ -1,101 +0,0 @@
# this script runs inside the legacy "stable-diffusion" folder
from sdkit.models import download_model, get_model_info_from_db
from sdkit.utils import hash_file_quick
import os
import shutil
from glob import glob
import traceback
models_base_dir = os.path.abspath(os.path.join("..", "models"))
models_to_check = {
"stable-diffusion": [
{"file_name": "sd-v1-4.ckpt", "model_id": "1.4"},
],
"gfpgan": [
{"file_name": "GFPGANv1.4.pth", "model_id": "1.4"},
],
"realesrgan": [
{"file_name": "RealESRGAN_x4plus.pth", "model_id": "x4plus"},
{"file_name": "RealESRGAN_x4plus_anime_6B.pth", "model_id": "x4plus_anime_6"},
],
"vae": [
{"file_name": "vae-ft-mse-840000-ema-pruned.ckpt", "model_id": "vae-ft-mse-840000-ema-pruned"},
],
}
MODEL_EXTENSIONS = { # copied from easydiffusion/model_manager.py
"stable-diffusion": [".ckpt", ".safetensors"],
"vae": [".vae.pt", ".ckpt", ".safetensors"],
"hypernetwork": [".pt", ".safetensors"],
"gfpgan": [".pth"],
"realesrgan": [".pth"],
"lora": [".ckpt", ".safetensors"],
}
def download_if_necessary(model_type: str, file_name: str, model_id: str):
model_path = os.path.join(models_base_dir, model_type, file_name)
expected_hash = get_model_info_from_db(model_type=model_type, model_id=model_id)["quick_hash"]
other_models_exist = any_model_exists(model_type)
known_model_exists = os.path.exists(model_path)
known_model_is_corrupt = known_model_exists and hash_file_quick(model_path) != expected_hash
if known_model_is_corrupt or (not other_models_exist and not known_model_exists):
print("> download", model_type, model_id)
download_model(model_type, model_id, download_base_dir=models_base_dir)
def init():
migrate_legacy_model_location()
for model_type, models in models_to_check.items():
for model in models:
try:
download_if_necessary(model_type, model["file_name"], model["model_id"])
except:
traceback.print_exc()
fail(model_type)
print(model_type, "model(s) found.")
### utilities
def any_model_exists(model_type: str) -> bool:
extensions = MODEL_EXTENSIONS.get(model_type, [])
for ext in extensions:
if any(glob(f"{models_base_dir}/{model_type}/**/*{ext}", recursive=True)):
return True
return False
def migrate_legacy_model_location():
'Move the models inside the legacy "stable-diffusion" folder, to their respective folders'
for model_type, models in models_to_check.items():
for model in models:
file_name = model["file_name"]
if os.path.exists(file_name):
dest_dir = os.path.join(models_base_dir, model_type)
os.makedirs(dest_dir, exist_ok=True)
shutil.move(file_name, os.path.join(dest_dir, file_name))
def fail(model_name):
print(
f"""Error downloading the {model_name} model. Sorry about that, please try to:
1. Run this installer again.
2. If that doesn't fix it, please try to download the file manually. The address to download from, and the destination to save to are printed above this message.
3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB
4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues
Thanks!"""
)
exit(1)
### start
init()

View File

@ -18,13 +18,15 @@ os_name = platform.system()
modules_to_check = {
"torch": ("1.11.0", "1.13.1", "2.0.0"),
"torchvision": ("0.12.0", "0.14.1", "0.15.1"),
"sdkit": "1.0.97",
"sdkit": "1.0.112",
"stable-diffusion-sdkit": "2.1.4",
"rich": "12.6.0",
"uvicorn": "0.19.0",
"fastapi": "0.85.1",
"pycloudflared": "0.2.0",
# "xformers": "0.0.16",
}
modules_to_log = ["torch", "torchvision", "sdkit", "stable-diffusion-sdkit"]
def version(module_name: str) -> str:
@ -89,7 +91,8 @@ def init():
traceback.print_exc()
fail(module_name)
print(f"{module_name}: {version(module_name)}")
if module_name in modules_to_log:
print(f"{module_name}: {version(module_name)}")
### utilities

View File

@ -39,6 +39,8 @@ if [ "$0" == "bash" ]; then
export PYTHONPATH="$(pwd)/stable-diffusion/env/lib/python3.8/site-packages"
fi
export PYTHONNOUSERSITE=y
which python
python --version

View File

@ -67,7 +67,6 @@ if "%update_branch%"=="" (
@xcopy sd-ui-files\ui ui /s /i /Y /q
@copy sd-ui-files\scripts\on_sd_start.bat scripts\ /Y
@copy sd-ui-files\scripts\check_modules.py scripts\ /Y
@copy sd-ui-files\scripts\check_models.py scripts\ /Y
@copy sd-ui-files\scripts\get_config.py scripts\ /Y
@copy "sd-ui-files\scripts\Start Stable Diffusion UI.cmd" . /Y
@copy "sd-ui-files\scripts\Developer Console.cmd" . /Y

View File

@ -50,7 +50,6 @@ cp -Rf sd-ui-files/ui .
cp sd-ui-files/scripts/on_sd_start.sh scripts/
cp sd-ui-files/scripts/bootstrap.sh scripts/
cp sd-ui-files/scripts/check_modules.py scripts/
cp sd-ui-files/scripts/check_models.py scripts/
cp sd-ui-files/scripts/get_config.py scripts/
cp sd-ui-files/scripts/start.sh .
cp sd-ui-files/scripts/developer_console.sh .

View File

@ -5,7 +5,6 @@
@copy sd-ui-files\scripts\on_env_start.bat scripts\ /Y
@copy sd-ui-files\scripts\check_modules.py scripts\ /Y
@copy sd-ui-files\scripts\check_models.py scripts\ /Y
@copy sd-ui-files\scripts\get_config.py scripts\ /Y
if exist "%cd%\profile" (
@ -79,13 +78,6 @@ call WHERE uvicorn > .tmp
@echo conda_sd_ui_deps_installed >> ..\scripts\install_status.txt
)
@rem Download the required models
call python ..\scripts\check_models.py
if "%ERRORLEVEL%" NEQ "0" (
pause
exit /b
)
@>nul findstr /m "sd_install_complete" ..\scripts\install_status.txt
@if "%ERRORLEVEL%" NEQ "0" (
@echo sd_weights_downloaded >> ..\scripts\install_status.txt

View File

@ -4,7 +4,6 @@ cp sd-ui-files/scripts/functions.sh scripts/
cp sd-ui-files/scripts/on_env_start.sh scripts/
cp sd-ui-files/scripts/bootstrap.sh scripts/
cp sd-ui-files/scripts/check_modules.py scripts/
cp sd-ui-files/scripts/check_models.py scripts/
cp sd-ui-files/scripts/get_config.py scripts/
source ./scripts/functions.sh
@ -51,12 +50,6 @@ if ! command -v uvicorn &> /dev/null; then
fail "UI packages not found!"
fi
# Download the required models
if ! python ../scripts/check_models.py; then
read -p "Press any key to continue"
exit 1
fi
if [ `grep -c sd_install_complete ../scripts/install_status.txt` -gt "0" ]; then
echo sd_weights_downloaded >> ../scripts/install_status.txt
echo sd_install_complete >> ../scripts/install_status.txt

View File

@ -10,6 +10,8 @@ import warnings
from easydiffusion import task_manager
from easydiffusion.utils import log
from rich.logging import RichHandler
from rich.console import Console
from rich.panel import Panel
from sdkit.utils import log as sdkit_log # hack, so we can overwrite the log config
# Remove all handlers associated with the root logger object.
@ -88,8 +90,8 @@ def init():
os.makedirs(USER_SERVER_PLUGINS_DIR, exist_ok=True)
# https://pytorch.org/docs/stable/storage.html
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')
warnings.filterwarnings("ignore", category=UserWarning, message="TypedStorage is deprecated")
load_server_plugins()
update_render_threads()
@ -213,11 +215,48 @@ def open_browser():
ui = config.get("ui", {})
net = config.get("net", {})
port = net.get("listen_port", 9000)
if ui.get("open_browser_on_start", True):
import webbrowser
webbrowser.open(f"http://localhost:{port}")
Console().print(
Panel(
"\n"
+ "[white]Easy Diffusion is ready to serve requests.\n\n"
+ "A new browser tab should have been opened by now.\n"
+ f"If not, please open your web browser and navigate to [bold yellow underline]http://localhost:{port}/\n",
title="Easy Diffusion is ready",
style="bold yellow on blue",
)
)
def fail_and_die(fail_type: str, data: str):
suggestions = [
"Run this installer again.",
"If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB",
"If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues",
]
if fail_type == "model_download":
fail_label = f"Error downloading the {data} model"
suggestions.insert(
1,
"If that doesn't fix it, please try to download the file manually. The address to download from, and the destination to save to are printed above this message.",
)
else:
fail_label = "Error while installing Easy Diffusion"
msg = [f"{fail_label}. Sorry about that, please try to:"]
for i, suggestion in enumerate(suggestions):
msg.append(f"{i+1}. {suggestion}")
msg.append("Thanks!")
print("\n".join(msg))
exit(1)
def get_image_modifiers():
modifiers_json_path = os.path.join(SD_UI_DIR, "modifiers.json")

