Compare commits

...

265 Commits

Author SHA1 Message Date
ceb77363cd ggml : disable CUDA graphs for non-llama.cpp projects 2024-06-26 20:14:22 +03:00
dc8cc2dd6f whisper : disable CUDA mel + fix FFMPEG 2024-06-26 20:11:38 +03:00
3efedb9511 sync : ggml 2024-06-26 19:40:23 +03:00
e30c679928 whisper : reorganize source code + improve CMake (#2256)
* scripts : update sync [no ci]

* files : reorganize [no ci]

* sync : llama.cpp

* cmake : link math library

* cmake : build normal ggml library

* files : move headers to include

* objc : fix path to ggml-metal.h

* ci : fix WHISPER_CUDA -> GGML_CUDA

* scripts : sync LICENSE [no ci]
2024-06-26 19:34:09 +03:00
bf4cb4abad whisper : optimize fft() function (#2242)
Co-authored-by: Mike Fan <60965742+mike-fzy@users.noreply.github.com>
2024-06-18 18:10:33 +03:00
e293f17d34 talk-llama : sync llama.cpp 2024-06-18 09:45:37 +03:00
5d950c4b8d whisper : use ggml_backend_sched (#2239)
* whisper : use ggml_backend_sched (wip)

* use sched in whisper_allocr

* whisper : single backend in whisper_context

* whisper : remove whisper_state->backends_used

* whisper : remove whisper_context->backend

* whisper : reset scheduler after init

* whisper : fix external encoder (e.g. CoreML)

* whisper : cleanup

* whisper : handle null GPU buffer types + fix sycl

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-06-18 09:39:40 +03:00
820446e230 fix : remove extra files 2024-06-18 09:39:40 +03:00
54d5823ebe scripts : sync ggml-blas 2024-06-18 09:39:40 +03:00
5181494e9f build : update make / cmake 2024-06-18 09:39:40 +03:00
4a6e6e8b30 sync : ggml 2024-06-18 09:39:40 +03:00
de29b193f6 move BLAS to a separate backend (cont) (llama/6210)
ggml-ci
2024-06-18 09:39:40 +03:00
922971041b Vulkan Shader Refactor, Memory Debugging Option (llama/7947)
* Refactor shaders, extract GLSL code from ggml_vk_generate_shaders.py into vulkan-shaders directory

* Improve debug log code

* Add memory debug output option

* Fix flake8

* Fix unnecessary high llama-3 VRAM use
2024-06-18 09:39:40 +03:00
63a767a134 scripts : stop sync whisper example from ggml 2024-06-18 09:39:40 +03:00
30841fa786 cmake : fix sycl build (#0) 2024-06-16 18:19:48 +03:00
3b1ac03828 ggml : remove OpenCL (#0) 2024-06-16 18:19:48 +03:00
990de617b5 sycl : sync (#0) 2024-06-16 18:19:48 +03:00
6975600b4b cuda : enable CUDA graphs (#0) 2024-06-16 18:19:48 +03:00
061eeb9f61 talk-llama : sync llama.cpp 2024-06-16 18:19:48 +03:00
4942b1b428 cmake : fix CUDA build (#0) 2024-06-16 18:19:48 +03:00
3c7cc5c437 sync : ggml
ggml-ci
2024-06-16 18:19:48 +03:00
5cd42ee2cc ggml : fix and optimize ppc64le (ggml/849)
* fix compile issues introduced by loongarch_asx

* restore quant changes to merge

* fix compile issues introduced by loongarch_asx

* further optimize by using vec_msum & vec_sum4s on ppc64le
2024-06-16 18:19:48 +03:00
ee718f3da6 ggml : remove duplicate include of ggml-common.h (ggml/853)
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-06-16 18:19:48 +03:00
63eac1f608 remove global variables (llama/7710)
* separate DPCT helpers outside

* replace global variables with context

* remove useless extra

* update mul_mat condition

* remove duplicate buft initialization

* remove duplicate extra and global work group size

* remove useless backend check

* remove duplicated extras

* use macro for group_size and remove cuda-related
2024-06-16 18:19:48 +03:00
b17ba2815b CUDA: faster q2_K, q3_K MMQ + int8 tensor cores (llama/7921)
* CUDA: faster q2_K, q3_K MMQ + int8 tensor cores

* try CI fix

* try CI fix

* try CI fix

* fix data race

* rever q2_K precision related changes
2024-06-16 18:19:48 +03:00
7a489af2f3 metal : utilize max shared memory for mul_mat_id (llama/7935) 2024-06-16 18:19:48 +03:00
4a4ea13d6d rpc : fix ggml_backend_rpc_supports_buft() (llama/7918) 2024-06-16 18:19:48 +03:00
174a461fc6 move BLAS to a separate backend (llama/6210)
* move BLAS to a separate backend

* rename GGML_USE_OPENBLAS to GGML_USE_BLAS

* alloc : reuse same buffer when the same buffer type if used multiple times

* set number of threads automatically for openblas and blis

* sched : print assignments when GGML_SCHED_DEBUG env variable is set

* sched : allow ops with weights on an incompatible buffer type

This will cause the weight to be copied to a backend that supports the
op, which is very costly. The weight should have been stored in a buffer
of a backend that can run the op, but llama.cpp cannot do this
automatically at the moment.

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-06-16 18:19:48 +03:00
d8b7a24bc9 CUDA: fix broken oob check for FA vec f32 kernel (llama/7904) 2024-06-16 18:19:48 +03:00
acf3832c9c tests : add non-cont unary tests (llama/7857)
* tests : add non-cont unary tests

* ggml : update unary asserts and "supports_op"

ggml-ci
2024-06-16 18:19:48 +03:00
d29ac44303 ggml : improve ggml_is_contiguous logic (llama/7856)
* ggml : improve ggml_is_contiguous logic

ggml-ci

* ggml : support more contiguous cases

ggml-ci
2024-06-16 18:19:48 +03:00
12638dfef0 vulkan: select only one device for single gpu with multiple drivers (llama/7582) 2024-06-16 18:19:48 +03:00
f100b3b523 Update Vulkan RoPE implementation (llama/7818)
* Update Vulkan RoPE implementation

* Return nullptr on alloc_buffer when allocation fails, instead of throwing an exception

Minor fixes

* Fix segfault when running out of VRAM

Co-authored-by: slaren <slarengh@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-06-16 18:19:48 +03:00
a99e213a82 CUDA: int8 tensor cores for MMQ (q4_K, q5_K, q6_K) (llama/7860) 2024-06-16 18:19:48 +03:00
7483d2b61c CUDA: use tensor cores for MMQ (llama/7676)
* CUDA: int8 tensor cores for MMQ (legacy quants)

* fix out-of-bounds writes

* __builtin_assume -> GGML_CUDA_ASSUME

* fix writeback returning too early
2024-06-16 18:19:48 +03:00
1fe5948227 use the correct SYCL context for host USM allocations (llama/7777)
Signed-off-by: Ben Ashbaugh <ben.ashbaugh@intel.com>
2024-06-16 18:19:48 +03:00
760497e1ab CUDA: revise q8_1 data layout for mul_mat_q (llama/7824) 2024-06-16 18:19:48 +03:00
b172e7714c vulkan : reuse parent extra for views (llama/7806)
* vulkan : reuse parent extra for views

* Fix validation error when multiple compute contexts are used in a graph

---------

Co-authored-by: 0cc4m <picard12@live.de>
2024-06-16 18:19:48 +03:00
dc01aadb18 fix softmax r2r result wrong issue (llama/7811) 2024-06-16 18:19:48 +03:00
e08c62149b CUDA: refactor mmq, dmmv, mmvq (llama/7716)
* CUDA: refactor mmq, dmmv, mmvq

* fix out-of-bounds write

* struct for qk, qr, qi

* fix cmake build

* mmq_type_traits
2024-06-16 18:19:48 +03:00
abab4500fa ggml : refactor rope norm/neox (llama/7634)
* ggml : unify rope norm/neox (CPU)

* ggml : fix compile warning

* ggml : remove GLM rope mode

ggml-ci

* metal : better rope implementation

ggml-ci

* cuda : better rope implementation

ggml-ci

* naming : n_orig_ctx -> n_ctx_orig

ggml-ci

* dev : add reminders to update backends

ggml-ci

* vulkan : fix ggml_rope_ext() usage

* cuda : fix array size + indents

ggml-ci
2024-06-16 18:19:48 +03:00
e666315fa8 Allow number of nodes in CUDA graph to change (llama/7738)
Previously the code would have failed to cope in the case that the
number of nodes changes in an existing CUDA graph. This fixes the
issue by removing an unnecessary conditional.
2024-06-16 18:19:48 +03:00
3f869af14c ggml : remove OpenCL (llama/7735)
ggml-ci
2024-06-16 18:19:48 +03:00
cbacb7634c ggml : prevent builds with -ffinite-math-only (llama/7726)
This enforces a check that -fno-finite-math-only was set and that the operating
compiling mode is not in finite maths mode. This is because during rewriting of
silu and softmax for cpu #7154 there emerged an issue where the result that was
observed when >1 slot was nondeterministic as found by @JohannesGaessler.

@LostRuins narrowed the problem down to -ffinite-math-only which was theorised
to be due to SiLU, instead of flushing small values to 0, returns NaN or some
other garbage. @jart proposed a fix that @ggerganov then implemented in this fix

ref https://github.com/ggerganov/llama.cpp/pull/7154#issuecomment-2145661825
2024-06-16 18:19:48 +03:00
6cc3b022ee llama : offload to RPC in addition to other backends (llama/7640)
* llama : offload to RPC in addition to other backends

* - fix copy_tensor being called on the src buffer instead of the dst buffer

- always initialize views in the view_src buffer

- add RPC backend to Makefile build

- add endpoint to all RPC object names

* add rpc-server to Makefile

* Update llama.cpp

Co-authored-by: slaren <slarengh@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-06-16 18:19:48 +03:00
e5e38d4920 ggml : use OpenMP as a thread pool (llama/7606)
* ggml: Added OpenMP for multi-threads processing

* ggml : Limit the number of threads used to avoid deadlock

* update shared state n_threads in parallel region

* clear numa affinity for main thread even with openmp

* enable openmp by default

* fix msvc build

* disable openmp on macos

* ci : disable openmp with thread sanitizer

* Update ggml.c

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-06-16 18:19:48 +03:00
2a6bab5655 Vulkan Mixture of Experts (MoE) support (llama/7628)
* Finish Vulkan mul_mat_id implementation

* Add Vulkan sum_rows and div ops

* Fix MUL_MAT_ID matrix matrix shader

* Fix MUL_MAT_ID matrix vector shader dispatch size

* Fix MUL_MAT_ID matrix vector shader and dispatch code

* Update Vulkan CPU offload for MUL_MAT_ID

* Fix crash when using split mode none and setting a main GPU
2024-06-16 18:19:48 +03:00
8c01c9b85c kompute : implement op_getrows_f32 (llama/6403)
op_getrows_f32 is required since https://github.com/ggerganov/llama.cpp/pull/6122
for the Vulkan w/ Kompute backend to be functional.

As such, implement this op to make this backend functional again.
2024-06-16 18:19:48 +03:00
d1123d795e fix bug introduced in using calloc (llama/7701)
compilade pointed this out on the previous MR
2024-06-16 18:19:48 +03:00
9b3d784020 Fix FlashAttention debug test, FP32 assert (llama/7684) 2024-06-16 18:19:48 +03:00
a16137d13d CUDA: fix Pascal FA, deq. KV to FP16 for batch > 8 (llama/7681) 2024-06-16 18:19:48 +03:00
5582039d0a CUDA: quantized KV support for FA vec (llama/7527)
* CUDA: quantized KV support for FA vec

* try CI fix

* fix commented-out kernel variants

* add q8_0 q4_0 tests

* fix nwarps > batch size

* split fattn compile via extern templates

* fix flake8

* fix metal tests

* fix cmake

* make generate_cu_files.py executable

* add autogenerated .cu files

* fix AMD

* error if type_v != FP16 and not flash_attn

* remove obsolete code
2024-06-16 18:19:48 +03:00
9a16c643e2 ggml : fix loongson compile warnings (llama/7537)
* ggml : fix loongson compile warnings

ggml-ci

* Fix loongarch quantize test fail.

Fix unexpected error introduced during rebase code.

* tests : disable json test due to lack of python on the CI node

ggml-ci

---------

Co-authored-by: junchao-loongson <zhaojunchao@loongson.cn>
2024-06-16 18:19:48 +03:00
10a8a23100 faster avx512 exp implementation (llama/7551)
* faster avx512 exp implementation

* x->r

* improve accuracy, handle special cases

* remove `e`
2024-06-16 18:19:48 +03:00
29cfeef77f ggml : fix loongarch build (O2 issue) (llama/7636) 2024-06-16 18:19:48 +03:00
e66e9ea25b metal : remove invalid asserts (llama/7617) 2024-06-16 18:19:48 +03:00
276779a849 metal : add missing asserts (llama/7617) 2024-06-16 18:19:48 +03:00
1f35ce61c1 ggml : fix YARN + add tests + add asserts (llama/7617)
* tests : add rope tests

ggml-ci

* ggml : fixes (hopefully)

ggml-ci

* tests : add non-cont tests

ggml-ci

* cuda : add asserts for rope/norm + fix DS2

ggml-ci

* ggml : assert contiguousness

* tests : reduce RoPE tests

ggml-ci
2024-06-16 18:19:48 +03:00
4b19cc3ed4 cuda : non-cont concat support (llama/7610)
* tests : add non-cont concat tests

* cuda : non-cont concat support

ggml-ci
2024-06-16 18:19:48 +03:00
a535d348dd llama-bench : add support for the RPC backend (llama/7435) 2024-06-16 18:19:48 +03:00
8f5dc729d9 ggml : use atomic_flag for critical section (llama/7598)
* ggml : use atomic_flag for critical section

* add windows shims
2024-06-16 18:19:48 +03:00
02fc147a0b examples : adapt to new ggml_concat (ggml/0) 2024-06-16 18:19:48 +03:00
109148ac84 ggml : fix typo in ggml.c (llama/7603) 2024-06-16 18:19:48 +03:00
3563473d2c Align GEMM dispatch (llama/7566)
* align GEMM dispatch
2024-06-16 18:19:48 +03:00
046834198d sycl : fix assert (llama/7563) 2024-06-16 18:19:48 +03:00
0a2ad9de06 vulkan: properly initialize vulkan devices for LLAMA_SPLIT_MODE_NONE (llama/7552) 2024-06-16 18:19:48 +03:00
39b0640b09 rpc : resource management rework (llama/7562)
* rpc : resource management rework

* address review comments
2024-06-16 18:19:48 +03:00
8dca71de64 fix ggml_sycl_mul_mat_id() to match the change of api (llama/7436)
* fix mul_mat_id to match the change of api

* rm comment

* rm unused or duplicated code, rename as review comment
2024-06-16 18:19:48 +03:00
812787cbc5 ggml : generalize GGML_OP_CONCAT (llama/7563)
* ggml : generalize GGML_OP_CONCAT (WIP)

ggml-ci

* tests : add dim != 2 tests

* metal : generalize concat kernel

* tests : naming

* cuda : generalize concat kernel

ggml-ci

* sycl : add warning and assert

* ggml : fix op params handling

* metal : bugfix kernel

ggml-ci

* ggml : reimplement CPU and Metal

* cuda : add asserts

ggml-ci

* ggml : fix ptrs

ggml-ci
2024-06-16 18:19:48 +03:00
68ef10805e update HIP_UMA #7399 (llama/7414)
* update HIP_UMA #7399

add use of hipMemAdviseSetCoarseGrain when LLAMA_HIP_UMA is enable.
- get x2 on prompte eval and x1.5 on token gen with rocm6.0 on ryzen 7940HX iGPU (780M/gfx1103)

* simplify code, more consistent style

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-06-16 18:19:48 +03:00
96fdb90f5f Allow multiple copy function pointers for CUDA graph kernel param updates (llama/7565)
CUDA graphs require parameter updates to kernels associated with
GGML_OP_CPY nodes. Previously the implementation only checked for a
single CUDA kernel in such nodes, but this caused a bug in cases where
2 such kernels exist. This fixes the issue by using a vector to allow
multiple function pointers to be stored and checked against.

Fixes #7942
2024-06-16 18:19:48 +03:00
e98f9ac554 Fix q_xxs using mul_mat_q (llama/7459) 2024-06-16 18:19:48 +03:00
02d481595b Add freq factors (llama/7495) 2024-06-16 18:19:48 +03:00
7091c7ab5a metal : add GGML_OP_REPEAT kernels (llama/7557)
ggml-ci
2024-06-16 18:19:48 +03:00
d70ccb75f5 metal : disable FA kernel for HS=256 (llama/7556)
ggml-ci
2024-06-16 18:19:48 +03:00
5ee048eb67 ggml : restore ggml_rope_xpos_inplace (ggml/0)
ggml-ci
2024-06-16 18:19:48 +03:00
37ed71c964 ggml: aarch64: SVE kernels for q8_0_q8_0, q4_0_q8_0 vector dot (llama/7433)
* Add SVE support for q4_0_q8_0 q8_0_q8_0

* remove ifdef
2024-06-16 18:19:48 +03:00
8cd7a3df37 ggml : silence UB sanitizer error during iq2_xxs quantization (llama/0) 2024-06-16 18:19:48 +03:00
04a3279320 ggml : remove ggml_flash_attn and ggml_flash_ff (llama/7463)
ggml-ci
2024-06-16 18:19:48 +03:00
45ddda8e0c ggml : drop support for QK_K=64 (llama/7473)
* ggml : drop support for QK_K=64

ggml-ci

* opencl : restore QK_K=256 define
2024-06-16 18:19:48 +03:00
c41317fd66 Update vulkan rope implementation to support frequency factors (llama/7475) 2024-06-16 18:19:48 +03:00
96b8419b27 CUDA: fix FA out-of-bounds reads (llama/7479) 2024-06-16 18:19:48 +03:00
3c63f4cf35 CUDA: fix FA out-of-bounds writes (llama/7465) 2024-06-16 18:19:48 +03:00
5848dfd9c8 cuda : fix compile warning (llama/7454) 2024-06-16 18:19:48 +03:00
29ab5d0326 CUDA: remove incorrect precision check (llama/7454) 2024-06-16 18:19:48 +03:00
c4d6958b3e cuda : fix rope + add tests (llama/7452)
* cuda : fix rope pos data

ggml-ci

* ggml : drop mode & 1 == 1 support for ggml_rope

ggml-ci

* ggml : support freq_factors for f16 rope (CPU)

ggml-ci

* tests : add rope tests using frequency factors

ggml-ci
2024-06-16 18:19:48 +03:00
c9dcb75118 llama : add phi3 128K model support (llama/7225)
* add phi3 128k support in convert-hf-to-gguf

* add phi3 128k support in cuda

* address build warnings on llama.cpp

* adjust index value in cuda long rope freq factors

* add long rope support in ggml cpu backend

* make freq factors only depend on ctx size

* remove unused rope scaling type 'su' frin gguf converter

* fix flint warnings on convert-hf-to-gguf.py

* set to the short freq factor when context size is small than trained context size

* add one line of comments

* metal : support rope freq_factors

* ggml : update ggml_rope_ext API to support freq. factors

* backends : add dev messages to support rope freq. factors

* minor : style

* tests : update to use new rope API

* backends : fix pragma semicolons

* minor : cleanup

* llama : move rope factors from KV header to tensors

* llama : remove tmp assert

* cuda : fix compile warning

* convert : read/write n_head_kv

* llama : fix uninitialized tensors

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-06-16 18:19:48 +03:00
bbdbc3fc62 metal : handle F16 inf values, fix FA partial offload (llama/7434)
ggml-ci
2024-06-16 18:19:48 +03:00
28c207a541 CUDA: fix unused warning in mmq.cu (llama/7442) 2024-06-16 18:19:48 +03:00
c23f830983 CUDA: deduplicate mmq code (llama/7397) 2024-06-16 18:19:48 +03:00
caeeb32b41 rpc : track allocated buffers (llama/7411)
* rpc : track allocated buffers

ref: #7407

* rpc : pack rpc_tensor tightly
2024-06-16 18:19:48 +03:00
584cc1177a Update SYCL upscale operation (llama/7321)
* Update SYCL upscale operation

* Formatting

* Remove messages
2024-06-16 18:19:48 +03:00
cc1ae10989 ggml-opencl, llama: using reserve() if count already known (llama/7272) 2024-06-16 18:19:48 +03:00
eb26f55b40 ggml : add loongarch lsx and lasx support (llama/6454)
* add loongarch lsx and lasx optimize code

* Add loongarch compilation support to makefile

* revert stb_image.h

* opt bytes_from_nibbles_32 and sum_i16_pairs_float

* fix undeclared

* format code

* update

* update 2

---------

Co-authored-by: Jinyang He <hejinyang@loongson.cn>
2024-06-16 18:19:48 +03:00
eb2b086584 Add provisions for windows support for BF16 code including CMake provision for enabling AVX512_BF16 (llama/7258) 2024-06-16 18:19:48 +03:00
67919cfe11 Vulkan Embedding Fix (llama/7360)
* Fix empty Vulkan host buffers

Add fp32 fp16 matmul shader

Fix matmul shader alignment

* Remove deprecated tensor->backend uses

* Fix Vulkan validation errors on embedding models with no offloaded layers

* Fix Vulkan llava segfault when not offloading layers
2024-06-16 18:19:48 +03:00
bf5fc81a8a ggml : fix another case of quants nans (llama/7387) 2024-06-16 18:19:48 +03:00
2b07dc3186 ggml: implement quantized KV cache for FA (llama/7372) 2024-06-16 18:19:48 +03:00
951c463d39 cuda : clear error after buffer allocation failure (llama/7376) 2024-06-16 18:19:48 +03:00
7f257b210f Capture CUDA logging output (llama/7298)
* logging: output capture in cuda module

* fix compile error

* fix: vsnprintf terminates with 0, string use not correct

* post review

* Update llama.cpp

Co-authored-by: slaren <slarengh@gmail.com>

* Update llama.cpp

Co-authored-by: slaren <slarengh@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-06-16 18:19:48 +03:00
705fe30a02 android : use "ci-android" branch for CI (llama/7341)
* android : use "ci-android" branch for CI

* ggml : disable SIMD exp and silu for 32-bit ARM

ggml-ci

* android : do not fetch, use add_subdirectory instead

* cmake : provide binary dir
2024-06-16 18:19:48 +03:00
45b5b95e29 CUDA: deduplicate FlashAttention code (llama/7352) 2024-06-16 18:19:48 +03:00
f2c47d1e6a cuda : add half2 __shfl_xor() for ROCm 5.5 (llama/7263) 2024-06-16 18:19:48 +03:00
b4bb9b9036 Update and fix Vulkan soft_max and argsort implementations (llama/7237)
* Update and fix Vulkan softmax implementation

* Update and fix Vulkan argsort implementation
2024-06-16 18:19:48 +03:00
2bc6483299 ggml : fix quants nans when all the group weights are very close to zero (llama/7313) 2024-06-16 18:19:48 +03:00
ec52f900e4 CUDA: faster large batch FA without tensor cores (llama/7314) 2024-06-16 18:19:48 +03:00
77d708fabb rpc : set SO_REUSEADDR for the server socket (llama/7320)
ref: #7293
2024-06-16 18:19:48 +03:00
c00149c861 ggml-quants, llama : removed excess checks (llama/7274) 2024-06-16 18:19:48 +03:00
574661f2e6 ggml : rewrite silu and softmax for cpu (llama/7154)
This change upstreams llamafile's vectorized expf() functions. This lets
us compute softmax and silu more accurately than the short[65536] lookup
table that GGML previously used to make this operation go faster. We can
support aarch64 and sse2+ with the worst case rounding error of 2ulp. It
makes make -j8 tests && ./tests/test-backend-ops -o SOFT_MAX -b CPU perf
go 1.5x faster for SSE2+FMA, 1.9x faster for AVX2+FMA and 2.1x on AVX512
2024-06-16 18:19:48 +03:00
7bd69349bf rpc : add command line arg for specifying backend memory
ref: #7293
2024-06-16 18:19:48 +03:00
488ad99c13 Add support for properly optimized Windows ARM64 builds with LLVM and MSVC (llama/7191)
* logging: add proper checks for clang to avoid errors and warnings with VA_ARGS

* build: add CMake Presets and toolchian files for Windows ARM64

* matmul-int8: enable matmul-int8 with MSVC and fix Clang warnings

* ci: add support for optimized Windows ARM64 builds with MSVC and LLVM

* matmul-int8: fixed typos in q8_0_q8_0 matmuls

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* matmul-int8: remove unnecessary casts in q8_0_q8_0

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-06-16 18:19:48 +03:00
7178cceeaa ggml : use dynamic thread scheduling for matrix multiplication (llama/6915)
* Just reordering some structs.

* Adding in the calls to mm_pause

* Passing around the state

* Renaming and moving a bunch of variables around.

* Extracting the logic to it's own function.

* Moving some variable definitions into the chunk function.

* Moving some variables around

* moving src1_cont inside

* Moving row_size

* adding the current_chunk

* Reorg the code.

* Formatting to match the orig patch

* starting to setup the chunking variables

* Starting the buildup of the loop

* The yield shouldn't be necessary.

* adding the looping structure based on the chunk configuration.

* Add in the re-chunking code.

* Making it much more likely to rechunk.

* disable resizing if numa is enabled.

* Updating comments with what we've learned.

* Fix formatting

* Couple more formatting fixes.

* More style fixes.

* Fix Warnings

* Going with unused because there's conditional logic that needs it.

* Update ggml.c

* Update ggml.c

---------
2024-06-16 18:19:48 +03:00
8d55ccdb8c Avoid unnecessarily disabling CUDA graphs (llama/7302)
As discussed in PR #6766, CUDA graphs were being disabled in the presence of long prompts.
This fixes the issue by avoiding the consective update counter from incrementing unnecessarily
for tokens in which cuda graphs are disabled due to batch size > 1.
2024-06-16 18:19:48 +03:00
37a72cb170 ggml : tag ggml_tensor::backend as deprecated (llama/7290) 2024-06-16 18:19:48 +03:00
bf9b69284f Add missing " (llama/7303) 2024-06-16 18:19:48 +03:00
c4de1e19df ggml : add ggml_upscale_ext (ggml/814)
* initial commit with CPU implementation of upscale to shape and test, cuda implementation next

* experimental commit to see if dst shape is correct

* test version

* test

* removed unnecessary params

* refactor

* fixed tests

* ggml : metal impl + cleanup + sycl dev warnings

* patched ggml_upscale cuda op to handle non-contiguous tensors, added test for non-contiguous behavior

* metal : fix upsacle op to support nb00 + style

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-06-16 18:19:48 +03:00
5b7073cae1 scripts : update sync 2024-06-16 12:41:42 +03:00
b29b3b2924 whisper : use ggml-cuda in mel calc, set appropriate device (#2236)
* whisper : use ggml-cuda in mel calc, set appropriate device

* whisper : forbid cuda mel calc on devices with compute < 600, workaround for #2230
2024-06-13 13:16:07 +03:00
420b6abc54 cuda : fix HIPBLAS build (#2234) 2024-06-11 19:14:38 +03:00
99804b0f3e cuda : fix bounds check for src0 rows in MMVQ kernel (#2231)
* cuda : fix bounds check for src0 rows in MMVQ kernel

* Update ggml-cuda/mmvq.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-06-11 17:39:01 +03:00
c55964c956 ci : fix CUDA builds (#2232) 2024-06-11 17:21:30 +03:00
20c542c713 whisper : auto-grow working areas for mel_calc_cuda (#2227)
* whisper : auto-grow working areas for mel_calc_cuda, fixes #2226

* whisper : only calculate mel spectrogram on GPU if audio is <= 5 min
2024-06-10 21:51:32 +03:00
c2bdb960cd whisper : free whisper_mel instances (#2220) 2024-06-10 11:00:15 +03:00
87acd6d629 whisper : whisper_state/backend fixes (#2217)
* whisper : fixes

* ci : WHISPER_CUBLAS -> WHISPER_CUDA
2024-06-06 18:51:36 +03:00
f842d31171 whisper : calculate mel spectrogram directly into a ggml_tensor (#2208)
* whisper : calculate mel spectrogram directly into a ggml_tensor

* whisper : remove unused temp buffer from state

* whisper : fix not initializing wstate.embd_enc
2024-06-06 16:20:46 +03:00
ffef323c4c whisper : add CUDA-specific computation mel spectrograms (#2206)
* whisper : use polymorphic class to calculate mel spectrogram

* whisper : add cuda-specific mel spectrogram calculation

* whisper : conditionally compile cufftGetErrorString to avoid warnings

* build : add new files to makefile

* ruby : add new files to conf script

* build : fix typo in makefile

* whisper : suppress cub warning for deprecated C++ std in whisper-mel-cuda
2024-06-04 09:32:23 +03:00
af5833e298 whisper : remove speed_up and phase_vocoder* functions (#2198)
* whisper : fix cast warning

* whisper : remove phase_vocoder functions, ref #2195

* whisper : remove speed_up from whisper_full_params, closes #2195
2024-05-31 11:37:29 +03:00
b87494bb8f readme : add conan badge (#2196)
* Add conan badge

* Fix markdown formating
2024-05-30 15:43:28 +03:00
ad130431aa readme : add install instructions for Conan (#2189) 2024-05-30 15:06:15 +03:00
e130b66642 whisper: use global cache for sin/cos vals and Hann window (#2194)
- also rename Hanning to Hann as it's named after Julius von Hann
 as per Wikipedia
2024-05-29 19:09:21 +03:00
c7b6988678 release : v1.6.2 2024-05-27 10:35:09 +03:00
05042a782d Revert "whisper : remove extra backend instance (huh?)" (#2182)
This reverts commit 4caa64b73e.
2024-05-27 10:20:25 +03:00
a7dc2aab16 server : fix typo (#2181)
A simple comment typo, PR can be dismissed
2024-05-25 10:46:22 +03:00
22d46b7ba4 ruby : update bindings (#2154)
* update library files

* update whispercpp

* not needed for gem
2024-05-22 23:02:52 +03:00
c10db6ea28 release : v1.6.1 2024-05-21 18:44:37 +03:00
1b51fdf170 examples : add support for decoding input with ffmpeg (Linux) (#2133)
- search for ffmpeg libs/headers at cmake time
- added ffmpeg-transcode.cpp into libcommon if ffmpeg on
- hooked ffmpeg trancoding in common read_wav(...)
- passed test:
./main -m ggml-base.en.bin -f samples/jfk.mp3
2024-05-21 18:31:41 +03:00
adee3f9c1f node : add flash_attn param (#2170) 2024-05-20 09:08:48 +03:00
4798be1f9a ci: Update build.yml to suppress warnings about node.js versions (#2166)
* Update actions to suppress warnings about old node.js

https://github.blog/changelog/2023-09-22-github-actions-transitioning-from-node-16-to-node-20/

* Update actions/upload-artifact, specify android cmdline-tools-version

* Use java 20

gradle 8.1 complains against 21
https://docs.gradle.org/current/userguide/compatibility.html
2024-05-19 11:49:26 +03:00
08981d1bac release : v1.6.0 2024-05-15 09:59:48 +03:00
7094ea5e75 whisper : use flash attention (#2152)
* whisper : use flash attention in the encoder

* whisper : add kv_pad

* whisper : remove extra backend instance (huh?)

* whisper : use FA for cross-attention

* whisper : use FA for self-attention

* whisper : simplify encoder FA

* whisper : add flash_attn runtime parameter

* scripts : add bench log

* scripts : add M1 Pro bench log
2024-05-15 09:38:19 +03:00
9d5771ae43 talk-llama : reject runs without required arguments (#2153)
* Extended talk-llama example to reject runs without required arguments.

Print warning and exit if models are not specified on the command line.

* Update examples/talk-llama/talk-llama.cpp

* Update examples/talk-llama/talk-llama.cpp

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-05-14 21:32:41 +03:00
f56b8305c4 sync : ggml 2024-05-14 19:16:32 +03:00
1056ad762c metal : support FA without mask + add asserts (llama/7278)
* ggml : fa without mask + add asserts

ggml-ci

* metal : support non-contiguous KV

ggml-ci
2024-05-14 19:16:29 +03:00
c451080c8b ggml : add RPC backend (llama/6829)
* ggml : add RPC backend

The RPC backend proxies all operations to a remote server which runs a
regular backend (CPU, CUDA, Metal, etc).

* set TCP_NODELAY

* add CI workflows

* Address review comments

* fix warning

* implement llama_max_devices() for RPC

* Address review comments

* Address review comments

* wrap sockfd into a struct

* implement get_alignment and get_max_size

* add get_device_memory

* fix warning

* win32 support

* add README

* readme : trim trailing whitespace

* Address review comments

* win32 fix

* Address review comments

* fix compile warnings on macos
2024-05-14 19:16:29 +03:00
8e7c22fbdb rm wait() (llama/7233) 2024-05-14 19:16:29 +03:00
e57e95eb0d CUDA: add FP32 FlashAttention vector kernel (llama/7188)
* CUDA: add FP32 FlashAttention vector kernel

* fixup! CUDA: add FP32 FlashAttention vector kernel

* fixup! fixup! CUDA: add FP32 FlashAttention vector kernel

* fixup! fixup! fixup! CUDA: add FP32 FlashAttention vector kernel
2024-05-14 19:16:29 +03:00
130f43e4b8 scripts : sync ggml-rpc 2024-05-14 19:15:35 +03:00
d8356a1cc2 whisper : fix model path encoding in windows (#2086)
* fix: model path encoding in windows

* fix: convert model path to wide string only for MSVC compiler
2024-05-14 09:43:41 +03:00
4ef8d9f44e server : return utf-8 (#2138) 2024-05-13 15:33:46 +03:00
3928dbd206 node : add audio_ctx and audio buffer params (#2123)
* node : add audio_ctx param

* node : support passing audio buffer directly

* node : parse audio_ctx in index.js

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-05-13 15:22:23 +03:00
2ced6f0742 cmake : fix HIP/ROCm build (#2102) 2024-05-13 15:18:43 +03:00
30f73109b8 node : add additional params (#2000)
* Add additional params to addon.node

* Add comma_in_time as parameter

* Fix tests
2024-05-13 15:15:43 +03:00
17fa62d3d3 js : remove un-needed request header from fetchRemote (#2119) 2024-05-13 15:13:19 +03:00
1da5edcde0 cmake : fix metal embed sources path (#2110) 2024-05-13 15:09:59 +03:00
0bb05b113d main : dont print timings with --no-prints (#2108)
Signed-off-by: Daniel Ziegenberg <daniel@ziegenberg.at>
2024-05-13 15:00:19 +03:00
f141b2b938 main : add options for temperature control (#2088)
Add two options:

```
-tp,       --temperature N     [0.00   ] The sampling temperature, between 0 and 1
-tpi,      --temperature-inc N [0.20   ] The increment of temperature, between 0 and 1
```

The sampling temperature, between 0 and 1. Higher values like 0.8 will
make the output more random, while lower values like 0.2 will make it
more focused and deterministic. If set to 0, the model will use log
probability to automatically increase the temperature until certain
thresholds are hit.

Signed-off-by: Daniel Ziegenberg <daniel@ziegenberg.at>
2024-05-13 14:59:44 +03:00
2b434c449e whisper : switch back to F32 mask (#0) 2024-05-13 14:43:43 +03:00
e93081f83f whisper.android : update example, add field to print timestamp (#2072) 2024-05-13 14:30:03 +03:00
b6bbce4ae9 cmake : fix json INTERFACE library (#2069) 2024-05-13 14:29:39 +03:00
7705dc52da main : fix double quote escaping in csv output (#2090) 2024-05-13 11:55:32 +03:00
e6acaf9d91 metal : tune soft_max number of threads (#0) 2024-05-13 11:02:26 +03:00
2c81e6fd51 whisper : remove old flash attn code (#0) 2024-05-13 11:02:26 +03:00
9506267ce5 ggml : try fix ppc64 (#0) 2024-05-13 11:02:26 +03:00
fbeb80b5f0 ggml : remove oboslete alibi code (skipme) (#0) 2024-05-13 11:02:26 +03:00
3fa7d29876 talk-llama : sync llama.cpp 2024-05-13 11:02:26 +03:00
fe179ae0cc sync : ggml 2024-05-13 11:02:26 +03:00
40aeeeecc4 ggml : optimize for ppc64le using VSX intrinsics (ggml/784)
* optimize for ppc64le using VSX intrinsics

* 1. code clean up by removing comments about overflow concern.

2. fix typo in suffix of scaling.

* Continue to fix typo in suffix of scaling for QK_K <> 256

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-05-13 11:02:26 +03:00
5a863fbe18 metal : fix indent (ggml/0) 2024-05-13 11:02:26 +03:00
91c646c61d ggml : restore sigmoid decl order (ggml/0) 2024-05-13 11:02:26 +03:00
accada542a ggml : resolve merge (ggml/0)
ggml-ci
2024-05-13 11:02:26 +03:00
e54329da7b ggml : full ALiBi support (llama/7192)
* ggml : full ALiBi support

* ggml : update ggml_soft_max_ext() CUDA, SYCL

* ggml : ggml_flash_attn_ext() support ALiBi (CPU)

* ggml : ggml_flash_attn_ext() support ALiBi (Metal)

* ggml : fix warning

* ggml : ggml_flash_attn_ext() support ALiBi (CUDA)

ggml-ci

* ggml : fix assert message

* vulkan : add dev notes

* ggml : require mask when using ALiBi

ggml-ci

* convert : fix convert for refact models
2024-05-13 11:02:26 +03:00
284fac39fb metal : fix flash attention kernel requirements (llama/7169)
* metal : fix flash attention kernel requirements

ggml-ci

* metal : fix ggml_metal_supports_op

ggml-ci
2024-05-13 11:02:26 +03:00
fe454b8d9e Minor arithmetic improvement to mmvq wrapper kernel (llama/7172) 2024-05-13 11:02:26 +03:00
c114b75aee Vulkan Bugfixes and Improvements (llama/7084)
* Modify mat mat mul shader for mul_mat_id, modify mat vec mul shaders for single call batch operation

* Further work towards MoE, disabled for now

* Disable MoE code (not ready yet), fix a number of bugs in shaders and Vulkan code

* Add softmax with f16 mask and pos buffer support

* Disable mul_mat_id shaders for now

* Fix flake8

* Fix validation errors caused by empty buffers on larger batch sizes
2024-05-13 11:02:26 +03:00
4be936b88b CUDA: generalize FP16 fattn vec kernel (llama/7061)
* CUDA: generalize FP16 fattn vec kernel

* disable unsupported head sizes for AMD in test

* try AMD fix

* fix batch size 2-8

* partially revert changes
2024-05-13 11:02:26 +03:00
26c550f772 opencl : alignment size converted from bits to bytes (llama/7090)
* opencl alignment size should be converted from bits to bytes

Reference: https://registry.khronos.org/OpenCL/specs/3.0-unified/html/OpenCL_API.html#CL_DEVICE_MEM_BASE_ADDR_ALIGN

> Alignment requirement (in bits) for sub-buffer offsets.

* Update ggml-opencl.cpp for readability using division instead of shift

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

---------

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
2024-05-13 11:02:26 +03:00
24f0aa460b Introduction of CUDA Graphs to LLama.cpp (llama/6766)
* DRAFT: Introduction of CUDA Graphs to LLama.cpp

* FIx issues raised in comments

* Tidied to now only use CUDA runtime (not mixed with driver calls)

* disable for multi-gpu and batch size > 1

* Disable CUDA graphs for old GPU arch and with env var

* added missing CUDA_CHECKs

* Addressed comments

* further addressed comments

* limit to GGML_ALLOW_CUDA_GRAPHS defined in llama.cpp cmake

* Added more comprehensive graph node checking

* With mechanism to fall back if graph capture fails

* Revert "With mechanism to fall back if graph capture fails"

This reverts commit eb9f15fb6fcb81384f732c4601a5b25c016a5143.

* Fall back if graph capture fails and address other comments

* - renamed GGML_ALLOW_CUDA_GRAPHS to GGML_CUDA_USE_GRAPHS

- rename env variable to disable CUDA graphs to GGML_CUDA_DISABLE_GRAPHS

- updated Makefile build to enable CUDA graphs

- removed graph capture failure checking in ggml_cuda_error
  using a global variable to track this is not thread safe, but I am also not safistied with checking an error by string
  if this is necessary to workaround some issues with graph capture with eg. cuBLAS, we can pass the ggml_backend_cuda_context to the error checking macro and store the result in the context

- fixed several resource leaks

- fixed issue with zero node graphs

- changed fixed size arrays to vectors

- removed the count of number of evaluations before start capturing, and instead changed the capture mode to relaxed

- removed the check for multiple devices so that it is still possible to use a single device, instead checks for split buffers to disable cuda graphs with -sm row

- changed the op for checking batch size to GGML_OP_ADD, should be more reliable than GGML_OP_SOFT_MAX

- code style fixes

- things to look into
  - VRAM usage of the cudaGraphExec_t, if it is significant we may need to make it optional
  - possibility of using cudaStreamBeginCaptureToGraph to keep track of which ggml graph nodes correspond to which cuda graph nodes

* fix build without cuda graphs

* remove outdated comment

* replace minimum cc value with a constant

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-05-13 11:02:26 +03:00
69efc39d5c metal : use vm_allocate instead of posix_memalign on macOS (llama/7078)
* fix: use `malloc` instead of `posix_memalign` in `ggml-metal.m` to make it not crash Electron proccesses

* fix: typo

* fix: use `vm_allocate` instead of `posix_memalign`

* fix: don't call `newBufferWithBytesNoCopy` with `NULL` when `ggml_metal_host_malloc` returns `NULL`

* fix: use `vm_allocate` only on macOS
2024-05-13 11:02:26 +03:00
a2ad810118 ggml : introduce bfloat16 support (llama/6412)
* Introduce bfloat16 support

Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as
their canonical floating point format.

      ┌sign
      │
      │   ┌exponent
      │   │
      │   │      ┌mantissa
      │   │      │
      │┌──┴───┐┌─┴───┐
    0b0000000000000000 brain16

This encoding has the same number of exponent bits as float32. That
makes conversion relatively straightforward, even in the absence of
hardware support. For example, converting brain16 to binary32 means
simply shifting 16 bits to the left.

      ┌sign
      │
      │   ┌exponent
      │   │
      │   │      ┌mantissa
      │   │      │
      │┌──┴───┐┌─┴───────────────────┐
    0b00000000000000000000000000000000 IEEE binary32

The issue is that converting bf16 to fp16 can result in information
loss. Only 13% of bf16 numbers can be precisely represented in fp16
which in practice ends up being 99.71% of Mistral 7b v0.2's weights
however there is currently no way other than fp32 to get the others

      ┌sign
      │
      │  ┌exponent
      │  │
      │  │    ┌mantissa
      │  │    │
      │┌─┴─┐┌─┴──────┐
    0b0000000000000000 IEEE binary16

This change fixes that, by adding a bf16 data type to GGML. Support
for CPU inference has been implemented along with optimizations for
the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2
improves somewhere around -0.0024 to -0.0046 compared to using fp16

* Remove GGML code that's not needed

* Minimize the GGML API surface area for BF16

* Remove bf16 luts

* Make the GGML header look nicer

* Fix documentation

* Apply ggerganov's fixes for test-backend-ops

* Add BF16 code for new ggml_validate_row_data() function
2024-05-13 11:02:26 +03:00
1ae1a9cd56 metal : fix unused warning 2024-05-13 11:02:26 +03:00
b5521fea19 Add an option to build without CUDA VMM (llama/7067)
Add an option to build ggml cuda without CUDA VMM
resolves
https://github.com/ggerganov/llama.cpp/issues/6889
https://forums.developer.nvidia.com/t/potential-nvshmem-allocated-memory-performance-issue/275416/4
2024-05-13 11:02:26 +03:00
9b84195225 gguf-split: add --no-tensor-first-split (llama/7072) 2024-05-13 11:02:26 +03:00
11c1df0436 CUDA: CUDART < 11.7 workaround for __hmax, __hmax2 (llama/7019) 2024-05-13 11:02:26 +03:00
c754494fdd switch to using localizedDescription (llama/7010) 2024-05-13 11:02:26 +03:00
1bce67999d metal : remove deprecated error code (llama/7008) 2024-05-13 11:02:26 +03:00
6c39ea46b6 metal : log more info on error (llama/6987) 2024-05-13 11:02:26 +03:00
156a33a990 ggml : add Flash Attention (llama/5021)
* ggml : add ggml_flash_attn_ext API

* ggml : fix GQA support in ggml_flash_attn_ext

* ggml : online attention (CPU)

* metal : initial implementation

* metal : f16 precision

* metal : reduce branches

* metal : specialize for head size

* wip : 8 rows per simd group

* wip : 4 rows per simd group

* wip : template for rows per warp

* metal : parallelize across KV size

* metal : parallel reduce across heads

* metal : efficient flash_attn_f16 implementation

* metal : avoid redundant loads of the attention

* metal : scale and mask in matrix form

* metal : fix comment

* llama : avoid ggml_cast, use F32 query

* metal : add parallel reduce version (disabled)

* metal : move output into local memory + optimize

- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments

* metal : add tests, fix scaling, support C > 32

* metal : improve precision

* ggml : fix f16 mad

* metal : minor

* metal : support Q > 8

* tests : add ATTN tests

* metal : disable buffer allocation logs

* tests : more

* metal : faster inner loop for C == 32

* metal : fix array initialization

* tests : ifdef

* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext

* ggml : fix ggml_soft_max mask requirement

* cuda : fix soft_max to use correct mask size

* cuda : add flash_attn kernel (wip)

* metal : optimize softmax for C > 32

* metal : optimize softmax

* tests : minor fix

* cuda : avoid zeroing fragments

* tests : update dims

* cuda : fix __hisinf() result check

* cuda : avoid warp_reduce for smax

* cuda : use int instead of int64_t

Noticeably improves performance (thanks to Johannes)

* cuda : make loops use the same loop values

Thanks Johannes again for the tip

* cuda : unroll some of the loops

* cuda : avoid __hisinf branches

* cuda : use half2 in softmax

* cuda : switch to 1 warp for bs > 16

* cuda : speed-up reduce part of the kernel

* cuda : unroll Q*K^T loop

* cuda : fix -INF block check

* cuda : simplify softmax

* cuda : fix matrix names

* cuda : minor

* llama : adapt to F16 KQ_pos

* llama : adapt new models to F16 KQ_mask

* ggml : fix F16 store (ARM NEON)

* llama : fix type of KQ_mask and KQ_pos

* ggml : fix CPU soft_max

* tests : add hs=256

* cuda : fix build

* metal : improve perf via smaller int registers

* cuda : adapt soft_max to F16 mask and pos

* CUDA: faster FlashAttention, kernel for bs == 1

* 16 cols for Phi-2

* no vec for hs, no hs==256 ncols==32 for Volta

* adjust kernel selection logic

* 4 warps, 256 stride for all D

* no ncols == 64

* Multiple parallel blocks for batch size 1

* fix compile warnings

* fix excessive KQ_b loads

* fix cmake build

* fix KV cache padding, NaN from INFINITY (llama/6438)

* llama : flash_attn cparam + fix defrag

* server: support flash_attn param

* server: bench: enable flash_attn param

* CUDA: refactor host code, dyn. par. blocks

* fix flash_attn_vec_f16 race condition

* flush softmax exp below threshold to 0

* store temp KQ in registers

* Calculate KQ as FP32 if KQV has GGML_PREC_F32

* Add __hgt2_mask implementation for CUDA 11

* fix KQ FP32 precision fpr parallel_blocks > 1

* llama-bench : add -fa,--flash-attn arg

* metal : add BS=1 kernel for flash attention (llama/6508)

* metal : add BS=1 kernel for flash attention (wip)

* metal : support more than 1 warps

* metal : opts

* metal : opt

* metal : switch to parallel reduce

* metal : reduce registers

* metal : simplify

* metal : initial FA vec kernel

* metal : use F32 attention accumulators

* batched-bench : add fattn arg

* llama : simplify llama_build_kv_store

ggml-ci

* llama : adapt build_olmo to changes

* ggml : fix arm fp16 store on windows

* metal : clean-up

* metal : clean-up kernel code

* metal : minor

* tests : remove benchmarks

ggml-ci

* ggml : fix avx512 const correctness

ggml-ci

* ggml : fix soft_max with bias on CPU

ggml-ci

* common : print --flash-attn in help

* ggml : fix num dimensions in ggml_flash_attn_ext

* llama : force disable flash attention for incompatible models

* ggml : ggml_soft_max support F16/F32 mask/pos

ggml-ci

* cuda : uint -> uint32_t

* cuda : "constexpr dim3" -> "const dim3"

ggml-ci

* cuda : try to fix __hgt2_mask

ggml-ci

* ggml : add TODO's for F16/F32 mask/pos support in other backends

* llama : replace bool need_kq_pos with use_alibi

* llama : prep ALiBi support for BERT models

ggml-ci

* llama : fix n_batch requirements

ggml-ci

* cont

* server : add help for --flash-attn arg

* llama : disable FA for AMD

* tests : remove TMP_ATTN_BENCH

ggml-ci

* llama : support save/load state with FA enabled

ggml-ci

* ci : add CUDA save-load-state tests

ggml-ci

* llama : llama_kv_cache_clear zeroes data + fix save-load seq

ggml-ci

* llama : fix copy-paste errors, add TODO

* llama : disallow incompatible states

* llama : update llama_state_get_size after v_trans field

* metal : remove tmp log

* llama : add static reminder for llama_state_get_size

* metal : fix max nsg

ggml-ci

* ci : fix arg order

ggml-ci

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-05-13 11:02:26 +03:00
5167ebdfca ggml : fix __MSC_VER -> _MSC_VER (llama/6977)
ggml-ci
2024-05-13 11:02:26 +03:00
b574646d75 Fix more int overflow during quant (PPL/CUDA). (llama/6563)
* Fix more int overflow during quant.

