forked from extern/whisper.cpp
Compare commits
5 Commits
Author | SHA1 | Date | |
---|---|---|---|
b4ebdb6b57 | |||
6e776543f3 | |||
3916503e11 | |||
df37e2b5ff | |||
d76eb894e3 |
2
.gitignore
vendored
2
.gitignore
vendored
@ -1,7 +1,5 @@
|
||||
*.o
|
||||
*.a
|
||||
*.mlmodel
|
||||
*.mlmodelc
|
||||
.cache/
|
||||
.vs/
|
||||
.vscode/
|
||||
|
@ -1,6 +1,6 @@
|
||||
cmake_minimum_required (VERSION 3.0)
|
||||
|
||||
project(whisper.cpp VERSION 1.2.1)
|
||||
project(whisper.cpp VERSION 1.2.0)
|
||||
|
||||
# Add path to modules
|
||||
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake/")
|
||||
@ -54,8 +54,6 @@ if (APPLE)
|
||||
option(WHISPER_NO_AVX "whisper: disable AVX" OFF)
|
||||
option(WHISPER_NO_AVX2 "whisper: disable AVX2" OFF)
|
||||
option(WHISPER_NO_FMA "whisper: disable FMA" OFF)
|
||||
|
||||
option(WHISPER_COREML "whisper: enable Core ML framework" OFF)
|
||||
else()
|
||||
option(WHISPER_SUPPORT_OPENBLAS "whisper: support for OpenBLAS" OFF)
|
||||
endif()
|
||||
@ -88,33 +86,16 @@ endif()
|
||||
|
||||
find_package(Threads REQUIRED)
|
||||
|
||||
# on APPLE
|
||||
if (APPLE)
|
||||
# include Accelerate framework
|
||||
if (NOT WHISPER_NO_ACCELERATE)
|
||||
find_library(ACCELERATE_FRAMEWORK Accelerate)
|
||||
# on APPLE - include Accelerate framework
|
||||
if (APPLE AND NOT WHISPER_NO_ACCELERATE)
|
||||
find_library(ACCELERATE_FRAMEWORK Accelerate)
|
||||
if (ACCELERATE_FRAMEWORK)
|
||||
message(STATUS "Accelerate framework found")
|
||||
|
||||
if (ACCELERATE_FRAMEWORK)
|
||||
message(STATUS "Accelerate framework found")
|
||||
|
||||
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ${ACCELERATE_FRAMEWORK})
|
||||
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_ACCELERATE)
|
||||
else()
|
||||
message(WARNING "Accelerate framework not found")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (WHISPER_COREML)
|
||||
find_library(FOUNDATION_FRAMEWORK Foundation)
|
||||
find_library(COREML_FRAMEWORK CoreML)
|
||||
|
||||
if (COREML_FRAMEWORK)
|
||||
message(STATUS "CoreML framework found")
|
||||
|
||||
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DWHISPER_USE_COREML)
|
||||
else()
|
||||
message(WARNING "CoreML framework not found")
|
||||
endif()
|
||||
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ${ACCELERATE_FRAMEWORK})
|
||||
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_ACCELERATE)
|
||||
else()
|
||||
message(WARNING "Accelerate framework not found")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
@ -200,33 +181,6 @@ if (WHISPER_PERF)
|
||||
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_PERF)
|
||||
endif()
|
||||
|
||||
#
|
||||
# whisper.coreml - Core ML support
|
||||
#
|
||||
|
||||
if (WHISPER_COREML)
|
||||
set(TARGET whisper.coreml)
|
||||
|
||||
add_library(${TARGET}
|
||||
coreml/whisper-encoder.h
|
||||
coreml/whisper-encoder.mm
|
||||
coreml/whisper-encoder-impl.h
|
||||
coreml/whisper-encoder-impl.m
|
||||
)
|
||||
|
||||
include(DefaultTargetOptions)
|
||||
|
||||
target_include_directories(${TARGET} PUBLIC
|
||||
.
|
||||
)
|
||||
|
||||
target_link_libraries(${TARGET} PRIVATE ${FOUNDATION_FRAMEWORK} ${COREML_FRAMEWORK})
|
||||
|
||||
set_target_properties(${TARGET} PROPERTIES
|
||||
COMPILE_FLAGS "-fobjc-arc"
|
||||
)
|
||||
endif()
|
||||
|
||||
#
|
||||
# whisper - this is the main library of the project
|
||||
#
|
||||
@ -246,10 +200,6 @@ target_include_directories(${TARGET} PUBLIC
|
||||
.
|
||||
)
|
||||
|
||||
if (WHISPER_COREML)
|
||||
target_link_libraries(${TARGET} PRIVATE whisper.coreml)
|
||||
endif()
|
||||
|
||||
if (MSVC)
|
||||
target_link_libraries(${TARGET} PRIVATE ${WHISPER_EXTRA_LIBS} ${CMAKE_THREAD_LIBS_INIT})
|
||||
|
||||
|
50
Makefile
50
Makefile
@ -30,8 +30,8 @@ endif
|
||||
# Compile flags
|
||||
#
|
||||
|
||||
CFLAGS = -I. -O3 -DNDEBUG -std=c11 -fPIC
|
||||
CXXFLAGS = -I. -I./examples -O3 -DNDEBUG -std=c++11 -fPIC
|
||||
CFLAGS = -I. -O3 -std=c11 -fPIC
|
||||
CXXFLAGS = -I. -I./examples -O3 -std=c++11 -fPIC
|
||||
LDFLAGS =
|
||||
|
||||
# OS specific
|
||||
@ -132,10 +132,6 @@ ifndef WHISPER_NO_ACCELERATE
|
||||
LDFLAGS += -framework Accelerate
|
||||
endif
|
||||
endif
|
||||
ifdef WHISPER_COREML
|
||||
CXXFLAGS += -DWHISPER_USE_COREML
|
||||
LDFLAGS += -framework Foundation -framework CoreML
|
||||
endif
|
||||
ifdef WHISPER_OPENBLAS
|
||||
CFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/openblas
|
||||
LDFLAGS += -lopenblas
|
||||
@ -145,8 +141,6 @@ ifdef WHISPER_GPROF
|
||||
CXXFLAGS += -pg
|
||||
endif
|
||||
ifneq ($(filter aarch64%,$(UNAME_M)),)
|
||||
CFLAGS += -mcpu=native
|
||||
CXXFLAGS += -mcpu=native
|
||||
endif
|
||||
ifneq ($(filter armv6%,$(UNAME_M)),)
|
||||
# Raspberry Pi 1, 2, 3
|
||||
@ -188,23 +182,11 @@ ggml.o: ggml.c ggml.h
|
||||
whisper.o: whisper.cpp whisper.h
|
||||
$(CXX) $(CXXFLAGS) -c whisper.cpp -o whisper.o
|
||||
|
||||
ifndef WHISPER_COREML
|
||||
WHISPER_OBJ = whisper.o
|
||||
else
|
||||
whisper-encoder.o: coreml/whisper-encoder.mm coreml/whisper-encoder.h
|
||||
$(CXX) -O3 -I . -c coreml/whisper-encoder.mm -o whisper-encoder.o
|
||||
libwhisper.a: ggml.o whisper.o
|
||||
$(AR) rcs libwhisper.a ggml.o whisper.o
|
||||
|
||||
whisper-encoder-impl.o: coreml/whisper-encoder-impl.m coreml/whisper-encoder-impl.h
|
||||
$(CXX) -O3 -I . -fobjc-arc -c coreml/whisper-encoder-impl.m -o whisper-encoder-impl.o
|
||||
|
||||
WHISPER_OBJ = whisper.o whisper-encoder.o whisper-encoder-impl.o
|
||||
endif
|
||||
|
||||
libwhisper.a: ggml.o $(WHISPER_OBJ)
|
||||
$(AR) rcs libwhisper.a ggml.o $(WHISPER_OBJ)
|
||||
|
||||
libwhisper.so: ggml.o $(WHISPER_OBJ)
|
||||
$(CXX) $(CXXFLAGS) -shared -o libwhisper.so ggml.o $(WHISPER_OBJ) $(LDFLAGS)
|
||||
libwhisper.so: ggml.o whisper.o
|
||||
$(CXX) $(CXXFLAGS) -shared -o libwhisper.so ggml.o whisper.o $(LDFLAGS)
|
||||
|
||||
clean:
|
||||
rm -f *.o main stream command talk bench libwhisper.a libwhisper.so
|
||||
@ -218,21 +200,21 @@ CC_SDL=`sdl2-config --cflags --libs`
|
||||
SRC_COMMON = examples/common.cpp
|
||||
SRC_COMMON_SDL = examples/common-sdl.cpp
|
||||
|
||||
main: examples/main/main.cpp $(SRC_COMMON) ggml.o $(WHISPER_OBJ)
|
||||
$(CXX) $(CXXFLAGS) examples/main/main.cpp $(SRC_COMMON) ggml.o $(WHISPER_OBJ) -o main $(LDFLAGS)
|
||||
main: examples/main/main.cpp $(SRC_COMMON) ggml.o whisper.o
|
||||
$(CXX) $(CXXFLAGS) examples/main/main.cpp $(SRC_COMMON) ggml.o whisper.o -o main $(LDFLAGS)
|
||||
./main -h
|
||||
|
||||
stream: examples/stream/stream.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ)
|
||||
$(CXX) $(CXXFLAGS) examples/stream/stream.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ) -o stream $(CC_SDL) $(LDFLAGS)
|
||||
stream: examples/stream/stream.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o whisper.o
|
||||
$(CXX) $(CXXFLAGS) examples/stream/stream.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o whisper.o -o stream $(CC_SDL) $(LDFLAGS)
|
||||
|
||||
command: examples/command/command.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ)
|
||||
$(CXX) $(CXXFLAGS) examples/command/command.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ) -o command $(CC_SDL) $(LDFLAGS)
|
||||
command: examples/command/command.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o whisper.o
|
||||
$(CXX) $(CXXFLAGS) examples/command/command.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o whisper.o -o command $(CC_SDL) $(LDFLAGS)
|
||||
|
||||
talk: examples/talk/talk.cpp examples/talk/gpt-2.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ)
|
||||
$(CXX) $(CXXFLAGS) examples/talk/talk.cpp examples/talk/gpt-2.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ) -o talk $(CC_SDL) $(LDFLAGS)
|
||||
talk: examples/talk/talk.cpp examples/talk/gpt-2.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o whisper.o
|
||||
$(CXX) $(CXXFLAGS) examples/talk/talk.cpp examples/talk/gpt-2.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o whisper.o -o talk $(CC_SDL) $(LDFLAGS)
|
||||
|
||||
bench: examples/bench/bench.cpp ggml.o $(WHISPER_OBJ)
|
||||
$(CXX) $(CXXFLAGS) examples/bench/bench.cpp ggml.o $(WHISPER_OBJ) -o bench $(LDFLAGS)
|
||||
bench: examples/bench/bench.cpp ggml.o whisper.o
|
||||
$(CXX) $(CXXFLAGS) examples/bench/bench.cpp ggml.o whisper.o -o bench $(LDFLAGS)
|
||||
|
||||
#
|
||||
# Audio samples
|
||||
|
@ -4,7 +4,7 @@
|
||||
[](https://opensource.org/licenses/MIT)
|
||||
[](https://www.npmjs.com/package/whisper.cpp/)
|
||||
|
||||
Stable: [v1.2.1](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.2.1) / [Roadmap | F.A.Q.](https://github.com/ggerganov/whisper.cpp/discussions/126)
|
||||
Stable: [v1.2.0](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.2.0) / [Roadmap | F.A.Q.](https://github.com/ggerganov/whisper.cpp/discussions/126)
|
||||
|
||||
High-performance inference of [OpenAI's Whisper](https://github.com/openai/whisper) automatic speech recognition (ASR) model:
|
||||
|
||||
@ -471,7 +471,6 @@ in [models](models).