View File

@ -1,10 +1,14 @@
import os
import shutil
from glob import glob
import traceback
from easydiffusion import app
from easydiffusion.types import TaskData
from easydiffusion.utils import log
from sdkit import Context
from sdkit.models import load_model, scan_model, unload_model
from sdkit.models import load_model, scan_model, unload_model, download_model, get_model_info_from_db
from sdkit.utils import hash_file_quick
KNOWN_MODEL_TYPES = [
"stable-diffusion",
@ -13,6 +17,7 @@ KNOWN_MODEL_TYPES = [
"gfpgan",
"realesrgan",
"lora",
"codeformer",
]
MODEL_EXTENSIONS = {
"stable-diffusion": [".ckpt", ".safetensors"],
@ -21,14 +26,22 @@ MODEL_EXTENSIONS = {
"gfpgan": [".pth"],
"realesrgan": [".pth"],
"lora": [".ckpt", ".safetensors"],
"codeformer": [".pth"],
}
DEFAULT_MODELS = {
"stable-diffusion": [ # needed to support the legacy installations
"custom-model", # only one custom model file was supported initially, creatively named 'custom-model'
"sd-v1-4", # Default fallback.
"stable-diffusion": [
{"file_name": "sd-v1-4.ckpt", "model_id": "1.4"},
],
"gfpgan": [
{"file_name": "GFPGANv1.4.pth", "model_id": "1.4"},
],
"realesrgan": [
{"file_name": "RealESRGAN_x4plus.pth", "model_id": "x4plus"},
{"file_name": "RealESRGAN_x4plus_anime_6B.pth", "model_id": "x4plus_anime_6"},
],
"vae": [
{"file_name": "vae-ft-mse-840000-ema-pruned.ckpt", "model_id": "vae-ft-mse-840000-ema-pruned"},
],
"gfpgan": ["GFPGANv1.3"],
"realesrgan": ["RealESRGAN_x4plus"],
}
MODELS_TO_LOAD_ON_START = ["stable-diffusion", "vae", "hypernetwork", "lora"]
@ -37,6 +50,8 @@ known_models = {}
def init():
make_model_folders()
migrate_legacy_model_location() # if necessary
download_default_models_if_necessary()
getModels() # run this once, to cache the picklescan results
@ -45,7 +60,7 @@ def load_default_models(context: Context):
# init default model paths
for model_type in MODELS_TO_LOAD_ON_START:
context.model_paths[model_type] = resolve_model_to_use(model_type=model_type)
context.model_paths[model_type] = resolve_model_to_use(model_type=model_type, fail_if_not_found=False)
try:
load_model(
context,
@ -53,23 +68,34 @@ def load_default_models(context: Context):
scan_model=context.model_paths[model_type] != None
and not context.model_paths[model_type].endswith(".safetensors"),
)
if model_type in context.model_load_errors:
del context.model_load_errors[model_type]
except Exception as e:
log.error(f"[red]Error while loading {model_type} model: {context.model_paths[model_type]}[/red]")
log.exception(e)
if "DefaultCPUAllocator: not enough memory" in str(e):
log.error(
f"[red]Your PC is low on system RAM. Please add some virtual memory (or swap space) by following the instructions at this link: https://www.ibm.com/docs/en/opw/8.2.0?topic=tuning-optional-increasing-paging-file-size-windows-computers[/red]"
)
else:
log.exception(e)
del context.model_paths[model_type]
context.model_load_errors[model_type] = str(e) # storing the entire Exception can lead to memory leaks
def unload_all(context: Context):
for model_type in KNOWN_MODEL_TYPES:
unload_model(context, model_type)
if model_type in context.model_load_errors:
del context.model_load_errors[model_type]
def resolve_model_to_use(model_name: str = None, model_type: str = None):
def resolve_model_to_use(model_name: str = None, model_type: str = None, fail_if_not_found: bool = True):
model_extensions = MODEL_EXTENSIONS.get(model_type, [])
default_models = DEFAULT_MODELS.get(model_type, [])
config = app.getConfig()
model_dirs = [os.path.join(app.MODELS_DIR, model_type), app.SD_DIR]
model_dir = os.path.join(app.MODELS_DIR, model_type)
if not model_name: # When None try user configured model.
# config = getConfig()
if "model" in config and model_type in config["model"]:
@ -77,42 +103,42 @@ def resolve_model_to_use(model_name: str = None, model_type: str = None):
if model_name:
# Check models directory
models_dir_path = os.path.join(app.MODELS_DIR, model_type, model_name)
model_path = os.path.join(model_dir, model_name)
if os.path.exists(model_path):
return model_path
for model_extension in model_extensions:
if os.path.exists(models_dir_path + model_extension):
return models_dir_path + model_extension
if os.path.exists(model_path + model_extension):
return model_path + model_extension
if os.path.exists(model_name + model_extension):
return os.path.abspath(model_name + model_extension)
# Default locations
if model_name in default_models:
default_model_path = os.path.join(app.SD_DIR, model_name)
for model_extension in model_extensions:
if os.path.exists(default_model_path + model_extension):
return default_model_path + model_extension
# Can't find requested model, check the default paths.
for default_model in default_models:
for model_dir in model_dirs:
default_model_path = os.path.join(model_dir, default_model)
for model_extension in model_extensions:
if os.path.exists(default_model_path + model_extension):
if model_name is not None:
log.warn(
f"Could not find the configured custom model {model_name}{model_extension}. Using the default one: {default_model_path}{model_extension}"
)
return default_model_path + model_extension
if model_type == "stable-diffusion" and not fail_if_not_found:
for default_model in default_models:
default_model_path = os.path.join(model_dir, default_model["file_name"])
if os.path.exists(default_model_path):
if model_name is not None:
log.warn(
f"Could not find the configured custom model {model_name}. Using the default one: {default_model_path}"
)
return default_model_path
return None
if model_name and fail_if_not_found:
raise Exception(f"Could not find the desired model {model_name}! Is it present in the {model_dir} folder?")
def reload_models_if_necessary(context: Context, task_data: TaskData):
face_fix_lower = task_data.use_face_correction.lower() if task_data.use_face_correction else ""
upscale_lower = task_data.use_upscale.lower() if task_data.use_upscale else ""
model_paths_in_req = {
"stable-diffusion": task_data.use_stable_diffusion_model,
"vae": task_data.use_vae_model,
"hypernetwork": task_data.use_hypernetwork_model,
"gfpgan": task_data.use_face_correction,
"realesrgan": task_data.use_upscale,
"codeformer": task_data.use_face_correction if "codeformer" in face_fix_lower else None,
"gfpgan": task_data.use_face_correction if "gfpgan" in face_fix_lower else None,
"realesrgan": task_data.use_upscale if "realesrgan" in upscale_lower else None,
"latent_upscaler": True if "latent_upscaler" in upscale_lower else None,
"nsfw_checker": True if task_data.block_nsfw else None,
"lora": task_data.use_lora_model,
}
@ -122,6 +148,13 @@ def reload_models_if_necessary(context: Context, task_data: TaskData):
if context.model_paths.get(model_type) != path
}
if task_data.codeformer_upscale_faces:
if "realesrgan" not in models_to_reload and "realesrgan" not in context.models:
default_realesrgan = DEFAULT_MODELS["realesrgan"][0]["file_name"]
models_to_reload["realesrgan"] = resolve_model_to_use(default_realesrgan, "realesrgan")
elif "realesrgan" in models_to_reload and models_to_reload["realesrgan"] is None:
del models_to_reload["realesrgan"] # don't unload realesrgan
if set_vram_optimizations(context) or set_clip_skip(context, task_data): # reload SD
models_to_reload["stable-diffusion"] = model_paths_in_req["stable-diffusion"]
@ -129,7 +162,14 @@ def reload_models_if_necessary(context: Context, task_data: TaskData):
context.model_paths[model_type] = model_path_in_req
action_fn = unload_model if context.model_paths[model_type] is None else load_model
action_fn(context, model_type, scan_model=False) # we've scanned them already
try:
action_fn(context, model_type, scan_model=False) # we've scanned them already
if model_type in context.model_load_errors:
del context.model_load_errors[model_type]
except Exception as e:
log.exception(e)
if action_fn == load_model:
context.model_load_errors[model_type] = str(e) # storing the entire Exception can lead to memory leaks
def resolve_model_paths(task_data: TaskData):
@ -141,11 +181,49 @@ def resolve_model_paths(task_data: TaskData):
task_data.use_lora_model = resolve_model_to_use(task_data.use_lora_model, model_type="lora")
if task_data.use_face_correction:
task_data.use_face_correction = resolve_model_to_use(task_data.use_face_correction, "gfpgan")
if task_data.use_upscale:
if "gfpgan" in task_data.use_face_correction.lower():
model_type = "gfpgan"
elif "codeformer" in task_data.use_face_correction.lower():
model_type = "codeformer"
download_if_necessary("codeformer", "codeformer.pth", "codeformer-0.1.0")
task_data.use_face_correction = resolve_model_to_use(task_data.use_face_correction, model_type)
if task_data.use_upscale and "realesrgan" in task_data.use_upscale.lower():
task_data.use_upscale = resolve_model_to_use(task_data.use_upscale, "realesrgan")
def fail_if_models_did_not_load(context: Context):
for model_type in KNOWN_MODEL_TYPES:
if model_type in context.model_load_errors:
e = context.model_load_errors[model_type]
raise Exception(f"Could not load the {model_type} model! Reason: " + e)
def download_default_models_if_necessary():
for model_type, models in DEFAULT_MODELS.items():
for model in models:
try:
download_if_necessary(model_type, model["file_name"], model["model_id"])
except:
traceback.print_exc()
app.fail_and_die(fail_type="model_download", data=model_type)
print(model_type, "model(s) found.")
def download_if_necessary(model_type: str, file_name: str, model_id: str):
model_path = os.path.join(app.MODELS_DIR, model_type, file_name)
expected_hash = get_model_info_from_db(model_type=model_type, model_id=model_id)["quick_hash"]
other_models_exist = any_model_exists(model_type)
known_model_exists = os.path.exists(model_path)
known_model_is_corrupt = known_model_exists and hash_file_quick(model_path) != expected_hash
if known_model_is_corrupt or (not other_models_exist and not known_model_exists):
print("> download", model_type, model_id)
download_model(model_type, model_id, download_base_dir=app.MODELS_DIR)
def set_vram_optimizations(context: Context):
config = app.getConfig()
vram_usage_level = config.get("vram_usage_level", "balanced")
@ -157,6 +235,26 @@ def set_vram_optimizations(context: Context):
return False
def migrate_legacy_model_location():
'Move the models inside the legacy "stable-diffusion" folder, to their respective folders'
for model_type, models in DEFAULT_MODELS.items():
for model in models:
file_name = model["file_name"]
legacy_path = os.path.join(app.SD_DIR, file_name)
if os.path.exists(legacy_path):
shutil.move(legacy_path, os.path.join(app.MODELS_DIR, model_type, file_name))
def any_model_exists(model_type: str) -> bool:
extensions = MODEL_EXTENSIONS.get(model_type, [])
for ext in extensions:
if any(glob(f"{app.MODELS_DIR}/{model_type}/**/*{ext}", recursive=True)):
return True
return False
def set_clip_skip(context: Context, task_data: TaskData):
clip_skip = task_data.clip_skip
@ -214,17 +312,12 @@ def is_malicious_model(file_path):
def getModels():
models = {
"active": {
"stable-diffusion": "sd-v1-4",
"vae": "",
"hypernetwork": "",
"lora": "",
},
"options": {
"stable-diffusion": ["sd-v1-4"],
"vae": [],
"hypernetwork": [],
"lora": [],
"codeformer": ["codeformer"],
},
}
@ -285,9 +378,4 @@ def getModels():
if models_scanned > 0:
log.info(f"[green]Scanned {models_scanned} models. Nothing infected[/]")
# legacy
custom_weight_path = os.path.join(app.SD_DIR, "custom-model.ckpt")
if os.path.exists(custom_weight_path):
models["options"]["stable-diffusion"].append("custom-model")
return models

