Compare commits

..

610 Commits

Author SHA1 Message Date
bca021c974 sync : ggml
ggml-ci
2025-07-01 17:54:53 +03:00
1f816de7da talk-llama : sync llama.cpp 2025-07-01 17:54:53 +03:00
c4ea72be9a ggml : remove trailing whitespace (llama/0) 2025-07-01 17:54:53 +03:00
1e930ab1b8 opencl : add GEGLU, REGLU, SWIGLU (llama/14456) 2025-07-01 17:54:53 +03:00
b5b237d49a Add Conv2d for CPU (llama/14388)
* Conv2D: Add CPU version

* Half decent

* Tiled approach for F32

* remove file

* Fix tests

* Support F16 operations

* add assert about size

* Review: further formatting fixes, add assert and use CPU version of fp32->fp16
2025-07-01 17:54:53 +03:00
679f31a9d1 metal : disable fast-math for some cpy kernels (llama/14460)
* metal : disable fast-math for some cpy kernels

ggml-ci

* cont : disable for q4_1

ggml-ci

* cont : disable for iq4_nl

ggml-ci
2025-07-01 17:54:53 +03:00
e29e36aee7 ggml-cpu: sycl: Re-enable exp f16 (llama/14462) 2025-07-01 17:54:53 +03:00
6bb1234a56 cmake : Remove redundant include path in CMakeLists.txt (llama/14452)
* Update docker.yml

修改docker.yml文件中的内容使其停止周期性的运行该workflow,如果想要运行该workflow可以手动启动

* Remove redundant include path in CMakeLists.txt

The parent directory '..' was removed from the include directories for the ggml-cpu-feats target, to avoid unnecessary include paths.

* Enable scheduled Docker image builds

Uncomments the workflow schedule to trigger daily Docker image rebuilds at 04:12 UTC, improving automation and keeping images up to date.
2025-07-01 17:54:53 +03:00
3239359bd1 scripts : make the shell scripts cross-platform (llama/14341) 2025-07-01 17:54:53 +03:00
e81be92931 SYCL: disable faulty fp16 exp kernel (llama/14395)
* SYCL: disable faulty fp16 CPU exponent for now

* Revert "SYCL: disable faulty fp16 CPU exponent for now"

This reverts commit ed0aab1ec31b4eb4b0f275dd7acd41d96a375202.

* SYCL: disable faulty fp16 CPU exponent for now

* Fix logic of disabling exponent kernel
2025-07-01 17:54:53 +03:00
130044f228 ggml : fix unmerged GGML_FPxx_TO_FPxx refactoring (llama/14443) 2025-07-01 17:54:53 +03:00
8bc638ee56 ggml : implement REGLU/GEGLU/SWIGLU ops (llama/14158)
* implement unary REGLU/GEGLU/SWIGLU cpu ops

* relax constraints

* duplicate shape of source

* fix ggml_vec_geglu_f16

* special case gated ops

* implement unary REGLU/GEGLU/SWIGLU cuda ops

* tighten constraints again

* refactor into GGML_GLU_OP

* metal : add glu kernels

ggml-ci

* add CUDA_GLU_BLOCK_SIZE [no ci]

* more constraints and use 64bit ints

ggml-ci

* 64bit multiplication [no ci]

* implement swapped variants (cpu/cuda)

* update comment [no ci]

ggml-ci

* Vulkan: Add GLU ops and shaders

* SYCL: Implement fused kernel GEGLU, SWIGLU and REGLU for single up+gate

* ggml : implement GLU for split up/gate (llama/14181)

* implement GLU for split up/gate

* add tests for ggml_glu_split

* Vulkan: Implement glu_split logic and shader support

* add split to logging [no ci]

* SYCL: refactor element_size ops and add split up and gate support to gated kernels

* SYCL: switch GEGLU to use tanh approximation

---------

Co-authored-by: 0cc4m <picard12@live.de>
Co-authored-by: Akarshan <akarshan@menlo.ai>

* GGML: increase OP count in assertion

* Refactor: Optimize SYCL element-wise operations with unary function inlining

This commit refactors the SYCL element-wise operations to improve performance by:

- Inlining unary operations (sgn, abs, elu, gelu, silu, etc.) to reduce kernel launch overhead.
- Introducing helper functions `op_xxx` for each unary operation to encapsulate the logic.
- Replacing direct kernel calls with calls to these inlined functions.
- Using `__dpct_inline__` to encourage compiler inlining.
- Minor code cleanup and consistency improvements.

The changes aim to reduce kernel launch overhead and improve the overall efficiency of element-wise operations on SYCL devices.

* vulkan: Increase workgroup size for GLU, for performance (llama/14345)

* vulkan: Increase workgroup size for GLU, for performance

* vulkan: change GLU shaders to do one element per invocation rather than one row per workgroup

* merge fix

* metal : add support for split and swap

ggml-ci

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: 0cc4m <picard12@live.de>
Co-authored-by: Akarshan <akarshan@menlo.ai>
Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
2025-07-01 17:54:53 +03:00
00b36237ba vulkan: Add fusion support for RMS_NORM+MUL (llama/14366)
* vulkan: Add fusion support for RMS_NORM+MUL

- Add a use_count to ggml_tensor, so we can detect if an output is used more than once.
- Change the ggml-vulkan rms_norm shader to optionally multiply by another tensor.
- Add detection logic and basic fusion logic in ggml-vulkan.
- Add some testing support for fusion. Rather than computing one node at a time, allow
for computing the whole graph and just testing one node's results. Add rms_norm_mul tests
and enable a llama test.

* extract some common fusion logic

* fix -Winconsistent-missing-override

* move ggml_can_fuse to a common function

* build fix

* C and C++ versions of can_fuse

* move use count to the graph to avoid data races and double increments when used in multiple threads

* use hash table lookup to find node index

* change use_counts to be indexed by hash table slot

* minimize hash lookups

style fixes

* last node doesn't need single use.
fix type.
handle mul operands being swapped.

* remove redundant parameter

---------

Co-authored-by: slaren <slarengh@gmail.com>
2025-07-01 17:54:53 +03:00
b900ee424c CUDA: add bf16 and f32 support to cublas_mul_mat_batched (llama/14361)
* CUDA: add bf16 and f32 support to cublas_mul_mat_batched

* Review: add type traits and make function more generic

* Review: make check more explicit, add back comments, and fix formatting

* Review: fix formatting, remove useless type conversion, fix naming for bools
2025-07-01 17:54:53 +03:00
f641a4c410 vulkan: handle noncontig in the final case of ggml_vk_get_cpy_pipeline (llama/14378) 2025-07-01 17:54:53 +03:00
9e48afba2f vulkan: lock accesses of pinned_memory vector (llama/14333) 2025-07-01 17:54:53 +03:00
f31ed384f4 fix async_mode bug (llama/14432) 2025-07-01 17:54:53 +03:00
0b09f5bbad vulkan: Fix GGML_VULKAN_SHADER_DEBUG_INFO (llama/14427)
This setting needs to be passed through to vulkan-shaders-gen
2025-07-01 17:54:53 +03:00
48fb51f314 ggml : add ggml_set_rows (llama/14274)
* ggml : add ggml_set_rows

Add ggml_set_rows(a, b, c) which copies rows from 'b' into 'a' using
indices from 'c'.

ref: #8366

* use I64 for indices

* ggml : add repeat impl for i64

* ggml : add ggml_is_contiguous_rows

* ggml : ggml_set_rows support broadcast

* ggml : ggml_set_rows support quantized dst

ggml-ci

* ggml : support GGML_TYPE_F32 ".from_float" trait

* ggml : ggml_set_rows update comment + better index name

* tests : add ggml_set_rows

* metal : add ggml_set_rows implementation

ggml-ci

* ggml : simplify forward_dup_f32

* ggml : fix supports_op

* tests : add comment to set_rows

* ggml : leave the repeat_i64 for a separate PR

ggml-ci

* ggml : set_rows use std::min instead of MIN

* ggml : better error message for set_rows unsupported type

* metal : perform op->type check only once

* tests : more consistent implementation + more tests

ggml-ci

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-07-01 17:54:53 +03:00
566462a5c0 cmake: regen vulkan shaders when shaders-gen sources change (llama/14398)
* Add shaders-gen sources as target deps
2025-07-01 17:54:53 +03:00
c300f1e32d metal : add special-case mat-vec mul for ne00 == 4 (llama/14385)
ggml-ci
2025-07-01 17:54:53 +03:00
c848b9fbef metal : batch rows copy in a single threadgroup (llama/14384)
* metal : batch rows copy in a single threadgroup

ggml-ci

* metal : handle some edge cases when threadgroup size is not a power of 2

ggml-ci
2025-07-01 17:54:53 +03:00
a5e6a3c953 musa: enable fp16 mma (all) and cublas on qy2 (llama/13842)
* musa: enable fp16 mma (all) and cublas on qy2

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* Update ggml/src/ggml-cuda/ggml-cuda.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Address review comments

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* Address review comments

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* musa: disable MUL_MAT_ID (q2_k × f32) due to precision issues

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

---------

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-07-01 17:54:53 +03:00
16aa7d151d ggml-cpu: enable IBM NNPA Vector Intrinsics (llama/14317)
* ggml-cpu: add nnpa compile flag

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
(cherry picked from commit 4a9f60c201573128f73a65999b3e5cc497fae5c1)

* ggml-cpu: add fp16->fp32 nnpa first

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
(cherry picked from commit 8d4a7987f9c1887f716be96250f2caeee0253929)

* ggml-cpu: add fp32->fp16

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
(cherry picked from commit 0ff0d6516247a41d2ade42b42cf0d676a4dd1627)

* ggml-cpu: better variable names

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
(cherry picked from commit 2f58bbcbb89c183340e252362b2a40651f573f1f)

* docs: update s390x docs

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
(cherry picked from commit 01b929491b50071a5d0572235dcf5a449da70aa7)

* ggml-cpu: add debugging prints to see if dlf16 is correct

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix print vs printf

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix float placeholder

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: ensure fp16 and fp32 load and stores are called

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fp16 load ensured to hit

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: remove sigint from fp16 store

for some reason, the function is not getting a hit when debugged with
    gdb. we will need to investigate further

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: activate nnpa for ggml_cpu_fp16_to_fp32

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: nnpa activate ggml_cpu_fp16_to_fp32 for 8 elements

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: nnpa switch to vec_xst test

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: switch to vec_xst for 4 element loops also

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: rework noop

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: remove noop, general code cleanup

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: clarify variable naming

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: activate nnpa for ggml_cpu_fp32_to_fp16

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: add breakpoint for debugging

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: test fix for conversion failure

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: disable fp32->fp16 nnpa conversions for now

there are some conversion failures in nnpa that requires the eyes of an
ibm stsm. will create a separate pr to introduce the fp32->fp16 change.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: switch to elif macro

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: reattempt fp32->fp16

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix typo

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: reattempt fp32->fp16

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix compiler types

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: change to typedef vector types

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: add 4 element loops for fp32->fp16

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: clarified vector naming

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: bring back fp32->fp16 store nnpa

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: activate nnpa fp32->fp16 or fp16->fp32 compute

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: add nnpa macro check in ggml-impl

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: add missing __func__

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: diagnose why __NNPA__ macro is not being defined

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: import vecintrin.h to fix compiler errors

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: update macro tests

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: move s390x typedef to own header file

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Revert "ggml-cpu: move s390x typedef to own header file"

This reverts commit 157f856c34589566151630e294563a420702db39.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: switch to importing ggml-cpu-impl instead

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix macro declaration

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: test more macros

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: add debug prints

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: bruteforce macro definitions

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: move macro definitions

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: add ggml-impl.h to cmakelists

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: switch to private macros

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: move s390x typedef to own header file

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
(cherry picked from commit 157f856c34589566151630e294563a420702db39)

* ggml-cpu: move things around

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: bring back compile macros

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: switch to quotes for import

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: add compiler error macro

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: add s390x detection in ggml-src

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: bring back compile definitions

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: undo cmakelists work

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Revert "ggml-cpu: move s390x typedef to own header file"

This reverts commit 18d79e1a30b39d9aaa0bd58400c5cf2c32135c9a.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: remove typedefs.h

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: remove typedef from cmakelists

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: add ggml-impl.h future notes

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: add todo comment for future reference

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: clarify naming of dlf16

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: remove unnecessary target compile definitions

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: move nnpa fp16->fp32 and fp32->fp16 to simd-mappings

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: refactor fp32->fp16 and fp16->fp32 simd to ggml-cpu

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* docs: update broken huggingface link for s390x

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix duplicate func names during compile

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Revert "ggml-cpu: fix duplicate func names during compile"

This reverts commit fbb733451f27677063b914d4f6c9a9841d45b38d.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Revert "ggml: refactor fp32->fp16 and fp16->fp32 simd to ggml-cpu"

This reverts commit bd288e8fa52b5244f65cee21cb61062f1a9e0ca5.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: refactor fp16<->fp32 simd to ggml-cpu

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix missing simd-mappings.h import in quants.c

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix missing simd-mappings.h within repack

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix amx mmq missing simd-mappings.h

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: attempt at fixing loongarch failing build

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: move nnpa together with other fp16<->fp32 simd

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix wrong refactor of ggml-base

ref: https://github.com/ggml-org/llama.cpp/pull/14317#discussion_r2164176555

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: remove dependency on ggml-cpu from ggml-base

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: rename all fp16<->fp32 macros to prefix with ggml_cpu

ref: https://github.com/ggml-org/llama.cpp/pull/14317#discussion_r2164449406

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: remove mistaken fallback macro

fallback logic was already implemented but i was too sleepy to realise

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: move ggml_table_f32_f16 to ggml-cpu

ref: https://github.com/ggml-org/llama.cpp/pull/14317#discussion_r2164775006

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: move ggml_table_f32_f16 back to ggml-base due to ci failures

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Revert "ggml-cpu: move ggml_table_f32_f16 back to ggml-base due to ci failures"

This reverts commit 32a3533564bdb7902cefb9c89b1c9e956a81ce29.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Revert "ggml: move ggml_table_f32_f16 to ggml-cpu"

This reverts commit 9e40d984ad27d7b60392fb2b7548885201864fe4.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: move ggml_table_f32_f16 to ggml-cpu

ref: https://github.com/ggml-org/llama.cpp/pull/14317#discussion_r2164775006

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
(cherry picked from commit 9e40d984ad27d7b60392fb2b7548885201864fe4)

* ggml: move ggml_table_f32_f16 to ggml-cpu.c

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: extern c ggml_table_f32_f16 + chore docs

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: dedup ggml_table_f32_f16 from simd-mappings.h

we rely on the variable declaration in ggml-cpu.c instead

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Revert "ggml-cpu: dedup ggml_table_f32_f16 from simd-mappings.h"

This reverts commit f71b21d2f74f5e03ec0c2b4fefd3cbf395aecf16.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: bring back ggml_table_f32_f16

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Revert "ggml-cpu: bring back ggml_table_f32_f16"

This reverts commit 2dce119178bed5ef5c8398c4230ddd14fef80e49.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* fix ggml time initialization

* fix f32_f16 table init

* remove extra line

---------

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
Co-authored-by: slaren <slarengh@gmail.com>
2025-07-01 17:54:53 +03:00
99764f5767 ggml : do not output unprintable characters on GGUF load failure (llama/14381) 2025-07-01 17:54:53 +03:00
fc28594112 sycl: GGML_SYCL_DISABLE_OPT on by default for all Intel Devices (llama/13973) 2025-07-01 17:54:53 +03:00
acfbf2921b opencl: ref count ggml_backend_opencl_context and refactor profiling (llama/14254)
* Move profiling info into `ggml_backend_opencl_context`
* Add `enqueue_ndrange_kernel` to launch kernel
2025-07-01 17:54:53 +03:00
6a1d12a8ea CUDA/HIP: optimize mmv paths taken for HIP devices (llama/14324)
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-07-01 17:54:53 +03:00
06b01ba87b CUDA: mul_mat_v support for batch sizes > 1 (llama/14262)
* CUDA: mul_mat_v support for batch sizes > 1

* use 64 bit math for initial offset calculation
2025-07-01 17:54:53 +03:00
791201a974 HIP: enable vec fattn on RDNA4 (llama/14323) 2025-07-01 17:54:53 +03:00
abb650c0ec CUDA: add mean operation (llama/14313)
* CUDA: add mean operation

* add back sum_rows_f32_cuda

* Review: early exit if col!=0
2025-07-01 17:54:53 +03:00
e036676795 Add support for VK_EXT_debug_utils to add labels to Vulkan objects. (llama/13792)
* Add support for VK_EXT_debug_utils to add labels to Vulkan objects. In step 1 compute pipelines are getting labeled.