|
||||
- [NickDarvey/whisper](https://github.com/NickDarvey/whisper)
|
||||
- [X] Python: | [#9](https://github.com/ggerganov/whisper.cpp/issues/9)
|
||||
- [stlukey/whispercpp.py](https://github.com/stlukey/whispercpp.py) (Cython)
|
||||
- [aarnphm/whispercpp](https://github.com/aarnphm/whispercpp) (Pybind11)
|
||||
|
||||
## Examples
|
||||
|
||||
|
Submodule bindings/ios updated: 92d4c5c9a0...d5c6d5c8a3
@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "whisper.cpp",
|
||||
"version": "1.2.1",
|
||||
"version": "1.2.0",
|
||||
"description": "Whisper speech recognition",
|
||||
"main": "whisper.js",
|
||||
"scripts": {
|
||||
|
@ -1,142 +0,0 @@
|
||||
//
|
||||
// CoremlEncoder.h
|
||||
//
|
||||
// This file was automatically generated and should not be edited.
|
||||
//
|
||||
|
||||
#import <Foundation/Foundation.h>
|
||||
#import <CoreML/CoreML.h>
|
||||
#include <stdint.h>
|
||||
#include <os/log.h>
|
||||
|
||||
NS_ASSUME_NONNULL_BEGIN
|
||||
|
||||
|
||||
/// Model Prediction Input Type
|
||||
API_AVAILABLE(macos(10.15), ios(13.0), watchos(6.0), tvos(13.0)) __attribute__((visibility("hidden")))
|
||||
@interface CoremlEncoderInput : NSObject<MLFeatureProvider>
|
||||
|
||||
/// melSegment as 1 × 80 × 3000 3-dimensional array of floats
|
||||
@property (readwrite, nonatomic, strong) MLMultiArray * melSegment;
|
||||
- (instancetype)init NS_UNAVAILABLE;
|
||||
- (instancetype)initWithMelSegment:(MLMultiArray *)melSegment NS_DESIGNATED_INITIALIZER;
|
||||
|
||||
@end
|
||||
|
||||
|
||||
/// Model Prediction Output Type
|
||||
API_AVAILABLE(macos(10.15), ios(13.0), watchos(6.0), tvos(13.0)) __attribute__((visibility("hidden")))
|
||||
@interface CoremlEncoderOutput : NSObject<MLFeatureProvider>
|
||||
|
||||
/// output as multidimensional array of floats
|
||||
@property (readwrite, nonatomic, strong) MLMultiArray * output;
|
||||
- (instancetype)init NS_UNAVAILABLE;
|
||||
- (instancetype)initWithOutput:(MLMultiArray *)output NS_DESIGNATED_INITIALIZER;
|
||||
|
||||
@end
|
||||
|
||||
|
||||
/// Class for model loading and prediction
|
||||
API_AVAILABLE(macos(10.15), ios(13.0), watchos(6.0), tvos(13.0)) __attribute__((visibility("hidden")))
|
||||
@interface CoremlEncoder : NSObject
|
||||
@property (readonly, nonatomic, nullable) MLModel * model;
|
||||
|
||||
/**
|
||||
URL of the underlying .mlmodelc directory.
|
||||
*/
|
||||
+ (nullable NSURL *)URLOfModelInThisBundle;
|
||||
|
||||
/**
|
||||
Initialize CoremlEncoder instance from an existing MLModel object.
|
||||
|
||||
Usually the application does not use this initializer unless it makes a subclass of CoremlEncoder.
|
||||
Such application may want to use `-[MLModel initWithContentsOfURL:configuration:error:]` and `+URLOfModelInThisBundle` to create a MLModel object to pass-in.
|
||||
*/
|
||||
- (instancetype)initWithMLModel:(MLModel *)model NS_DESIGNATED_INITIALIZER;
|
||||
|
||||
/**
|
||||
Initialize CoremlEncoder instance with the model in this bundle.
|
||||
*/
|
||||
- (nullable instancetype)init;
|
||||
|
||||
/**
|
||||
Initialize CoremlEncoder instance with the model in this bundle.
|
||||
|
||||
@param configuration The model configuration object
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithConfiguration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Initialize CoremlEncoder instance from the model URL.
|
||||
|
||||
@param modelURL URL to the .mlmodelc directory for CoremlEncoder.
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Initialize CoremlEncoder instance from the model URL.
|
||||
|
||||
@param modelURL URL to the .mlmodelc directory for CoremlEncoder.
|
||||
@param configuration The model configuration object
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Construct CoremlEncoder instance asynchronously with configuration.
|
||||
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
|
||||
|
||||
@param configuration The model configuration
|
||||
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid CoremlEncoder instance or NSError object.
|
||||
*/
|
||||
+ (void)loadWithConfiguration:(MLModelConfiguration *)configuration completionHandler:(void (^)(CoremlEncoder * _Nullable model, NSError * _Nullable error))handler API_AVAILABLE(macos(11.0), ios(14.0), watchos(7.0), tvos(14.0)) __attribute__((visibility("hidden")));
|
||||
|
||||
/**
|
||||
Construct CoremlEncoder instance asynchronously with URL of .mlmodelc directory and optional configuration.
|
||||
|
||||
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
|
||||
|
||||
@param modelURL The model URL.
|
||||
@param configuration The model configuration
|
||||
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid CoremlEncoder instance or NSError object.
|
||||
*/
|
||||
+ (void)loadContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration completionHandler:(void (^)(CoremlEncoder * _Nullable model, NSError * _Nullable error))handler API_AVAILABLE(macos(11.0), ios(14.0), watchos(7.0), tvos(14.0)) __attribute__((visibility("hidden")));
|
||||
|
||||
/**
|
||||
Make a prediction using the standard interface
|
||||
@param input an instance of CoremlEncoderInput to predict from
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
@return the prediction as CoremlEncoderOutput
|
||||
*/
|
||||
- (nullable CoremlEncoderOutput *)predictionFromFeatures:(CoremlEncoderInput *)input error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Make a prediction using the standard interface
|
||||
@param input an instance of CoremlEncoderInput to predict from
|
||||
@param options prediction options
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
@return the prediction as CoremlEncoderOutput
|
||||
*/
|
||||
- (nullable CoremlEncoderOutput *)predictionFromFeatures:(CoremlEncoderInput *)input options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Make a prediction using the convenience interface
|
||||
@param melSegment as 1 × 80 × 3000 3-dimensional array of floats:
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
@return the prediction as CoremlEncoderOutput
|
||||
*/
|
||||
- (nullable CoremlEncoderOutput *)predictionFromMelSegment:(MLMultiArray *)melSegment error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Batch prediction
|
||||
@param inputArray array of CoremlEncoderInput instances to obtain predictions from
|
||||
@param options prediction options
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
@return the predictions as NSArray<CoremlEncoderOutput *>
|
||||
*/
|
||||
- (nullable NSArray<CoremlEncoderOutput *> *)predictionsFromInputs:(NSArray<CoremlEncoderInput*> *)inputArray options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
@end
|
||||
|
||||
NS_ASSUME_NONNULL_END
|
@ -1,197 +0,0 @@
|
||||
//
|
||||
// CoremlEncoder.m
|
||||
//
|
||||
// This file was automatically generated and should not be edited.
|
||||
//
|
||||
|
||||
#if !__has_feature(objc_arc)
|
||||
#error This file must be compiled with automatic reference counting enabled (-fobjc-arc)
|
||||
#endif
|
||||
|
||||
#import "whisper-encoder-impl.h"
|
||||
|
||||
@implementation CoremlEncoderInput
|
||||
|
||||
- (instancetype)initWithMelSegment:(MLMultiArray *)melSegment {
|
||||
self = [super init];
|
||||
if (self) {
|
||||
_melSegment = melSegment;
|
||||
}
|
||||
return self;
|
||||
}
|
||||
|
||||
- (NSSet<NSString *> *)featureNames {
|
||||
return [NSSet setWithArray:@[@"melSegment"]];
|
||||
}
|
||||
|
||||
- (nullable MLFeatureValue *)featureValueForName:(NSString *)featureName {
|
||||
if ([featureName isEqualToString:@"melSegment"]) {
|
||||
return [MLFeatureValue featureValueWithMultiArray:self.melSegment];
|
||||
}
|
||||
return nil;
|
||||
}
|
||||
|
||||
@end
|
||||
|
||||
@implementation CoremlEncoderOutput
|
||||
|
||||
- (instancetype)initWithOutput:(MLMultiArray *)output {
|
||||
self = [super init];
|
||||
if (self) {
|
||||
_output = output;
|
||||
}
|
||||
return self;
|
||||
}
|
||||
|
||||
- (NSSet<NSString *> *)featureNames {
|
||||
return [NSSet setWithArray:@[@"output"]];
|
||||
}
|
||||
|
||||
- (nullable MLFeatureValue *)featureValueForName:(NSString *)featureName {
|
||||
if ([featureName isEqualToString:@"output"]) {
|
||||
return [MLFeatureValue featureValueWithMultiArray:self.output];
|
||||
}
|
||||
return nil;
|
||||
}
|
||||
|
||||
@end
|
||||
|
||||
@implementation CoremlEncoder
|
||||
|
||||
|
||||
/**
|
||||
URL of the underlying .mlmodelc directory.