View File

@ -7,10 +7,12 @@ from easydiffusion import device_manager
from easydiffusion.types import GenerateImageRequest
from easydiffusion.types import Image as ResponseImage
from easydiffusion.types import Response, TaskData, UserInitiatedStop
from easydiffusion.model_manager import DEFAULT_MODELS, resolve_model_to_use
from easydiffusion.utils import get_printable_request, log, save_images_to_disk
from sdkit import Context
from sdkit.filter import apply_filters
from sdkit.generate import generate_images
from sdkit.models import load_model
from sdkit.utils import (
diffusers_latent_samples_to_images,
gc,
@ -33,6 +35,8 @@ def init(device):
context.stop_processing = False
context.temp_images = {}
context.partial_x_samples = None
context.model_load_errors = {}
context.enable_codeformer = True
from easydiffusion import app
@ -95,7 +99,7 @@ def make_images_internal(
task_data.stream_image_progress_interval,
)
gc(context)
filtered_images = filter_images(task_data, images, user_stopped)
filtered_images = filter_images(req, task_data, images, user_stopped)
if task_data.save_to_disk_path is not None:
save_images_to_disk(images, filtered_images, req, task_data)
@ -151,22 +155,55 @@ def generate_images_internal(
return images, user_stopped
def filter_images(task_data: TaskData, images: list, user_stopped):
def filter_images(req: GenerateImageRequest, task_data: TaskData, images: list, user_stopped):
if user_stopped:
return images
filters_to_apply = []
if task_data.block_nsfw:
filters_to_apply.append("nsfw_checker")
if task_data.use_face_correction and "gfpgan" in task_data.use_face_correction.lower():
filters_to_apply.append("gfpgan")
if task_data.use_upscale and "realesrgan" in task_data.use_upscale.lower():
filters_to_apply.append("realesrgan")
images = apply_filters(context, "nsfw_checker", images)
if len(filters_to_apply) == 0:
return images
if task_data.use_face_correction and "codeformer" in task_data.use_face_correction.lower():
default_realesrgan = DEFAULT_MODELS["realesrgan"][0]["file_name"]
prev_realesrgan_path = None
if task_data.codeformer_upscale_faces and default_realesrgan not in context.model_paths["realesrgan"]:
prev_realesrgan_path = context.model_paths["realesrgan"]
context.model_paths["realesrgan"] = resolve_model_to_use(default_realesrgan, "realesrgan")
load_model(context, "realesrgan")
return apply_filters(context, filters_to_apply, images, scale=task_data.upscale_amount)
try:
images = apply_filters(
context,
"codeformer",
images,
upscale_faces=task_data.codeformer_upscale_faces,
codeformer_fidelity=task_data.codeformer_fidelity,
)
finally:
if prev_realesrgan_path:
context.model_paths["realesrgan"] = prev_realesrgan_path
load_model(context, "realesrgan")
elif task_data.use_face_correction and "gfpgan" in task_data.use_face_correction.lower():
images = apply_filters(context, "gfpgan", images)
if task_data.use_upscale:
if "realesrgan" in task_data.use_upscale.lower():
images = apply_filters(context, "realesrgan", images, scale=task_data.upscale_amount)
elif task_data.use_upscale == "latent_upscaler":
images = apply_filters(
context,
"latent_upscaler",
images,
scale=task_data.upscale_amount,
latent_upscaler_options={
"prompt": req.prompt,
"negative_prompt": req.negative_prompt,
"seed": req.seed,
"num_inference_steps": task_data.latent_upscaler_steps,
"guidance_scale": 0,
},
)
return images
def construct_response(images: list, seeds: list, task_data: TaskData, base_seed: int):

View File

@ -15,6 +15,7 @@ from fastapi import FastAPI, HTTPException
from fastapi.staticfiles import StaticFiles
from pydantic import BaseModel, Extra
from starlette.responses import FileResponse, JSONResponse, StreamingResponse
from pycloudflared import try_cloudflare
log.info(f"started in {app.SD_DIR}")
log.info(f"started at {datetime.datetime.now():%x %X}")
@ -113,6 +114,14 @@ def init():
def get_image(task_id: int, img_id: int):
return get_image_internal(task_id, img_id)
@server_api.post("/tunnel/cloudflare/start")
def start_cloudflare_tunnel(req: dict):
return start_cloudflare_tunnel_internal(req)
@server_api.post("/tunnel/cloudflare/stop")
def stop_cloudflare_tunnel(req: dict):
return stop_cloudflare_tunnel_internal(req)
@server_api.get("/")
def read_root():
return FileResponse(os.path.join(app.SD_UI_DIR, "index.html"), headers=NOCACHE_HEADERS)
@ -211,6 +220,8 @@ def ping_internal(session_id: str = None):
session = task_manager.get_cached_session(session_id, update_ttl=True)
response["tasks"] = {id(t): t.status for t in session.tasks}
response["devices"] = task_manager.get_devices()
if cloudflare.address != None:
response["cloudflare"] = cloudflare.address
return JSONResponse(response, headers=NOCACHE_HEADERS)
@ -322,3 +333,47 @@ def get_image_internal(task_id: int, img_id: int):
return StreamingResponse(img_data, media_type="image/jpeg")
except KeyError as e:
raise HTTPException(status_code=500, detail=str(e))
#---- Cloudflare Tunnel ----
class CloudflareTunnel:
def __init__(self):
config = app.getConfig()
self.urls = None
self.port = config.get("net", {}).get("listen_port")
def start(self):
if self.port:
self.urls = try_cloudflare(self.port)
def stop(self):
if self.urls:
try_cloudflare.terminate(self.port)
self.urls = None
@property
def address(self):
if self.urls:
return self.urls.tunnel
else:
return None
cloudflare = CloudflareTunnel()
def start_cloudflare_tunnel_internal(req: dict):
try:
cloudflare.start()
log.info(f"- Started cloudflare tunnel. Using address: {cloudflare.address}")
return JSONResponse({"address":cloudflare.address})
except Exception as e:
log.error(str(e))
log.error(traceback.format_exc())
return HTTPException(status_code=500, detail=str(e))
def stop_cloudflare_tunnel_internal(req: dict):
try:
cloudflare.stop()
except Exception as e:
log.error(str(e))
log.error(traceback.format_exc())
return HTTPException(status_code=500, detail=str(e))

View File

@ -336,6 +336,7 @@ def thread_render(device):
current_state = ServerStates.LoadingModel
model_manager.resolve_model_paths(task.task_data)
model_manager.reload_models_if_necessary(renderer.context, task.task_data)
model_manager.fail_if_models_did_not_load(renderer.context)
current_state = ServerStates.Rendering
task.response = renderer.make_images(

View File

@ -23,6 +23,7 @@ class GenerateImageRequest(BaseModel):
sampler_name: str = None # "ddim", "plms", "heun", "euler", "euler_a", "dpm2", "dpm2_a", "lms"
hypernetwork_strength: float = 0
lora_alpha: float = 0
tiling: str = "none" # "none", "x", "y", "xy"
class TaskData(BaseModel):
@ -32,8 +33,9 @@ class TaskData(BaseModel):
vram_usage_level: str = "balanced" # or "low" or "medium"
use_face_correction: str = None # or "GFPGANv1.3"
use_upscale: str = None # or "RealESRGAN_x4plus" or "RealESRGAN_x4plus_anime_6B"
use_upscale: str = None # or "RealESRGAN_x4plus" or "RealESRGAN_x4plus_anime_6B" or "latent_upscaler"
upscale_amount: int = 4 # or 2
latent_upscaler_steps: int = 10
use_stable_diffusion_model: str = "sd-v1-4"
# use_stable_diffusion_config: str = "v1-inference"
use_vae_model: str = None
@ -49,6 +51,8 @@ class TaskData(BaseModel):
stream_image_progress: bool = False
stream_image_progress_interval: int = 5
clip_skip: bool = False
codeformer_upscale_faces: bool = False
codeformer_fidelity: float = 0.5
class MergeRequest(BaseModel):

View File

@ -30,9 +30,11 @@ TASK_TEXT_MAPPING = {
"lora_alpha": "LoRA Strength",
"use_hypernetwork_model": "Hypernetwork model",
"hypernetwork_strength": "Hypernetwork Strength",
"tiling": "Seamless Tiling",
"use_face_correction": "Use Face Correction",
"use_upscale": "Use Upscaling",
"upscale_amount": "Upscale By",
"latent_upscaler_steps": "Latent Upscaler Steps"
}
time_placeholders = {
@ -169,21 +171,23 @@ def save_images_to_disk(images: list, filtered_images: list, req: GenerateImageR
output_quality=task_data.output_quality,
output_lossless=task_data.output_lossless,
)
if task_data.metadata_output_format.lower() in ["json", "txt", "embed"]:
save_dicts(
metadata_entries,
save_dir_path,
file_name=make_filter_filename,
output_format=task_data.metadata_output_format,
file_format=task_data.output_format,
)
if task_data.metadata_output_format:
for metadata_output_format in task_data.metadata_output_format.split(","):
if metadata_output_format.lower() in ["json", "txt", "embed"]:
save_dicts(
metadata_entries,
save_dir_path,
file_name=make_filter_filename,
output_format=task_data.metadata_output_format,
file_format=task_data.output_format,
)
def get_metadata_entries_for_request(req: GenerateImageRequest, task_data: TaskData):
metadata = get_printable_request(req, task_data)
# if text, format it in the text format expected by the UI
is_txt_format = task_data.metadata_output_format.lower() == "txt"
is_txt_format = task_data.metadata_output_format and "txt" in task_data.metadata_output_format.lower().split(",")
if is_txt_format:
metadata = {TASK_TEXT_MAPPING[key]: val for key, val in metadata.items() if key in TASK_TEXT_MAPPING}
@ -215,10 +219,12 @@ def get_printable_request(req: GenerateImageRequest, task_data: TaskData):
del metadata["hypernetwork_strength"]
if task_data.use_lora_model is None and "lora_alpha" in metadata:
del metadata["lora_alpha"]
if task_data.use_upscale != "latent_upscaler" and "latent_upscaler_steps" in metadata:
del metadata["latent_upscaler_steps"]
app_config = app.getConfig()
if not app_config.get("test_diffusers", False):
for key in (x for x in ["use_lora_model", "lora_alpha", "clip_skip"] if x in metadata):
for key in (x for x in ["use_lora_model", "lora_alpha", "clip_skip", "tiling", "latent_upscaler_steps"] if x in metadata):
del metadata[key]
return metadata