* remove #ifdef for debug utils and add queue marker.
2025-07-01 17:54:53 +03:00
c1418b9906 metal : fix thread-safety (llama/14300)
ggml-ci
2025-07-01 17:54:53 +03:00
9d7cb80f04 ggml-cpu : "align corners" for bilinear upscale/downscale (ggml/1285)
* add "align corners" mode for bilinear upscale, and allow downscaling
* add ggml_interpolate, deprecate ggml_upscale_ext, pass in align-corners as bit-flag
* test-backend-ops: replace ggml_upscale_ext with ggml_interpolate, add test cases for downscale and align-corners
2025-07-01 17:54:53 +03:00
515df20351 ggml-quants : rename best_mad to best_error (ggml/1283)
This commit renames the variable `best_mad` to `best_error` in the
`make_qkx2_quants` function.

The motivation for this is that the name `best_mad` can be somewhat
confusing if mean absolute deviation (MAD) is not in use.
2025-07-01 17:54:53 +03:00
c88ffbf9ba ci : use selective copy for musa image (#3296)
This commit modified the musa docker file to selectively copy
directories needed for the container image.
This commit also added a step to the docker workflow to free up disk
space in attempt to make enough room for the large musa build
containers.

The motivation for this change is to reduce the size of the container
image and try to avoid disk usage issues in CI.
2025-06-27 15:43:56 +02:00
7069394447 ci: set fail-fast to false in docker.yml (#3294)
* ci: set fail-fast to false in docker.yml

This commit modifies the GitHub Actions workflow for Docker builds to
disable the fail-fast behavior.

The motivation for this is that currently if one of the strategy jobs
fails any other job that is in progress will be cancelled. There is no
need for this as the jobs are independent.

* ci : update docker.yml to use a single build

This commit updates the docker job to only build the image once instead
of twice (only happens when pushing to the master branch). Instead this
will tag the image with the commit SHA when pushing to master.

The motivation for this change is to reduce the time it takes to run
this job and also it might help with the disk space issues we are
experiencing for this job when it runs on pushes to master.
2025-06-27 09:55:56 +02:00
f8abbeb234 ruby : add Whisper::VERSION (#3292)
* Add a test for segment

* Check option existence

* Use more proper variable to define build option

* Assert Core ML enabled

* Define Whisper::VERSION

* Add test for Whisper::VERSION

* Add signature of Whisper::VERSION
2025-06-27 04:41:26 +02:00
32cf4e2aba whisper : add version function (#3289)
* whisper : add version function

This commit adds a version function to the whisper API.

The motivation for this is that it might be convenient to have a way to
programmatically check the version.

Example usage:
```c++
printf("Using whisper version: %s\n", whisper_version());
```
Will output:
```console
Using whisper version: 1.7.6
```

* examples : add version to android example CMakeLists.txt
2025-06-26 18:09:42 +02:00
35034c5aea ci : add should_release variable (#3288)
* ci : add should_release variable

This commit adds a `should_release` variable to the GitHub Actions
workflow to determine if a release should be created based on the tag or
branch conditions.

The motivation for this that it simplifies the logic for deciding
whether to upload artifacts or not, making it easier to maintain if we
need to change the conditions in the future.

* ci : set release draft to true
2025-06-26 16:29:29 +02:00
897b071dc6 docs : add cmake "-j" flag in README.md (#3284)
Make cmake commands encounter multithreading in README.md file.
2025-06-26 13:23:19 +02:00
4daf7050ca ci : add support for tag-based releases (#3287)
This commit modifies the GitHub Actions workflow to support
tag-based releases. When a tag is pushed that starts with 'v', the
workflow will use that tag name for the release process.

I think this was the once the behavior, but it was lost in updates that
I've made to the workflow. This commit restores that functionality.
2025-06-25 21:43:58 +02:00
a8d002cfd8 release : v1.7.6 2025-06-25 16:47:03 +03:00
06bdaa6c0c bench : update benches 2025-06-25 16:45:19 +03:00
dc8dda60ee bench : print system info before ctx check 2025-06-25 16:01:32 +03:00
1ad258ca31 stream : add nullptr check of whisper_context (#3283)
* stream : add nullptr check of whisper_context

This commit adds a check to ensure that the `whisper_context` is not
null after initialization.

The motivation for this is that currently, if the initialization fails,
the program continues to run leading to a segmentation fault. This sort
of check is performed by others examples like whisper-cli.

Refs: https://github.com/ggml-org/whisper.cpp/issues/3280#issuecomment-3003778035

* examples : add nullptr check for whisper_context
2025-06-25 14:16:31 +02:00
7dd2997a01 ci : enable main-cuda build (#3282)
This commit re-enables the main-cuda Docker build in the CI workflow.
The main-cuda Dockerfile has been updated to remove build artifacts
and also print the size of the /app directory after the build. A similar
change was recently made to the musa Dockerfile, and perhaps this job
was also having similar disk space issues.

The motivation for this change is that this configuration has been
disabled for a while due to persistent build failures. However, the
actual logs are now longer available.

Resolves: https://github.com/ggml-org/whisper.cpp/issues/3040
2025-06-25 12:12:36 +02:00
c85b1ae84e bindings.java : update java example (#3281)
This commit updates the example in the README.md file as the current Java example code is not working.

Resolves: https://github.com/ggml-org/whisper.cpp/issues/2860
2025-06-25 06:35:38 +02:00
0083335ba0 coreml : backport CoreML features to macos < 14 (#3255) 2025-06-24 09:24:27 +02:00
9c47902308 ci : reduce musa image size (#3277)
* ci : reduce musa image size

This commit contains an attempt to reduce the size of the musa Docker
image by copying only the necessary files from the build stage.

The motivation for this is that the CI runs sometimes fail with out of
memory errors. These seems to be able to pass for PRs, at least
sometimes but fail upon push to the master branch.

* ci : remove build time files instead of selective copying
2025-06-24 08:20:28 +02:00
a0d2c632e4 whisper : add .gitignore entries for OpenVINO support (#3276) 2025-06-24 07:50:16 +02:00
4d6ae52ed3 command: output commands to text file (#3273)
This commit implements code for the command line argument `-f --file FNAME` which is currently missing.
2025-06-24 06:41:21 +02:00
a422176937 ci : add apt-get clean to musa Dockerfile (#3275)
* ci : add apt-get clean to musa Dockerfile

This commit adds `apt-get clean` to the musa Dockerfile to reduce the
image size by removing cached package files after installation.

The motivation for this is to try to reduce the size of the Docker image
and see if this can avoid the "no space left on device" error during
the CI build process.

Refs: https://github.com/ggml-org/whisper.cpp/actions/runs/15815324254
2025-06-23 12:34:44 +02:00
cead8f5357 ruby : specify Apple frameworks explicitly on build (#3270)
* Add Apple frameworks to $LDFLAGS when needed

* Add utility method to Options

* Remove unnecessary propaty date from gemspec

* Add Apple frameworks for CoreML build

* Add Accelerate framework only for Apple platform

* Fix ZipURI#cache signature

* Download test fixtures if needed
2025-06-23 06:34:05 +02:00
e6c10cf3d5 talk-llama : sync llama.cpp
ggml-ci
2025-06-21 07:34:17 +03:00
d65a579a0a sync : ggml
ggml-ci
2025-06-21 07:34:17 +03:00
b68222f92c CUDA: add conv_2d_transpose (llama/14287)
* CUDA: add conv_2d_transpose

* remove direct include of cuda_fp16

* Review: add brackets for readability, remove ggml_set_param and add asserts
2025-06-21 07:34:17 +03:00
a455dcb04c sycl: add usage of enqueue_functions extension (llama/14244)
* Add header and namespace to use enqueue_functions extension

* Convert submit and parallel_for to use new extension in convert.cpp

* Convert submit and parallel_for to use extension in ggml-sycl.cpp

* Convert submit and parallel_for to use extension in gla.cpp

* Convert submit and parallel_for in mmq.cpp

* Convert submit and parallel_for in mmvq.cpp

* Convert submit and parallel_for in remaining files

* Convert all simple parallel_for to nd_launch from enqueue_functions
extension

* Wrapping extension in general function

Create a general function that enable the enqueue_functions extension if
it is enable in the compiler, otherwise call the general SYCL function
to launch kernels.

---------

Signed-off-by: nscipione <nicolo.scipione@codeplay.com>
2025-06-21 07:34:17 +03:00
af7168174c Implement GGML_CPU_ALL_VARIANTS for PowerPC (llama/14286)
* Add PowerPC feature detection and scoring

* ggml-cpu: Implement GGML_CPU_ALL_VARIANTS for PowerPC

* ggml-cpu: Delay some initializations until function is called

When using GGML_BACKEND_DL=ON, these initializations might use
instructions that are not supported by the current CPU.

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-06-21 07:34:17 +03:00
33d1f0a3e0 cuda : synchronize graph capture and cublas handle destruction (llama/14288)
Workarounds an issue that may cause CUDA graph capture to fail when a cuBLAS handle is destroyed in a different thread
2025-06-21 07:34:17 +03:00
018b2d340e ggml : fix repack work size for mul_mat_id (llama/14292)
ggml-ci
2025-06-21 07:34:17 +03:00
694f435d22 ggml: Update KleidiAI to v1.9.0 (llama/14277) 2025-06-21 07:34:17 +03:00
5efd43c956 CUDA: add conv_2d_dw (llama/14265)
* CUDA: add conv_2d_dw

* better naming

* simplify using template

* Review: fix operation ordering in ggml-cuda, use __forceinline__, use more const
2025-06-21 07:34:17 +03:00
71adde9203 ggml-cpu : remove unnecesary arm feature detection (llama/14281)
Support for Arm runtime feature detection has now been added to GGML_CPU_ALL_VARIANTS. This removes the old and not very functional code.
2025-06-21 07:34:17 +03:00
cef59c1e26 build : suppress gcc15 compile warnings (llama/14261)
* Change _contains_any() substrs to std::string_view and fix the find comparison logic.
2025-06-21 07:34:17 +03:00
a02a2d4240 sycl: Cleanup codepaths in Get Rows in sycl backend (llama/14215)
Addresses unused reorder path
2025-06-21 07:34:17 +03:00
be4ea0826b llamafile : support s390x SIMD instruction set (llama/14273) 2025-06-21 07:34:17 +03:00
1aca7b5c8a Vulkan: Set device max size for host memory to avoid OOM warning and fallback to CPU buffer (llama/14249) 2025-06-21 07:34:17 +03:00
b251d739ad metal : add mean kernel (llama/14267)
* metal : add mean kernel

ggml-ci

* cont : dedup implementation

ggml-ci
2025-06-21 07:34:17 +03:00
203451bcba ggml-cpu: reduce asm calls for hsum (llama/14037)
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2025-06-21 07:34:17 +03:00
34940abe53 ggml-cpu: fix uncaught underscore terminators (llama/14023)
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2025-06-21 07:34:17 +03:00
4fc9c34126 ggml: Add Apple support for GGML_CPU_ALL_VARIANTS (llama/14258) 2025-06-21 07:34:17 +03:00
471df139fa Add ggml_roll (ggml/1274)
* ggml : add ggml_roll

* use set/get_op_params & std::min
2025-06-21 07:34:17 +03:00
3e65f518dd android : update CMakeLists.txt to use FetchContent for ggml (#3268)
* android : update CMakeLists.txt to use FetchContent for ggml

This commit updates the CMakeLists.txt file for the Android Whisper
example to use FetchContent for managing the ggml library.

The motivation for this change is avoid having to make manual changes to
the CMakeLists.txt file after syncing the ggml library.

I've built and run the example locally to verify that it works as
expected.

Refs: https://github.com/ggml-org/whisper.cpp/pull/3265#issuecomment-2986715717

* android.java : update cmake to use FetchContent for ggml

This commit updates the CMake configuration for the Android Java example
to use `FetchContent` for including the `ggml` library. Do be able to
use FetchContent we also update the `compileSdkVersion` and
`targetSdkVersion` to 31, and the `buildToolsVersion` to '30.0.3'.
This also required a an update to the Gradle plugin version to 7.4.0.

The motivation for this change is avoid having to make manual changes to
the CMakeLists.txt file after syncing the ggml library.
2025-06-19 16:06:42 +02:00
17bece1885 cmake : fix android build (#3265)
* cmake : fix android build

---------

Co-authored-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2025-06-19 08:24:41 +02:00
ecb8f3c2b4 examples : add stereo to mono conversion in read_audio_data (#3266)
This commit adds a conversion from stereo to mono in the
`read_audio_data` function of `common-whisper.cpp`.

The motivation for this change is prior to Commit
7d3da68f79 ("examples : use miniaudio for
direct decoding flac, mp3, ogg and wav (#2759)", there was a step that
read stereo int16 data -> pcm16 (448512 samples), and then converted to
mono (224256 samples), and then also convert to stereo in `pcmf32s.

The middle step here seems to have been missed when rewriting the code to
use Miniaudio and caused issues then transcribing stereo audio files.

For example, currently using the audio sample in the linked issue the
output is:
```console
[00:00:00.000 --> 00:00:03.000]  (speaker 1) Sous-titres réalisés para la communauté d'Amara.org
```

And with the change in this commit the output is:
```
[00:00:00.000 --> 00:00:01.500]  (speaker 1) *sonnerie de téléphone*
[00:00:01.500 --> 00:00:07.000]  (speaker 1) Salut jeune homme !
[00:00:07.000 --> 00:00:08.500]  (speaker 0) C'est vrai que je te dérange ?
[00:00:08.500 --> 00:00:10.500]  (speaker 1) Ah pas du tout, pas du tout, pas du tout !
[00:00:10.500 --> 00:00:12.500]  (speaker 1) J'étais en train de...
[00:00:12.500 --> 00:00:14.500]  (speaker 1) de préparer un courrier
```

Resolves: https://github.com/ggml-org/whisper.cpp/issues/3092
2025-06-18 17:41:43 +02:00
2f60ebc3c2 talk-llama : sync llama.cpp
ggml-ci
2025-06-18 12:40:34 +03:00
69061e356f sync : ggml
ggml-ci
2025-06-18 12:40:34 +03:00
0e068779c7 cmake: remove shader-gen step-targets from ggml-vulkan (llama/14226)
* Remove step-targets from vulkan-shaders-gen

* Unset DESTDIR when building vulkan-shaders-gen
2025-06-18 12:40:34 +03:00
ac8a303c9a ggml-cpu : remove the weak alias trick (llama/14221) 2025-06-18 12:40:34 +03:00
2a84593960 musa: fix build warning (unused variable) (llama/14231)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-06-18 12:40:34 +03:00
44871c8a3e llama : add thread safety test (llama/14035)
* llama : add thread safety test

* llamafile : remove global state

* llama : better LLAMA_SPLIT_MODE_NONE logic

when main_gpu < 0 GPU devices are not used

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-06-18 12:40:34 +03:00
ad6cd94a3a cmake: clean up external project logic for vulkan-shaders-gen (llama/14179)
* Remove install step for vulkan-shaders-gen

* Add install step to normalize msvc with make

* Regenerate modified shaders at build-time
2025-06-18 12:40:34 +03:00
dbad9d8fba HIP: disable rocwmma on gfx12 by default until rocm 7.0 (llama/14202) 2025-06-18 12:40:34 +03:00
518835ee56 ggml: Add Android support for GGML_CPU_ALL_VARIANTS (llama/14206) 2025-06-18 12:40:34 +03:00
a3d1c55c66 vulkan: mutex around vkQueueSubmit (llama/14127)
This fixes the remaining crash in test-thread-safety on my system.
2025-06-18 12:40:34 +03:00
0c25129d30 ggml-cpu : rework weak alias on apple targets (llama/14146)
* ggml-cpu : rework weak alias on apple targets

* fix powerpc detection

* fix ppc detection

* fix powerpc detection on darwin
2025-06-18 12:40:34 +03:00
a433680a2f CUDA/HIP: fix ssm_scan on devices where warp size is not 32 (llama/14196) 2025-06-18 12:40:34 +03:00
aeaed9806f HIP: Replace usage of depricated preprocessor macro __AMDGCN_WAVEFRONT_SIZE__ (llama/14183) 2025-06-18 12:40:34 +03:00
4ea599afdf sycl: Adding additional cpy dbg print output (llama/14034) 2025-06-18 12:40:34 +03:00
783cf0309f SYCL: Bump oneMath commit (llama/14152)
Update oneMath commit to merged PR https://github.com/uxlfoundation/oneMath/pull/669
which adds SYCL-Graph support for recording CUDA BLAS commands.