|
||||
*/
|
||||
+ (nullable NSURL *)URLOfModelInThisBundle {
|
||||
NSString *assetPath = [[NSBundle bundleForClass:[self class]] pathForResource:@"CoremlEncoder" ofType:@"mlmodelc"];
|
||||
if (nil == assetPath) { os_log_error(OS_LOG_DEFAULT, "Could not load CoremlEncoder.mlmodelc in the bundle resource"); return nil; }
|
||||
return [NSURL fileURLWithPath:assetPath];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Initialize CoremlEncoder instance from an existing MLModel object.
|
||||
|
||||
Usually the application does not use this initializer unless it makes a subclass of CoremlEncoder.
|
||||
Such application may want to use `-[MLModel initWithContentsOfURL:configuration:error:]` and `+URLOfModelInThisBundle` to create a MLModel object to pass-in.
|
||||
*/
|
||||
- (instancetype)initWithMLModel:(MLModel *)model {
|
||||
self = [super init];
|
||||
if (!self) { return nil; }
|
||||
_model = model;
|
||||
if (_model == nil) { return nil; }
|
||||
return self;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Initialize CoremlEncoder instance with the model in this bundle.
|
||||
*/
|
||||
- (nullable instancetype)init {
|
||||
return [self initWithContentsOfURL:(NSURL * _Nonnull)self.class.URLOfModelInThisBundle error:nil];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Initialize CoremlEncoder instance with the model in this bundle.
|
||||
|
||||
@param configuration The model configuration object
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithConfiguration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
return [self initWithContentsOfURL:(NSURL * _Nonnull)self.class.URLOfModelInThisBundle configuration:configuration error:error];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Initialize CoremlEncoder instance from the model URL.
|
||||
|
||||
@param modelURL URL to the .mlmodelc directory for CoremlEncoder.
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
MLModel *model = [MLModel modelWithContentsOfURL:modelURL error:error];
|
||||
if (model == nil) { return nil; }
|
||||
return [self initWithMLModel:model];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Initialize CoremlEncoder instance from the model URL.
|
||||
|
||||
@param modelURL URL to the .mlmodelc directory for CoremlEncoder.
|
||||
@param configuration The model configuration object
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
MLModel *model = [MLModel modelWithContentsOfURL:modelURL configuration:configuration error:error];
|
||||
if (model == nil) { return nil; }
|
||||
return [self initWithMLModel:model];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Construct CoremlEncoder instance asynchronously with configuration.
|
||||
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
|
||||
|
||||
@param configuration The model configuration
|
||||
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid CoremlEncoder instance or NSError object.
|
||||
*/
|
||||
+ (void)loadWithConfiguration:(MLModelConfiguration *)configuration completionHandler:(void (^)(CoremlEncoder * _Nullable model, NSError * _Nullable error))handler {
|
||||
[self loadContentsOfURL:(NSURL * _Nonnull)[self URLOfModelInThisBundle]
|
||||
configuration:configuration
|
||||
completionHandler:handler];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Construct CoremlEncoder instance asynchronously with URL of .mlmodelc directory and optional configuration.
|
||||
|
||||
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
|
||||
|
||||
@param modelURL The model URL.
|
||||
@param configuration The model configuration
|
||||
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid CoremlEncoder instance or NSError object.
|
||||
*/
|
||||
+ (void)loadContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration completionHandler:(void (^)(CoremlEncoder * _Nullable model, NSError * _Nullable error))handler {
|
||||
[MLModel loadContentsOfURL:modelURL
|
||||
configuration:configuration
|
||||
completionHandler:^(MLModel *model, NSError *error) {
|
||||
if (model != nil) {
|
||||
CoremlEncoder *typedModel = [[CoremlEncoder alloc] initWithMLModel:model];
|
||||
handler(typedModel, nil);
|
||||
} else {
|
||||
handler(nil, error);
|
||||
}
|
||||
}];
|
||||
}
|
||||
|
||||
- (nullable CoremlEncoderOutput *)predictionFromFeatures:(CoremlEncoderInput *)input error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
return [self predictionFromFeatures:input options:[[MLPredictionOptions alloc] init] error:error];
|
||||
}
|
||||
|
||||
- (nullable CoremlEncoderOutput *)predictionFromFeatures:(CoremlEncoderInput *)input options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
id<MLFeatureProvider> outFeatures = [self.model predictionFromFeatures:input options:options error:error];
|
||||
if (!outFeatures) { return nil; }
|
||||
return [[CoremlEncoderOutput alloc] initWithOutput:(MLMultiArray *)[outFeatures featureValueForName:@"output"].multiArrayValue];
|
||||
}
|
||||
|
||||
- (nullable CoremlEncoderOutput *)predictionFromMelSegment:(MLMultiArray *)melSegment error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
CoremlEncoderInput *input_ = [[CoremlEncoderInput alloc] initWithMelSegment:melSegment];
|
||||
return [self predictionFromFeatures:input_ error:error];
|
||||
}
|
||||
|
||||
- (nullable NSArray<CoremlEncoderOutput *> *)predictionsFromInputs:(NSArray<CoremlEncoderInput*> *)inputArray options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
id<MLBatchProvider> inBatch = [[MLArrayBatchProvider alloc] initWithFeatureProviderArray:inputArray];
|
||||
id<MLBatchProvider> outBatch = [self.model predictionsFromBatch:inBatch options:options error:error];
|
||||
if (!outBatch) { return nil; }
|
||||
NSMutableArray<CoremlEncoderOutput*> *results = [NSMutableArray arrayWithCapacity:(NSUInteger)outBatch.count];
|
||||
for (NSInteger i = 0; i < outBatch.count; i++) {
|
||||
id<MLFeatureProvider> resultProvider = [outBatch featuresAtIndex:i];
|
||||
CoremlEncoderOutput * result = [[CoremlEncoderOutput alloc] initWithOutput:(MLMultiArray *)[resultProvider featureValueForName:@"output"].multiArrayValue];
|
||||
[results addObject:result];
|
||||
}
|
||||
return results;
|
||||
}
|
||||
|
||||
@end
|
@ -1,22 +0,0 @@
|
||||
// Wrapper of the Core ML Whisper Encoder model
|
||||
//
|
||||
// Code is derived from the work of Github user @wangchou
|
||||
// ref: https://github.com/wangchou/callCoreMLFromCpp
|
||||
|
||||
#if __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct whisper_coreml_context;
|
||||
|
||||
struct whisper_coreml_context * whisper_coreml_init(const char * path_model);
|
||||
void whisper_coreml_free(struct whisper_coreml_context * ctx);
|
||||
|
||||
void whisper_coreml_encode(
|
||||
const whisper_coreml_context * ctx,
|
||||
float * mel,
|
||||
float * out);
|
||||
|
||||
#if __cplusplus
|
||||
}
|
||||
#endif
|
@ -1,61 +0,0 @@
|
||||
#import "coreml/whisper-encoder.h"
|
||||
#import "coreml/whisper-encoder-impl.h"
|
||||
|
||||
#import <CoreML/CoreML.h>
|
||||
|
||||
#include <stdlib.h>
|
||||
|
||||
#if __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct whisper_coreml_context {
|
||||
const void * data;
|
||||
};
|
||||
|
||||
struct whisper_coreml_context * whisper_coreml_init(const char * path_model) {
|
||||
NSString * path_model_str = [[NSString alloc] initWithUTF8String:path_model];
|
||||
|
||||
NSURL * url_model = [NSURL fileURLWithPath: path_model_str];
|
||||
|
||||
const void * data = CFBridgingRetain([[CoremlEncoder alloc] initWithContentsOfURL:url_model error:nil]);
|
||||
|
||||
if (data == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
whisper_coreml_context * ctx = new whisper_coreml_context;
|
||||
|
||||
ctx->data = data;
|
||||
|
||||
return ctx;
|
||||
}
|
||||
|
||||
void whisper_coreml_free(struct whisper_coreml_context * ctx) {
|
||||
CFRelease(ctx->data);
|
||||
delete ctx;
|
||||
}
|
||||
|
||||
void whisper_coreml_encode(
|
||||
const whisper_coreml_context * ctx,
|
||||
float * mel,
|
||||
float * out) {
|
||||
MLMultiArray * inMultiArray = [
|
||||
[MLMultiArray alloc] initWithDataPointer: mel
|
||||
shape: @[@1, @80, @3000]
|
||||
dataType: MLMultiArrayDataTypeFloat32
|
||||
strides: @[@(240000), @(3000), @1]
|
||||
deallocator: nil
|
||||
error: nil
|
||||
];
|
||||
|
||||
CoremlEncoderOutput * outCoreML = [(__bridge id) ctx->data predictionFromMelSegment:inMultiArray error:nil];
|
||||
|
||||
MLMultiArray * outMA = outCoreML.output;
|
||||
|
||||
memcpy(out, outMA.dataPointer, outMA.count * sizeof(float));
|
||||
}
|
||||
|
||||
#if __cplusplus
|
||||
}
|
||||
#endif
|
@ -145,7 +145,15 @@ function loadRemote(url, dst, size_mb, cbProgress, cbReady, cbCancel, cbPrint) {
|
||||
var db = event.target.result;
|
||||
var tx = db.transaction(['models'], 'readwrite');
|
||||
var os = tx.objectStore('models');
|
||||
var rq = os.put(data, url);
|
||||
|
||||
var rq = null;
|
||||
try {
|
||||
var rq = os.put(data, url);
|
||||
} catch (e) {
|
||||
cbPrint('loadRemote: failed to store "' + url + '" in the IndexedDB: \n' + e);
|
||||
cbCancel();
|
||||
return;
|
||||
}
|
||||
|
||||
rq.onsuccess = function (event) {
|
||||
cbPrint('loadRemote: "' + url + '" stored in the IndexedDB');
|
||||
@ -180,7 +188,6 @@ function loadRemote(url, dst, size_mb, cbProgress, cbReady, cbCancel, cbPrint) {
|
||||
|
||||
rq.onabort = function (event) {
|
||||
cbPrint('loadRemote: failed to open IndexedDB: abort');
|
||||
|
||||
cbCancel();
|
||||
};
|
||||
}
|
||||
|
||||
|
@ -352,14 +352,13 @@ bool output_csv(struct whisper_context * ctx, const char * fname) {
|
||||
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
|
||||
|
||||
const int n_segments = whisper_full_n_segments(ctx);
|
||||
fout << "start,end,text\n";
|
||||
for (int i = 0; i < n_segments; ++i) {
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
|
||||
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
|
||||
|
||||
//need to multiply times returned from whisper_full_get_segment_t{0,1}() by 10 to get milliseconds.