* Fix some more int overflow in softmax.

* Revert back to int64_t.
2024-05-13 11:02:26 +03:00
388c3462a6 gguf : enforce that tensor names are unique (llama/6905)
* not allow adding duplicated tensor name

* no duplicated tensor while reading gguf

* typo

* throw exception inside llama_model_loader

Co-authored-by: slaren <slarengh@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-05-13 11:02:26 +03:00
9ad202bee9 add device version in device list (llama/6959)
Co-authored-by: arthw <>
2024-05-13 11:02:26 +03:00
f0d3fb4a7e Reset schedule earlier to allow overlap with ggml graph computation on device (llama/6933)
* Reset schedule earlier to allow overlap with graph computation on device
2024-05-13 11:02:26 +03:00
9d4c8b8aa5 add basic tensor data validation function (llama/6884)
* add basic tensor data validation function

* add --check-tensors command line argument

tensor validation is disabled by default and can be enabled by adding
`--check-tensors` to the command line arguments.

quantize always validates tensors.
2024-05-13 11:02:26 +03:00
ecfac1e240 gguf : fix mismatch between alloc and free functions (llama/6929) 2024-05-13 11:02:26 +03:00
6f7140f568 Merge pull request from GHSA-p5mv-gjc5-mwqv
* always use calloc

clamp n_kv on failure to read a kv

* ggml : alternative ctx->header.n_kv update

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-05-13 11:02:26 +03:00
05b17112cf ggml : fix redefinition of vaddvq_f32 for 32-bit ARM (llama/6906) 2024-05-13 11:02:26 +03:00
a15fb5cd79 ggml : fix MIN / MAX macros (llama/6904)
ggml-ci
2024-05-13 11:02:26 +03:00
63fd148d8f ggml : move 32-bit arm compat in ggml-impl.h (llama/6865)
ggml-ci
2024-05-13 11:02:26 +03:00
6c3971b29b llamafile : improve sgemm.cpp (llama/6796)
* llamafile : improve sgemm.cpp

- Re-enable by default
- Fix issue described in #6716
- Make code more abstract, elegant, and maintainable
- Faster handling of weirdly shaped `m` an `n` edge cases

* Address review comments

* Help clang produce fma instructions

* Address review comments
2024-05-13 11:02:26 +03:00
a6d264f331 ggml : fix calloc argument ordering. (llama/6820)
Latest gcc complains here:
/home/airlied/devel/llama.cpp/ggml-alloc.c: In function ‘ggml_gallocr_new_n’:
/home/airlied/devel/llama.cpp/ggml-alloc.c:374:59: warning: ‘calloc’ sizes specified with ‘sizeof’ in the earlier argument and not in the later argument [-Wcalloc-transposed-args]
  374 |     ggml_gallocr_t galloc = (ggml_gallocr_t)calloc(sizeof(struct ggml_gallocr), 1);
      |                                                           ^~~~~~
/home/airlied/devel/llama.cpp/ggml-alloc.c:374:59: note: earlier argument should specify number of elements, later size of each element

and a bunch more.

calloc is specified to take nmemb first then size, so realign the code.

In a couple of places there was a * x, 1 so I fixed those to use calloc properly.
2024-05-13 11:02:26 +03:00
2959686019 ggml : fix ggml_backend_cpu_supports_op() for CPY (llama/0) 2024-05-13 11:02:26 +03:00
c96b0a938e ggml : group all experts in a single ggml_mul_mat_id (llama/6505)
* ggml : group all experts in a single ggml_mul_mat_id
cuda : improve mmid row copy

* cuda : fix bin bcast with non-cont src0

* test-backend-ops : only run all mul mat tests for base types

* llama : disable moe offloading with SYCL

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-05-13 11:02:26 +03:00
c97796aa0f ggml : fix llamafile sgemm wdata offsets (llama/6710)
ggml-ci
2024-05-13 11:02:26 +03:00
7a4f7d825e ggml : add llamafile sgemm (llama/6414)
This change upstreams llamafile's cpu matrix multiplication kernels
which improve image and prompt evaluation speed. For starters, Q4_0
and Q8_0 weights should go ~40% faster on CPU. The biggest benefits
are with data types like f16 / f32, which process prompts 2x faster
thus making them faster than quantized data types for prompt evals.

This change also introduces bona fide AVX512 support since tinyBLAS
is able to exploit the larger register file. For example, on my CPU
llama.cpp llava-cli processes an image prompt at 305 tokens/second,
using the Q4_K and Q4_0 types, which has always been faster than if
we used f16 LLaVA weights, which at HEAD go 188 tokens/second. With
this change, f16 LLaVA performance leap frogs to 464 tokens/second.

On Intel Core i9-14900K this change improves F16 prompt perf by 5x.
For example, using llama.cpp at HEAD with Mistral 7b f16 to process
a 215 token prompt will go 13 tok/sec. This change has fixes making
it go 52 tok/sec. It's mostly thanks to my vectorized outer product
kernels but also because I added support for correctly counting the
number of cores on Alderlake, so the default thread count discounts
Intel's new efficiency cores. Only Linux right now can count cores.

This work was sponsored by Mozilla who's given permission to change
the license of this code from Apache 2.0 to MIT. To read more about
what's improved, and how it works, see: https://justine.lol/matmul/
2024-05-13 11:02:26 +03:00
fdb2c87350 llama : add qwen2moe (llama/6074)
* support qwen2moe

* fix-review

* metal : support unary ops for nelements % 4 != 0

* metal : require contiguousness for float4 unary kernels

* metal : require contiguousness for float4 unary kernels (cont)

* fix-review

* names : for brevity "SHARED_EXP" -> "SHEXP"

* llama : reuse build_moe_ffn()

* llama : add model type name

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-05-13 11:02:26 +03:00
98c0b77e0c fix mul_mat_id() for new input, make the ut pass (llama/6682) 2024-05-13 11:02:26 +03:00
9d6d50d933 Added support for GGML_OP_CLAMP in Metal (llama/6662)
* Added support for GGML_OP_CLAMP in Metal

* Corrected size

---------

Co-authored-by: dave-fl <dave@Davids-MacBook-Pro.local>
2024-05-13 11:02:26 +03:00
c1320c1f0c fix memcpy() crash, add missed cmd in guide, fix softmax (llama/6622)
* disable mmap to fix memcpy crash, add missed cmd in guide, fix softmax

* refactor to disable mmap for SYCL backend

* fix compile error in other os

* refactor the solution, use host buf to fix it, instead of disable mmap

* keep to support mmap()

* use host buff to reduce malloc times

* revert to malloc/free solution, for threaad safe
2024-05-13 11:02:26 +03:00
66aaf03a7a CUDA: fix matrix multiplication logic for tests (llama/6667) 2024-05-13 11:02:26 +03:00
00a0947c65 metal : unify mul_mv_id kernels (llama/6556) 2024-05-13 11:02:26 +03:00
60f3713026 llama : add gguf_remove_key + remove split meta during quantize (llama/6591)
* Remove split metadata when quantize model shards

* Find metadata key by enum

* Correct loop range for gguf_remove_key and code format

* Free kv memory

---------

Co-authored-by: z5269887 <z5269887@unsw.edu.au>
2024-05-13 11:02:26 +03:00
37e6757453 feat: implemented sigmoid function (ggml/806)
* added sigmoid function

* implemented metal kernel for sigmoid

* implemented cuda kernel for sigmoid

* added sigmoid unary op and incremented count
2024-05-13 11:02:26 +03:00
8dcefdf4a9 build: fix and ignore msvc warnings (ggml/805) 2024-05-13 11:02:26 +03:00
73d13ad19a ggml : expose SSE3 and SSSE3 for MSVC when AVX is available (#2128) 2024-05-08 18:33:43 +03:00
b6680fab50 build : improve disabling AVX-512 (#2129)
* cmake : make WHISPER_NO_AVX512=ON disable all subsets of AVX-512

Previously it happened only for MSVC, but it makes sense to have the
same behavior for other compilers too.

* make : reorder x86 ISA extensions in chronological order

And update compiler flags at the end to ease modifying conditions.

* make : support WHISPER_NO_AVX512=1 for disabling all AVX-512 subsets.

That way you do not have to override each AVX-512 subset setting
individually if it has been turned on during autodetection.
2024-05-08 18:32:43 +03:00
f760756078 minor: add CMakeSettings.json to gitignore (#2094) 2024-05-08 11:03:21 +03:00
58210d6a76 examples : fix node compilation (#2115)
* node : fix compilation and update examples

* node : fix readme

* Update addon.node test
2024-05-02 22:52:55 +01:00
8fac6455ff make : change GNU make default CXX from g++ to c++ (#2100) 2024-04-28 22:54:21 +01:00
22b6598cc9 Remove unnecessary memory reallocation in fft (#2080)
fft_out needs to be twice the frame_size, not the frame_step.  It is resized in fft() anyway, but this change prevents an unnecessary reallocation.

n_fft must match the mel filter size, so it is best not to calculate it from the framesize.

We only need to get the magnitudes for half the spectrum since the other half is a mirror and not used in the mel filter loop later.
2024-04-28 18:36:12 +01:00
858452d58d models : disable old script (#2079) 2024-04-24 14:56:30 +03:00
7f85e1d7fd whisper : more prominent log message for sub-1s audio (#2065) 2024-04-24 14:46:06 +03:00
b0c3cbf2e8 main : pass nullptr when regex is empty (#2070) 2024-04-17 12:23:47 +03:00
a750868428 readme : add up-to-date repository for Python bindings (#2063)
README
2024-04-16 14:15:52 +03:00
7395c70a74 release : v1.5.5 2024-04-16 14:08:31 +03:00
9fab28135c server : add dtw (#2044)
* server.cpp: add dtw

* Update examples/server/server.cpp

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-15 22:16:58 +03:00
08d3eef97d build : fix embedded Metal library generation (#2045) 2024-04-15 20:23:05 +03:00
1b5439a6c2 node : support no timestamps (#2048)
* fix: node: do not compute timestamps if you do not need them

* feat: add no_timestamps parameter to node addon
2024-04-15 20:03:34 +03:00
c7f95b7ca2 build : detect AVX512 in Makefile, add AVX512 option in CMake (#2043)
* make : add AVX512 detection to Makefile and CMakeLists.txt

* make : autodetect more AVX512 instruction subsets

* cmake : do not default to AVX512, must be enabled explicitly

* cmake : enable a set of AVX512 subsets, when AVX512 is turned on

* make : consolidate AVX512 subsets, add AVX512 VBMI

* cmake : revert to NO AVX512 setting, add settings for AVX512 VNNI and VBMI

* make : re-introduce AVX512VNNI back

* cmake : remove superfluous comment line
2024-04-15 20:02:09 +03:00
5c554c04ff whisper.nvim : fix missing reference to "model" variable (#2049) 2024-04-15 19:41:28 +03:00
c383f091a1 whisper : update grammar-parser.cpp (#2058)
preceeding -> preceding
2024-04-15 19:40:27 +03:00
8f253ef3af sync : ggml 2024-04-09 20:27:55 +03:00
c7dc37f97c license : update copyright notice + add AUTHORS 2024-04-09 20:27:44 +03:00
526332873b llama : add Command R Plus support (llama/6491)
* Add Command R Plus GGUF

* Add Command R Plus GGUF

* Loading works up to LayerNorm2D

* Export new tensors in 1D so they are not quantized.

* Fix embedding layer based on Noeda's example

* Whitespace

* Add line

* Fix unexpected tokens on MPS. Re-add F16 fix. ((Noeda)

* dranger003: Fix block index overflow in CUDA dequantizing.

* Reverted blocked multiplication code as it still has issues and could affect other Llama arches

* export norms as f32

* fix overflow issues during quant and other cleanup

* Type convention

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* dranger003: Fix more int overflow during quant.

---------

Co-authored-by: S <seast@Ss-Mac-Studio.local>
Co-authored-by: S <s@example.com>
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-09 20:26:18 +03:00
1d2721ca72 remove row=1 cond (llama/6532) 2024-04-09 20:26:18 +03:00
219e601dab support/fix OPs GGML_TYPE_IQ4_NL, GGML_TYPE_IQ4_XS, GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ3_S, GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M (llama/6521) 2024-04-09 20:26:18 +03:00
3b8aade3c2 scripts : update sync 2024-04-09 20:25:50 +03:00
52ccd4a3a8 files : rename ./extra to ./scripts 2024-04-09 20:13:41 +03:00
5275074d37 whisper : fix DTW memory access (#2012)
* Fix DTW memory access

* Memory fix - Apply changes from denersc
2024-04-09 18:38:19 +03:00
c15b4cda7d common : fix file-handle leak in read_wav() (#2026)
Now it cleans up in case of error.
2024-04-09 18:34:34 +03:00
d3cfb6ca2b main : set stdin to binary mode on Windows (#2025) 2024-04-09 18:33:32 +03:00
956ef860bc cmake : support for CPU BLAS build via Intel MKL (#2024) 2024-04-09 18:32:46 +03:00
671b4bde6c main : allow a response-file as the sole parameter (#2019)
* The "main" example now allows a response-file as the sole parameter.

A response-file is a text file with command-line parameters, one per line.
Prefix the name of the response-file with "@" to identify it as such.
It's used under MS Windows to work around command-line length limits.
It may be useful under other platforms to simplify character-escaping.

* minor : style

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-09 18:31:16 +03:00
c8eeb93a6a whisper : suppress tokens with a regex (#1997)
* Allow a regular expression to describe tokens to suppress.

Example: --suppress-tokens-re "[,\.]|[ ]?[0-9]+" will suppress commas, periods, and numeric tokens.

Technique inspired by https://github.com/openai/whisper/discussions/1041

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Blind change to fix Java test.

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-09 18:27:28 +03:00
319fe5146e cmake : create solution folders (#2004)
* Create solution folders in the CMake build.

* Fixed non-SDL2 build.

* Fixed emscripten build.
2024-04-09 18:23:33 +03:00
13c22321d1 sync : ggml 2024-04-07 17:04:56 +03:00
ccbe9d5676 extra : sync grammar-parser 2024-04-07 17:04:22 +03:00
81a3c41aa0 talk-llama : sync llama.cpp 2024-04-07 16:21:08 +03:00
a50207c65d sync : ggml 2024-04-07 16:18:11 +03:00
97878e53fd sync : llama.cpp (skip)
ggml-ci
2024-04-07 16:15:57 +03:00
61b05815e0 Fixed minor bug when enabling FP16 for non intel targets (llama/6464)
* moved INTEL_MKL guard from gemm_impl to gemm (wrapper)

* Update ggml-sycl.cpp

Co-authored-by: AidanBeltonS <87009434+AidanBeltonS@users.noreply.github.com>

---------

Co-authored-by: AidanBeltonS <87009434+AidanBeltonS@users.noreply.github.com>
2024-04-07 16:15:57 +03:00
1dce94cf26 ggml : mul_mat_id use the same tensor for all the experts (llama/6387)
* ggml : update mul_mat_id to use the same tensor for all the experts

* update cuda

* minor

* update metal

* update test-backend-ops

* fix cuda

* Update ggml-metal.m

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* update convert.py

* update convert-hf-to-gguf.py

* update convert.py for mixtral hf models

* Update convert-hf-to-gguf.py

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* cuda : support non-pow-2 number of experts

* allow quantize to work for split and merged experts models in the same way

* cleanup + disable mmap automatically with split tensors models

* update imatrix

* test-backend-ops : test qwen argsort

* update grok model loading

* llama : add merged experts tensors to the grok tensor map

* minor

* gguf : bump version

* fix quantizing of merged experts

* convert-hf-to-gguf.py : update grok (untested)

* make linter happy

* cuda/argsort : use shared memory instead of pool memory

* convert : fix grok tensor names

* metal : add support for non-pow-2 argsort

* llama : more loader cleanup, better error checking

* cuda : fix warning

* llama : still use mmap for loading old models, but copy the data to a host buffer

* add review note

* llama : remove ffn tensor counting + add sanity check

ggml-ci

* convert : fix handling of n_experts == None

ggml-ci

* imatrix : fix ncall counters

* llama : produce error if imatrix size does not match

* quantize : terminate on errors + trace logs

ggml-ci

* metal : pad shared memory to 16 bytes

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-07 16:15:57 +03:00
f12e982c0b Disable iqx on windows as WA (llama/6435)
* disable iqx on windows as WA

* array instead of global_memory
2024-04-07 16:15:57 +03:00
fa966b9b40 Vulkan k-quant mmq and ggml-backend offload functionality (llama/6155)
* Fix Vulkan no kv offload incoherence

* Add k-quant mul mat mat shaders

* Rework working buffer allocation, reduces vram use noticeably

Clean up cpu assist code, replaced with ggml-backend offload function

* Default to all dedicated GPUs

* Add fallback for integrated GPUs if no dedicated GPUs are found

* Add debug info which device is allocating memory

* Fix Intel dequant issue

Fix validation issue

* Fix Vulkan GGML_OP_GET_ROWS implementation

* Clean up merge artifacts

* Remove Vulkan warning
2024-04-07 16:15:57 +03:00
b83a9fc9d3 fix set main gpu crash (llama/6339) 2024-04-07 16:15:56 +03:00
3adbf2fb03 ggml : fix bounds checking of zero size views (llama/6347) 2024-04-07 16:15:56 +03:00
700d146127 backend : fix typo in scheduler documentation (ggml/781)
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-04-07 16:15:56 +03:00
a74fde9b4c extra : sync ggml-cuda folder 2024-04-07 16:10:44 +03:00
1d7657f409 ggml: bypass code incompatible with CUDA < 11.1 (#2020)
`cudaHostRegisterReadOnly` parameter was only introduced in CUDA 11.1

See this issue for more details:
https://github.com/ggerganov/whisper.cpp/issues/2007
2024-04-04 14:49:24 +02:00
ac283dbce7 ci : add building in MSYS2 environments (Windows) (#1994) 2024-03-30 09:20:20 +02:00
1e8f28c42a build : use pkg-config for OpenBLAS (#1778)
* make : use pkg-config for finding CFLAGS & LDFLAGS needed by OpenBLAS

That way building on *nix like environments (including MSYS2 on Windows)
with WHISPER_OPENBLAS=1 works out of the box.

Fix handling of WHISPER_OPENBLAS, so that empty value or 0 won't be
misinterpreted by make as enabled.  Mind that it's not intended to
detect CMake false constants (OFF NO FALSE N).  make is not CMake.

By default OpenBLAS with 64-bit interface is used, but that can be
changed with `WHISPER_OPENBLAS_INTERFACE64=0` if 32-bit one is desired.

If OpenBLAS headers and library are respectively in include/ and lib/
subdirectories of given path, then you can specify it, e.g.
`OPENBLAS_PATH=/usr/local/openblas`, and this will take precedence over
any pkg-config file.

If there is no pkg-config file (.pc) for OpenBLAS and OPENBLAS_PATH is
empty, then headers are assumed to be in /usr/include/openblas and
library as assumed to be called 'openblas64' (or 'openblas' if
`WHISPER_OPENBLAS_INTERFACE64=0`).  If different headers location should
be used, then it can be done, e.g.
`WHISPER_BLAS_CFLAGS=-I/usr/local/include/openblas`.
If different library should be used, it can be specified, e.g.
`WHISPER_BLAS_LIB=openblasp64` (pthreads version as seen on Fedora), or
you can provide LDFLAGS needed to link with OpenBLAS directly:
`WHISPER_BLAS_LDFLAGS="-L/usr/local/lib/openblas -lopenblas64"`.

Current solution is flexible enough to handle most cases out there
without needlessly hardcoding possible OpenBLAS installation details.

* cmake : fix how pkg-config is used for finding include dirs and libraries needed by OpenBLAS

That way building on *nix like environments (including MSYS2 on Windows)
with -DWHISPER_OPENBLAS=ON should work out of the box as long as you
have CMake 3.25 or newer.

Make OPENBLAS_PATH environment variable supported not only on Windows.
It sets OpenBLAS include dir to ${OPENBLAS_PATH}/include and library to
${WHISPER_BLAS_LIB} (name without prefixes and suffixes) in
${OPENBLAS_PATH}/lib and avoids further package finding.

By default OpenBLAS with 64-bit interface is used (equivalent to setting
`-DWHISPER_BLAS_LIB=openblas64`), but that can be changed with
`-DWHISPER_OPENBLAS_INTERFACE64=OFF` (equivalent to setting
`-DWHISPER_BLAS_LIB=openblas`) if 32-bit one is desired.

Turn on BLA_STATIC for FindBLAS only when WHISPER_STATIC is enabled.
BLA_STATIC may not work as expected for pkg-config based operation.

Get rid of supporting BLAS_HOME environment variable.  If OPENBLAS_PATH
is insufficient in your case, there is no pkg-config file to rely on,
then you can manually specify include dir, e.g.
`-DBLAS_INCLUDE_DIRS=/usr/local/include/openblas`, and library, e.g.
`-DBLAS_LIBRARIES=/usr/local/lib/libopenblas.so`.

* make / cmake : use OpenBLAS with 32-bit interface by default.

OpenBLAS w/o INTERFACE64=1 vel USE_64BITINT=1 seems to be more common.

* cmake : hardcode "lib" prefix for OpenBLAS lib filename (even on Windows)

* cmake : hardcode OpenBLAS library name when building in MSVC (Windows)

Most *nix like environments (including MSYS2 on Windows) have OpenBLAS
packages that allow coexistence of OpenBLAS builds with 32-bit and
64-bit interface (w/o and w/ OPENBLAS_USE64BITINT defined) and they
differ by not having or having "64" suffix in their library filenames.
That's not the case for OpenBLAS prebuilt libraries for Windows.
2024-03-29 15:53:26 +02:00
fc366b807a main : add command-style grammar (#1998)
* Implemented command-style grammar in the main example.

Mostly just copied the relevant parts from the command example.

* main : code style

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-28 12:02:10 +02:00
9fb308d90f make : add grammar parser to common objects 2024-03-28 11:59:48 +02:00
2948c740a2 sync : ggml (#2001)
* sync : update scripts

* sync : ggml

* talk-llama : sync llama.cpp

* make : WHISPER_CUBLAS -> WHISPER_CUDA

* ci : try to fix sycl build

* talk-llama : fix make build
2024-03-27 18:55:10 +02:00
1558ec5a16 whisper : improve handling of prompts (#1981)
* whisper : improve handling of prompts

* whisper : add whisper_token_count helper
2024-03-25 14:48:19 +02:00
fff24a0148 whisper : improve support for distil-large-v3 (#1982) 2024-03-21 18:53:30 +02:00
435 changed files with 239553 additions and 53775 deletions

View File

@ -21,7 +21,7 @@ COPY . .
# Set nvcc architecture
ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
# Enable cuBLAS
ENV WHISPER_CUBLAS=1
ENV GGML_CUDA=1
RUN make

View File

@ -14,7 +14,7 @@ ARG CUDA_DOCKER_ARCH=all
# Set nvcc architecture
ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
# Enable cuBLAS
ENV WHISPER_CUBLAS=1
ENV GGML_CUDA=1
RUN apt-get update && \
apt-get install -y build-essential \

View File

@ -15,10 +15,10 @@ jobs:
steps:
- name: Clone
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: Set up QEMU
uses: docker/setup-qemu-action@v2
uses: docker/setup-qemu-action@v3
- name: Build ${{ matrix.arch }}
run: |
@ -36,7 +36,7 @@ jobs:
steps:
- name: Clone
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: Dependencies
run: |
@ -53,10 +53,10 @@ jobs:
steps:
- name: Clone
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: Build
uses: cross-platform-actions/action@v0.15.0
uses: cross-platform-actions/action@v0.24.0
with:
operating_system: freebsd
version: '13.2'
@ -77,10 +77,10 @@ jobs:
steps:
- name: Clone
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: Set up QEMU
uses: docker/setup-qemu-action@v2
uses: docker/setup-qemu-action@v3
- name: Build ${{ matrix.arch }}
run: |
@ -101,14 +101,17 @@ jobs:
fail-fast: false
matrix:
build: [Debug, Release]
arch: [linux/amd64, linux/arm64, linux/arm/v7, linux/ppc64le]
#arch: [linux/amd64, linux/arm64, linux/arm/v7, linux/ppc64le]
# TODO: arm/v7 disabled due to clang bug
# https://github.com/ggerganov/whisper.cpp/actions/runs/9657764109/job/26637633042?pr=2256#step:4:1990
arch: [linux/amd64, linux/arm64, linux/ppc64le]
steps:
- name: Clone
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: Set up QEMU
uses: docker/setup-qemu-action@v2
uses: docker/setup-qemu-action@v3
- name: Build ${{ matrix.arch }}
run: |
@ -133,10 +136,10 @@ jobs:
steps:
- name: Clone
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: Set up QEMU
uses: docker/setup-qemu-action@v2
uses: docker/setup-qemu-action@v3
- name: Build ${{ matrix.arch }}
run: |
@ -152,21 +155,21 @@ jobs:
ubuntu-22-cmake-sycl:
runs-on: ubuntu-22.04
strategy:
fail-fast: false
matrix:
dwhisper_sycl: [ON]
dcmake_c_compiler: [icx]
dcmake_cxx_compiler: [icpx]
dcmake_cxx_compiler: [icpx]
arch: [linux/amd64, linux/arm64, linux/arm/v7, linux/ppc64le]
continue-on-error: true
steps:
- name: Clone
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: add oneAPI to apt
shell: bash
run: |
@ -189,34 +192,34 @@ jobs:
- name: Clone
id: checkout
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: Build
id: cmake_build
run: |
source /opt/intel/oneapi/setvars.sh
mkdir build
cd build
cmake -DWHISPER_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx ..
cmake -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx ..
cmake --build . --config Release -j $(nproc)
ubuntu-22-cmake-sycl-fp16:
runs-on: ubuntu-22.04
strategy:
fail-fast: false
matrix:
dwhisper_sycl: [ON]
dcmake_c_compiler: [icx]
dcmake_cxx_compiler: [icpx]
dcmake_cxx_compiler: [icpx]
arch: [linux/amd64, linux/arm64, linux/arm/v7, linux/ppc64le]
continue-on-error: true
steps:
- name: Clone
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: add oneAPI to apt
shell: bash
run: |
@ -239,17 +242,75 @@ jobs:
- name: Clone
id: checkout
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: Build
id: cmake_build
run: |
source /opt/intel/oneapi/setvars.sh
mkdir build
cd build
cmake -DWHISPER_SYCL_F16=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx ..
cmake -DGGML_SYCL_F16=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx ..
cmake --build . --config Release -j $(nproc)
windows-msys2:
runs-on: windows-latest
strategy:
fail-fast: false
matrix:
include:
- { sys: UCRT64, env: ucrt-x86_64, build: Release }
- { sys: CLANG64, env: clang-x86_64, build: Release }
steps:
- name: Clone
uses: actions/checkout@v4
- name: Setup ${{ matrix.sys }}
uses: msys2/setup-msys2@v2
with:
update: true
msystem: ${{matrix.sys}}
install: >-
base-devel
mingw-w64-${{matrix.env}}-toolchain
mingw-w64-${{matrix.env}}-cmake
mingw-w64-${{matrix.env}}-SDL2
mingw-w64-${{matrix.env}}-openblas
- name: Build using make
shell: msys2 {0}
run: |
make -j $(nproc)
- name: Clean after building using make
shell: msys2 {0}
run: |
make clean
- name: Build using make w/ OpenBLAS
shell: msys2 {0}
run: |
make GGML_OPENBLAS=1 -j $(nproc)
- name: Build using CMake
shell: msys2 {0}
run: |
cmake -B build
cmake --build build --config ${{ matrix.build }} -j $(nproc)
- name: Clean after building using CMake
shell: msys2 {0}
run: |
rm -rf build
- name: Build using CMake w/ OpenBLAS
shell: msys2 {0}
run: |
cmake -B build -DGGML_OPENBLAS=ON
cmake --build build --config ${{ matrix.build }} -j $(nproc)
windows:
runs-on: windows-latest
@ -270,10 +331,10 @@ jobs:
steps:
- name: Clone
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: Add msbuild to PATH
uses: microsoft/setup-msbuild@v1
uses: microsoft/setup-msbuild@v2
- name: Fetch SDL2 and set SDL2_DIR
if: matrix.sdl2 == 'ON'
@ -298,14 +359,14 @@ jobs:
run: copy "$env:SDL2_DIR/../lib/${{ matrix.s2arc }}/SDL2.dll" build/bin/${{ matrix.build }}
- name: Upload dll
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.jnaPath }}_whisper.dll
path: build/bin/${{ matrix.build }}/whisper.dll
- name: Upload binaries
if: matrix.sdl2 == 'ON'
uses: actions/upload-artifact@v1
uses: actions/upload-artifact@v4
with:
name: whisper-bin-${{ matrix.arch }}
path: build/bin/${{ matrix.build }}
@ -323,21 +384,18 @@ jobs:
- arch: Win32
obzip: https://github.com/OpenMathLib/OpenBLAS/releases/download/v0.3.25/OpenBLAS-0.3.25-x86.zip
s2arc: x86
clblast: OFF
- arch: x64
obzip: https://github.com/OpenMathLib/OpenBLAS/releases/download/v0.3.25/OpenBLAS-0.3.25-x64.zip
s2arc: x64
clblast: ON
clver: 1.6.1
- sdl2: ON
s2ver: 2.28.5
steps:
- name: Clone
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: Add msbuild to PATH
uses: microsoft/setup-msbuild@v1
uses: microsoft/setup-msbuild@v2
- name: Fetch OpenBLAS
if: matrix.blas == 'ON'
@ -355,26 +413,13 @@ jobs:
7z x sdl2.zip
echo "SDL2_DIR=$env:GITHUB_WORKSPACE/SDL2-${{ matrix.s2ver }}/cmake" >> $env:GITHUB_ENV
- name: Install OpenCL
if: matrix.clblast == 'ON'
run: vcpkg.exe --triplet=${{ matrix.arch }}-windows install opencl
- name: Fetch CLBlast and set CLBlast_DIR
if: matrix.clblast == 'ON'
run: |
C:/msys64/usr/bin/wget.exe -qO clblast.zip https://github.com/CNugteren/CLBlast/releases/download/${{ matrix.clver }}/CLBlast-${{ matrix.clver }}-windows-x64.zip
7z x clblast.zip
7z x CLBlast-${{ matrix.clver }}-windows-x64.7z
echo "CLBlast_DIR=$env:GITHUB_WORKSPACE/CLBlast-${{ matrix.clver }}-windows-x64/lib/cmake/CLBlast" >> $env:GITHUB_ENV
- name: Configure
run: >
cmake -S . -B ./build -A ${{ matrix.arch }}
-DCMAKE_BUILD_TYPE=${{ matrix.build }}
-DWHISPER_OPENBLAS=${{ matrix.blas }}
-DGGML_OPENBLAS=${{ matrix.blas }}
-DCMAKE_LIBRARY_PATH="$env:OPENBLAS_PATH/lib"
-DWHISPER_SDL2=${{ matrix.sdl2 }}
-DWHISPER_CLBLAST=${{ matrix.clblast }}
- name: Build
run: |
@ -389,19 +434,15 @@ jobs:
if: matrix.sdl2 == 'ON'
run: copy "$env:SDL2_DIR/../lib/${{ matrix.s2arc }}/SDL2.dll" build/bin/${{ matrix.build }}
- name: Copy clblast.dll
if: matrix.clblast == 'ON'
run: copy "$env:CLBlast_DIR/../../clblast.dll" build/bin/${{ matrix.build }}
- name: Upload binaries
if: matrix.blas == 'ON' && matrix.sdl2 == 'ON'
uses: actions/upload-artifact@v1
uses: actions/upload-artifact@v4
with:
name: whisper-blas${{ matrix.clblast == 'ON' && '-clblast' || ''}}-bin-${{ matrix.arch }}
name: whisper-blas-bin-${{ matrix.arch }}
path: build/bin/${{ matrix.build }}
windows-cublas:
runs-on: windows-latest
runs-on: windows-2019
strategy:
matrix:
@ -418,14 +459,14 @@ jobs:
steps:
- name: Clone
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: Add msbuild to PATH
uses: microsoft/setup-msbuild@v1
uses: microsoft/setup-msbuild@v2
- name: Install CUDA Toolkit
id: cuda-toolkit
uses: Jimver/cuda-toolkit@v0.2.11
uses: Jimver/cuda-toolkit@v0.2.15
with:
cuda: '${{ matrix.cuda-toolkit }}'
@ -440,7 +481,7 @@ jobs:
run: >
cmake -S . -B ./build -A ${{ matrix.arch }}
-DCMAKE_BUILD_TYPE=${{ matrix.build }}
-DWHISPER_CUBLAS=${{ matrix.cublas }}
-DGGML_CUDA=${{ matrix.cublas }}
-DWHISPER_SDL2=${{ matrix.sdl2 }}
- name: Build ${{ matrix.cuda-toolkit }}
@ -461,7 +502,7 @@ jobs:
- name: Upload binaries
if: matrix.sdl2 == 'ON'
uses: actions/upload-artifact@v1
uses: actions/upload-artifact@v4
with:
name: whisper-cublas-${{ matrix.cuda-toolkit }}-bin-${{ matrix.arch }}
path: build/bin/${{ matrix.build }}
@ -475,10 +516,10 @@ jobs:
steps:
- name: Clone
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: Setup emsdk
uses: mymindstorm/setup-emsdk@v12
uses: mymindstorm/setup-emsdk@v14
- name: Verify
run: emcc -v
@ -497,7 +538,7 @@ jobs:
steps:
- name: Clone
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: Configure
run: |
@ -515,24 +556,24 @@ jobs:
steps:
- name: Clone
uses: actions/checkout@v3
uses: actions/checkout@v4
with:
path: whisper
- name: Clone
uses: actions/checkout@v3
uses: actions/checkout@v4
with:
repository: ggerganov/ggml
path: ggml
- name: Install Java
uses: actions/setup-java@v3
uses: actions/setup-java@v4
with:
distribution: zulu
java-version: 17
java-version: 21
- name: Setup Android SDK
uses: android-actions/setup-android@v2
uses: android-actions/setup-android@v3
- name: Build
run: |
@ -550,20 +591,19 @@ jobs:
steps:
- name: Clone
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: set up JDK 11
uses: actions/setup-java@v3
uses: actions/setup-java@v4
with:
java-version: '11'
distribution: 'temurin'
cache: gradle
- name: Setup Android SDK
uses: android-actions/setup-android@v2
uses: android-actions/setup-android@v3
with:
api-level: 30
build-tools-version: 30.0.3
cmdline-tools-version: 9.0
- name: Build
run: |
@ -575,15 +615,16 @@ jobs:
needs: [ 'windows' ]
runs-on: windows-latest
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
- name: Install Java
uses: actions/setup-java@v1
uses: actions/setup-java@v4
with:
java-version: 17
distribution: zulu
java-version: 20
- name: Download Windows lib
uses: actions/download-artifact@v3
uses: actions/download-artifact@v4
with:
name: win32-x86-64_whisper.dll
path: bindings/java/build/generated/resources/main/win32-x86-64
@ -596,7 +637,7 @@ jobs:
./gradlew build
- name: Upload jar
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@v4
with:
name: whispercpp.jar
path: bindings/java/build/libs/whispercpp-*.jar
@ -618,7 +659,7 @@ jobs:
steps:
- name: Clone
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: Test quantize
run: |

View File

@ -37,7 +37,7 @@ jobs:
run: npm install
- name: Compile addon.node
run: npx cmake-js compile -T whisper-addon -B Release
run: npx cmake-js compile -T addon.node -B Release
- name: Download test model
run: |

12
.gitignore vendored
View File

@ -7,18 +7,10 @@
.vscode/
.DS_Store
.vimspector.json
/CMakeSettings.json
build/
build-coreml/
build-em/
build-debug/
build-release/
build-rwdi/
build-static/
build-cublas/
build-no-accel/
build-sanitize-addr/
build-sanitize-thread/
build-*/
# SPM
.build/

3
.gitmodules vendored
View File

@ -1,3 +0,0 @@
[submodule "bindings/ios"]
path = bindings/ios
url = https://github.com/ggerganov/whisper.spm

301
AUTHORS Normal file
View File

@ -0,0 +1,301 @@
# date: Tue Apr 9 20:27:03 EEST 2024
# this file is auto-generated by scripts/gen-authors.sh
0/0 <zero@imaskeleton.me>
0cc4m <picard12@live.de>
0xsourcecode <134374803+0xsourcecode@users.noreply.github.com>
AT <manyoso@users.noreply.github.com>
Aarni Koskela <akx@iki.fi>
Aaron Pham <29749331+aarnphm@users.noreply.github.com>
Aaron Taylor <aaron@exphat.com>
Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>
Abitofevrything <54505189+abitofevrything@users.noreply.github.com>
AfryMask <AfryMask@163.com>
Ahmad Bilal <ahmad.bilal@empglabs.com>
AidanBeltonS <87009434+AidanBeltonS@users.noreply.github.com>
Akash Mahajan <akash7190@gmail.com>
Akash Mahajan <akashmjn@stanford.edu>
Al Hoang <3811822-hoanga@users.noreply.gitlab.com>
Alan <unknown>
Aleksander Andrzejewski <18704749+aleksanderandrzejewski@users.noreply.github.com>
Alex Azarov <alex@azarov.by>
Alex Bacart <13940752+alex-bacart@users.noreply.github.com>
Alex Evgrashin <aevgrashin@yandex.ru>
Alexandr Graschenkov <alexandr.graschenkov91@gmail.com>
Alexandru Mariuti <alex@mariuti.com>
Alexey Kharlamov <alexey@kharlamov.biz>
Alfredo Montesinos <alfredo.montesinos@g.austincc.edu>
Ali Alameh <ali.alameh@isae.edu.lb>
Ananta Bastola <anantarajbastola@gmail.com>
Andreu Huguet <andreuhuguet@gmail.com>
Andrew Huynh <a5thuynh@gmail.com>
Andrew S <andrews54757@gmail.com>
Andy Maloney <asmaloney@gmail.com>
Anton Kostin <masguit42@users.noreply.github.com>
Artyom Mezin <psycho.fading@gmail.com>
Asad Memon <asad.lionpk@gmail.com>
Ashraful Islam <ashraful.meche@gmail.com>
AsukaMinato <asukaminato@nyan.eu.org>
AustinMroz <austinmroz@utexas.edu>
Avik Sengupta <avik@sengupta.net>
Bader-eddine Ouaich <49657842+baderouaich@users.noreply.github.com>
Baffin Lee <baffinlee@gmail.com>
Ben Nortier <bjnortier@gmail.com>
Benjamin Heiniger <benjamin.heiniger@bluewin.ch>
Bo-Yi Wu <appleboy.tw@gmail.com>
Boris Bliznioukov <blib@mail.com>
Borislav Stanimirov <b.stanimirov@abv.bg>
Brad Murray <59848399+bradmurray-dt@users.noreply.github.com>
Brian Murray <brian@bmurray.ca>
CRD716 <crd716@gmail.com>
Canis Lupus <Canis-UK@users.noreply.github.com>
Carolinabanana <140120812+Carolinabanana@users.noreply.github.com>
ChangSeok Oh <shivamidow@users.noreply.github.com>
Chaoqun <27287694+OpenWaygate@users.noreply.github.com>
Chia-Hsiang Cheng <88014292+garychia@users.noreply.github.com>
Chidi Williams <williamschidi1@gmail.com>
Christian <12550267+iceychris@users.noreply.github.com>
Clifford Heath <clifford.heath@gmail.com>
Colin <github@whoisc.cc>
DGdev91 <DGdev91@users.noreply.github.com>
Damian Czaja <trojan295@protonmail.com>
Daniel Bevenius <daniel.bevenius@gmail.com>
David <dnhkng@gmail.com>
David Thorpe <djt@mutablelogic.com>
Davidson Francis <davidsondfgl@gmail.com>
Dener Stassun <denerstassun@gmail.com>
Didzis Gosko <didzis@users.noreply.github.com>
Digipom <admin@digipom.com>
Dimo <dimo@ieee.org>
Dody Suria Wijaya <dodysw@gmail.com>
Dr. Tom Murphy VII Ph.D <499244+tom7@users.noreply.github.com>
Duncan McConnell <ddmcconnell4@gmail.com>
Egor Egorov <me@egorfine.com>
Elkana Bardugo <ttv200@gmail.com>
Emmanuel Schmidbauer <eschmidbauer@gmail.com>
Engininja2 <139037756+Engininja2@users.noreply.github.com>
Eric Swanson <eswanson@alloscomp.com>
Eric Tendian <erictendian@gmail.com>
Erik Scholz <Green-Sky@users.noreply.github.com>
Evan Jones <evan.q.jones@gmail.com>
Evan Martin <evan.martin@gmail.com>
Eve <139727413+netrunnereve@users.noreply.github.com>
Evgeny Kuznetsov <evgeny@kuznetsov.md>
F1L1P <78918286+F1L1Pv2@users.noreply.github.com>
Fangjun Kuang <csukuangfj@gmail.com>
Felix <stenbackfelix@gmail.com>
Finn Voorhees <finnvoorhees@gmail.com>
FlippFuzz <41221030+FlippFuzz@users.noreply.github.com>
Gang Chen <goncha@gmail.com>
Gavin Cai <gavin1818@hotmail.com>
George Hindle <george@georgehindle.com>
Georgi Gerganov <ggerganov@gmail.com>
GitAritron <103900385+GitAritron@users.noreply.github.com>
GiviMAD <GiviMAD@users.noreply.github.com>
Gleicon Moraes <gleicon@gmail.com>
Gregor Jasny <gjasny@googlemail.com>
Guillaume Wenzek <gwenzek@users.noreply.github.com>
HY. Kelvin Lee <34256578+hykelvinlee42@users.noreply.github.com>
Halalaluyafail3 <55773281+Halalaluyafail3@users.noreply.github.com>
Hang <bebound@gmail.com>
Herman Semenov <GermanAizek@yandex.ru>
Hrishikesh Barman <geekodour@users.noreply.github.com>
Ian Bicking <ian@ianbicking.org>
Ian Bull <irbull@eclipsesource.com>
Ikko Ashimine <eltociear@gmail.com>
InconsolableCellist <23345188+InconsolableCellist@users.noreply.github.com>
Ismatulla Mansurov <47342870+sapoepsilon@users.noreply.github.com>
Ivan Gorin <ivangorin21@gmail.com>
JJ <103335846+computerscienceiscool@users.noreply.github.com>
Jack Mousseau <jmousseau@users.noreply.github.com>
JacobLinCool <jacoblincool@gmail.com>
Jakub Ráček <blizzcz@gmail.com>
Jared Van Bortel <jared@nomic.ai>
Jay Binks <jaybinks@gmail.com>
Jhen-Jie Hong <developer@jhen.me>
Jhen-Jie Hong <iainst0409@gmail.com>
JidongZhang-THU <1119708529@qq.com>
Jo Liss <joliss42@gmail.com>
Johan <jr.raffin@gmail.com>
Johannes Gäßler <johannesg@5d6.de>
John Balis <phobossystems@gmail.com>
Jonathan Soo <jcsoo@agora.com>
Jonno <1160532+razodactyl@users.noreply.github.com>
Joonas Pihlajamaa <joonas.pihlajamaa@iki.fi>
Jose <34888496+Jerry-Master@users.noreply.github.com>
Josh Bleecher Snyder <josharian@gmail.com>
Judd <foldl@users.noreply.github.com>
Jumper775 <78500318+jumpers775@users.noreply.github.com>
Justine Tunney <jtunney@gmail.com>
KP Kaiser <kirk@zothcorp.com>
Kamilake <exjang0@gmail.com>
Kartik Saranathan <278928+Kartiku@users.noreply.github.com>
Kasumi <90275229+kasumi-1@users.noreply.github.com>
Kawrakow <48489457+ikawrakow@users.noreply.github.com>
Kevin Brothaler <admin@digipom.com>
Konstantin Zhuravlyov <konstantin.zhuravlyov@amd.com>
Kreijstal <rainb@tfwno.gf>
Kylin <56434533+KyL0N@users.noreply.github.com>
LBlue <153975653+lbluep@users.noreply.github.com>
Larry Battle <larry.battle.tech@gmail.com>
Laytan Laats <laytanlaats@hotmail.com>
Leo Moll <leo.moll@yeasoft.com>
Lexevolution <31176843+Lexevolution@users.noreply.github.com>
LittleLoli <26589867+WhichWho@users.noreply.github.com>
Lucas Zanek <57494138+LucasZNK@users.noreply.github.com>
Luis Herrera <herrera-luis@users.noreply.github.com>
Lukas Rist <glaslos@gmail.com>
M. A. Ali <73258591+MightyStud@users.noreply.github.com>
M. Eren Akbiyik <erenakbiyik@gmail.com>
Maciek <maciek.mab122@gmail.com>
Marcin Mielniczuk <marmistrz.dev@zoho.eu>
Martin Warnaar <martinwarnaar@gmail.com>
Matheus de Sousa <23645013+keyehzy@users.noreply.github.com>
Mathijs de Bruin <mathijs@mathijsfietst.nl>
Matija Pevec <mightymatth@users.noreply.github.com>
Maximiliano Levi <8160966+maxilevi@users.noreply.github.com>
Meng, Hengyu <hengyu.meng@intel.com>
Michael Podvitskiy <podvitskiymichael@gmail.com>
Michael Rienstra <mrienstra@gmail.com>
Mikhail Grigorev <sleuthhound@gmail.com>
Mohammadreza Hendiani <hendiani.mohammadreza@gmail.com>
Mohit Agarwal <mohit@sdf.org>
Murilo Santana <mvrilo@gmail.com>
Neil Chudleigh <nchudleigh@users.noreply.github.com>
Neo Zhang Jianyu <jianyu.zhang@intel.com>
Neuman Vong <neuman.vong@gmail.com>
Nicholas Albion <nalbion@yahoo.com>
Niels Mayer <Niels.Mayer@gmail.com>
Okabintaro <103938900+Okabintaro@users.noreply.github.com>
Oleg Sidorov <me@whitebox.io>
Oleg Sidorov <oleg@sidorov.nl>
Ondrej Kokes <ondrej.kokes@gmail.com>
Ouadie EL FAROUKI <ouadie.elfarouki@codeplay.com>
Paul Tsochantaris <ptsochantaris@icloud.com>
Philipp Zabel <philipp.zabel@gmail.com>
Philippe Normand <phil@base-art.net>
Przemysław Pawełczyk <przemoc@gmail.com>
Qianhe Chen <54462604+chenqianhe@users.noreply.github.com>
Radosław Gryta <radek.gryta@gmail.com>
Reinforce-II <fate@eastal.com>
Reinis Muiznieks <muiznieks.reinis@gmail.com>
RelatedTitle <r3latedtitle@gmail.com>
RhinoDevel <RhinoDevel@users.noreply.github.com>
Rich Jones <miserlou@gmail.com>
Robin <robin.xw@hotmail.com>
Roddur Dasgupta <roddurd@gmail.com>
Roland Rabien <figbug@gmail.com>
Rotem Dan <rotemdan@gmail.com>
Ryan Hitchman <hitchmanr@gmail.com>
Ryan Metcalfe <107415876+RyanMetcalfeInt8@users.noreply.github.com>
RyanChang <ftes90015@gmail.com>
Sam <49637763+Onlyartist9@users.noreply.github.com>
Sam Pullara <spullara@gmail.com>
Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Sergio López <slp@sinrega.org>
Siddharth Ramakrishnan <srr2141@columbia.edu>
Simon Moisselin <simon.moisstoll@gmail.com>
Sindre Sorhus <sindresorhus@gmail.com>
Slava Primenko <primenko.s@gmail.com>
Syahmi Azhar <prsyahmi@gmail.com>
Syed Jafri <syedjafri97@gmail.com>
Sơn Phan Trung <phantrungson17@gmail.com>
Taisei Mima <bhbstar.me@gmail.com>
Takeshi Inoue <inoue.takeshi@gmail.com>
Tamotsu Takahashi <ttakah+github@gmail.com>
Taras Glek <taras@thegp.com>
Tauseef Mohiuddin <35351464+tauseefmohammed2@users.noreply.github.com>
Thijs Raymakers <thijs@raymakers.nl>
Thomas Fitzsimmons <fitzsim@fitzsim.org>
Tiago Fassoni <tiagofassoni@users.noreply.github.com>
Tienshiao Ma <tienshiao@tienshiao.org>
Timothy Cronin <40186632+4imothy@users.noreply.github.com>
Tobrun <tobrun.van.nuland@gmail.com>
Todd <taf2@users.noreply.github.com>
Tong Li <31761981+litongjava@users.noreply.github.com>
Topping1 <78745143+Topping1@users.noreply.github.com>
Travis Cline <travis.cline@gmail.com>
UEXTM.com <84163508+uextm@users.noreply.github.com>
Vadim Peretokin <vperetokin@hey.com>
Valentin Gosu <1454649+valenting@users.noreply.github.com>
Vulcan <93451215+trholding@users.noreply.github.com>
WhiteOlivierus <36532695+WhiteOlivierus@users.noreply.github.com>
Xiang (Kevin) Li <kevinli020508@gmail.com>
Xiao-Yong Jin <jinxiaoyong@gmail.com>
XiaotaoChen <chenxiaotao1234@gmail.com>
Yajing Tang <phillis@google.com>
Yang Shen <aplshenyang@gmail.com>
Yunès <jean.baptiste.yunes@free.fr>
ZaBlazzingZephyrus <119159668+blazingzephyr@users.noreply.github.com>
Zigfrid Zvezdin <ziggerZZ@gmail.com>
Zollner <24618122+Zolliner@users.noreply.github.com>
ai-at-home <149282006+ai-at-home@users.noreply.github.com>
alonfaraj <alonfaraj@gmail.com>
andypayne <apayne@gmail.com>
ardfork <134447697+ardfork@users.noreply.github.com>
automaticcat <daogiatuank54@gmail.com>
be-next <jerome.ramette@gmail.com>
bert hubert <bert@hubertnet.nl>
bmwl <brian.marshall@tolko.com>
bobqianic <129547291+bobqianic@users.noreply.github.com>
bocytko <bocytko+github@gmail.com>
boolemancer <48014766+boolemancer@users.noreply.github.com>
boolemancer <boolemancer@gmail.com>
bradmit <151883577+bradmit@users.noreply.github.com>
brunofaustino <b.fa.amorim@gmail.com>
bssrdf <merlintiger@hotmail.com>
byte-6174 <88070277+byte-6174@users.noreply.github.com>
cdosoftei <ciprian.dosoftei@gmail.com>
clach04 <Chris.Clark@actian.com>
compilade <113953597+compilade@users.noreply.github.com>
conradg <conradjgodfrey@gmail.com>
ddpasa <112642920+ddpasa@users.noreply.github.com>
denersc <denerstassun@gmail.com>
dscripka <dscripka@users.noreply.github.com>
duthils <duthils@duthils.net>
ecneladis <ecneladis@users.noreply.github.com>
faker <nspyia2002@gmail.com>
fitzsim <fitzsim@fitzsim.org>
fraxy-v <65565042+fraxy-v@users.noreply.github.com>
genevera (she/her) <genevera@users.noreply.github.com>
geniusnut <geniusnut@gmail.com>
greeshmay <greeshmay@gmail.com>
hydai <z54981220@gmail.com>
iamthad <thadeus.j.fleming@gmail.com>
james wolf <contractorwolf@hotmail.com>
joecryptotoo <80373433+joecryptotoo@users.noreply.github.com>
jorismertz <35079666+jorismertz@users.noreply.github.com>
junkfood <69683722+JunkFood02@users.noreply.github.com>
jwijffels <jwijffels@bnosac.be>
kamranjon <kamranjon@gmail.com>
katsu560 <katsu560oo-@docomo.ne.jp>
kennethge <57784063+kenneth-ge@users.noreply.github.com>
keyehzy <msamuel@aluno.puc-rio.br>
leejet <leejet714@gmail.com>
litong <31761981+litongjava@users.noreply.github.com>
lnyan <lkwq007@gmail.com>
m.bell <m.bell@techsmith.com>
mkiol <mkiol@users.noreply.github.com>
novag <7754358+novag@users.noreply.github.com>
pajowu <pajowu@pajowu.de>
polarmoon <90010972+polarmoon@users.noreply.github.com>
rlapray <lapray.romain@gmail.com>
sandrohanea <40202887+sandrohanea@users.noreply.github.com>
semiformal-net <84111142+semiformal-net@users.noreply.github.com>
shibukazu <61775791+shibukazu@users.noreply.github.com>
shikokuchuo <53399081+shikokuchuo@users.noreply.github.com>
slaren <slarengh@gmail.com>
slashlib <slashlib@users.noreply.github.com>
snadampal <87143774+snadampal@users.noreply.github.com>
st-gr <38470677+st-gr@users.noreply.github.com>
texmex76 <40733439+texmex76@users.noreply.github.com>
thefinaldegree <thefinaldegree@gmail.com>
trixirt <trix@redhat.com>
ulatekh <ulatekh@yahoo.com>
undef <undefdev@gmail.com>
venkr <venkateshrameshkumar+1@gmail.com>
vicalloy <zbirder@gmail.com>
xdrudis <xavierdrudis@yahoo.es>
zhouwg <6889919+zhouwg@users.noreply.github.com>
布客飞龙 <562826179@qq.com>
Артём Земляк <azemlyak@smart-consulting.ru>