With this change the `MUL_MAT` tests now pass on DPC++ CUDA backends with SYCL-Graph
enabled. Prior to this change, an error would be thrown.

```
$ GGML_SYCL_DISABLE_GRAPH=0 ./bin/test-backend-ops -b SYCL0 -o MUL_MAT -p type_a=f16,type_b=f32,m=16,n=1,k=256,bs=\\[1,1\\],nr=\\[2

UR CUDA ERROR:
        Value:           700
        Name:            CUDA_ERROR_ILLEGAL_ADDRESS
        Description:     an illegal memory access was encountered
        Function:        operator()
        Source Location: $HOME/dpcpp/unified-runtime/source/adapters/cuda/queue.cpp:154

Native API failed. Native API returns: 2147483646 (UR_RESULT_ERROR_UNKNOWN)
Exception caught at file:$HOME/llama.cpp/ggml/src/ggml-sycl/ggml-sycl.cpp, line:3598, func:operator()
SYCL error: CHECK_TRY_ERROR((stream)->wait()): Meet error in this line code!
  in function ggml_backend_sycl_synchronize at $HOME/llama.cpp/ggml/src/ggml-sycl/ggml-sycl.cpp:3598
$HOME/llama.cpp/ggml/src/ggml-sycl/../ggml-sycl/common.hpp:118: SYCL error
Could not attach to process.  If your uid matches the uid of the target
process, check the setting of /proc/sys/kernel/yama/ptrace_scope, or try
again as the root user.  For more details, see /etc/sysctl.d/10-ptrace.conf
ptrace: Operation not permitted.
No stack.
The program is not being run.
```
2025-06-18 12:40:34 +03:00
0097eaf839 sycl: Remove not needed copy f16->f32 for dnnl mul mat (llama/14125) 2025-06-18 12:40:34 +03:00
a96a880f7b cmake : handle whitepsaces in path during metal build (llama/14126)
* cmake : handle whitepsaces in path during metal build

ggml-ci

* cont : proper fix

ggml-ci

---------

Co-authored-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2025-06-18 12:40:34 +03:00
26c16ad6bd Implement GGML_CPU_ALL_VARIANTS for ARM (llama/14080)
* ggml-cpu: Factor out feature detection build from x86

* ggml-cpu: Add ARM feature detection and scoring

This is analogous to cpu-feats-x86.cpp. However, to detect compile-time
activation of features, we rely on GGML_USE_<FEAT> which need to be set
in cmake, instead of GGML_<FEAT> that users would set for x86.

This is because on ARM, users specify features with GGML_CPU_ARM_ARCH,
rather than with individual flags.

* ggml-cpu: Implement GGML_CPU_ALL_VARIANTS for ARM

Like x86, however to pass around arch flags within cmake, we use
GGML_INTERNAL_<FEAT> as we don't have GGML_<FEAT>.

Some features are optional, so we may need to build multiple backends
per arch version (armv8.2_1, armv8.2_2, ...), and let the scoring
function sort out which one can be used.

* ggml-cpu: Limit ARM GGML_CPU_ALL_VARIANTS to Linux for now

The other platforms will need their own specific variants.

This also fixes the bug that the the variant-building branch was always
being executed as the else-branch of GGML_NATIVE=OFF. The branch is
moved to an elseif-branch which restores the previous behavior.
2025-06-18 12:40:34 +03:00
40d0d47cf1 vulkan: Better thread-safety for command pools/buffers (llama/14116)
This change moves the command pool/buffer tracking into a vk_command_pool
structure. There are two instances per context (for compute+transfer) and
two instances per device for operations that don't go through a context.
This should prevent separate contexts from stomping on each other.
2025-06-18 12:40:34 +03:00
40c6525517 vulkan: Track descriptor pools/sets per-context (llama/14109)
Use the same descriptor set layout for all pipelines (MAX_PARAMETER_COUNT == 8)
and move it to the vk_device. Move all the descriptor pool and set tracking to
the context - none of it is specific to pipelines anymore. It has a single vector
of pools and vector of sets, and a single counter to track requests and a single
counter to track use.
2025-06-18 12:40:34 +03:00
74c68067dc opencl: add mul_mv_id_q4_0_f32_8x_flat (llama/14003) 2025-06-18 12:40:34 +03:00
794bf23994 Vulkan: Don't default to CPU device (like llvmpipe), even if no other device is available, to allow fallback to CPU backend (llama/14099) 2025-06-18 12:40:34 +03:00
26dcc196c7 rpc : nicer error messages for RPC server crash (llama/14076) 2025-06-18 12:40:34 +03:00
ffe5400d1b ggml : disable warnings for tests when using MSVC (ggml/1273)
* ggml : disable warnings for tests when using MSVC

This commit disables warnings for tests on windows when using MSVC.

The motivation for this is that this brings the build output more
inline with what Linux/MacOS systems produce.

There is still one warning generated for the tests which is:
```console
  Building Custom Rule C:/ggml/tests/CMakeLists.txt
cl : command line  warning D9025: overriding '/DNDEBUG' with '/UNDEBUG'
[C:\ggml\build\tests\test-arange.vcxproj]
  test-arange.cpp
  test-arange.vcxproj -> C:\ggml\build\bin\Release\test-arange.exe
```

* ggml : fix typo in tests disable list
2025-06-18 12:40:34 +03:00
1b01c0cc4e ggml : remove unused ggml_context_container (ggml/1272)
This commit removes the unused `ggml_context_container` structure from
the ggml library. It looks like the usage of this struct was removed in
Commit 4757fe18d56ec11bf9c07feaca6e9d5b5357e7f4 ("ggml : alloc
ggml_contexts on the heap (whisper/2525)").

The motivation for this changes is to improve code clarity/readability.
2025-06-18 12:40:34 +03:00
db30f46761 examples : include examples in msvc disable warn (ggml/1270)
This commit adds the examples in the "list" of targets to ignore MSVC
warnings.

The motivation for this is that currently the examples generate a number
of warnings that are ignore/disabled for the core ggml project. This
makes for a cleaner output when building.
2025-06-18 12:40:34 +03:00
1591558ccc whisper : clear result_all if vad_samples is empty (#3262)
This commit clears the results_all vector no VAD segments are found.

The motivation for this is that this would normally be done by
`whisper_full_with_state` but when no VAD segments are detected this
current implementation does not call that function and hence the vector
does not get reset. This can lead to issues in applications like the
server example where it will incorrectly process the old results.

Resolves: https://github.com/ggml-org/whisper.cpp/issues/3250
2025-06-18 11:30:29 +02:00
f3ff80ea8d examples : set the C++ standard to C++17 for server (#3261)
This commit updates the server example to use C++17 as the standard.

The motivation for this change is that currently the ci-run
`ggml-100-mac-m4` is failing when compiling the server example on
macOS. The `talk-llama` example also has this setting so it looks like
an alright change to make.

ggml-ci

Refs: https://github.com/ggml-org/ci/tree/results/whisper.cpp/2a/4d6db7d90899aff3d58d70996916968e4e0d27/ggml-100-mac-m4
2025-06-17 11:29:48 +02:00
2a4d6db7d9 examples : update usage/help in yt-wsp.sh (#3251)
This commit updates the usage/help message to be more readable and include the environment variables available to set options.
2025-06-16 12:21:16 +02:00
107c303e69 server : graceful shutdown, atomic server state, and health endpoint Improvements (#3243)
* feat(server): implement graceful shutdown and server state management

* refactor(server): use lambda capture by reference in server.cpp
2025-06-16 10:14:26 +02:00
705db0f728 whisper : fix VAD processing for skipped audio segments (#3230)
This commit addresses an issue with token timestamps when audio segments
are skipped, in `whisper_exp_compute_token_level_timestamps` related to
the VAD processing and the energy levels.

The motivation for this is that the token timestamps exceed the energy
array bounds due to segment timing misalignment:
```console
                  (skipped introduction)
                    ↓
Audio segment:     [2600ms → 5600ms]  (3 seconds of actual audio)
Energy array:      [0 → 480652]       (samples for 3 seconds)
Token timestamps:  [3266ms → 3408ms]  (absolute timestamps)
```
So both `s0` and `t1` get clamped to the maximum sample index (480652)
which causes the start/end timestamps to be the same for all the tokens
after a certain point.

This is addressed by using segment-relative timestamps in the
`timestamp_to_sample` and `sample_to_timestamp`.
2025-06-13 17:35:52 +02:00
0a4d85cf8a server : add Voice Activity Detection (VAD) support (#3246)
* server : add Voice Activity Detection (VAD) support

This commit adds support for Voice Activity Detection (VAD) in the
server example.

The motivation for this is to enable VAD processing when using
whisper-server.

Resolves: https://github.com/ggml-org/whisper.cpp/issues/3089

* server : add VAD parameters to usage in README.md [no ci]

This commit also adds a few missing parameters.

* server : fix conflicting short options [no ci]
2025-06-13 13:24:03 +02:00
9df8d54bcb cli : fix short name conflict for vad options [no ci] (#3247)
This commit fixes a short name conflict whisper-cli for
`--vad-min-speech-duration-ms` and `--vad-min-silence-duration-ms` which
currently have the same short name `-vsd`.

Refs: https://github.com/ggml-org/whisper.cpp/pull/3246#pullrequestreview-2923800114
2025-06-13 10:25:25 +02:00
20d203aacf ruby : add .gitignore entries for ext directory (#3245)
This commit adds entries to `.gitignore` for directories in the
`ext` directory.

The motivation for this is that currently after building locally these
following files are reported by git as untracked:
```console
Untracked files:
  (use "git add <file>..." to include in what will be committed)
	ext/examples/
	ext/ggml/
	ext/include/
	ext/scripts/
	ext/src/
```
2025-06-13 10:04:20 +02:00
ebbc874e85 ci : update windows runner to windows-2022 (#3242)
* ci : update windows runner to windows-2022

This commit changes the windows-2019 runner to windows-2022.

The motiation for this is that the windows-2019 runner is scheduled for
deprection and will be removed 2025-06-30. There are currently "burnout"
periods that started 2025-06-01 and during these times jobs with
windows-2019 will fail which has happened lately on our CI.

Refs: https://github.com/actions/runner-images/issues/12045
2025-06-11 13:53:16 +02:00
2679bec6e0 ruby : add cleaning of library names in dependencies (#3241)
* ruby : add cleaning of library names in dependencies

This commit adds a cleaning step to the library names in the
`Dependencies` class of the Ruby bindings.

The motivation for this is that with the introduction of a library name
alias for ggml in Commit (b933d17c30
"Add in-build ggml::ggml ALIAS library (ggml/1260)) causes the Makefile
generation to break:
```console
$ sed -n '165,170p' ext/Makefile
CLEANOBJS     = $(OBJS) *.bak
TARGET_SO_DIR_TIMESTAMP = $(TIMESTAMP_DIR)/.sitearchdir.time
$(TARGET_SO): libcommon.a libwhisper.a libggml\n(ggml::ggml).a libggml-cpu.a libggml-base.a
libcommon.a libwhisper.a libggml\n(ggml::ggml).a libggml-cpu.a libggml-base.a: cmake-targets
cmake-targets:
	/usr/bin/cmake -S sources -B build -D BUILD_SHARED_LIBS=OFF -D CMAKE_ARCHIVE_OUTPUT_DIRECTORY=/home/danbev/work/ai/whisper.cpp/bindings/ruby/ext -D CMAKE_POSITION_INDEPENDENT_CODE=ON
```

* squash! ruby : add cleaning of library names in dependencies

Apply PR review feedback.
2025-06-10 15:06:40 +02:00
93d543905e ggml : fix weak alias win32 (#0)
ggml-ci
2025-06-10 12:40:33 +03:00
962361bd79 android : fix builds (#0)
ggml-ci
2025-06-10 12:40:33 +03:00
dbe81c1042 sync : ggml
ggml-ci
2025-06-10 12:40:33 +03:00
175e7e4f1a files : remove old sources (part 2) 2025-06-10 12:40:33 +03:00
56475d01dc sync : ggml
ggml-ci
2025-06-10 12:40:33 +03:00
38347a7dda files : remove old sources 2025-06-10 12:40:33 +03:00
db264d6220 talk-llama : sync llama.cpp
ggml-ci
2025-06-10 12:40:33 +03:00
96eaf46ec6 sync : ggml
ggml-ci
2025-06-10 12:40:33 +03:00
7a675807a2 metal : use less stack memory in FA kernel (llama/14088)
* metal : use less stack memory in FA kernel

ggml-ci

* cont : fix BF16 variant
2025-06-10 12:40:33 +03:00
8cbc889f85 ggml-cpu : split arch-specific implementations (llama/13892)
* move ggml-cpu-aarch64 to repack

* split quantize_row_q8_0/1

* split helper functions

* split ggml_vec_dot_q4_0_q8_0

* split ggml_vec_dot_q4_1_q8_1

* split ggml_vec_dot_q5_0_q8_0

* split ggml_vec_dot_q5_1_q8_1

* split ggml_vec_dot_q8_0_q8_0

* split ggml_vec_dot_tq1_0_q8_K

* split ggml_vec_dot_tq2_0_q8_K

* split ggml_vec_dot_q2_K_q8_K

* split ggml_vec_dot_q3_K_q8_K

* split ggml_vec_dot_q4_K_q8_K

* split ggml_vec_dot_q5_K_q8_K

* split ggml_vec_dot_q6_K_q8_K

* split ggml_vec_dot_iq2_xxs_q8_K

* split ggml_vec_dot_iq2_xs_q8_K

* split ggml_vec_dot_iq2_s_q8_K

* split ggml_vec_dot_iq3_xxs_q8_K

* split ggml_vec_dot_iq3_s_q8_K

* split ggml_vec_dot_iq1_s_q8_K

* split ggml_vec_dot_iq1_m_q8_K

* split ggml_vec_dot_iq4_nl_q8_0

* split ggml_vec_dot_iq4_xs_q8_K

* fix typos

* fix missing prototypes

* rename ggml-cpu-quants.c

* rename ggml-cpu-traits

* rename arm folder

* move cpu-feats-x86.cpp

* rename ggml-cpu-hbm

* update arm detection macro in quants.c

* move iq quant tables

* split ggml_quantize_mat_q8_0/K

* split ggml_gemv_*

* split ggml_gemm_*

* rename namespace aarch64 to repack

* use weak aliases to replace test macros

* rename GGML_CPU_AARCH64 to GGML_CPU_REPACK

* rename more aarch64 to repack

* clean up rebase leftover

* fix compilation errors

* remove trailing spaces

* try to fix clang compilation errors

* try to fix clang compilation errors again

* try to fix clang compilation errors, 3rd attempt

* try to fix clang compilation errors, 4th attempt

* try to fix clang compilation errors, 5th attempt

* try to fix clang compilation errors, 6th attempt

* try to fix clang compilation errors, 7th attempt

* try to fix clang compilation errors, 8th attempt

* try to fix clang compilation errors, 9th attempt

* more cleanup

* fix compilation errors

* fix apple targets

* fix a typo in arm version of ggml_vec_dot_q4_K_q8_K

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-06-10 12:40:33 +03:00
e16a84cd95 cuda : fix device sync on buffer clear (llama/14033) 2025-06-10 12:40:33 +03:00
26282282fa CANN: Simplify the environment variable setting(#13104)
* Simplify the environment variable setting to specify the memory pool type.

* Adjust the GGML_CANN_ASYNC_MODE setting to accept yes, enable, 1, or on (case-insensitive) as valid options.

* update

* fix CI

* update

* delete whitespace

* fix according to review

* update CANN.md

* update CANN.md
2025-06-10 12:40:33 +03:00
4737a8c780 sycl: Add reorder to Q6_K mmvq implementation (llama/13885)
* Add Reorder to Q6_K mmvq implementation

* Address PR comments: clean up comments

* Remove unused parameter after refactoring q4_k

* Adding inline to function and removing unnecessary reference to int

---------

Signed-off-by: nscipione <nicolo.scipione@codeplay.com>
2025-06-10 12:40:33 +03:00
8a70f4d18b cuda : fix buffer type check with integrated GPUs (llama/14069) 2025-06-10 12:40:33 +03:00
489dc158a6 SYCL: Implement few same quantized type copy kernels (llama/13739)
* SYCL: Implement few same quantized type copy kernels

* Use memcpy for copying contiguous tensors

ggml-ci

* feat(sycl): add contiguous tensor copy support and device checks

Adds a memcpy path for contiguous tensors of the same type to optimize data transfer. Updates device support checks to recognize contiguous tensor operations, improving compatibility and performance.