|
||||
fout << 10 * t0 << "," << 10 * t1 << ",\"" << text << "\"\n";
|
||||
fout << 10 * t0 << ", " << 10 * t1 << ", \"" << text << "\"\n";
|
||||
}
|
||||
|
||||
return true;
|
||||
|
@ -31,9 +31,9 @@ endif()
|
||||
set_target_properties(${TARGET} PROPERTIES LINK_FLAGS " \
|
||||
--bind \
|
||||
-s USE_PTHREADS=1 \
|
||||
-s PTHREAD_POOL_SIZE=8 \
|
||||
-s INITIAL_MEMORY=1500MB \
|
||||
-s TOTAL_MEMORY=1500MB \
|
||||
-s PTHREAD_POOL_SIZE_STRICT=0 \
|
||||
-s INITIAL_MEMORY=2000MB \
|
||||
-s TOTAL_MEMORY=2000MB \
|
||||
-s FORCE_FILESYSTEM=1 \
|
||||
-s EXPORTED_RUNTIME_METHODS=\"['print', 'printErr', 'ccall', 'cwrap']\" \
|
||||
${EXTRA_FLAGS} \
|
||||
|
@ -10,6 +10,12 @@ std::thread g_worker;
|
||||
|
||||
std::vector<struct whisper_context *> g_contexts(4, nullptr);
|
||||
|
||||
static inline int mpow2(int n) {
|
||||
int p = 1;
|
||||
while (p <= n) p *= 2;
|
||||
return p/2;
|
||||
}
|
||||
|
||||
EMSCRIPTEN_BINDINGS(whisper) {
|
||||
emscripten::function("init", emscripten::optional_override([](const std::string & path_model) {
|
||||
if (g_worker.joinable()) {
|
||||
@ -43,7 +49,7 @@ EMSCRIPTEN_BINDINGS(whisper) {
|
||||
}
|
||||
}));
|
||||
|
||||
emscripten::function("full_default", emscripten::optional_override([](size_t index, const emscripten::val & audio, const std::string & lang, bool translate) {
|
||||
emscripten::function("full_default", emscripten::optional_override([](size_t index, const emscripten::val & audio, const std::string & lang, int nthreads, bool translate) {
|
||||
if (g_worker.joinable()) {
|
||||
g_worker.join();
|
||||
}
|
||||
@ -66,7 +72,7 @@ EMSCRIPTEN_BINDINGS(whisper) {
|
||||
params.print_special = false;
|
||||
params.translate = translate;
|
||||
params.language = whisper_is_multilingual(g_contexts[index]) ? lang.c_str() : "en";
|
||||
params.n_threads = std::min(8, (int) std::thread::hardware_concurrency());
|
||||
params.n_threads = std::min(nthreads, std::min(16, mpow2(std::thread::hardware_concurrency())));
|
||||
params.offset_ms = 0;
|
||||
|
||||
std::vector<float> pcmf32;
|
||||
|
@ -40,21 +40,34 @@
|
||||
|
||||
Note that the computation is quite heavy and may take a few seconds to complete.<br>
|
||||
The transcription results will be displayed in the text area below.<br><br>
|
||||
<b>Important: your browser must support WASM SIMD instructions for this to work.</b>
|
||||
<b>Important:</b>
|
||||
<ul>
|
||||
<li>your browser must support WASM SIMD instructions for this to work</li>
|
||||
<li>quantized models are still in experimental stage (<a href="https://github.com/ggerganov/ggml/pull/27">more info</a>)</li>
|
||||
<li>Firefox cannot load files larger than 256 MB - use Chrome instead</li>
|
||||
</ul>
|
||||
|
||||
<br><br><hr>
|
||||
<hr>
|
||||
|
||||
<div id="model">
|
||||
Whisper model: <span id="model-whisper-status"></span>
|
||||
Whisper models: <span id="model-whisper-status"></span><br><br>
|
||||
<button id="fetch-whisper-tiny-en" onclick="loadWhisper('tiny.en')">tiny.en (75 MB)</button>
|
||||
<button id="fetch-whisper-tiny" onclick="loadWhisper('tiny')">tiny (75 MB)</button>
|
||||
<button id="fetch-whisper-base-en" onclick="loadWhisper('base.en')">base.en (142 MB)</button>
|
||||
<button id="fetch-whisper-base" onclick="loadWhisper('base')">base (142 MB)</button>
|
||||
<button id="fetch-whisper-small-en" onclick="loadWhisper('small.en')">small.en (466 MB)</button>
|
||||
<button id="fetch-whisper-small" onclick="loadWhisper('small')">small (466 MB)</button>
|
||||
<span id="fetch-whisper-progress"></span>
|
||||
|
||||
<input type="file" id="whisper-file" name="file" onchange="loadFile(event, 'whisper.bin')" />
|
||||
<br><br>
|
||||
Quantized models:<br><br>
|
||||
<button id="fetch-whisper-base-en-q4_0" onclick="loadWhisper('base-en-q4_0')">base.en (4bit, 49 MB)</button>
|
||||
<button id="fetch-whisper-base-q4_0" onclick="loadWhisper('base-q4_0')">base (4bit, 49 MB)</button>
|
||||
<button id="fetch-whisper-small-en-q4_0" onclick="loadWhisper('small-en-q4_0')">small.en (4bit, 152 MB)</button>
|
||||
<button id="fetch-whisper-small-q4_0" onclick="loadWhisper('small-q4_0')">small (4bit, 152 MB)</button><br>
|
||||
<button id="fetch-whisper-medium-en-q4_0" onclick="loadWhisper('medium-en-q4_0')">medium.en (4bit, 469 MB)</button>
|
||||
<button id="fetch-whisper-medium-q4_0" onclick="loadWhisper('medium-q4_0')">medium (4bit, 469 MB)</button>
|
||||
<button id="fetch-whisper-large-q4_0" onclick="loadWhisper('large-q4_0')">large (4bit, 985 MB)</button>
|
||||
<span id="fetch-whisper-progress"></span>
|
||||
</div>
|
||||
|
||||
<br>
|
||||
@ -161,6 +174,12 @@
|
||||
<option value="yi">Yiddish</option>
|
||||
</select>
|
||||
</td>
|
||||
<!-- Slider to select number of threads between 1 and 16 -->
|
||||
<td>
|
||||
Threads:
|
||||
<input type="range" id="threads" name="threads" min="1" max="16" value="8" onchange="changeThreads(this.value)" />
|
||||
<span id="threads-value">8</span>
|
||||
</td>
|
||||
<td>
|
||||
<button onclick="onProcess(false);">Transcribe</button>
|
||||
</td>
|
||||
@ -263,11 +282,13 @@
|
||||
|
||||
Module.FS_createDataFile("/", fname, buf, true, true);
|
||||
|
||||
model_whisper = fname;
|
||||
//model_whisper = fname;
|
||||
|
||||
document.getElementById('model-whisper-status').innerHTML = 'loaded "' + model_whisper + '"!';
|
||||
|
||||
printTextarea('storeFS: stored model: ' + fname + ' size: ' + buf.length);
|
||||
|
||||
document.getElementById('model').innerHTML = 'Model fetched: ' + model_whisper;
|
||||
}
|
||||
|
||||
function loadFile(event, fname) {
|
||||
@ -292,6 +313,15 @@
|
||||
document.getElementById('fetch-whisper-tiny' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-base' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-small' ).style.display = 'none';
|
||||
|
||||
document.getElementById('fetch-whisper-base-en-q4_0' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-base-q4_0' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-small-en-q4_0' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-small-q4_0' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-medium-en-q4_0').style.display = 'none';
|
||||
document.getElementById('fetch-whisper-medium-q4_0' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-large-q4_0' ).style.display = 'none';
|
||||
|
||||
document.getElementById('whisper-file' ).style.display = 'none';
|
||||
document.getElementById('model-whisper-status' ).innerHTML = 'loaded model: ' + file.name;
|
||||
}
|
||||
@ -304,6 +334,14 @@
|
||||
'base': 'https://whisper.ggerganov.com/ggml-model-whisper-base.bin',
|
||||
'small.en': 'https://whisper.ggerganov.com/ggml-model-whisper-small.en.bin',
|
||||
'small': 'https://whisper.ggerganov.com/ggml-model-whisper-small.bin',
|
||||
|
||||
'base-en-q4_0': 'https://whisper.ggerganov.com/ggml-model-whisper-base.en-q4_0.bin',
|
||||
'base-q4_0': 'https://whisper.ggerganov.com/ggml-model-whisper-base-q4_0.bin',
|
||||
'small-en-q4_0': 'https://whisper.ggerganov.com/ggml-model-whisper-small.en-q4_0.bin',
|
||||
'small-q4_0': 'https://whisper.ggerganov.com/ggml-model-whisper-small-q4_0.bin',
|
||||
'medium-en-q4_0':'https://whisper.ggerganov.com/ggml-model-whisper-medium.en-q4_0.bin',
|
||||
'medium-q4_0': 'https://whisper.ggerganov.com/ggml-model-whisper-medium-q4_0.bin',
|
||||
'large-q4_0': 'https://whisper.ggerganov.com/ggml-model-whisper-large-q4_0.bin',
|
||||
};
|
||||
|
||||
let sizes = {
|
||||
@ -313,6 +351,14 @@
|
||||
'base': 142,
|
||||
'small.en': 466,
|
||||
'small': 466,
|
||||
|
||||
'base-en-q4_0': 49,
|
||||
'base-q4_0': 49,
|
||||
'small-en-q4_0': 152,
|
||||
'small-q4_0': 152,
|
||||
'medium-en-q4_0': 469,
|
||||
'medium-q4_0': 469,
|
||||
'large-q4_0': 985,
|
||||
};
|
||||
|
||||
let url = urls[model];
|
||||
@ -327,6 +373,15 @@
|
||||
document.getElementById('fetch-whisper-tiny' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-base' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-small' ).style.display = 'none';
|
||||
|
||||