View File

@ -30,7 +30,7 @@
<h1>
<img id="logo_img" src="/media/images/icon-512x512.png" >
Easy Diffusion
<small>v2.5.37 <span id="updateBranchLabel"></span></small>
<small>v2.5.41 <span id="updateBranchLabel"></span></small>
</h1>
</div>
<div id="server-status">
@ -167,7 +167,7 @@
<option value="unipc_snr" class="k_diffusion-only">UniPC SNR</option>
<option value="unipc_tu">UniPC TU</option>
<option value="unipc_snr_2" class="k_diffusion-only">UniPC SNR 2</option>
<option value="unipc_tu_2">UniPC TU 2</option>
<option value="unipc_tu_2" class="k_diffusion-only">UniPC TU 2</option>
<option value="unipc_tq" class="k_diffusion-only">UniPC TQ</option>
</select>
<a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/How-to-Use#samplers" target="_blank"><i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip top-left">Click to learn more about samplers</span></i></a>
@ -227,7 +227,10 @@
</td></tr>
<tr id="lora_alpha_container" class="pl-5">
<td><label for="lora_alpha_slider">LoRA Strength:</label></td>
<td> <input id="lora_alpha_slider" name="lora_alpha_slider" class="editor-slider" value="50" type="range" min="0" max="100"> <input id="lora_alpha" name="lora_alpha" size="4" pattern="^[0-9\.]+$" onkeypress="preventNonNumericalInput(event)"><br/></td>
<td>
<small>-2</small> <input id="lora_alpha_slider" name="lora_alpha_slider" class="editor-slider" value="50" type="range" min="-200" max="200"> <small>2</small> &nbsp;
<input id="lora_alpha" name="lora_alpha" size="4" pattern="^-?[0-9]*\.?[0-9]*$" onkeypress="preventNonNumericalInput(event)"><br/>
</td>
</tr>
<tr class="pl-5"><td><label for="hypernetwork_model">Hypernetwork:</label></td><td>
<input id="hypernetwork_model" type="text" spellcheck="false" autocomplete="off" class="model-filter" data-path="" />
@ -236,6 +239,15 @@
<td><label for="hypernetwork_strength_slider">Hypernetwork Strength:</label></td>
<td> <input id="hypernetwork_strength_slider" name="hypernetwork_strength_slider" class="editor-slider" value="100" type="range" min="0" max="100"> <input id="hypernetwork_strength" name="hypernetwork_strength" size="4" pattern="^[0-9\.]+$" onkeypress="preventNonNumericalInput(event)"><br/></td>
</tr>
<tr id="tiling_container" class="pl-5"><td><label for="tiling">Seamless Tiling:</label></td><td>
<select id="tiling" name="tiling">
<option value="none" selected>None</option>
<option value="x">Horizontal</option>
<option value="y">Vertical</option>
<option value="xy">Both</option>
</select>
<a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/Seamless-Tiling" target="_blank"><i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip top-left">Click to learn more about Seamless Tiling</span></i></a>
</td></tr>
<tr class="pl-5"><td><label for="output_format">Output Format:</label></td><td>
<select id="output_format" name="output_format">
<option value="jpeg" selected>jpeg</option>
@ -254,18 +266,28 @@
<div><ul>
<li><b class="settings-subheader">Render Settings</b></li>
<li class="pl-5"><input id="stream_image_progress" name="stream_image_progress" type="checkbox"> <label for="stream_image_progress">Show a live preview <small>(uses more VRAM, slower images)</small></label></li>
<li class="pl-5"><input id="use_face_correction" name="use_face_correction" type="checkbox"> <label for="use_face_correction">Fix incorrect faces and eyes</label> <div style="display:inline-block;"><input id="gfpgan_model" type="text" spellcheck="false" autocomplete="off" class="model-filter" data-path="" /></div></li>
<li class="pl-5" id="use_face_correction_container">
<input id="use_face_correction" name="use_face_correction" type="checkbox"> <label for="use_face_correction">Fix incorrect faces and eyes</label> <div style="display:inline-block;"><input id="gfpgan_model" type="text" spellcheck="false" autocomplete="off" class="model-filter" data-path="" /></div>
<table id="codeformer_settings" class="displayNone sub-settings">
<tr class="pl-5"><td><label for="codeformer_fidelity_slider">Strength:</label></td><td><input id="codeformer_fidelity_slider" name="codeformer_fidelity_slider" class="editor-slider" value="5" type="range" min="0" max="10"> <input id="codeformer_fidelity" name="codeformer_fidelity" size="4" pattern="^[0-9\.]+$" onkeypress="preventNonNumericalInput(event)"></td></tr>
<tr class="pl-5"><td><label for="codeformer_upscale_faces">Upscale Faces:</label></td><td><input id="codeformer_upscale_faces" name="codeformer_upscale_faces" type="checkbox" checked> <label><small>(improves the resolution of faces)</small></label></td></tr>
</table>
</li>
<li class="pl-5">
<input id="use_upscale" name="use_upscale" type="checkbox"> <label for="use_upscale">Scale up by</label>
<select id="upscale_amount" name="upscale_amount">
<option value="2">2x</option>
<option value="4" selected>4x</option>
<option id="upscale_amount_2x" value="2">2x</option>
<option id="upscale_amount_4x" value="4" selected>4x</option>
</select>
with
<select id="upscale_model" name="upscale_model">
<option value="RealESRGAN_x4plus" selected>RealESRGAN_x4plus</option>
<option value="RealESRGAN_x4plus_anime_6B">RealESRGAN_x4plus_anime_6B</option>
<option value="latent_upscaler">Latent Upscaler 2x</option>
</select>
<table id="latent_upscaler_settings" class="displayNone sub-settings">
<tr class="pl-5"><td><label for="latent_upscaler_steps_slider">Upscaling Steps:</label></td><td><input id="latent_upscaler_steps_slider" name="latent_upscaler_steps_slider" class="editor-slider" value="10" type="range" min="1" max="50"> <input id="latent_upscaler_steps" name="latent_upscaler_steps" size="4" pattern="^[0-9\.]+$" onkeypress="preventNonNumericalInput(event)"></td></tr>
</table>
</li>
<li class="pl-5"><input id="show_only_filtered_image" name="show_only_filtered_image" type="checkbox" checked> <label for="show_only_filtered_image">Show only the corrected/upscaled image</label></li>
</ul></div>
@ -343,10 +365,16 @@
<div id="tab-content-settings" class="tab-content">
<div id="system-settings" class="tab-content-inner">
<h1>System Settings</h1>
<div class="parameters-table"></div>
<div class="parameters-table" id="system-settings-table"></div>
<br/>
<button id="save-system-settings-btn" class="primaryButton">Save</button>
<br/><br/>
<div id="share-easy-diffusion">
<h3><i class="fa fa-user-group"></i> Share Easy Diffusion</h3>
<div class="parameters-table" id="system-settings-network-table">
</div>
</div>
<br/><br/>
<div>
<h3><i class="fa fa-microchip icon"></i> System Info</h3>
<div id="system-info">
@ -521,7 +549,8 @@ async function init() {
SD.init({
events: {
statusChange: setServerStatus,
idle: onIdle
idle: onIdle,
ping: tunnelUpdate
}
})

View File

@ -69,13 +69,15 @@
}
.parameters-table > div:first-child {
border-radius: 12px 12px 0px 0px;
border-top-left-radius: 12px;
border-top-right-radius: 12px;
}
.parameters-table > div:last-child {
border-radius: 0px 0px 12px 12px;
border-bottom-left-radius: 12px;
border-bottom-right-radius: 12px;
}
.parameters-table .fa-fire {
color: #F7630C;
}
}

View File

@ -96,7 +96,7 @@
.editor-controls-center {
/* background: var(--background-color2); */
flex: 1;
flex: 0;
display: flex;
justify-content: center;
align-items: center;
@ -105,6 +105,8 @@
.editor-controls-center > div {
position: relative;
background: black;
margin: 20pt;
margin-top: 40pt;
}
.editor-controls-center canvas {
@ -164,8 +166,10 @@
margin: var(--popup-margin);
padding: var(--popup-padding);
min-height: calc(99h - (2 * var(--popup-margin)));
max-width: none;
max-width: fit-content;
min-width: fit-content;
margin-left: auto;
margin-right: auto;
}
.image-editor-popup h1 {

View File

@ -1303,6 +1303,35 @@ body.wait-pause {
display:none !important;
}
.sub-settings {
padding-top: 3pt;
padding-bottom: 3pt;
padding-left: 5pt;
}
#cloudflare-address {
background-color: var(--background-color3);
padding: 6px;
border-radius: var(--input-border-radius);
border: var(--input-border-size) solid var(--input-border-color);
margin-top: 0.2em;
margin-bottom: 0.2em;
display: inline-block;
}
#copy-cloudflare-address {
padding: 4px 8px;
margin-left: 0.5em;
}
.expandedSettingRow {
background: var(--background-color1);
width: 95%;
border-radius: 4pt;
margin-top: 5pt;
margin-bottom: 3pt;
}
/* TOAST NOTIFICATIONS */
.toast-notification {
position: fixed;
@ -1316,7 +1345,7 @@ body.wait-pause {
box-shadow: 0 0 10px rgba(0, 0, 0, 0.5);
z-index: 9999;
animation: slideInRight 0.5s ease forwards;
transition: bottom 0.5s ease; // Add a transition to smoothly reposition the toasts
transition: bottom 0.5s ease; /* Add a transition to smoothly reposition the toasts */
}
.toast-notification-error {

View File

@ -25,6 +25,7 @@ const SETTINGS_IDS_LIST = [
"prompt_strength",
"hypernetwork_strength",
"lora_alpha",
"tiling",
"output_format",
"output_quality",
"output_lossless",
@ -34,6 +35,7 @@ const SETTINGS_IDS_LIST = [
"gfpgan_model",
"use_upscale",
"upscale_amount",
"latent_upscaler_steps",
"block_nsfw",
"show_only_filtered_image",
"upscale_model",