* refactor: replace specific block copy functions with template

The changes replace multiple redundant block copy functions (e.g., cpy_block_q8_0_q8_0, cpy_block_q5_0_q5_0) with a single templated function cpy_blck_q_q. This reduces code duplication by using a generic template that works for any block type, improving maintainability while preserving the same functionality. The template is instantiated with specific block types (e.g., block_q8_0) where needed.

* Exclude BF16 support for COPY tensors for now
ggml-ci

* perf: adjust SYCL copy kernel block sizes for efficiency

Use ceil_div to ensure full element coverage and update nd_range parameters to better align with SYCL block sizes, improving parallelism and device utilization in copy operations.
2025-06-10 12:40:33 +03:00
f0f5a9f7fb vulkan: Enable VK_KHR_cooperative_matrix extension for Intel Xe2 GPUs (llama/14001)
* allowing B580 and U9-288V

* experimenting code to detect Xe2

* allowing coopmat only for Xe2 GPUs

* fixed comment wording

* fixed comment wording

* removed unnecessary driver check
2025-06-10 12:40:33 +03:00
13a03c5d33 llama : allow using mmap without PrefetchVirtualMemory, apply GGML_WIN_VER to llama.cpp sources (llama/14013) 2025-06-10 12:40:33 +03:00
6dd91d4f7e vulkan: automatically deduce size of push constants (llama/13936) 2025-06-10 12:40:33 +03:00
5171b24f70 ggml-vulkan: adds support for op CONV_TRANSPOSE_1D (llama/13813)
* * ggml-vulkan: adds op CONV_TRANSPOSE_1D

* test-backend-ops: adds more spohisticated tests for CONV_TRANSPOSE_1D

* Missing barrier added to shader.
Number of additional tests reduced to 108.

* * Fixes typo in variable name.

* Removes extra whitespaces.

* Adds int64->int32 casts to prevent possible warnings.

* Problem size reduced in tests to pass tests with llvmpipe.

* supports_op condition moved from unintended position
2025-06-10 12:40:33 +03:00
23e2fe0682 releases : use dl backend for linux release, remove arm64 linux release (llama/13996) 2025-06-10 12:40:33 +03:00
7f4d110f53 CUDA: fix FTZ in FA for Gemma 3 (llama/13991) 2025-06-10 12:40:33 +03:00
ee0ef39fee vulkan: fix warnings in perf logger querypool code (llama/13937) 2025-06-10 12:40:33 +03:00
62791ba2e6 opencl: add backend_synchronize (llama/13939)
* This is not needed by the normal use where the result is read
  using `tensor_get`, but it allows perf mode of `test-backend-ops`
  to properly measure performance.
2025-06-10 12:40:33 +03:00
e16ef08884 OpenCL: Add concat, tsembd, upscale, tanh, pad and repeat (llama/13840)
* add concat, pad, repeat, tsembd, tanh, upscale

* small fixes
2025-06-10 12:40:33 +03:00
c72d3ce935 metal : use F32 accumulators in FA kernels (llama/13975)
ggml-ci
2025-06-10 12:40:33 +03:00
126aeb4a49 cmake : Handle mixed-case 'Power' strings in POWER CPU detection (llama/13966)
Some systems report the CPU implementation as "Power11" instead of "POWER11".
The existing CMake logic uses a case-sensitive regular expression to extract
the CPU generation, which fails when the casing doesn't exactly match "POWER".

This patch provides a fix by first converting the string to uppercase before applying the regex.

Signed-off-by: root <root@rheldb2v.pperf.tadn.ibm.com>
Co-authored-by: root <root@rheldb2v.pperf.tadn.ibm.com>
2025-06-10 12:40:33 +03:00
ef2a79d2b8 sycl: quantize and reorder the input to q8_1 when reorder is enabled (llama/13826)
* [WIP]: fuse q8 quantization and reorder

* wip2: fuse q8 quantization and reorder

* working q8 reorder commit

* restored common.hpp

* remove debug prints

* remove unnecessary headers and remove trailing whitespace

* Update ggml/src/ggml-sycl/ggml-sycl.cpp

Co-authored-by: Alberto Cabrera Pérez <alberto.cabrera@intel.com>

---------

Co-authored-by: Alberto Cabrera Pérez <alberto.cabrera@intel.com>
2025-06-10 12:40:33 +03:00
9589645e72 gguf: fix failure on version == 0 (llama/13956) 2025-06-10 12:40:33 +03:00
20f913d119 ggml: check if non-native endian model is being loaded (llama/13943)
* gguf: prevent non-native endian models from being loaded

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* gguf: update error message

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* gguf: make the non-native endian check more verbose

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: move ggml_assert location

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: reword the endianness check error message

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

---------

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2025-06-10 12:40:33 +03:00
b933d17c30 Add in-build ggml::ggml ALIAS library (ggml/1260)
Enable uniform linking with subproject and with find_package.
2025-06-10 12:40:33 +03:00
fbead67549 ruby : output format (#3237)
* Fix a typo

* Don't allocate output string unless needed

* Add methods to output SRT and WebVTT

* Add tests for output methods

* Make constants for output private

* Add signatures for output methods

* Add document on output methods

* Fix method name: Segment#speaker_next_turn? -> #speacker_turn_next?

* Add Whisper::Segment#descotruct_keys

* Add test for Whisper::Context#descotruct_keys

* Add signature of Whisper::Segment#deconstruct_keys

* Use parentheses to suppress warning

* Update date
2025-06-10 06:10:17 +02:00
d78f081423 ci : build and publish main-intel image (#3231) 2025-06-09 06:42:53 +02:00
b175baa665 docker : add main-intel dockerfile (#3229) 2025-06-06 05:30:02 +02:00
799eacdde4 ruby : Add parallel transcription support (#3222)
* Fix indentation of code sample in document comment

* Make Whisper::Context#transcribe able to run non-parallel

* Add test for Whisper::Context#transcribe with parallel option

* Follow signature API change of Context#transcribe

* Remove useless variable assignment

* Move simple usage up in README

* Add need help section in README

* Add document on Context#transcribe's parallel option in README

* Update date

* Fix signature of Context.new

* Make Context#subscribe accept n_processors option

* Make test follow #transcribe's change

* Make RBS follow #transcribe's change

* Add document for #transcribe's n_processors option

* Rename test directory so that Rake tasks' default setting is used
2025-06-04 14:50:18 +09:00
82f461eaa4 ci : add mirror for ports.ubuntu.com (ARM packages) (#3221)
This commit updates the build workflow to replace `ports.ubuntu.com`
with `mirror.kumi.systems` in the apt sources list for ARM64 builds.

The motivation for this change is intended to improve package download
reliability and speed by using a more stable mirror for ARM64 packages.
2025-06-03 07:56:58 +02:00
269dad68a2 bindings.java : apply whisperParams in fullTranscribeWithTime instead of ignoring them (#3201)
This pull request fixes a bug in the fullTranscribeWithTime method, where the whisperParams argument was declared but never used. As a result, the model did not apply the configuration defined in whisperParams.
2025-06-03 06:15:21 +02:00
121d27a495 musa: correct MUSA SDK rc4.0.1 download URL (#3217)
* musa: correct MUSA SDK rc4.0.1 download URL

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* Fix typo

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

---------

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-06-03 06:02:12 +02:00
e05af2457b ci : use mirrors.kernel.org for Ubuntu packages (#3220)
This commit updates the ubuntu jobs to use mirrors sites instead of archive.ubuntu.com.

The motivation of this is an attempt to make the CI build more stable and avoid errors like:
https://github.com/ggml-org/whisper.cpp/actions/runs/15384056535/job/43291948394?pr=3217
2025-06-02 16:46:40 +02:00
b505539670 node : add language detection support (#3190)
This commit add support for language detection in the Whisper Node.js
addon example. It also updates the node addon to return an object
instead of an array as the results.

The motivation for this change is to enable the inclusion of the
detected language in the result, in addition to the transcription
segments.

For example, when using the `detect_language` option, the result will
now be:
```console
{ language: 'en' }
```

And if the `language` option is set to "auto", it will also return:
```console
{
  language: 'en',
  transcription: [
    [
      '00:00:00.000',
      '00:00:07.600',
      ' And so my fellow Americans, ask not what your country can do for you,'
    ],
    [
      '00:00:07.600',
      '00:00:10.600',
      ' ask what you can do for your country.'
    ]
  ]
}
```
2025-06-02 14:58:05 +02:00
7fd6fa8097 talk-llama : sync llama.cpp
ggml-ci
2025-06-01 15:14:44 +03:00
3f46282cbe sync : ggml
ggml-ci
2025-06-01 15:14:44 +03:00
1e16340f4b threading: support for GGML_SCHED_PRIO_LOW, update thread info on Windows to avoid throttling (llama/12995)
* threading: support for GGML_SCHED_PRIO_LOW, update thread info on Windows to avoid throttling

We talked about adding LOW priority for GGML threads in the original threadpool PR.
It might be useful for some cases to avoid contention.

Latest Windows ARM64 releases started parking (offlining) the CPU cores
more aggresively which results in suboptimal performance with n_threads > 4.
To deal with that we now disable Power Throttling for our threads for the NORMAL
and higher priorities.

Co-authored-by: Diego Devesa <slarengh@gmail.com>

* threading: disable SetThreadInfo() calls for older Windows versions

* Update tools/llama-bench/llama-bench.cpp

Co-authored-by: Diego Devesa <slarengh@gmail.com>

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-06-01 15:14:44 +03:00
4a50254998 CUDA: add a prop in ggml_cuda_device_infor for distinguish iGPU or dGPU in cuda (#13856) (llama/13895)
* 1.  add "integrated" in ggml_cuda_device_info for distinguish whether it is Intergrate_gpu or discrete_gpu
2. Adjust the func:"ggml_backend_cuda_device_supports_buft" for this new feature

* Update ggml/src/ggml-cuda/ggml-cuda.cu

Adjusted code indentation

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Update ggml/src/ggml-cuda/ggml-cuda.cu

Fixed incorrect setting of variable types

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Update ggml/src/ggml-cuda/ggml-cuda.cu

Adjusted the judgment logic

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* add a host_buft assert in case of integrated_cuda_device with func:'evaluate_and_capture_cuda_graph()'

* Update ggml/src/ggml-cuda/ggml-cuda.cu

Add a defensive security assert

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Update ggml/src/ggml-cuda/ggml-cuda.cu

Adjusted the support judgment logic.

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* revoke the suggest commit changes due to it's not applicable in jetson_device

* Update ggml/src/ggml-cuda/ggml-cuda.cu

Add parentheses to enforce operator precedence​

Co-authored-by: Diego Devesa <slarengh@gmail.com>

* Update ggml/src/ggml-cuda/ggml-cuda.cu

Fix ci bug: add a spaces

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

---------

Co-authored-by: yangxiao <yang_xl@tju.edu.cn>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: yangxiao <yangxl_zz@qq.com>
Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-06-01 15:14:44 +03:00
a5aff28198 CUDA: fix typo in FlashAttention code (llama/13926) 2025-06-01 15:14:44 +03:00
6c0472ab8f sched : avoid changing cur_copy when a graph is already allocated (llama/13922) 2025-06-01 15:14:44 +03:00
b14cee184a cuda : prevent using split buffers with 3d/4d matrices (llama/13919) 2025-06-01 15:14:44 +03:00
f7f92d0aab SYCL: Add mrope kernel (llama/13755)
* SYCL: Add mrope kernel

* feat: Optimize rope operations with vectorization

Uses `sycl::vec` to load and store two elements at a time,
significantly improving performance in `rope_norm`,
`rope_neox`, and `rope_multi`. This reduces the number of memory
accesses and leverages SIMD instructions for faster execution.

* Use ceil_div
2025-06-01 15:14:44 +03:00
1893359cfd cmake: Guard GGML_CPU_ALL_VARIANTS by architecture (llama/13890) 2025-06-01 15:14:44 +03:00
ea643c6ae3 arm64: optimize q4_k_q8_k kernel with i8mm (llama/13886)
This PR improves q4_k_q8_k gemm kernel with arm64 i8mm instruction.

Tested on neoverse-n2 with llama3 8b q4_k_m quantization model.
- 34% ~ 50% S_PP uplift for all batch sizes
- 12% ~ 37% S_TG uplift for batch size 4 and above

Perplexity doesn't change with this PR.

```
// tested on neoverse-n2
$ llama-batched-bench \
      -m Meta-Llama-3-8B-Instruct-Q4_K_M.gguf \
      --no-mmap -fa \
      -c 8192 -b 4096 -ub 512 -npp 128 -ntg 128 \
      -npl 1,2,4,8,16,32 \
      -t 64

---------------------------------------------------------------------
|    PP |     TG |    B |       S_PP t/s      |       S_TG t/s      |
|       |        |      | original |  this pr | original |  this pr |
|-------|--------|------|----------|----------|----------|----------|
|   128 |    128 |    1 |   110.12 |   147.83 |    24.36 |    24.28 |
|   128 |    128 |    2 |   121.16 |   172.42 |    46.36 |    47.93 |
|   128 |    128 |    4 |   120.15 |   169.75 |    74.68 |    84.00 |
|   128 |    128 |    8 |   130.97 |   196.81 |    91.04 |   114.74 |
|   128 |    128 |   16 |   131.01 |   196.88 |   101.43 |   135.79 |
|   128 |    128 |   32 |   130.85 |   196.51 |   106.97 |   147.29 |
---------------------------------------------------------------------
```
2025-06-01 15:14:44 +03:00
1d7b3c79f4 cmake: Factor out CPU architecture detection (llama/13883)
* cmake: Define function for querying architecture

The tests and results match exactly those of src/CMakeLists.txt

* Switch arch detection over to new function
2025-06-01 15:14:44 +03:00
ccfaac2bb0 ggml: aarch64: Implement SVE F32 kernels for Mamba Sequential Scan Algorithm (llama/13882)
* F32-Mamba-Seq_Scan-SVE

* Fix formatting

* ggml : missing space

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-06-01 15:14:44 +03:00
1230d37bca ggml: aarch64: Implement SVE F32 kernels for vector functions (llama/13843)
* F32-Mamba-SVE

* F32-Mamba-SVE

* Resolve test errors-1

* Resolve test errors-2

* F32-vec-SVE

* F32-vec-SVE

* F32-vec-SVE
2025-06-01 15:14:44 +03:00
9a500394ad CUDA: fix FA tg at long context for CC >= 8.9 (llama/13852) 2025-06-01 15:14:44 +03:00
0035b8527c CANN: Add SOC TYPE printing in cmake configuration (llama/13837) 2025-06-01 15:14:44 +03:00
3623186312 opencl: add new ops - argsort, div, sub, addrows, sigmoid, group_norm (llama/13787)
* opencl: add `argsort`

* opencl: add `div`

* opencl: add `add_rows`

* opencl: add `sub`

* opencl: add `sigmoid`, both `f16` and `f32`

* opencl: add `group_norm`
2025-06-01 15:14:44 +03:00
67beac47f3 opencl: mark mul_mat f32f32 as supporting non-contiguous tensors (llama/13790) 2025-06-01 15:14:44 +03:00
47a19bae25 vulkan: use timestamp queries for GGML_VULKAN_PERF (llama/13817)
Also change it to be controlled by an env var rather than cmake flag
2025-06-01 15:14:44 +03:00
3d5c7ca4bc SYCL: add gelu_erf kernel (llama/13749)
* SYCL: add gelu_erf kernel

* refactor code

Co-authored-by: Atharva Dubey <atharva.dubey@codeplay.com>

* Use scope_op_debug_print

---------

Co-authored-by: Atharva Dubey <atharva.dubey@codeplay.com>
2025-06-01 15:14:44 +03:00
4dfb2c2215 ggml : add ggml_repeat_4d (llama/13824) 2025-06-01 15:14:44 +03:00
ad433403ce vulkan : Remove unexpected ; (ggml/1253) 2025-06-01 15:14:44 +03:00
4064dd6484 cmake : Fix broken CMake error messages (ggml/1252) 2025-06-01 15:14:44 +03:00
fd75c4995b ggml : remove ggml_graph_import and ggml_graph_export declarations (ggml/1247)
The implementation is already deleted with commit 9d0762e.

closes: #1235
2025-06-01 15:14:44 +03:00
0251445005 ruby : add Core ML support (#3214)
* Prevent overflow

* Fix memsize of Whisper::Context

* Rename xxx_initialize to more Ruby-esque name: xxx_s_new

* Define Whisper::Model::ZipURI

* Define Whisper::Model.coreml_compiled_models

* Make Options' @cmake_options Hash

* Use --{enable,disable}-whisper-coreml option for -I/opt/homebrew/opt/llvm/include

* Prepare Core ML model if enabled

* Add test for ZipURI

* Add signatures for ZipURI

* Add Whisper.system_info_str

* Add test for Whisper.system_info_str

* Add signagure for Model.coreml_compiled_models

* Add signature for Whisper.system_info_str

* Add test for Core ML

* Update date

* Maintain .gitignore
2025-06-01 18:16:02 +09:00
98dfe8dc26 vad : revisit timestamp alignment/mapping (#3173)
* vad : revisit timestamp alignment/mapping

This commit improving the timestamp alignment by introducing a mapping
table, adding intermediate reference points for longer segments, and
binary search for lookups.