View File

@ -1,22 +1,31 @@
cmake_minimum_required (VERSION 3.5)
cmake_minimum_required(VERSION 3.5) # for add_link_options and implicit target directories.
project("whisper.cpp" C CXX)
project("whisper.cpp" VERSION 1.6.2)
include(CheckIncludeFileCXX)
project(whisper.cpp VERSION 1.5.4)
set(SOVERSION 1)
#set(CMAKE_WARN_DEPRECATED YES)
set(CMAKE_WARN_UNUSED_CLI YES)
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
if (NOT XCODE AND NOT MSVC AND NOT CMAKE_BUILD_TYPE)
set(CMAKE_BUILD_TYPE Release CACHE STRING "Build type" FORCE)
set_property(CACHE CMAKE_BUILD_TYPE PROPERTY STRINGS "Debug" "Release" "MinSizeRel" "RelWithDebInfo")
endif()
# Add path to modules
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake/")
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin)
if(CMAKE_SOURCE_DIR STREQUAL CMAKE_CURRENT_SOURCE_DIR)
if (CMAKE_SOURCE_DIR STREQUAL CMAKE_CURRENT_SOURCE_DIR)
set(WHISPER_STANDALONE ON)
include(GitVars)
include(BuildTypes)
include(git-vars)
# configure project version
if (EXISTS "${CMAKE_SOURCE_DIR}/bindings/ios/Makefile-tmpl")
configure_file(${CMAKE_SOURCE_DIR}/bindings/ios/Makefile-tmpl ${CMAKE_SOURCE_DIR}/bindings/ios/Makefile @ONLY)
endif()
configure_file(${CMAKE_SOURCE_DIR}/bindings/javascript/package-tmpl.json ${CMAKE_SOURCE_DIR}/bindings/javascript/package.json @ONLY)
else()
set(WHISPER_STANDALONE OFF)
@ -26,6 +35,11 @@ if (EMSCRIPTEN)
set(BUILD_SHARED_LIBS_DEFAULT OFF)
option(WHISPER_WASM_SINGLE_FILE "whisper: embed WASM inside the generated whisper.js" ON)
# TODO: without these, we get the following error:
# wasm-ld: error: --shared-memory is disallowed by whisper.cpp.o because it was not compiled with 'atomics' or 'bulk-memory' features.
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -pthread -s TOTAL_STACK=5242880")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pthread -s TOTAL_STACK=5242880")
else()
if (MINGW)
set(BUILD_SHARED_LIBS_DEFAULT OFF)
@ -34,612 +48,145 @@ else()
endif()
endif()
# options
option(BUILD_SHARED_LIBS "build shared libraries" ${BUILD_SHARED_LIBS_DEFAULT})
if (APPLE)
set(WHISPER_METAL_DEFAULT ON)
else()
set(WHISPER_METAL_DEFAULT OFF)
endif()
#
# option list
#
option(BUILD_SHARED_LIBS "whisper: build shared libs" ${BUILD_SHARED_LIBS_DEFAULT})
# general
option(WHISPER_CCACHE "whisper: use ccache if available" ON)
# debug
option(WHISPER_ALL_WARNINGS "whisper: enable all compiler warnings" ON)
option(WHISPER_ALL_WARNINGS_3RD_PARTY "whisper: enable all compiler warnings in 3rd party libs" OFF)
option(WHISPER_SANITIZE_THREAD "whisper: enable thread sanitizer" OFF)
option(WHISPER_SANITIZE_ADDRESS "whisper: enable address sanitizer" OFF)
option(WHISPER_SANITIZE_UNDEFINED "whisper: enable undefined sanitizer" OFF)
option(WHISPER_BUILD_TESTS "whisper: build tests" ${WHISPER_STANDALONE})
option(WHISPER_BUILD_EXAMPLES "whisper: build examples" ${WHISPER_STANDALONE})
option(WHISPER_SDL2 "whisper: support for libSDL2" OFF)
option(WHISPER_NO_AVX "whisper: disable AVX" OFF)
option(WHISPER_NO_AVX2 "whisper: disable AVX2" OFF)
option(WHISPER_NO_FMA "whisper: disable FMA" OFF)
option(WHISPER_NO_F16C "whisper: disable F16c" OFF)
option(WHISPER_OPENVINO "whisper: support for OpenVINO" OFF)
if (APPLE)
option(WHISPER_NO_ACCELERATE "whisper: disable Accelerate framework" OFF)
option(WHISPER_METAL "whisper: use Metal" ${WHISPER_METAL_DEFAULT})
option(WHISPER_METAL_NDEBUG "whisper: disable Metal debugging" OFF)
option(WHISPER_COREML "whisper: enable Core ML framework" OFF)
option(WHISPER_COREML_ALLOW_FALLBACK "whisper: allow non-CoreML fallback" OFF)
option(WHISPER_METAL_EMBED_LIBRARY "whisper: embed Metal library" OFF)
else()
option(WHISPER_BLAS "whisper: use BLAS libraries" OFF)
option(WHISPER_BLAS_VENDOR "whisper: BLAS library vendor" Generic)
option(WHISPER_OPENBLAS "whisper: prefer OpenBLAS" OFF)
option(WHISPER_CUBLAS "whisper: support for cuBLAS" OFF)
option(WHISPER_HIPBLAS "whisper: support for hipBLAS" OFF)
option(WHISPER_CLBLAST "whisper: use CLBlast" OFF)
option(WHISPER_SYCL "whisper: use SYCL" OFF)
option(WHISPER_SYCL_F16 "whisper: use 16 bit floats for sycl calculations" OFF)
endif()
option(WHISPER_PERF "whisper: enable perf timings" OFF)
# build
option(WHISPER_FATAL_WARNINGS "whisper: enable -Werror flag" OFF)
# sanitizers
option(WHISPER_SANITIZE_THREAD "whisper: enable thread sanitizer" OFF)
option(WHISPER_SANITIZE_ADDRESS "whisper: enable address sanitizer" OFF)
option(WHISPER_SANITIZE_UNDEFINED "whisper: enable undefined sanitizer" OFF)
if (NOT MSVC)
if (WHISPER_SANITIZE_THREAD)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fsanitize=thread")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsanitize=thread")
endif()
# extra artifacts
option(WHISPER_BUILD_TESTS "whisper: build tests" ${WHISPER_STANDALONE})
option(WHISPER_BUILD_EXAMPLES "whisper: build examples" ${WHISPER_STANDALONE})
option(WHISPER_BUILD_SERVER "whisper: build server example" ${WHISPER_STANDALONE})
if (WHISPER_SANITIZE_ADDRESS)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fsanitize=address -fno-omit-frame-pointer")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsanitize=address -fno-omit-frame-pointer")
endif()
# 3rd party libs
option(WHISPER_CURL "whisper: use libcurl to download model from an URL" OFF)
option(WHISPER_SDL2 "whisper: support for libSDL2" OFF)
if (WHISPER_SANITIZE_UNDEFINED)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fsanitize=undefined")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsanitize=undefined")
endif()
endif()
#set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -ffast-math")
#set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -march=native")
# dependencies
find_package(Threads REQUIRED)
#compile flag sycl
if (WHISPER_SYCL)
set(CMAKE_CXX_STANDARD 17)
else()
set(CMAKE_CXX_STANDARD 11)
endif()
# on APPLE
if (APPLE)
# include Accelerate framework
if (NOT WHISPER_NO_ACCELERATE)
find_library(ACCELERATE_FRAMEWORK Accelerate)
if (ACCELERATE_FRAMEWORK)
message(STATUS "Accelerate framework found")
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ${ACCELERATE_FRAMEWORK})
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_ACCELERATE -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64)
else()
message(FATAL_ERROR "Accelerate framework not found")
endif()
endif()
if (WHISPER_METAL)
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
find_library(METAL_FRAMEWORK Metal REQUIRED)
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
if (METAL_FRAMEWORK)
message(STATUS "Metal framework found")
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS}
${FOUNDATION_LIBRARY}
${METAL_FRAMEWORK}
${METALKIT_FRAMEWORK}
)
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_METAL)
if (WHISPER_METAL_NDEBUG)
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_METAL_NDEBUG)
endif()
else()
message(FATAL_ERROR "Metal framework not found")
endif()
set(GGML_SOURCES_METAL ggml-metal.m ggml-metal.h)
# copy ggml-common.h and ggml-metal.metal to bin directory
configure_file(ggml-common.h bin/ggml-common.h COPYONLY)
configure_file(ggml-metal.metal bin/ggml-metal.metal COPYONLY)
if (WHISPER_METAL_EMBED_LIBRARY)
enable_language(ASM)
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_METAL_EMBED_LIBRARY)
set(METALLIB_SOURCE "${CMAKE_SOURCE_DIR}/ggml-metal.metal")
file(MAKE_DIRECTORY "${CMAKE_BINARY_DIR}/autogenerated")
set(EMBED_METALLIB_ASSEMBLY "${CMAKE_BINARY_DIR}/autogenerated/ggml-embed-metallib.s")
add_custom_command(
OUTPUT ${EMBED_METALLIB_ASSEMBLY}
COMMAND echo ".section __DATA,__ggml_metallib" > ${EMBED_METALLIB_ASSEMBLY}
COMMAND echo ".globl _ggml_metallib_start" >> ${EMBED_METALLIB_ASSEMBLY}
COMMAND echo "_ggml_metallib_start:" >> ${EMBED_METALLIB_ASSEMBLY}
COMMAND echo ".incbin \\\"${METALLIB_SOURCE}\\\"" >> ${EMBED_METALLIB_ASSEMBLY}
COMMAND echo ".globl _ggml_metallib_end" >> ${EMBED_METALLIB_ASSEMBLY}
COMMAND echo "_ggml_metallib_end:" >> ${EMBED_METALLIB_ASSEMBLY}
DEPENDS ${METALLIB_SOURCE}
COMMENT "Generate assembly for embedded Metal library"
)
set(GGML_SOURCES_METAL ${GGML_SOURCES_METAL} ${EMBED_METALLIB_ASSEMBLY})
endif()
endif()
if (WHISPER_COREML)
find_library(FOUNDATION_FRAMEWORK Foundation)
find_library(COREML_FRAMEWORK CoreML)
if (COREML_FRAMEWORK)
message(STATUS "CoreML framework found")
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DWHISPER_USE_COREML)
else()
message(FATAL_ERROR "CoreML framework not found")
endif()
if (WHISPER_COREML_ALLOW_FALLBACK)
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DWHISPER_COREML_ALLOW_FALLBACK)
endif()
endif()
endif()
if (WHISPER_OPENBLAS)
set(WHISPER_BLAS_VENDOR "OpenBLAS")
set(WHISPER_BLAS ON)
endif()
if (WHISPER_BLAS)
if (WIN32)
if(DEFINED ENV{OPENBLAS_PATH})
set(BLAS_LIBRARIES $ENV{OPENBLAS_PATH}/lib/libopenblas.dll.a)
message(STATUS "Libraries ${BLAS_LIBRARIES}")
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_OPENBLAS)
include_directories($ENV{OPENBLAS_PATH}/include)
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ${BLAS_LIBRARIES})
else ()
message(FATAL_ERROR "BLAS library was not found. Environment variable OPENBLAS_PATH not defined.")
endif ()
else ()
set(BLA_STATIC 1)
set(BLA_VENDOR ${WHISPER_BLAS_VENDOR})
set(BLA_SIZEOF_INTEGER 8)
set(BLA_PREFER_PKGCONFIG 1)
find_package(BLAS)
if(BLAS_FOUND)
message(STATUS "BLAS compatible library found")
message(STATUS "Libraries ${BLAS_LIBRARIES}")
find_path(BLAS_INCLUDE_DIRS cblas.h /usr/include/openblas /usr/local/include/openblas $ENV{BLAS_HOME}/include)
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_OPENBLAS)
include_directories(${BLAS_INCLUDE_DIRS})
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ${BLAS_LIBRARIES})
else()
message(FATAL_ERROR "BLAS library was not found")
endif()
endif ()
endif ()
if (WHISPER_CUBLAS)
cmake_minimum_required(VERSION 3.17)
find_package(CUDAToolkit)
if (CUDAToolkit_FOUND)
message(STATUS "cuBLAS found")
enable_language(CUDA)
set(GGML_SOURCES_CUDA ggml-cuda.cu ggml-cuda.h)
add_compile_definitions(GGML_USE_CUBLAS)
if (WHISPER_STATIC)
if (WIN32)
# As of 12.3.1 CUDA Tookit for Windows does not offer a static cublas library
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} CUDA::cudart_static CUDA::cublas CUDA::cublasLt)
else ()
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} CUDA::cudart_static CUDA::cublas_static CUDA::cublasLt_static)
endif()
else()
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} CUDA::cudart CUDA::cublas CUDA::cublasLt)
endif()
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} CUDA::cuda_driver)
else()
message(FATAL_ERROR "cuBLAS not found")
endif()
endif()
if (WHISPER_HIPBLAS)
list(APPEND CMAKE_PREFIX_PATH /opt/rocm)
if (NOT ${CMAKE_C_COMPILER_ID} MATCHES "Clang")
message(WARNING "Only LLVM is supported for HIP, hint: CC=/opt/rocm/llvm/bin/clang")
endif()
if (NOT ${CMAKE_CXX_COMPILER_ID} MATCHES "Clang")
message(WARNING "Only LLVM is supported for HIP, hint: CXX=/opt/rocm/llvm/bin/clang++")
endif()
find_package(hip)
find_package(hipblas)
find_package(rocblas)
if (${hipblas_FOUND} AND ${hip_FOUND})
message(STATUS "HIP and hipBLAS found")
add_compile_definitions(GGML_USE_HIPBLAS GGML_USE_CUBLAS)
add_library(ggml-rocm OBJECT ggml-cuda.cu ggml-cuda.h)
set_property(TARGET ggml-rocm PROPERTY POSITION_INDEPENDENT_CODE ON)
set_source_files_properties(ggml-cuda.cu PROPERTIES LANGUAGE CXX)
target_link_libraries(ggml-rocm PRIVATE hip::device PUBLIC hip::host roc::rocblas roc::hipblas)
if (WHISPER_STATIC)
message(FATAL_ERROR "Static linking not supported for HIP/ROCm")
endif()
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ggml-rocm)
else()
message(FATAL_ERROR "hipBLAS or HIP not found. Try setting CMAKE_PREFIX_PATH=/opt/rocm")
endif()
endif()
if (WHISPER_CLBLAST)
find_package(CLBlast)
if (CLBlast_FOUND)
message(STATUS "CLBlast found")
set(GGML_SOURCES_OPENCL ggml-opencl.cpp ggml-opencl.h)
add_compile_definitions(GGML_USE_CLBLAST)
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} clblast)
else()
message(FATAL_ERROR "CLBlast not found")
endif()
endif()
if( WHISPER_OPENVINO )
find_package(OpenVINO REQUIRED COMPONENTS Runtime)
endif()
if (WHISPER_SYCL)
if ( NOT DEFINED ENV{ONEAPI_ROOT})
message(FATAL_ERROR "Not detect ENV {ONEAPI_ROOT}, please install oneAPI & source it, like: source /opt/intel/oneapi/setvars.sh")
endif()
#todo: AOT
find_package(IntelSYCL REQUIRED)
if (WHISPER_SYCL_F16)
add_compile_definitions(GGML_SYCL_F16)
endif()
add_compile_definitions(GGML_USE_SYCL)
add_compile_options(-I./) #include DPCT
add_compile_options(-I/${SYCL_INCLUDE_DIR})
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-narrowing")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O3")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsycl -L${MKLROOT}/lib")
set(GGML_HEADERS_SYCL ggml-sycl.h)
set(GGML_SOURCES_SYCL ggml-sycl.cpp)
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} sycl OpenCL mkl_core pthread m dl mkl_sycl_blas mkl_intel_ilp64 mkl_tbb_thread)
endif()
# compiler flags
if (NOT CMAKE_BUILD_TYPE AND NOT CMAKE_CONFIGURATION_TYPES)
set(CMAKE_BUILD_TYPE Release CACHE STRING "Build type" FORCE)
set_property(CACHE CMAKE_BUILD_TYPE PROPERTY STRINGS "Debug" "Release" "RelWithDebInfo")
endif ()
if (WHISPER_ALL_WARNINGS)
if (NOT MSVC)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} \
-Wall \
-Wextra \
-Wpedantic \
-Wshadow \
-Wcast-qual \
-Wstrict-prototypes \
-Wpointer-arith \
-Wno-unused-function \
")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} \
-Wall \
-Wextra \
-Wpedantic \
-Wcast-qual \
")
else()
# todo : msvc
endif()
endif()
if (NOT MSVC)
# TODO: temporary disabled until we figure out ggml-metal.m
#set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -Werror=vla")
#set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fno-math-errno -ffinite-math-only -funsafe-math-optimizations")
endif()
message(STATUS "CMAKE_SYSTEM_PROCESSOR: ${CMAKE_SYSTEM_PROCESSOR}")
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm" OR ${CMAKE_SYSTEM_PROCESSOR} MATCHES "aarch64")
message(STATUS "ARM detected")
elseif(${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64le")
message(STATUS "PowerPC detected")
else()
message(STATUS "x86 detected")
if (MSVC)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /utf-8")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /utf-8")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} /utf-8")
if(NOT WHISPER_NO_AVX2)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /arch:AVX2")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /arch:AVX2")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} /arch:AVX2")
else()
if(NOT WHISPER_NO_AVX)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /arch:AVX")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /arch:AVX")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} /arch:AVX")
endif()
endif()
else()
if (EMSCRIPTEN)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -pthread -s TOTAL_STACK=5242880")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pthread -s TOTAL_STACK=5242880")
else()
if(NOT WHISPER_NO_AVX)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mavx")
endif()
if(NOT WHISPER_NO_AVX2)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mavx2")
endif()
if(NOT WHISPER_NO_FMA)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mfma")
endif()
if(NOT WHISPER_NO_F16C)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mf16c")
endif()
endif()
endif()
endif()
#
# POSIX conformance
#
# clock_gettime came in POSIX.1b (1993)
# CLOCK_MONOTONIC came in POSIX.1-2001 / SUSv3 as optional
# posix_memalign came in POSIX.1-2001 / SUSv3
# M_PI is an XSI extension since POSIX.1-2001 / SUSv3, came in XPG1 (1985)
add_compile_definitions(_XOPEN_SOURCE=600)
# Somehow in OpenBSD whenever POSIX conformance is specified
# some string functions rely on locale_t availability,
# which was introduced in POSIX.1-2008, forcing us to go higher
if (CMAKE_SYSTEM_NAME MATCHES "OpenBSD")
remove_definitions(-D_XOPEN_SOURCE=600)
add_compile_definitions(_XOPEN_SOURCE=700)
endif()
# Data types, macros and functions related to controlling CPU affinity
# are available on Linux through GNU extensions in libc
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
add_compile_definitions(_GNU_SOURCE)
option(WHISPER_FFMPEG "whisper: support building and linking with ffmpeg libs (avcodec, swresample, ...)" OFF)
endif()
# RLIMIT_MEMLOCK came in BSD, is not specified in POSIX.1,
# and on macOS its availability depends on enabling Darwin extensions
# similarly on DragonFly, enabling BSD extensions is necessary
if (CMAKE_SYSTEM_NAME MATCHES "Darwin")
add_compile_definitions(_DARWIN_C_SOURCE)
endif()
if (CMAKE_SYSTEM_NAME MATCHES "DragonFly")
add_compile_definitions(_DARWIN_C_SOURCE)
endif()
option(WHISPER_COREML "whisper: enable Core ML framework" OFF)
option(WHISPER_COREML_ALLOW_FALLBACK "whisper: allow non-CoreML fallback" OFF)
option(WHISPER_OPENVINO "whisper: support for OpenVINO" OFF)
# alloca is a non-standard interface that is not visible on BSDs when
# POSIX conformance is specified, but not all of them provide a clean way
# to enable it in such cases
if (CMAKE_SYSTEM_NAME MATCHES "FreeBSD")
add_compile_definitions(__BSD_VISIBLE)
endif()
if (CMAKE_SYSTEM_NAME MATCHES "NetBSD")
add_compile_definitions(_NETBSD_SOURCE)
endif()
if (CMAKE_SYSTEM_NAME MATCHES "OpenBSD")
add_compile_definitions(_BSD_SOURCE)
endif()
# Required for relocatable CMake package
include(${CMAKE_CURRENT_SOURCE_DIR}/cmake/build-info.cmake)
if (WHISPER_PERF)
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_PERF)
endif()
# override ggml options
set(GGML_CCACHE ${WHISPER_CCACHE})
set(GGML_SANITIZE_THREAD ${WHISPER_SANITIZE_THREAD})
set(GGML_SANITIZE_ADDRESS ${WHISPER_SANITIZE_ADDRESS})
set(GGML_SANITIZE_UNDEFINED ${WHISPER_SANITIZE_UNDEFINED})
set(GGML_ALL_WARNINGS ${WHISPER_ALL_WARNINGS})
set(GGML_FATAL_WARNINGS ${WHISPER_FATAL_WARNINGS})
#
# whisper.coreml - Core ML support
#
if (WHISPER_COREML)
set(TARGET whisper.coreml)
add_library(${TARGET}
coreml/whisper-encoder.h
coreml/whisper-encoder.mm
coreml/whisper-encoder-impl.h
coreml/whisper-encoder-impl.m
)
include(DefaultTargetOptions)
target_include_directories(${TARGET} PUBLIC
.
)
target_link_libraries(${TARGET} PRIVATE ${FOUNDATION_FRAMEWORK} ${COREML_FRAMEWORK})
set_target_properties(${TARGET} PROPERTIES
COMPILE_FLAGS "-fobjc-arc"
)
endif()
if (WHISPER_OPENVINO)
set(TARGET whisper.openvino)
add_library(${TARGET} OBJECT
openvino/whisper-openvino-encoder.h
openvino/whisper-openvino-encoder.cpp
)
target_include_directories(${TARGET} PUBLIC
.
)
set_property(TARGET ${TARGET} PROPERTY POSITION_INDEPENDENT_CODE ON)
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DWHISPER_USE_OPENVINO)
target_link_libraries(${TARGET} PRIVATE openvino::runtime)
endif()
#
# whisper - this is the main library of the project
#
set(TARGET whisper)
add_library(${TARGET}
ggml.h
ggml.c
ggml-alloc.h
ggml-alloc.c
ggml-backend.h
ggml-backend.c
ggml-quants.h
ggml-quants.c
${GGML_SOURCES_METAL}
${GGML_SOURCES_CUDA}
${GGML_SOURCES_OPENCL}
${GGML_SOURCES_SYCL}
${GGML_HEADERS_SYCL}
whisper.h
whisper.cpp
)
# Set the version numbers
set_target_properties(whisper PROPERTIES
VERSION ${PROJECT_VERSION}
SOVERSION ${SOVERSION}
)
include(DefaultTargetOptions)
target_include_directories(${TARGET} PUBLIC
.
)
if (WHISPER_COREML)
target_link_libraries(${TARGET} PRIVATE whisper.coreml)
endif()
if (WHISPER_OPENVINO)
target_link_libraries(${TARGET} PRIVATE whisper.openvino)
endif()
if (MSVC)
target_link_libraries(${TARGET} PRIVATE ${WHISPER_EXTRA_LIBS} ${CMAKE_THREAD_LIBS_INIT})
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -D_CRT_SECURE_NO_WARNINGS)
else()
target_link_libraries(${TARGET} PRIVATE m ${WHISPER_EXTRA_LIBS} ${CMAKE_THREAD_LIBS_INIT})
endif()
if (BUILD_SHARED_LIBS)
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
target_link_libraries(${TARGET} PUBLIC
${CMAKE_DL_LIBS}
)
target_compile_definitions(${TARGET} PUBLIC
WHISPER_SHARED
GGML_SHARED
)
target_compile_definitions(${TARGET} PRIVATE
WHISPER_BUILD
GGML_BUILD
)
if (WHISPER_METAL)
# TODO: I think this should make ggml-metal.m "see" the ggml-metal.metal file from the "bin" directory
# but for some reason it does not work here like it does in llama.cpp
set_target_properties(${TARGET} PROPERTIES RESOURCE "${CMAKE_CURRENT_SOURCE_DIR}/ggml-metal.metal")
# transition helpers
function (whisper_option_depr TYPE OLD NEW)
if (${OLD})
message(${TYPE} "${OLD} is deprecated and will be removed in the future.\nUse ${NEW} instead\n")
set(${NEW} ON)
endif()
endif()
endfunction()
if (GGML_SOURCES_CUDA)
message(STATUS "GGML CUDA sources found, configuring CUDA architecture")
# Only configure gmml CUDA architectures is not globally set
if (NOT DEFINED GGML_CUDA_ARCHITECTURES)
# Not overriden by user, so set defaults
set(GGML_CUDA_ARCHITECTURES 52 61 70)
endif()
message(STATUS "GGML Configuring CUDA architectures ${GGML_CUDA_ARCHITECTURES}")
set_property(TARGET whisper PROPERTY CUDA_ARCHITECTURES ${GGML_CUDA_ARCHITECTURES})
set_property(TARGET whisper PROPERTY CUDA_SELECT_NVCC_ARCH_FLAGS "Auto")
endif()
whisper_option_depr(FATAL_ERROR WHISPER_CUBLAS GGML_CUDA)
whisper_option_depr(WARNING WHISPER_CUDA GGML_CUDA)
whisper_option_depr(WARNING WHISPER_KOMPUTE GGML_KOMPUTE)
whisper_option_depr(WARNING WHISPER_METAL GGML_METAL)
whisper_option_depr(WARNING WHISPER_METAL_EMBED_LIBRARY GGML_METAL_EMBED_LIBRARY)
whisper_option_depr(WARNING WHISPER_NATIVE GGML_NATIVE)
whisper_option_depr(WARNING WHISPER_OPENMP GGML_OPENMP)
whisper_option_depr(WARNING WHISPER_RPC GGML_RPC)
whisper_option_depr(WARNING WHISPER_SYCL GGML_SYCL)
whisper_option_depr(WARNING WHISPER_SYCL_F16 GGML_SYCL_F16)
if (EMSCRIPTEN)
set_target_properties(${TARGET} PROPERTIES COMPILE_FLAGS "-msimd128")
endif()
#
# build the library
#
target_compile_definitions(${TARGET} PUBLIC
${WHISPER_EXTRA_FLAGS}
)
add_subdirectory(ggml)
add_subdirectory(src)
set_target_properties(${TARGET} PROPERTIES PUBLIC_HEADER "ggml.h;whisper.h")
#
# install
#
include(GNUInstallDirs)
include(CMakePackageConfigHelpers)
install(TARGETS ${TARGET}
LIBRARY DESTINATION lib
ARCHIVE DESTINATION lib/static
RUNTIME DESTINATION bin
RESOURCE DESTINATION bin
PUBLIC_HEADER DESTINATION include
)
set(WHISPER_BUILD_NUMBER ${BUILD_NUMBER})
set(WHISPER_BUILD_COMMIT ${BUILD_COMMIT})
set(WHISPER_INSTALL_VERSION ${CMAKE_PROJECT_VERSION})
#
# bindings
#
set(WHISPER_INCLUDE_INSTALL_DIR ${CMAKE_INSTALL_INCLUDEDIR} CACHE PATH "Location of header files")
set(WHISPER_LIB_INSTALL_DIR ${CMAKE_INSTALL_LIBDIR} CACHE PATH "Location of library files")
set(WHISPER_BIN_INSTALL_DIR ${CMAKE_INSTALL_BINDIR} CACHE PATH "Location of binary files")
add_subdirectory(bindings)
get_directory_property(WHISPER_TRANSIENT_DEFINES COMPILE_DEFINITIONS)
set_target_properties(whisper PROPERTIES PUBLIC_HEADER ${CMAKE_CURRENT_SOURCE_DIR}/include/whisper.h)
install(TARGETS whisper LIBRARY PUBLIC_HEADER)
configure_package_config_file(
${CMAKE_CURRENT_SOURCE_DIR}/cmake/whisper-config.cmake.in
${CMAKE_CURRENT_BINARY_DIR}/whisper-config.cmake
INSTALL_DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/whisper
PATH_VARS
WHISPER_INCLUDE_INSTALL_DIR
WHISPER_LIB_INSTALL_DIR
WHISPER_BIN_INSTALL_DIR )
write_basic_package_version_file(
${CMAKE_CURRENT_BINARY_DIR}/whisper-version.cmake
VERSION ${WHISPER_INSTALL_VERSION}
COMPATIBILITY SameMajorVersion)
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/whisper-config.cmake
${CMAKE_CURRENT_BINARY_DIR}/whisper-version.cmake
DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/whisper)
install(
FILES convert-hf-to-gguf.py
PERMISSIONS
OWNER_READ
OWNER_WRITE
OWNER_EXECUTE
GROUP_READ
GROUP_EXECUTE
WORLD_READ
WORLD_EXECUTE
DESTINATION ${CMAKE_INSTALL_BINDIR})
configure_file(cmake/whisper.pc.in
"${CMAKE_CURRENT_BINARY_DIR}/whisper.pc"
@ONLY)
install(FILES "${CMAKE_CURRENT_BINARY_DIR}/whisper.pc"
DESTINATION lib/pkgconfig)
#
# programs, examples and tests
#
if (WHISPER_BUILD_TESTS AND NOT CMAKE_JS_VERSION)
enable_testing()
add_subdirectory(tests)
#include(CTest)
#add_subdirectory(tests)
endif ()
if (WHISPER_BUILD_EXAMPLES)

View File

@ -1,6 +1,6 @@
MIT License
Copyright (c) 2023 Georgi Gerganov
Copyright (c) 2023-2024 The ggml authors
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal

1200
Makefile

File diff suppressed because it is too large Load Diff

View File

@ -27,17 +27,15 @@ let package = Package(
"samples",
"tests",
"CMakeLists.txt",
"ggml-cuda.cu",
"ggml-cuda.h",
"Makefile"
],
sources: [
"ggml.c",
"whisper.cpp",
"ggml-alloc.c",
"ggml-backend.c",
"ggml-quants.c",
"ggml-metal.m"
"ggml/src/ggml.c",
"src/whisper.cpp",
"ggml/src/ggml-alloc.c",
"ggml/src/ggml-backend.c",
"ggml/src/ggml-quants.c",
"ggml/src/ggml-metal.m"
],
resources: [.process("ggml-metal.metal")],
publicHeadersPath: "spm-headers",

View File

@ -4,9 +4,10 @@
[![Actions Status](https://github.com/ggerganov/whisper.cpp/workflows/CI/badge.svg)](https://github.com/ggerganov/whisper.cpp/actions)
[![License: MIT](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT)
[![Conan Center](https://shields.io/conan/v/whisper-cpp)](https://conan.io/center/whisper-cpp)
[![npm](https://img.shields.io/npm/v/whisper.cpp.svg)](https://www.npmjs.com/package/whisper.cpp/)
Stable: [v1.5.4](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.5.4) / [Roadmap | F.A.Q.](https://github.com/ggerganov/whisper.cpp/discussions/126)
Stable: [v1.6.2](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.6.0) / [Roadmap | F.A.Q.](https://github.com/ggerganov/whisper.cpp/discussions/126)
High-performance inference of [OpenAI's Whisper](https://github.com/openai/whisper) automatic speech recognition (ASR) model:
@ -19,7 +20,6 @@ High-performance inference of [OpenAI's Whisper](https://github.com/openai/whisp
- Zero memory allocations at runtime
- Support for CPU-only inference
- [Efficient GPU support for NVIDIA](https://github.com/ggerganov/whisper.cpp#nvidia-gpu-support-via-cublas)
- [Partial OpenCL GPU support via CLBlast](https://github.com/ggerganov/whisper.cpp#opencl-gpu-support-via-clblast)
- [OpenVINO Support](https://github.com/ggerganov/whisper.cpp#openvino-support)
- [C-style API](https://github.com/ggerganov/whisper.cpp/blob/master/whisper.h)
@ -414,35 +414,13 @@ For more information about the Core ML implementation please refer to PR [#1037]
With NVIDIA cards the processing of the models is done efficiently on the GPU via cuBLAS and custom CUDA kernels.
First, make sure you have installed `cuda`: https://developer.nvidia.com/cuda-downloads
Now build `whisper.cpp` with cuBLAS support:
Now build `whisper.cpp` with CUDA support:
```
make clean
WHISPER_CUBLAS=1 make -j
GGML_CUDA=1 make -j
```
## OpenCL GPU support via CLBlast
For cards and integrated GPUs that support OpenCL, the Encoder processing can be largely offloaded to the GPU through CLBlast. This is especially useful for users with AMD APUs or low end devices for up to ~2x speedup.
First, make sure you have installed `CLBlast` for your OS or Distribution: https://github.com/CNugteren/CLBlast
Now build `whisper.cpp` with CLBlast support:
```
Makefile:
cd whisper.cpp
make clean
WHISPER_CLBLAST=1 make -j
CMake:
cd whisper.cpp
cmake -B build -DWHISPER_CLBLAST=ON
cmake --build build -j --config Release
```
Run all the examples as usual.
## BLAS CPU support via OpenBLAS
Encoder processing can be accelerated on the CPU via OpenBLAS.
@ -452,7 +430,22 @@ Now build `whisper.cpp` with OpenBLAS support:
```
make clean
WHISPER_OPENBLAS=1 make -j
GGML_OPENBLAS=1 make -j
```
## BLAS CPU support via Intel MKL
Encoder processing can be accelerated on the CPU via the BLAS compatible interface of Intel's Math Kernel Library.
First, make sure you have installed Intel's MKL runtime and development packages: https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-download.html
Now build `whisper.cpp` with Intel MKL BLAS support:
```
source /opt/intel/oneapi/setvars.sh
mkdir build
cd build
cmake -DWHISPER_MKL=ON ..
WHISPER_MKL=1 make -j
```
## Docker
@ -487,6 +480,16 @@ docker run -it --rm \
whisper.cpp:main "./main -m /models/ggml-base.bin -f ./samples/jfk.wav"
```
## Installing with Conan
You can install pre-built binaries for whisper.cpp or build it from source using [Conan](https://conan.io/). Use the following command:
```
conan install --requires="whisper-cpp/[*]" --build=missing
```
For detailed instructions on how to use Conan, please refer to the [Conan documentation](https://docs.conan.io/2/).
## Limitations
- Inference only
@ -695,7 +698,7 @@ The [main](examples/main) example provides support for output of karaoke-style m
currently pronounced word is highlighted. Use the `-wts` argument and run the generated bash script.
This requires to have `ffmpeg` installed.
Here are a few *"typical"* examples:
Here are a few _"typical"_ examples:
```bash
./main -m ./models/ggml-base.en.bin -f ./samples/jfk.wav -owts
@ -729,10 +732,10 @@ https://user-images.githubusercontent.com/1991296/199337538-b7b0c7a3-2753-4a88-a
## Video comparison of different models
Use the [extra/bench-wts.sh](https://github.com/ggerganov/whisper.cpp/blob/master/extra/bench-wts.sh) script to generate a video in the following format:
Use the [scripts/bench-wts.sh](https://github.com/ggerganov/whisper.cpp/blob/master/scripts/bench-wts.sh) script to generate a video in the following format:
```bash
./extra/bench-wts.sh samples/jfk.wav
./scripts/bench-wts.sh samples/jfk.wav
ffplay ./samples/jfk.wav.all.mp4
```
@ -753,7 +756,7 @@ Additionally a script to run whisper.cpp with different models and audio files i
You can run it with the following command, by default it will run against any standard model in the models folder.
```bash
python3 extra/bench.py -f samples/jfk.wav -t 2,4,8 -p 1,2
python3 scripts/bench.py -f samples/jfk.wav -t 2,4,8 -p 1,2
```
It is written in python with the intention of being easy to modify and extend for your benchmarking use case.
@ -793,6 +796,7 @@ For more details, see the conversion script [models/convert-pt-to-ggml.py](model
- [NickDarvey/whisper](https://github.com/NickDarvey/whisper)
- [x] Python: | [#9](https://github.com/ggerganov/whisper.cpp/issues/9)
- [stlukey/whispercpp.py](https://github.com/stlukey/whispercpp.py) (Cython)
- [AIWintermuteAI/whispercpp](https://github.com/AIWintermuteAI/whispercpp) (Updated fork of aarnphm/whispercpp)
- [aarnphm/whispercpp](https://github.com/aarnphm/whispercpp) (Pybind11)
- [x] R: [bnosac/audio.whisper](https://github.com/bnosac/audio.whisper)
- [x] Unity: [macoron/whisper.unity](https://github.com/Macoron/whisper.unity)

View File

@ -68,10 +68,6 @@ func (flags *Flags) GetOut() string {
return strings.ToLower(flags.Lookup("out").Value.String())
}
func (flags *Flags) IsSpeedup() bool {
return flags.Lookup("speedup").Value.String() == "true"
}
func (flags *Flags) IsTokens() bool {
return flags.Lookup("tokens").Value.String() == "true"
}
@ -111,10 +107,6 @@ func (flags *Flags) SetParams(context whisper.Context) error {
fmt.Fprintf(flags.Output(), "Setting duration to %v\n", duration)
context.SetDuration(duration)
}
if flags.IsSpeedup() {
fmt.Fprintf(flags.Output(), "Setting speedup to true\n")
context.SetSpeedup(true)
}
if threads := flags.GetThreads(); threads != 0 {
fmt.Fprintf(flags.Output(), "Setting threads to %d\n", threads)
context.SetThreads(threads)
@ -146,7 +138,6 @@ func registerFlags(flag *Flags) {
flag.Duration("offset", 0, "Time offset")
flag.Duration("duration", 0, "Duration of audio to process")
flag.Uint("threads", 0, "Number of threads to use")
flag.Bool("speedup", false, "Enable speedup")
flag.Uint("max-len", 0, "Maximum segment length in characters")
flag.Uint("max-tokens", 0, "Maximum tokens per segment")
flag.Float64("word-thold", 0, "Maximum segment score")

View File

@ -47,10 +47,6 @@ func (p *Params) SetPrintTimestamps(v bool) {
p.print_timestamps = toBool(v)
}
func (p *Params) SetSpeedup(v bool) {
p.speed_up = toBool(v)
}
// Set language id
func (p *Params) SetLanguage(lang int) error {
if lang == -1 {
@ -177,9 +173,6 @@ func (p *Params) String() string {
if p.token_timestamps {
str += " token_timestamps"
}
if p.speed_up {
str += " speed_up"
}
return str + ">"
}

View File

@ -76,11 +76,6 @@ func (context *context) SetTranslate(v bool) {
context.params.SetTranslate(v)
}
// Set speedup flag
func (context *context) SetSpeedup(v bool) {
context.params.SetSpeedup(v)
}
func (context *context) SetSplitOnWord(v bool) {
context.params.SetSplitOnWord(v)
}

View File

@ -41,7 +41,6 @@ type Context interface {
SetOffset(time.Duration) // Set offset
SetDuration(time.Duration) // Set duration
SetThreads(uint) // Set number of threads to use
SetSpeedup(bool) // Set speedup flag
SetSplitOnWord(bool) // Set split on word flag
SetTokenThreshold(float32) // Set timestamp token probability threshold
SetTokenSumThreshold(float32) // Set timestamp token sum probability threshold

Submodule bindings/ios deleted from b21b6ff325

View File

@ -20,7 +20,7 @@ public interface WhisperCppJnaLibrary extends Library {
* @return Whisper context on success, null on failure
*/
Pointer whisper_init_from_file(String path_model);
/**
* Provides default params which can be used with `whisper_init_from_file_with_params()` etc.
* Because this function allocates memory for the params, the caller must call either:
@ -304,14 +304,6 @@ public interface WhisperCppJnaLibrary extends Library {
/** Language id associated with the provided state */
int whisper_full_lang_id_from_state(Pointer state);
/**
* Convert RAW PCM audio to log mel spectrogram but applies a Phase Vocoder to speed up the audio x2.
* The resulting spectrogram is stored inside the default state of the provided whisper context.
* @return 0 on success
*/
int whisper_pcm_to_mel_phase_vocoder(Pointer ctx, final float[] samples, int n_samples, int n_threads);
int whisper_pcm_to_mel_phase_vocoder_with_state(Pointer ctx, Pointer state, final float[] samples, int n_samples, int n_threads);
/** Get the start time of the specified segment. */
long whisper_full_get_segment_t0(Pointer ctx, int i_segment);

View File

@ -129,14 +129,6 @@ public class WhisperFullParams extends Structure {
/** Maximum tokens per segment (0, default = no limit) */
public int max_tokens;
/** Flag to speed up the audio by 2x using Phase Vocoder. (default = false) */
public CBool speed_up;
/** Flag to speed up the audio by 2x using Phase Vocoder. (default = false) */
public void speedUp(boolean enable) {
speed_up = enable ? CBool.TRUE : CBool.FALSE;
}
/** Overwrite the audio context size (0 = use default). */
public int audio_ctx;
@ -148,6 +140,9 @@ public class WhisperFullParams extends Structure {
tdrz_enable = enable ? CBool.TRUE : CBool.FALSE;
}
/** Regular expression matching tokens to suppress. */
public String suppress_regex;
/** Tokens to provide to the whisper decoder as an initial prompt.
* These are prepended to any existing text context from a previous call. */
public String initial_prompt;
@ -318,8 +313,8 @@ public class WhisperFullParams extends Structure {
return Arrays.asList("strategy", "n_threads", "n_max_text_ctx", "offset_ms", "duration_ms", "translate",
"no_context", "single_segment", "no_timestamps",
"print_special", "print_progress", "print_realtime", "print_timestamps", "token_timestamps",
"thold_pt", "thold_ptsum", "max_len", "split_on_word", "max_tokens", "speed_up", "audio_ctx",
"tdrz_enable", "initial_prompt", "prompt_tokens", "prompt_n_tokens", "language", "detect_language",
"thold_pt", "thold_ptsum", "max_len", "split_on_word", "max_tokens", "audio_ctx",
"tdrz_enable", "suppress_regex", "initial_prompt", "prompt_tokens", "prompt_n_tokens", "language", "detect_language",
"suppress_blank", "suppress_non_speech_tokens", "temperature", "max_initial_ts", "length_penalty",
"temperature_inc", "entropy_thold", "logprob_thold", "no_speech_thold", "greedy", "beam_search",
"new_segment_callback", "new_segment_callback_user_data",

View File

@ -1,6 +1,6 @@
{
"name": "whisper.cpp",
"version": "1.5.4",
"version": "1.6.2",
"description": "Whisper speech recognition",
"main": "whisper.js",
"scripts": {

12
bindings/ruby/Rakefile Normal file
View File

@ -0,0 +1,12 @@
require 'rake/clean'
require 'rubygems/package'
desc 'Build gem'
task :package do
spec_source = File.read File.join(File.dirname(__FILE__),'whispercpp.gemspec')
spec = nil
# see: http://gist.github.com/16215
Thread.new { spec = eval("#{spec_source}") }.join
spec.validate
Gem::Package.build(spec)
end

View File

@ -1,6 +1,7 @@
require 'mkmf'
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','whisper.cpp')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','whisper.h')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','whisper-mel.hpp')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml.h')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml.c')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml-impl.h')} .")