document.getElementById('fetch-whisper-base-en-q4_0' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-base-q4_0' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-small-en-q4_0' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-small-q4_0' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-medium-en-q4_0').style.display = 'none';
|
||||
document.getElementById('fetch-whisper-medium-q4_0' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-large-q4_0' ).style.display = 'none';
|
||||
|
||||
document.getElementById('whisper-file' ).style.display = 'none';
|
||||
document.getElementById('model-whisper-status' ).innerHTML = 'loading model: ' + model;
|
||||
|
||||
@ -337,12 +392,22 @@
|
||||
|
||||
cbCancel = function() {
|
||||
var el;
|
||||
|
||||
el = document.getElementById('fetch-whisper-tiny-en' ); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-base-en' ); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-small-en'); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-tiny' ); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-base' ); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-small' ); if (el) el.style.display = 'inline-block';
|
||||
|
||||
el = document.getElementById('fetch-whisper-base-en-q4_0' ); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-base-q4_0' ); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-small-en-q4_0' ); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-small-q4_0' ); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-medium-en-q4_0'); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-medium-q4_0' ); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-large-q4_0' ); if (el) el.style.display = 'inline-block';
|
||||
|
||||
el = document.getElementById('whisper-file' ); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('model-whisper-status' ); if (el) el.innerHTML = '';
|
||||
};
|
||||
@ -354,7 +419,8 @@
|
||||
// audio file
|
||||
//
|
||||
|
||||
const kMaxAudio_s = 120;
|
||||
const kMaxAudio_s = 30*60;
|
||||
const kMaxRecording_s = 2*60;
|
||||
const kSampleRate = 16000;
|
||||
|
||||
window.AudioContext = window.AudioContext || window.webkitAudioContext;
|
||||
@ -423,7 +489,7 @@
|
||||
doRecording = false;
|
||||
}
|
||||
|
||||
// record up to kMaxAudio_s seconds of audio from the microphone
|
||||
// record up to kMaxRecording_s seconds of audio from the microphone
|
||||
// check if doRecording is false every 1000 ms and stop recording if so
|
||||
// update progress information
|
||||
function startRecording() {
|
||||
@ -479,9 +545,9 @@
|
||||
printTextarea('js: audio recorded, size: ' + audio.length);
|
||||
|
||||
// truncate to first 30 seconds
|
||||
if (audio.length > kMaxAudio_s*kSampleRate) {
|
||||
audio = audio.slice(0, kMaxAudio_s*kSampleRate);
|
||||
printTextarea('js: truncated audio to first ' + kMaxAudio_s + ' seconds');
|
||||
if (audio.length > kMaxRecording_s*kSampleRate) {
|
||||
audio = audio.slice(0, kMaxRecording_s*kSampleRate);
|
||||
printTextarea('js: truncated audio to first ' + kMaxRecording_s + ' seconds');
|
||||
}
|
||||
setAudio(audio);
|
||||
});
|
||||
@ -509,24 +575,31 @@
|
||||
});
|
||||
}
|
||||
|
||||
document.getElementById('progress-bar').style.width = (100*(Date.now() - startTime)/1000/kMaxAudio_s) + '%';
|
||||
document.getElementById('progress-text').innerHTML = (100*(Date.now() - startTime)/1000/kMaxAudio_s).toFixed(0) + '%';
|
||||
document.getElementById('progress-bar').style.width = (100*(Date.now() - startTime)/1000/kMaxRecording_s) + '%';
|
||||
document.getElementById('progress-text').innerHTML = (100*(Date.now() - startTime)/1000/kMaxRecording_s).toFixed(0) + '%';
|
||||
}, 1000);
|
||||
|
||||
printTextarea('js: recording ...');
|
||||
|
||||
setTimeout(function() {
|
||||
if (doRecording) {
|
||||
printTextarea('js: recording stopped after ' + kMaxAudio_s + ' seconds');
|
||||
printTextarea('js: recording stopped after ' + kMaxRecording_s + ' seconds');
|
||||
stopRecording();
|
||||
}
|
||||
}, kMaxAudio_s*1000);
|
||||
}, kMaxRecording_s*1000);
|
||||
}
|
||||
|
||||
//
|
||||
// transcribe
|
||||
//
|
||||
|
||||
var nthreads = 8;
|
||||
|
||||
function changeThreads(value) {
|
||||
nthreads = value;
|
||||
document.getElementById('threads-value').innerHTML = nthreads;
|
||||
}
|
||||
|
||||
function onProcess(translate) {
|
||||
if (!instance) {
|
||||
instance = Module.init('whisper.bin');
|
||||
@ -553,7 +626,7 @@
|
||||
printTextarea('');
|
||||
|
||||
setTimeout(function() {
|
||||
var ret = Module.full_default(instance, audio, document.getElementById('language').value, translate);
|
||||
var ret = Module.full_default(instance, audio, document.getElementById('language').value, nthreads, translate);
|
||||
console.log('js: full_default returned: ' + ret);
|
||||
if (ret) {
|
||||
printTextarea("js: whisper returned: " + ret);
|
||||
|
7
ggml.h
7
ggml.h
@ -198,6 +198,8 @@ struct ggml_object;
|
||||
struct ggml_context;
|
||||
|
||||
enum ggml_type {
|
||||
GGML_TYPE_Q4_0,
|
||||
GGML_TYPE_Q4_1,
|
||||
GGML_TYPE_I8,
|
||||
GGML_TYPE_I16,
|
||||
GGML_TYPE_I32,
|
||||
@ -326,7 +328,10 @@ void ggml_print_objects(const struct ggml_context * ctx);
|
||||
int ggml_nelements(const struct ggml_tensor * tensor);
|
||||
size_t ggml_nbytes (const struct ggml_tensor * tensor);
|
||||
|
||||
size_t ggml_type_size (enum ggml_type type);
|
||||
int ggml_blck_size (enum ggml_type type);
|
||||
size_t ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block
|
||||
float ggml_type_sizef(enum ggml_type type); // ggml_type_size()/ggml_blck_size() as float
|
||||
|
||||
size_t ggml_element_size(const struct ggml_tensor * tensor);
|
||||
|
||||
struct ggml_context * ggml_init(struct ggml_init_params params);
|
||||
|
@ -1,82 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
# This script downloads Whisper model files that have already been converted to Core ML format.
|
||||
# This way you don't have to convert them yourself.
|
||||
|
||||
src="https://huggingface.co/datasets/ggerganov/whisper.cpp-coreml"
|
||||
pfx="resolve/main/ggml"
|
||||
|
||||
# get the path of this script
|
||||
function get_script_path() {
|
||||
if [ -x "$(command -v realpath)" ]; then
|
||||
echo "$(dirname $(realpath $0))"
|
||||
else
|
||||
local ret="$(cd -- "$(dirname "$0")" >/dev/null 2>&1 ; pwd -P)"
|
||||
echo "$ret"
|
||||
fi
|
||||
}
|
||||
|
||||
models_path="$(get_script_path)"
|
||||
|
||||
# Whisper models
|
||||
models=( "tiny.en" "tiny" "base.en" "base" "small.en" "small" "medium.en" "medium" "large-v1" "large" )
|
||||
|
||||
# list available models
|
||||
function list_models {
|
||||
printf "\n"
|
||||
printf " Available models:"
|
||||
for model in "${models[@]}"; do
|
||||
printf " $model"
|
||||
done
|
||||
printf "\n\n"
|
||||
}
|
||||
|
||||
if [ "$#" -ne 1 ]; then
|
||||
printf "Usage: $0 <model>\n"
|
||||
list_models
|
||||
|
||||
exit 1
|
||||
fi
|
||||
|
||||
model=$1
|
||||
|
||||
if [[ ! " ${models[@]} " =~ " ${model} " ]]; then
|
||||
printf "Invalid model: $model\n"
|
||||
list_models
|
||||
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# download Core ML model
|
||||
|
||||
printf "Downloading Core ML model $model from '$src' ...\n"
|
||||
|
||||
cd $models_path
|
||||
|
||||
if [ -f "ggml-$model.mlmodel" ]; then
|
||||
printf "Model $model already exists. Skipping download.\n"
|
||||
exit 0
|
||||
fi
|
||||
|
||||
if [ -x "$(command -v wget)" ]; then
|
||||
wget --quiet --show-progress -O ggml-$model.mlmodel $src/$pfx-$model.mlmodel
|
||||
elif [ -x "$(command -v curl)" ]; then
|
||||
curl -L --output ggml-$model.mlmodel $src/$pfx-$model.mlmodel
|
||||
else
|
||||
printf "Either wget or curl is required to download models.\n"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
printf "Failed to download Core ML model $model \n"
|
||||
printf "Please try again later or download the original Whisper model files and convert them yourself.\n"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
printf "Done! Model '$model' saved in 'models/ggml-$model.mlmodel'\n"
|
||||
printf "Run the following command to compile it:\n\n"