The motivation for this changes is to address issues with the currently
solution where zero-length segments are possible, and also to improve
the precision of the VAD timestamps.

Refs: https://github.com/ggml-org/whisper.cpp/issues/3162

* vad : use uint64_t for time mapping

This commit changes the type of the `processed_time` and `original_time`
fields in the `vad_time_mapping` struct from `double` to `uint64_t`.

The motivation for this change is made to improve precision and avoid
floating-point inaccuracies and also be consistent with other part of
the code base that use `uint64_t` for time representation.

This is a part of a refactoring where I'm also going to change the
vad_segment_info struct to use `uint64_t` for the start and end times.
This is the reason for the not so pleasant conversion and casts in the
code at the moment.

* vad : change vad_segment_info and whisper_vad_segment to use uint64_t

* vad : use int64_t instead of uint64_t for timestamps

To be consistent with other timestamps in the codebase.

* vad : add centisecond conversion functions

* vad : extract vad processing from whisper_full_with_state

This commit extracts the VAD processing from the
`whisper_full_with_state` function into the `whisper_full` and
`whisper_full_parallel` functions.

The motivation for this is that I did not take into account that when
`whisper_full_parallel` is called with `n_processors > 1`, then the
vad processing would not be applied correctly. Instead the VAD
processing should be done prior to processing in the case of
`whisper_full_parallel`.

* vad : remove filtered_n_samples from whisper_vad

The commit removes the parameter `filtered_n_samples` from the
`whisper_vad` function signature and its usage, as it is no longer
needed since filtered samples is now a vector (previously it was a
float*)

The motivation for this is to simplify the usage of this function.

* vad : remove vad_mapping_table_initialized flag

* vad : fix leaning (none) of pointer/references
2025-05-30 06:28:46 +02:00
e5e900dd00 ruby : handle build options on installation (#3206)
* Don't pass empty string to cmake command

* Refactor Dependencies

* Use found cmake path for options

* Maintain extsources.rb

* List dependent files by directory separator agnostic way

* Prepend whitespace before '='

* Handle build options on install

* Remove useless test

* Retrieve gem file name and version from spec file

* Bump version to 1.3.3

* Update date

* Add install option examples

* [skip ci]Remove unused module
2025-05-30 01:32:49 +09:00
4d18e52f55 ggml : Fix backtrace breaking Windows build (#3203) 2025-05-29 13:26:58 +03:00
ca890f566f sync : ggml
ggml-ci
2025-05-29 09:56:26 +03:00
48dddbbac1 ggml : install dynamic backends (ggml/1240) 2025-05-29 09:56:26 +03:00
5ea2c37a4c ggml : Print backtrace on uncaught C++ exceptions (ggml/1232)
The goal is to have what users call "full logs" contain the backtrace.

This is registered upon ggml_init. Also fixes a minor fd leak on Linux.
2025-05-29 09:56:26 +03:00
73a8c5fb94 whisper : remove whisper_load_backends function (#3196)
* whisper : remove whisper_load_backends function

This commit removes the `whisper_load_backends` function, which was used
to load all GGML backends.

The motivation for this change push the responsibility of loading
backends to user applications to give them more control over which
backends to load and when. See the references below for more context.

Resolves: https://github.com/ggml-org/whisper.cpp/issues/3182
Refs: https://github.com/ggml-org/whisper.cpp/pull/3042#issuecomment-2801778733
Refs: https://github.com/ggml-org/whisper.cpp/pull/3042#issuecomment-2801928990

* ruby : add check for rwc is NULL

This commit adds a check to ensure that the `rwc` pointer is not NULL
before attempting to mark its members in the garbage collector.

The motivation for this is an attempt to see if this fixed the CI build
as I'm not able to reproduce the issue locally.

Refs: https://github.com/ggml-org/whisper.cpp/actions/runs/15299612277/job/43036694928?pr=3196
2025-05-29 08:03:17 +02:00
1f5fdbecb4 ruby : add VAD support, migration to Ruby's newer API (#3197)
* Add VAD models

* Extract function to normalize model path from ruby_whisper_initialize()

* Define ruby_whisper_vad_params struct

* Add VAD-related features to Whisper::Params

* Add tests for VAD-related features

* Define Whisper::VADParams

* Add Whisper::VAD::Params attributes

* Add test suite for VAD::Params

* Make older test to follow namespace change

* Add test for transcription with VAD

* Add assertion for test_vad_params

* Add signatures for VAD-related methods

* Define VAD::Params#==

* Add test for VAD::Params#==

* Fix Params#vad_params

* Add test for Params#vad_params

* Fix signature of Params#vad_params

* Use macro to define VAD::Params params

* Define VAD::Params#initialize

* Add tests for VAD::Params#initialize

* Add signature for VAD::Params.new

* Add documentation on VAD in README

* Wrap register_callbask in prepare_transcription for clear meanings

* Set whisper_params.vad_params just before transcription

* Don't touch NULL

* Define ruby_whisper_params_type

* Use TypedData_XXX for ruby_whisper_params instead of Data_XXX

* Remove unused functions

* Define rb_whisper_model_data_type

* Use TypedData_XXX for ruby_whisper_model instead of Data_XXX

* Define ruby_whisper_segment_type

* Use TypedData_XXX for ruby_whisper_segment instead of Data_XXX

* Define ruby_whisper_type

* Use TypedData_XXX for ruby_whisper instead of Data_XXX

* Qualify with const
2025-05-28 20:05:12 +09:00
5720426d97 whisper : install shared libs when using GGML_BACKEND_DL (#3195) 2025-05-28 10:15:04 +02:00
b9d27b1358 tests : add a new benchmark test for long-form audio (#3185)
* tests : add a new benchmark test for long-form audio

Based on "Earnings-21" corpus by Del Rio et al.

    Earnings-21: A Practical Benchmark for ASR in the Wild (2021)
    https://arxiv.org/abs/2104.11348

This dataset contains 39 hours of long-form speech, sourced from public
earning calls. Each recording contains roughly 50 minutes of English
dialogues between multiple speakers (2-20 persons).

This benchmark suite should allow us to evaluate the performance of
whisper.cpp on long-form audio data.

Signed-off-by: Fujimoto Seiji <fujimoto@ceptord.net>

* tests : apply PR feedback to 'earnings21/README.md'

Based on feedback from Daniel Bevenius.

 - Simplify how to download & prepare a Silero VAD model.
 - Fix typo: inferece -> inference

Signed-off-by: Fujimoto Seiji <fujimoto@ceptord.net>

* tests : avoid crashing on non-UTF-8 characters

Based on feedback from Daniel Bevenius.

Add 'errors' parameter to open() in order to avoid unhandled
exception on invalid UTF-8 bytes.

Signed-off-by: Fujimoto Seiji <fujimoto@ceptord.net>

* tests : try to interpret the hypothesis as Windows-1252

Based on the discussion in PR#3185.

Evidently Whisper.cpp can represent a quotation mark as '0x93', which
implifies Windows-1252 (Microsoft's ASCII excention), and cannot be
decoded by UTF-8.

Add an explicit decoding loop to address the issue.

Signed-off-by: Fujimoto Seiji <fujimoto@ceptord.net>

---------

Signed-off-by: Fujimoto Seiji <fujimoto@ceptord.net>
2025-05-28 07:08:44 +02:00
0ed00d9d30 ci : update windows-blas uploads action (#3192)
This commit modifies windows-blas which was updated previously to use
the zip functionality provided by `actions/upload-artifact`. This turned
out to be incorrect and I should not have done that. The reason for
zipping the archives first is that otherwise the artifacts when
downloaded will be unzipped and just be simple directories. In our case
the release task depends on the artifacts having a .zip extension so
that those archives are include in the release.
2025-05-27 18:01:31 +02:00
527fe6aaeb sync : fix builds - musa, ruby 2025-05-27 18:03:00 +03:00
26eb48cb08 talk-llama : sync llama.cpp
ggml-ci
2025-05-27 18:03:00 +03:00
546928c33f sync : ggml
ggml-ci
2025-05-27 18:03:00 +03:00
15ae9dc2a4 ggml : riscv: add xtheadvector support (llama/13720)
* ggml : riscv: add xtheadvector support

* ggml : clean up some macro usage
2025-05-27 18:03:00 +03:00
2e7a1e3e43 ggml-cpu: x86 feature detection is specific to x86 (llama/13811) 2025-05-27 18:03:00 +03:00
b75babebb2 ggml : allow CUDA graphs when using pipeline parallelism (llama/13814) 2025-05-27 18:03:00 +03:00
cc7a0105ef cuda : avoid cuGetErrorString (llama/13791)
ggml-ci
2025-05-27 18:03:00 +03:00
195fde8804 SYCL: Add non contiguous support in RMS_NORM and NORM kernels (llama/13611)
* SYCL: Add non contiguous input support to norm kernel

* refactor and add RMS_NORM non contiguous input support

ggml-ci

* restore subgroup reduction for multi-subgroup thread blocks in norm kernels

* Swap grid dims of nsamples and nrows

ggml-ci

* Revert "Swap grid dims of nsamples and nrows"

This reverts commit 43be2d657fec7f7fba54e2cd154106bc0fc45adf.

* restore not required changes
ggml-ci

* address review comments: change it to more like SYCL

* Use a common function to calculate offset

* remove wrap around logic for handling broadcasts

* remove static from calculate_offset fn and use ceil_div
2025-05-27 18:03:00 +03:00
25e27904ca sycl: Add more debug prints (llama/13640) 2025-05-27 18:03:00 +03:00
474f7be8b6 vulkan: mark IM2COL as supporting non-contig (llama/13783) 2025-05-27 18:03:00 +03:00
e35fecc2a1 CANN: Add the basic supports of Flash Attention kernel (llama/13627)
* cann: add the basic FA support

* cann: update the readme

* cann: update the FlashAttention with PSEShift

* cann: update the input parameters in FA

* cann: update the alibi with max_bias

* cann: add the constrints of softcap

* cann: update the docs CANN.md

* cann: update the docs CANN.md

* cann: fix typo of CANN.md

* cann: add some comments and update the CANN.md

* cann: update the CANN.md

* cann: update the inner precise for fusedInferAttention

* cann: update the constraints of flash_attn_ext on ggml-cann.cpp

* cann: clean the whitespace

* cann: clean the whitespace

* cann: add a new endline
2025-05-27 18:03:00 +03:00
1cd7028428 SYCL: revert "sycl: simplify bin_bcast_kernel (ggml/13383)" (llama/13752)
Temporarily reverted due to failing fp16 DIV operation

This reverts commit 02cdd2d8b092b5a4bb18e013c6887ce49ba20ac5.

ggml-ci
2025-05-27 18:03:00 +03:00
99596d6031 ggml-cpu : set openmp wait time if not set (llama/13758) 2025-05-27 18:03:00 +03:00
2d6c6862f7 ggml : add ggml_gelu_erf() CUDA kernel (llama/13719)
* ggml : add ggml_gelu_erf() CUDA kernel

* missing semicolon
2025-05-27 18:03:00 +03:00
f1576b2659 CUDA: fix race condition in FA vector kernels (llama/13742) 2025-05-27 18:03:00 +03:00
994b4f86ab CANN: Support MUL_MAT_ID for q8_0 and q4_0 (llama/13705)
* [CANN]Support MUL_MAT_ID Q8 && Q4

Signed-off-by: noemotiovon <757486878@qq.com>

* codestyle adjustment

Signed-off-by: noemotiovon <757486878@qq.com>

---------

Signed-off-by: noemotiovon <757486878@qq.com>
2025-05-27 18:03:00 +03:00
3e7eaccf55 ggml : fix the order of ggml_unary_op (llama/13718) 2025-05-27 18:03:00 +03:00
191f040414 vulkan: support CPY from any type to itself (llama/13695)
Reuse the f16/f32 copy shaders, and just scale the number of elements
according to the type size.
2025-05-27 18:03:00 +03:00
2d49d4a9b5 vulkan: Disable coopmat/coopmat2/bfloat extensions if glslc doesn't support it (llama/13696) 2025-05-27 18:03:00 +03:00
000d65befb use LOG_WARN to replace std::cerr (llama/13657) 2025-05-27 18:03:00 +03:00
f0803e6646 sycl : Remove waits from function calls (llama/13702)
* removes the waits in async memcpy functions
2025-05-27 18:03:00 +03:00
730a00be8a SYCL: Avoid using with SYCL-Graph for unsupported nodes (llama/13587)
Currently on a CUDA backend to SYCL when running
`GGML_SYCL_DISABLE_GRAPH=0 ./bin/test-backend-ops -b SYCL0` there
are two operations that throw an exception from the blocking
waits during queue recording.

* `-o CONCAT` : Use of blocking waits on a queue that's being recorded https://github.com/ggml-org/llama.cpp/blob/master/ggml/src/ggml-sycl/concat.cpp#L185-L187
* `-o MUL_MAT_ID`: Blocking wait on a recording queue for a copy to host memory https://github.com/ggml-org/llama.cpp/blob/master/ggml/src/ggml-sycl/ggml-sycl.cpp#L3072-L3074

We've noticed that `ggml-cuda.cu` has the
[check_node_graph_compatibility_and_refresh_copy_ops](39e73ae0d6/ggml/src/ggml-cuda/ggml-cuda.cu (L2458-L2458))
method for checking if a graph can be used, even if enabled. I've taken a
similar approach in this PR by adding a method to `ggml-sycl.cpp` for checking
if a graph can be used for the operations even if a user has asked for it to be
enabled.
2025-05-27 18:03:00 +03:00
316600e8ee opencl: Add support for multiple devices (llama/12622)
* opencl: Add support for multiple devices

... but limited to one platform. A platform with a GPU will be preferred.

Additionally:

* Filter out devices that lack capabilities needed by the backend
  implementation (half support, OpenCL 2.0+, etc).

* Make ggml_backend_opencl_reg() thread-safe.

* fixup: fix an error in sync_with_other_backends

... when there is only one OpenCL device available.
2025-05-27 18:03:00 +03:00
42f2b3bb65 opencl: fix couple crashes (llama/12795)
* opencl: fix couple crashes

* fix kernel launches failed on devices which do not support
  non-uniform work-groups. When non-uniform work-groups are not
  supported, set `local_work_size` to NULL (= let driver choose the
  work-group sizes). This patch does not cover everything - just the
  cases tested by test-backend-ops.

* fix sub-buffer creation failed due to `cl_buffer_region::origin` not
  being aligned to `CL_DEVICE_MEM_BASE_ADDR_ALIGN`.

* OpenCL: query non-uniform WG sizes only on OpenCL 3.0+
2025-05-27 18:03:00 +03:00
dd6ef64060 ggml : add ggml_gelu_erf() (llama/13667)
* ggml : add ggml_gelu_na (not approximated)

* fix naming order

* rename na --> erf

* apply review suggesions

* revert naming order
2025-05-27 18:03:00 +03:00
131ee546ca musa: Upgrade MUSA SDK version to rc4.0.1 and use mudnn::Unary::IDENTITY op to accelerate D2D memory copy (llama/13647)
* musa: fix build warning (unused parameter)

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* musa: upgrade MUSA SDK version to rc4.0.1

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* musa: use mudnn::Unary::IDENTITY op to accelerate D2D memory copy

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* Update ggml/src/ggml-cuda/cpy.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* musa: remove MUDNN_CHECK_GEN and use CUDA_CHECK_GEN instead in MUDNN_CHECK

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

---------

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-05-27 18:03:00 +03:00
Eve
4712f7b663 vulkan: fix warnings (llama/13626)
* small fixes

* remove ifdef
2025-05-27 18:03:00 +03:00
926fe234e9 CUDA: skip fully masked-out KV in FA vec kernel (llama/13584)
* CUDA: skip fully masked-out KV in FA vec kernel
2025-05-27 18:03:00 +03:00
f44b53480f sycl: disable reorder for sycl mulmat (llama/13536) 2025-05-27 18:03:00 +03:00
e04e8f1c79 metal : fix typo in FA kernel comments (llama/13651) 2025-05-27 18:03:00 +03:00
ee3f177cba sycl : Overcoming workaround for mmap() allocation on Windows (llama/13482)
* Remove mmap workaround on windows

After some testing I found that mmap is supported on windows and for
many GPUs on Linux. Therefore I remove the workaround for windows since
it is not necessary.