View File

@ -12,31 +12,63 @@ extern "C" {
// Backend buffer
//
// buffer type
typedef void * ggml_backend_buffer_type_context_t;
struct ggml_backend_buffer_type_i {
const char * (*GGML_CALL get_name) (ggml_backend_buffer_type_t buft);
ggml_backend_buffer_t (*GGML_CALL alloc_buffer) (ggml_backend_buffer_type_t buft, size_t size);
size_t (*GGML_CALL get_alignment) (ggml_backend_buffer_type_t buft); // tensor alignment
size_t (*GGML_CALL get_max_size) (ggml_backend_buffer_type_t buft); // allocation max size
size_t (*GGML_CALL get_alloc_size) (ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor); // data size needed to allocate the tensor, including padding
bool (*GGML_CALL supports_backend)(ggml_backend_buffer_type_t buft, ggml_backend_t backend); // check if the buffer type is usable by the backend
// check if tensor data is in host memory
// should be equivalent to supports_backend(buft, ggml_backend_cpu_init())
bool (*GGML_CALL is_host) (ggml_backend_buffer_type_t buft);
};
struct ggml_backend_buffer_type {
struct ggml_backend_buffer_type_i iface;
ggml_backend_buffer_type_context_t context;
};
// buffer
typedef void * ggml_backend_buffer_context_t;
struct ggml_backend_buffer_i {
void (*free_buffer) (ggml_backend_buffer_t buffer);
void * (*get_base) (ggml_backend_buffer_t buffer); // get base pointer
size_t (*get_alloc_size)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // pre-allocation callback
void (*init_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // post-allocation callback
void (*free_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // pre-free callback
const char * (*GGML_CALL get_name) (ggml_backend_buffer_t buffer);
void (*GGML_CALL free_buffer)(ggml_backend_buffer_t buffer);
void * (*GGML_CALL get_base) (ggml_backend_buffer_t buffer);
void (*GGML_CALL init_tensor)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
void (*GGML_CALL set_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
void (*GGML_CALL get_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
bool (*GGML_CALL cpy_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst); // dst is in the buffer, src may be in any buffer
void (*GGML_CALL clear) (ggml_backend_buffer_t buffer, uint8_t value);
void (*GGML_CALL reset) (ggml_backend_buffer_t buffer); // reset any internal state due to tensor initialization, such as tensor extras
};
struct ggml_backend_buffer {
struct ggml_backend_buffer_i iface;
ggml_backend_t backend;
struct ggml_backend_buffer_i iface;
ggml_backend_buffer_type_t buft;
ggml_backend_buffer_context_t context;
size_t size;
enum ggml_backend_buffer_usage usage;
};
GGML_API ggml_backend_buffer_t ggml_backend_buffer_init(
struct ggml_backend * backend,
GGML_CALL ggml_backend_buffer_t ggml_backend_buffer_init(
ggml_backend_buffer_type_t buft,
struct ggml_backend_buffer_i iface,
ggml_backend_buffer_context_t context,
size_t size);
// do not use directly, use ggml_backend_tensor_copy instead
bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst);
// buffer that contains a collection of buffers
GGML_CALL ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers);
GGML_CALL bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer);
GGML_CALL void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage);
//
// Backend
//
@ -44,44 +76,66 @@ extern "C" {
typedef void * ggml_backend_context_t;
struct ggml_backend_i {
const char * (*get_name)(ggml_backend_t backend);
const char * (*GGML_CALL get_name)(ggml_backend_t backend);
void (*free)(ggml_backend_t backend);
void (*GGML_CALL free)(ggml_backend_t backend);
// buffer allocation
ggml_backend_buffer_t (*alloc_buffer)(ggml_backend_t backend, size_t size);
ggml_backend_buffer_type_t (*GGML_CALL get_default_buffer_type)(ggml_backend_t backend);
// get buffer alignment
size_t (*get_alignment)(ggml_backend_t backend);
// (optional) asynchronous tensor data access
void (*GGML_CALL set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
void (*GGML_CALL get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
bool (*GGML_CALL cpy_tensor_async)(ggml_backend_t backend_src, ggml_backend_t backend_dst, const struct ggml_tensor * src, struct ggml_tensor * dst);
// tensor data access
// these functions can be asynchronous, helper functions are provided for synchronous access that automatically call synchronize
void (*set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
void (*get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
void (*synchronize) (ggml_backend_t backend);
// (optional) complete all pending operations
void (*GGML_CALL synchronize)(ggml_backend_t backend);
// (optional) copy tensor between different backends, allow for single-copy tranfers
void (*cpy_tensor_from)(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
void (*cpy_tensor_to) (ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
// compute graph with a plan (not used currently)
ggml_backend_graph_plan_t (*GGML_CALL graph_plan_create) (ggml_backend_t backend, const struct ggml_cgraph * cgraph);
void (*GGML_CALL graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
// compute graph with a plan
ggml_backend_graph_plan_t (*graph_plan_create) (ggml_backend_t backend, struct ggml_cgraph * cgraph);
void (*graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
void (*graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
// compute graph without a plan
bool (*graph_compute)(ggml_backend_t backend, struct ggml_cgraph * cgraph);
enum ggml_status (*GGML_CALL graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
// compute graph without a plan (async)
enum ggml_status (*GGML_CALL graph_compute) (ggml_backend_t backend, struct ggml_cgraph * cgraph);
// check if the backend supports an operation
bool (*supports_op)(ggml_backend_t backend, const struct ggml_tensor * op);
bool (*GGML_CALL supports_op)(ggml_backend_t backend, const struct ggml_tensor * op);
// check if the backend wants to run an operation, even if the weights are allocated in a CPU buffer
// these should be expensive operations with large batch sizes that may benefit from running on this backend
// even if the weight has to be copied from the CPU temporarily
bool (*GGML_CALL offload_op)(ggml_backend_t backend, const struct ggml_tensor * op);
// (optional) event synchronization
ggml_backend_event_t (*GGML_CALL event_new) (ggml_backend_t backend);
void (*GGML_CALL event_free) (ggml_backend_event_t event);
void (*GGML_CALL event_record) (ggml_backend_event_t event);
void (*GGML_CALL event_wait) (ggml_backend_t backend, ggml_backend_event_t event);
void (*GGML_CALL event_synchronize) (ggml_backend_event_t event);
};
struct ggml_backend {
struct ggml_backend_i iface;
ggml_guid_t guid;
struct ggml_backend_i iface;
ggml_backend_context_t context;
};
struct ggml_backend_event {
ggml_backend_t backend;
void * context;
};
//
// Backend registry
//
typedef ggml_backend_t (*GGML_CALL ggml_backend_init_fn)(const char * params, void * user_data);
GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data);
#ifdef __cplusplus
}
#endif

File diff suppressed because it is too large Load Diff

View File

@ -7,69 +7,123 @@
extern "C" {
#endif
typedef struct ggml_backend_buffer_type * ggml_backend_buffer_type_t;
typedef struct ggml_backend_buffer * ggml_backend_buffer_t;
typedef struct ggml_backend_event * ggml_backend_event_t;
typedef struct ggml_backend * ggml_backend_t;
typedef void * ggml_backend_graph_plan_t;
//
// Backend buffer
//
struct ggml_backend_buffer;
typedef struct ggml_backend_buffer * ggml_backend_buffer_t;
// buffer type
GGML_API const char * ggml_backend_buft_name (ggml_backend_buffer_type_t buft);
GGML_API GGML_CALL ggml_backend_buffer_t ggml_backend_buft_alloc_buffer (ggml_backend_buffer_type_t buft, size_t size);
GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft);
GGML_API size_t ggml_backend_buft_get_max_size (ggml_backend_buffer_type_t buft);
GGML_API GGML_CALL size_t ggml_backend_buft_get_alloc_size (ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor);
GGML_API bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend);
GGML_API bool ggml_backend_buft_is_host (ggml_backend_buffer_type_t buft);
// backend buffer functions
GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer);
GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer);
GGML_API size_t ggml_backend_buffer_get_size (ggml_backend_buffer_t buffer);
GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
GGML_API void ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
GGML_API void ggml_backend_buffer_free_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
// buffer
enum ggml_backend_buffer_usage {
GGML_BACKEND_BUFFER_USAGE_ANY = 0,
GGML_BACKEND_BUFFER_USAGE_WEIGHTS = 1,
};
GGML_API const char * ggml_backend_buffer_name (ggml_backend_buffer_t buffer);
GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer);
GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer);
GGML_API size_t ggml_backend_buffer_get_size (ggml_backend_buffer_t buffer);
GGML_API GGML_CALL void ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
GGML_API size_t ggml_backend_buffer_get_max_size (ggml_backend_buffer_t buffer);
GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
GGML_API void ggml_backend_buffer_clear (ggml_backend_buffer_t buffer, uint8_t value);
GGML_API bool ggml_backend_buffer_is_host (ggml_backend_buffer_t buffer);
GGML_API void ggml_backend_buffer_set_usage (ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage);
GGML_API ggml_backend_buffer_type_t ggml_backend_buffer_get_type (ggml_backend_buffer_t buffer);
GGML_API void ggml_backend_buffer_reset (ggml_backend_buffer_t buffer);
//
// Backend
//
struct ggml_backend;
typedef struct ggml_backend * ggml_backend_t;
typedef void * ggml_backend_graph_plan_t;
GGML_API ggml_backend_t ggml_get_backend(const struct ggml_tensor * tensor);
GGML_API ggml_guid_t ggml_backend_guid(ggml_backend_t backend);
GGML_API const char * ggml_backend_name(ggml_backend_t backend);
GGML_API void ggml_backend_free(ggml_backend_t backend);
GGML_API ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size);
GGML_API ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend);
GGML_API ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size);
GGML_API size_t ggml_backend_get_alignment(ggml_backend_t backend);
GGML_API size_t ggml_backend_get_max_size(ggml_backend_t backend);
GGML_API size_t ggml_backend_get_alignment(ggml_backend_t backend);
GGML_API void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
GGML_API void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
GGML_API void ggml_backend_tensor_set_async( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
GGML_API void ggml_backend_tensor_get_async(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
GGML_API void ggml_backend_tensor_set( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
GGML_API void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
GGML_API GGML_CALL void ggml_backend_tensor_set( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
GGML_API GGML_CALL void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
GGML_API void ggml_backend_synchronize(ggml_backend_t backend);
GGML_API ggml_backend_graph_plan_t ggml_backend_graph_plan_create (ggml_backend_t backend, struct ggml_cgraph * cgraph);
GGML_API ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph);
GGML_API void ggml_backend_graph_plan_free (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
GGML_API void ggml_backend_graph_plan_free (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
GGML_API void ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
GGML_API bool ggml_backend_graph_compute (ggml_backend_t backend, struct ggml_cgraph * cgraph);
GGML_API bool ggml_backend_supports_op (ggml_backend_t backend, const struct ggml_tensor * op);
GGML_API enum ggml_status ggml_backend_graph_plan_compute (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
GGML_API enum ggml_status ggml_backend_graph_compute (ggml_backend_t backend, struct ggml_cgraph * cgraph);
GGML_API enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph);
GGML_API bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op);
GGML_API bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op);
// tensor copy between different backends
GGML_API void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst);
// asynchronous copy
// the copy is performed after all the currently queued operations in backend_src
// backend_dst will wait for the copy to complete before performing other operations
// automatic fallback to sync copy if async is not supported
GGML_API void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst);
// events
GGML_API ggml_backend_event_t ggml_backend_event_new (ggml_backend_t backend);
GGML_API void ggml_backend_event_free (ggml_backend_event_t event);
GGML_API void ggml_backend_event_record (ggml_backend_event_t event);
GGML_API void ggml_backend_event_synchronize(ggml_backend_event_t event);
GGML_API void ggml_backend_event_wait (ggml_backend_t backend, ggml_backend_event_t event); // wait async on event
//
// CPU backend
//
GGML_API ggml_backend_t ggml_backend_cpu_init(void);
GGML_API bool ggml_backend_is_cpu(ggml_backend_t backend);
GGML_API void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads);
GGML_API GGML_CALL bool ggml_backend_is_cpu (ggml_backend_t backend);
GGML_API void ggml_backend_cpu_set_n_threads (ggml_backend_t backend_cpu, int n_threads);
GGML_API void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data);
// Create a backend buffer from an existing pointer
GGML_API ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(ggml_backend_t backend_cpu, void * ptr, size_t size);
GGML_API GGML_CALL ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size);
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void);
#ifdef GGML_USE_CPU_HBM
GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void);
#endif
//
// Backend registry
//
// The backend registry is a registry of all the available backends, and allows initializing backends in a generic way
GGML_API size_t ggml_backend_reg_get_count(void);
GGML_API size_t ggml_backend_reg_find_by_name(const char * name);
GGML_API ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str); // str is name[:params]
GGML_API const char * ggml_backend_reg_get_name(size_t i);
GGML_API ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params); // params is backend-specific
GGML_API ggml_backend_buffer_type_t ggml_backend_reg_get_default_buffer_type(size_t i);
GGML_API ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size);
//
// Backend scheduler
@ -83,53 +137,96 @@ extern "C" {
/*
Example usage:
sched = ggml_backend_sched_new({backend_gpu, backend_gpu2, backend_cpu}, num_backends);
// sched is initialized with measure allocators and cannot be used until allocated with a measure graph
// operations that use tensors allocated in a buffer with USAGE_WEIGHTS will be assigned
// preferrably to run on the same backend as the buffer
ggml_backend_buffer_set_usage(buf_weights, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
// initialize buffers from a measure graph
measure_graph = build_graph(sched); // use the allocr to allocate inputs as needed
sched = ggml_backend_sched_new({backend_gpu, backend_gpu2, backend_cpu}, NULL, num_backends, GGML_DEFAULT_GRAPH_SIZE, false);
// in build_graph:
build_graph(...) {
// allocating tensors in a specific backend (optional, recommended: pre-allocate inputs in a different buffer)
alloc_cpu = ggml_backend_sched_get_allocr(sched, backend_cpu);
ggml_allocr_alloc(alloc_cpu, tensor);
// initialize buffers from a max size graph (optional)
reserve_graph = build_graph(sched, max_batch_size);
// manually assigning nodes to a backend (optional, shouldn't be needed in most cases)
struct ggml_tensor * node = ggml_mul_mat(ctx, ...);
ggml_backend_sched_set_node_backend(sched, node, backend_gpu);
}
// manually assign nodes to a backend (optional, should not be needed in most cases)
struct ggml_tensor * node = ggml_mul_mat(ctx, ...);
ggml_backend_sched_set_tensor_backend(sched, node, backend_gpu);
// allocate backend buffers from measure graph
ggml_backend_sched_init_measure(sched, measure_graph);
// the scheduler is now ready to compute graphs
ggml_backend_sched_reserve(sched, reserve_graph);
// compute
graph = build_graph(sched);
ggml_backend_sched_graph_compute(sched, graph);
// if there are graph inputs:
ggml_backend_sched_reset(sched);
ggml_backend_sched_alloc_graph(sched, graph);
ggml_backend_tensor_set(input_tensor, ...);
ggml_backend_sched_graph_compute(sched, graph);
}
*/
struct ggml_backend_sched;
typedef struct ggml_backend_sched * ggml_backend_sched_t;
// Initialize a backend scheduler
GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, int n_backends);
// when ask == true, the scheduler wants to know if the user wants to observe this node
// this allows the scheduler to batch nodes together in order to evaluate them in a single call
//
// when ask == false, the scheduler is passing the node tensor to the user for observation
// if the user returns false, the scheduler will cancel the graph compute
//
typedef bool (*ggml_backend_sched_eval_callback)(struct ggml_tensor * t, bool ask, void * user_data);
GGML_API void ggml_backend_sched_free(ggml_backend_sched_t sched);
// Initialize a backend scheduler
GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size, bool parallel);
GGML_API void ggml_backend_sched_free(ggml_backend_sched_t sched);
// Initialize backend buffers from a measure graph
GGML_API void ggml_backend_sched_init_measure(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph);
GGML_API bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph);
GGML_API ggml_tallocr_t ggml_backend_sched_get_tallocr(ggml_backend_sched_t sched, ggml_backend_t backend);
GGML_API ggml_backend_buffer_t ggml_backend_sched_get_buffer (ggml_backend_sched_t sched, ggml_backend_t backend);
// Get the number of splits of the last graph
GGML_API int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched);
GGML_API int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched);
GGML_API void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend);
GGML_API size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend);
GGML_API void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend);
GGML_API ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node);
// Allocate and compute graph on the backend scheduler
GGML_API bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph);
GGML_API enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph);
GGML_API enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph);
GGML_API void ggml_backend_sched_synchronize(ggml_backend_sched_t sched);
// Reset all assignments and allocators - must be called before changing the node backends
GGML_API void ggml_backend_sched_reset(ggml_backend_sched_t sched);
// Set a callback to be called for each resulting node during graph compute
GGML_API void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data);
//
// Utils
//
struct ggml_backend_graph_copy {
ggml_backend_buffer_t buffer;
struct ggml_context * ctx_allocated;
struct ggml_context * ctx_unallocated;
struct ggml_cgraph * graph;
};
// Copy a graph to a different backend
GGML_API struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph);
GGML_API void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy);
typedef bool (*GGML_CALL ggml_backend_eval_callback)(int node_index, struct ggml_tensor * t1, struct ggml_tensor * t2, void * user_data);
// Compare the output of two backends
GGML_API bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data);
// Tensor initialization
GGML_API void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr);
GGML_API void ggml_backend_view_init(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
// Allocate a graph on the backend scheduler
GGML_API void ggml_backend_sched_graph_compute(
ggml_backend_sched_t sched,
struct ggml_cgraph * graph);
#ifdef __cplusplus
}

View File

@ -377,6 +377,27 @@ typedef struct {
} block_iq1_s;
static_assert(sizeof(block_iq1_s) == sizeof(ggml_half) + QK_K/8 + QK_K/16, "wrong iq1_s block size/padding");
// 1.75 bpw
typedef struct {
uint8_t qs[QK_K/8]; // grid index, low 8 bits
uint8_t qh[QK_K/16]; // grid index, high 3 bits + grid shift bit (for two groups of 8)
#if QK_K == 64
ggml_half d;
#endif
uint8_t scales[QK_K/32]; // 3-bit block scales (4-bit if QK_K == 64)
} block_iq1_m;
#if QK_K == 64
static_assert(sizeof(block_iq1_m) == QK_K/8 + QK_K/16 + QK_K/32 + sizeof(ggml_half), "wrong iq1_m block size/padding");
#else
static_assert(sizeof(block_iq1_m) == QK_K/8 + QK_K/16 + QK_K/32, "wrong iq1_m block size/padding");
#endif
// Used by IQ1_M quants
typedef union {
ggml_half f16;
uint16_t u16;
} iq1m_scale_t;
// Non-linear quants
#define QK4_NL 32
typedef struct {
@ -426,10 +447,11 @@ static_assert(sizeof(block_iq4_xs) == sizeof(ggml_half) + sizeof(uint16_t) + QK_
#define GGML_COMMON_IMPL
#elif defined(GGML_COMMON_IMPL_SYCL)
#include <cstdint>
#define GGML_TABLE_BEGIN(type, name, size) static dpct::global_memory<const type, 1> name(sycl::range<1>(size), {
#define GGML_TABLE_END() });
#define GGML_TABLE_BEGIN(type, name, size) static const type name[size] = {
#define GGML_TABLE_END() };
#define GGML_COMMON_IMPL
#endif
@ -1050,6 +1072,7 @@ GGML_TABLE_END()
#define NGRID_IQ1S 2048
#define IQ1S_DELTA 0.125f
#define IQ1M_DELTA 0.125f
#if defined(GGML_COMMON_IMPL_C)
GGML_TABLE_BEGIN(uint64_t, iq1s_grid, NGRID_IQ1S)
0xffffffffffffffff, 0xffffffffffffff01, 0xffffffffffff0000, 0xffffffffffff01ff,

View File

@ -17,29 +17,17 @@ extern "C" {
#define GGML_CUDA_MAX_DEVICES 16
// Always success. To check if CUDA is actually loaded, use `ggml_cublas_loaded`.
GGML_API GGML_CALL void ggml_init_cublas(void);
// Returns `true` if there are available CUDA devices and cublas loads successfully; otherwise, it returns `false`.
GGML_API GGML_CALL bool ggml_cublas_loaded(void);
GGML_API GGML_CALL void * ggml_cuda_host_malloc(size_t size);
GGML_API GGML_CALL void ggml_cuda_host_free(void * ptr);
GGML_API GGML_CALL bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
GGML_API GGML_CALL bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor);
GGML_API GGML_CALL int ggml_cuda_get_device_count(void);
GGML_API GGML_CALL void ggml_cuda_get_device_description(int device, char * description, size_t description_size);
// backend API
GGML_API GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device);
GGML_API GGML_CALL bool ggml_backend_is_cuda(ggml_backend_t backend);
// device buffer
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device);
// split tensor buffer that splits matrices by rows across multiple devices
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split);
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type(void);
@ -47,6 +35,9 @@ GGML_API GGML_CALL int ggml_backend_cuda_get_device_count(void);
GGML_API GGML_CALL void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size);
GGML_API GGML_CALL void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total);
GGML_API GGML_CALL bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size);
GGML_API GGML_CALL void ggml_backend_cuda_unregister_host_buffer(void * buffer);
#ifdef __cplusplus
}
#endif

View File

@ -5,6 +5,7 @@
// GGML internal header
#include <assert.h>
#include <stdlib.h> // load `stdlib.h` before other headers to work around MinGW bug: https://sourceforge.net/p/mingw-w64/bugs/192/
#include <stddef.h>
#include <stdbool.h>
#include <string.h> // memcpy
@ -18,6 +19,7 @@ extern "C" {
// fall back to the _Static_assert C11 keyword.
// if C99 - static_assert is noop
// ref: https://stackoverflow.com/a/53923785/4039976
#ifndef __cplusplus
#ifndef static_assert
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
#define static_assert(cond, msg) _Static_assert(cond, msg)
@ -25,6 +27,7 @@ extern "C" {
#define static_assert(cond, msg) struct global_scope_noop_trick
#endif
#endif
#endif
// __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
#if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
@ -34,16 +37,17 @@ extern "C" {
#ifndef __F16C__
#define __F16C__
#endif
#endif
// __SSE3__ and __SSSE3__ are not defined in MSVC, but SSE3/SSSE3 are present when AVX/AVX2/AVX512 are available
#if defined(_MSC_VER) && (defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__))
#ifndef __SSE3__
#define __SSE3__
#endif
#ifndef __SSSE3__
#define __SSSE3__
#endif
#endif
#undef MIN
#undef MAX
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
// 16-bit float
// on Arm, we use __fp16
@ -56,14 +60,30 @@ extern "C" {
//
#include <arm_neon.h>
#define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
#define GGML_COMPUTE_FP32_TO_FP16(x) (x)
typedef __fp16 ggml_fp16_internal_t;
#define GGML_FP16_TO_FP32(x) ((float) (x))
#define GGML_FP32_TO_FP16(x) (x)
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
#define GGML_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
ggml_fp16_internal_t tmp;
memcpy(&tmp, &h, sizeof(ggml_fp16_t));
return (float)tmp;
}
static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
ggml_fp16_t res;
ggml_fp16_internal_t tmp = f;
memcpy(&res, &tmp, sizeof(ggml_fp16_t));
return res;
}
#else
typedef uint16_t ggml_fp16_internal_t;
#ifdef __wasm_simd128__
#include <wasm_simd128.h>
#else
@ -217,8 +237,7 @@ extern float ggml_table_f32_f16[1 << 16];
// On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
// so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
// This is also true for POWER9.
#if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
#if !defined(GGML_FP16_TO_FP32)
inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
uint16_t s;
memcpy(&s, &f, sizeof(uint16_t));
@ -226,19 +245,23 @@ inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
}
#define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
#endif
#if !defined(GGML_FP32_TO_FP16)
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
#endif
#define GGML_HASHTABLE_FULL ((size_t)-1)
#define GGML_HASHTABLE_ALREADY_EXISTS ((size_t)-2)
struct ggml_hash_set ggml_hash_set_new(size_t size);
bool ggml_hash_contains (const struct ggml_hash_set hash_set, struct ggml_tensor * key);
// returns GGML_HASHTABLE_FULL if table is full, otherwise the current index of the key or where it should be inserted
size_t ggml_hash_find (const struct ggml_hash_set hash_set, struct ggml_tensor * key);
// returns GGML_HAHSHTABLE_ALREADY_EXISTS if key already exists, index otherwise, asserts if table is full
// returns GGML_HASHTABLE_ALREADY_EXISTS if key already exists, index otherwise, asserts if table is full
size_t ggml_hash_insert ( struct ggml_hash_set hash_set, struct ggml_tensor * key);
// return index, asserts if table is full

File diff suppressed because it is too large Load Diff

View File

@ -1,224 +1,133 @@
#pragma once
#include "ggml-impl.h"
#define GGML_COMMON_DECL_C
#include "ggml-common.h"
#include "ggml.h"
// GGML internal header
#include <stdint.h>
#include <stddef.h>
#define QK4_0 32
typedef struct {
ggml_fp16_t d; // delta
uint8_t qs[QK4_0 / 2]; // nibbles / quants
} block_q4_0;
static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
#define QK4_1 32
typedef struct {
ggml_fp16_t d; // delta
ggml_fp16_t m; // min
uint8_t qs[QK4_1 / 2]; // nibbles / quants
} block_q4_1;
static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
#define QK5_0 32
typedef struct {
ggml_fp16_t d; // delta
uint8_t qh[4]; // 5-th bit of quants
uint8_t qs[QK5_0 / 2]; // nibbles / quants
} block_q5_0;
static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
#define QK5_1 32
typedef struct {
ggml_fp16_t d; // delta
ggml_fp16_t m; // min
uint8_t qh[4]; // 5-th bit of quants
uint8_t qs[QK5_1 / 2]; // nibbles / quants
} block_q5_1;
static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
#define QK8_0 32
typedef struct {
ggml_fp16_t d; // delta
int8_t qs[QK8_0]; // quants
} block_q8_0;
static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
#define QK8_1 32
typedef struct {
float d; // delta
float s; // d * sum(qs[i])
int8_t qs[QK8_1]; // quants
} block_q8_1;
static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
//
// Super-block quantization structures
//
// Super-block size
#ifdef GGML_QKK_64
#define QK_K 64
#define K_SCALE_SIZE 4
#else
#define QK_K 256
#define K_SCALE_SIZE 12
#ifdef __cplusplus
extern "C" {
#endif
// 2-bit quantization
// weight is represented as x = a * q + b
// 16 blocks of 16 elements each
// Effectively 2.5625 bits per weight
typedef struct {
uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
uint8_t qs[QK_K/4]; // quants
ggml_fp16_t d; // super-block scale for quantized scales
ggml_fp16_t dmin; // super-block scale for quantized mins
} block_q2_K;
static_assert(sizeof(block_q2_K) == 2*sizeof(ggml_fp16_t) + QK_K/16 + QK_K/4, "wrong q2_K block size/padding");
// 3-bit quantization
// weight is represented as x = a * q
// 16 blocks of 16 elements each
// Effectively 3.4375 bits per weight
#ifdef GGML_QKK_64
typedef struct {
uint8_t hmask[QK_K/8]; // quants - high bit
uint8_t qs[QK_K/4]; // quants - low 2 bits
uint8_t scales[2];
ggml_fp16_t d; // super-block scale
} block_q3_K;
static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + QK_K / 8 + 2, "wrong q3_K block size/padding");
#else
typedef struct {
uint8_t hmask[QK_K/8]; // quants - high bit
uint8_t qs[QK_K/4]; // quants - low 2 bits
uint8_t scales[12]; // scales, quantized with 6 bits
ggml_fp16_t d; // super-block scale
} block_q3_K;
static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + QK_K / 8 + 12, "wrong q3_K block size/padding");
#endif
// 4-bit quantization
// 8 blocks of 32 elements each
// weight is represented as x = a * q + b
// Effectively 4.5 bits per weight
#ifdef GGML_QKK_64
typedef struct {
ggml_fp16_t d[2]; // super-block scales/mins
uint8_t scales[2]; // 4-bit block scales/mins
uint8_t qs[QK_K/2]; // 4--bit quants
} block_q4_K;
static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + QK_K/2 + 2, "wrong q4_K block size/padding");
#else
typedef struct {
ggml_fp16_t d; // super-block scale for quantized scales
ggml_fp16_t dmin; // super-block scale for quantized mins
uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits
uint8_t qs[QK_K/2]; // 4--bit quants
} block_q4_K;
static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + K_SCALE_SIZE + QK_K/2, "wrong q4_K block size/padding");
#endif
// 5-bit quantization
// 8 blocks of 32 elements each
// weight is represented as x = a * q + b
// Effectively 5.5 bits per weight
#ifdef GGML_QKK_64
typedef struct {
ggml_fp16_t d; // super-block scale
int8_t scales[QK_K/16]; // 8-bit block scales
uint8_t qh[QK_K/8]; // quants, high bit
uint8_t qs[QK_K/2]; // quants, low 4 bits
} block_q5_K;
static_assert(sizeof(block_q5_K) == sizeof(ggml_fp16_t) + QK_K/2 + QK_K/8 + QK_K/16, "wrong q5_K block size/padding");
#else
typedef struct {
ggml_fp16_t d; // super-block scale for quantized scales
ggml_fp16_t dmin; // super-block scale for quantized mins
uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits
uint8_t qh[QK_K/8]; // quants, high bit
uint8_t qs[QK_K/2]; // quants, low 4 bits
} block_q5_K;
static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_fp16_t) + K_SCALE_SIZE + QK_K/2 + QK_K/8, "wrong q5_K block size/padding");
#endif
// 6-bit quantization
// weight is represented as x = a * q
// 16 blocks of 16 elements each
// Effectively 6.5625 bits per weight
typedef struct {
uint8_t ql[QK_K/2]; // quants, lower 4 bits
uint8_t qh[QK_K/4]; // quants, upper 2 bits
int8_t scales[QK_K/16]; // scales, quantized with 8 bits
ggml_fp16_t d; // super-block scale
} block_q6_K;
static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + QK_K / 16 + 3*QK_K/4, "wrong q6_K block size/padding");
// This is only used for intermediate quantization and dot products
typedef struct {
float d; // delta
int8_t qs[QK_K]; // quants
int16_t bsums[QK_K/16]; // sum of quants in groups of 16
} block_q8_K;
static_assert(sizeof(block_q8_K) == sizeof(float) + QK_K + QK_K/16*sizeof(int16_t), "wrong q8_K block size/padding");
// Quantization
void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k);
void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k);
void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k);
void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k);
void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k);
void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k);
void quantize_row_q4_0_reference(const float * GGML_RESTRICT x, block_q4_0 * GGML_RESTRICT y, int64_t k);
void quantize_row_q4_1_reference(const float * GGML_RESTRICT x, block_q4_1 * GGML_RESTRICT y, int64_t k);
void quantize_row_q5_0_reference(const float * GGML_RESTRICT x, block_q5_0 * GGML_RESTRICT y, int64_t k);
void quantize_row_q5_1_reference(const float * GGML_RESTRICT x, block_q5_1 * GGML_RESTRICT y, int64_t k);
void quantize_row_q8_0_reference(const float * GGML_RESTRICT x, block_q8_0 * GGML_RESTRICT y, int64_t k);
void quantize_row_q8_1_reference(const float * GGML_RESTRICT x, block_q8_1 * GGML_RESTRICT y, int64_t k);
void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict y, int k);
void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict y, int k);
void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict y, int k);
void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int k);
void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int k);
void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k);
void quantize_row_q2_K_reference(const float * GGML_RESTRICT x, block_q2_K * GGML_RESTRICT y, int64_t k);
void quantize_row_q3_K_reference(const float * GGML_RESTRICT x, block_q3_K * GGML_RESTRICT y, int64_t k);
void quantize_row_q4_K_reference(const float * GGML_RESTRICT x, block_q4_K * GGML_RESTRICT y, int64_t k);
void quantize_row_q5_K_reference(const float * GGML_RESTRICT x, block_q5_K * GGML_RESTRICT y, int64_t k);
void quantize_row_q6_K_reference(const float * GGML_RESTRICT x, block_q6_K * GGML_RESTRICT y, int64_t k);
void quantize_row_q8_K_reference(const float * GGML_RESTRICT x, block_q8_K * GGML_RESTRICT y, int64_t k);
void quantize_row_q4_0(const float * restrict x, void * restrict y, int k);
void quantize_row_q4_1(const float * restrict x, void * restrict y, int k);
void quantize_row_q5_0(const float * restrict x, void * restrict y, int k);
void quantize_row_q5_1(const float * restrict x, void * restrict y, int k);
void quantize_row_q8_0(const float * restrict x, void * restrict y, int k);
void quantize_row_q8_1(const float * restrict x, void * restrict y, int k);
void quantize_row_iq3_xxs_reference(const float * GGML_RESTRICT x, block_iq3_xxs * GGML_RESTRICT y, int64_t k);
void quantize_row_iq4_nl_reference (const float * GGML_RESTRICT x, block_iq4_nl * GGML_RESTRICT y, int64_t k);
void quantize_row_iq4_xs_reference (const float * GGML_RESTRICT x, block_iq4_xs * GGML_RESTRICT y, int64_t k);
void quantize_row_iq3_s_reference (const float * GGML_RESTRICT x, block_iq3_s * GGML_RESTRICT y, int64_t k);
void quantize_row_iq2_s_reference (const float * GGML_RESTRICT x, block_iq2_s * GGML_RESTRICT y, int64_t k);
void quantize_row_q2_K(const float * restrict x, void * restrict y, int k);
void quantize_row_q3_K(const float * restrict x, void * restrict y, int k);
void quantize_row_q4_K(const float * restrict x, void * restrict y, int k);
void quantize_row_q5_K(const float * restrict x, void * restrict y, int k);
void quantize_row_q6_K(const float * restrict x, void * restrict y, int k);
void quantize_row_q8_K(const float * restrict x, void * restrict y, int k);
void quantize_row_q4_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
void quantize_row_q4_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
void quantize_row_q5_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
void quantize_row_q5_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
void quantize_row_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
void quantize_row_q8_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
void quantize_row_q2_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
void quantize_row_q3_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
void quantize_row_q4_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
void quantize_row_q5_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
void quantize_row_q6_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
void quantize_row_q8_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
void quantize_row_iq3_xxs(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
void quantize_row_iq4_nl (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
void quantize_row_iq4_xs (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
void quantize_row_iq3_s (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
void quantize_row_iq2_s (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
// Dequantization
void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k);
void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k);
void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k);
void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k);
void dequantize_row_q8_0(const block_q8_0 * restrict x, float * restrict y, int k);
//void dequantize_row_q8_1(const block_q8_1 * restrict x, float * restrict y, int k);
void dequantize_row_q4_0(const block_q4_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
void dequantize_row_q4_1(const block_q4_1 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
void dequantize_row_q5_0(const block_q5_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
void dequantize_row_q5_1(const block_q5_1 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
void dequantize_row_q8_0(const block_q8_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
//void dequantize_row_q8_1(const block_q8_1 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int k);
void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k);
void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int k);
void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int k);
void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int k);
void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int k);
void dequantize_row_q2_K(const block_q2_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
void dequantize_row_q3_K(const block_q3_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
void dequantize_row_q4_K(const block_q4_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
void dequantize_row_q5_K(const block_q5_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
void dequantize_row_q6_K(const block_q6_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
void dequantize_row_q8_K(const block_q8_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
void dequantize_row_iq2_xxs(const block_iq2_xxs * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
void dequantize_row_iq2_xs (const block_iq2_xs * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
void dequantize_row_iq2_s (const block_iq2_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
void dequantize_row_iq3_xxs(const block_iq3_xxs * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
void dequantize_row_iq1_s (const block_iq1_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
void dequantize_row_iq1_m (const block_iq1_m * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
void dequantize_row_iq4_nl (const block_iq4_nl * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
void dequantize_row_iq4_xs (const block_iq4_xs * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
void dequantize_row_iq3_s (const block_iq3_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
// Dot product
void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q4_1_q8_1(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q5_0_q8_0(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q5_1_q8_1(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q8_0_q8_0(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_iq2_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_iq2_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_iq2_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_iq3_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_iq1_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_iq1_m_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_iq4_nl_q8_0 (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_iq4_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_iq3_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
// Quantization utilizing an importance matrix (a.k.a. "Activation aWare Quantization")
size_t quantize_iq2_xxs(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
size_t quantize_iq2_xs (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
size_t quantize_iq2_s (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
size_t quantize_iq3_xxs(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
size_t quantize_iq1_s (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
size_t quantize_iq1_m (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
size_t quantize_iq4_nl (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
size_t quantize_iq4_xs (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
size_t quantize_iq3_s (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
size_t quantize_q2_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
size_t quantize_q3_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
size_t quantize_q4_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
size_t quantize_q5_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
size_t quantize_q6_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
size_t quantize_q4_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
size_t quantize_q4_1(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
size_t quantize_q5_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
size_t quantize_q5_1(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
size_t quantize_q8_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
void iq2xs_init_impl(enum ggml_type type);
void iq2xs_free_impl(enum ggml_type type);
void iq3xs_init_impl(int grid_size);
void iq3xs_free_impl(int grid_size);
#ifdef __cplusplus
}
#endif
void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);

View File

@ -0,0 +1,49 @@
//
// MIT license
// Copyright (C) 2024 Intel Corporation
// SPDX-License-Identifier: MIT
//
#pragma once
#include "ggml.h"
#include "ggml-backend.h"
#ifdef __cplusplus
extern "C" {
#endif
#define GGML_SYCL_MAX_DEVICES 48
#define GGML_SYCL_NAME "SYCL"
// backend API
GGML_API ggml_backend_t ggml_backend_sycl_init(int device);
// devide buffer
GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(int device);
// split tensor buffer that splits matrices by rows across multiple devices
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const float * tensor_split);
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_host_buffer_type(void);
GGML_API void ggml_backend_sycl_print_sycl_devices(void);
GGML_API GGML_CALL void ggml_sycl_get_gpu_list(int *id_list, int max_len);
GGML_API GGML_CALL void ggml_sycl_get_device_description(int device, char *description, size_t description_size);
GGML_API GGML_CALL int ggml_backend_sycl_get_device_count();
GGML_API GGML_CALL void ggml_backend_sycl_get_device_memory(int device, size_t *free, size_t *total);
GGML_API GGML_CALL int ggml_backend_sycl_get_device_index(int device_id);
// TODO: these are temporary
// ref: https://github.com/ggerganov/llama.cpp/pull/6022#issuecomment-1992615670
GGML_API GGML_CALL int ggml_backend_sycl_get_device_id(int device_index);
GGML_API GGML_CALL void ggml_backend_sycl_set_single_device_mode(int main_gpu_id);
GGML_API GGML_CALL void ggml_backend_sycl_set_mul_device_mode();
// SYCL doesn't support registering host memory, keep here for reference
// GGML_API GGML_CALL bool ggml_backend_sycl_register_host_buffer(void * buffer, size_t size);
// GGML_API GGML_CALL void ggml_backend_sycl_unregister_host_buffer(void * buffer);
#ifdef __cplusplus
}
#endif

View File

@ -11,17 +11,6 @@ extern "C" {
#define GGML_VK_MAX_DEVICES 16
GGML_API void ggml_vk_instance_init(void);
GGML_API void ggml_vk_init_cpu_assist(void);
GGML_API void ggml_vk_preallocate_buffers_graph_cpu_assist(struct ggml_tensor * node);
GGML_API void ggml_vk_preallocate_buffers_cpu_assist(void);
GGML_API void ggml_vk_build_graph_cpu_assist(struct ggml_tensor * node, bool last_node);
GGML_API bool ggml_vk_compute_forward_cpu_assist(struct ggml_compute_params * params, struct ggml_tensor * tensor);
#ifdef GGML_VULKAN_CHECK_RESULTS
void ggml_vk_check_results_1_cpu_assist(struct ggml_compute_params * params, struct ggml_tensor * tensor);
#endif
GGML_API void ggml_vk_graph_cleanup_cpu_assist(void);
GGML_API void ggml_vk_free_cpu_assist(void);
// backend API
GGML_API GGML_CALL ggml_backend_t ggml_backend_vk_init(size_t dev_num);

View File

@ -311,12 +311,6 @@ static VALUE ruby_whisper_params_get_split_on_word(VALUE self) {
static VALUE ruby_whisper_params_set_split_on_word(VALUE self, VALUE value) {
BOOL_PARAMS_SETTER(self, split_on_word, value)
}
static VALUE ruby_whisper_params_get_speed_up(VALUE self) {
BOOL_PARAMS_GETTER(self, speed_up)
}
static VALUE ruby_whisper_params_set_speed_up(VALUE self, VALUE value) {
BOOL_PARAMS_SETTER(self, speed_up, value)
}
static VALUE ruby_whisper_params_get_diarize(VALUE self) {
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
@ -408,8 +402,6 @@ void Init_whisper() {
rb_define_method(cParams, "token_timestamps=", ruby_whisper_params_set_token_timestamps, 1);
rb_define_method(cParams, "split_on_word", ruby_whisper_params_get_split_on_word, 0);
rb_define_method(cParams, "split_on_word=", ruby_whisper_params_set_split_on_word, 1);
rb_define_method(cParams, "speed_up", ruby_whisper_params_get_speed_up, 0);
rb_define_method(cParams, "speed_up=", ruby_whisper_params_set_speed_up, 1);
rb_define_method(cParams, "diarize", ruby_whisper_params_get_diarize, 0);
rb_define_method(cParams, "diarize=", ruby_whisper_params_set_diarize, 1);

View File

@ -117,13 +117,6 @@ class TestWhisper < Test::Unit::TestCase
assert !@params.split_on_word
end
def test_speed_up
@params.speed_up = true
assert @params.speed_up
@params.speed_up = false
assert !@params.speed_up
end
def test_whisper
@whisper = Whisper::Context.new(File.join(TOPDIR, '..', '..', 'models', 'ggml-base.en.bin'))
params = Whisper::Params.new

View File

@ -0,0 +1,28 @@
Gem::Specification.new do |s|
s.name = "whispercpp"
s.authors = ["Georgi Gerganov", "Todd A. Fisher"]
s.version = '1.3.0'
s.date = '2024-05-14'
s.description = %q{High-performance inference of OpenAI's Whisper automatic speech recognition (ASR) model via Ruby}
s.email = 'todd.fisher@gmail.com'
s.extra_rdoc_files = ['LICENSE', 'README.md']
s.files = ["LICENSE", "README.md", "Rakefile", "ext/extconf.rb", "ext/ggml.c", "ext/ruby_whisper.cpp", "ext/whisper.cpp", "ext/dr_wav.h", "ext/ggml.h", "ext/ruby_whisper.h", "ext/whisper.h"]
#### Load-time details
s.require_paths = ['lib','ext']
s.summary = %q{Ruby whisper.cpp bindings}
s.test_files = ["tests/test_whisper.rb"]
s.extensions << 'ext/extconf.rb'
#### Documentation and testing.
s.homepage = 'https://github.com/ggerganov/whisper.cpp'
s.rdoc_options = ['--main', '../../README.md']
s.platform = Gem::Platform::RUBY
s.licenses = ['MIT']
end

View File

@ -1,54 +0,0 @@
# Add new build types
# ReleaseGG - Release with enabled asserts
SET(CMAKE_CXX_FLAGS_RELEASEGG
"-O3"
CACHE STRING "Flags used by the c++ compiler during release builds with enabled asserts."
FORCE )
SET(CMAKE_C_FLAGS_RELEASEGG
"-O3"
CACHE STRING "Flags used by the compiler during release builds with enabled asserts."
FORCE )
SET(CMAKE_EXE_LINKER_FLAGS_RELEASEGG
""
CACHE STRING "Flags used for linking binaries during release builds with enabled asserts."
FORCE )
SET(CMAKE_SHARED_LINKER_FLAGS_RELEASEGG
""
CACHE STRING "Flags used by the shared libraries linker during release builds with enabled asserts."
FORCE )
MARK_AS_ADVANCED(
CMAKE_CXX_FLAGS_RELEASEGG
CMAKE_C_FLAGS_RELEASEGG
CMAKE_EXE_LINKER_FLAGS_RELEASEGG
CMAKE_SHARED_LINKER_FLAGS_RELEASEGG )
# RelWithDebInfoGG - RelWithDebInfo with enabled asserts
SET(CMAKE_CXX_FLAGS_RELWITHDEBINFOGG
"-O2 -g"
CACHE STRING "Flags used by the c++ compiler during release builds with debug symbols and enabled asserts."
FORCE )
SET(CMAKE_C_FLAGS_RELWITHDEBINFOGG
"-O2 -g"
CACHE STRING "Flags used by the compiler during release builds with debug symbols and enabled asserts."
FORCE )
SET(CMAKE_EXE_LINKER_FLAGS_RELWITHDEBINFOGG
""
CACHE STRING "Flags used for linking binaries during release builds with debug symbols and enabled asserts."
FORCE )
SET(CMAKE_SHARED_LINKER_FLAGS_RELWITHDEBINFOGG
""
CACHE STRING "Flags used by the shared libraries linker during release builds with debug symbols and enabled asserts."
FORCE )
MARK_AS_ADVANCED(
CMAKE_CXX_FLAGS_RELWITHDEBINFOGG
CMAKE_C_FLAGS_RELWITHDEBINFOGG
CMAKE_EXE_LINKER_FLAGS_RELWITHDEBINFOGG
CMAKE_SHARED_LINKER_FLAGS_RELWITHDEBINFOGG )
if (NOT XCODE AND NOT MSVC AND NOT CMAKE_BUILD_TYPE)
set(CMAKE_BUILD_TYPE Release CACHE STRING "Build type" FORCE)
set_property(CACHE CMAKE_BUILD_TYPE PROPERTY STRINGS "Debug" "Release" "MinSizeRel" "RelWithDebInfo" "ReleaseGG" "RelWithDebInfoGG")
endif()