|
||||
printf " $ xcrun coremlc compile ./models/ggml-$model.mlmodel ./models\n\n"
|
||||
printf "You can now use it like this:\n\n"
|
||||
printf " $ ./main -m models/ggml-$model.bin -f samples/jfk.wav\n"
|
||||
printf "\n"
|
274
whisper.cpp
274
whisper.cpp
@ -1,8 +1,5 @@
|
||||
#define WHISPER_BUILD
|
||||
#include "whisper.h"
|
||||
#if WHISPER_USE_COREML
|
||||
#include "coreml/whisper-encoder.h"
|
||||
#endif
|
||||
|
||||
#include "ggml.h"
|
||||
|
||||
@ -255,12 +252,34 @@ static const std::map<e_model, size_t> MEM_REQ_SCRATCH3 = {
|
||||
{ MODEL_LARGE, 9ull*MB },
|
||||
};
|
||||
|
||||
static const std::map<e_model, size_t> MEM_REQ_MODEL = {
|
||||
{ MODEL_TINY, 74ull*MB },
|
||||
{ MODEL_BASE, 142ull*MB },
|
||||
{ MODEL_SMALL, 466ull*MB },
|
||||
{ MODEL_MEDIUM, 1464ull*MB },
|
||||
{ MODEL_LARGE, 2952ull*MB },
|
||||
static const std::map<ggml_type, std::map<e_model, size_t>> MEM_REQ_MODEL = {
|
||||
{ GGML_TYPE_F16,
|
||||
{
|
||||
{ MODEL_TINY, 74ull*MB },
|
||||
{ MODEL_BASE, 142ull*MB },
|
||||
{ MODEL_SMALL, 466ull*MB },
|
||||
{ MODEL_MEDIUM, 1464ull*MB },
|
||||
{ MODEL_LARGE, 2952ull*MB },
|
||||
},
|
||||
},
|
||||
{ GGML_TYPE_Q4_0,
|
||||
{
|
||||
{ MODEL_TINY, 26ull*MB },
|
||||
{ MODEL_BASE, 50ull*MB },
|
||||
{ MODEL_SMALL, 154ull*MB },
|
||||
{ MODEL_MEDIUM, 470ull*MB },
|
||||
{ MODEL_LARGE, 940ull*MB },
|
||||
},
|
||||
},
|
||||
{ GGML_TYPE_Q4_1,
|
||||
{
|
||||
{ MODEL_TINY, 31ull*MB },
|
||||
{ MODEL_BASE, 57ull*MB },
|
||||
{ MODEL_SMALL, 181ull*MB },
|
||||
{ MODEL_MEDIUM, 559ull*MB },
|
||||
{ MODEL_LARGE, 1122ull*MB },
|
||||
},
|
||||
},
|
||||
};
|
||||
|
||||
static const std::map<e_model, size_t> MEM_REQ_KV_SELF = {
|
||||
@ -597,11 +616,6 @@ struct whisper_context {
|
||||
|
||||
int lang_id = 0; // english by default
|
||||
|
||||
std::string path_model; // populated by whisper_init_from_file()
|
||||
#ifdef WHISPER_USE_COREML
|
||||
whisper_coreml_context * ctx_coreml;
|
||||
#endif
|
||||
|
||||
// [EXPERIMENTAL] token-level timestamps data
|
||||
int64_t t_beg = 0;
|
||||
int64_t t_last = 0;
|
||||
@ -689,7 +703,7 @@ static bool kv_cache_reinit(struct whisper_kv_cache & cache) {
|
||||
const ggml_type wtype = cache.k->type;
|
||||
WHISPER_ASSERT(wtype == cache.v->type);
|
||||
|
||||
WHISPER_ASSERT(cache.buf.size() >= 2*n_elements*ggml_type_size(wtype));
|
||||
WHISPER_ASSERT(cache.buf.size() >= 2*n_elements*ggml_type_sizef(wtype));
|
||||
|
||||
struct ggml_init_params params;
|
||||
params.mem_size = cache.buf.size();
|
||||
@ -784,12 +798,25 @@ static bool whisper_model_load(struct whisper_model_loader * loader, whisper_con
|
||||
model.type = e_model::MODEL_LARGE;
|
||||
}
|
||||
|
||||
// for the big tensors, we have the option to store the data in 16-bit floats
|
||||
// for the big tensors, we have the option to store the data in 16-bit floats or quantized
|
||||
// in order to save memory and also to speed up the computation
|
||||
wctx.wtype = model.hparams.f16 ? GGML_TYPE_F16 : GGML_TYPE_F32;
|
||||
wctx.wtype = GGML_TYPE_COUNT;
|
||||
switch (model.hparams.f16) {
|
||||
case 0: wctx.wtype = GGML_TYPE_F32; break;
|
||||
case 1: wctx.wtype = GGML_TYPE_F16; break;
|
||||
case 2: wctx.wtype = GGML_TYPE_Q4_0; break;
|
||||
case 3: wctx.wtype = GGML_TYPE_Q4_1; break;
|
||||
default:
|
||||
{
|
||||
fprintf(stderr, "%s: invalid model (bad f16 value %d)\n", __func__, model.hparams.f16);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
const size_t scale = model.hparams.f16 ? 1 : 2;
|
||||
|
||||
static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", };
|
||||
|
||||
fprintf(stderr, "%s: n_vocab = %d\n", __func__, hparams.n_vocab);
|
||||
fprintf(stderr, "%s: n_audio_ctx = %d\n", __func__, hparams.n_audio_ctx);
|
||||
fprintf(stderr, "%s: n_audio_state = %d\n", __func__, hparams.n_audio_state);
|
||||
@ -800,7 +827,7 @@ static bool whisper_model_load(struct whisper_model_loader * loader, whisper_con
|
||||
fprintf(stderr, "%s: n_text_head = %d\n", __func__, hparams.n_text_head);
|
||||
fprintf(stderr, "%s: n_text_layer = %d\n", __func__, hparams.n_text_layer);
|
||||
fprintf(stderr, "%s: n_mels = %d\n", __func__, hparams.n_mels);
|
||||
fprintf(stderr, "%s: f16 = %d\n", __func__, hparams.f16);
|
||||
fprintf(stderr, "%s: ftype = %s\n", __func__, ftype_str[model.hparams.f16]);
|
||||
fprintf(stderr, "%s: type = %d\n", __func__, model.type);
|
||||
|
||||
// print memory requirements
|
||||
@ -811,7 +838,7 @@ static bool whisper_model_load(struct whisper_model_loader * loader, whisper_con
|
||||
MEM_REQ_SCRATCH1.at (model.type) +
|
||||
MEM_REQ_SCRATCH2.at (model.type) +
|
||||
MEM_REQ_SCRATCH3.at (model.type) +
|
||||
scale*MEM_REQ_MODEL.at (model.type) +
|
||||
scale*MEM_REQ_MODEL.at(wctx.wtype).at(model.type) +
|
||||
scale*MEM_REQ_KV_CROSS.at(model.type) +
|
||||
scale*std::max(MEM_REQ_ENCODE.at(model.type), MEM_REQ_DECODE.at(model.type));
|
||||
|
||||
@ -827,9 +854,9 @@ static bool whisper_model_load(struct whisper_model_loader * loader, whisper_con
|
||||
// always have at least one decoder
|
||||
|
||||
wctx.model.buf = new std::vector<uint8_t>();
|
||||
wctx.model.buf->resize(scale*MEM_REQ_MODEL.at(model.type));
|
||||
wctx.model.buf->resize(scale*MEM_REQ_MODEL.at(wctx.wtype).at(model.type));
|
||||
|
||||
if (!kv_cache_init(model.hparams, scale*MEM_REQ_KV_SELF.at(model.type), wctx.decoders[0].kv_self, wctx.wtype, model.hparams.n_text_ctx)) {
|
||||
if (!kv_cache_init(model.hparams, scale*MEM_REQ_KV_SELF.at(model.type), wctx.decoders[0].kv_self, GGML_TYPE_F16, model.hparams.n_text_ctx)) {
|
||||
fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__);
|
||||
return false;
|
||||
}
|
||||
@ -839,7 +866,7 @@ static bool whisper_model_load(struct whisper_model_loader * loader, whisper_con
|
||||
fprintf(stderr, "%s: kv self size = %7.2f MB\n", __func__, memory_size/1024.0/1024.0);
|
||||
}
|
||||
|
||||
if (!kv_cache_init(model.hparams, scale*MEM_REQ_KV_CROSS.at(model.type), wctx.kv_cross, wctx.wtype, model.hparams.n_audio_ctx)) {
|
||||
if (!kv_cache_init(model.hparams, scale*MEM_REQ_KV_CROSS.at(model.type), wctx.kv_cross, GGML_TYPE_F16, model.hparams.n_audio_ctx)) {
|
||||
fprintf(stderr, "%s: kv_cache_init() failed for cross-attention cache\n", __func__);
|
||||
return false;
|
||||
}
|
||||
@ -971,92 +998,92 @@ static bool whisper_model_load(struct whisper_model_loader * loader, whisper_con
|
||||
|
||||
// encoder
|
||||
{
|
||||
ctx_size += n_audio_ctx*n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_pe;
|
||||
ctx_size += n_audio_ctx*n_audio_state*ggml_type_sizef(GGML_TYPE_F32); // e_pe;
|
||||
|
||||
ctx_size += 3*n_mels*n_audio_state*ggml_type_size(wtype); // e_conv_1_w
|
||||
ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_conv_1_b
|
||||
ctx_size += 3*n_mels*n_audio_state*ggml_type_sizef(GGML_TYPE_F16); // e_conv_1_w
|
||||
ctx_size += n_audio_state*ggml_type_sizef(GGML_TYPE_F32); // e_conv_1_b
|
||||
|
||||
ctx_size += 3*n_audio_state*n_audio_state*ggml_type_size(wtype); // e_conv_2_w
|
||||
ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_conv_2_b
|
||||
ctx_size += 3*n_audio_state*n_audio_state*ggml_type_sizef(GGML_TYPE_F16); // e_conv_2_w
|
||||
ctx_size += n_audio_state*ggml_type_sizef(GGML_TYPE_F32); // e_conv_2_b
|
||||
|
||||
ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_ln_w;
|
||||
ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_ln_b;
|
||||
ctx_size += n_audio_state*ggml_type_sizef(GGML_TYPE_F32); // e_ln_w;
|
||||
ctx_size += n_audio_state*ggml_type_sizef(GGML_TYPE_F32); // e_ln_b;
|
||||
}
|
||||
|
||||
// decoder
|
||||
{
|
||||
ctx_size += n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F32); // d_pe;
|
||||
ctx_size += n_text_ctx*n_text_state*ggml_type_sizef(GGML_TYPE_F32); // d_pe;
|
||||
|
||||
ctx_size += n_vocab*n_text_state*ggml_type_size(wtype); // d_te;
|
||||
ctx_size += n_vocab*n_text_state*ggml_type_sizef(wtype); // d_te;
|
||||
|
||||
ctx_size += n_text_state*ggml_type_size(GGML_TYPE_F32); // d_ln_w;
|
||||
ctx_size += n_text_state*ggml_type_size(GGML_TYPE_F32); // d_ln_b;