* Update llama-bench README

SYCL backend introduced a workaround that allows execution of
llama-bench also without specifying `--mmp 0` flag
2025-05-27 18:03:00 +03:00
0b69f74e15 Vulkan: Add f32 accumulator support to quantized mul mat to fix GLM4 32B incoherence (llama/13607) 2025-05-27 18:03:00 +03:00
e415db0ed7 sync : ggml 2025-05-27 18:03:00 +03:00
2bb7694edb docs : convert README_sycl.md to utf8 format [no ci] (#3191)
This commit updates the README_sycl.md file to use UTF-8 encoding.

The motivation for this is that while this file displays correctly in
github it will fail to render with tools that expect UTF-8 encoding.
For example this is the case when using `grip` to view the file locally.
2025-05-27 10:53:50 +02:00
450de0787e node : enable no_prints to suppress all output (#3189)
This commit enable the node addon to suppress all output, even the
result of the transcription if the no_prints parameter is set to true.

The motivation for this is that for the node addon there is a
fullfilment handler/success callback to process the transcription
result. And it might be useful to be able to disable the printing of
the transcription result to the console, so that the user can handle
the result in their own way.

Refs: https://github.com/ggml-org/whisper.cpp/issues/3176
2025-05-27 05:51:47 +02:00
ea9f206f18 talk-llama : fix for swedish umlauts + expose model inference settings in talk-llama.cpp (#3187)
Quick fix for not removing swedish umlauts.

* Update talk-llama.cpp

Expose model inference settings to user instead of hard coding them. Same defaults as previous defaults.

* Update examples/talk-llama/talk-llama.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-05-26 07:57:39 +02:00
13d92d08ae docs : fix VAD section heading levels (#3186) 2025-05-23 10:38:26 +02:00
aab6976465 ci : use dynamic libopenblas.dll for window-blas (#3177)
* ci : use dynamic libopenblas.dll for window-blas

This commit updates the windows-blas job to use the dynamic (can load
different kernels depending of the CPU arch) libopenblas.dll instead of
the "static" openblas.dll that get installed by vcpgk.

The motivation for this change is that there have been reports of
performance drops in later version specifically related to blas. Please
see the links below for more details.

Resolves: https://github.com/ggml-org/whisper.cpp/issues/3166
Refs: https://github.com/ggml-org/whisper.cpp/issues/2666#issuecomment-2885978811
2025-05-23 05:48:08 +02:00
78b31ca782 server : Add k6 Load Testing Script (#3175)
* add load testing script and update README for k6 integration
2025-05-22 10:03:04 +02:00
cbe557f9b1 docs : add VAD model download instructions [no ci] (#3180) 2025-05-22 07:49:29 +02:00
273af4aab9 docs : replace typo "]"with ")" in README (#3179) 2025-05-22 05:49:44 +02:00
bd1cb0c8e3 whisper : remove redundant assignments (#3178)
This commit removes some redundant assignments in the function
`whisper_exp_compute_token_level_timestamps`.

The motivations for this is that tokens[j] and token are references to
the same object and this can be a little confusing when reading the
code.
2025-05-21 13:23:20 +02:00
62dc8f7d7b whisper : update CMakeLists.txt to handle deprecated gpu Warnings (#3163)
* Fix CMakeLists.txt to handle deprecated gpu Warnings

* Conditionally apply -Wno-deprecated-gpu-targets only when GGML_CUDA is enabled

* Conditionally apply -Wno-deprecated-gpu-targets only when GGML_CUDA is enabled and not MSVC

---------

Co-authored-by: Jugal Sheth <jugal.sheth@marineai.co.uk>
2025-05-20 11:58:25 +02:00
2c4b904596 ruby : add GGML_SYCL_DNN option to ruby bindings (#3172)
This commit adds the `GGML_SYCL_DNN` option to the Ruby bindings for
the GGML library. This option as added to ggml in
Commit (5e7e07758a5f3172380500e173ca71f679bbef1e "sycl: use oneDNN for
matrices multiplication")

The motivation for this change to enable the CI build to pass.
2025-05-19 17:59:43 +02:00
6b6cf19c65 talk-llama : sync llama.cpp
ggml-ci
2025-05-19 14:58:39 +03:00
05501c218d sync : ggml
ggml-ci
2025-05-19 14:58:39 +03:00
9da3fc27be CANN: Support MOE Model MUL_MAT_ID (llama/13042)
Signed-off-by: noemotiovon <757486878@qq.com>
2025-05-19 14:58:39 +03:00
2c13651e08 cmake: use the current build config for vulkan-shaders-gen (llama/13595)
* fix: use the current build config for `vulkan-shaders-gen`

* fix: only pass a valid build type to `--config`
2025-05-19 14:58:39 +03:00
13dca86c56 vulkan: move common FA code to flash_attn_base.comp (llama/13556)
* vulkan: move common FA code to flash_attn_base.comp

* vulkan: move common FA index/stride setup code to flash_attn_base.comp

* build fix
2025-05-19 14:58:39 +03:00
6d61a09bc4 vulkan: use scalar FA rather than coopmat2 when N==1 (llama/13554) 2025-05-19 14:58:39 +03:00
4fedad988b metal : add FA-vec kernel for head size 64 (llama/13583)
ggml-ci
2025-05-19 14:58:39 +03:00
a8e17a244d sycl : fixed compilation warnings (llama/13582) 2025-05-19 14:58:39 +03:00
0c76acd08a gguf : use ggml log system (llama/13571)
* gguf : use ggml log system

* llama : remove unnecessary new lines in exception messages
2025-05-19 14:58:39 +03:00
27964db1be sycl: simplify bin_bcast_kernel (llama/13383) 2025-05-19 14:58:39 +03:00
8081e7a23d sycl: reordered Q4_K MMVQ (llama/13109) 2025-05-19 14:58:39 +03:00
d807c497a4 sycl: use oneDNN for matrices multiplication (llama/12972) 2025-05-19 14:58:39 +03:00
8e9bf548f4 arm64: optimize q6_k_q8_k kernel with i8mm (llama/13519)
This PR improves q6_k_q8_k gemm kernel with arm64 i8mm instruction.

Tested on neoverse-n2 with llama3 8b q6_k quantization model.
- 40% ~ 54% S_PP uplift for all batch sizes
- 16% ~ 47% S_TG uplift for batch size 4 and above

Perplexity doesn't change with this PR.

```
// tested on neoverse-n2
$ llama-batched-bench \
      -m Meta-Llama-3-8B-Instruct-Q6_K.gguf \
      --no-mmap -fa \
      -c 8192 -b 4096 -ub 512 -npp 128 -ntg 128 \
      -npl 1,2,4,8,16,32 \
      -t 64

---------------------------------------------------------------------
|    PP |     TG |    B |       S_PP t/s      |       S_TG t/s      |
|       |        |      | original |  this pr | original |  this pr |
|-------|--------|------|----------|----------|----------|----------|
|   128 |    128 |    1 |    78.52 |   109.18 |    18.63 |    18.88 |
|   128 |    128 |    2 |    84.62 |   123.94 |    34.54 |    36.92 |
|   128 |    128 |    4 |    84.36 |   122.49 |    52.65 |    61.32 |
|   128 |    128 |    8 |    90.52 |   138.87 |    63.46 |    84.41 |
|   128 |    128 |   16 |    90.11 |   138.56 |    71.04 |   101.33 |
|   128 |    128 |   32 |    89.81 |   137.79 |    75.14 |   110.47 |
---------------------------------------------------------------------
```
2025-05-19 14:58:39 +03:00
0dda27bc0b CUDA: fix crash on large batch size for quant. MoE (llama/13537) 2025-05-19 14:58:39 +03:00
ffa4720f25 CUDA: faster Deepseek FA, add Turing support (llama/13435) 2025-05-19 14:58:39 +03:00
9b8eea28b5 cmake: simplify vulkan shader test logic (llama/13263) 2025-05-19 14:58:39 +03:00
162bbe8220 vulkan: KHR_coopmat flash attention (llama/13506)
This shader uses coopmat1 to do the Q*K^T multiply. The P*V multiply is more
difficult for various reasons so I haven't done it. Performance for this
shader is around 2.5x better than for the scalar shader when doing prompt
processing. Some of the benefit may be from other optimizations like staging
through shared memory, or splitting by rows.
2025-05-19 14:58:39 +03:00
a221288dc6 vulkan: workaround FA compile failures on macos (llama/13517) 2025-05-19 14:58:39 +03:00
08436716ae metal : use FA-vec kernel up to batch size 20 (llama/13496)
* batched-bench : fix pp batch contents

* metal : optimize multi-sequence FA vec kernel

ggml-ci

* metal : use FA-vec kernel up to batch size 20

ggml-ci
2025-05-19 14:58:39 +03:00
e11fc21e6c metal : optimize multi-sequence FA vec kernel (llama/13493)
* batched-bench : fix pp batch contents

* metal : optimize multi-sequence FA vec kernel

ggml-ci
2025-05-19 14:58:39 +03:00
a77a924b20 ggml-cpu: Update KleidiAI to v1.6 and fix include directives (llama/13509)
Signed-off-by: Dan Johansson <dan.johansson@arm.com>
2025-05-19 14:58:39 +03:00
405b9c77ad mnist: fix segmentation fault (ggml/1227) 2025-05-19 14:58:39 +03:00
9c3bfc1499 ggml : fix apple OS check in ggml_print_backtrace (ggml/1229) 2025-05-19 14:58:39 +03:00
5b7797f674 ggml : Fix missing backtrace on Linux (ggml/1228)
* Modern Linux defaults /proc/sys/kernel/yama/ptrace_scope to 1
* Fixed lldb attach
* Simplify by having the child do ggml_print_backtrace_symbols
2025-05-19 14:58:39 +03:00
82ad275800 examples : add vad-speech-segments to win warns [no ci] (#3170)
The commit includes the vad-speech-segments in the disable msvc warnings
"list".
2025-05-19 12:17:18 +02:00
d1f114da61 vad : return early if no vad segments are detected (#3158)
This commit adds a check to `whisper_full_with_state` and if no VAD
segments are detected, the function will return early.

The motivation for this is that if no VAD segments are detected, the
function will not have any samples to process which can happen if an
audio sample does not contain any speech. I did not test this previously
and only discovered this when updating the stream example.
2025-05-16 08:50:53 +02:00
bae5d074c7 vad : store VAD context in whisper_state (#3156)
* vad : store VAD context in whisper_state

This commit stores the VAD context in the whisper_state structure,
allowing for better management and reuse of the VAD context across
multiple calls to the whisper_vad function.

The motivation for this change is that when updating the stream example
I noticed that the VAD context was being re-initialized every time the
whisper_vad function was called. This involved loading the VAD model
which is expensive and unnecessary if the context can be reused.

Storing this in the whisper_state seems follow the pattern simliar to
how whisper_coreml_context and whisper_openvion_context are stored.

* vad : free vad_context in whisper_free_state
2025-05-16 07:53:26 +02:00
20a20decd9 whisper : add build_*/ to .gitignore [no ci] (#3157)
This commit add `build_*/` to `.gitignore` to ignore all build
directories that start with `build_`.

The motivation for this is that the Go bindings creates a directory
named build_go, which is not ignored by the current .gitignore. I was
not sure if changing this to build-go could effect exising users so I
opted to update .gitignore instead.
2025-05-15 14:28:10 +02:00
f389d7e3e5 examples : add --print-confidence option to cli (#3150)
* examples : add --print-confidence option to cli

This commit adds a new command-line option `--print-confidence` to the
whisper-cli. When enabled, this option prints the confidence level of each
token in the transcribed text using ANSI formatting codes.

The confidence levels are represented using different styles:
```console
main: confidence: highlighted (low confidence), underlined (medium), dim (high confidence)
```

Refs: https://github.com/ggml-org/whisper.cpp/issues/3135
2025-05-14 19:21:48 +02:00
96d791ae61 vad : add download-vad-model scripts (#3149)
* vad : add download-vad-model scripts

This commit adds a script to download VAD models.

* vad : add vad model download script for windows [no ci]

Refs: https://github.com/ggml-org/whisper.cpp/issues/3146
2025-05-14 16:47:18 +02:00
3882a099e1 server : add --flash-attn usage output (#3152)
This commit adds the `--flash-attn` option to the usage output of the
server example.

The motivation for this change is that while it is possible to set this
option it is not printed in the usage output.
2025-05-14 15:22:05 +02:00
f890560575 talk-llama : sync llama.cpp
ggml-ci
2025-05-13 13:59:21 +03:00
a14c89aefa whisper : update to ggml-backend changes (#0)
ggml-ci
2025-05-13 13:59:21 +03:00
a6a956b36d sync : ggml
ggml-ci
2025-05-13 13:59:21 +03:00
75e9a840c5 ggml : add mrope kernel for metal (llama/13457) 2025-05-13 13:59:21 +03:00
41ed62bdbc metal : optimize MoE for large batches (llama/13388) 2025-05-13 13:59:21 +03:00
029c8837f8 opencl: remove unnecessary assert for add (llama/13257) 2025-05-13 13:59:21 +03:00
5d8b068249 llama/ggml: add LLM training support (llama/10544)
* llama/ggml: add LLM training support

more compact progress bar

llama_save_model_to_file

llama_opt_param_filter

ggml_graph_dup force_grads

refactor ggml_opt, fix test-opt

* remove logits_all

* refactor CUDA implementation for ACC

* reset graph at beginning of opt period
2025-05-13 13:59:21 +03:00
93ef22657e ggml-cpu: Integrate fp32=bf16xbf16 SME KleidiAI kernel (llama/13053)
* ggml-cpu: Integrate fp32=bf16xbf16 SME KleidiAI kernel

Signed-off-by: Dan Johansson <dan.johansson@arm.com>

* * code review fixes

Signed-off-by: Dan Johansson <dan.johansson@arm.com>

* * adds a comment that clarifies barrier usage

Signed-off-by: Dan Johansson <dan.johansson@arm.com>

---------

Signed-off-by: Dan Johansson <dan.johansson@arm.com>
Co-authored-by: Charles Xu <charles.xu@arm.com>
2025-05-13 13:59:21 +03:00
866f685bbc CUDA: fix misaligned synchronization in FA (llama/13469) 2025-05-13 13:59:21 +03:00
250bcc041a enable dpcpp nightly builds with libraries (llama/13406) 2025-05-13 13:59:21 +03:00
90b17a99bf CUDA: fix crash with partial offloading of MoE (llama/13439) 2025-05-13 13:59:21 +03:00
e1b2ace0f8 Add --no-op-offload to improve -ot pp perf in MoE models like llama4 400B (llama/13386) 2025-05-13 13:59:21 +03:00
6db0e01db6 CUDA: fix race conditions FlashAttention kernels (llama/13438) 2025-05-13 13:59:21 +03:00
16f3546f38 CUDA: fix FlashAttention on Turing (llama/13415) 2025-05-13 13:59:21 +03:00
a04b329ad1 vulkan: scalar flash attention implementation (llama/13324)
* vulkan: scalar flash attention implementation

* vulkan: always use fp32 for scalar flash attention

* vulkan: use vector loads in scalar flash attention shader

* vulkan: remove PV matrix, helps with register usage

* vulkan: reduce register usage in scalar FA, but perf may be slightly worse

* vulkan: load each Q value once. optimize O reduction. more tuning

* vulkan: support q4_0/q8_0 KV in scalar FA

* CI: increase timeout to accommodate newly-supported tests

* vulkan: for scalar FA, select between 1 and 8 rows

* vulkan: avoid using Float16 capability in scalar FA
2025-05-13 13:59:21 +03:00
45d8b2352e sycl : implementation of reordered Q4_0 MMVQ for Intel GPUs (llama/12858)
* sycl : Implemented reorder Q4_0 mmvq

Signed-off-by: Alberto Cabrera <alberto.cabrera@codeplay.com>

* sycl : Fixed mmvq being called when reorder is disabled

* sycl : Improved comments in the quants header

Signed-off-by: Alberto Cabrera <alberto.cabrera@codeplay.com>

* Use static_assert

* safe_div -> ceil_div

* Clarify qi comment

* change the reorder tensor from init to execute OP

* dbg

* Undo changes to test-backend-ops

* Refactor changes on top of q4_0 reorder fix

* Missing Reverts

* Refactored opt_for_reorder logic to simplify code path

* Explicit inlining and unroll

* Renamed mul_mat_algo enum for consistency

---------

Signed-off-by: Alberto Cabrera <alberto.cabrera@codeplay.com>
Co-authored-by: romain.biessy <romain.biessy@codeplay.com>
2025-05-13 13:59:21 +03:00
2d436bfbfb CUDA: FA support for Deepseek (Ampere or newer) (llama/13306)
* CUDA: FA support for Deepseek (Ampere or newer)

* do loop unrolling via C++ template
2025-05-13 13:59:21 +03:00
4b7cbb62ef CUDA: fix crash on large batch size for MoE models (llama/13384) 2025-05-13 13:59:21 +03:00
e27c91f6d6 rpc : add rpc_msg_set_tensor_hash_req (llama/13353)
* rpc : add rpc_msg_set_tensor_hash_req

Use a dedicated struct for the request of RPC_CMD_SET_TENSOR_HASH which
makes the code cleaner.