View File

@ -79,6 +79,7 @@ const TASK_MAPPING = {
if (!widthField.value) {
widthField.value = oldVal
}
widthField.dispatchEvent(new Event("change"))
},
readUI: () => parseInt(widthField.value),
parse: (val) => parseInt(val),
@ -91,6 +92,7 @@ const TASK_MAPPING = {
if (!heightField.value) {
heightField.value = oldVal
}
heightField.dispatchEvent(new Event("change"))
},
readUI: () => parseInt(heightField.value),
parse: (val) => parseInt(val),
@ -172,16 +174,22 @@ const TASK_MAPPING = {
name: "Use Face Correction",
setUI: (use_face_correction) => {
const oldVal = gfpganModelField.value
gfpganModelField.value = getModelPath(use_face_correction, [".pth"])
if (gfpganModelField.value) {
// Is a valid value for the field.
useFaceCorrectionField.checked = true
gfpganModelField.disabled = false
} else {
// Not a valid value, restore the old value and disable the filter.
console.log("use face correction", use_face_correction)
if (use_face_correction == null || use_face_correction == "None") {
gfpganModelField.disabled = true
gfpganModelField.value = oldVal
useFaceCorrectionField.checked = false
} else {
gfpganModelField.value = getModelPath(use_face_correction, [".pth"])
if (gfpganModelField.value) {
// Is a valid value for the field.
useFaceCorrectionField.checked = true
gfpganModelField.disabled = false
} else {
// Not a valid value, restore the old value and disable the filter.
gfpganModelField.disabled = true
gfpganModelField.value = oldVal
useFaceCorrectionField.checked = false
}
}
//useFaceCorrectionField.checked = parseBoolean(use_face_correction)
@ -218,6 +226,14 @@ const TASK_MAPPING = {
readUI: () => upscaleAmountField.value,
parse: (val) => val,
},
latent_upscaler_steps: {
name: "Latent Upscaler Steps",
setUI: (latent_upscaler_steps) => {
latentUpscalerStepsField.value = latent_upscaler_steps
},
readUI: () => latentUpscalerStepsField.value,
parse: (val) => val,
},
sampler_name: {
name: "Sampler",
setUI: (sampler_name) => {
@ -249,6 +265,14 @@ const TASK_MAPPING = {
readUI: () => clip_skip.checked,
parse: (val) => Boolean(val),
},
tiling: {
name: "Tiling",
setUI: (val) => {
tilingField.value = val
},
readUI: () => tilingField.value,
parse: (val) => val,
},
use_vae_model: {
name: "VAE model",
setUI: (use_vae_model) => {
@ -411,6 +435,7 @@ function restoreTaskToUI(task, fieldsToSkip) {
if (!("original_prompt" in task.reqBody)) {
promptField.value = task.reqBody.prompt
}
promptField.dispatchEvent(new Event("input"))
// properly reset checkboxes
if (!("use_face_correction" in task.reqBody)) {

View File

@ -186,6 +186,7 @@
const EVENT_TASK_START = "taskStart"
const EVENT_TASK_END = "taskEnd"
const EVENT_TASK_ERROR = "task_error"
const EVENT_PING = "ping"
const EVENT_UNEXPECTED_RESPONSE = "unexpectedResponse"
const EVENTS_TYPES = [
EVENT_IDLE,
@ -196,6 +197,7 @@
EVENT_TASK_START,
EVENT_TASK_END,
EVENT_TASK_ERROR,
EVENT_PING,
EVENT_UNEXPECTED_RESPONSE,
]
@ -240,6 +242,7 @@
setServerStatus("error", "offline")
return false
}
// Set status
switch (serverState.status) {
case ServerStates.init:
@ -261,6 +264,7 @@
break
}
serverState.time = Date.now()
await eventSource.fireEvent(EVENT_PING, serverState)
return true
} catch (e) {
console.error(e)
@ -789,9 +793,10 @@
use_hypernetwork_model: "string",
hypernetwork_strength: "number",
output_lossless: "boolean",
tiling: "string",
}
// Higer values will result in...
// Higher values will result in...
// pytorch_lightning/utilities/seed.py:60: UserWarning: X is not in bounds, numpy accepts from 0 to 4294967295
const MAX_SEED_VALUE = 4294967295

View File

@ -834,6 +834,7 @@ function pixelCompare(int1, int2) {
}
// adapted from https://ben.akrin.com/canvas_fill/fill_04.html
// May 2023 - look at using a library instead of custom code: https://github.com/shaneosullivan/example-canvas-fill
function flood_fill(editor, the_canvas_context, x, y, color) {
pixel_stack = [{ x: x, y: y }]
pixels = the_canvas_context.getImageData(0, 0, editor.width, editor.height)

View File

@ -18,6 +18,11 @@ const taskConfigSetup = {
visible: ({ reqBody }) => reqBody?.clip_skip,
value: ({ reqBody }) => "yes",
},
tiling: {
label: "Tiling",
visible: ({ reqBody }) => reqBody?.tiling != "none",
value: ({ reqBody }) => reqBody?.tiling,
},
use_vae_model: {
label: "VAE",
visible: ({ reqBody }) => reqBody?.use_vae_model !== undefined && reqBody?.use_vae_model.trim() !== "",
@ -82,12 +87,18 @@ let promptStrengthField = document.querySelector("#prompt_strength")
let samplerField = document.querySelector("#sampler_name")
let samplerSelectionContainer = document.querySelector("#samplerSelection")
let useFaceCorrectionField = document.querySelector("#use_face_correction")
let gfpganModelField = new ModelDropdown(document.querySelector("#gfpgan_model"), "gfpgan")
let gfpganModelField = new ModelDropdown(document.querySelector("#gfpgan_model"), ["gfpgan", "codeformer"], "", false)
let useUpscalingField = document.querySelector("#use_upscale")
let upscaleModelField = document.querySelector("#upscale_model")
let upscaleAmountField = document.querySelector("#upscale_amount")
let latentUpscalerSettings = document.querySelector("#latent_upscaler_settings")
let latentUpscalerStepsSlider = document.querySelector("#latent_upscaler_steps_slider")
let latentUpscalerStepsField = document.querySelector("#latent_upscaler_steps")
let codeformerFidelitySlider = document.querySelector("#codeformer_fidelity_slider")
let codeformerFidelityField = document.querySelector("#codeformer_fidelity")
let stableDiffusionModelField = new ModelDropdown(document.querySelector("#stable_diffusion_model"), "stable-diffusion")
let clipSkipField = document.querySelector("#clip_skip")
let tilingField = document.querySelector("#tiling")
let vaeModelField = new ModelDropdown(document.querySelector("#vae_model"), "vae", "None")
let hypernetworkModelField = new ModelDropdown(document.querySelector("#hypernetwork_model"), "hypernetwork", "None")
let hypernetworkStrengthSlider = document.querySelector("#hypernetwork_strength_slider")
@ -239,7 +250,7 @@ function setServerStatus(event) {
break
}
if (SD.serverState.devices) {
document.dispatchEvent(new CustomEvent("system_info_update", { detail: SD.serverState.devices}))
document.dispatchEvent(new CustomEvent("system_info_update", { detail: SD.serverState.devices }))
}
}
@ -258,20 +269,13 @@ function shiftOrConfirm(e, prompt, fn) {
if (e.shiftKey || !confirmDangerousActionsField.checked) {
fn(e)
} else {
$.confirm({
theme: "modern",
title: prompt,
useBootstrap: false,
animateFromElement: false,
content:
'<small>Tip: To skip this dialog, use shift-click or disable the "Confirm dangerous actions" setting in the Settings tab.</small>',
buttons: {
yes: () => {
fn(e)
},
cancel: () => {},
},
})
confirm(
'<small>Tip: To skip this dialog, use shift-click or disable the "Confirm dangerous actions" setting in the Settings tab.</small>',
prompt,
() => {
fn(e)
}
)
}
}
@ -293,6 +297,7 @@ function logError(msg, res, outputMsg) {
logMsg(msg, "error", outputMsg)
console.log("request error", res)
console.trace()
setStatus("request", "error", "error")
}
@ -784,11 +789,6 @@ function getTaskUpdater(task, reqBody, outputContainer) {
}
msg += "</pre>"
logError(msg, event, outputMsg)
} else {
let msg = `Unexpected Read Error:<br/><pre>Error:${
this.exception
}<br/>EventInfo: ${JSON.stringify(event, undefined, 4)}</pre>`
logError(msg, event, outputMsg)
}
break
}
@ -885,15 +885,15 @@ function onTaskCompleted(task, reqBody, instance, outputContainer, stepUpdate) {
1. If you have set an initial image, please try reducing its dimension to ${MAX_INIT_IMAGE_DIMENSION}x${MAX_INIT_IMAGE_DIMENSION} or smaller.<br/>
2. Try picking a lower level in the '<em>GPU Memory Usage</em>' setting (in the '<em>Settings</em>' tab).<br/>
3. Try generating a smaller image.<br/>`
} else if (msg.toLowerCase().includes("DefaultCPUAllocator: not enough memory")) {
} else if (msg.includes("DefaultCPUAllocator: not enough memory")) {
msg += `<br/><br/>
Reason: Your computer is running out of system RAM!
<br/>
<br/><br/>
<b>Suggestions</b>:
<br/>
1. Try closing unnecessary programs and browser tabs.<br/>
2. If that doesn't help, please increase your computer's virtual memory by following these steps for
<a href="https://www.ibm.com/docs/en/opw/8.2.0?topic=tuning-optional-increasing-paging-file-size-windows-computers" target="_blank">Windows</a>, or
<a href="https://www.ibm.com/docs/en/opw/8.2.0?topic=tuning-optional-increasing-paging-file-size-windows-computers" target="_blank">Windows</a> or
<a href="https://linuxhint.com/increase-swap-space-linux/" target="_blank">Linux</a>.<br/>
3. Try restarting your computer.<br/>`
}
@ -1231,6 +1231,7 @@ function getCurrentUserRequest() {
//render_device: undefined, // Set device affinity. Prefer this device, but wont activate.
use_stable_diffusion_model: stableDiffusionModelField.value,
clip_skip: clipSkipField.checked,
tiling: tilingField.value,
use_vae_model: vaeModelField.value,
stream_progress_updates: true,
stream_image_progress: numOutputsTotal > 50 ? false : streamImageProgressField.checked,
@ -1264,10 +1265,19 @@ function getCurrentUserRequest() {
}
if (useFaceCorrectionField.checked) {
newTask.reqBody.use_face_correction = gfpganModelField.value
if (gfpganModelField.value.includes("codeformer")) {
newTask.reqBody.codeformer_upscale_faces = document.querySelector("#codeformer_upscale_faces").checked
newTask.reqBody.codeformer_fidelity = 1 - parseFloat(codeformerFidelityField.value)
}
}
if (useUpscalingField.checked) {
newTask.reqBody.use_upscale = upscaleModelField.value
newTask.reqBody.upscale_amount = upscaleAmountField.value
if (upscaleModelField.value === "latent_upscaler") {
newTask.reqBody.upscale_amount = "2"
newTask.reqBody.latent_upscaler_steps = latentUpscalerStepsField.value
}
}
if (hypernetworkModelField.value) {
newTask.reqBody.use_hypernetwork_model = hypernetworkModelField.value
@ -1573,15 +1583,48 @@ metadataOutputFormatField.disabled = !saveToDiskField.checked
gfpganModelField.disabled = !useFaceCorrectionField.checked
useFaceCorrectionField.addEventListener("change", function(e) {
gfpganModelField.disabled = !this.checked
onFixFaceModelChange()
})
function onFixFaceModelChange() {
let codeformerSettings = document.querySelector("#codeformer_settings")
if (gfpganModelField.value === "codeformer" && !gfpganModelField.disabled) {
codeformerSettings.classList.remove("displayNone")
codeformerSettings.classList.add("expandedSettingRow")
} else {
codeformerSettings.classList.add("displayNone")
codeformerSettings.classList.remove("expandedSettingRow")
}
}
gfpganModelField.addEventListener("change", onFixFaceModelChange)
onFixFaceModelChange()
upscaleModelField.disabled = !useUpscalingField.checked
upscaleAmountField.disabled = !useUpscalingField.checked
useUpscalingField.addEventListener("change", function(e) {
upscaleModelField.disabled = !this.checked
upscaleAmountField.disabled = !this.checked
onUpscaleModelChange()
})
function onUpscaleModelChange() {
let upscale4x = document.querySelector("#upscale_amount_4x")
if (upscaleModelField.value === "latent_upscaler" && !upscaleModelField.disabled) {
upscale4x.disabled = true
upscaleAmountField.value = "2"
latentUpscalerSettings.classList.remove("displayNone")
latentUpscalerSettings.classList.add("expandedSettingRow")
} else {
upscale4x.disabled = false
latentUpscalerSettings.classList.add("displayNone")
latentUpscalerSettings.classList.remove("expandedSettingRow")
}
}
upscaleModelField.addEventListener("change", onUpscaleModelChange)
onUpscaleModelChange()
makeImageBtn.addEventListener("click", makeImage)
document.onkeydown = function(e) {
@ -1591,6 +1634,48 @@ document.onkeydown = function(e) {
}
}
/********************* CodeFormer Fidelity **************************/
function updateCodeformerFidelity() {
codeformerFidelityField.value = codeformerFidelitySlider.value / 10
codeformerFidelityField.dispatchEvent(new Event("change"))
}
function updateCodeformerFidelitySlider() {
if (codeformerFidelityField.value < 0) {
codeformerFidelityField.value = 0
} else if (codeformerFidelityField.value > 1) {
codeformerFidelityField.value = 1
}
codeformerFidelitySlider.value = codeformerFidelityField.value * 10
codeformerFidelitySlider.dispatchEvent(new Event("change"))
}
codeformerFidelitySlider.addEventListener("input", updateCodeformerFidelity)
codeformerFidelityField.addEventListener("input", updateCodeformerFidelitySlider)
updateCodeformerFidelity()
/********************* Latent Upscaler Steps **************************/
function updateLatentUpscalerSteps() {
latentUpscalerStepsField.value = latentUpscalerStepsSlider.value
latentUpscalerStepsField.dispatchEvent(new Event("change"))
}
function updateLatentUpscalerStepsSlider() {
if (latentUpscalerStepsField.value < 1) {
latentUpscalerStepsField.value = 1
} else if (latentUpscalerStepsField.value > 50) {
latentUpscalerStepsField.value = 50
}
latentUpscalerStepsSlider.value = latentUpscalerStepsField.value
latentUpscalerStepsSlider.dispatchEvent(new Event("change"))
}
latentUpscalerStepsSlider.addEventListener("input", updateLatentUpscalerSteps)
latentUpscalerStepsField.addEventListener("input", updateLatentUpscalerStepsSlider)
updateLatentUpscalerSteps()
/********************* Guidance **************************/
function updateGuidanceScale() {
guidanceScaleField.value = guidanceScaleSlider.value / 10
@ -1668,10 +1753,10 @@ function updateLoraAlpha() {
}
function updateLoraAlphaSlider() {
if (loraAlphaField.value < 0) {
loraAlphaField.value = 0
} else if (loraAlphaField.value > 1) {
loraAlphaField.value = 1
if (loraAlphaField.value < -2) {
loraAlphaField.value = -2
} else if (loraAlphaField.value > 2) {
loraAlphaField.value = 2
}
loraAlphaSlider.value = loraAlphaField.value * 100
@ -1922,6 +2007,38 @@ resumeBtn.addEventListener("click", function() {
document.body.classList.remove("wait-pause")
})
function tunnelUpdate(event) {
if ("cloudflare" in event) {
document.getElementById("cloudflare-off").classList.add("displayNone")
document.getElementById("cloudflare-on").classList.remove("displayNone")
cloudflareAddressField.innerHTML = event.cloudflare
document.getElementById("toggle-cloudflare-tunnel").innerHTML = "Stop"
} else {
document.getElementById("cloudflare-on").classList.add("displayNone")
document.getElementById("cloudflare-off").classList.remove("displayNone")
document.getElementById("toggle-cloudflare-tunnel").innerHTML = "Start"
}
}
document.getElementById("toggle-cloudflare-tunnel").addEventListener("click", async function() {
let command = "stop"
if (document.getElementById("toggle-cloudflare-tunnel").innerHTML == "Start") {
command = "start"
}
showToast(`Cloudflare tunnel ${command} initiated. Please wait.`)
let res = await fetch("/tunnel/cloudflare/" + command, {
method: "POST",
headers: {
"Content-Type": "application/json",
},
body: JSON.stringify({}),
})
res = await res.json()
console.log(`Cloudflare tunnel ${command} result:`, res)
})
/* Pause function */
document.querySelectorAll(".tab").forEach(linkTabContents)