|
||||
ctx_size += n_text_state*ggml_type_sizef(GGML_TYPE_F32); // d_ln_w;
|
||||
ctx_size += n_text_state*ggml_type_sizef(GGML_TYPE_F32); // d_ln_b;
|
||||
}
|
||||
|
||||
// encoder layers
|
||||
{
|
||||
ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_w
|
||||
ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_b
|
||||
ctx_size += n_audio_layer*(n_audio_state*ggml_type_sizef(GGML_TYPE_F32)); // mlp_ln_w
|
||||
ctx_size += n_audio_layer*(n_audio_state*ggml_type_sizef(GGML_TYPE_F32)); // mlp_ln_b
|
||||
|
||||
ctx_size += n_audio_layer*(4*n_audio_state*n_audio_state*ggml_type_size(wtype)); // mlp_0_w
|
||||
ctx_size += n_audio_layer*( 4*n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_0_b
|
||||
ctx_size += n_audio_layer*(4*n_audio_state*n_audio_state*ggml_type_sizef(wtype)); // mlp_0_w
|
||||
ctx_size += n_audio_layer*( 4*n_audio_state*ggml_type_sizef(GGML_TYPE_F32)); // mlp_0_b
|
||||
|
||||
ctx_size += n_audio_layer*(4*n_audio_state*n_audio_state*ggml_type_size(wtype)); // mlp_1_w
|
||||
ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_1_b
|
||||
ctx_size += n_audio_layer*(4*n_audio_state*n_audio_state*ggml_type_sizef(wtype)); // mlp_1_w
|
||||
ctx_size += n_audio_layer*( n_audio_state*ggml_type_sizef(GGML_TYPE_F32)); // mlp_1_b
|
||||
|
||||
ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_w
|
||||
ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_b
|
||||
ctx_size += n_audio_layer*(n_audio_state*ggml_type_sizef(GGML_TYPE_F32)); // attn_ln_0_w
|
||||
ctx_size += n_audio_layer*(n_audio_state*ggml_type_sizef(GGML_TYPE_F32)); // attn_ln_0_b
|
||||
|
||||
ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_q_w
|
||||
ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_q_b
|
||||
ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_sizef(wtype)); // attn_q_w
|
||||
ctx_size += n_audio_layer*( n_audio_state*ggml_type_sizef(GGML_TYPE_F32)); // attn_q_b
|
||||
|
||||
ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_k_w
|
||||
ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_sizef(wtype)); // attn_k_w
|
||||
|
||||
ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_v_w
|
||||
ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_v_b
|
||||
ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_sizef(wtype)); // attn_v_w
|
||||
ctx_size += n_audio_layer*( n_audio_state*ggml_type_sizef(GGML_TYPE_F32)); // attn_v_b
|
||||
|
||||
ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_ln_1_w
|
||||
ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_1_b
|
||||
ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_sizef(wtype)); // attn_ln_1_w
|
||||
ctx_size += n_audio_layer*( n_audio_state*ggml_type_sizef(GGML_TYPE_F32)); // attn_ln_1_b
|
||||
}
|
||||
|
||||
// decoder layers
|
||||
{
|
||||
ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_w
|
||||
ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_b
|
||||
ctx_size += n_text_layer*(n_text_state*ggml_type_sizef(GGML_TYPE_F32)); // mlp_ln_w
|
||||
ctx_size += n_text_layer*(n_text_state*ggml_type_sizef(GGML_TYPE_F32)); // mlp_ln_b
|
||||
|
||||
ctx_size += n_text_layer*(4*n_text_state*n_text_state*ggml_type_size(wtype)); // mlp_0_w
|
||||
ctx_size += n_text_layer*( 4*n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_0_b
|
||||
ctx_size += n_text_layer*(4*n_text_state*n_text_state*ggml_type_sizef(wtype)); // mlp_0_w
|
||||
ctx_size += n_text_layer*( 4*n_text_state*ggml_type_sizef(GGML_TYPE_F32)); // mlp_0_b
|
||||
|
||||
ctx_size += n_text_layer*(4*n_text_state*n_text_state*ggml_type_size(wtype)); // mlp_1_w
|
||||
ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_1_b
|
||||
ctx_size += n_text_layer*(4*n_text_state*n_text_state*ggml_type_sizef(wtype)); // mlp_1_w
|
||||
ctx_size += n_text_layer*( n_text_state*ggml_type_sizef(GGML_TYPE_F32)); // mlp_1_b
|
||||
|
||||
ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_w
|
||||
ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_b
|
||||
ctx_size += n_text_layer*(n_text_state*ggml_type_sizef(GGML_TYPE_F32)); // attn_ln_0_w
|
||||
ctx_size += n_text_layer*(n_text_state*ggml_type_sizef(GGML_TYPE_F32)); // attn_ln_0_b
|
||||
|
||||
ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_q_w
|
||||
ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_q_b
|
||||
ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_sizef(wtype)); // attn_q_w
|
||||
ctx_size += n_text_layer*( n_text_state*ggml_type_sizef(GGML_TYPE_F32)); // attn_q_b
|
||||
|
||||
ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_k_w
|
||||
ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_sizef(wtype)); // attn_k_w
|
||||
|
||||
ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_v_w
|
||||
ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_v_b
|
||||
ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_sizef(wtype)); // attn_v_w
|
||||
ctx_size += n_text_layer*( n_text_state*ggml_type_sizef(GGML_TYPE_F32)); // attn_v_b
|
||||
|
||||
ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_ln_1_w
|
||||
ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_1_b
|
||||
ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_sizef(wtype)); // attn_ln_1_w
|
||||
ctx_size += n_text_layer*( n_text_state*ggml_type_sizef(GGML_TYPE_F32)); // attn_ln_1_b
|
||||
//
|
||||
ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_0_w
|
||||
ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_0_b
|
||||
ctx_size += n_text_layer*(n_text_state*ggml_type_sizef(GGML_TYPE_F32)); // cross_attn_ln_0_w
|
||||
ctx_size += n_text_layer*(n_text_state*ggml_type_sizef(GGML_TYPE_F32)); // cross_attn_ln_0_b
|
||||
|
||||
ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_q_w
|
||||
ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_q_b
|
||||
ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_sizef(wtype)); // cross_attn_q_w
|
||||
ctx_size += n_text_layer*( n_text_state*ggml_type_sizef(GGML_TYPE_F32)); // cross_attn_q_b
|
||||
|
||||
ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_k_w
|
||||
ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_sizef(wtype)); // cross_attn_k_w
|
||||
|
||||
ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_v_w
|
||||
ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_v_b
|
||||
ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_sizef(wtype)); // cross_attn_v_w
|
||||
ctx_size += n_text_layer*( n_text_state*ggml_type_sizef(GGML_TYPE_F32)); // cross_attn_v_b
|
||||
|
||||
ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_ln_1_w
|
||||
ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_1_b
|
||||
ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_sizef(wtype)); // cross_attn_ln_1_w
|
||||
ctx_size += n_text_layer*( n_text_state*ggml_type_sizef(GGML_TYPE_F32)); // cross_attn_ln_1_b
|
||||
}
|
||||
|
||||
ctx_size += (15 + 15*n_audio_layer + 24*n_text_layer)*256; // object overhead
|
||||
@ -1102,10 +1129,10 @@ static bool whisper_model_load(struct whisper_model_loader * loader, whisper_con
|
||||
{
|
||||
model.e_pe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_state, n_audio_ctx);
|
||||
|
||||
model.e_conv_1_w = ggml_new_tensor_3d(ctx, wtype, 3, n_mels, n_audio_state);
|
||||
model.e_conv_1_w = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, 3, n_mels, n_audio_state);
|
||||
model.e_conv_1_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, n_audio_state);
|
||||
|
||||
model.e_conv_2_w = ggml_new_tensor_3d(ctx, wtype, 3, n_audio_state, n_audio_state);
|
||||
model.e_conv_2_w = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, 3, n_audio_state, n_audio_state);
|
||||
model.e_conv_2_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, n_audio_state);
|
||||
|
||||
model.e_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
|
||||
@ -1321,9 +1348,21 @@ static bool whisper_model_load(struct whisper_model_loader * loader, whisper_con
|
||||
return false;
|
||||
}
|
||||
|
||||
const size_t bpe = (ftype == 0) ? sizeof(float) : sizeof(ggml_fp16_t);
|
||||
size_t bpe = 0;
|
||||
|
||||
if (nelements*bpe != ggml_nbytes(tensor)) {