* fix
2025-05-13 13:59:21 +03:00
e46df4850f vulkan: Allow up to 4096 elements for mul_mat_id row_ids (llama/13326)
This assert fired running Qwen_Qwen3-30B-A3B-Q2_K.gguf:

GGML_ASSERT(nei0 * nei1 <= 3072);

The tensor is 8 x 512. Increase this array size to accommodate.
2025-05-13 13:59:21 +03:00
e8a7f1b7bb sycl: addressing non-contiguous src1 mul_mats (nc and batched) (llama/13343)
* sycl: fixed non-contiguous src1 mul_mats (nc and batched)

* Fixed wrong static_cast inside kernel
2025-05-13 13:59:21 +03:00
fbad8058c4 examples : add VAD speech segments example (#3147)
This commit adds an example that demonstrates how to use a VAD (Voice
Activity Detection) model to segment an audio file into speech segments.

Resolves: https://github.com/ggml-org/whisper.cpp/issues/3144
2025-05-13 12:31:00 +02:00
b2513a6208 vad : remove shortform for --vad option in cli.cpp (#3145)
This commit removes the shortform for the --vad option in cli.cpp.

The motivation for this is that `-v` is often used for verbose or
version is many tools and this might cause confusion.

Refs: https://github.com/ggml-org/whisper.cpp/pull/3065#issuecomment-2873243334
2025-05-13 06:04:05 +02:00
587ea01f55 docs : update README.md for whisper.objc app (#2569) 2025-05-13 06:03:50 +02:00
e41bc5c61a vad : add initial Voice Activity Detection (VAD) support (#3065)
* vad : add initial Voice Activity Detection (VAD) support

This commit add support for Voice Activity Detection (VAD). When enabled
this feature will process the audio input and detect speech segments.
This information is then used to reduce the number of samples that need
to be processed by whisper_full.

Resolves: https://github.com/ggml-org/whisper.cpp/issues/3003

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-05-12 16:10:11 +02:00
e39ba750cd whisper : remove dummy commit comment [no ci] (#3143)
This commit removes a dummy comment that was add by
Commit(589b408 "ci : dummy commit to trigger CI").
2025-05-12 14:40:17 +02:00
db0fc9edc6 docs : fix -owts flag typo karaoke section [no ci] (#3142) 2025-05-12 10:56:39 +02:00
186855e38b cli : print color scheme info for --print-colors (#3141)
This commit adds a description of the color scheme used in the CLI
when the --print-colors option is enabled.

The motivation for this is that it is not immediately clear what the
color scheme is when using the CLI with the --print-colors option.

Example output:
```console
$ ./build/bin/whisper-cli -f samples/jfk.wav --print-colors
...

main: color scheme: red (low confidence), yellow (medium), green (high confidence)

[00:00:00.000 --> 00:00:11.000]   And so my fellow Americans, ask not what your country can do for you, ask what you can do for your country.
```
The description will not be dispayed if the `--no-prints` options is
set.

Refs: https://github.com/ggml-org/whisper.cpp/issues/3135
2025-05-12 10:43:04 +02:00
a513146102 docs : update Readme to recommend same Openvino as Python tools (#3138) 2025-05-12 09:06:51 +02:00
4730950492 examples : update link to Paul Tol's color scheme [no ci] (#3140)
This commit updates the link to Paul Tol's color scheme in the
`examples/common.h` file. The previous link was outdated and
pointed to a non-existent page.
2025-05-12 09:02:06 +02:00
9dd9685c79 ruby : test extra build options only when env var specified (#3136)
* Test Ruby bindings' extra options only when commanded

* ruby : test extra build options only when env var specified

* Fix extra_options

* Update gem date
2025-05-12 06:49:46 +02:00
2e310b841e ruby : omit test_build_options locally (#3132)
This commit omits the test for `test_build_options` when run locally as
it currently fails on Linux and MacOS platforms.
`
The motivation for this change is that currently when running the tests
locally on a non-macOS platform the test fails with the following error:
```console
.F
========================================================================
Failure: test_build_options(TestPackage):
  <["ACCELERATE_FRAMEWORK",
   "CMAKE_OSX_ARCHITECTURES",
   "CMAKE_OSX_SYSROOT",
   "FOUNDATION_LIBRARY",
   "METALKIT_FRAMEWORK",
   "METAL_FRAMEWORK"]> was expected to be empty.
/home/danbev/work/ai/whisper.cpp/bindings/ruby/tests/test_package.rb:43:in `test_build_options'
     40:     options = BuildOptions::Options.new
     41:     assert_empty options.missing_options
     42:     unless ENV["CI"]
  => 43:       assert_empty options.extra_options
     44:     end
     45:   end
     46: end
========================================================================
```
2025-05-10 08:18:08 +02:00
5d4390d281 examples : add HEAPU8 to all of the exported runtime methods (#3134)
This commit adds HEAPU8 to the list of exported methods.

The motivation for this commit is that currently this is causing an error on Window systems where HEAPU8 in undefined, which results in the following error message in the web console:

main.js:1 Uncaught TypeError:
Cannot read properties of undefined (reading 'buffer') at __emval_get_property
(main.js:1:1363125) at 003a453a:0xc4a47 at 003a453a:0xc51cd at
Object.full_default (eval at craftInvokerFunction (main.js:1:1347011),
<anonymous>:9:10) at whisper.cpp/:647:42

danbev originally fixed this for whisper.wasm, stream.wasm, and command.stream, but the issue still exists on the other examples which I patch in this code.

Resolves: #3059
2025-05-10 06:44:13 +02:00
9791647653 wasm : add note about worker.js file generation [no ci] (#3133)
This commit updates the documentation for the WASM examples to include a
note about the generation of the `worker.js` file. As of Emscripten
3.1.58 (April 2024), separate worker.js files are no longer generated
and the worker is embedded in the main JS file.

The motivation for this change is to inform users about the new behavior
of Emscripten and why the `worker.js` file may not be present.

Refs: https://github.com/ggml-org/whisper.cpp/issues/3123
2025-05-09 15:42:45 +02:00
288304ee64 whisper : deprecate WHISPER_CCACHE CMake option (#3131)
* whisper : deprecate WHISPER_CCACHE CMake option

This commit deprecates the WHISPER_CCACHE CMake option in favor of
the GGML_CCACHE option.

The motivation for this change is that currently when setting, or not
setting WHISPER_CCACHE, the outut message from ggml will be that to
enable ccache you need to set GGML_CCACHE which can be confusing.
This also seems to be inline with what llama.cpp does which does not
have a LLAMA_CCACHE option as far as I know.

Resolves: https://github.com/ggml-org/whisper.cpp/issues/3063

* ruby : change "WHISPER_CCACHE" to "GGML_CCACHE"

* ruby : move GGML_CCACHE to sorted position
2025-05-09 14:13:41 +02:00
b6f3fa4059 stream.wasm : add HEAPU8 to exported runtime methods (#3130)
* stream.wasm : add HEAPU8 to exported runtime methods

This commit adds HEAPU8 to the list of exported methods for stream.wasm.

The motivation for this is that without it HEAPUD8 will be undefined
and when its 'buffer' attribute is accessed this will cause error as
reported in the referenced issue.

Note that to test this make sure that the web browsers caches is cleared
first.

Resolves: https://github.com/ggml-org/whisper.cpp/issues/3123

* command.wasm : add HEAPU8 to exported runtime methods
2025-05-08 16:58:34 +02:00
cb2bd11ee8 sync : ggml
ggml-ci
2025-05-07 21:00:32 +03:00
09e6b66025 cuda : remove nrows_x in mul_mat_q_process_tile (llama/13325)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-05-07 21:00:32 +03:00
d41cf26a0f CUDA: mix virt/real CUDA archs for GGML_NATIVE=OFF (llama/13135) 2025-05-07 21:00:32 +03:00
3c67195be9 SYCL: Disable reorder optimize by default and stop setting tensor extras when optimize is disabled (llama/13254)
* SYCL: Do not set tensor extras when reorder optimize is disabled

* SYCL: Disable reorder optimize by default
2025-05-07 21:00:32 +03:00
f9f78a773f CUDA: fix bad asserts for partial offload (llama/13337) 2025-05-07 21:00:32 +03:00
be55e25cac CUDA: fix --split-mode row for MMQ (llama/13323) 2025-05-07 21:00:32 +03:00
2ffdda99e8 CUDA: fix logic for clearing padding with -ngl 0 (llama/13320) 2025-05-07 21:00:32 +03:00
9bbedc51cc SYCL: Disable mul_mat kernels for noncontiguous tensor b (llama/13308)
ggml-ci
2025-05-07 21:00:32 +03:00
1e1fa27add rpc : use backend registry, support dl backends (llama/13304) 2025-05-07 21:00:32 +03:00
e1bdd148c5 ggml : activate s390x simd for Q3_K (llama/13301)
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2025-05-07 21:00:32 +03:00
7fa8bb303f CUDA: fix race condition in MMQ stream-k fixup (llama/13299) 2025-05-07 21:00:32 +03:00
7564f5e6f1 CUDA: fix race condition in MMQ ids_dst (llama/13294) 2025-05-07 21:00:32 +03:00
22ba2e27ce vulkan: Additional type support for unary, binary, and copy (llama/13266)
Support f16->f32 copy.
Support f16->f16 and f32->f32 unary ops.
Support all combinations of f16/f32 for src0/src1/dst for add/sub/mul/div.
2025-05-07 21:00:32 +03:00
0676b2dab2 ci : add bindings-java jar artifact to release (#3126)
This commit adds the jar artifact from bindings java to the release
process.
2025-05-07 16:26:54 +02:00
4a512cb153 cli : avoid std::exchange
ggml-ci
2025-05-07 15:39:32 +03:00
76171ce199 sync : ggml
ggml-ci
2025-05-07 15:39:32 +03:00
5eac2a3fbb vulkan : fix lint (llama/0) 2025-05-07 15:39:32 +03:00
42938398f9 ggml : Enable MMA for BF16 in llamafile_sgemm (llama/13148)
This patch upstreams llamafile's cpu matrix multiplication kernels for ppc64le using MMA builtins for BF16 data type.

This change results in 9x - 40x gains
in total speed S t/s (ie all tokens/total time), across various batch sizes tested using llama-batched-bench benchmark.

The patch is tested with Meta-Lllama-3-8B,
and Mistral-7B models (BF16 models generated by using llama-quantize from corresponding FP32 models) on an IBM POWER10 machine.

Signed-off-by: Shalini Salomi Bodapati <Shalini.Salomi.Bodapati@ibm.com>
2025-05-07 15:39:32 +03:00
a8fe90ae15 rpc : avoid uninitialized memory in serialize_tensor (llama/13210)
Zero out the name and padding buffers.
2025-05-07 15:39:32 +03:00
c5a5a2da5b ggml: Don't assert fail when tensor data changes (llama/13222)
The following scenario will cause an assertion failure in the graph
allocator:
 - Build and allocate a graph containing a tensor with a non-NULL data
   pointer
 - Build and allocate a new graph where that data is NULL

Result:
ggml-alloc.c:819: GGML_ASSERT(talloc->buffer_id >= 0) failed

This happens during revalidation because we think that memory should
have been previously allocated based on the current graph but in
reality the previous graph was different. In this situation, we
should do a full reallocation pass.
2025-05-07 15:39:32 +03:00
8316bfd82b build : fix build info on windows (llama/13239)
* build : fix build info on windows

* fix cuda host compiler msg
2025-05-07 15:39:32 +03:00
fd1cb9fc12 vulkan: Add bfloat16 support (llama/12554)
* vulkan: Add bfloat16 support

This adds bfloat16 matrix multiply support based on VK_KHR_shader_bfloat16.
The extension is required for coopmat multiply support, but matrix-vector
multiply trivially promotes bf16 to fp32 and doesn't require the extension.
The copy/get_rows shaders also don't require the extension.

It's probably possible to fall back to non-coopmat and promote to fp32 when
the extension isn't supported, but this change doesn't do that.

The coopmat support also requires a glslc that supports the extension, which
currently requires a custom build.

* vulkan: Support bf16 tensors without the bf16 extension or coopmat support

Compile a variant of the scalar mul_mm shader that will promote the bf16
values to float, and use that when either the bf16 extension or the coopmat
extensions aren't available.

* vulkan: bfloat16 fixes (really works without bfloat16 support now)

* vulkan: fix spirv-val failure and reenable -O
2025-05-07 15:39:32 +03:00
17f6b8225e vulkan: Handle src1 batch dimension in non-contiguous mat-vec-mul shader (llama/13191)
* vulkan: Handle src1 batch dimension in non-contiguous mat-vec-mul shader
2025-05-07 15:39:32 +03:00
6374ea32ca vulkan : kernels for depthwise 2D convolution (CONV_2D_DW) (ggml/1204)
* vulkan : add kernels for depthwise 2d convolution (OP_CONV_2D_DW)

* review: remove src_x/y < 0 checks; add performance tests
2025-05-07 15:39:32 +03:00
3a66f9f248 ci : zip windows artifacts for release uploading (#3124)
This commit adds steps to the windows jobs to zip and upload
artifacts produced.

The motivation for this is that currently the artifacts are not zipped
which means that will not be picked up by the release job and hence not
be included in github releases.

Resolves: https://github.com/ggml-org/whisper.cpp/issues/3119
2025-05-07 13:12:08 +02:00
9b584b0cc0 ci : add zip extension to xcframework artifact name (#3120)
This commit add the .zip extension to the xcframework artifact name in
the GitHub Actions workflow.

The motivation for this that the release job will look for .zip files
and will not find the xcframework artifact without the extension, and
hence will not upload it to the release.
2025-05-07 12:02:29 +02:00
09846f4e12 whisper: remove MSVC warnings pragmas (#3090)
* ggml : remove MSVC warnings pragmas

This commit removes the MSVC-specific pragmas as these are now handled
in CMakeLists.txt.

* whisper : remove MSVC warning pragmas

This commit removes the MSVC-specific pragmas. These are now handled in
the CMakeLists.txt file.
2025-05-05 13:09:35 +02:00
bcf1ed0163 server: update abort mechanism to handle HTTP connection closure (#3112) 2025-05-05 07:16:54 +02:00
934d4b3083 cli : support "-" for stdout like stdin (#3050)
This changes examples/cli/cli.cpp to be like
examples/common-whisper.cpp. "-of -" can be specified (or this can be
inferred from "-" as the input file) to output to stdout. This is useful
for piping to other applications.

Log fname_out consistently when not stdout
- Terminals have stdout=stderr, so remove the message before
  successful output to ease copying
- Don't affect actual error messages
- Move opening the ofstream into the factory, fixing missing
  open and/or error messages in output_score/output_wts
- Fix struct naming convention

Closes #3048
2025-05-05 07:15:39 +02:00
988dcd4b5b docs : Update cli documentation (#3102)
* docs : Update cli documentation

This updates the documentation of cli based on the actual output

In the longterm this should ideally be auto generated to prevent mismatch

* docs : Update cli documentation

This updates the documentation of cli based on the actual output

In the longterm this should ideally be auto generated to prevent mismatch
2025-05-02 14:18:33 +02:00
9f540ad8cb cmake : removed stdc++fs (#3097)
* removed stdc++fs

* kept line, but removed stdc++fs
2025-05-02 12:41:35 +03:00
1fa17bc752 server : update httplib.h to version 0.20.0 (#3101) 2025-05-02 06:09:41 +02:00
366082d072 ruby : refine HTTP cache feature (#3109)
* Use cache file when model host doesn't support if-modified-since

* Update gem date

* Revert "ruby : ignore "Downloading" output in test_log_suppress (#3106)"

This reverts commit edbd4cb7f5.
2025-05-01 23:04:53 +09:00
0778b6ff5f talk-llama : sync llama.cpp
ggml-ci
2025-05-01 13:29:02 +03:00
5cd59c9396 sync : ggml 2025-05-01 13:29:02 +03:00
d052e64d42 CUDA: batched+noncont MMQ, refactor bs>1 MoE code (llama/13199) 2025-05-01 13:29:02 +03:00
780750a108 vulkan: use uint array index to avoid glslang bug (llama/13193) 2025-05-01 13:29:02 +03:00
919c78e618 ggml : fix ppc64le build (llama/13176)
Build fails with compilation error on power pc.
This patch fixes the same.