163
cmake/FindFFmpeg.cmake Normal file
View File

@ -0,0 +1,163 @@
# From
# https://github.com/snikulov/cmake-modules/blob/master/FindFFmpeg.cmake
#
# vim: ts=2 sw=2
# - Try to find the required ffmpeg components(default: AVFORMAT, AVUTIL, AVCODEC)
#
# Once done this will define
# FFMPEG_FOUND - System has the all required components.
# FFMPEG_INCLUDE_DIRS - Include directory necessary for using the required components headers.
# FFMPEG_LIBRARIES - Link these to use the required ffmpeg components.
# FFMPEG_DEFINITIONS - Compiler switches required for using the required ffmpeg components.
#
# For each of the components it will additionally set.
# - AVCODEC
# - AVDEVICE
# - AVFORMAT
# - AVFILTER
# - AVUTIL
# - POSTPROC
# - SWSCALE
# the following variables will be defined
# <component>_FOUND - System has <component>
# <component>_INCLUDE_DIRS - Include directory necessary for using the <component> headers
# <component>_LIBRARIES - Link these to use <component>
# <component>_DEFINITIONS - Compiler switches required for using <component>
# <component>_VERSION - The components version
#
# Copyright (c) 2006, Matthias Kretz, <kretz@kde.org>
# Copyright (c) 2008, Alexander Neundorf, <neundorf@kde.org>
# Copyright (c) 2011, Michael Jansen, <kde@michael-jansen.biz>
#
# Redistribution and use is allowed according to the terms of the BSD license.
# For details see the accompanying COPYING-CMAKE-SCRIPTS file.
include(FindPackageHandleStandardArgs)
# The default components were taken from a survey over other FindFFMPEG.cmake files
if (NOT FFmpeg_FIND_COMPONENTS)
set(FFmpeg_FIND_COMPONENTS AVFORMAT AVCODEC AVUTIL SWRESAMPLE)
endif()
#
### Macro: set_component_found
#
# Marks the given component as found if both *_LIBRARIES AND *_INCLUDE_DIRS is present.
#
macro(set_component_found _component )
if (${_component}_LIBRARIES AND ${_component}_INCLUDE_DIRS)
message(DEBUG " - ${_component} found.")
set(${_component}_FOUND TRUE)
else ()
message(DEBUG " - ${_component} not found.")
endif ()
endmacro()
#
### Macro: find_component
#
# Checks for the given component by invoking pkgconfig and then looking up the libraries and
# include directories.
#
macro(find_component _component _pkgconfig _library _header)
if (NOT WIN32)
# use pkg-config to get the directories and then use these values
# in the FIND_PATH() and FIND_LIBRARY() calls
find_package(PkgConfig)
if (PKG_CONFIG_FOUND)
pkg_check_modules(PC_${_component} ${_pkgconfig})
message(STATUS "Pkgconfig found: ${PC_${_component}_INCLUDEDIR}")
message(STATUS "Pkgconfig found: ${PC_${_component}_INCLUDE_DIRS}")
message(STATUS "${PC_${_component}_CFLAGS}")
endif ()
endif (NOT WIN32)
find_path(${_component}_INCLUDE_DIRS ${_header}
HINTS
${PC_${_component}_INCLUDEDIR}
${PC_${_component}_INCLUDE_DIRS}
PATH_SUFFIXES
ffmpeg
)
# CMake's default is to search first for shared libraries and then for static libraries.
# Todo later: add option to prefer static libs over dynamic:
find_library(${_component}_LIBRARIES NAMES ${_library} lib${_library}.a
HINTS
${PC_${_component}_LIBDIR}
${PC_${_component}_LIBRARY_DIRS}
)
set(${_component}_DEFINITIONS ${PC_${_component}_CFLAGS_OTHER} CACHE STRING "The ${_component} CFLAGS.")
set(${_component}_VERSION ${PC_${_component}_VERSION} CACHE STRING "The ${_component} version number.")
set_component_found(${_component})
mark_as_advanced(
${_component}_INCLUDE_DIRS
${_component}_LIBRARIES
${_component}_DEFINITIONS
${_component}_VERSION)
endmacro()
# Check for cached results. If there are skip the costly part.
if (NOT FFMPEG_LIBRARIES)
# Check for all possible component.
find_component(AVCODEC libavcodec avcodec libavcodec/avcodec.h)
find_component(AVFORMAT libavformat avformat libavformat/avformat.h)
find_component(AVDEVICE libavdevice avdevice libavdevice/avdevice.h)
#find_component(AVRESAMPLE libavresample avresample libavresample/avresample.h) # old name for swresample
find_component(AVUTIL libavutil avutil libavutil/avutil.h)
find_component(AVFILTER libavfilter avfilter libavfilter/avfilter.h)
find_component(SWSCALE libswscale swscale libswscale/swscale.h)
find_component(POSTPROC libpostproc postproc libpostproc/postprocess.h)
find_component(SWRESAMPLE libswresample swresample libswresample/swresample.h)
# Check if the required components were found and add their stuff to the FFMPEG_* vars.
foreach (_component ${FFmpeg_FIND_COMPONENTS})
if (${_component}_FOUND)
# message(STATUS "Required component ${_component} present.")
set(FFMPEG_LIBRARIES ${FFMPEG_LIBRARIES} ${${_component}_LIBRARIES})
set(FFMPEG_DEFINITIONS ${FFMPEG_DEFINITIONS} ${${_component}_DEFINITIONS})
list(APPEND FFMPEG_INCLUDE_DIRS ${${_component}_INCLUDE_DIRS})
else ()
# message(STATUS "Required component ${_component} missing.")
endif ()
endforeach ()
# Build the include path with duplicates removed.
if (FFMPEG_INCLUDE_DIRS)
list(REMOVE_DUPLICATES FFMPEG_INCLUDE_DIRS)
endif ()
# cache the vars.
set(FFMPEG_INCLUDE_DIRS ${FFMPEG_INCLUDE_DIRS} CACHE STRING "The FFmpeg include directories." FORCE)
set(FFMPEG_LIBRARIES ${FFMPEG_LIBRARIES} CACHE STRING "The FFmpeg libraries." FORCE)
set(FFMPEG_DEFINITIONS ${FFMPEG_DEFINITIONS} CACHE STRING "The FFmpeg cflags." FORCE)
mark_as_advanced(FFMPEG_INCLUDE_DIRS
FFMPEG_LIBRARIES
FFMPEG_DEFINITIONS)
endif ()
# Now set the noncached _FOUND vars for the components.
# whisper.cpp does not need SWSCALE
foreach (_component AVCODEC AVDEVICE AVFORMAT AVRESAMPLE AVUTIL POSTPROCESS)
set_component_found(${_component})
endforeach ()
# Compile the list of required vars
set(_FFmpeg_REQUIRED_VARS FFMPEG_LIBRARIES FFMPEG_INCLUDE_DIRS)
foreach (_component ${FFmpeg_FIND_COMPONENTS})
list(APPEND _FFmpeg_REQUIRED_VARS ${_component}_LIBRARIES ${_component}_INCLUDE_DIRS)
endforeach ()
# Give a nice error message if some of the required vars are missing.
find_package_handle_standard_args(FFmpeg DEFAULT_MSG ${_FFmpeg_REQUIRED_VARS})

58
cmake/build-info.cmake Normal file
View File

@ -0,0 +1,58 @@
set(BUILD_NUMBER 0)
set(BUILD_COMMIT "unknown")
set(BUILD_COMPILER "unknown")
set(BUILD_TARGET "unknown")
# Look for git
find_package(Git)
if(NOT Git_FOUND)
find_program(GIT_EXECUTABLE NAMES git git.exe)
if(GIT_EXECUTABLE)
set(Git_FOUND TRUE)
message(STATUS "Found Git: ${GIT_EXECUTABLE}")
else()
message(WARNING "Git not found. Build info will not be accurate.")
endif()
endif()
# Get the commit count and hash
if(Git_FOUND)
execute_process(
COMMAND ${GIT_EXECUTABLE} rev-parse --short HEAD
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
OUTPUT_VARIABLE HEAD
OUTPUT_STRIP_TRAILING_WHITESPACE
RESULT_VARIABLE RES
)
if (RES EQUAL 0)
set(BUILD_COMMIT ${HEAD})
endif()
execute_process(
COMMAND ${GIT_EXECUTABLE} rev-list --count HEAD
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
OUTPUT_VARIABLE COUNT
OUTPUT_STRIP_TRAILING_WHITESPACE
RESULT_VARIABLE RES
)
if (RES EQUAL 0)
set(BUILD_NUMBER ${COUNT})
endif()
endif()
if(MSVC)
set(BUILD_COMPILER "${CMAKE_C_COMPILER_ID} ${CMAKE_C_COMPILER_VERSION}")
set(BUILD_TARGET ${CMAKE_VS_PLATFORM_NAME})
else()
execute_process(
COMMAND sh -c "$@ --version | head -1" _ ${CMAKE_C_COMPILER}
OUTPUT_VARIABLE OUT
OUTPUT_STRIP_TRAILING_WHITESPACE
)
set(BUILD_COMPILER ${OUT})
execute_process(
COMMAND ${CMAKE_C_COMPILER} -dumpmachine
OUTPUT_VARIABLE OUT
OUTPUT_STRIP_TRAILING_WHITESPACE
)
set(BUILD_TARGET ${OUT})
endif()

View File

@ -0,0 +1,65 @@
set(LLAMA_VERSION @LLAMA_INSTALL_VERSION@)
set(LLAMA_BUILD_COMMIT @LLAMA_BUILD_COMMIT@)
set(LLAMA_BUILD_NUMBER @LLAMA_BUILD_NUMBER@)
set(LLAMA_SHARED_LIB @BUILD_SHARED_LIBS@)
set(GGML_BLAS @GGML_BLAS@)
set(GGML_CUDA @GGML_CUDA@)
set(GGML_METAL @GGML_METAL@)
set(GGML_HIPBLAS @GGML_HIPBLAS@)
set(GGML_ACCELERATE @GGML_ACCELERATE@)
@PACKAGE_INIT@
set_and_check(LLAMA_INCLUDE_DIR "@PACKAGE_LLAMA_INCLUDE_INSTALL_DIR@")
set_and_check(LLAMA_LIB_DIR "@PACKAGE_LLAMA_LIB_INSTALL_DIR@")
set_and_check(LLAMA_BIN_DIR "@PACKAGE_LLAMA_BIN_INSTALL_DIR@")
# Ensure transient dependencies satisfied
find_package(Threads REQUIRED)
if (APPLE AND GGML_ACCELERATE)
find_library(ACCELERATE_FRAMEWORK Accelerate REQUIRED)
endif()
if (GGML_BLAS)
find_package(BLAS REQUIRED)
endif()
if (GGML_CUDA)
find_package(CUDAToolkit REQUIRED)
endif()
if (GGML_METAL)
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
find_library(METAL_FRAMEWORK Metal REQUIRED)
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
endif()
if (GGML_HIPBLAS)
find_package(hip REQUIRED)
find_package(hipblas REQUIRED)
find_package(rocblas REQUIRED)
endif()
find_library(llama_LIBRARY llama
REQUIRED
HINTS ${LLAMA_LIB_DIR})
set(_llama_link_deps "Threads::Threads" "@LLAMA_EXTRA_LIBS@")
set(_llama_transient_defines "@LLAMA_TRANSIENT_DEFINES@")
add_library(llama UNKNOWN IMPORTED)
set_target_properties(llama
PROPERTIES
INTERFACE_INCLUDE_DIRECTORIES "${LLAMA_INCLUDE_DIR}"
INTERFACE_LINK_LIBRARIES "${_llama_link_deps}"
INTERFACE_COMPILE_DEFINITIONS "${_llama_transient_defines}"
IMPORTED_LINK_INTERFACE_LANGUAGES "CXX"
IMPORTED_LOCATION "${llama_LIBRARY}"
INTERFACE_COMPILE_FEATURES cxx_std_11
POSITION_INDEPENDENT_CODE ON )
check_required_components(Llama)

10
cmake/whisper.pc.in Normal file
View File

@ -0,0 +1,10 @@
prefix=@CMAKE_INSTALL_PREFIX@
exec_prefix=${prefix}
libdir=${exec_prefix}/lib
includedir=${prefix}/include
Name: whisper
Description: Port of OpenAI's Whisper model in C/C++
Version: @PROJECT_VERSION@
Libs: -L${libdir} -lwhisper
Cflags: -I${includedir}

View File

@ -11,7 +11,7 @@ if (WHISPER_SDL2)
string(STRIP "${SDL2_LIBRARIES}" SDL2_LIBRARIES)
message(STATUS "SDL2_INCLUDE_DIRS = ${SDL2_INCLUDE_DIRS}")
message(STATUS "SDL2_LIBRARIES = ${SDL2_LIBRARIES}")
message(STATUS "SDL2_LIBRARIES = ${SDL2_LIBRARIES}")
endif()
if (WHISPER_CLBLAST)
@ -22,19 +22,51 @@ endif()
set(TARGET common)
unset(COMMON_EXTRA_LIBS)
if (WHISPER_FFMPEG)
# As of cmake 3.27, there is no official cmake support for FindFFmpeg.
# Consequnelty we added a FindFFmpeg.cmake script the cmake subfolder:
# whisper.cpp does not need the full ffmpeg libs, just AVFORMAT AVCODEC AVUTIL SWRESAMPLE
# libswresample performs highly optimized audio resampling, rematrixing and sample format conversion operations
# libavcodec provides a generic encoding/decoding framework and contains multiple decoders and encoders for audio, video and subtitle streams, and several bitstream filters.
# libavformat provides a generic framework for multiplexing and demultiplexing (muxing and demuxing) audio, video and subtitle streams.
find_package(FFmpeg REQUIRED)
if (NOT ${FFMPEG_FOUND})
message(FATAL_ERROR "Cannot find ffmpeg libs/headers")
endif()
message(STATUS "Found ffmpeg libs: ${FFMPEG_LIBRARIES}")
message(STATUS "Found ffmpeg headers in: ${FFMPEG_INCLUDE_DIRS}")
message(STATUS "ffmpeg definitions: ${FFMPEG_DEFINITIONS}")
message(STATUS "Found avformat ${AVFORMAT_VERSION}")
include_directories(${FFMPEG_INCLUDE_DIRS})
add_compile_definitions(WHISPER_FFMPEG)
list(APPEND COMMON_EXTRA_LIBS ${FFMPEG_LIBRARIES})
set(COMMON_SOURCES_FFMPEG ffmpeg-transcode.cpp)
endif()
add_library(${TARGET} STATIC
common.h
common.cpp
common-ggml.h
common-ggml.cpp
grammar-parser.h
grammar-parser.cpp
${COMMON_SOURCES_FFMPEG}
)
include(DefaultTargetOptions)
target_link_libraries(${TARGET} PRIVATE whisper)
target_link_libraries(${TARGET} PRIVATE whisper ${COMMON_EXTRA_LIBS})
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
set_target_properties(${TARGET} PROPERTIES FOLDER "libs")
if (WHISPER_SDL2)
# common-sdl
@ -48,14 +80,16 @@ if (WHISPER_SDL2)
include(DefaultTargetOptions)
target_include_directories(${TARGET} PUBLIC ${SDL2_INCLUDE_DIRS})
target_link_libraries(${TARGET} PRIVATE ${SDL2_LIBRARIES})
target_include_directories(${TARGET} PUBLIC ${SDL2_INCLUDE_DIRS})
target_link_libraries (${TARGET} PRIVATE ${SDL2_LIBRARIES})
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
set_target_properties(${TARGET} PROPERTIES FOLDER "libs")
endif()
# add json lib
add_library(json_cpp INTERFACE json.hpp)
add_library(json_cpp INTERFACE)
target_include_directories(json_cpp INTERFACE ${CMAKE_CURRENT_SOURCE_DIR})
# examples
@ -63,25 +97,50 @@ include_directories(${CMAKE_CURRENT_SOURCE_DIR})
if (EMSCRIPTEN)
add_subdirectory(whisper.wasm)
set_target_properties(libmain PROPERTIES FOLDER "libs")
add_subdirectory(stream.wasm)
set_target_properties(libstream PROPERTIES FOLDER "libs")
add_subdirectory(command.wasm)
set_target_properties(libcommand PROPERTIES FOLDER "libs")
add_subdirectory(talk.wasm)
set_target_properties(libtalk PROPERTIES FOLDER "libs")
add_subdirectory(bench.wasm)
set_target_properties(libbench PROPERTIES FOLDER "libs")
elseif(CMAKE_JS_VERSION)
add_subdirectory(addon.node)
set_target_properties(addon.node PROPERTIES FOLDER "examples")
else()
add_subdirectory(main)
set_target_properties(main PROPERTIES FOLDER "examples")
if (WHISPER_SDL2)
add_subdirectory(stream)
set_target_properties(stream PROPERTIES FOLDER "examples")
endif (WHISPER_SDL2)
add_subdirectory(server)
set_target_properties(server PROPERTIES FOLDER "examples")
if (WHISPER_SDL2)
add_subdirectory(command)
set_target_properties(command PROPERTIES FOLDER "examples")
endif (WHISPER_SDL2)
add_subdirectory(bench)
set_target_properties(bench PROPERTIES FOLDER "examples")
add_subdirectory(quantize)
set_target_properties(quantize PROPERTIES FOLDER "examples")
if (WHISPER_SDL2)
add_subdirectory(talk)
set_target_properties(talk PROPERTIES FOLDER "examples")
add_subdirectory(talk-llama)
set_target_properties(talk-llama PROPERTIES FOLDER "examples")
add_subdirectory(lsp)
if (LLAMA_SYCL)
set_target_properties(lsp PROPERTIES FOLDER "examples")
if (GGML_SYCL)
add_subdirectory(sycl)
set_target_properties(sycl PROPERTIES FOLDER "examples")
endif()
endif (WHISPER_SDL2)
endif()
add_subdirectory(wchess)
if (WHISPER_SDL2)
add_subdirectory(wchess)
set_target_properties(wchess PROPERTIES FOLDER "examples")
endif (WHISPER_SDL2)

View File

@ -1,4 +1,4 @@
set(TARGET whisper-addon)
set(TARGET addon.node)
# Base settings
#==================================================================

View File

@ -14,14 +14,14 @@ npm install
Make sure it is in the project root directory and compiled with make-js.
```shell
npx cmake-js compile -T whisper-addon -B Release
npx cmake-js compile -T addon.node -B Release
```
For Electron addon and cmake-js options, you can see [cmake-js](https://github.com/cmake-js/cmake-js) and make very few configuration changes.
> Such as appointing special cmake path:
> ```shell
> npx cmake-js compile -c 'xxx/cmake' -T whisper-addon -B Release
> npx cmake-js compile -c 'xxx/cmake' -T addon.node -B Release
> ```
## Run

View File

@ -1,7 +1,7 @@
const path = require("path");
const { whisper } = require(path.join(
__dirname,
"../../../build/Release/whisper-addon"
"../../../build/Release/addon.node"
));
const { promisify } = require("util");
@ -12,6 +12,12 @@ const whisperParamsMock = {
model: path.join(__dirname, "../../../models/ggml-base.en.bin"),
fname_inp: path.join(__dirname, "../../../samples/jfk.wav"),
use_gpu: true,
flash_attn: false,
no_prints: true,
comma_in_time: false,
translate: true,
no_timestamps: false,
audio_ctx: 0,
};
describe("Run whisper.node", () => {

View File

@ -19,12 +19,12 @@ struct whisper_params {
int32_t max_len = 0;
int32_t best_of = 5;
int32_t beam_size = -1;
int32_t audio_ctx = 0;
float word_thold = 0.01f;
float entropy_thold = 2.4f;
float logprob_thold = -1.0f;
bool speed_up = false;
bool translate = false;
bool diarize = false;
bool output_txt = false;
@ -36,7 +36,10 @@ struct whisper_params {
bool print_colors = false;
bool print_progress = false;
bool no_timestamps = false;
bool no_prints = false;
bool use_gpu = true;
bool flash_attn = false;
bool comma_in_time = true;
std::string language = "en";
std::string prompt;
@ -44,6 +47,8 @@ struct whisper_params {
std::vector<std::string> fname_inp = {};
std::vector<std::string> fname_out = {};
std::vector<float> pcmf32 = {}; // mono-channel F32 PCM
};
struct whisper_print_user_data {
@ -120,9 +125,15 @@ void whisper_print_segment_callback(struct whisper_context * ctx, struct whisper
}
}
void cb_log_disable(enum ggml_log_level, const char *, void *) {}
int run(whisper_params &params, std::vector<std::vector<std::string>> &result) {
if (params.fname_inp.empty()) {
fprintf(stderr, "error: no input files specified\n");
if (params.no_prints) {
whisper_log_set(cb_log_disable, NULL);
}
if (params.fname_inp.empty() && params.pcmf32.empty()) {
fprintf(stderr, "error: no input files or audio buffer specified\n");
return 2;
}
@ -135,6 +146,7 @@ int run(whisper_params &params, std::vector<std::vector<std::string>> &result) {
struct whisper_context_params cparams = whisper_context_default_params();
cparams.use_gpu = params.use_gpu;
cparams.flash_attn = params.flash_attn;
struct whisper_context * ctx = whisper_init_from_file_with_params(params.model.c_str(), cparams);
if (ctx == nullptr) {
@ -142,6 +154,14 @@ int run(whisper_params &params, std::vector<std::vector<std::string>> &result) {
return 3;
}
// if params.pcmf32 is provided, set params.fname_inp to "buffer"
// this is simpler than further modifications in the code
if (!params.pcmf32.empty()) {
fprintf(stderr, "info: using audio buffer as input\n");
params.fname_inp.clear();
params.fname_inp.emplace_back("buffer");
}
for (int f = 0; f < (int) params.fname_inp.size(); ++f) {
const auto fname_inp = params.fname_inp[f];
const auto fname_out = f < (int)params.fname_out.size() && !params.fname_out[f].empty() ? params.fname_out[f] : params.fname_inp[f];
@ -149,20 +169,25 @@ int run(whisper_params &params, std::vector<std::vector<std::string>> &result) {
std::vector<float> pcmf32; // mono-channel F32 PCM
std::vector<std::vector<float>> pcmf32s; // stereo-channel F32 PCM
if (!::read_wav(fname_inp, pcmf32, pcmf32s, params.diarize)) {
fprintf(stderr, "error: failed to read WAV file '%s'\n", fname_inp.c_str());
continue;
// read the input audio file if params.pcmf32 is not provided
if (params.pcmf32.empty()) {
if (!::read_wav(fname_inp, pcmf32, pcmf32s, params.diarize)) {
fprintf(stderr, "error: failed to read WAV file '%s'\n", fname_inp.c_str());
continue;
}
} else {
pcmf32 = params.pcmf32;
}
// print system information
{
if (!params.no_prints) {
fprintf(stderr, "\n");
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
params.n_threads*params.n_processors, std::thread::hardware_concurrency(), whisper_print_system_info());
}
// print some info about the processing
{
if (!params.no_prints) {
fprintf(stderr, "\n");
if (!whisper_is_multilingual(ctx)) {
if (params.language != "en" || params.translate) {
@ -171,12 +196,13 @@ int run(whisper_params &params, std::vector<std::vector<std::string>> &result) {
fprintf(stderr, "%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__);
}
}
fprintf(stderr, "%s: processing '%s' (%d samples, %.1f sec), %d threads, %d processors, lang = %s, task = %s, timestamps = %d ...\n",
fprintf(stderr, "%s: processing '%s' (%d samples, %.1f sec), %d threads, %d processors, lang = %s, task = %s, timestamps = %d, audio_ctx = %d ...\n",
__func__, fname_inp.c_str(), int(pcmf32.size()), float(pcmf32.size())/WHISPER_SAMPLE_RATE,
params.n_threads, params.n_processors,
params.language.c_str(),
params.translate ? "translate" : "transcribe",
params.no_timestamps ? 0 : 1);
params.no_timestamps ? 0 : 1,
params.audio_ctx);
fprintf(stderr, "\n");
}
@ -203,14 +229,15 @@ int run(whisper_params &params, std::vector<std::vector<std::string>> &result) {
wparams.entropy_thold = params.entropy_thold;
wparams.logprob_thold = params.logprob_thold;
wparams.max_len = params.output_wts && params.max_len == 0 ? 60 : params.max_len;
wparams.speed_up = params.speed_up;
wparams.audio_ctx = params.audio_ctx;
wparams.greedy.best_of = params.best_of;
wparams.beam_search.beam_size = params.beam_size;
wparams.initial_prompt = params.prompt.c_str();
wparams.no_timestamps = params.no_timestamps;
whisper_print_user_data user_data = { &params, &pcmf32s };
// this callback is called on each new segment
@ -246,8 +273,8 @@ int run(whisper_params &params, std::vector<std::vector<std::string>> &result) {
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
result[i].emplace_back(to_timestamp(t0, true));
result[i].emplace_back(to_timestamp(t1, true));
result[i].emplace_back(to_timestamp(t0, params.comma_in_time));
result[i].emplace_back(to_timestamp(t1, params.comma_in_time));
result[i].emplace_back(text);
}
@ -298,11 +325,33 @@ Napi::Value whisper(const Napi::CallbackInfo& info) {
std::string model = whisper_params.Get("model").As<Napi::String>();
std::string input = whisper_params.Get("fname_inp").As<Napi::String>();
bool use_gpu = whisper_params.Get("use_gpu").As<Napi::Boolean>();
bool flash_attn = whisper_params.Get("flash_attn").As<Napi::Boolean>();
bool no_prints = whisper_params.Get("no_prints").As<Napi::Boolean>();
bool no_timestamps = whisper_params.Get("no_timestamps").As<Napi::Boolean>();
int32_t audio_ctx = whisper_params.Get("audio_ctx").As<Napi::Number>();
bool comma_in_time = whisper_params.Get("comma_in_time").As<Napi::Boolean>();
Napi::Value pcmf32Value = whisper_params.Get("pcmf32");
std::vector<float> pcmf32_vec;
if (pcmf32Value.IsTypedArray()) {
Napi::Float32Array pcmf32 = pcmf32Value.As<Napi::Float32Array>();
size_t length = pcmf32.ElementLength();
pcmf32_vec.reserve(length);
for (size_t i = 0; i < length; i++) {
pcmf32_vec.push_back(pcmf32[i]);
}
}
params.language = language;
params.model = model;
params.fname_inp.emplace_back(input);
params.use_gpu = use_gpu;
params.flash_attn = flash_attn;
params.no_prints = no_prints;
params.no_timestamps = no_timestamps;
params.audio_ctx = audio_ctx;
params.pcmf32 = pcmf32_vec;
params.comma_in_time = comma_in_time;
Napi::Function callback = info[1].As<Napi::Function>();
Worker* worker = new Worker(callback, params);

View File

@ -1,7 +1,7 @@
const path = require("path");
const { whisper } = require(path.join(
__dirname,
"../../build/Release/whisper-addon"
"../../build/Release/addon.node"
));
const { promisify } = require("util");
@ -10,15 +10,27 @@ const whisperAsync = promisify(whisper);
const whisperParams = {
language: "en",
model: path.join(__dirname, "../../models/ggml-base.en.bin"),
fname_inp: "../../samples/jfk.wav",
fname_inp: path.join(__dirname, "../../samples/jfk.wav"),
use_gpu: true,
flash_attn: false,
no_prints: true,
comma_in_time: false,
translate: true,
no_timestamps: false,
audio_ctx: 0,
};
const arguments = process.argv.slice(2);
const params = Object.fromEntries(
arguments.reduce((pre, item) => {
if (item.startsWith("--")) {
return [...pre, item.slice(2).split("=")];
const [key, value] = item.slice(2).split("=");
if (key === "audio_ctx") {
whisperParams[key] = parseInt(value);
} else {
whisperParams[key] = value;
}
return pre;
}
return pre;
}, [])
@ -33,5 +45,6 @@ for (const key in params) {
console.log("whisperParams =", whisperParams);
whisperAsync(whisperParams).then((result) => {
console.log(`Result from whisper: ${result}`);
console.log();
console.log(result);
});

View File

@ -1,5 +1,5 @@
{
"name": "whisper-addon",
"name": "addon.node",
"version": "0.0.0",
"description": "",
"main": "index.js",

View File

@ -12,12 +12,13 @@ struct whisper_params {
std::string model = "models/ggml-base.en.bin";
bool use_gpu = true;
bool use_gpu = true;
bool flash_attn = false;
};
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
static bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
for (int i = 1; i < argc; i++) {
std::string arg = argv[i];
@ -25,10 +26,11 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
whisper_print_usage(argc, argv, params);
exit(0);
}
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
else if (arg == "-w" || arg == "--what") { params.what = atoi(argv[++i]); }
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
else if (arg == "-w" || arg == "--what") { params.what = atoi(argv[++i]); }
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
else if (arg == "-fa" || arg == "--flash-attn") { params.flash_attn = true; }
else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
whisper_print_usage(argc, argv, params);
@ -49,17 +51,20 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
fprintf(stderr, " -w N, --what N [%-7d] what to benchmark:\n", params.what);
fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU\n", params.use_gpu ? "false" : "true");
fprintf(stderr, " -fa, --flash-attn [%-7s] enable flash attention\n", params.flash_attn ? "true" : "false");
fprintf(stderr, " %-7s 0 - whisper\n", "");
fprintf(stderr, " %-7s 1 - memcpy\n", "");
fprintf(stderr, " %-7s 2 - ggml_mul_mat\n", "");
fprintf(stderr, "\n");
}
int whisper_bench_full(const whisper_params & params) {
static int whisper_bench_full(const whisper_params & params) {
// whisper init
struct whisper_context_params cparams = whisper_context_default_params();
cparams.use_gpu = params.use_gpu;
cparams.use_gpu = params.use_gpu;
cparams.flash_attn = params.flash_attn;
struct whisper_context * ctx = whisper_init_from_file_with_params(params.model.c_str(), cparams);

View File

@ -38,12 +38,12 @@ struct whisper_params {
grammar_parser::parse_state grammar_parsed;
bool speed_up = false;
bool translate = false;
bool print_special = false;
bool print_energy = false;
bool no_timestamps = true;
bool use_gpu = true;
bool flash_attn = false;
std::string language = "en";
std::string model = "models/ggml-base.en.bin";
@ -52,11 +52,14 @@ struct whisper_params {
std::string prompt;
std::string context;
std::string grammar;
// A regular expression that matches tokens to suppress
std::string suppress_regex;
};
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
static bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
for (int i = 1; i < argc; i++) {
std::string arg = argv[i];
@ -72,11 +75,11 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
else if (arg == "-ac" || arg == "--audio-ctx") { params.audio_ctx = std::stoi(argv[++i]); }
else if (arg == "-vth" || arg == "--vad-thold") { params.vad_thold = std::stof(argv[++i]); }
else if (arg == "-fth" || arg == "--freq-thold") { params.freq_thold = std::stof(argv[++i]); }
else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; }
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
else if (arg == "-pe" || arg == "--print-energy") { params.print_energy = true; }
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
else if (arg == "-fa" || arg == "--flash-attn") { params.flash_attn = true; }
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
else if (arg == "-f" || arg == "--file") { params.fname_out = argv[++i]; }
@ -85,6 +88,7 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
else if (arg == "-ctx" || arg == "--context") { params.context = argv[++i]; }
else if ( arg == "--grammar") { params.grammar = argv[++i]; }
else if ( arg == "--grammar-penalty") { params.grammar_penalty = std::stof(argv[++i]); }
else if ( arg == "--suppress-regex") { params.suppress_regex = argv[++i]; }
else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
whisper_print_usage(argc, argv, params);
@ -109,11 +113,11 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, " -ac N, --audio-ctx N [%-7d] audio context size (0 - all)\n", params.audio_ctx);
fprintf(stderr, " -vth N, --vad-thold N [%-7.2f] voice activity detection threshold\n", params.vad_thold);
fprintf(stderr, " -fth N, --freq-thold N [%-7.2f] high-pass frequency cutoff\n", params.freq_thold);
fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
fprintf(stderr, " -pe, --print-energy [%-7s] print sound energy (for debugging)\n", params.print_energy ? "true" : "false");
fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU\n", params.use_gpu ? "false" : "true");
fprintf(stderr, " -fa, --flash-attn [%-7s] flash attention\n", params.flash_attn ? "true" : "false");
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str());
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] text output file name\n", params.fname_out.c_str());
@ -122,10 +126,11 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, " -ctx, --context [%-7s] sample text to help the transcription\n", params.context.c_str());
fprintf(stderr, " --grammar GRAMMAR [%-7s] GBNF grammar to guide decoding\n", params.grammar.c_str());
fprintf(stderr, " --grammar-penalty N [%-7.1f] scales down logits of nongrammar tokens\n", params.grammar_penalty);
fprintf(stderr, " --suppress-regex REGEX [%-7s] regular expression matching tokens to suppress\n", params.suppress_regex.c_str());
fprintf(stderr, "\n");
}
std::string transcribe(
static std::string transcribe(
whisper_context * ctx,
const whisper_params & params,
const std::vector<float> & pcmf32,
@ -157,7 +162,6 @@ std::string transcribe(
wparams.n_threads = params.n_threads;
wparams.audio_ctx = params.audio_ctx;
wparams.speed_up = params.speed_up;
wparams.temperature = 0.4f;
wparams.temperature_inc = 1.0f;
@ -167,6 +171,8 @@ std::string transcribe(
wparams.initial_prompt = params.context.data();
wparams.suppress_regex = params.suppress_regex.c_str();
const auto & grammar_parsed = params.grammar_parsed;
auto grammar_rules = grammar_parsed.c_rules();
@ -210,7 +216,7 @@ std::string transcribe(
return result;
}
std::vector<std::string> read_allowed_commands(const std::string & fname) {
static std::vector<std::string> read_allowed_commands(const std::string & fname) {
std::vector<std::string> allowed_commands;
std::ifstream ifs(fname);
@ -232,7 +238,7 @@ std::vector<std::string> read_allowed_commands(const std::string & fname) {
return allowed_commands;
}
std::vector<std::string> get_words(const std::string &txt) {
static std::vector<std::string> get_words(const std::string &txt) {
std::vector<std::string> words;
std::istringstream iss(txt);
@ -246,7 +252,7 @@ std::vector<std::string> get_words(const std::string &txt) {
// command-list mode
// guide the transcription to match the most likely command from a provided list
int process_command_list(struct whisper_context * ctx, audio_async &audio, const whisper_params &params) {
static int process_command_list(struct whisper_context * ctx, audio_async &audio, const whisper_params &params) {
fprintf(stderr, "\n");
fprintf(stderr, "%s: guided mode\n", __func__);
@ -361,7 +367,6 @@ int process_command_list(struct whisper_context * ctx, audio_async &audio, const
wparams.n_threads = params.n_threads;
wparams.audio_ctx = params.audio_ctx;
wparams.speed_up = params.speed_up;
wparams.prompt_tokens = k_tokens.data();
wparams.prompt_n_tokens = k_tokens.size();
@ -458,7 +463,7 @@ int process_command_list(struct whisper_context * ctx, audio_async &audio, const
// always-prompt mode
// transcribe the voice into text after valid prompt
int always_prompt_transcription(struct whisper_context * ctx, audio_async & audio, const whisper_params & params) {
static int always_prompt_transcription(struct whisper_context * ctx, audio_async & audio, const whisper_params & params) {
bool is_running = true;
bool ask_prompt = true;
@ -538,7 +543,7 @@ int always_prompt_transcription(struct whisper_context * ctx, audio_async & audi
// general-purpose mode
// freely transcribe the voice into text
int process_general_transcription(struct whisper_context * ctx, audio_async & audio, const whisper_params & params) {
static int process_general_transcription(struct whisper_context * ctx, audio_async & audio, const whisper_params & params) {
bool is_running = true;
bool have_prompt = false;
bool ask_prompt = true;
@ -689,7 +694,9 @@ int main(int argc, char ** argv) {
// whisper init
struct whisper_context_params cparams = whisper_context_default_params();
cparams.use_gpu = params.use_gpu;
cparams.use_gpu = params.use_gpu;
cparams.flash_attn = params.flash_attn;
struct whisper_context * ctx = whisper_init_from_file_with_params(params.model.c_str(), cparams);

View File

@ -70,6 +70,8 @@ bool ggml_common_quantize_0(
case GGML_FTYPE_MOSTLY_IQ1_S:
case GGML_FTYPE_MOSTLY_IQ4_NL:
case GGML_FTYPE_MOSTLY_IQ4_XS:
case GGML_FTYPE_MOSTLY_IQ1_M:
case GGML_FTYPE_MOSTLY_BF16:
{
fprintf(stderr, "%s: invalid model type %d\n", __func__, ftype);
return false;
@ -193,6 +195,8 @@ bool ggml_common_quantize_0(
case GGML_TYPE_I8:
case GGML_TYPE_I16:
case GGML_TYPE_I32:
case GGML_TYPE_I64:
case GGML_TYPE_F64:
case GGML_TYPE_Q8_1:
case GGML_TYPE_Q8_K:
case GGML_TYPE_IQ2_XXS:
@ -203,6 +207,8 @@ bool ggml_common_quantize_0(
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ1_M:
case GGML_TYPE_BF16:
case GGML_TYPE_COUNT:
{
fprintf(stderr, "%s: unsupported quantization type %d (%s)\n", __func__, ttype, ggml_type_name((ggml_type) ttype));

View File

@ -219,7 +219,7 @@ bool sdl_poll_events() {
case SDL_QUIT:
{
return false;
} break;
}
default:
break;
}

View File

@ -19,8 +19,18 @@
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
#ifdef _WIN32
#include <fcntl.h>
#include <io.h>
#endif
#ifdef WHISPER_FFMPEG
// as implemented in ffmpeg_trancode.cpp only embedded in common lib if whisper built with ffmpeg support
extern bool ffmpeg_decode_audio(const std::string & ifname, std::vector<uint8_t> & wav_data);
#endif
// Function to check if the next argument exists
std::string get_next_arg(int& i, int argc, char** argv, const std::string& flag, gpt_params& params) {
static std::string get_next_arg(int& i, int argc, char** argv, const std::string& flag, gpt_params& params) {
if (i + 1 < argc && argv[i + 1][0] != '-') {
return argv[++i];
} else {
@ -336,7 +346,7 @@ std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::stri
return tokens;
}
std::vector<gpt_vocab::id> parse_tokens_from_string(const std::string& input, char delimiter) {
static std::vector<gpt_vocab::id> parse_tokens_from_string(const std::string& input, char delimiter) {
std::vector<gpt_vocab::id> output;
std::stringstream ss(input);
std::string token;
@ -348,7 +358,7 @@ std::vector<gpt_vocab::id> parse_tokens_from_string(const std::string& input, ch
return output;
}
std::map<std::string, std::vector<gpt_vocab::id>> extract_tests_from_file(const std::string & fpath_test){
static std::map<std::string, std::vector<gpt_vocab::id>> extract_tests_from_file(const std::string & fpath_test){
if (fpath_test.empty()){
fprintf(stderr, "%s : No test file found.\n", __func__);
return std::map<std::string, std::vector<gpt_vocab::id>>();
@ -632,10 +642,14 @@ bool is_wav_buffer(const std::string buf) {
bool read_wav(const std::string & fname, std::vector<float>& pcmf32, std::vector<std::vector<float>>& pcmf32s, bool stereo) {
drwav wav;
std::vector<uint8_t> wav_data; // used for pipe input from stdin
std::vector<uint8_t> wav_data; // used for pipe input from stdin or ffmpeg decoding output
if (fname == "-") {
{
#ifdef _WIN32
_setmode(_fileno(stdin), _O_BINARY);
#endif
uint8_t buf[1024];
while (true)
{
@ -661,27 +675,42 @@ bool read_wav(const std::string & fname, std::vector<float>& pcmf32, std::vector
}
}
else if (drwav_init_file(&wav, fname.c_str(), nullptr) == false) {
#if defined(WHISPER_FFMPEG)
if (ffmpeg_decode_audio(fname, wav_data) != 0) {
fprintf(stderr, "error: failed to ffmpeg decode '%s' \n", fname.c_str());
return false;
}
if (drwav_init_memory(&wav, wav_data.data(), wav_data.size(), nullptr) == false) {
fprintf(stderr, "error: failed to read wav data as wav \n");
return false;
}
#else
fprintf(stderr, "error: failed to open '%s' as WAV file\n", fname.c_str());
return false;
#endif
}
if (wav.channels != 1 && wav.channels != 2) {
fprintf(stderr, "%s: WAV file '%s' must be mono or stereo\n", __func__, fname.c_str());
drwav_uninit(&wav);
return false;
}
if (stereo && wav.channels != 2) {
fprintf(stderr, "%s: WAV file '%s' must be stereo for diarization\n", __func__, fname.c_str());
drwav_uninit(&wav);
return false;
}
if (wav.sampleRate != COMMON_SAMPLE_RATE) {
fprintf(stderr, "%s: WAV file '%s' must be %i kHz\n", __func__, fname.c_str(), COMMON_SAMPLE_RATE/1000);
drwav_uninit(&wav);
return false;
}
if (wav.bitsPerSample != 16) {
fprintf(stderr, "%s: WAV file '%s' must be 16-bit\n", __func__, fname.c_str());
drwav_uninit(&wav);
return false;
}

View File

@ -21,7 +21,7 @@ struct gpt_params {
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
int32_t n_predict = 200; // new tokens to predict
int32_t n_parallel = 1; // number of parallel streams
int32_t n_batch = 8; // batch size for prompt processing
int32_t n_batch = 32; // batch size for prompt processing
int32_t n_ctx = 2048; // context size (this is the KV cache max size)
int32_t n_gpu_layers = 0; // number of layers to offlload to the GPU
@ -185,7 +185,7 @@ private:
// It is assumed that PCM data is normalized to a range from -1 to 1
bool write_audio(const float * data, size_t length) {
for (size_t i = 0; i < length; ++i) {
const int16_t intSample = data[i] * 32767;
const int16_t intSample = int16_t(data[i] * 32767);
file.write(reinterpret_cast<const char *>(&intSample), sizeof(int16_t));
dataSize += sizeof(int16_t);
}

View File

@ -0,0 +1,350 @@
/* SPDX-License-Identifier: GPL-2.0 */
/*
* transcode.c - convert audio file to WAVE
*
* Copyright (C) 2019 Andrew Clayton <andrew@digital-domain.net>
* Copyright (C) 2024 William Tambellini <william.tambellini@gmail.com>
*/
// Just for conveninent C++ API
#include <vector>
#include <string>
// C
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include <stdint.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/mman.h>
extern "C" {
#include <libavutil/opt.h>
#include <libavcodec/avcodec.h>
#include <libavformat/avformat.h>
#include <libswresample/swresample.h>
}
typedef uint64_t u64;
typedef int64_t s64;
typedef uint32_t u32;
typedef int32_t s32;
typedef uint16_t u16;
typedef int16_t s16;
typedef uint8_t u8;
typedef int8_t s8;
#define WAVE_SAMPLE_RATE 16000
#define AVIO_CTX_BUF_SZ 4096
static const char* ffmpegLog = getenv("FFMPEG_LOG");
// Todo: add __FILE__ __LINE__
#define LOG(...) \
do { if (ffmpegLog) fprintf(stderr, __VA_ARGS__); } while(0) // C99
/*
* WAVE file header based on definition from
* https://gist.github.com/Jon-Schneider/8b7c53d27a7a13346a643dac9c19d34f
*
* We must ensure this structure doesn't have any holes or
* padding so we can just map it straight to the WAVE data.
*/
struct wave_hdr {
/* RIFF Header: "RIFF" */
char riff_header[4];
/* size of audio data + sizeof(struct wave_hdr) - 8 */
int wav_size;
/* "WAVE" */
char wav_header[4];
/* Format Header */
/* "fmt " (includes trailing space) */
char fmt_header[4];
/* Should be 16 for PCM */
int fmt_chunk_size;
/* Should be 1 for PCM. 3 for IEEE Float */
s16 audio_format;
s16 num_channels;
int sample_rate;
/*
* Number of bytes per second
* sample_rate * num_channels * bit_depth/8
*/
int byte_rate;
/* num_channels * bytes per sample */
s16 sample_alignment;
/* bits per sample */
s16 bit_depth;
/* Data Header */
/* "data" */
char data_header[4];
/*
* size of audio
* number of samples * num_channels * bit_depth/8
*/
int data_bytes;
} __attribute__((__packed__));
struct audio_buffer {
u8 *ptr;
int size; /* size left in the buffer */
};
static void set_wave_hdr(wave_hdr& wh, size_t size) {
memcpy(&wh.riff_header, "RIFF", 4);
wh.wav_size = size + sizeof(struct wave_hdr) - 8;
memcpy(&wh.wav_header, "WAVE", 4);
memcpy(&wh.fmt_header, "fmt ", 4);
wh.fmt_chunk_size = 16;
wh.audio_format = 1;
wh.num_channels = 1;
wh.sample_rate = WAVE_SAMPLE_RATE;
wh.sample_alignment = 2;
wh.bit_depth = 16;
wh.byte_rate = wh.sample_rate * wh.sample_alignment;
memcpy(&wh.data_header, "data", 4);
wh.data_bytes = size;
}
static void write_wave_hdr(int fd, size_t size) {
struct wave_hdr wh;
set_wave_hdr(wh, size);
write(fd, &wh, sizeof(struct wave_hdr));
}
static int map_file(int fd, u8 **ptr, size_t *size)
{
struct stat sb;
fstat(fd, &sb);
*size = sb.st_size;
*ptr = (u8*)mmap(NULL, *size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
if (*ptr == MAP_FAILED) {
perror("mmap");
return -1;
}
return 0;
}
static int read_packet(void *opaque, u8 *buf, int buf_size)
{
struct audio_buffer *audio_buf = (audio_buffer*)opaque;
buf_size = FFMIN(buf_size, audio_buf->size);
/* copy internal buffer data to buf */
memcpy(buf, audio_buf->ptr, buf_size);
audio_buf->ptr += buf_size;
audio_buf->size -= buf_size;
return buf_size;
}
static void convert_frame(struct SwrContext *swr, AVCodecContext *codec,
AVFrame *frame, s16 **data, int *size, bool flush)
{
int nr_samples;
s64 delay;
u8 *buffer;
delay = swr_get_delay(swr, codec->sample_rate);
nr_samples = av_rescale_rnd(delay + frame->nb_samples,
WAVE_SAMPLE_RATE, codec->sample_rate,
AV_ROUND_UP);
av_samples_alloc(&buffer, NULL, 1, nr_samples, AV_SAMPLE_FMT_S16, 0);
/*
* !flush is used to check if we are flushing any remaining
* conversion buffers...
*/
nr_samples = swr_convert(swr, &buffer, nr_samples,
!flush ? (const u8 **)frame->data : NULL,
!flush ? frame->nb_samples : 0);
*data = (s16*)realloc(*data, (*size + nr_samples) * sizeof(s16));
memcpy(*data + *size, buffer, nr_samples * sizeof(s16));
*size += nr_samples;
av_freep(&buffer);
}
static bool is_audio_stream(const AVStream *stream)
{
if (stream->codecpar->codec_type == AVMEDIA_TYPE_AUDIO)
return true;
return false;
}
// Return non zero on error, 0 on success
// audio_buffer: input memory
// data: decoded output audio data (wav file)
// size: size of output data
static int decode_audio(struct audio_buffer *audio_buf, s16 **data, int *size)
{
LOG("decode_audio: input size: %d\n", audio_buf->size);
AVFormatContext *fmt_ctx;
AVIOContext *avio_ctx;
AVStream *stream;
AVCodecContext *codec;
AVPacket packet;
AVFrame *frame;
struct SwrContext *swr;
u8 *avio_ctx_buffer;
unsigned int i;
int stream_index = -1;
int err;
const size_t errbuffsize = 1024;
char errbuff[errbuffsize];
av_register_all(); // from avformat. Still a must-have call for ffmpeg v3! (can be skipped for later versions)
fmt_ctx = avformat_alloc_context();
avio_ctx_buffer = (u8*)av_malloc(AVIO_CTX_BUF_SZ);
LOG("Creating an avio context: AVIO_CTX_BUF_SZ=%d\n", AVIO_CTX_BUF_SZ);
avio_ctx = avio_alloc_context(avio_ctx_buffer, AVIO_CTX_BUF_SZ, 0, audio_buf, &read_packet, NULL, NULL);
fmt_ctx->pb = avio_ctx;
// open the input stream and read header
err = avformat_open_input(&fmt_ctx, NULL, NULL, NULL);
if (err) {
LOG("Could not read audio buffer: %d: %s\n", err, av_make_error_string(errbuff, errbuffsize, err));
return err;
}
err = avformat_find_stream_info(fmt_ctx, NULL);
if (err < 0) {
LOG("Could not retrieve stream info from audio buffer: %d\n", err);
return err;
}
for (i = 0; i < fmt_ctx->nb_streams; i++) {
if (is_audio_stream(fmt_ctx->streams[i])) {
stream_index = i;
break;
}
}
if (stream_index == -1) {
LOG("Could not retrieve audio stream from buffer\n");
return -1;
}
stream = fmt_ctx->streams[stream_index];
codec = avcodec_alloc_context3(
avcodec_find_decoder(stream->codecpar->codec_id));
avcodec_parameters_to_context(codec, stream->codecpar);
err = avcodec_open2(codec, avcodec_find_decoder(codec->codec_id),
NULL);
if (err) {
LOG("Failed to open decoder for stream #%d in audio buffer\n", stream_index);
return err;
}
/* prepare resampler */
swr = swr_alloc();
av_opt_set_int(swr, "in_channel_count", codec->channels, 0);
av_opt_set_int(swr, "out_channel_count", 1, 0);
av_opt_set_int(swr, "in_channel_layout", codec->channel_layout, 0);
av_opt_set_int(swr, "out_channel_layout", AV_CH_LAYOUT_MONO, 0);
av_opt_set_int(swr, "in_sample_rate", codec->sample_rate, 0);
av_opt_set_int(swr, "out_sample_rate", WAVE_SAMPLE_RATE, 0);
av_opt_set_sample_fmt(swr, "in_sample_fmt", codec->sample_fmt, 0);
av_opt_set_sample_fmt(swr, "out_sample_fmt", AV_SAMPLE_FMT_S16, 0);
swr_init(swr);
if (!swr_is_initialized(swr)) {
LOG("Resampler has not been properly initialized\n");
return -1;
}
av_init_packet(&packet);
frame = av_frame_alloc();
if (!frame) {
LOG("Error allocating the frame\n");
return -1;
}
/* iterate through frames */
*data = NULL;
*size = 0;
while (av_read_frame(fmt_ctx, &packet) >= 0) {
avcodec_send_packet(codec, &packet);
err = avcodec_receive_frame(codec, frame);
if (err == AVERROR(EAGAIN))
continue;
convert_frame(swr, codec, frame, data, size, false);
}
/* Flush any remaining conversion buffers... */
convert_frame(swr, codec, frame, data, size, true);
av_frame_free(&frame);
swr_free(&swr);
//avio_context_free(); // todo?
avcodec_close(codec);
avformat_close_input(&fmt_ctx);
avformat_free_context(fmt_ctx);
if (avio_ctx) {
av_freep(&avio_ctx->buffer);
av_freep(&avio_ctx);
}
return 0;
}
// in mem decoding/conversion/resampling:
// ifname: input file path
// owav_data: in mem wav file. Can be forwarded as it to whisper/drwav
// return 0 on success
int ffmpeg_decode_audio(const std::string &ifname, std::vector<uint8_t>& owav_data) {
LOG("ffmpeg_decode_audio: %s\n", ifname.c_str());
int ifd = open(ifname.c_str(), O_RDONLY);
if (ifd == -1) {
fprintf(stderr, "Couldn't open input file %s\n", ifname.c_str());
return -1;
}
u8 *ibuf = NULL;
size_t ibuf_size;
int err = map_file(ifd, &ibuf, &ibuf_size);
if (err) {
LOG("Couldn't map input file %s\n", ifname.c_str());
return err;
}
LOG("Mapped input file: %x size: %d\n", ibuf, ibuf_size);
struct audio_buffer inaudio_buf;
inaudio_buf.ptr = ibuf;
inaudio_buf.size = ibuf_size;
s16 *odata=NULL;
int osize=0;
err = decode_audio(&inaudio_buf, &odata, &osize);
LOG("decode_audio returned %d \n", err);
if (err != 0) {
LOG("decode_audio failed\n");
return err;
}
LOG("decode_audio output size: %d\n", osize);
wave_hdr wh;
const size_t outdatasize = osize * sizeof(s16);
set_wave_hdr(wh, outdatasize);
owav_data.resize(sizeof(wave_hdr) + outdatasize);
// header:
memcpy(owav_data.data(), &wh, sizeof(wave_hdr));
// the data:
memcpy(owav_data.data() + sizeof(wave_hdr), odata, osize* sizeof(s16));
return 0;
}