|
||||
switch (ftype) {
|
||||
case 0: bpe = ggml_type_size(GGML_TYPE_F32); break;
|
||||
case 1: bpe = ggml_type_size(GGML_TYPE_F16); break;
|
||||
case 2: bpe = ggml_type_size(GGML_TYPE_Q4_0); assert(ne[0] % 64 == 0); break;
|
||||
case 3: bpe = ggml_type_size(GGML_TYPE_Q4_1); assert(ne[0] % 64 == 0); break;
|
||||
default:
|
||||
{
|
||||
fprintf(stderr, "%s: unknown ftype %d in model file\n", __func__, ftype);
|
||||
return false;
|
||||
}
|
||||
};
|
||||
|
||||
if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
|
||||
fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
|
||||
__func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
|
||||
return false;
|
||||
@ -1405,7 +1444,6 @@ static bool whisper_encode(
|
||||
}
|
||||
}
|
||||
|
||||
#ifndef WHISPER_USE_COREML
|
||||
struct ggml_tensor * cur;
|
||||
|
||||
// convolution + gelu
|
||||
@ -1522,14 +1560,14 @@ static bool whisper_encode(
|
||||
ggml_permute(ctx0,
|
||||
ggml_cpy(ctx0,
|
||||
Qcur,
|
||||
ggml_new_tensor_3d(ctx0, wctx.wtype, n_state/n_head, n_head, n_ctx)),
|
||||
ggml_new_tensor_3d(ctx0, GGML_TYPE_F16, n_state/n_head, n_head, n_ctx)),
|
||||
0, 2, 1, 3);
|
||||
|
||||
struct ggml_tensor * K =
|
||||
ggml_permute(ctx0,
|
||||
ggml_cpy(ctx0,
|
||||
Kcur,
|
||||
ggml_new_tensor_3d(ctx0, wctx.wtype, n_state/n_head, n_head, n_ctx)),
|
||||
ggml_new_tensor_3d(ctx0, GGML_TYPE_F16, n_state/n_head, n_head, n_ctx)),
|
||||
0, 2, 1, 3);
|
||||
|
||||
struct ggml_tensor * V =
|
||||
@ -1539,7 +1577,7 @@ static bool whisper_encode(
|
||||
Vcur,
|
||||
n_state/n_head, n_head, n_ctx),
|
||||
1, 2, 0, 3),
|
||||
ggml_new_tensor_3d(ctx0, wctx.wtype, n_ctx, n_state/n_head, n_head)
|
||||
ggml_new_tensor_3d(ctx0, GGML_TYPE_F16, n_ctx, n_state/n_head, n_head)
|
||||
);
|
||||
|
||||
struct ggml_tensor * KQV = ggml_flash_attn(ctx0, Q, K, V, false);
|
||||
@ -1555,7 +1593,7 @@ static bool whisper_encode(
|
||||
ggml_permute(ctx0,
|
||||
ggml_cpy(ctx0,
|
||||
Kcur,
|
||||
ggml_new_tensor_3d(ctx0, wctx.wtype, n_state/n_head, n_head, n_ctx)),
|
||||
ggml_new_tensor_3d(ctx0, GGML_TYPE_F16, n_state/n_head, n_head, n_ctx)),
|
||||
0, 2, 1, 3);
|
||||
|
||||
// K * Q
|
||||
@ -1573,7 +1611,7 @@ static bool whisper_encode(
|
||||
// ggml_permute(ctx0,
|
||||
// ggml_cpy(ctx0,
|
||||
// Vcur,
|
||||
// ggml_new_tensor_3d(ctx0, wctx.wtype, n_state/n_head, n_head, n_ctx)),
|
||||
// ggml_new_tensor_3d(ctx0, GGML_TYPE_F16, n_state/n_head, n_head, n_ctx)),
|
||||
// 1, 2, 0, 3);
|
||||
|
||||
//struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max);
|
||||
@ -1585,7 +1623,7 @@ static bool whisper_encode(
|
||||
Vcur,
|
||||
n_state/n_head, n_head, n_ctx),
|
||||
0, 2, 1, 3),
|
||||
ggml_new_tensor_3d(ctx0, wctx.wtype, n_state/n_head, n_ctx, n_head)
|
||||
ggml_new_tensor_3d(ctx0, GGML_TYPE_F16, n_state/n_head, n_ctx, n_head)
|
||||
);
|
||||
|
||||
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, ggml_transpose(ctx0, V), KQ_soft_max);
|
||||
@ -1643,7 +1681,7 @@ static bool whisper_encode(
|
||||
wctx.use_buf(ctx0, 0);
|
||||
|
||||
cur = ggml_flash_ff(ctx0,
|
||||
ggml_cpy(ctx0, cur, ggml_new_tensor_2d(ctx0, wctx.wtype, n_state, n_ctx)),
|
||||
ggml_cpy(ctx0, cur, ggml_new_tensor_2d(ctx0, GGML_TYPE_F16, n_state, n_ctx)),
|
||||
layer.mlp_0_w, layer.mlp_0_b, layer.mlp_1_w, layer.mlp_1_b);
|
||||
#else
|
||||
wctx.use_buf(ctx0, 0);
|
||||
@ -1714,13 +1752,6 @@ static bool whisper_encode(
|
||||
|
||||
//ggml_graph_print(&gf);
|
||||
}
|
||||
#else
|
||||
wctx.use_buf(ctx0, -1);
|
||||
|
||||
struct ggml_tensor * cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_state, n_ctx);
|
||||
|
||||
whisper_coreml_encode(wctx.ctx_coreml, (float *) mel->data, (float *) cur->data);
|
||||
#endif
|
||||
|
||||
// cur
|
||||
//{
|
||||
@ -2523,20 +2554,6 @@ static std::vector<whisper_vocab::id> tokenize(const whisper_vocab & vocab, cons
|
||||
// interface implementation
|
||||
//
|
||||
|
||||
#ifdef WHISPER_USE_COREML
|
||||
// replace .bin with .mlmodelc
|
||||
static std::string whisper_get_coreml_path(std::string path_bin) {
|
||||
auto pos = path_bin.rfind('.');
|
||||
if (pos != std::string::npos) {
|
||||
path_bin = path_bin.substr(0, pos);
|
||||
}
|
||||
|
||||
path_bin += ".mlmodelc";
|
||||
|
||||
return path_bin;
|
||||
}
|
||||
#endif
|
||||
|
||||
struct whisper_context * whisper_init_from_file(const char * path_model) {
|
||||
whisper_model_loader loader = {};
|
||||
|
||||
@ -2549,7 +2566,6 @@ struct whisper_context * whisper_init_from_file(const char * path_model) {
|
||||
}
|
||||
|
||||
loader.context = &fin;
|
||||
|
||||
loader.read = [](void * ctx, void * output, size_t read_size) {
|
||||
std::ifstream * fin = (std::ifstream*)ctx;
|
||||
fin->read((char *)output, read_size);
|
||||
@ -2566,26 +2582,7 @@ struct whisper_context * whisper_init_from_file(const char * path_model) {
|
||||
fin->close();
|
||||
};
|
||||
|
||||
auto ctx = whisper_init(&loader);
|
||||
|
||||
if (ctx) {
|
||||
ctx->path_model = path_model;
|
||||
#ifdef WHISPER_USE_COREML
|
||||
const auto path_coreml = whisper_get_coreml_path(ctx->path_model);
|
||||
fprintf(stderr, "%s: loading Core ML model from '%s'\n", __func__, path_coreml.c_str());
|
||||
fprintf(stderr, "%s: first run on a device may take a while ...\n", __func__);
|
||||
|
||||
ctx->ctx_coreml = whisper_coreml_init(path_coreml.c_str());
|
||||
if (!ctx->ctx_coreml) {
|
||||
fprintf(stderr, "%s: failed to load Core ML model from '%s'\n", __func__, path_coreml.c_str());
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: Core ML model loaded\n", __func__);
|
||||
#endif
|
||||
}
|
||||
|
||||
return ctx;
|
||||
return whisper_init(&loader);
|
||||
}
|
||||
|
||||
struct whisper_context * whisper_init_from_buffer(void * buffer, size_t buffer_size) {
|
||||
@ -2657,10 +2654,6 @@ void whisper_free(struct whisper_context * ctx) {
|
||||
ggml_free(ctx->decoders[i].kv_self.ctx);
|
||||
}
|
||||
}
|
||||
#ifdef WHISPER_USE_COREML
|
||||
whisper_coreml_free(ctx->ctx_coreml);
|
||||
ctx->ctx_coreml = nullptr;
|
||||
#endif
|
||||
delete ctx;
|
||||
}
|
||||
}
|
||||
@ -4499,23 +4492,32 @@ WHISPER_API int whisper_bench_ggml_mul_mat(int n_threads) {
|
||||
// when F16 is used, there is an extra work buffer of size N*N*sizeof(float)
|
||||
std::vector<char> buf(4llu*N_max*N_max*sizeof(float) + 4*256);
|
||||
|
||||
// put a bunch of random data in the buffer
|
||||
for (size_t i = 0; i < buf.size(); i++) buf[i] = i;
|
||||
|
||||
for (int j = 0; j < (int) sizes.size(); j++) {
|
||||
int n_q4_0 = 0;
|
||||
int n_q4_1 = 0;
|
||||
int n_fp16 = 0;
|
||||
int n_fp32 = 0;
|
||||
|
||||
// GFLOPS/s
|
||||
double s_q4_0 = 0.0;
|
||||
double s_q4_1 = 0.0;
|
||||
double s_fp16 = 0.0;
|
||||
double s_fp32 = 0.0;
|
||||
|
||||
const size_t N = sizes[j];
|
||||
|
||||
for (int k = 0; k < 2; ++k) {
|
||||
const ggml_type wtype = k == 0 ? GGML_TYPE_F16 : GGML_TYPE_F32;
|
||||
for (int k = 0; k < 4; ++k) {
|
||||
const ggml_type wtype =
|
||||
k == 0 ? GGML_TYPE_Q4_0 :
|
||||
k == 1 ? GGML_TYPE_Q4_1 :
|
||||
k == 2 ? GGML_TYPE_F16 :
|
||||
GGML_TYPE_F32;
|
||||
|
||||
double & s = k == 0 ? s_fp16 : s_fp32;
|
||||
int & n = k == 0 ? n_fp16 : n_fp32;
|
||||
double & s = k == 0 ? s_q4_0 : k == 1 ? s_q4_1 : k == 2 ? s_fp16 : s_fp32;
|
||||
int & n = k == 0 ? n_q4_0 : k == 1 ? n_q4_1 : k == 2 ? n_fp16 : n_fp32;
|
||||
|
||||
struct ggml_init_params gparams = {
|
||||
/*.mem_size =*/ buf.size(),
|
||||
@ -4558,8 +4560,8 @@ WHISPER_API int whisper_bench_ggml_mul_mat(int n_threads) {
|
||||
s = ((2.0*N*N*N*n)/tsum)*1e-9;
|
||||
}
|
||||
|
||||
fprintf(stderr, "ggml_mul_mat: %5zu x %5zu: F16 %8.1f GFLOPS (%3d runs) / F32 %8.1f GFLOPS (%3d runs)\n",
|
||||
N, N, s_fp16, n_fp16, s_fp32, n_fp32);
|
||||
fprintf(stderr, "ggml_mul_mat: %4zu x %4zu: Q4_0 %7.1f GFLOPS (%3d runs) / Q4_1 %7.1f GFLOPS (%3d runs) / F16 %7.1f GFLOPS (%3d runs) / F32 %7.1f GFLOPS (%3d runs)\n",
|
||||
N, N, s_q4_0, n_q4_0, s_q4_1, n_q4_1, s_fp16, n_fp16, s_fp32, n_fp32);
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
Reference in New Issue
Block a user