View File

@ -11,6 +11,12 @@ var ParameterType = {
custom: "custom",
}
/**
* Element shortcuts
*/
let parametersTable = document.querySelector("#system-settings-table")
let networkParametersTable = document.querySelector("#system-settings-network-table")
/**
* JSDoc style
* @typedef {object} Parameter
@ -186,17 +192,20 @@ var PARAMETERS = [
icon: "fa-network-wired",
default: true,
saveInAppConfig: true,
table: networkParametersTable,
},
{
id: "listen_port",
type: ParameterType.custom,
label: "Network port",
note: "Port that this server listens to. The '9000' part in 'http://localhost:9000'. Please restart the program after changing this.",
note:
"Port that this server listens to. The '9000' part in 'http://localhost:9000'. Please restart the program after changing this.",
icon: "fa-anchor",
render: (parameter) => {
return `<input id="${parameter.id}" name="${parameter.id}" size="6" value="9000" onkeypress="preventNonNumericalInput(event)">`
},
saveInAppConfig: true,
table: networkParametersTable,
},
{
id: "use_beta_channel",
@ -217,6 +226,21 @@ var PARAMETERS = [
default: false,
saveInAppConfig: true,
},
{
id: "cloudflare",
type: ParameterType.custom,
label: "Cloudflare tunnel",
note: `<span id="cloudflare-off">Create a VPN tunnel to share your Easy Diffusion instance with your friends. This will
generate a web server address on the public Internet for your Easy Diffusion instance. </span>
<div id="cloudflare-on" class="displayNone"><div>This Easy Diffusion server is available on the Internet using the
address:</div><div><div id="cloudflare-address"></div><button id="copy-cloudflare-address">Copy</button></div></div>
<b>Anyone knowing this address can access your server.</b> The address of your server will change each time
you share a session.<br>
Uses <a href="https://try.cloudflare.com/" target="_blank">Cloudflare services</a>.`,
icon: ["fa-brands", "fa-cloudflare"],
render: () => '<button id="toggle-cloudflare-tunnel" class="primaryButton">Start</button>',
table: networkParametersTable,
}
]
function getParameterSettingsEntry(id) {
@ -265,7 +289,6 @@ function getParameterElement(parameter) {
}
}
let parametersTable = document.querySelector("#system-settings .parameters-table")
/**
* fill in the system settings popup table
* @param {Array<Parameter> | undefined} parameters
@ -292,7 +315,10 @@ function initParameters(parameters) {
noteElements.push(noteElement)
}
const icon = parameter.icon ? [createElement("i", undefined, ["fa", parameter.icon])] : []
if (typeof(parameter.icon) == "string") {
parameter.icon = [parameter.icon]
}
const icon = parameter.icon ? [createElement("i", undefined, ["fa", ...parameter.icon])] : []
const label = typeof parameter.label === "function" ? parameter.label(parameter) : parameter.label
const labelElement = createElement("label", { for: parameter.id })
@ -312,7 +338,13 @@ function initParameters(parameters) {
elementWrapper,
]
)
parametersTable.appendChild(newrow)
let p = parametersTable
if (parameter.table) {
p = parameter.table
}
p.appendChild(newrow)
parameter.settingsEntry = newrow
})
}
@ -395,15 +427,17 @@ async function getAppConfig() {
if (!testDiffusersEnabled) {
document.querySelector("#lora_model_container").style.display = "none"
document.querySelector("#lora_alpha_container").style.display = "none"
document.querySelector("#tiling_container").style.display = "none"
document.querySelectorAll("#sampler_name option.diffusers-only").forEach(option => {
document.querySelectorAll("#sampler_name option.diffusers-only").forEach((option) => {
option.style.display = "none"
})
} else {
document.querySelector("#lora_model_container").style.display = ""
document.querySelector("#lora_alpha_container").style.display = loraModelField.value ? "" : "none"
document.querySelector("#tiling_container").style.display = ""
document.querySelectorAll("#sampler_name option.k_diffusion-only").forEach(option => {
document.querySelectorAll("#sampler_name option.k_diffusion-only").forEach((option) => {
option.disabled = true
})
document.querySelector("#clip_skip_config").classList.remove("displayNone")
@ -568,6 +602,16 @@ async function getSystemInfo() {
if (allDeviceIds.length === 0) {
useCPUField.checked = true
useCPUField.disabled = true // no compatible GPUs, so make the CPU mandatory
getParameterSettingsEntry("use_cpu").addEventListener("click", function() {
alert(
"Sorry, we could not find a compatible graphics card! Easy Diffusion supports graphics cards with minimum 2 GB of RAM. " +
"Only NVIDIA cards are supported on Windows. NVIDIA and AMD cards are supported on Linux.<br/><br/>" +
"If you have a compatible graphics card, please try updating to the latest drivers.<br/><br/>" +
"Only the CPU can be used for generating images, without a compatible graphics card.",
"No compatible graphics card found!"
)
})
}
autoPickGPUsField.checked = devices["config"] === "auto"
@ -586,7 +630,7 @@ async function getSystemInfo() {
$("#use_gpus").val(activeDeviceIds)
}
document.dispatchEvent(new CustomEvent("system_info_update", { detail: devices}))
document.dispatchEvent(new CustomEvent("system_info_update", { detail: devices }))
setHostInfo(res["hosts"])
let force = false
if (res["enforce_output_dir"] !== undefined) {
@ -620,7 +664,7 @@ saveSettingsBtn.addEventListener("click", function() {
update_branch: updateBranch,
}
Array.from(parametersTable.children).forEach((parameterRow) => {
document.querySelectorAll('#system-settings [data-setting-id]').forEach((parameterRow) => {
if (parameterRow.dataset.saveInAppConfig === "true") {
const parameterElement =
document.getElementById(parameterRow.dataset.settingId) ||
@ -654,8 +698,25 @@ saveSettingsBtn.addEventListener("click", function() {
})
const savePromise = changeAppConfig(updateAppConfigRequest)
showToast("Settings saved")
saveSettingsBtn.classList.add("active")
Promise.all([savePromise, asyncDelay(300)]).then(() => saveSettingsBtn.classList.remove("active"))
})
listenToNetworkField.addEventListener("change", debounce( ()=>{
saveSettingsBtn.click()
}, 1000))
listenPortField.addEventListener("change", debounce( ()=>{
saveSettingsBtn.click()
}, 1000))
let copyCloudflareAddressBtn = document.querySelector("#copy-cloudflare-address")
let cloudflareAddressField = document.getElementById("cloudflare-address")
copyCloudflareAddressBtn.addEventListener("click", (e) => {
navigator.clipboard.writeText(cloudflareAddressField.innerHTML)
showToast("Copied server address to clipboard")
})
document.addEventListener("system_info_update", (e) => setDeviceInfo(e.detail))