View File

@ -9,7 +9,7 @@
namespace grammar_parser {
// NOTE: assumes valid utf8 (but checks for overrun)
// copied from whisper.cpp
std::pair<uint32_t, const char *> decode_utf8(const char * src) {
static std::pair<uint32_t, const char *> decode_utf8(const char * src) {
static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
uint8_t first_byte = static_cast<uint8_t>(*src);
uint8_t highbits = first_byte >> 4;
@ -24,19 +24,19 @@ namespace grammar_parser {
return std::make_pair(value, pos);
}
uint32_t get_symbol_id(parse_state & state, const char * src, size_t len) {
static uint32_t get_symbol_id(parse_state & state, const char * src, size_t len) {
uint32_t next_id = static_cast<uint32_t>(state.symbol_ids.size());
auto result = state.symbol_ids.insert(std::make_pair(std::string(src, len), next_id));
return result.first->second;
}
uint32_t generate_symbol_id(parse_state & state, const std::string & base_name) {
static uint32_t generate_symbol_id(parse_state & state, const std::string & base_name) {
uint32_t next_id = static_cast<uint32_t>(state.symbol_ids.size());
state.symbol_ids[base_name + '_' + std::to_string(next_id)] = next_id;
return next_id;
}
void add_rule(
static void add_rule(
parse_state & state,
uint32_t rule_id,
const std::vector<whisper_grammar_element> & rule) {
@ -46,11 +46,11 @@ namespace grammar_parser {
state.rules[rule_id] = rule;
}
bool is_word_char(char c) {
static bool is_word_char(char c) {
return ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') || c == '-' || ('0' <= c && c <= '9');
}
std::pair<uint32_t, const char *> parse_hex(const char * src, int size) {
static std::pair<uint32_t, const char *> parse_hex(const char * src, int size) {
const char * pos = src;
const char * end = src + size;
uint32_t value = 0;
@ -73,7 +73,7 @@ namespace grammar_parser {
return std::make_pair(value, pos);
}
const char * parse_space(const char * src, bool newline_ok) {
static const char * parse_space(const char * src, bool newline_ok) {
const char * pos = src;
while (*pos == ' ' || *pos == '\t' || *pos == '#' ||
(newline_ok && (*pos == '\r' || *pos == '\n'))) {
@ -88,7 +88,7 @@ namespace grammar_parser {
return pos;
}
const char * parse_name(const char * src) {
static const char * parse_name(const char * src) {
const char * pos = src;
while (is_word_char(*pos)) {
pos++;
@ -99,7 +99,7 @@ namespace grammar_parser {
return pos;
}
std::pair<uint32_t, const char *> parse_char(const char * src) {
static std::pair<uint32_t, const char *> parse_char(const char * src) {
if (*src == '\\') {
switch (src[1]) {
case 'x': return parse_hex(src + 2, 2);
@ -122,14 +122,14 @@ namespace grammar_parser {
throw std::runtime_error("unexpected end of input");
}
const char * parse_alternates(
static const char * parse_alternates(
parse_state & state,
const char * src,
const std::string & rule_name,
uint32_t rule_id,
bool is_nested);
const char * parse_sequence(
static const char * parse_sequence(
parse_state & state,
const char * src,
const std::string & rule_name,
@ -190,7 +190,7 @@ namespace grammar_parser {
pos = parse_space(pos + 1, is_nested);
} else if (*pos == '*' || *pos == '+' || *pos == '?') { // repetition operator
if (last_sym_start == out_elements.size()) {
throw std::runtime_error(std::string("expecting preceeding item to */+/? at ") + pos);
throw std::runtime_error(std::string("expecting preceding item to */+/? at ") + pos);
}
// apply transformation to previous symbol (last_sym_start to end) according to
@ -229,7 +229,7 @@ namespace grammar_parser {
return pos;
}
const char * parse_alternates(
static const char * parse_alternates(
parse_state & state,
const char * src,
const std::string & rule_name,
@ -247,7 +247,7 @@ namespace grammar_parser {
return pos;
}
const char * parse_rule(parse_state & state, const char * src) {
static const char * parse_rule(parse_state & state, const char * src) {
const char * name_end = parse_name(src);
const char * pos = parse_space(name_end, false);
size_t name_len = name_end - src;
@ -285,7 +285,7 @@ namespace grammar_parser {
}
}
void print_grammar_char(FILE * file, uint32_t c) {
static void print_grammar_char(FILE * file, uint32_t c) {
if (0x20 <= c && c <= 0x7f) {
fprintf(file, "%c", static_cast<char>(c));
} else {
@ -294,7 +294,7 @@ namespace grammar_parser {
}
}
bool is_char_element(whisper_grammar_element elem) {
static bool is_char_element(whisper_grammar_element elem) {
switch (elem.type) {
case WHISPER_GRETYPE_CHAR: return true;
case WHISPER_GRETYPE_CHAR_NOT: return true;
@ -304,7 +304,7 @@ namespace grammar_parser {
}
}
void print_rule_binary(FILE * file, const std::vector<whisper_grammar_element> & rule) {
static void print_rule_binary(FILE * file, const std::vector<whisper_grammar_element> & rule) {
for (auto elem : rule) {
switch (elem.type) {
case WHISPER_GRETYPE_END: fprintf(file, "END"); break;
@ -334,7 +334,7 @@ namespace grammar_parser {
fprintf(file, "\n");
}
void print_rule(
static void print_rule(
FILE * file,
uint32_t rule_id,
const std::vector<whisper_grammar_element> & rule,
@ -413,7 +413,7 @@ namespace grammar_parser {
}
}
std::vector<const whisper_grammar_element *> parse_state::c_rules() const{
std::vector<const whisper_grammar_element *> parse_state::c_rules() const {
std::vector<const whisper_grammar_element *> ret;
for (const auto & rule : rules) {
ret.push_back(rule.data());

View File

@ -34,9 +34,6 @@ async function fetchRemote(url, cbProgress, cbPrint) {
url,
{
method: 'GET',
headers: {
'Content-Type': 'application/octet-stream',
},
}
);

View File

@ -26,11 +26,11 @@ struct whisper_params {
float vad_thold = 0.6f;
float freq_thold = 100.0f;
bool speed_up = false;
bool translate = false;
bool print_special = false;
bool print_energy = false;
bool use_gpu = true;
bool flash_attn = false;
std::string language = "en";
std::string model = "models/ggml-base.en.bin";
@ -53,7 +53,7 @@ struct commandset {
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
static bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
for (int i = 1; i < argc; i++) {
std::string arg = argv[i];
@ -69,11 +69,11 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
else if (arg == "-ac" || arg == "--audio-ctx") { params.audio_ctx = std::stoi(argv[++i]); }
else if (arg == "-vth" || arg == "--vad-thold") { params.vad_thold = std::stof(argv[++i]); }
else if (arg == "-fth" || arg == "--freq-thold") { params.freq_thold = std::stof(argv[++i]); }
else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; }
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
else if (arg == "-pe" || arg == "--print-energy") { params.print_energy = true; }
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
else if (arg == "-fa" || arg == "--flash-attn") { params.flash_attn = true; }
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
else {
@ -100,16 +100,16 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, " -ac N, --audio-ctx N [%-7d] audio context size (0 - all)\n", params.audio_ctx);
fprintf(stderr, " -vth N, --vad-thold N [%-7.2f] voice activity detection threshold\n", params.vad_thold);
fprintf(stderr, " -fth N, --freq-thold N [%-7.2f] high-pass frequency cutoff\n", params.freq_thold);
fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
fprintf(stderr, " -pe, --print-energy [%-7s] print sound energy (for debugging)\n", params.print_energy ? "true" : "false");
fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU\n", params.use_gpu ? "false" : "true");
fprintf(stderr, " -fa, --flash-attn [%-7s] flash attention\n", params.flash_attn ? "true" : "false");
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str());
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
fprintf(stderr, "\n");
}
uint64_t wait_for_vad(audio_async & audio, json jparams, const whisper_params & params, uint64_t maxlength_ms, std::vector<float> & pcmf32) {
static uint64_t wait_for_vad(audio_async & audio, json jparams, const whisper_params & params, uint64_t maxlength_ms, std::vector<float> & pcmf32) {
using namespace std::chrono;
uint64_t time_now = time_point_cast<milliseconds>(system_clock::now()).time_since_epoch().count();
uint64_t start_time = time_now;
@ -153,7 +153,7 @@ uint64_t wait_for_vad(audio_async & audio, json jparams, const whisper_params &
return time_now;
}
json unguided_transcription(struct whisper_context * ctx, audio_async &audio, json jparams, const whisper_params &params) {
static json unguided_transcription(struct whisper_context * ctx, audio_async &audio, json jparams, const whisper_params &params) {
std::vector<whisper_token> prompt_tokens;
std::vector<float> pcmf32;
uint64_t unprocessed_audio_timestamp = wait_for_vad(audio, jparams, params, 10000U, pcmf32);
@ -181,7 +181,6 @@ json unguided_transcription(struct whisper_context * ctx, audio_async &audio, js
wparams.n_threads = params.n_threads;
wparams.audio_ctx = params.audio_ctx;
wparams.speed_up = params.speed_up;
wparams.suppress_non_speech_tokens = true;
// run the transformer and a single decoding pass
if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) {
@ -200,7 +199,7 @@ json unguided_transcription(struct whisper_context * ctx, audio_async &audio, js
// command-list mode
// guide the transcription to match the most likely command from a provided list
json guided_transcription(struct whisper_context * ctx, audio_async &audio, const whisper_params &params, json jparams, std::vector<struct commandset> commandset_list) {
static json guided_transcription(struct whisper_context * ctx, audio_async &audio, const whisper_params &params, json jparams, std::vector<struct commandset> commandset_list) {
struct commandset cs = commandset_list[jparams.value("commandset_index", commandset_list.size()-1)];
std::vector<float> pcmf32;
uint64_t unprocessed_audio_timestamp = wait_for_vad(audio, jparams, params, 2000U, pcmf32);
@ -220,7 +219,6 @@ json guided_transcription(struct whisper_context * ctx, audio_async &audio, cons
wparams.n_threads = params.n_threads;
wparams.audio_ctx = params.audio_ctx;
wparams.speed_up = params.speed_up;
// TODO: Do some time testing. Does an overly long prompt slow down processing?
// Set up command sets/precompute prompts
@ -287,7 +285,7 @@ json guided_transcription(struct whisper_context * ctx, audio_async &audio, cons
}
}
json register_commandset(struct whisper_context * ctx, json jparams, std::vector<struct commandset> &commandset_list) {
static json register_commandset(struct whisper_context * ctx, json jparams, std::vector<struct commandset> &commandset_list) {
// TODO: check for token collision
struct commandset cs;
@ -327,7 +325,8 @@ json register_commandset(struct whisper_context * ctx, json jparams, std::vector
commandset_list.push_back(cs);
return json{{"index",index}};
}
json seek(struct whisper_context * /*ctx*/, audio_async & /*audio*/, json /*params*/) {
static json seek(struct whisper_context * /*ctx*/, audio_async & /*audio*/, json /*params*/) {
// whisper_state has the pertinent offsets, but there also seem to be a large
// number of scratch buffers that would prevent rewinding context in a manner similar to llama
// I'll give this a another pass once everything else is implemented,
@ -337,7 +336,8 @@ json seek(struct whisper_context * /*ctx*/, audio_async & /*audio*/, json /*para
{"message", "Seeking is not yet supported."}
};
}
json parse_job(const json &body, struct whisper_context * ctx, audio_async &audio, const whisper_params &params, std::vector<struct commandset> &commandset_list) {
static json parse_job(const json &body, struct whisper_context * ctx, audio_async &audio, const whisper_params &params, std::vector<struct commandset> &commandset_list) {
// See: https://www.jsonrpc.org/specification
json id = body.at("id");
try {
@ -377,7 +377,7 @@ json parse_job(const json &body, struct whisper_context * ctx, audio_async &audi
}
}
void process_loop(struct whisper_context * ctx, audio_async &audio, const whisper_params &params) {
static void process_loop(struct whisper_context * ctx, audio_async &audio, const whisper_params &params) {
std::deque<json> jobqueue;
std::vector<struct commandset> commandset_list;
while (true) {
@ -436,7 +436,10 @@ int main(int argc, char ** argv) {
// whisper init
struct whisper_context_params cparams = whisper_context_default_params();
cparams.use_gpu = params.use_gpu;
cparams.use_gpu = params.use_gpu;
cparams.flash_attn = params.flash_attn;
struct whisper_context * ctx = whisper_init_from_file_with_params(params.model.c_str(), cparams);
// init audio

View File

@ -3,4 +3,4 @@ add_executable(${TARGET} main.cpp)
include(DefaultTargetOptions)
target_link_libraries(${TARGET} PRIVATE common whisper ${CMAKE_THREAD_LIBS_INIT})
target_link_libraries(${TARGET} PRIVATE common whisper ${FFMPEG_LIBRARIES} ${CMAKE_THREAD_LIBS_INIT})

View File

@ -1,10 +1,12 @@
#include "common.h"
#include "whisper.h"
#include "grammar-parser.h"
#include <cmath>
#include <fstream>
#include <cstdio>
#include <regex>
#include <string>
#include <thread>
#include <vector>
@ -15,7 +17,7 @@
#endif
// helper function to replace substrings
void replace_all(std::string & s, const std::string & search, const std::string & replace) {
static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
for (size_t pos = 0; ; pos += replace.length()) {
pos = s.find(search, pos);
if (pos == std::string::npos) break;
@ -38,11 +40,13 @@ struct whisper_params {
int32_t beam_size = whisper_full_default_params(WHISPER_SAMPLING_BEAM_SEARCH).beam_search.beam_size;
int32_t audio_ctx = 0;
float word_thold = 0.01f;
float entropy_thold = 2.40f;
float logprob_thold = -1.00f;
float word_thold = 0.01f;
float entropy_thold = 2.40f;
float logprob_thold = -1.00f;
float grammar_penalty = 100.0f;
float temperature = 0.0f;
float temperature_inc = 0.2f;
bool speed_up = false;
bool debug_mode = false;
bool translate = false;
bool detect_language = false;
@ -65,34 +69,42 @@ struct whisper_params {
bool no_timestamps = false;
bool log_score = false;
bool use_gpu = true;
bool flash_attn = false;
std::string language = "en";
std::string prompt;
std::string font_path = "/System/Library/Fonts/Supplemental/Courier New Bold.ttf";
std::string model = "models/ggml-base.en.bin";
std::string grammar;
std::string grammar_rule;
// [TDRZ] speaker turn string
std::string tdrz_speaker_turn = " [SPEAKER_TURN]"; // TODO: set from command line
// A regular expression that matches tokens to suppress
std::string suppress_regex;
std::string openvino_encode_device = "CPU";
std::string dtw = "";
std::vector<std::string> fname_inp = {};
std::vector<std::string> fname_out = {};
grammar_parser::parse_state grammar_parsed;
};
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
static void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
char* whisper_param_turn_lowercase(char* in){
static char * whisper_param_turn_lowercase(char * in){
int string_len = strlen(in);
for(int i = 0; i < string_len; i++){
for (int i = 0; i < string_len; i++){
*(in+i) = tolower((unsigned char)*(in+i));
}
return in;
}
bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
static bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
for (int i = 1; i < argc; i++) {
std::string arg = argv[i];
@ -123,7 +135,8 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
else if (arg == "-wt" || arg == "--word-thold") { params.word_thold = std::stof(argv[++i]); }
else if (arg == "-et" || arg == "--entropy-thold") { params.entropy_thold = std::stof(argv[++i]); }
else if (arg == "-lpt" || arg == "--logprob-thold") { params.logprob_thold = std::stof(argv[++i]); }
// else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; }
else if (arg == "-tp" || arg == "--temperature") { params.temperature = std::stof(argv[++i]); }
else if (arg == "-tpi" || arg == "--temperature-inc") { params.temperature_inc = std::stof(argv[++i]); }
else if (arg == "-debug"|| arg == "--debug-mode") { params.debug_mode = true; }
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
else if (arg == "-di" || arg == "--diarize") { params.diarize = true; }
@ -154,6 +167,11 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
else if (arg == "-dtw" || arg == "--dtw") { params.dtw = argv[++i]; }
else if (arg == "-ls" || arg == "--log-score") { params.log_score = true; }
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
else if (arg == "-fa" || arg == "--flash-attn") { params.flash_attn = true; }
else if ( arg == "--suppress-regex") { params.suppress_regex = argv[++i]; }
else if ( arg == "--grammar") { params.grammar = argv[++i]; }
else if ( arg == "--grammar-rule") { params.grammar_rule = argv[++i]; }
else if ( arg == "--grammar-penalty") { params.grammar_penalty = std::stof(argv[++i]); }
else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
whisper_print_usage(argc, argv, params);
@ -164,7 +182,7 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
return true;
}
void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & params) {
static void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & params) {
fprintf(stderr, "\n");
fprintf(stderr, "usage: %s [options] file0.wav file1.wav ...\n", argv[0]);
fprintf(stderr, "\n");
@ -184,7 +202,8 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, " -wt N, --word-thold N [%-7.2f] word timestamp probability threshold\n", params.word_thold);
fprintf(stderr, " -et N, --entropy-thold N [%-7.2f] entropy threshold for decoder fail\n", params.entropy_thold);
fprintf(stderr, " -lpt N, --logprob-thold N [%-7.2f] log probability threshold for decoder fail\n", params.logprob_thold);
// fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
fprintf(stderr, " -tp, --temperature N [%-7.2f] The sampling temperature, between 0 and 1\n", params.temperature);
fprintf(stderr, " -tpi, --temperature-inc N [%-7.2f] The increment of temperature, between 0 and 1\n",params.temperature_inc);
fprintf(stderr, " -debug, --debug-mode [%-7s] enable debug mode (eg. dump log_mel)\n", params.debug_mode ? "true" : "false");
fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
fprintf(stderr, " -di, --diarize [%-7s] stereo audio diarization\n", params.diarize ? "true" : "false");
@ -207,13 +226,18 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, " -nt, --no-timestamps [%-7s] do not print timestamps\n", params.no_timestamps ? "true" : "false");
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language ('auto' for auto-detect)\n", params.language.c_str());
fprintf(stderr, " -dl, --detect-language [%-7s] exit after automatically detecting language\n", params.detect_language ? "true" : "false");
fprintf(stderr, " --prompt PROMPT [%-7s] initial prompt\n", params.prompt.c_str());
fprintf(stderr, " --prompt PROMPT [%-7s] initial prompt (max n_text_ctx/2 tokens)\n", params.prompt.c_str());
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] input WAV file path\n", "");
fprintf(stderr, " -oved D, --ov-e-device DNAME [%-7s] the OpenVINO device used for encode inference\n", params.openvino_encode_device.c_str());
fprintf(stderr, " -dtw MODEL --dtw MODEL [%-7s] compute token-level timestamps\n", params.dtw.c_str());
fprintf(stderr, " -ls, --log-score [%-7s] log best decoder scores of tokens\n", params.log_score?"true":"false");
fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU\n", params.use_gpu ? "false" : "true");
fprintf(stderr, " -fa, --flash-attn [%-7s] flash attention\n", params.flash_attn ? "true" : "false");
fprintf(stderr, " --suppress-regex REGEX [%-7s] regular expression matching tokens to suppress\n", params.suppress_regex.c_str());
fprintf(stderr, " --grammar GRAMMAR [%-7s] GBNF grammar to guide decoding\n", params.grammar.c_str());
fprintf(stderr, " --grammar-rule RULE [%-7s] top-level GBNF grammar rule name\n", params.grammar_rule.c_str());
fprintf(stderr, " --grammar-penalty N [%-7.1f] scales down logits of nongrammar tokens\n", params.grammar_penalty);
fprintf(stderr, "\n");
}
@ -224,7 +248,7 @@ struct whisper_print_user_data {
int progress_prev;
};
std::string estimate_diarization_speaker(std::vector<std::vector<float>> pcmf32s, int64_t t0, int64_t t1, bool id_only = false) {
static std::string estimate_diarization_speaker(std::vector<std::vector<float>> pcmf32s, int64_t t0, int64_t t1, bool id_only = false) {
std::string speaker = "";
const int64_t n_samples = pcmf32s[0].size();
@ -256,7 +280,8 @@ std::string estimate_diarization_speaker(std::vector<std::vector<float>> pcmf32s
return speaker;
}
void whisper_print_progress_callback(struct whisper_context * /*ctx*/, struct whisper_state * /*state*/, int progress, void * user_data) {
static void whisper_print_progress_callback(struct whisper_context * /*ctx*/, struct whisper_state * /*state*/, int progress, void * user_data) {
int progress_step = ((whisper_print_user_data *) user_data)->params->progress_step;
int * progress_prev = &(((whisper_print_user_data *) user_data)->progress_prev);
if (progress >= *progress_prev + progress_step) {
@ -265,7 +290,7 @@ void whisper_print_progress_callback(struct whisper_context * /*ctx*/, struct wh
}
}
void whisper_print_segment_callback(struct whisper_context * ctx, struct whisper_state * /*state*/, int n_new, void * user_data) {
static void whisper_print_segment_callback(struct whisper_context * ctx, struct whisper_state * /*state*/, int n_new, void * user_data) {
const auto & params = *((whisper_print_user_data *) user_data)->params;
const auto & pcmf32s = *((whisper_print_user_data *) user_data)->pcmf32s;
@ -334,7 +359,7 @@ void whisper_print_segment_callback(struct whisper_context * ctx, struct whisper
}
}
bool output_txt(struct whisper_context * ctx, const char * fname, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
static bool output_txt(struct whisper_context * ctx, const char * fname, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
std::ofstream fout(fname);
if (!fout.is_open()) {
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname);
@ -361,7 +386,7 @@ bool output_txt(struct whisper_context * ctx, const char * fname, const whisper_
return true;
}
bool output_vtt(struct whisper_context * ctx, const char * fname, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
static bool output_vtt(struct whisper_context * ctx, const char * fname, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
std::ofstream fout(fname);
if (!fout.is_open()) {
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname);
@ -393,7 +418,7 @@ bool output_vtt(struct whisper_context * ctx, const char * fname, const whisper_
return true;
}
bool output_srt(struct whisper_context * ctx, const char * fname, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
static bool output_srt(struct whisper_context * ctx, const char * fname, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
std::ofstream fout(fname);
if (!fout.is_open()) {
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname);
@ -422,7 +447,7 @@ bool output_srt(struct whisper_context * ctx, const char * fname, const whisper_
return true;
}
char *escape_double_quotes_and_backslashes(const char *str) {
static char * escape_double_quotes_and_backslashes(const char * str) {
if (str == NULL) {
return NULL;
}
@ -435,7 +460,7 @@ char *escape_double_quotes_and_backslashes(const char *str) {
}
}
char *escaped = (char *)calloc(escaped_length, 1); // pre-zeroed
char * escaped = (char *)calloc(escaped_length, 1); // pre-zeroed
if (escaped == NULL) {
return NULL;
}
@ -453,7 +478,39 @@ char *escape_double_quotes_and_backslashes(const char *str) {
return escaped;
}
bool output_csv(struct whisper_context * ctx, const char * fname, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
// double quote should be escaped by another double quote. (rfc4180)
static char * escape_double_quotes_in_csv(const char * str) {
if (str == NULL) {
return NULL;
}
size_t escaped_length = strlen(str) + 1;
for (size_t i = 0; str[i] != '\0'; i++) {
if (str[i] == '"') {
escaped_length++;
}
}
char *escaped = (char *)calloc(escaped_length, 1); // pre-zeroed
if (escaped == NULL) {
return NULL;
}
size_t pos = 0;
for (size_t i = 0; str[i] != '\0'; i++) {
if (str[i] == '"') {
escaped[pos++] = '"';
}
escaped[pos++] = str[i];
}
// no need to set zero due to calloc() being used prior
return escaped;
}
static bool output_csv(struct whisper_context * ctx, const char * fname, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
std::ofstream fout(fname);
if (!fout.is_open()) {
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname);
@ -474,7 +531,7 @@ bool output_csv(struct whisper_context * ctx, const char * fname, const whisper_
const char * text = whisper_full_get_segment_text(ctx, i);
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
char * text_escaped = escape_double_quotes_and_backslashes(text);
char * text_escaped = escape_double_quotes_in_csv(text);
//need to multiply times returned from whisper_full_get_segment_t{0,1}() by 10 to get milliseconds.
fout << 10 * t0 << "," << 10 * t1 << ",";
@ -488,7 +545,7 @@ bool output_csv(struct whisper_context * ctx, const char * fname, const whisper_
return true;
}
bool output_score(struct whisper_context * ctx, const char * fname, const whisper_params & /*params*/, std::vector<std::vector<float>> /*pcmf32s*/) {
static bool output_score(struct whisper_context * ctx, const char * fname, const whisper_params & /*params*/, std::vector<std::vector<float>> /*pcmf32s*/) {
std::ofstream fout(fname);
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
@ -507,7 +564,7 @@ bool output_score(struct whisper_context * ctx, const char * fname, const whispe
return true;
}
bool output_json(
static bool output_json(
struct whisper_context * ctx,
const char * fname,
const whisper_params & params,
@ -678,7 +735,7 @@ bool output_json(
// karaoke video generation
// outputs a bash script that uses ffmpeg to generate a video with the subtitles
// TODO: font parameter adjustments
bool output_wts(struct whisper_context * ctx, const char * fname, const char * fname_inp, const whisper_params & params, float t_sec, std::vector<std::vector<float>> pcmf32s) {
static bool output_wts(struct whisper_context * ctx, const char * fname, const char * fname_inp, const whisper_params & params, float t_sec, std::vector<std::vector<float>> pcmf32s) {
std::ofstream fout(fname);
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
@ -803,7 +860,7 @@ bool output_wts(struct whisper_context * ctx, const char * fname, const char * f
return true;
}
bool output_lrc(struct whisper_context * ctx, const char * fname, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
static bool output_lrc(struct whisper_context * ctx, const char * fname, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
std::ofstream fout(fname);
if (!fout.is_open()) {
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname);
@ -844,11 +901,40 @@ bool output_lrc(struct whisper_context * ctx, const char * fname, const whisper_
}
void cb_log_disable(enum ggml_log_level , const char * , void * ) { }
static void cb_log_disable(enum ggml_log_level , const char * , void * ) { }
int main(int argc, char ** argv) {
whisper_params params;
// If the only argument starts with "@", read arguments line-by-line
// from the given file.
std::vector<std::string> vec_args;
if (argc == 2 && argv != nullptr && argv[1] != nullptr && argv[1][0] == '@') {
// Save the name of the executable.
vec_args.push_back(argv[0]);
// Open the response file.
char const * rspfile = argv[1] + sizeof(char);
std::ifstream fin(rspfile);
if (fin.is_open() == false) {
fprintf(stderr, "error: response file '%s' not found\n", rspfile);
return 1;
}
// Read the entire response file.
std::string line;
while (std::getline(fin, line)) {
vec_args.push_back(line);
}
// Use the contents of the response file as the command-line arguments.
argc = static_cast<int>(vec_args.size());
argv = static_cast<char **>(alloca(argc * sizeof (char *)));
for (int i = 0; i < argc; ++i) {
argv[i] = const_cast<char *>(vec_args[i].c_str());
}
}
if (whisper_params_parse(argc, argv, params) == false) {
whisper_print_usage(argc, argv, params);
return 1;
@ -892,7 +978,9 @@ int main(int argc, char ** argv) {
// whisper init
struct whisper_context_params cparams = whisper_context_default_params();
cparams.use_gpu = params.use_gpu;
cparams.use_gpu = params.use_gpu;
cparams.flash_attn = params.flash_attn;
if (!params.dtw.empty()) {
cparams.dtw_token_timestamps = true;
@ -926,6 +1014,29 @@ int main(int argc, char ** argv) {
// initialize openvino encoder. this has no effect on whisper.cpp builds that don't have OpenVINO configured
whisper_ctx_init_openvino_encoder(ctx, nullptr, params.openvino_encode_device.c_str(), nullptr);
if (!params.grammar.empty()) {
auto & grammar = params.grammar_parsed;
if (is_file_exist(params.grammar.c_str())) {
// read grammar from file
std::ifstream ifs(params.grammar.c_str());
const std::string txt = std::string((std::istreambuf_iterator<char>(ifs)), std::istreambuf_iterator<char>());
grammar = grammar_parser::parse(txt.c_str());
} else {
// read grammar from string
grammar = grammar_parser::parse(params.grammar.c_str());
}
// will be empty (default) if there are parse errors
if (grammar.rules.empty()) {
fprintf(stderr, "error: failed to parse grammar \"%s\"\n", params.grammar.c_str());
return 4;
} else {
fprintf(stderr, "%s: grammar:\n", __func__);
grammar_parser::print_grammar(stderr, grammar);
fprintf(stderr, "\n");
}
}
for (int f = 0; f < (int) params.fname_inp.size(); ++f) {
const auto fname_inp = params.fname_inp[f];
const auto fname_out = f < (int) params.fname_out.size() && !params.fname_out[f].empty() ? params.fname_out[f] : params.fname_inp[f];
@ -972,7 +1083,8 @@ int main(int argc, char ** argv) {
{
whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
wparams.strategy = params.beam_size > 1 ? WHISPER_SAMPLING_BEAM_SEARCH : WHISPER_SAMPLING_GREEDY;
const bool use_grammar = (!params.grammar_parsed.rules.empty() && !params.grammar_rule.empty());
wparams.strategy = (params.beam_size > 1 || use_grammar) ? WHISPER_SAMPLING_BEAM_SEARCH : WHISPER_SAMPLING_GREEDY;
wparams.print_realtime = false;
wparams.print_progress = params.print_progress;
@ -992,17 +1104,20 @@ int main(int argc, char ** argv) {
wparams.split_on_word = params.split_on_word;
wparams.audio_ctx = params.audio_ctx;
wparams.speed_up = params.speed_up;
wparams.debug_mode = params.debug_mode;
wparams.tdrz_enable = params.tinydiarize; // [TDRZ]
wparams.suppress_regex = params.suppress_regex.empty() ? nullptr : params.suppress_regex.c_str();
wparams.initial_prompt = params.prompt.c_str();
wparams.greedy.best_of = params.best_of;
wparams.beam_search.beam_size = params.beam_size;
wparams.temperature_inc = params.no_fallback ? 0.0f : wparams.temperature_inc;
wparams.temperature_inc = params.no_fallback ? 0.0f : params.temperature_inc;
wparams.temperature = params.temperature;
wparams.entropy_thold = params.entropy_thold;
wparams.logprob_thold = params.logprob_thold;
@ -1010,6 +1125,20 @@ int main(int argc, char ** argv) {
whisper_print_user_data user_data = { &params, &pcmf32s, 0 };
const auto & grammar_parsed = params.grammar_parsed;
auto grammar_rules = grammar_parsed.c_rules();
if (use_grammar) {
if (grammar_parsed.symbol_ids.find(params.grammar_rule) == grammar_parsed.symbol_ids.end()) {
fprintf(stderr, "%s: warning: grammar rule '%s' not found - skipping grammar sampling\n", __func__, params.grammar_rule.c_str());
} else {
wparams.grammar_rules = grammar_rules.data();
wparams.n_grammar_rules = grammar_rules.size();
wparams.i_start_rule = grammar_parsed.symbol_ids.at(params.grammar_rule);
wparams.grammar_penalty = params.grammar_penalty;
}
}
// this callback is called on each new segment
if (!wparams.print_realtime) {
wparams.new_segment_callback = whisper_print_segment_callback;
@ -1106,7 +1235,9 @@ int main(int argc, char ** argv) {
}
}
whisper_print_timings(ctx);
if (!params.no_prints) {
whisper_print_timings(ctx);
}
whisper_free(ctx);
return 0;

View File

@ -36,7 +36,7 @@ struct whisper_filters {
};
// quantize a model
bool whisper_model_quantize(const std::string & fname_inp, const std::string & fname_out, ggml_ftype ftype) {
static bool whisper_model_quantize(const std::string & fname_inp, const std::string & fname_out, ggml_ftype ftype) {
gpt_vocab vocab;
printf("%s: loading model from '%s'\n", __func__, fname_inp.c_str());

View File

@ -61,7 +61,6 @@ struct whisper_params {
float temperature = 0.00f;
float temperature_inc = 0.20f;
bool speed_up = false;
bool debug_mode = false;
bool translate = false;
bool detect_language = false;
@ -75,6 +74,7 @@ struct whisper_params {
bool print_progress = false;
bool no_timestamps = false;
bool use_gpu = true;
bool flash_attn = false;
std::string language = "en";
std::string prompt = "";
@ -87,6 +87,8 @@ struct whisper_params {
std::string tdrz_speaker_turn = " [SPEAKER_TURN]"; // TODO: set from command line
std::string openvino_encode_device = "CPU";
std::string dtw = "";
};
void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & params, const server_params& sparams) {
@ -109,7 +111,6 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, " -wt N, --word-thold N [%-7.2f] word timestamp probability threshold\n", params.word_thold);
fprintf(stderr, " -et N, --entropy-thold N [%-7.2f] entropy threshold for decoder fail\n", params.entropy_thold);
fprintf(stderr, " -lpt N, --logprob-thold N [%-7.2f] log probability threshold for decoder fail\n", params.logprob_thold);
// fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
fprintf(stderr, " -debug, --debug-mode [%-7s] enable debug mode (eg. dump log_mel)\n", params.debug_mode ? "true" : "false");
fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
fprintf(stderr, " -di, --diarize [%-7s] stereo audio diarization\n", params.diarize ? "true" : "false");
@ -126,6 +127,7 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
fprintf(stderr, " -oved D, --ov-e-device DNAME [%-7s] the OpenVINO device used for encode inference\n", params.openvino_encode_device.c_str());
// server params
fprintf(stderr, " -dtw MODEL --dtw MODEL [%-7s] compute token-level timestamps\n", params.dtw.c_str());
fprintf(stderr, " --host HOST, [%-7s] Hostname/ip-adress for the server\n", sparams.hostname.c_str());
fprintf(stderr, " --port PORT, [%-7d] Port number for the server\n", sparams.port);
fprintf(stderr, " --public PATH, [%-7s] Path to the public folder\n", sparams.public_path.c_str());
@ -155,7 +157,6 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params, serve
else if (arg == "-wt" || arg == "--word-thold") { params.word_thold = std::stof(argv[++i]); }
else if (arg == "-et" || arg == "--entropy-thold") { params.entropy_thold = std::stof(argv[++i]); }
else if (arg == "-lpt" || arg == "--logprob-thold") { params.logprob_thold = std::stof(argv[++i]); }
// else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; }
else if (arg == "-debug"|| arg == "--debug-mode") { params.debug_mode = true; }
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
else if (arg == "-di" || arg == "--diarize") { params.diarize = true; }
@ -173,7 +174,9 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params, serve
else if ( arg == "--prompt") { params.prompt = argv[++i]; }
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
else if (arg == "-oved" || arg == "--ov-e-device") { params.openvino_encode_device = argv[++i]; }
else if (arg == "-dtw" || arg == "--dtw") { params.dtw = argv[++i]; }
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
else if (arg == "-fa" || arg == "--flash-attn") { params.flash_attn = true; }
// server params
else if ( arg == "--port") { sparams.port = std::stoi(argv[++i]); }
else if ( arg == "--host") { sparams.hostname = argv[++i]; }
@ -498,7 +501,53 @@ int main(int argc, char ** argv) {
}
// whisper init
struct whisper_context_params cparams = whisper_context_default_params();
cparams.use_gpu = params.use_gpu;
cparams.use_gpu = params.use_gpu;
cparams.flash_attn = params.flash_attn;
if (!params.dtw.empty()) {
cparams.dtw_token_timestamps = true;
cparams.dtw_aheads_preset = WHISPER_AHEADS_NONE;
if (params.dtw == "tiny") {
cparams.dtw_aheads_preset = WHISPER_AHEADS_TINY;
}
if (params.dtw == "tiny.en") {
cparams.dtw_aheads_preset = WHISPER_AHEADS_TINY_EN;
}
if (params.dtw == "base") {
cparams.dtw_aheads_preset = WHISPER_AHEADS_BASE;
}
if (params.dtw == "base.en") {
cparams.dtw_aheads_preset = WHISPER_AHEADS_BASE_EN;
}
if (params.dtw == "small") {
cparams.dtw_aheads_preset = WHISPER_AHEADS_SMALL;
}
if (params.dtw == "small.en") {
cparams.dtw_aheads_preset = WHISPER_AHEADS_SMALL_EN;
}
if (params.dtw == "medium") {
cparams.dtw_aheads_preset = WHISPER_AHEADS_MEDIUM;
}
if (params.dtw == "medium.en") {
cparams.dtw_aheads_preset = WHISPER_AHEADS_MEDIUM_EN;
}
if (params.dtw == "large.v1") {
cparams.dtw_aheads_preset = WHISPER_AHEADS_LARGE_V1;
}
if (params.dtw == "large.v2") {
cparams.dtw_aheads_preset = WHISPER_AHEADS_LARGE_V2;
}
if (params.dtw == "large.v3") {
cparams.dtw_aheads_preset = WHISPER_AHEADS_LARGE_V3;
}
if (cparams.dtw_aheads_preset == WHISPER_AHEADS_NONE) {
fprintf(stderr, "error: unknown DTW preset '%s'\n", params.dtw.c_str());
return 3;
}
}
struct whisper_context * ctx = whisper_init_from_file_with_params(params.model.c_str(), cparams);
@ -716,7 +765,6 @@ int main(int argc, char ** argv) {
wparams.split_on_word = params.split_on_word;
wparams.audio_ctx = params.audio_ctx;
wparams.speed_up = params.speed_up;
wparams.debug_mode = params.debug_mode;
wparams.tdrz_enable = params.tinydiarize; // [TDRZ]
@ -784,7 +832,7 @@ int main(int argc, char ** argv) {
if (params.response_format == text_format)
{
std::string results = output_str(ctx, params, pcmf32s);
res.set_content(results.c_str(), "text/html");
res.set_content(results.c_str(), "text/html; charset=utf-8");
}
else if (params.response_format == srt_format)
{
@ -865,6 +913,7 @@ int main(int argc, char ** argv) {
if (!params.no_timestamps) {
word["start"] = token.t0 * 0.01;
word["end"] = token.t1 * 0.01;
word["t_dtw"] = token.t_dtw;
}
word["probability"] = token.p;
total_logprob += token.plog;
@ -894,7 +943,7 @@ int main(int argc, char ** argv) {
"application/json");
}
// reset params to thier defaults
// reset params to their defaults
params = default_params;
});
svr.Post(sparams.request_path + "/load", [&](const Request &req, Response &res){

View File

@ -27,7 +27,6 @@ struct whisper_params {
float vad_thold = 0.6f;
float freq_thold = 100.0f;
bool speed_up = false;
bool translate = false;
bool no_fallback = false;
bool print_special = false;
@ -36,6 +35,7 @@ struct whisper_params {
bool tinydiarize = false;
bool save_audio = false; // save audio to wav file
bool use_gpu = true;
bool flash_attn = false;
std::string language = "en";
std::string model = "models/ggml-base.en.bin";
@ -44,7 +44,7 @@ struct whisper_params {
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
static bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
for (int i = 1; i < argc; i++) {
std::string arg = argv[i];
@ -61,7 +61,6 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
else if (arg == "-ac" || arg == "--audio-ctx") { params.audio_ctx = std::stoi(argv[++i]); }
else if (arg == "-vth" || arg == "--vad-thold") { params.vad_thold = std::stof(argv[++i]); }
else if (arg == "-fth" || arg == "--freq-thold") { params.freq_thold = std::stof(argv[++i]); }
else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; }
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
else if (arg == "-nf" || arg == "--no-fallback") { params.no_fallback = true; }
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
@ -72,6 +71,7 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
else if (arg == "-tdrz" || arg == "--tinydiarize") { params.tinydiarize = true; }
else if (arg == "-sa" || arg == "--save-audio") { params.save_audio = true; }
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
else if (arg == "-fa" || arg == "--flash-attn") { params.flash_attn = true; }
else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
@ -98,7 +98,6 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, " -ac N, --audio-ctx N [%-7d] audio context size (0 - all)\n", params.audio_ctx);
fprintf(stderr, " -vth N, --vad-thold N [%-7.2f] voice activity detection threshold\n", params.vad_thold);
fprintf(stderr, " -fth N, --freq-thold N [%-7.2f] high-pass frequency cutoff\n", params.freq_thold);
fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
fprintf(stderr, " -nf, --no-fallback [%-7s] do not use temperature fallback while decoding\n", params.no_fallback ? "true" : "false");
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
@ -109,6 +108,7 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, " -tdrz, --tinydiarize [%-7s] enable tinydiarize (requires a tdrz model)\n", params.tinydiarize ? "true" : "false");
fprintf(stderr, " -sa, --save-audio [%-7s] save the recorded audio to a file\n", params.save_audio ? "true" : "false");
fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU inference\n", params.use_gpu ? "false" : "true");
fprintf(stderr, " -fa, --flash-attn [%-7s] flash attention during inference\n", params.flash_attn ? "true" : "false");
fprintf(stderr, "\n");
}
@ -153,7 +153,9 @@ int main(int argc, char ** argv) {
}
struct whisper_context_params cparams = whisper_context_default_params();
cparams.use_gpu = params.use_gpu;
cparams.use_gpu = params.use_gpu;
cparams.flash_attn = params.flash_attn;
struct whisper_context * ctx = whisper_init_from_file_with_params(params.model.c_str(), cparams);
@ -309,7 +311,6 @@ int main(int argc, char ** argv) {
wparams.n_threads = params.n_threads;
wparams.audio_ctx = params.audio_ctx;
wparams.speed_up = params.speed_up;
wparams.tdrz_enable = params.tinydiarize; // [TDRZ]

View File

@ -1,7 +1,7 @@
if (WHISPER_SDL2)
# talk-llama
set(TARGET talk-llama)
add_executable(${TARGET} talk-llama.cpp llama.cpp unicode.cpp)
add_executable(${TARGET} talk-llama.cpp llama.cpp unicode.cpp unicode-data.cpp)
target_include_directories(${TARGET} PRIVATE ${SDL2_INCLUDE_DIRS})
if (WHISPER_CLBLAST)

File diff suppressed because it is too large Load Diff

View File

@ -37,9 +37,13 @@
#define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
#define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
#define LLAMA_FILE_MAGIC_GGSQ 0x67677371u // 'ggsq'
#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
#define LLAMA_SESSION_VERSION 4
#define LLAMA_SESSION_VERSION 6
#define LLAMA_STATE_SEQ_MAGIC LLAMA_FILE_MAGIC_GGSQ
#define LLAMA_STATE_SEQ_VERSION 1
#ifdef __cplusplus
extern "C" {
@ -60,9 +64,29 @@ extern "C" {
enum llama_vocab_type {
LLAMA_VOCAB_TYPE_NONE = 0, // For models without vocab
LLAMA_VOCAB_TYPE_SPM = 1, // SentencePiece
LLAMA_VOCAB_TYPE_BPE = 2, // Byte Pair Encoding
LLAMA_VOCAB_TYPE_WPM = 3, // WordPiece
LLAMA_VOCAB_TYPE_SPM = 1, // LLaMA tokenizer based on byte-level BPE with byte fallback
LLAMA_VOCAB_TYPE_BPE = 2, // GPT-2 tokenizer based on byte-level BPE
LLAMA_VOCAB_TYPE_WPM = 3, // BERT tokenizer based on WordPiece
};
// pre-tokenization types
enum llama_vocab_pre_type {
LLAMA_VOCAB_PRE_TYPE_DEFAULT = 0,
LLAMA_VOCAB_PRE_TYPE_LLAMA3 = 1,
LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM = 2,
LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER = 3,
LLAMA_VOCAB_PRE_TYPE_FALCON = 4,
LLAMA_VOCAB_PRE_TYPE_MPT = 5,
LLAMA_VOCAB_PRE_TYPE_STARCODER = 6,
LLAMA_VOCAB_PRE_TYPE_GPT2 = 7,
LLAMA_VOCAB_PRE_TYPE_REFACT = 8,
LLAMA_VOCAB_PRE_TYPE_COMMAND_R = 9,
LLAMA_VOCAB_PRE_TYPE_STABLELM2 = 10,
LLAMA_VOCAB_PRE_TYPE_QWEN2 = 11,
LLAMA_VOCAB_PRE_TYPE_OLMO = 12,
LLAMA_VOCAB_PRE_TYPE_DBRX = 13,
LLAMA_VOCAB_PRE_TYPE_SMAUG = 14,
LLAMA_VOCAB_PRE_TYPE_PORO = 15,
};
// note: these values should be synchronized with ggml_rope
@ -74,7 +98,7 @@ extern "C" {
LLAMA_ROPE_TYPE_GLM = 4,
};
enum llama_token_type {
enum llama_token_type { //TODO: remove, required until per token attributes are available from GGUF file
LLAMA_TOKEN_TYPE_UNDEFINED = 0,
LLAMA_TOKEN_TYPE_NORMAL = 1,
LLAMA_TOKEN_TYPE_UNKNOWN = 2,
@ -84,6 +108,20 @@ extern "C" {
LLAMA_TOKEN_TYPE_BYTE = 6,
};
enum llama_token_attr {
LLAMA_TOKEN_ATTR_UNDEFINED = 0,
LLAMA_TOKEN_ATTR_UNKNOWN = 1 << 0,
LLAMA_TOKEN_ATTR_UNUSED = 1 << 1,
LLAMA_TOKEN_ATTR_NORMAL = 1 << 2,
LLAMA_TOKEN_ATTR_CONTROL = 1 << 3, // SPECIAL?
LLAMA_TOKEN_ATTR_USER_DEFINED = 1 << 4,
LLAMA_TOKEN_ATTR_BYTE = 1 << 5,
LLAMA_TOKEN_ATTR_NORMALIZED = 1 << 6,
LLAMA_TOKEN_ATTR_LSTRIP = 1 << 7,
LLAMA_TOKEN_ATTR_RSTRIP = 1 << 8,
LLAMA_TOKEN_ATTR_SINGLE_WORD = 1 << 9,
};
// model file types
enum llama_ftype {
LLAMA_FTYPE_ALL_F32 = 0,
@ -117,6 +155,8 @@ extern "C" {
LLAMA_FTYPE_MOSTLY_IQ2_S = 28, // except 1d tensors
LLAMA_FTYPE_MOSTLY_IQ2_M = 29, // except 1d tensors
LLAMA_FTYPE_MOSTLY_IQ4_XS = 30, // except 1d tensors
LLAMA_FTYPE_MOSTLY_IQ1_M = 31, // except 1d tensors
LLAMA_FTYPE_MOSTLY_BF16 = 32, // except 1d tensors
LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
};
@ -134,6 +174,7 @@ extern "C" {
LLAMA_POOLING_TYPE_NONE = 0,
LLAMA_POOLING_TYPE_MEAN = 1,
LLAMA_POOLING_TYPE_CLS = 2,
LLAMA_POOLING_TYPE_LAST = 3,
};
enum llama_split_mode {
@ -154,7 +195,7 @@ extern "C" {
bool sorted;
} llama_token_data_array;
typedef bool (*llama_progress_callback)(float progress, void *ctx);
typedef bool (*llama_progress_callback)(float progress, void * user_data);
// Input data for llama_decode
// A llama_batch object can contain input about one or many sequences
@ -190,15 +231,19 @@ extern "C" {
LLAMA_KV_OVERRIDE_TYPE_INT,
LLAMA_KV_OVERRIDE_TYPE_FLOAT,
LLAMA_KV_OVERRIDE_TYPE_BOOL,
LLAMA_KV_OVERRIDE_TYPE_STR,
};
struct llama_model_kv_override {
char key[128];
enum llama_model_kv_override_type tag;
char key[128];
union {
int64_t int_value;
double float_value;
bool bool_value;
int64_t val_i64;
double val_f64;
bool val_bool;
char val_str[128];
};
};
@ -215,6 +260,9 @@ extern "C" {
// proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
const float * tensor_split;
// comma separated list of RPC servers to use for offloading
const char * rpc_servers;
// Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
// If the provided progress_callback returns true, model loading continues.
// If it returns false, model loading is immediately aborted.
@ -227,11 +275,14 @@ extern "C" {
const struct llama_model_kv_override * kv_overrides;
// Keep the booleans together to avoid misalignment during copy-by-value.
bool vocab_only; // only load the vocabulary, no weights
bool use_mmap; // use mmap if possible
bool use_mlock; // force system to keep model in RAM
bool vocab_only; // only load the vocabulary, no weights
bool use_mmap; // use mmap if possible
bool use_mlock; // force system to keep model in RAM
bool check_tensors; // validate model tensor data
};
// NOTE: changing the default values of parameters marked as [EXPERIMENTAL] may cause crashes or incorrect results in certain configurations
// https://github.com/ggerganov/llama.cpp/pull/7544
struct llama_context_params {
uint32_t seed; // RNG seed, -1 for random
uint32_t n_ctx; // text context, 0 = from model
@ -243,7 +294,6 @@ extern "C" {
enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id
// (ignored if no pooling layer)
// ref: https://github.com/ggerganov/llama.cpp/pull/2054
float rope_freq_base; // RoPE base frequency, 0 = from model
@ -258,13 +308,14 @@ extern "C" {
ggml_backend_sched_eval_callback cb_eval;
void * cb_eval_user_data;
enum ggml_type type_k; // data type for K cache
enum ggml_type type_v; // data type for V cache
enum ggml_type type_k; // data type for K cache [EXPERIMENTAL]
enum ggml_type type_v; // data type for V cache [EXPERIMENTAL]
// Keep the booleans together to avoid misalignment during copy-by-value.
bool logits_all; // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
bool embeddings; // if true, extract embeddings (together with logits)
bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
bool flash_attn; // whether to use flash attention [EXPERIMENTAL]
// Abort callback
// if it returns true, execution of llama_decode() will be aborted
@ -275,13 +326,17 @@ extern "C" {
// model quantization parameters
typedef struct llama_model_quantize_params {
int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
enum llama_ftype ftype; // quantize to this llama_ftype
bool allow_requantize; // allow quantizing non-f32/f16 tensors
bool quantize_output_tensor; // quantize output.weight
bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
bool pure; // quantize all tensors to the default type
void * imatrix; // pointer to importance matrix data
int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
enum llama_ftype ftype; // quantize to this llama_ftype
enum ggml_type output_tensor_type; // output tensor type
enum ggml_type token_embedding_type; // itoken embeddings tensor type
bool allow_requantize; // allow quantizing non-f32/f16 tensors
bool quantize_output_tensor; // quantize output.weight
bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
bool pure; // quantize all tensors to the default type
bool keep_split; // quantize to the same number of shards
void * imatrix; // pointer to importance matrix data
void * kv_overrides; // pointer to vector containing overrides
} llama_model_quantize_params;
// grammar types
@ -311,6 +366,9 @@ extern "C" {
// modifies a preceding LLAMA_GRETYPE_CHAR or
// LLAMA_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab], [a-zA])
LLAMA_GRETYPE_CHAR_ALT = 6,
// any character (.)
LLAMA_GRETYPE_CHAR_ANY = 7,
};
typedef struct llama_grammar_element {
@ -382,12 +440,15 @@ extern "C" {
LLAMA_API uint32_t llama_n_ubatch (const struct llama_context * ctx);
LLAMA_API uint32_t llama_n_seq_max (const struct llama_context * ctx);
LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_model * model);
LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);
LLAMA_API enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx);
LLAMA_API enum llama_vocab_type llama_vocab_type (const struct llama_model * model);
LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);
LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
LLAMA_API int32_t llama_n_layer (const struct llama_model * model);
// Get the model's RoPE frequency scaling factor
LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
@ -435,10 +496,24 @@ extern "C" {
// Returns 0 on success
LLAMA_API int32_t llama_model_apply_lora_from_file(
const struct llama_model * model,
const char * path_lora,
float scale,
const char * path_base_model,
int32_t n_threads);
const char * path_lora,
float scale,
const char * path_base_model,
int32_t n_threads);
// Apply a loaded control vector to a llama_context, or if data is NULL, clear
// the currently loaded vector.
// n_embd should be the size of a single layer's control, and data should point
// to an n_embd x n_layers buffer starting from layer 1.
// il_start and il_end are the layer range the vector should apply to (both inclusive)
// See llama_control_vector_load in common to load a control vector.
LLAMA_API int32_t llama_control_vector_apply(
struct llama_context * lctx,
const float * data,
size_t len,
int32_t n_embd,
int32_t il_start,
int32_t il_end);
//
// KV cache
@ -499,11 +574,12 @@ extern "C" {
// Returns the number of used KV cells (i.e. have at least one sequence assigned to them)
LLAMA_API int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx);
// Clear the KV cache
// Clear the KV cache - both cell info is erased and KV data is zeroed
LLAMA_API void llama_kv_cache_clear(
struct llama_context * ctx);
// Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
// Returns false if a partial sequence cannot be removed. Removing a whole sequence never fails
// seq_id < 0 : match any sequence
// p0 < 0 : [0, p1]
// p1 < 0 : [p0, inf)
@ -575,34 +651,92 @@ extern "C" {
// Returns the maximum size in bytes of the state (rng, logits, embedding
// and kv_cache) - will often be smaller after compacting tokens
LLAMA_API size_t llama_get_state_size(const struct llama_context * ctx);
LLAMA_API size_t llama_state_get_size(const struct llama_context * ctx);
LLAMA_API DEPRECATED(size_t llama_get_state_size(const struct llama_context * ctx),
"use llama_state_get_size instead");
// Copies the state to the specified destination address.
// Destination needs to have allocated enough memory.
// Returns the number of bytes copied
LLAMA_API size_t llama_copy_state_data(
LLAMA_API size_t llama_state_get_data(
struct llama_context * ctx,
uint8_t * dst);
LLAMA_API DEPRECATED(size_t llama_copy_state_data(
struct llama_context * ctx,
uint8_t * dst),
"use llama_state_get_data instead");
// Set the state reading from the specified address
// Returns the number of bytes read
LLAMA_API size_t llama_set_state_data(
LLAMA_API size_t llama_state_set_data(
struct llama_context * ctx,
const uint8_t * src);
LLAMA_API DEPRECATED(size_t llama_set_state_data(
struct llama_context * ctx,
const uint8_t * src),
"use llama_state_set_data instead");
// Save/load session file
LLAMA_API bool llama_load_session_file(
LLAMA_API bool llama_state_load_file(
struct llama_context * ctx,
const char * path_session,
llama_token * tokens_out,
size_t n_token_capacity,
size_t * n_token_count_out);
LLAMA_API DEPRECATED(bool llama_load_session_file(
struct llama_context * ctx,
const char * path_session,
llama_token * tokens_out,
size_t n_token_capacity,
size_t * n_token_count_out),
"use llama_state_load_file instead");
LLAMA_API bool llama_save_session_file(
LLAMA_API bool llama_state_save_file(
struct llama_context * ctx,
const char * path_session,
const llama_token * tokens,
size_t n_token_count);
LLAMA_API DEPRECATED(bool llama_save_session_file(
struct llama_context * ctx,
const char * path_session,
const llama_token * tokens,
size_t n_token_count),
"use llama_state_save_file instead");
// Get the exact size needed to copy the KV cache of a single sequence
LLAMA_API size_t llama_state_seq_get_size(
struct llama_context * ctx,
llama_seq_id seq_id);
// Copy the KV cache of a single sequence into the specified buffer
LLAMA_API size_t llama_state_seq_get_data(
struct llama_context * ctx,
uint8_t * dst,
llama_seq_id seq_id);
// Copy the sequence data (originally copied with `llama_state_seq_get_data`) into the specified sequence
// Returns:
// - Positive: Ok
// - Zero: Failed to load
LLAMA_API size_t llama_state_seq_set_data(
struct llama_context * ctx,
const uint8_t * src,
llama_seq_id dest_seq_id);
LLAMA_API size_t llama_state_seq_save_file(
struct llama_context * ctx,
const char * filepath,
llama_seq_id seq_id,
const llama_token * tokens,
size_t n_token_count);
LLAMA_API size_t llama_state_seq_load_file(
struct llama_context * ctx,
const char * filepath,
llama_seq_id dest_seq_id,
llama_token * tokens_out,
size_t n_token_capacity,
size_t * n_token_count_out);
//
// Decoding
@ -646,6 +780,16 @@ extern "C" {
// n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
LLAMA_API void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch);
// Get the number of threads used for generation of a single token.
LLAMA_API uint32_t llama_n_threads(struct llama_context * ctx);
// Get the number of threads used for prompt and batch processing (multiple token).
LLAMA_API uint32_t llama_n_threads_batch(struct llama_context * ctx);
// Set whether the model is in embeddings mode or not
// If true, embeddings will be returned but logits will not
LLAMA_API void llama_set_embeddings(struct llama_context * ctx, bool embeddings);
// Set whether to use causal attention or not
// If set to true, the model will only attend to the past tokens
LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn);
@ -659,23 +803,31 @@ extern "C" {
LLAMA_API void llama_synchronize(struct llama_context * ctx);
// Token logits obtained from the last call to llama_decode()
// The logits for the last token are stored in the last row
// Logits for which llama_batch.logits[i] == 0 are undefined
// Rows: n_tokens provided with llama_batch
// The logits for which llama_batch.logits[i] != 0 are stored contiguously
// in the order they have appeared in the batch.
// Rows: number of tokens for which llama_batch.logits[i] != 0
// Cols: n_vocab
LLAMA_API float * llama_get_logits(struct llama_context * ctx);
// Logits for the ith token. Equivalent to:
// llama_get_logits(ctx) + i*n_vocab
// Logits for the ith token. For positive indices, Equivalent to:
// llama_get_logits(ctx) + ctx->output_ids[i]*n_vocab
// Negative indicies can be used to access logits in reverse order, -1 is the last logit.
// returns NULL for invalid ids.
LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i);
// Get all output token embeddings
// shape: [n_tokens*n_embd] (1-dimensional)
// Get all output token embeddings.
// when pooling_type == LLAMA_POOLING_TYPE_NONE or when using a generative model,
// the embeddings for which llama_batch.logits[i] != 0 are stored contiguously
// in the order they have appeared in the batch.
// shape: [n_outputs*n_embd]
// Otherwise, returns NULL.
LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
// Get the embeddings for the ith token
// llama_get_embeddings(ctx) + i*n_embd
// Get the embeddings for the ith token. For positive indices, Equivalent to:
// llama_get_embeddings(ctx) + ctx->output_ids[i]*n_embd
// Negative indicies can be used to access embeddings in reverse order, -1 is the last embedding.
// shape: [n_embd] (1-dimensional)
// returns NULL for invalid ids.
LLAMA_API float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i);
// Get the embeddings for a sequence id
@ -691,11 +843,19 @@ extern "C" {
LLAMA_API float llama_token_get_score(const struct llama_model * model, llama_token token);
LLAMA_API enum llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token);
LLAMA_API enum llama_token_attr llama_token_get_attr(const struct llama_model * model, llama_token token);
// Check if the token is supposed to end generation (end-of-generation, eg. EOS, EOT, etc.)
LLAMA_API bool llama_token_is_eog(const struct llama_model * model, llama_token token);
// Identify if Token Id is a control token or a render-able token
LLAMA_API bool llama_token_is_control(const struct llama_model * model, llama_token token);
// Special tokens
LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
LLAMA_API llama_token llama_token_cls(const struct llama_model * model); // classification
LLAMA_API llama_token llama_token_sep(const struct llama_model * model); // sentence separator
LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
// Returns -1 if unknown, 1 for true or 0 for false.
@ -704,7 +864,7 @@ extern "C" {
// Returns -1 if unknown, 1 for true or 0 for false.
LLAMA_API int32_t llama_add_eos_token(const struct llama_model * model);
// codellama infill tokens
// Codellama infill tokens
LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix
LLAMA_API llama_token llama_token_middle(const struct llama_model * model); // Beginning of infill middle
LLAMA_API llama_token llama_token_suffix(const struct llama_model * model); // Beginning of infill suffix
@ -718,26 +878,28 @@ extern "C" {
/// @param tokens The tokens pointer must be large enough to hold the resulting tokens.
/// @return Returns the number of tokens on success, no more than n_tokens_max
/// @return Returns a negative number on failure - the number of tokens that would have been returned
/// @param special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated as plaintext.
/// Does not insert a leading space.
/// @param parse_special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated
/// as plaintext. Does not insert a leading space.
LLAMA_API int32_t llama_tokenize(
const struct llama_model * model,
const char * text,
int32_t text_len,
llama_token * tokens,
int32_t n_tokens_max,
bool add_bos,
bool special);
bool add_special,
bool parse_special);
// Token Id -> Piece.
// Uses the vocabulary in the provided context.
// Does not write null terminator to the buffer.
// User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens.
// @param special If true, special tokens are rendered in the output.
LLAMA_API int32_t llama_token_to_piece(
const struct llama_model * model,
llama_token token,
char * buf,
int32_t length);
int32_t length,
bool special);
/// Apply chat template. Inspired by hf apply_chat_template() on python.
/// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"
@ -890,7 +1052,7 @@ extern "C" {
struct llama_context * ctx,
llama_token_data_array * candidates);
/// @details Randomly selects a token from the candidates based on their probabilities.
/// @details Randomly selects a token from the candidates based on their probabilities using the RNG of ctx.
LLAMA_API llama_token llama_sample_token(
struct llama_context * ctx,
llama_token_data_array * candidates);
@ -902,48 +1064,18 @@ extern "C" {
llama_token token);
//
// Beam search
// Model split
//
struct llama_beam_view {
const llama_token * tokens;
/// @details Build a split GGUF final path for this chunk.
/// llama_split_path(split_path, sizeof(split_path), "/models/ggml-model-q4_0", 2, 4) => split_path = "/models/ggml-model-q4_0-00002-of-00004.gguf"
// Returns the split_path length.
LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count);
size_t n_tokens;
float p; // Cumulative beam probability (renormalized relative to all beams)
bool eob; // Callback should set this to true when a beam is at end-of-beam.
};
// Passed to beam_search_callback function.
// Whenever 0 < common_prefix_length, this number of tokens should be copied from any of the beams
// (e.g. beams[0]) as they will be removed (shifted) from all beams in all subsequent callbacks.
// These pointers are valid only during the synchronous callback, so should not be saved.
struct llama_beams_state {
struct llama_beam_view * beam_views;
size_t n_beams; // Number of elements in beam_views[].
size_t common_prefix_length; // Current max length of prefix tokens shared by all beams.
bool last_call; // True iff this is the last callback invocation.
};
// Type of pointer to the beam_search_callback function.
// void* callback_data is any custom data passed to llama_beam_search, that is subsequently
// passed back to beam_search_callback. This avoids having to use global variables in the callback.
typedef void (*llama_beam_search_callback_fn_t)(void * callback_data, struct llama_beams_state);
/// @details Deterministically returns entire sentence constructed by a beam search.
/// @param ctx Pointer to the llama_context.
/// @param callback Invoked for each iteration of the beam_search loop, passing in beams_state.
/// @param callback_data A pointer that is simply passed back to callback.
/// @param n_beams Number of beams to use.
/// @param n_past Number of tokens already evaluated.
/// @param n_predict Maximum number of tokens to predict. EOS may occur earlier.
LLAMA_API void llama_beam_search(
struct llama_context * ctx,
llama_beam_search_callback_fn_t callback,
void * callback_data,
size_t n_beams,
int32_t n_past,
int32_t n_predict);
/// @details Extract the path prefix from the split_path if and only if the split_no and split_count match.
/// llama_split_prefix(split_prefix, 64, "/models/ggml-model-q4_0-00002-of-00004.gguf", 2, 4) => split_prefix = "/models/ggml-model-q4_0"
// Returns the split_prefix length.
LLAMA_API int llama_split_prefix(char * split_prefix, size_t maxlen, const char * split_path, int split_no, int split_count);
// Performance information
LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
@ -967,15 +1099,49 @@ extern "C" {
// Internal API to be implemented by llama.cpp and used by tests/benchmarks only
#ifdef LLAMA_API_INTERNAL
#include <vector>
#include <random>
#include <string>
#include <vector>
struct ggml_tensor;
struct llama_partial_utf8 {
uint32_t value; // bit value so far (unshifted)
int n_remain; // num bytes remaining; -1 indicates invalid sequence
};
struct llama_grammar {
const std::vector<std::vector<llama_grammar_element>> rules;
std::vector<std::vector<const llama_grammar_element *>> stacks;
// buffer for partially generated UTF-8 sequence from accepted tokens
llama_partial_utf8 partial_utf8;
};
struct llama_grammar_candidate {
size_t index;
const uint32_t * code_points;
llama_partial_utf8 partial_utf8;
};
const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
struct llama_context * ctx
);
void llama_grammar_accept(
const std::vector<std::vector<llama_grammar_element>> & rules,
const std::vector<std::vector<const llama_grammar_element *>> & stacks,
const uint32_t chr,
std::vector<std::vector<const llama_grammar_element *>> & new_stacks);
std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
const std::string & src,
llama_partial_utf8 partial_start);
// Randomly selects a token from the candidates based on their probabilities using given std::mt19937.
// This is a temporary workaround in order to fix race conditions when sampling with multiple sequences.
llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng);
#endif // LLAMA_API_INTERNAL
#endif // LLAMA_H

View File

@ -16,7 +16,7 @@
#include <regex>
#include <sstream>
std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::string & text, bool add_bos) {
static std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::string & text, bool add_bos) {
auto * model = llama_get_model(ctx);
// upper limit for the number of tokens
@ -33,12 +33,12 @@ std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::s
return result;
}
std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) {
static std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) {
std::vector<char> result(8, 0);
const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), false);
if (n_tokens < 0) {
result.resize(-n_tokens);
int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), false);
GGML_ASSERT(check == -n_tokens);
} else {
result.resize(n_tokens);
@ -59,13 +59,13 @@ struct whisper_params {
float vad_thold = 0.6f;
float freq_thold = 100.0f;
bool speed_up = false;
bool translate = false;
bool print_special = false;
bool print_energy = false;
bool no_timestamps = true;
bool verbose_prompt = false;
bool use_gpu = true;
bool flash_attn = false;
std::string person = "Georgi";
std::string bot_name = "LLaMA";
@ -83,7 +83,7 @@ struct whisper_params {
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
static bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
for (int i = 1; i < argc; i++) {
std::string arg = argv[i];
@ -99,12 +99,12 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
else if (arg == "-ngl" || arg == "--n-gpu-layers") { params.n_gpu_layers = std::stoi(argv[++i]); }
else if (arg == "-vth" || arg == "--vad-thold") { params.vad_thold = std::stof(argv[++i]); }
else if (arg == "-fth" || arg == "--freq-thold") { params.freq_thold = std::stof(argv[++i]); }
else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; }
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
else if (arg == "-pe" || arg == "--print-energy") { params.print_energy = true; }
else if (arg == "-vp" || arg == "--verbose-prompt") { params.verbose_prompt = true; }
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
else if (arg == "-fa" || arg == "--flash-attn") { params.flash_attn = true; }
else if (arg == "-p" || arg == "--person") { params.person = argv[++i]; }
else if (arg == "-bn" || arg == "--bot-name") { params.bot_name = argv[++i]; }
else if (arg == "--session") { params.path_session = argv[++i]; }
@ -123,7 +123,6 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
}
}
else if (arg == "-f" || arg == "--file") { params.fname_out = argv[++i]; }
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
whisper_print_usage(argc, argv, params);
@ -148,12 +147,12 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, " -ngl N, --n-gpu-layers N [%-7d] number of layers to store in VRAM\n", params.n_gpu_layers);
fprintf(stderr, " -vth N, --vad-thold N [%-7.2f] voice activity detection threshold\n", params.vad_thold);
fprintf(stderr, " -fth N, --freq-thold N [%-7.2f] high-pass frequency cutoff\n", params.freq_thold);
fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
fprintf(stderr, " -pe, --print-energy [%-7s] print sound energy (for debugging)\n", params.print_energy ? "true" : "false");
fprintf(stderr, " -vp, --verbose-prompt [%-7s] print prompt at start\n", params.verbose_prompt ? "true" : "false");
fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU\n", params.use_gpu ? "false" : "true");
fprintf(stderr, " -fa, --flash-attn [%-7s] flash attention\n", params.flash_attn ? "true" : "false");
fprintf(stderr, " -p NAME, --person NAME [%-7s] person name (for prompt selection)\n", params.person.c_str());
fprintf(stderr, " -bn NAME, --bot-name NAME [%-7s] bot name (to display)\n", params.bot_name.c_str());
fprintf(stderr, " -w TEXT, --wake-command T [%-7s] wake-up command to listen for\n", params.wake_cmd.c_str());
@ -169,7 +168,7 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, "\n");
}
std::string transcribe(
static std::string transcribe(
whisper_context * ctx,
const whisper_params & params,
const std::vector<float> & pcmf32,
@ -203,7 +202,6 @@ std::string transcribe(
wparams.prompt_n_tokens = prompt_tokens.empty() ? 0 : prompt_tokens.size();
wparams.audio_ctx = params.audio_ctx;
wparams.speed_up = params.speed_up;
if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) {
return "";
@ -237,7 +235,7 @@ std::string transcribe(
return result;
}
std::vector<std::string> get_words(const std::string &txt) {
static std::vector<std::string> get_words(const std::string &txt) {
std::vector<std::string> words;
std::istringstream iss(txt);
@ -285,9 +283,15 @@ int main(int argc, char ** argv) {
// whisper init
struct whisper_context_params cparams = whisper_context_default_params();
cparams.use_gpu = params.use_gpu;
cparams.use_gpu = params.use_gpu;
cparams.flash_attn = params.flash_attn;
struct whisper_context * ctx_wsp = whisper_init_from_file_with_params(params.model_wsp.c_str(), cparams);
if (!ctx_wsp) {
fprintf(stderr, "No whisper.cpp model specified. Please provide using -mw <modelfile>\n");
return 1;
}
// llama init
@ -301,6 +305,10 @@ int main(int argc, char ** argv) {
}
struct llama_model * model_llama = llama_load_model_from_file(params.model_llama.c_str(), lmparams);
if (!model_llama) {
fprintf(stderr, "No llama.cpp model specified. Please provide using -ml <modelfile>\n");
return 1;
}
llama_context_params lcparams = llama_context_default_params();
@ -308,6 +316,7 @@ int main(int argc, char ** argv) {
lcparams.n_ctx = 2048;
lcparams.seed = 1;
lcparams.n_threads = params.n_threads;
lcparams.flash_attn = params.flash_attn;
struct llama_context * ctx_llama = llama_new_context_with_model(model_llama, lcparams);

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,20 @@
#pragma once
#include <cstdint>
#include <vector>
#include <unordered_map>
#include <unordered_set>
struct range_nfd {
uint32_t first;
uint32_t last;
uint32_t nfd;
};
static const uint32_t MAX_CODEPOINTS = 0x110000;
extern const std::vector<std::pair<uint32_t, uint16_t>> unicode_ranges_flags;
extern const std::unordered_set<uint32_t> unicode_set_whitespace;
extern const std::unordered_map<uint32_t, uint32_t> unicode_map_lowercase;
extern const std::unordered_map<uint32_t, uint32_t> unicode_map_uppercase;
extern const std::vector<range_nfd> unicode_ranges_nfd;

File diff suppressed because it is too large Load Diff

View File

@ -4,23 +4,60 @@
#include <string>
#include <vector>
#define CODEPOINT_TYPE_UNIDENTIFIED 0
#define CODEPOINT_TYPE_DIGIT 1
#define CODEPOINT_TYPE_LETTER 2
#define CODEPOINT_TYPE_WHITESPACE 3
#define CODEPOINT_TYPE_ACCENT_MARK 4
#define CODEPOINT_TYPE_PUNCTUATION 5
#define CODEPOINT_TYPE_SYMBOL 6
#define CODEPOINT_TYPE_CONTROL 7
struct codepoint_flags {
enum {
UNDEFINED = 0x0001,
NUMBER = 0x0002, // regex: \p{N}
LETTER = 0x0004, // regex: \p{L}
SEPARATOR = 0x0008, // regex: \p{Z}
ACCENT_MARK = 0x0010, // regex: \p{M}
PUNCTUATION = 0x0020, // regex: \p{P}
SYMBOL = 0x0040, // regex: \p{S}
CONTROL = 0x0080, // regex: \p{C}
MASK_CATEGORIES = 0x00FF,
};
// codepoint type
uint16_t is_undefined : 1;
uint16_t is_number : 1; // regex: \p{N}
uint16_t is_letter : 1; // regex: \p{L}
uint16_t is_separator : 1; // regex: \p{Z}
uint16_t is_accent_mark : 1; // regex: \p{M}
uint16_t is_punctuation : 1; // regex: \p{P}
uint16_t is_symbol : 1; // regex: \p{S}
uint16_t is_control : 1; // regex: \p{C}
// helper flags
uint16_t is_whitespace : 1; // regex: \s
uint16_t is_lowercase : 1;
uint16_t is_uppercase : 1;
uint16_t is_nfd : 1;
// decode from uint16
inline codepoint_flags(const uint16_t flags=0) {
*reinterpret_cast<uint16_t*>(this) = flags;
}
inline uint16_t as_uint() const {
return *reinterpret_cast<const uint16_t*>(this);
}
inline uint16_t category_flag() const {
return this->as_uint() & MASK_CATEGORIES;
}
};
std::string unicode_cpt_to_utf8(uint32_t cp);
std::vector<uint32_t> unicode_cpts_from_utf8(const std::string & utf8);
std::vector<uint32_t> unicode_cpts_normalize_nfd(const std::vector<uint32_t> & cpts);
int unicode_cpt_type(uint32_t cp);
int unicode_cpt_type(const std::string & utf8);
codepoint_flags unicode_cpt_flags(const uint32_t cp);
codepoint_flags unicode_cpt_flags(const std::string & utf8);
std::string unicode_byte_to_utf8(uint8_t byte);
uint8_t unicode_utf8_to_byte(const std::string & utf8);
uint32_t unicode_tolower(uint32_t cp);
std::vector<std::string> unicode_regex_split(const std::string & text, const std::vector<std::string> & regex_exprs);

View File

@ -72,7 +72,7 @@ struct gpt2_model {
};
// load the model's weights from a file
bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab & vocab) {
static bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab & vocab) {
printf("%s: loading model from '%s'\n", __func__, fname.c_str());
auto fin = std::ifstream(fname, std::ios::binary);
@ -380,7 +380,7 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
// - embd_w: the predicted logits for the next token
//
// TODO: sync latest version from ggml repo
bool gpt2_eval(
static bool gpt2_eval(
const gpt2_model & model,
const int n_threads,
const int n_past,

View File

@ -26,12 +26,12 @@ struct whisper_params {
float vad_thold = 0.6f;
float freq_thold = 100.0f;
bool speed_up = false;
bool translate = false;
bool print_special = false;
bool print_energy = false;
bool no_timestamps = true;
bool use_gpu = true;
bool flash_attn = false;
std::string person = "Santa";
std::string language = "en";
@ -44,7 +44,7 @@ struct whisper_params {
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
static bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
for (int i = 1; i < argc; i++) {
std::string arg = argv[i];
@ -59,11 +59,11 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
else if (arg == "-ac" || arg == "--audio-ctx") { params.audio_ctx = std::stoi(argv[++i]); }
else if (arg == "-vth" || arg == "--vad-thold") { params.vad_thold = std::stof(argv[++i]); }
else if (arg == "-fth" || arg == "--freq-thold") { params.freq_thold = std::stof(argv[++i]); }
else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; }
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
else if (arg == "-pe" || arg == "--print-energy") { params.print_energy = true; }
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
else if (arg == "-fa" || arg == "--flash-attn") { params.flash_attn = true; }
else if (arg == "-p" || arg == "--person") { params.person = argv[++i]; }
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
else if (arg == "-mw" || arg == "--model-whisper") { params.model_wsp = argv[++i]; }
@ -94,11 +94,11 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, " -ac N, --audio-ctx N [%-7d] audio context size (0 - all)\n", params.audio_ctx);
fprintf(stderr, " -vth N, --vad-thold N [%-7.2f] voice activity detection threshold\n", params.vad_thold);
fprintf(stderr, " -fth N, --freq-thold N [%-7.2f] high-pass frequency cutoff\n", params.freq_thold);
fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
fprintf(stderr, " -pe, --print-energy [%-7s] print sound energy (for debugging)\n", params.print_energy ? "true" : "false");
fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU\n", params.use_gpu ? "false" : "true");
fprintf(stderr, " -fa, --flash-attn [%-7s] flash attention\n", params.flash_attn ? "true" : "false");
fprintf(stderr, " -p NAME, --person NAME [%-7s] person name (for prompt selection)\n", params.person.c_str());
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str());
fprintf(stderr, " -mw FILE, --model-whisper [%-7s] whisper model file\n", params.model_wsp.c_str());
@ -109,7 +109,7 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, "\n");
}
std::string transcribe(whisper_context * ctx, const whisper_params & params, const std::vector<float> & pcmf32, float & prob, int64_t & t_ms) {
static std::string transcribe(whisper_context * ctx, const whisper_params & params, const std::vector<float> & pcmf32, float & prob, int64_t & t_ms) {
const auto t_start = std::chrono::high_resolution_clock::now();
prob = 0.0f;
@ -129,7 +129,6 @@ std::string transcribe(whisper_context * ctx, const whisper_params & params, con
wparams.n_threads = params.n_threads;
wparams.audio_ctx = params.audio_ctx;
wparams.speed_up = params.speed_up;
if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) {
return "";
@ -188,7 +187,9 @@ int main(int argc, char ** argv) {
// whisper init
struct whisper_context_params cparams = whisper_context_default_params();
cparams.use_gpu = params.use_gpu;
cparams.use_gpu = params.use_gpu;
cparams.flash_attn = params.flash_attn;
struct whisper_context * ctx_wsp = whisper_init_from_file_with_params(params.model_wsp.c_str(), cparams);

View File

@ -1,9 +1,10 @@
set(CMAKE_CXX_STANDARD 11)
add_subdirectory(libwchess)
set_target_properties(wchess-core PROPERTIES FOLDER "libs")
if (EMSCRIPTEN)
add_subdirectory(wchess.wasm)
set_target_properties(wchess.wasm PROPERTIES FOLDER "libs")
else()
add_subdirectory(wchess.cmd)
set_target_properties(wchess PROPERTIES FOLDER "libs")
endif()

View File

@ -26,12 +26,12 @@ struct whisper_params {
float grammar_penalty = 100.0f;
bool speed_up = false;
bool translate = false;
bool print_special = false;
bool print_energy = false;
bool no_timestamps = true;
bool use_gpu = true;
bool flash_attn = false;
std::string language = "en";
std::string model = "models/ggml-base.en.bin";
@ -56,11 +56,11 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, " -ac N, --audio-ctx N [%-7d] audio context size (0 - all)\n", params.audio_ctx);
fprintf(stderr, " -vth N, --vad-thold N [%-7.2f] voice activity detection threshold\n", params.vad_thold);
fprintf(stderr, " -fth N, --freq-thold N [%-7.2f] high-pass frequency cutoff\n", params.freq_thold);
fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
fprintf(stderr, " -pe, --print-energy [%-7s] print sound energy (for debugging)\n", params.print_energy ? "true" : "false");
fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU\n", params.use_gpu ? "false" : "true");
fprintf(stderr, " -fa, --flash-attn [%-7s] flash attention during decoding\n", params.flash_attn ? "true" : "false");
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str());
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] text output file name\n", params.fname_out.c_str());
@ -87,11 +87,11 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
else if (arg == "-ac" || arg == "--audio-ctx") { params.audio_ctx = std::stoi(argv[++i]); }
else if (arg == "-vth" || arg == "--vad-thold") { params.vad_thold = std::stof(argv[++i]); }
else if (arg == "-fth" || arg == "--freq-thold") { params.freq_thold = std::stof(argv[++i]); }
else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; }
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
else if (arg == "-pe" || arg == "--print-energy") { params.print_energy = true; }
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
else if (arg == "-fa" || arg == "--flash-attn") { params.flash_attn = true; }
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
else if (arg == "-f" || arg == "--file") { params.fname_out = argv[++i]; }
@ -183,7 +183,9 @@ int main(int argc, char ** argv) {
// whisper init
struct whisper_context_params cparams = whisper_context_default_params();
cparams.use_gpu = params.use_gpu;
cparams.use_gpu = params.use_gpu;
cparams.flash_attn = params.flash_attn;
struct whisper_context * ctx = whisper_init_from_file_with_params(params.model.c_str(), cparams);
if (!ctx) {

View File

@ -5,15 +5,14 @@ project(whisper.cpp)
set(CMAKE_CXX_STANDARD 11)
set(WHISPER_LIB_DIR ${CMAKE_SOURCE_DIR}/../../../../../../../)
set(
SOURCE_FILES
${WHISPER_LIB_DIR}/ggml.c
${WHISPER_LIB_DIR}/ggml-alloc.c
${WHISPER_LIB_DIR}/ggml-backend.c
${WHISPER_LIB_DIR}/ggml-quants.c
${WHISPER_LIB_DIR}/whisper.cpp
${CMAKE_SOURCE_DIR}/jni.c
)
set(SOURCE_FILES
${WHISPER_LIB_DIR}/ggml/src/ggml.c
${WHISPER_LIB_DIR}/ggml/src/ggml-alloc.c
${WHISPER_LIB_DIR}/ggml/src/ggml-backend.c
${WHISPER_LIB_DIR}/ggml/src/ggml-quants.c
${WHISPER_LIB_DIR}/src/whisper.cpp
${CMAKE_SOURCE_DIR}/jni.c
)
find_library(LOG_LIB log)
@ -41,7 +40,6 @@ function(build_library target_name)
#target_link_options(${target_name} PRIVATE -Wl,--gc-sections)
#target_link_options(${target_name} PRIVATE -Wl,--exclude-libs,ALL)
#target_link_options(${target_name} PRIVATE -flto)
endif ()
endfunction()
@ -54,3 +52,7 @@ elseif (${ANDROID_ABI} STREQUAL "armeabi-v7a")
endif ()
include_directories(${WHISPER_LIB_DIR})
include_directories(${WHISPER_LIB_DIR}/src)
include_directories(${WHISPER_LIB_DIR}/include)
include_directories(${WHISPER_LIB_DIR}/ggml/include)
include_directories(${WHISPER_LIB_DIR}/ggml/src)

View File

@ -12,47 +12,3 @@ To use:
(PS: Do not move this android project folder individually to other folders, because this android project folder depends on the files of the whole project.)
<img width="300" alt="image" src="https://user-images.githubusercontent.com/1670775/221613663-a17bf770-27ef-45ab-9a46-a5f99ba65d2a.jpg">
## CLBlast
> [!NOTE]
> - OpenCL does not have the same level of support as CUDA or Metal.
> - Turning on CLBlast may degrade OpenCL performance if your device isn't already tuned. See [tuning.md](https://github.com/CNugteren/CLBlast/blob/162783a414969464ce3aa5adf5c2554afa5ee93e/doc/tuning.md#already-tuned-for-devices) for a list of devices that are already tuned and what to do if yours is missing.
Build CLBlast.
```
# In path/to/CLBlast (we assume OpenCL-Headers relative location)
$ANDROID_SDK_PATH/cmake/3.22.1/bin/cmake .. \
-DCMAKE_SYSTEM_NAME=Android \
-DCMAKE_SYSTEM_VERSION=33 \
-DCMAKE_ANDROID_ARCH_ABI=arm64-v8a \
-DCMAKE_ANDROID_NDK=$ANDROID_NDK_PATH \
-DCMAKE_ANDROID_STL_TYPE=c++_static \
-DOPENCL_ROOT=$(readlink -f ../../OpenCL-Headers) \
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=BOTH \
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
# Build libclblast.so
make -j4
```
Pull `libGLES_mali.so` to `libOpenCL.so`.
```bash
# In path/to/whisper.android
mkdir lib/src/main/jniLibs/arm64-v8a
adb pull /system/vendor/lib64/egl/libGLES_mali.so lib/src/main/jniLibs/arm64-v8a/libOpenCL.so
```
In gradle.properties, set `GGML_HOME` to the location of GGML, as well as
required options for turning on CLBlast.
```
GGML_HOME=/path/to/ggml
GGML_CLBLAST=ON
CLBLAST_HOME=/path/to/CLBlast
OPENCL_LIB=/path/to/libOpenCL.so
OPENCL_ROOT=/path/to/OpenCL-Headers
```

View File

@ -145,7 +145,7 @@ class MainScreenViewModel(private val application: Application) : ViewModel() {
val start = System.currentTimeMillis()
val text = whisperContext?.transcribeData(data)
val elapsed = System.currentTimeMillis() - start
printMessage("Done ($elapsed ms): $text\n")
printMessage("Done ($elapsed ms): \n$text\n")
} catch (e: Exception) {
Log.w(LOG_TAG, e)
printMessage("${e.localizedMessage}\n")

View File

@ -16,7 +16,7 @@ class WhisperContext private constructor(private var ptr: Long) {
Executors.newSingleThreadExecutor().asCoroutineDispatcher()
)
suspend fun transcribeData(data: FloatArray): String = withContext(scope.coroutineContext) {
suspend fun transcribeData(data: FloatArray, printTimestamp: Boolean = true): String = withContext(scope.coroutineContext) {
require(ptr != 0L)
val numThreads = WhisperCpuConfig.preferredThreadCount
Log.d(LOG_TAG, "Selecting $numThreads threads")
@ -24,7 +24,13 @@ class WhisperContext private constructor(private var ptr: Long) {
val textCount = WhisperLib.getTextSegmentCount(ptr)
return@withContext buildString {
for (i in 0 until textCount) {
append(WhisperLib.getTextSegment(ptr, i))
if (printTimestamp) {
val textTimestamp = "[${toTimestamp(WhisperLib.getTextSegmentT0(ptr, i))} --> ${toTimestamp(WhisperLib.getTextSegmentT1(ptr, i))}]"
val textSegment = WhisperLib.getTextSegment(ptr, i)
append("$textTimestamp: $textSegment\n")
} else {
append(WhisperLib.getTextSegment(ptr, i))
}
}
}
}
@ -131,12 +137,29 @@ private class WhisperLib {
external fun fullTranscribe(contextPtr: Long, numThreads: Int, audioData: FloatArray)
external fun getTextSegmentCount(contextPtr: Long): Int
external fun getTextSegment(contextPtr: Long, index: Int): String
external fun getTextSegmentT0(contextPtr: Long, index: Int): Long
external fun getTextSegmentT1(contextPtr: Long, index: Int): Long
external fun getSystemInfo(): String
external fun benchMemcpy(nthread: Int): String
external fun benchGgmlMulMat(nthread: Int): String
}
}
// 500 -> 00:05.000
// 6000 -> 01:00.000
private fun toTimestamp(t: Long, comma: Boolean = false): String {
var msec = t * 10
val hr = msec / (1000 * 60 * 60)
msec -= hr * (1000 * 60 * 60)
val min = msec / (1000 * 60)
msec -= min * (1000 * 60)
val sec = msec / 1000
msec -= sec * 1000
val delimiter = if (comma) "," else "."
return String.format("%02d:%02d:%02d%s%03d", hr, min, sec, delimiter, msec)
}
private fun isArmEabiV7a(): Boolean {
return Build.SUPPORTED_ABIS[0].equals("armeabi-v7a")
}

View File

@ -10,7 +10,7 @@ option(GGML_HOME "whisper: Path to external GGML source" OFF)
set(
SOURCE_FILES
${WHISPER_LIB_DIR}/whisper.cpp
${WHISPER_LIB_DIR}/src/whisper.cpp
${CMAKE_SOURCE_DIR}/jni.c
)
@ -18,10 +18,10 @@ if (NOT GGML_HOME)
set(
SOURCE_FILES
${SOURCE_FILES}
${WHISPER_LIB_DIR}/ggml.c
${WHISPER_LIB_DIR}/ggml-alloc.c
${WHISPER_LIB_DIR}/ggml-backend.c
${WHISPER_LIB_DIR}/ggml-quants.c
${WHISPER_LIB_DIR}/ggml/src/ggml.c
${WHISPER_LIB_DIR}/ggml/src/ggml-alloc.c
${WHISPER_LIB_DIR}/ggml/src/ggml-backend.c
${WHISPER_LIB_DIR}/ggml/src/ggml-quants.c
)
endif()
@ -75,3 +75,7 @@ endif ()
build_library("whisper") # Default target
include_directories(${WHISPER_LIB_DIR})
include_directories(${WHISPER_LIB_DIR}/src)
include_directories(${WHISPER_LIB_DIR}/include)
include_directories(${WHISPER_LIB_DIR}/ggml/include)
include_directories(${WHISPER_LIB_DIR}/ggml/src)

View File

@ -212,6 +212,22 @@ Java_com_whispercpp_whisper_WhisperLib_00024Companion_getTextSegment(
return string;
}
JNIEXPORT jlong JNICALL
Java_com_whispercpp_whisper_WhisperLib_00024Companion_getTextSegmentT0(
JNIEnv *env, jobject thiz, jlong context_ptr, jint index) {
UNUSED(thiz);
struct whisper_context *context = (struct whisper_context *) context_ptr;
return whisper_full_get_segment_t0(context, index);
}
JNIEXPORT jlong JNICALL
Java_com_whispercpp_whisper_WhisperLib_00024Companion_getTextSegmentT1(
JNIEnv *env, jobject thiz, jlong context_ptr, jint index) {
UNUSED(thiz);
struct whisper_context *context = (struct whisper_context *) context_ptr;
return whisper_full_get_segment_t1(context, index);
}
JNIEXPORT jstring JNICALL
Java_com_whispercpp_whisper_WhisperLib_00024Companion_getSystemInfo(
JNIEnv *env, jobject thiz

View File

@ -45,6 +45,6 @@ if [ ! -f ./models/ggml-${model}.bin ] ; then
fi
# fine-tune the parameters according to your machine specs
./stream -t 8 -m models/ggml-base.en.bin --step 350 --length 10000 -f /tmp/whisper.nvim 2> /dev/null
./stream -t 8 -m models/ggml-${model}.bin --step 350 --length 10000 -f /tmp/whisper.nvim 2> /dev/null
exit 0