View File

@ -38,6 +38,8 @@ class ModelDropdown {
noneEntry //= ''
modelFilterInitialized //= undefined
sorted //= true
/* MIMIC A REGULAR INPUT FIELD */
get parentElement() {
return this.modelFilter.parentElement
@ -83,21 +85,34 @@ class ModelDropdown {
/* SEARCHABLE INPUT */
constructor(input, modelKey, noneEntry = "") {
constructor(input, modelKey, noneEntry = "", sorted = true) {
this.modelFilter = input
this.noneEntry = noneEntry
this.modelKey = modelKey
this.sorted = sorted
if (modelsOptions !== undefined) {
// reuse models from cache (only useful for plugins, which are loaded after models)
this.inputModels = modelsOptions[this.modelKey]
this.inputModels = []
let modelKeys = Array.isArray(this.modelKey) ? this.modelKey : [this.modelKey]
for (let i = 0; i < modelKeys.length; i++) {
let key = modelKeys[i]
let k = Array.isArray(modelsOptions[key]) ? modelsOptions[key] : [modelsOptions[key]]
this.inputModels.push(...k)
}
this.populateModels()
}
document.addEventListener(
"refreshModels",
this.bind(function(e) {
// reload the models
this.inputModels = modelsOptions[this.modelKey]
this.inputModels = []
let modelKeys = Array.isArray(this.modelKey) ? this.modelKey : [this.modelKey]
for (let i = 0; i < modelKeys.length; i++) {
let key = modelKeys[i]
let k = Array.isArray(modelsOptions[key]) ? modelsOptions[key] : [modelsOptions[key]]
this.inputModels.push(...k)
}
this.populateModels()
}, this)
)
@ -554,11 +569,15 @@ class ModelDropdown {
})
const childFolderNames = Array.from(foldersMap.keys())
this.sortStringArray(childFolderNames)
if (this.sorted) {
this.sortStringArray(childFolderNames)
}
const folderElements = childFolderNames.map((name) => foldersMap.get(name))
const modelNames = Array.from(modelsMap.keys())
this.sortStringArray(modelNames)
if (this.sorted) {
this.sortStringArray(modelNames)
}
const modelElements = modelNames.map((name) => modelsMap.get(name))
if (modelElements.length && folderName) {

View File

@ -402,12 +402,12 @@ function debounce(func, wait, immediate) {
function preventNonNumericalInput(e) {
e = e || window.event
let charCode = typeof e.which == "undefined" ? e.keyCode : e.which
let charStr = String.fromCharCode(charCode)
let re = e.target.getAttribute("pattern") || "^[0-9]+$"
re = new RegExp(re)
const charCode = typeof e.which == "undefined" ? e.keyCode : e.which
const charStr = String.fromCharCode(charCode)
const newInputValue = `${e.target.value}${charStr}`
const re = new RegExp(e.target.getAttribute("pattern") || "^[0-9]+$")
if (!charStr.match(re)) {
if (!re.test(charStr) && !re.test(newInputValue)) {
e.preventDefault()
}
}
@ -843,57 +843,83 @@ function createTab(request) {
/* TOAST NOTIFICATIONS */
function showToast(message, duration = 5000, error = false) {
const toast = document.createElement("div");
toast.classList.add("toast-notification");
const toast = document.createElement("div")
toast.classList.add("toast-notification")
if (error === true) {
toast.classList.add("toast-notification-error");
toast.classList.add("toast-notification-error")
}
toast.innerHTML = message;
document.body.appendChild(toast);
toast.innerHTML = message
document.body.appendChild(toast)
// Set the position of the toast on the screen
const toastCount = document.querySelectorAll(".toast-notification").length;
const toastHeight = toast.offsetHeight;
const toastCount = document.querySelectorAll(".toast-notification").length
const toastHeight = toast.offsetHeight
const previousToastsHeight = Array.from(document.querySelectorAll(".toast-notification"))
.slice(0, -1) // exclude current toast
.reduce((totalHeight, toast) => totalHeight + toast.offsetHeight + 10, 0); // add 10 pixels for spacing
toast.style.bottom = `${10 + previousToastsHeight}px`;
toast.style.right = "10px";
.reduce((totalHeight, toast) => totalHeight + toast.offsetHeight + 10, 0) // add 10 pixels for spacing
toast.style.bottom = `${10 + previousToastsHeight}px`
toast.style.right = "10px"
// Delay the removal of the toast until animation has completed
const removeToast = () => {
toast.classList.add("hide");
toast.classList.add("hide")
const removeTimeoutId = setTimeout(() => {
toast.remove();
toast.remove()
// Adjust the position of remaining toasts
const remainingToasts = document.querySelectorAll(".toast-notification");
const removedToastBottom = toast.getBoundingClientRect().bottom;
const remainingToasts = document.querySelectorAll(".toast-notification")
const removedToastBottom = toast.getBoundingClientRect().bottom
remainingToasts.forEach((toast) => {
if (toast.getBoundingClientRect().bottom < removedToastBottom) {
toast.classList.add("slide-down");
toast.classList.add("slide-down")
}
});
})
// Wait for the slide-down animation to complete
setTimeout(() => {
// Remove the slide-down class after the animation has completed
const slidingToasts = document.querySelectorAll(".slide-down");
const slidingToasts = document.querySelectorAll(".slide-down")
slidingToasts.forEach((toast) => {
toast.classList.remove("slide-down");
});
toast.classList.remove("slide-down")
})
// Adjust the position of remaining toasts again, in case there are multiple toasts being removed at once
const remainingToastsDown = document.querySelectorAll(".toast-notification");
let heightSoFar = 0;
const remainingToastsDown = document.querySelectorAll(".toast-notification")
let heightSoFar = 0
remainingToastsDown.forEach((toast) => {
toast.style.bottom = `${10 + heightSoFar}px`;
heightSoFar += toast.offsetHeight + 10; // add 10 pixels for spacing
});
}, 0); // The duration of the slide-down animation (in milliseconds)
}, 500);
};
toast.style.bottom = `${10 + heightSoFar}px`
heightSoFar += toast.offsetHeight + 10 // add 10 pixels for spacing
})
}, 0) // The duration of the slide-down animation (in milliseconds)
}, 500)
}
// Remove the toast after specified duration
setTimeout(removeToast, duration);
setTimeout(removeToast, duration)
}
function alert(msg, title) {
title = title || ""
$.alert({
theme: "modern",
title: title,
useBootstrap: false,
animateFromElement: false,
content: msg,
})
}
function confirm(msg, title, fn) {
title = title || ""
$.confirm({
theme: "modern",
title: title,
useBootstrap: false,
animateFromElement: false,
content: msg,
buttons: {
yes: fn,
cancel: () => {},
},
})
}

View File

@ -403,16 +403,19 @@
// Batch main loop
for (let i = 0; i < iterations; i++) {
let alpha = (start + i * step) / 100
switch (document.querySelector("#merge-interpolation").value) {
case "SmoothStep":
alpha = smoothstep(alpha)
break
case "SmootherStep":
alpha = smootherstep(alpha)
break
case "SmoothestStep":
alpha = smootheststep(alpha)
break
if (isTabActive(tabSettingsBatch)) {
switch (document.querySelector("#merge-interpolation").value) {
case "SmoothStep":
alpha = smoothstep(alpha)
break
case "SmootherStep":
alpha = smootherstep(alpha)
break
case "SmoothestStep":
alpha = smootheststep(alpha)
break
}
}
addLogMessage(`merging batch job ${i + 1}/${iterations}, alpha = ${alpha.toFixed(5)}...`)
@ -420,7 +423,8 @@
request["out_path"] += "-" + alpha.toFixed(5) + "." + document.querySelector("#merge-format").value
addLogMessage(`&nbsp;&nbsp;filename: ${request["out_path"]}`)
request["ratio"] = alpha
// sdkit documentation: "ratio - the ratio of the second model. 1 means only the second model will be used."
request["ratio"] = 1-alpha
let res = await fetch("/model/merge", {
method: "POST",
headers: { "Content-Type": "application/json" },

View File

@ -0,0 +1,326 @@
;(function(){
"use strict";
const PAPERSIZE = [
{id: "a3p", width: 297, height: 420, unit: "mm"},
{id: "a3l", width: 420, height: 297, unit: "mm"},
{id: "a4p", width: 210, height: 297, unit: "mm"},
{id: "a4l", width: 297, height: 210, unit: "mm"},
{id: "ll", width: 279, height: 216, unit: "mm"},
{id: "lp", width: 216, height: 279, unit: "mm"},
{id: "hd", width: 1920, height: 1080, unit: "pixels"},
{id: "4k", width: 3840, height: 2160, unit: "pixels"},
]
// ---- Register plugin
PLUGINS['IMAGE_INFO_BUTTONS'].push({
html: '<i class="fa-solid fa-table-cells-large"></i> Download tiled image',
on_click: onDownloadTiledImage,
filter: (req, img) => req.tiling != "none",
})
var thisImage
function onDownloadTiledImage(req, img) {
document.getElementById("download-tiled-image-dialog").showModal()
thisImage = new Image()
thisImage.src = img.src
thisImage.dataset["prompt"] = img.dataset["prompt"]
}
// ---- Add HTML
document.getElementById('container').lastElementChild.insertAdjacentHTML("afterend",
`<dialog id="download-tiled-image-dialog">
<h1>Download tiled image</h1>
<div class="download-tiled-image dtim-container">
<div class="download-tiled-image-top">
<div class="tab-container">
<span id="tab-image-tiles" class="tab active">
<span>Number of tiles</small></span>
</span>
<span id="tab-image-size" class="tab">
<span>Image dimensions</span>
</span>
</div>
<div>
<div id="tab-content-image-tiles" class="tab-content active">
<div class="tab-content-inner">
<label for="dtim1-width">Width:</label> <input id="dtim1-width" min="1" max="99" type="number" value="2">
<label for="dtim1-height">Height:</label> <input id="dtim1-height" min="1" max="99" type="number" value="2">
</div>
</div>
<div id="tab-content-image-size" class="tab-content">
<div class="tab-content-inner">
<div class="method-2-options">
<label for="dtim2-width">Width:</label> <input id="dtim2-width" size="3" value="1920">
<label for="dtim2-height">Height:</label> <input id="dtim2-height" size="3" value="1080">
<select id="dtim2-unit">
<option>pixels</option>
<option>mm</option>
<option>inches</option>
</select>
</div>
<div class="method-2-dpi">
<label for="dtim2-dpi">DPI:</label> <input id="dtim2-dpi" size="3" value="72">
</div>
<div class="method-2-paper">
<i>Some standard sizes:</i><br>
<button id="dtim2-a3p">A3 portrait</button><button id="dtim2-a3l">A3 landscape</button><br>
<button id="dtim2-a4p">A4 portrait</button><button id="dtim2-a4l">A4 landscape</button><br>
<button id="dtim2-lp">Letter portrait</button><button id="dtim2-ll">Letter landscape</button><br>
<button id="dtim2-hd">Full HD</button><button id="dtim2-4k">4K</button>
</div>
</div>
</div>
</div>
</div>
<div class="download-tiled-image-placement">
<div class="tab-container">
<span id="tab-image-placement" class="tab active">
<span>Tile placement</span>
</span>
</div>
<div>
<div id="tab-content-image-placement" class="tab-content active">
<div class="tab-content-inner">
<img id="dtim-1tl" class="active" src="" />
<img id="dtim-1tr" src="" /><br>
<img id="dtim-1bl" src="" />
<img id="dtim-1br" src="" /> <br>
<img id="dtim-1center" src="" />
<img id="dtim-4center" src="" /> <br>
</div>
</div>
</div>
</div>
<div class="dtim-ok">
<button class="primaryButton" id="dti-ok">Download</button>
</div>
<div class="dtim-newtab">
<button class="primaryButton" id="dti-newtab">Open in new tab</button>
</div>
<div class="dtim-cancel">
<button class="primaryButton" id="dti-cancel">Cancel</button>
</div>
</div>
</dialog>`)
let downloadTiledImageDialog = document.getElementById("download-tiled-image-dialog")
let dtim1_width = document.getElementById("dtim1-width")
let dtim1_height = document.getElementById("dtim1-height")
let dtim2_width = document.getElementById("dtim2-width")
let dtim2_height = document.getElementById("dtim2-height")
let dtim2_unit = document.getElementById("dtim2-unit")
let dtim2_dpi = document.getElementById("dtim2-dpi")
let tabTiledTilesOptions = document.getElementById("tab-image-tiles")
let tabTiledSizeOptions = document.getElementById("tab-image-size")
linkTabContents(tabTiledTilesOptions)
linkTabContents(tabTiledSizeOptions)
prettifyInputs(downloadTiledImageDialog)
// ---- Predefined image dimensions
PAPERSIZE.forEach( function(p) {
document.getElementById("dtim2-" + p.id).addEventListener("click", (e) => {
dtim2_unit.value = p.unit
dtim2_width.value = p.width
dtim2_height.value = p.height
})
})
// ---- Close popup
document.getElementById("dti-cancel").addEventListener("click", (e) => downloadTiledImageDialog.close())
downloadTiledImageDialog.addEventListener('click', function (event) {
var rect = downloadTiledImageDialog.getBoundingClientRect();
var isInDialog=(rect.top <= event.clientY && event.clientY <= rect.top + rect.height
&& rect.left <= event.clientX && event.clientX <= rect.left + rect.width);
if (!isInDialog) {
downloadTiledImageDialog.close();
}
});
// ---- Stylesheet
const styleSheet = document.createElement("style")
styleSheet.textContent = `
dialog {
background: var(--background-color2);
color: var(--text-color);
border-radius: 7px;
border: 1px solid var(--background-color3);
}
dialog::backdrop {
background: rgba(0, 0, 0, 0.5);
}
button[disabled] {
opacity: 0.5;
}
.method-2-dpi {
margin-top: 1em;
margin-bottom: 1em;
}
.method-2-paper button {
width: 10em;
padding: 4px;
margin: 4px;
}
.download-tiled-image .tab-content {
background: var(--background-color1);
border-radius: 3pt;
}
.dtim-container { display: grid;
grid-template-columns: auto auto;
grid-template-rows: auto auto;
gap: 1em 0px;
grid-auto-flow: row;
grid-template-areas:
"dtim-tab dtim-tab dtim-plc"
"dtim-ok dtim-newtab dtim-cancel";
}
.download-tiled-image-top {
justify-self: center;
grid-area: dtim-tab;
}
.download-tiled-image-placement {
justify-self: center;
grid-area: dtim-plc;
margin-left: 1em;
}
.dtim-ok {
justify-self: center;
align-self: start;
grid-area: dtim-ok;
}
.dtim-newtab {
justify-self: center;
align-self: start;
grid-area: dtim-newtab;
}
.dtim-cancel {
justify-self: center;
align-self: start;
grid-area: dtim-cancel;
}
#tab-content-image-placement img {
margin: 4px;
opacity: 0.3;
border: solid 2px var(--background-color1);
}
#tab-content-image-placement img:hover {
margin: 4px;
opacity: 1;
border: solid 2px var(--accent-color);
filter: brightness(2);
}
#tab-content-image-placement img.active {
margin: 4px;
opacity: 1;
border: solid 2px var(--background-color1);
}
`
document.head.appendChild(styleSheet)
// ---- Placement widget
function updatePlacementWidget(event) {
document.querySelector("#tab-content-image-placement img.active").classList.remove("active")
event.target.classList.add("active")
}
document.querySelectorAll("#tab-content-image-placement img").forEach(
(i) => i.addEventListener("click", updatePlacementWidget)
)
function getPlacement() {
return document.querySelector("#tab-content-image-placement img.active").id.substr(5)
}
// ---- Make the image
function downloadTiledImage(image, width, height, offsetX=0, offsetY=0, new_tab=false) {
const canvas = document.createElement('canvas')
canvas.width = width
canvas.height = height
const context = canvas.getContext('2d')
const w = image.width
const h = image.height
for (var x = offsetX; x < width; x += w) {
for (var y = offsetY; y < height; y += h) {
context.drawImage(image, x, y, w, h)
}
}
if (new_tab) {
var newTab = window.open("")
newTab.document.write(`<html><head><title>${width}×${height}, "${image.dataset["prompt"]}"</title></head><body><img src="${canvas.toDataURL()}"></body></html>`)
} else {
const link = document.createElement('a')
link.href = canvas.toDataURL()
link.download = image.dataset["prompt"].replace(/[^a-zA-Z0-9]+/g, "-").substr(0,22)+crypto.randomUUID()+".png"
link.click()
}
}
function onDownloadTiledImageClick(e, newtab=false) {
var width, height, offsetX, offsetY
if (isTabActive(tabTiledTilesOptions)) {
width = thisImage.width * dtim1_width.value
height = thisImage.height * dtim1_height.value
} else {
if ( dtim2_unit.value == "pixels" ) {
width = dtim2_width.value
height= dtim2_height.value
} else if ( dtim2_unit.value == "mm" ) {
width = Math.floor( dtim2_width.value * dtim2_dpi.value / 25.4 )
height = Math.floor( dtim2_height.value * dtim2_dpi.value / 25.4 )
} else { // inch
width = Math.floor( dtim2_width.value * dtim2_dpi.value )
height = Math.floor( dtim2_height.value * dtim2_dpi.value )
}
}
var placement = getPlacement()
if (placement == "1tl") {
offsetX = 0
offsetY = 0
} else if (placement == "1tr") {
offsetX = width - thisImage.width * Math.ceil( width / thisImage.width )
offsetY = 0
} else if (placement == "1bl") {
offsetX = 0
offsetY = height - thisImage.height * Math.ceil( height / thisImage.height )
} else if (placement == "1br") {
offsetX = width - thisImage.width * Math.ceil( width / thisImage.width )
offsetY = height - thisImage.height * Math.ceil( height / thisImage.height )
} else if (placement == "4center") {
offsetX = width/2 - thisImage.width * Math.ceil( width/2 / thisImage.width )
offsetY = height/2 - thisImage.height * Math.ceil( height/2 / thisImage.height )
} else if (placement == "1center") {
offsetX = width/2 - thisImage.width/2 - thisImage.width * Math.ceil( (width/2 - thisImage.width/2) / thisImage.width )
offsetY = height/2 - thisImage.height/2 - thisImage.height * Math.ceil( (height/2 - thisImage.height/2) / thisImage.height )
}
downloadTiledImage(thisImage, width, height, offsetX, offsetY, newtab)
downloadTiledImageDialog.close()
}
document.getElementById("dti-ok").addEventListener("click", onDownloadTiledImageClick)
document.getElementById("dti-newtab").addEventListener("click", (e) => onDownloadTiledImageClick(e,true))
})()