View File

@ -9,7 +9,6 @@
/* Begin PBXBuildFile section */
1844471A2AB211A2007D6BFE /* ggml-alloc.c in Sources */ = {isa = PBXBuildFile; fileRef = 184447182AB211A2007D6BFE /* ggml-alloc.c */; };
1844471C2AB21655007D6BFE /* ggml-metal.m in Sources */ = {isa = PBXBuildFile; fileRef = 1844471B2AB21655007D6BFE /* ggml-metal.m */; settings = {COMPILER_FLAGS = "-framework Foundation -framework Metal -framework MetalKit -fno-objc-arc"; }; };
184447212AB21B43007D6BFE /* ggml-metal.metal in CopyFiles */ = {isa = PBXBuildFile; fileRef = 1844471D2AB2195F007D6BFE /* ggml-metal.metal */; };
18627C7B29052BDF00BD2A04 /* AppDelegate.m in Sources */ = {isa = PBXBuildFile; fileRef = 18627C7A29052BDF00BD2A04 /* AppDelegate.m */; };
18627C7E29052BDF00BD2A04 /* SceneDelegate.m in Sources */ = {isa = PBXBuildFile; fileRef = 18627C7D29052BDF00BD2A04 /* SceneDelegate.m */; };
18627C8129052BDF00BD2A04 /* ViewController.m in Sources */ = {isa = PBXBuildFile; fileRef = 18627C8029052BDF00BD2A04 /* ViewController.m */; };
@ -20,6 +19,8 @@
18627C9429052C4900BD2A04 /* whisper.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 18627C9329052C4900BD2A04 /* whisper.cpp */; settings = {COMPILER_FLAGS = "-DWHISPER_USE_COREML -DWHISPER_COREML_ALLOW_FALLBACK -DGGML_USE_METAL"; }; };
18627C9629052C5800BD2A04 /* ggml.c in Sources */ = {isa = PBXBuildFile; fileRef = 18627C9529052C5800BD2A04 /* ggml.c */; settings = {COMPILER_FLAGS = "-DGGML_USE_ACCELERATE -DGGML_USE_METAL"; }; };
18627C9B29052CFF00BD2A04 /* ggml-base.en.bin in Resources */ = {isa = PBXBuildFile; fileRef = 18627C9A29052CFF00BD2A04 /* ggml-base.en.bin */; };
18A276062C2A98A5001C8D37 /* ggml-metal.metal in Copy Files */ = {isa = PBXBuildFile; fileRef = 1844471D2AB2195F007D6BFE /* ggml-metal.metal */; };
18A2760B2C2A9B43001C8D37 /* ggml-metal.metal in Resources */ = {isa = PBXBuildFile; fileRef = 1844471D2AB2195F007D6BFE /* ggml-metal.metal */; };
18ABE15A2AF556340044A204 /* ggml-backend.c in Sources */ = {isa = PBXBuildFile; fileRef = 18ABE1572AF556340044A204 /* ggml-backend.c */; };
18ABE15B2AF556340044A204 /* ggml-quants.c in Sources */ = {isa = PBXBuildFile; fileRef = 18ABE1592AF556340044A204 /* ggml-quants.c */; };
7FE3424B2A0C3FA20015A058 /* whisper-encoder-impl.m in Sources */ = {isa = PBXBuildFile; fileRef = 7FE342452A0C3FA20015A058 /* whisper-encoder-impl.m */; };
@ -29,23 +30,24 @@
/* End PBXBuildFile section */
/* Begin PBXCopyFilesBuildPhase section */
184447202AB21B25007D6BFE /* CopyFiles */ = {
184447202AB21B25007D6BFE /* Copy Files */ = {
isa = PBXCopyFilesBuildPhase;
buildActionMask = 2147483647;
dstPath = "";
dstSubfolderSpec = 7;
files = (
184447212AB21B43007D6BFE /* ggml-metal.metal in CopyFiles */,
18A276062C2A98A5001C8D37 /* ggml-metal.metal in Copy Files */,
);
name = "Copy Files";
runOnlyForDeploymentPostprocessing = 0;
};
/* End PBXCopyFilesBuildPhase section */
/* Begin PBXFileReference section */
184447182AB211A2007D6BFE /* ggml-alloc.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; name = "ggml-alloc.c"; path = "../../../ggml-alloc.c"; sourceTree = "<group>"; };
184447192AB211A2007D6BFE /* ggml-alloc.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-alloc.h"; path = "../../../ggml-alloc.h"; sourceTree = "<group>"; };
1844471B2AB21655007D6BFE /* ggml-metal.m */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.objc; name = "ggml-metal.m"; path = "../../../ggml-metal.m"; sourceTree = "<group>"; };
1844471D2AB2195F007D6BFE /* ggml-metal.metal */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.metal; name = "ggml-metal.metal"; path = "../../../ggml-metal.metal"; sourceTree = "<group>"; };
184447182AB211A2007D6BFE /* ggml-alloc.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; name = "ggml-alloc.c"; path = "../../../ggml/src/ggml-alloc.c"; sourceTree = "<group>"; };
184447192AB211A2007D6BFE /* ggml-alloc.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-alloc.h"; path = "../../../ggml/include/ggml-alloc.h"; sourceTree = "<group>"; };
1844471B2AB21655007D6BFE /* ggml-metal.m */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.objc; name = "ggml-metal.m"; path = "../../../ggml/src/ggml-metal.m"; sourceTree = "<group>"; };
1844471D2AB2195F007D6BFE /* ggml-metal.metal */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.metal; name = "ggml-metal.metal"; path = "../../../ggml/src/ggml-metal.metal"; sourceTree = "<group>"; };
18627C7629052BDF00BD2A04 /* whisper.objc.app */ = {isa = PBXFileReference; explicitFileType = wrapper.application; includeInIndex = 0; path = whisper.objc.app; sourceTree = BUILT_PRODUCTS_DIR; };
18627C7929052BDF00BD2A04 /* AppDelegate.h */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.h; path = AppDelegate.h; sourceTree = "<group>"; };
18627C7A29052BDF00BD2A04 /* AppDelegate.m */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.objc; path = AppDelegate.m; sourceTree = "<group>"; };
@ -58,17 +60,19 @@
18627C8829052BE000BD2A04 /* Base */ = {isa = PBXFileReference; lastKnownFileType = file.storyboard; name = Base; path = Base.lproj/LaunchScreen.storyboard; sourceTree = "<group>"; };
18627C8A29052BE000BD2A04 /* Info.plist */ = {isa = PBXFileReference; lastKnownFileType = text.plist.xml; path = Info.plist; sourceTree = "<group>"; };
18627C8B29052BE000BD2A04 /* main.m */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.objc; path = main.m; sourceTree = "<group>"; };
18627C9229052C2B00BD2A04 /* whisper.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = whisper.h; path = ../../../whisper.h; sourceTree = "<group>"; };
18627C9329052C4900BD2A04 /* whisper.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = whisper.cpp; path = ../../../whisper.cpp; sourceTree = "<group>"; };
18627C9529052C5800BD2A04 /* ggml.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; name = ggml.c; path = ../../../ggml.c; sourceTree = "<group>"; };
18627C9729052C6600BD2A04 /* ggml.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = ggml.h; path = ../../../ggml.h; sourceTree = "<group>"; };
18627C9229052C2B00BD2A04 /* whisper.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = whisper.h; path = ../../../include/whisper.h; sourceTree = "<group>"; };
18627C9329052C4900BD2A04 /* whisper.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = whisper.cpp; path = ../../../src/whisper.cpp; sourceTree = "<group>"; };
18627C9529052C5800BD2A04 /* ggml.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; name = ggml.c; path = ../../../ggml/src/ggml.c; sourceTree = "<group>"; };
18627C9729052C6600BD2A04 /* ggml.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = ggml.h; path = ../../../ggml/include/ggml.h; sourceTree = "<group>"; };
18627C9A29052CFF00BD2A04 /* ggml-base.en.bin */ = {isa = PBXFileReference; lastKnownFileType = archive.macbinary; name = "ggml-base.en.bin"; path = "../../../models/ggml-base.en.bin"; sourceTree = "<group>"; };
18ABE1542AF556340044A204 /* ggml-quants.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-quants.h"; path = "../../../ggml-quants.h"; sourceTree = "<group>"; };
18ABE1552AF556340044A204 /* ggml-backend.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-backend.h"; path = "../../../ggml-backend.h"; sourceTree = "<group>"; };
18ABE1562AF556340044A204 /* ggml-backend-impl.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-backend-impl.h"; path = "../../../ggml-backend-impl.h"; sourceTree = "<group>"; };
18ABE1572AF556340044A204 /* ggml-backend.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; name = "ggml-backend.c"; path = "../../../ggml-backend.c"; sourceTree = "<group>"; };
18ABE1582AF556340044A204 /* ggml-impl.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-impl.h"; path = "../../../ggml-impl.h"; sourceTree = "<group>"; };
18ABE1592AF556340044A204 /* ggml-quants.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; name = "ggml-quants.c"; path = "../../../ggml-quants.c"; sourceTree = "<group>"; };
18A275FE2C2A94DE001C8D37 /* ggml-metal.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-metal.h"; path = "../../../ggml/include/ggml-metal.h"; sourceTree = "<group>"; };
18A275FF2C2A9563001C8D37 /* ggml-common.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-common.h"; path = "../../../ggml/src/ggml-common.h"; sourceTree = "<group>"; };
18ABE1542AF556340044A204 /* ggml-quants.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-quants.h"; path = "../../../ggml/src/ggml-quants.h"; sourceTree = "<group>"; };
18ABE1552AF556340044A204 /* ggml-backend.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-backend.h"; path = "../../../ggml/include/ggml-backend.h"; sourceTree = "<group>"; };
18ABE1562AF556340044A204 /* ggml-backend-impl.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-backend-impl.h"; path = "../../../ggml/src/ggml-backend-impl.h"; sourceTree = "<group>"; };
18ABE1572AF556340044A204 /* ggml-backend.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; name = "ggml-backend.c"; path = "../../../ggml/src/ggml-backend.c"; sourceTree = "<group>"; };
18ABE1582AF556340044A204 /* ggml-impl.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-impl.h"; path = "../../../ggml/src/ggml-impl.h"; sourceTree = "<group>"; };
18ABE1592AF556340044A204 /* ggml-quants.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; name = "ggml-quants.c"; path = "../../../ggml/src/ggml-quants.c"; sourceTree = "<group>"; };
7FE342452A0C3FA20015A058 /* whisper-encoder-impl.m */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.objc; path = "whisper-encoder-impl.m"; sourceTree = "<group>"; };
7FE342462A0C3FA20015A058 /* whisper-encoder.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = "whisper-encoder.h"; sourceTree = "<group>"; };
7FE342472A0C3FA20015A058 /* whisper-encoder.mm */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.objcpp; path = "whisper-encoder.mm"; sourceTree = "<group>"; };
@ -108,6 +112,8 @@
18627C7829052BDF00BD2A04 /* whisper.objc */ = {
isa = PBXGroup;
children = (
18A275FF2C2A9563001C8D37 /* ggml-common.h */,
18A275FE2C2A94DE001C8D37 /* ggml-metal.h */,
18ABE1562AF556340044A204 /* ggml-backend-impl.h */,
18ABE1572AF556340044A204 /* ggml-backend.c */,
18ABE1552AF556340044A204 /* ggml-backend.h */,
@ -151,7 +157,7 @@
7FE3424A2A0C3FA20015A058 /* whisper-decoder-impl.m */,
);
name = coreml;
path = ../../../coreml;
path = ../../../src/coreml;
sourceTree = "<group>";
};
/* End PBXGroup section */
@ -164,7 +170,7 @@
18627C7229052BDF00BD2A04 /* Sources */,
18627C7329052BDF00BD2A04 /* Frameworks */,
18627C7429052BDF00BD2A04 /* Resources */,
184447202AB21B25007D6BFE /* CopyFiles */,
184447202AB21B25007D6BFE /* Copy Files */,
);
buildRules = (
);
@ -182,7 +188,7 @@
isa = PBXProject;
attributes = {
BuildIndependentTargetsInParallel = 1;
LastUpgradeCheck = 1400;
LastUpgradeCheck = 1540;
TargetAttributes = {
18627C7529052BDF00BD2A04 = {
CreatedOnToolsVersion = 14.0.1;
@ -212,6 +218,7 @@
isa = PBXResourcesBuildPhase;
buildActionMask = 2147483647;
files = (
18A2760B2C2A9B43001C8D37 /* ggml-metal.metal in Resources */,
18627C8929052BE000BD2A04 /* LaunchScreen.storyboard in Resources */,
7FE3424F2A0C418A0015A058 /* ggml-base.en-encoder.mlmodelc in Resources */,
18627C8629052BE000BD2A04 /* Assets.xcassets in Resources */,
@ -301,6 +308,7 @@
DEBUG_INFORMATION_FORMAT = dwarf;
ENABLE_STRICT_OBJC_MSGSEND = YES;
ENABLE_TESTABILITY = YES;
ENABLE_USER_SCRIPT_SANDBOXING = YES;
GCC_C_LANGUAGE_STANDARD = gnu11;
GCC_DYNAMIC_NO_PIC = NO;
GCC_NO_COMMON_BLOCKS = YES;
@ -359,6 +367,7 @@
DEBUG_INFORMATION_FORMAT = "dwarf-with-dsym";
ENABLE_NS_ASSERTIONS = NO;
ENABLE_STRICT_OBJC_MSGSEND = YES;
ENABLE_USER_SCRIPT_SANDBOXING = YES;
GCC_C_LANGUAGE_STANDARD = gnu11;
GCC_NO_COMMON_BLOCKS = YES;
GCC_WARN_64_TO_32_BIT_CONVERSION = YES;
@ -400,6 +409,7 @@
"@executable_path/Frameworks",
);
MARKETING_VERSION = 1.0;
MTL_HEADER_SEARCH_PATHS = "";
PRODUCT_BUNDLE_IDENTIFIER = "com.ggerganov.whisper-objc";
PRODUCT_NAME = "$(TARGET_NAME)";
SWIFT_EMIT_LOC_STRINGS = YES;
@ -428,6 +438,7 @@
"@executable_path/Frameworks",
);
MARKETING_VERSION = 1.0;
MTL_HEADER_SEARCH_PATHS = "";
PRODUCT_BUNDLE_IDENTIFIER = "com.ggerganov.whisper-objc";
PRODUCT_NAME = "$(TARGET_NAME)";
SWIFT_EMIT_LOC_STRINGS = YES;

View File

@ -15,7 +15,7 @@ class WhisperState: NSObject, ObservableObject, AVAudioRecorderDelegate {
private var audioPlayer: AVAudioPlayer?
private var modelUrl: URL? {
Bundle.main.url(forResource: "ggml-tiny.en", withExtension: "bin", subdirectory: "models")
Bundle.main.url(forResource: "ggml-base.en", withExtension: "bin", subdirectory: "models")
}
private var sampleUrl: URL? {

View File

@ -1,180 +0,0 @@
#!/bin/bash
#
# Synchronize ggml changes to whisper.cpp
#
# Usage:
#
# $ cd /path/to/whisper.cpp
# $ ./extra/sync-ggml-am.sh -skip hash0,hash1,hash2...
#
set -e
sd=$(dirname $0)
cd $sd/../
SRC_WHISPER=$(pwd)
SRC_GGML=$(cd ../ggml; pwd)
if [ ! -d $SRC_GGML ]; then
echo "ggml not found at $SRC_GGML"
exit 1
fi
lc=$(cat $SRC_WHISPER/extra/sync-ggml.last)
echo "Syncing ggml changes since commit $lc"
to_skip=""
if [ "$1" == "-skip" ]; then
to_skip=$2
fi
cd $SRC_GGML
git log --oneline $lc..HEAD
git log --oneline $lc..HEAD --reverse | grep -v "(whisper/[0-9]*)" | cut -d' ' -f1 > $SRC_WHISPER/ggml-commits
if [ ! -s $SRC_WHISPER/ggml-commits ]; then
rm -v $SRC_WHISPER/ggml-commits
echo "No new commits"
exit 0
fi
if [ -f $SRC_WHISPER/ggml-src.patch ]; then
rm -v $SRC_WHISPER/ggml-src.patch
fi
while read c; do
if [ -n "$to_skip" ]; then
if [[ $to_skip == *"$c"* ]]; then
echo "Skipping $c"
continue
fi
fi
git format-patch -k $c~1..$c --stdout -- \
include/ggml/ggml*.h \
src/ggml*.h \
src/ggml*.c \
src/ggml*.cpp \
src/ggml*.m \
src/ggml*.metal \
src/ggml*.cu \
examples/common.h \
examples/common.cpp \
examples/common-ggml.h \
examples/common-ggml.cpp \
examples/whisper/whisper.h \
examples/whisper/whisper.cpp \
examples/whisper/main.cpp \
examples/whisper/quantize.cpp \
>> $SRC_WHISPER/ggml-src.patch
done < $SRC_WHISPER/ggml-commits
rm -v $SRC_WHISPER/ggml-commits
# delete files if empty
if [ ! -s $SRC_WHISPER/ggml-src.patch ]; then
rm -v $SRC_WHISPER/ggml-src.patch
fi
cd $SRC_WHISPER
if [ -f $SRC_WHISPER/ggml-src.patch ]; then
# replace PR numbers
#
# Subject: some text (#1234)
# Subject: some text (ggml/1234)
cat ggml-src.patch | sed -e 's/^Subject: \(.*\) (#\([0-9]*\))/Subject: \1 (ggml\/\2)/' > ggml-src.patch.tmp
mv ggml-src.patch.tmp ggml-src.patch
cat ggml-src.patch | sed -e 's/^\(.*\) (#\([0-9]*\))$/\1 (ggml\/\2)/' > ggml-src.patch.tmp
mv ggml-src.patch.tmp ggml-src.patch
# replace filenames:
#
# src/ggml.c -> ggml.c
# src/ggml-alloc.c -> ggml-alloc.c
# src/ggml-backend-impl.h -> ggml-backend-impl.h
# src/ggml-backend.c -> ggml-backend.c
# src/ggml-common.h -> ggml-common.h
# src/ggml-cuda.cu -> ggml-cuda.cu
# src/ggml-cuda.h -> ggml-cuda.h
# src/ggml-impl.h -> ggml-impl.h
# src/ggml-kompute.cpp -> ggml-kompute.cpp
# src/ggml-kompute.h -> ggml-kompute.h
# src/ggml-metal.h -> ggml-metal.h
# src/ggml-metal.m -> ggml-metal.m
# src/ggml-mpi.h -> ggml-mpi.h
# src/ggml-mpi.c -> ggml-mpi.c
# src/ggml-opencl.cpp -> ggml-opencl.cpp
# src/ggml-opencl.h -> ggml-opencl.h
# src/ggml-quants.c -> ggml-quants.c
# src/ggml-quants.h -> ggml-quants.h
# src/ggml-sycl.cpp -> ggml-sycl.cpp
# src/ggml-sycl.h -> ggml-sycl.h
# src/ggml-vulkan.cpp -> ggml-vulkan.cpp
# src/ggml-vulkan.h -> ggml-vulkan.h
# include/ggml/ggml.h -> ggml.h
# include/ggml/ggml-alloc.h -> ggml-alloc.h
# include/ggml/ggml-backend.h -> ggml-backend.h
#
# examples/common.h -> examples/common.h
# examples/common.cpp -> examples/common.cpp
# examples/common-ggml.h -> examples/common-ggml.h
# examples/common-ggml.cpp -> examples/common-ggml.cpp
#
# examples/whisper/whisper.h -> whisper.h
# examples/whisper/whisper.cpp -> whisper.cpp
# examples/whisper/main.cpp -> examples/main/main.cpp
# examples/whisper/quantize.cpp -> examples/quantize/quantize.cpp
cat ggml-src.patch | sed \
-e 's/src\/ggml\.c/ggml.c/g' \
-e 's/src\/ggml-alloc\.c/ggml-alloc.c/g' \
-e 's/src\/ggml-backend-impl\.h/ggml-backend-impl.h/g' \
-e 's/src\/ggml-backend\.c/ggml-backend.c/g' \
-e 's/src\/ggml-common\.h/ggml-common.h/g' \
-e 's/src\/ggml-cuda\.cu/ggml-cuda.cu/g' \
-e 's/src\/ggml-cuda\.h/ggml-cuda.h/g' \
-e 's/src\/ggml-impl\.h/ggml-impl.h/g' \
-e 's/src\/ggml-kompute\.cpp/ggml-kompute.cpp/g' \
-e 's/src\/ggml-kompute\.h/ggml-kompute.h/g' \
-e 's/src\/ggml-metal\.h/ggml-metal.h/g' \
-e 's/src\/ggml-metal\.m/ggml-metal.m/g' \
-e 's/src\/ggml-mpi\.h/ggml-mpi.h/g' \
-e 's/src\/ggml-mpi\.c/ggml-mpi.c/g' \
-e 's/src\/ggml-opencl\.cpp/ggml-opencl.cpp/g' \
-e 's/src\/ggml-opencl\.h/ggml-opencl.h/g' \
-e 's/src\/ggml-quants\.c/ggml-quants.c/g' \
-e 's/src\/ggml-quants\.h/ggml-quants.h/g' \
-e 's/src\/ggml-sycl\.cpp/ggml-sycl.cpp/g' \
-e 's/src\/ggml-sycl\.h/ggml-sycl.h/g' \
-e 's/src\/ggml-vulkan\.cpp/ggml-vulkan.cpp/g' \
-e 's/src\/ggml-vulkan\.h/ggml-vulkan.h/g' \
-e 's/include\/ggml\/ggml\.h/ggml.h/g' \
-e 's/include\/ggml\/ggml-alloc\.h/ggml-alloc.h/g' \
-e 's/include\/ggml\/ggml-backend\.h/ggml-backend.h/g' \
-e 's/examples\/common\.h/examples\/common.h/g' \
-e 's/examples\/common\.cpp/examples\/common.cpp/g' \
-e 's/examples\/common-ggml\.h/examples\/common-ggml.h/g' \
-e 's/examples\/common-ggml\.cpp/examples\/common-ggml.cpp/g' \
-e 's/examples\/whisper\/whisper\.h/whisper.h/g' \
-e 's/examples\/whisper\/whisper\.cpp/whisper.cpp/g' \
-e 's/examples\/whisper\/main\.cpp/examples\/main\/main.cpp/g' \
-e 's/examples\/whisper\/quantize\.cpp/examples\/quantize\/quantize.cpp/g' \
> ggml-src.patch.tmp
mv ggml-src.patch.tmp ggml-src.patch
git am ggml-src.patch
rm -v $SRC_WHISPER/ggml-src.patch
fi
# update last commit
cd $SRC_GGML
git log -1 --format=%H > $SRC_WHISPER/extra/sync-ggml.last
echo "Done"
exit 0

View File

@ -1 +0,0 @@
7652115c79fa0ffedb58a28c09cd2871403d5a20

View File

@ -1,40 +0,0 @@
#!/bin/bash
cp -rpv ../ggml/src/ggml.c ./ggml.c
cp -rpv ../ggml/src/ggml-impl.h ./ggml-impl.h
cp -rpv ../ggml/src/ggml-alloc.c ./ggml-alloc.c
cp -rpv ../ggml/src/ggml-backend-impl.h ./ggml-backend-impl.h
cp -rpv ../ggml/src/ggml-backend.c ./ggml-backend.c
cp -rpv ../ggml/src/ggml-common.h ./ggml-common.h
cp -rpv ../ggml/src/ggml-cuda.cu ./ggml-cuda.cu
cp -rpv ../ggml/src/ggml-cuda.h ./ggml-cuda.h
cp -rpv ../ggml/src/ggml-kompute.cpp ./ggml-kompute.cpp
cp -rpv ../ggml/src/ggml-kompute.h ./ggml-kompute.h
cp -rpv ../ggml/src/ggml-metal.h ./ggml-metal.h
cp -rpv ../ggml/src/ggml-metal.m ./ggml-metal.m
cp -rpv ../ggml/src/ggml-metal.metal ./ggml-metal.metal
#cp -rpv ../ggml/src/ggml-mpi.h ./ggml-mpi.h
#cp -rpv ../ggml/src/ggml-mpi.c ./ggml-mpi.c
cp -rpv ../ggml/src/ggml-opencl.cpp ./ggml-opencl.cpp
cp -rpv ../ggml/src/ggml-opencl.h ./ggml-opencl.h
cp -rpv ../ggml/src/ggml-quants.c ./ggml-quants.c
cp -rpv ../ggml/src/ggml-quants.h ./ggml-quants.h
cp -rpv ../ggml/src/ggml-sycl.cpp ./ggml-sycl.cpp
cp -rpv ../ggml/src/ggml-sycl.h ./ggml-sycl.h
cp -rpv ../ggml/src/ggml-vulkan.cpp ./ggml-vulkan.cpp
cp -rpv ../ggml/src/ggml-vulkan.h ./ggml-vulkan.h
cp -rpv ../ggml/include/ggml/ggml.h ./ggml.h
cp -rpv ../ggml/include/ggml/ggml-alloc.h ./ggml-alloc.h
cp -rpv ../ggml/include/ggml/ggml-backend.h ./ggml-backend.h
cp -rpv ../ggml/examples/common.h ./examples/common.h
cp -rpv ../ggml/examples/common.cpp ./examples/common.cpp
cp -rpv ../ggml/examples/common-ggml.h ./examples/common-ggml.h
cp -rpv ../ggml/examples/common-ggml.cpp ./examples/common-ggml.cpp
cp -rpv ../ggml/examples/whisper/whisper.h ./whisper.h
cp -rpv ../ggml/examples/whisper/whisper.cpp ./whisper.cpp
cp -rpv ../ggml/examples/whisper/main.cpp ./examples/main/main.cpp
cp -rpv ../ggml/examples/whisper/quantize.cpp ./examples/quantize/quantize.cpp

View File

@ -1,6 +0,0 @@
#!/bin/bash
cp -rpv ../llama.cpp/llama.h ./examples/talk-llama/llama.h
cp -rpv ../llama.cpp/llama.cpp ./examples/talk-llama/llama.cpp
cp -rpv ../llama.cpp/unicode.h ./examples/talk-llama/unicode.h
cp -rpv ../llama.cpp/unicode.cpp ./examples/talk-llama/unicode.cpp

11646
ggml-cuda.cu

File diff suppressed because it is too large Load Diff

View File

@ -1,265 +0,0 @@
#pragma once
#include "ggml.h"
// GGML internal header
#include <assert.h>
#include <stdlib.h> // load `stdlib.h` before other headers to work around MinGW bug: https://sourceforge.net/p/mingw-w64/bugs/192/
#include <stddef.h>
#include <stdbool.h>
#include <string.h> // memcpy
#include <math.h> // fabsf
#ifdef __cplusplus
extern "C" {
#endif
// static_assert should be a #define, but if it's not,
// fall back to the _Static_assert C11 keyword.
// if C99 - static_assert is noop
// ref: https://stackoverflow.com/a/53923785/4039976
#ifndef __cplusplus
#ifndef static_assert
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
#define static_assert(cond, msg) _Static_assert(cond, msg)
#else
#define static_assert(cond, msg) struct global_scope_noop_trick
#endif
#endif
#endif
// __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
#if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
#ifndef __FMA__
#define __FMA__
#endif
#ifndef __F16C__
#define __F16C__
#endif
#ifndef __SSE3__
#define __SSE3__
#endif
#endif
// 16-bit float
// on Arm, we use __fp16
// on x86, we use uint16_t
#if defined(__ARM_NEON) && !defined(_MSC_VER)
// if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
//
// $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
//
#include <arm_neon.h>
typedef __fp16 ggml_fp16_internal_t;
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
#define GGML_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
ggml_fp16_internal_t tmp;
memcpy(&tmp, &h, sizeof(ggml_fp16_t));
return (float)tmp;
}
static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
ggml_fp16_t res;
ggml_fp16_internal_t tmp = f;
memcpy(&res, &tmp, sizeof(ggml_fp16_t));
return res;
}
#else
typedef uint16_t ggml_fp16_internal_t;
#ifdef __wasm_simd128__
#include <wasm_simd128.h>
#else
#ifdef __POWER9_VECTOR__
#include <altivec.h>
#undef bool
#define bool _Bool
#else
#if defined(_MSC_VER) || defined(__MINGW32__)
#include <intrin.h>
#else
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__)
#if !defined(__riscv)
#include <immintrin.h>
#endif
#endif
#endif
#endif
#endif
#ifdef __riscv_v_intrinsic
#include <riscv_vector.h>
#endif
#ifdef __F16C__
#ifdef _MSC_VER
#define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
#define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
#else
#define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
#define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
#endif
#elif defined(__POWER9_VECTOR__)
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
/* the inline asm below is about 12% faster than the lookup method */
#define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
register float f;
register double d;
__asm__(
"mtfprd %0,%2\n"
"xscvhpdp %0,%0\n"
"frsp %1,%0\n" :
/* temp */ "=d"(d),
/* out */ "=f"(f):
/* in */ "r"(h));
return f;
}
static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
register double d;
register ggml_fp16_t r;
__asm__( /* xscvdphp can work on double or single precision */
"xscvdphp %0,%2\n"
"mffprd %1,%0\n" :
/* temp */ "=d"(d),
/* out */ "=r"(r):
/* in */ "f"(f));
return r;
}
#else
// FP16 <-> FP32
// ref: https://github.com/Maratyszcza/FP16
static inline float fp32_from_bits(uint32_t w) {
union {
uint32_t as_bits;
float as_value;
} fp32;
fp32.as_bits = w;
return fp32.as_value;
}
static inline uint32_t fp32_to_bits(float f) {
union {
float as_value;
uint32_t as_bits;
} fp32;
fp32.as_value = f;
return fp32.as_bits;
}
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
const uint32_t w = (uint32_t) h << 16;
const uint32_t sign = w & UINT32_C(0x80000000);
const uint32_t two_w = w + w;
const uint32_t exp_offset = UINT32_C(0xE0) << 23;
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
const float exp_scale = 0x1.0p-112f;
#else
const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
#endif
const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
const uint32_t magic_mask = UINT32_C(126) << 23;
const float magic_bias = 0.5f;
const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
const uint32_t result = sign |
(two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
return fp32_from_bits(result);
}
static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
const float scale_to_inf = 0x1.0p+112f;
const float scale_to_zero = 0x1.0p-110f;
#else
const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
#endif
float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
const uint32_t w = fp32_to_bits(f);
const uint32_t shl1_w = w + w;
const uint32_t sign = w & UINT32_C(0x80000000);
uint32_t bias = shl1_w & UINT32_C(0xFF000000);
if (bias < UINT32_C(0x71000000)) {
bias = UINT32_C(0x71000000);
}
base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
const uint32_t bits = fp32_to_bits(base);
const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
const uint32_t nonsign = exp_bits + mantissa_bits;
return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
}
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
#endif // __F16C__
#endif // __ARM_NEON
// precomputed f32 table for f16 (256 KB)
// defined in ggml.c, initialized in ggml_init()
extern float ggml_table_f32_f16[1 << 16];
// On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
// so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
// This is also true for POWER9.
#if !defined(GGML_FP16_TO_FP32)
inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
uint16_t s;
memcpy(&s, &f, sizeof(uint16_t));
return ggml_table_f32_f16[s];
}
#define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
#endif
#if !defined(GGML_FP32_TO_FP16)
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
#endif
#define GGML_HASHTABLE_FULL ((size_t)-1)
#define GGML_HASHTABLE_ALREADY_EXISTS ((size_t)-2)
struct ggml_hash_set ggml_hash_set_new(size_t size);
bool ggml_hash_contains (const struct ggml_hash_set hash_set, struct ggml_tensor * key);
// returns GGML_HASHTABLE_FULL if table is full, otherwise the current index of the key or where it should be inserted
size_t ggml_hash_find (const struct ggml_hash_set hash_set, struct ggml_tensor * key);
// returns GGML_HASHTABLE_ALREADY_EXISTS if key already exists, index otherwise, asserts if table is full
size_t ggml_hash_insert ( struct ggml_hash_set hash_set, struct ggml_tensor * key);
// return index, asserts if table is full
size_t ggml_hash_find_or_insert( struct ggml_hash_set hash_set, struct ggml_tensor * key);
#ifdef __cplusplus
}
#endif

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

1
ggml/.gitignore vendored Normal file
View File

@ -0,0 +1 @@
src/ggml-metal-embed.metal

238
ggml/CMakeLists.txt Normal file
View File

@ -0,0 +1,238 @@
cmake_minimum_required(VERSION 3.14) # for add_link_options and implicit target directories.
project("ggml" C CXX)
include(CheckIncludeFileCXX)
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
if (NOT XCODE AND NOT MSVC AND NOT CMAKE_BUILD_TYPE)
set(CMAKE_BUILD_TYPE Release CACHE STRING "Build type" FORCE)
set_property(CACHE CMAKE_BUILD_TYPE PROPERTY STRINGS "Debug" "Release" "MinSizeRel" "RelWithDebInfo")
endif()
if (CMAKE_SOURCE_DIR STREQUAL CMAKE_CURRENT_SOURCE_DIR)
set(GGML_STANDALONE ON)
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin)
# configure project version
# TODO
else()
set(GGML_STANDALONE OFF)
endif()
if (EMSCRIPTEN)
set(BUILD_SHARED_LIBS_DEFAULT OFF)
option(GGML_WASM_SINGLE_FILE "ggml: embed WASM inside the generated ggml.js" ON)
else()
if (MINGW)
set(BUILD_SHARED_LIBS_DEFAULT OFF)
else()
set(BUILD_SHARED_LIBS_DEFAULT ON)
endif()
endif()
option(BUILD_SHARED_LIBS "ggml: build shared libraries" ${BUILD_SHARED_LIBS_DEFAULT})
#
# option list
#
# TODO: mark all options as advanced when not GGML_STANDALONE
if (APPLE)
set(GGML_METAL_DEFAULT ON)
set(GGML_BLAS_DEFAULT ON)
set(GGML_BLAS_VENDOR_DEFAULT "Apple")
else()
set(GGML_METAL_DEFAULT OFF)
set(GGML_BLAS_DEFAULT OFF)
set(GGML_BLAS_VENDOR_DEFAULT "Generic")
endif()
# general
option(GGML_STATIC "ggml: static link libraries" OFF)
option(GGML_NATIVE "ggml: enable -march=native flag" ON)
option(GGML_LTO "ggml: enable link time optimization" OFF)
option(GGML_CCACHE "ggml: use ccache if available" ON)
# debug
option(GGML_ALL_WARNINGS "ggml: enable all compiler warnings" ON)
option(GGML_ALL_WARNINGS_3RD_PARTY "ggml: enable all compiler warnings in 3rd party libs" OFF)
option(GGML_GPROF "ggml: enable gprof" OFF)
# build
option(GGML_FATAL_WARNINGS "ggml: enable -Werror flag" OFF)
# sanitizers
option(GGML_SANITIZE_THREAD "ggml: enable thread sanitizer" OFF)
option(GGML_SANITIZE_ADDRESS "ggml: enable address sanitizer" OFF)
option(GGML_SANITIZE_UNDEFINED "ggml: enable undefined sanitizer" OFF)
# instruction set specific
if (GGML_NATIVE)
set(INS_ENB OFF)
else()
set(INS_ENB ON)
endif()
option(GGML_CPU_HBM "ggml: use memkind for CPU HBM" OFF)
option(GGML_AVX "ggml: enable AVX" ${INS_ENB})
option(GGML_AVX2 "ggml: enable AVX2" ${INS_ENB})
option(GGML_AVX512 "ggml: enable AVX512" OFF)
option(GGML_AVX512_VBMI "ggml: enable AVX512-VBMI" OFF)
option(GGML_AVX512_VNNI "ggml: enable AVX512-VNNI" OFF)
option(GGML_AVX512_BF16 "ggml: enable AVX512-BF16" OFF)
option(GGML_FMA "ggml: enable FMA" ${INS_ENB})
if (NOT MSVC)
option(GGML_F16C "ggml: enable F16C" ${INS_ENB}) # in MSVC F16C is implied with AVX2/AVX512
endif()
option(GGML_LASX "ggml: enable lasx" ON)
option(GGML_LSX "ggml: enable lsx" ON)
option(GGML_SVE "ggml: enable SVE" OFF)
if (WIN32)
set(GGML_WIN_VER "0x602" CACHE STRING "ggml: Windows Version")
endif()
# ggml core
set(GGML_SCHED_MAX_COPIES "4" CACHE STRING "ggml: max input copies for pipeline parallelism")
# 3rd party libs / backends
option(GGML_ACCELERATE "ggml: enable Accelerate framework" ON)
option(GGML_BLAS "ggml: use BLAS" ${GGML_BLAS_DEFAULT})
set(GGML_BLAS_VENDOR ${GGML_BLAS_VENDOR_DEFAULT} CACHE STRING
"ggml: BLAS library vendor")
option(GGML_LLAMAFILE "ggml: use ggml SGEMM" OFF)
option(GGML_CUDA "ggml: use CUDA" OFF)
option(GGML_CUDA_FORCE_DMMV "ggml: use dmmv instead of mmvq CUDA kernels" OFF)
option(GGML_CUDA_FORCE_MMQ "ggml: use mmq kernels instead of cuBLAS" OFF)
set (GGML_CUDA_DMMV_X "32" CACHE STRING "ggml: x stride for dmmv CUDA kernels")
set (GGML_CUDA_MMV_Y "1" CACHE STRING "ggml: y block size for mmv CUDA kernels")
option(GGML_CUDA_F16 "ggml: use 16 bit floats for some calculations" OFF)
set (GGML_CUDA_KQUANTS_ITER "2" CACHE STRING
"ggml: iters./thread per block for Q2_K/Q6_K")
set (GGML_CUDA_PEER_MAX_BATCH_SIZE "128" CACHE STRING
"ggml: max. batch size for using peer access")
option(GGML_CUDA_NO_PEER_COPY "ggml: do not use peer to peer copies" OFF)
option(GGML_CUDA_NO_VMM "ggml: do not try to use CUDA VMM" OFF)
option(GGML_CUDA_FA_ALL_QUANTS "ggml: compile all quants for FlashAttention" OFF)
option(GGML_CURL "ggml: use libcurl to download model from an URL" OFF)
option(GGML_HIPBLAS "ggml: use hipBLAS" OFF)
option(GGML_HIP_UMA "ggml: use HIP unified memory architecture" OFF)
option(GGML_VULKAN "ggml: use Vulkan" OFF)
option(GGML_VULKAN_CHECK_RESULTS "ggml: run Vulkan op checks" OFF)
option(GGML_VULKAN_DEBUG "ggml: enable Vulkan debug output" OFF)
option(GGML_VULKAN_MEMORY_DEBUG "ggml: enable Vulkan memory debug output" OFF)
option(GGML_VULKAN_VALIDATE "ggml: enable Vulkan validation" OFF)
option(GGML_VULKAN_RUN_TESTS "ggml: run Vulkan tests" OFF)
option(GGML_KOMPUTE "ggml: use Kompute" OFF)
option(GGML_METAL "ggml: use Metal" ${GGML_METAL_DEFAULT})
option(GGML_METAL_NDEBUG "ggml: disable Metal debugging" OFF)
option(GGML_METAL_SHADER_DEBUG "ggml: compile Metal with -fno-fast-math" OFF)
option(GGML_METAL_EMBED_LIBRARY "ggml: embed Metal library" ${GGML_METAL})
set (GGML_METAL_MACOSX_VERSION_MIN "" CACHE STRING
"ggml: metal minimum macOS version")
set (GGML_METAL_STD "" CACHE STRING "ggml: metal standard version (-std flag)")
option(GGML_OPENMP "ggml: use OpenMP" ON)
option(GGML_RPC "ggml: use RPC" OFF)
option(GGML_SYCL "ggml: use SYCL" OFF)
option(GGML_SYCL_F16 "ggml: use 16 bit floats for sycl calculations" OFF)
set (GGML_SYCL_TARGET "INTEL" CACHE STRING
"ggml: sycl target device")
# extra artifacts
option(GGML_BUILD_TESTS "ggml: build tests" ${GGML_STANDALONE})
option(GGML_BUILD_EXAMPLES "ggml: build examples" ${GGML_STANDALONE})
#
# dependencies
#
set(CMAKE_C_STANDARD 11)
set(CMAKE_C_STANDARD_REQUIRED true)
if (GGML_SYCL)
set(CMAKE_CXX_STANDARD 17)
else()
set(CMAKE_CXX_STANDARD 11)
endif()
set(CMAKE_CXX_STANDARD_REQUIRED true)
set(THREADS_PREFER_PTHREAD_FLAG ON)
find_package(Threads REQUIRED)
#
# build the library
#
add_subdirectory(src)
#
# tests and examples
#
if (GGML_BUILD_TESTS)
enable_testing()
add_subdirectory(tests)
endif ()
if (GGML_BUILD_EXAMPLES)
add_subdirectory(examples)
endif ()
#
# install
#
include(GNUInstallDirs)
include(CMakePackageConfigHelpers)
set(GGML_PUBLIC_HEADERS
include/ggml.h
include/ggml-alloc.h
include/ggml-backend.h
"${GGML_HEADERS_CUDA}"
"${GGML_HEADERS_METAL}"
"${GGML_HEADERS_EXTRA}")
set_target_properties(ggml PROPERTIES PUBLIC_HEADER "${GGML_PUBLIC_HEADERS}")
#if (GGML_METAL)
# set_target_properties(ggml PROPERTIES RESOURCE "${CMAKE_CURRENT_SOURCE_DIR}/src/ggml-metal.metal")
#endif()
install(TARGETS ggml PUBLIC_HEADER)
if (BUILD_SHARED_LIBS)
install(TARGETS ggml LIBRARY)
endif()
if (GGML_METAL)
install(
FILES src/ggml-metal.metal
PERMISSIONS
OWNER_READ
OWNER_WRITE
GROUP_READ
WORLD_READ
DESTINATION ${CMAKE_INSTALL_BINDIR})
if (NOT GGML_METAL_EMBED_LIBRARY)
install(
FILES ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/default.metallib
DESTINATION ${CMAKE_INSTALL_BINDIR}
)
endif()
endif()
if (GGML_STANDALONE)
configure_file(${CMAKE_CURRENT_SOURCE_DIR}/ggml.pc.in
${CMAKE_CURRENT_BINARY_DIR}/ggml.pc
@ONLY)
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/ggml.pc
DESTINATION share/pkgconfig)
endif()

100
ggml/cmake/FindSIMD.cmake Normal file
View File

@ -0,0 +1,100 @@
include(CheckCSourceRuns)
set(AVX_CODE "
#include <immintrin.h>
int main()
{
__m256 a;
a = _mm256_set1_ps(0);
return 0;
}
")
set(AVX512_CODE "
#include <immintrin.h>
int main()
{
__m512i a = _mm512_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0);
__m512i b = a;
__mmask64 equality_mask = _mm512_cmp_epi8_mask(a, b, _MM_CMPINT_EQ);
return 0;
}
")
set(AVX2_CODE "
#include <immintrin.h>
int main()
{
__m256i a = {0};
a = _mm256_abs_epi16(a);
__m256i x;
_mm256_extract_epi64(x, 0); // we rely on this in our AVX2 code
return 0;
}
")
set(FMA_CODE "
#include <immintrin.h>
int main()
{
__m256 acc = _mm256_setzero_ps();
const __m256 d = _mm256_setzero_ps();
const __m256 p = _mm256_setzero_ps();
acc = _mm256_fmadd_ps( d, p, acc );
return 0;
}
")
macro(check_sse type flags)
set(__FLAG_I 1)
set(CMAKE_REQUIRED_FLAGS_SAVE ${CMAKE_REQUIRED_FLAGS})
foreach (__FLAG ${flags})
if (NOT ${type}_FOUND)
set(CMAKE_REQUIRED_FLAGS ${__FLAG})
check_c_source_runs("${${type}_CODE}" HAS_${type}_${__FLAG_I})
if (HAS_${type}_${__FLAG_I})
set(${type}_FOUND TRUE CACHE BOOL "${type} support")
set(${type}_FLAGS "${__FLAG}" CACHE STRING "${type} flags")
endif()
math(EXPR __FLAG_I "${__FLAG_I}+1")
endif()
endforeach()
set(CMAKE_REQUIRED_FLAGS ${CMAKE_REQUIRED_FLAGS_SAVE})
if (NOT ${type}_FOUND)
set(${type}_FOUND FALSE CACHE BOOL "${type} support")
set(${type}_FLAGS "" CACHE STRING "${type} flags")
endif()
mark_as_advanced(${type}_FOUND ${type}_FLAGS)
endmacro()
# flags are for MSVC only!
check_sse("AVX" " ;/arch:AVX")
if (NOT ${AVX_FOUND})
set(GGML_AVX OFF)
else()
set(GGML_AVX ON)
endif()
check_sse("AVX2" " ;/arch:AVX2")
check_sse("FMA" " ;/arch:AVX2")
if ((NOT ${AVX2_FOUND}) OR (NOT ${FMA_FOUND}))
set(GGML_AVX2 OFF)
else()
set(GGML_AVX2 ON)
endif()
check_sse("AVX512" " ;/arch:AVX512")
if (NOT ${AVX512_FOUND})
set(GGML_AVX512 OFF)
else()
set(GGML_AVX512 ON)
endif()

View File

@ -0,0 +1,220 @@
#!/usr/bin/env python
import logging
import argparse
import asyncio
import os
from tempfile import gettempdir
logger = logging.getLogger("ggml-vk-generate-shaders")
GLSLC = "glslc"
type_names = [
"f32",
"f16",
"q4_0",
"q4_1",
"q5_0",
"q5_1",
"q8_0",
"q2_k",
"q3_k",
"q4_k",
"q5_k",
"q6_k",
]
ASYNCIO_CONCURRENCY = 64
input_dir = "vulkan-shaders"
output_dir = gettempdir()
lock = asyncio.Lock()
shader_fnames = []
async def string_to_spv(name, in_fname, defines, fp16=True):
name = f"{name}{'_fp32' if not fp16 else ''}"
out_fname = os.path.join(output_dir, f"{name}.spv")
in_path = os.path.join(input_dir, in_fname)
cmd = [GLSLC, "-fshader-stage=compute", "--target-env=vulkan1.2", "-O", in_path, "-o", out_fname]
cmd.extend([f"-D{key}={value}" for key, value in defines.items()])
proc = await asyncio.create_subprocess_exec(*cmd, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE)
stdout, stderr = await proc.communicate()
stdout = stdout.decode()
error = stderr.decode()
if proc.returncode:
cmd = " ".join(cmd)
logger.error(f"cannot compile {name}\n\n{cmd}\n\n{error}")
return
async with lock:
shader_fnames.append((name, out_fname))
def matmul_shaders(tasks, fp16, matmul_id):
if fp16:
load_vec = "8"
aligned_b_type_f32 = "mat2x4"
aligned_b_type_f16 = "f16mat2x4"
else:
load_vec = "4"
aligned_b_type_f32 = "vec4"
aligned_b_type_f16 = "f16vec4"
base_dict = {"FLOAT_TYPE": "float" if not fp16 else "float16_t"}
shader_name = "matmul"
if matmul_id:
base_dict["MUL_MAT_ID"] = "1"
shader_name = "matmul_id"
if fp16:
base_dict["FLOAT16"] = "1"
# Shaders with f16 B_TYPE
tasks.append(string_to_spv(f"{shader_name}_f32_f16", "mul_mm.comp", base_dict | {"DATA_A_F32": "1", "B_TYPE": "float16_t", "D_TYPE": "float"}, fp16))
tasks.append(string_to_spv(f"{shader_name}_f32_f16_aligned", "mul_mm.comp", base_dict | {"DATA_A_F32": "1", "LOAD_VEC_A": load_vec, "LOAD_VEC_B": load_vec, "B_TYPE": aligned_b_type_f16, "D_TYPE": "float"}, fp16))
tasks.append(string_to_spv(f"{shader_name}_f16", "mul_mm.comp", base_dict | {"DATA_A_F16": "1", "B_TYPE": "float16_t", "D_TYPE": "float"}, fp16))
tasks.append(string_to_spv(f"{shader_name}_f16_aligned", "mul_mm.comp", base_dict | {"DATA_A_F16": "1", "LOAD_VEC_A": load_vec, "LOAD_VEC_B": load_vec, "B_TYPE": aligned_b_type_f16, "D_TYPE": "float"}, fp16))
for tname in type_names:
data_a_key = f"DATA_A_{tname.upper()}"
load_vec_a = load_vec if tname in ("f32", "f16") else "2"
tasks.append(string_to_spv(f"{shader_name}_{tname}_f32", "mul_mm.comp", base_dict | {data_a_key: "1", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
tasks.append(string_to_spv(f"{shader_name}_{tname}_f32_aligned", "mul_mm.comp", base_dict | {data_a_key: "2", "LOAD_VEC_A": load_vec_a, "LOAD_VEC_B": load_vec, "B_TYPE": aligned_b_type_f32, "D_TYPE": "float"}, fp16))
async def main():
logger.info("ggml_vulkan: Generating and compiling shaders to SPIR-V")
tasks = []
for fp16 in (False, True):
# MUL_MAT
matmul_shaders(tasks, fp16, False)
# MUL_MAT_ID
matmul_shaders(tasks, fp16, True)
for tname in type_names:
base_dict = {"FLOAT_TYPE": "float"}
# mul mat vec
data_a_key = f"DATA_A_{tname.upper()}"
shader = f"mul_mat_vec_{tname}.comp" if tname.endswith("_k") else "mul_mat_vec.comp"
tasks.append(string_to_spv(f"mul_mat_vec_{tname}_f32_f32", shader, base_dict | {data_a_key: "1", "B_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv(f"mul_mat_vec_{tname}_f16_f32", shader, base_dict | {data_a_key: "1", "B_TYPE": "float16_t", "D_TYPE": "float"}))
tasks.append(string_to_spv(f"mul_mat_vec_id_{tname}_f32", shader, base_dict | {"MUL_MAT_ID": "1", data_a_key: "1", "B_TYPE": "float", "D_TYPE": "float"}))
# Dequant shaders
if tname != "f16":
tasks.append(string_to_spv(f"dequant_{tname}", f"dequant_{tname}.comp", base_dict | {data_a_key: "1", "D_TYPE": "float16_t"}))
# get_rows
if not tname.endswith("_k"):
shader = "get_rows.comp" if tname in ("f32", "f16") else "get_rows_quant.comp"
if tname == "f16":
tasks.append(string_to_spv(f"get_rows_{tname}", shader, {data_a_key: "1", "B_TYPE": "int", "D_TYPE": "float16_t", "OPTIMIZATION_ERROR_WORKAROUND": "1"}))
else:
tasks.append(string_to_spv(f"get_rows_{tname}", shader, {data_a_key: "1", "B_TYPE": "int", "D_TYPE": "float16_t"}))
tasks.append(string_to_spv(f"get_rows_{tname}_f32", shader, {data_a_key: "1", "B_TYPE": "int", "D_TYPE": "float"}))
tasks.append(string_to_spv("mul_mat_vec_p021_f16_f32", "mul_mat_vec_p021.comp", {"A_TYPE": "float16_t", "B_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("mul_mat_vec_nc_f16_f32", "mul_mat_vec_nc.comp", {"A_TYPE": "float16_t", "B_TYPE": "float", "D_TYPE": "float"}))
# Norms
tasks.append(string_to_spv("norm_f32", "norm.comp", base_dict | {"A_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("rms_norm_f32", "rms_norm.comp", base_dict | {"A_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("cpy_f32_f32", "copy.comp", {"A_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("cpy_f32_f16", "copy.comp", {"A_TYPE": "float", "D_TYPE": "float16_t"}))
tasks.append(string_to_spv("cpy_f16_f16", "copy.comp", {"A_TYPE": "float16_t", "D_TYPE": "float16_t", "OPTIMIZATION_ERROR_WORKAROUND": "1"}))
tasks.append(string_to_spv("add_f32", "add.comp", {"A_TYPE": "float", "B_TYPE": "float", "D_TYPE": "float", "FLOAT_TYPE": "float"}))
tasks.append(string_to_spv("split_k_reduce", "mul_mat_split_k_reduce.comp", {}))
tasks.append(string_to_spv("mul_f32", "mul.comp", {"A_TYPE": "float", "B_TYPE": "float", "D_TYPE": "float", "FLOAT_TYPE": "float"}))
tasks.append(string_to_spv("div_f32", "div.comp", {"A_TYPE": "float", "B_TYPE": "float", "D_TYPE": "float", "FLOAT_TYPE": "float"}))
tasks.append(string_to_spv("scale_f32", "scale.comp", {"A_TYPE": "float", "D_TYPE": "float", "FLOAT_TYPE": "float"}))
tasks.append(string_to_spv("sqr_f32", "square.comp", {"A_TYPE": "float", "D_TYPE": "float", "FLOAT_TYPE": "float"}))
tasks.append(string_to_spv("clamp_f32", "clamp.comp", {"A_TYPE": "float", "D_TYPE": "float", "FLOAT_TYPE": "float"}))
tasks.append(string_to_spv("gelu_f32", "gelu.comp", {"A_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("silu_f32", "silu.comp", {"A_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("relu_f32", "relu.comp", {"A_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("diag_mask_inf_f32", "diag_mask_inf.comp", {"A_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("soft_max_f32", "soft_max.comp", base_dict | {"A_TYPE": "float", "B_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("soft_max_f32_f16", "soft_max.comp", base_dict | {"A_TYPE": "float", "B_TYPE": "float16_t", "D_TYPE": "float"}))
tasks.append(string_to_spv("rope_norm_f32", "rope_norm.comp", {"A_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("rope_norm_f16", "rope_norm.comp", {"A_TYPE": "float16_t", "D_TYPE": "float16_t"}))
tasks.append(string_to_spv("rope_neox_f32", "rope_neox.comp", {"A_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("rope_neox_f16", "rope_neox.comp", {"A_TYPE": "float16_t", "D_TYPE": "float16_t"}))
tasks.append(string_to_spv("argsort_f32", "argsort.comp", {"A_TYPE": "float"}))
tasks.append(string_to_spv("sum_rows_f32", "sum_rows.comp", base_dict | {"A_TYPE": "float", "D_TYPE": "float"}))
# Helper to decorate tasks with semaphore acquisition.
async def withSemaphore(sem, task):
async with sem:
return await task
# Run tasks concurrently guarded by a concurrency limit.
sem = asyncio.Semaphore(ASYNCIO_CONCURRENCY)
await asyncio.gather(*(withSemaphore(sem, task) for task in tasks))
with open("ggml-vulkan-shaders.hpp", "w") as f:
f.write("#include <cstdint>\n\n")
for name, path in sorted(shader_fnames):
with open(path, "rb") as spv:
counter = 0
newline_counter = 0
f.write(f"unsigned char {name}_data[] = {{\n")
for val in spv.read():
f.write(f"0x{val:02x},")
newline_counter += 1
counter += 1
if newline_counter >= 12:
newline_counter = 0
f.write("\n")
f.write("\n};\n")
f.write(f"const uint64_t {name}_len = {counter};\n\n")
os.remove(path)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="GGML Vulkan Shader Generator")
parser.add_argument("--glslc", help="Path to glslc")
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
args = parser.parse_args()
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
if args.glslc:
GLSLC = args.glslc
asyncio.run(main())

Some files were not shown because too many files have changed in this diff Show More