Tested with unit tests run via
 --build <build_dir> && cd <build_dir> && make test

Signed-off-by: Shalini Salomi Bodapati <Shalini.Salomi.Bodapati@ibm.com>
2025-05-01 13:29:02 +03:00
dc288f84cd feat(ggml-cpu): enable z17 compile (llama/13182)
z17 compilation requires GCC 15.1.0 and onwards

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2025-05-01 13:29:02 +03:00
1543a3600c CUDA: fix non-cont. inputs for batched mat mul (llama/13155) 2025-05-01 13:29:02 +03:00
4872355f6e fix(rpc): Improve input validation and error handling (llama/13069)
* fix(rpc): Improve input validation and error handling

The `rpc-server` was vulnerable to Denial of Service attacks via
several RPC commands (`SET_TENSOR`, `GRAPH_COMPUTE`, etc.). Malformed
messages could trigger failed assertions (e.g., invalid `ggml_type`)
or out-of-bounds reads/writes leading to `GGML_ABORT` calls,
crashing the server process.

This PR introduces robust input validation and replaces `abort()`
calls with graceful error handling:

- **Type Validation:** `deserialize_tensor` now checks if the
  `tensor->type` is within the valid `GGML_TYPE_COUNT` range
  *before* calling `ggml_new_tensor_4d`. Returns `nullptr` on
  invalid type.
- **Bounds Checks:** Replaced `GGML_ABORT` in `set_tensor`,
  `set_tensor_hash`, and `get_tensor` handlers with error
  logging and returning `false` when data/offset parameters
  are out of buffer bounds.
- **Size Checks:** Added safe arithmetic checks (for overflow) in
  `graph_compute` when calculating required message sizes based
  on client-provided `n_nodes` and `n_tensors`. Returns early
  if the reported sizes conflict with the actual message size or
  would lead to overflow.
- **Error Propagation:**
    - `create_node` now checks for `nullptr` return values from
      `deserialize_tensor` and its recursive calls, propagating
      `nullptr` upwards on failure. Uses `find` instead of `at`
      for safer map access.
    - `copy_tensor` now checks for `nullptr` from `deserialize_tensor`
      and sets the response status to failure if deserialization
      or bounds checks fail.
    - `graph_compute` now checks for `nullptr` return from
      `create_node` and returns failure status correctly. The final
      return value now reflects the actual computation status.

These changes improve the RPC server's resilience
against malformed client requests, preventing crashes and ensuring
errors are handled more gracefully.

Signed-off-by: Ville Vesilehto <ville@vesilehto.fi>

* refactor(rpc): address pr comments

removed comments and unnecessary returns

Signed-off-by: Ville Vesilehto <ville@vesilehto.fi>

* refactor(rpc): ambiguous nullptr from create_node

rpc_server::create_node could previously return nullptr if the input ID
was 0 (valid) or if an internal error (deserialization, recursion
failure) occurred (invalid). This ambiguity made error handling
difficult for the caller (`graph_compute`).

This commit clarifies the meaning of nullptr:
- `graph_compute` now checks if the input 'id' was non-zero when
  `create_node` returns nullptr, correctly identifying failures
  versus intentional null links.
- `create_node` avoids recursive calls for zero IDs and propagates
  nullptr unambiguously on failure during recursion.

Signed-off-by: Ville Vesilehto <ville@vesilehto.fi>

* refactor(rpc): initial zero check in create_node

The caller (`graph_compute`) already checks `id != 0` when handling
a `nullptr` return from `create_node`, correctly distinguishing
intentional null links from actual errors. This makes the initial
`if (id == 0)` check redundant.

Also removes the log message when a tensor ID is not found in the
provided map which was added in this branch.

Signed-off-by: Ville Vesilehto <ville@vesilehto.fi>

* fix(rpc): Handle get_alloc_size failure in server

Check the return value of `server.get_alloc_size` in the RPC server
loop. If the call fails, return early to close the connection.

Signed-off-by: Ville Vesilehto <ville@vesilehto.fi>

* refactor(rpc): input size validation in graph_compute

Removes detailed, step-by-step size calculations and overflow
checks in favor of simpler direct comparisons, assuming 64-bit
overflow is unlikely.

Signed-off-by: Ville Vesilehto <ville@vesilehto.fi>

* refactor(rpc): remove extra status code setting

Removes the explicit setting of `response.result = GGML_STATUS_FAILED`
when `create_node` returns `nullptr` within `graph_compute`.
Primary signal is the `false` return value in case of failure.

Signed-off-by: Ville Vesilehto <ville@vesilehto.fi>

* refactor(rpc): remove redundant check for tensor->type

Breaks CI on ubuntu-cpu-make. Tensor type is uint32_t, thus
the check is not needed.

Signed-off-by: Ville Vesilehto <ville@vesilehto.fi>

---------

Signed-off-by: Ville Vesilehto <ville@vesilehto.fi>
2025-05-01 13:29:02 +03:00
1a76e97c28 SYCL: Add all missing unary kernels (llama/13074)
* SYCL: Add all missing unary kernels

ggml-ci

* decouple kernel launch range from data size using strided loop

* use ciel_div helper for num_blocks
ggml-ci

* clean auto imported header files
2025-05-01 13:29:02 +03:00
7017c1d37d musa: fix typo in cc control (llama/13144)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-05-01 13:29:02 +03:00
670bf02662 CUDA: fix q_nope_absorbed prec for DS 2 Lite f16 (llama/13137) 2025-05-01 13:29:02 +03:00
9fff2f751c musa: fix build warning (llama/13129)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-05-01 13:29:02 +03:00
SXX
46392f733f ggml: move fp16/bf16 conversion optimizations to CPU backend + export conversion APIs (llama/13107)
* ggml: dynamic x86_64 feature detection for FP32 <-> FP16/BF16 conversion

* move fp converter to ggml-cpu

* Switch ggml_compute_forward_get_rows_f16/bf16 to new ggml_cpu_fp16/bf16_to_fp32
2025-05-01 13:29:02 +03:00
eeb259909e change the reorder tensor from init to execute OP (llama/13003) 2025-05-01 13:29:02 +03:00
fe21ddf0dc rpc : do not wait for response when sending RPC_CMD_SET_TENSOR (llama/12943)
RPC_CMD_SET_TENSOR always returns an empty response and we send this 4
times per token. We can improve TG speed if we don't wait for this empty
response.

The performance impact of this change depends on the network latency.
2025-05-01 13:29:02 +03:00
33bdbfbb33 ggml : fix ggml_gallocr_ptr type (ggml/1205) 2025-05-01 13:29:02 +03:00
0f49edf0f3 whisper : add check that target name exists (#3103)
This commit adds a check to makes sure that the target exists before
trying to add compile options to ignore warnings when using MSVC.

The motivation for this is currently the build is broken depending on
the cmake options provided. With this fix it should be possible to build
even if the targets are not actually available.

Refs: https://github.com/ggml-org/whisper.cpp/pull/3090#issuecomment-2842760104
2025-05-01 10:05:24 +02:00
25efcfe3ed server : add --no-gpu option to print usage output (#3098)
This commit adds the the command line option `--no-gpu` to the server
examples print usage function.

The motivation for this is that this options is available and can be set
but it is not displayed in the usage message.

Refs: https://github.com/ggml-org/whisper.cpp/issues/3095
2025-05-01 09:15:12 +03:00
edbd4cb7f5 ruby : ignore "Downloading" output in test_log_suppress (#3106)
This commit adds a temporary fix to the `test_log_suppress` test in the
Ruby bindings.

The motivation for this changes is that I suspect that the recent
migration of the models to HuggingFace Xet has changed the way HTTP
caching works for the models. This is causing the test in question to
fail. This is a temporary fix so that CI is not broken while we
investigate this further.
2025-05-01 09:12:48 +03:00
3ae9b8416a make : fix samples glob pattern (#3100) 2025-04-30 14:21:51 +03:00
55d73a13f5 ggml : suppress Windows compiler warnings (#3075)
* whisper: suppress Windows compiler warnings

This commit disables compiler warnings on window using MSVC.

The motivation for these changes is that some compilers generate
warnings for these conversion, for example Windows MSVC, and
there are quite a few of them. This makes it a little difficult to
spot new warnings that may be introduced and also can be difficult
for users/embedders of ggml where these warnings are hard to separate
from their own warnings.

* squash! whisper: suppress Windows compiler warnings

Move ggml related warnings into ggml. This commit also fixes the
indentation and adds a missing whitespace to the if statement.
2025-04-29 15:47:55 +02:00
2e30e6df59 whisper : fix grammar advance stack warning (#3087)
This commit addresses a warnings that is present for Release builds:
```console
[ 30%] Building CXX object src/CMakeFiles/whisper.dir/whisper.cpp.o
In file included from /usr/include/c++/13/bits/stl_tree.h:63,
                 from /usr/include/c++/13/map:62,
                 from /home/danbev/work/ai/whisper.cpp/src/whisper-arch.h:5,
                 from /home/danbev/work/ai/whisper.cpp/src/whisper.cpp:2:
In static member function ‘static void std::__copy_move<false, false, std::random_access_iterator_tag>::__assign_one(_Tp*, _Up*) [with _Tp = const whisper_grammar_element*; _Up = const whisper_grammar_element* const]’,
    inlined from ‘static _Up* std::__copy_move<_IsMove, true, std::random_access_iterator_tag>::__copy_m(_Tp*, _Tp*, _Up*) [with _Tp = const whisper_grammar_element* const; _Up = const whisper_grammar_element*; bool _IsMove = false]’ at /usr/include/c++/13/bits/stl_algobase.h:440:20,
    inlined from ‘_OI std::__copy_move_a2(_II, _II, _OI) [with bool _IsMove = false; _II = const whisper_grammar_element* const*; _OI = const whisper_grammar_element**]’ at /usr/include/c++/13/bits/stl_algobase.h:506:30,
    inlined from ‘_OI std::__copy_move_a1(_II, _II, _OI) [with bool _IsMove = false; _II = const whisper_grammar_element* const*; _OI = const whisper_grammar_element**]’ at /usr/include/c++/13/bits/stl_algobase.h:533:42,
...
```
This warning is caused by the fact that the `stack` vector is empty
when it is passed to `new_stacks.push_back(stack);`.

The suggested fix is to use `new_stacks.emplace_back();` instead of
`new_stacks.push_back(stack);`.
2025-04-28 19:11:38 +02:00
f0171f0616 examples : expose language detection probabilities to server example (#3044)
* feat: expose language detection probabilities to server.cpp

* feat: enhance language detection output in server.cpp

* Remove empty spaces.
2025-04-28 18:25:45 +02:00
b7db9e7aac whisper : remove empty .gitmodules file [no ci] (#3085)
This commit removes the empty `.gitmodules` file from the repository.

The motivation of this is that this file is currently empty and the
project does not use any submodules at this time. Removing it mainly to
reduce clutter in the repository and any confusion when seen the file
in repo.
2025-04-28 15:52:05 +02:00
f3c42399a3 talk-llama : sync llama.cpp (#3084)
ggml-ci
2025-04-28 16:40:23 +03:00
28dcdff4c5 ci : disable publishing of java binding [no ci] (#3086)
This commit disables the publishing of the Java binding to the Maven
repository.

The motivation for this is that this job was disabled for some time and
recently it was re-enabled, but the publishing of the Java binding
caused the build to fail and needs to be investigated further.

Refs: https://github.com/ggml-org/whisper.cpp/issues/3079
2025-04-28 15:38:52 +02:00
50218b935d build : Add Moore Threads GPU support and update GitHub workflow for MUSA build (#3069)
* Update PATH for main/main-cuda container

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* Add Dockerfile for musa, .dockerignore and update CI

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* Add Moore Threads GPU Support in README.md and replace ./main with whisper-cli

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* Forward GGML_CUDA/GGML_MUSA to cmake in Makefile

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* Minor updates for PATH ENV in Dockerfiles

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* Address comments

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

---------

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-04-28 11:06:41 +03:00
f9b2dfdd8c examples : fix deprecated FFmpeg functions (#3073)
* Fix deprecated FFmpeg functions and free packet

* avcodec_free_context
2025-04-28 06:16:50 +02:00
50fda73f4c ruby : add encoder begin callback related methods (#3076)
* Lazy run TestBase.whisper

* Fix indentation

* Remove disused GGML_HIP_UMA from Ruby

* Add encoder_begin_callback

* Comment out existing abort mechanism

* Add test for encoder_begin_callback

* Add signatures for encoder_begin_callback related methods

* Update gem date
2025-04-26 04:33:11 +09:00
1c20f46887 ci : enable bindings java job (#3070)
* ci : re-enable bindings-java (java) job

This commit re-enables the job previously name `java` which was
disabled in the build.yml file.

The motivation for this is that we recently fixed a few issue in the
java bindings and it should be possible to build them on windows.

Refs: https://github.com/ggerganov/whisper.cpp/pull/2949
Resolves: https://github.com/ggerganov/whisper.cpp/issues/2781
2025-04-25 14:56:06 +02:00
adaea088bc ruby : add cmake option (#0) 2025-04-24 20:39:16 +03:00
6c0d843f9d cuda : fix unused variable compile warning (#0)
ggml-ci
2025-04-24 20:39:16 +03:00
efb800557f sync : ggml
ggml-ci
2025-04-24 20:39:16 +03:00
337becefb9 opencl : remove obsolete files (skip) (ggml/1200) 2025-04-24 20:39:16 +03:00
11ae30c19e sync : ggml 2025-04-24 20:39:16 +03:00
88c3cecd43 opencl: split ggml-opencl.cl into multiple files and cleanup (llama/12886)
---------

Co-authored-by: Shangqing Gu <quic_shawngu@quicinc.com>
2025-04-24 20:39:16 +03:00
fe4acb33e3 ggml : fix trailing whitespaces (llama/0) 2025-04-24 20:39:16 +03:00
fd5a3e1bc6 CUDA: use switch statements in constexpr functions (llama/13095) 2025-04-24 20:39:16 +03:00
01e1600edd metal : fix floating-point range of attention scores in FA kernels (llama/13090)
ggml-ci
2025-04-24 20:39:16 +03:00
Eve
cf3eb291ab vulkan: matmul gcn tuning (llama/13016)
* tune matmul for gcn

* this one is more power efficient

* Update ggml/src/ggml-vulkan/ggml-vulkan.cpp

Co-authored-by: 0cc4m <picard12@live.de>

* disable this tune for the proprietary driver

---------

Co-authored-by: 0cc4m <picard12@live.de>
2025-04-24 20:39:16 +03:00
3d54b68ea7 CUDA: noncont MMVQ + batched bs1 MUL_MAT_ID (llama/13014)
* CUDA: noncont MMVQ + batched bs1 MUL_MAT_ID

* fix logic for RoPE support, CUDA graphs
2025-04-24 20:39:16 +03:00
11218294db ggml : add SSE 4.2 and x64 base variant for CPUs without AVX (llama/12871)
* ggml : add SSE 4.2 variant for CPUs without AVX

* ggml : add x64 base ABI variant
2025-04-24 20:39:16 +03:00
33c89ade7d SYCL: Add non-contiguous support in ROPE (llama/12993)
ggml-ci
2025-04-24 20:39:16 +03:00
27a56e7243 vulkan: support noncontiguous rms_norm (llama/13031) 2025-04-24 20:39:16 +03:00
f4ca3e2f9c metal: add neg operator (llama/13029) 2025-04-24 20:39:16 +03:00
0287a5c51b SYCL: Refactor and enable FP16 in binary broadcast OPs (llama/12975)
* SYCL: refactor move to a separate file

* Fix binbcast

* Remove duplicates

* fix include formatting

* fix typo
2025-04-24 20:39:16 +03:00
24d29c55df rpc : add RPC_CMD_HELLO (llama/12955)
Add RPC_CMD_HELLO for getting the version of the protocol implemend by
the server. Follow the semantic versioning rules at https://semver.org

Hopefully this bring better user experience when we make breaking
changes at the protocol level and avoid issues like #12465
2025-04-24 20:39:16 +03:00
36019c35a3 graph : make FA compatible with MLA + add initial Metal kernels (llama/12953)
* graph : make mla compatible with FA

* metal : add exp FA kernels for DeepSeek models

ggml-ci

* llama : minor naming updates

ggml-ci

* ggml : disable FA for DS head sizes

* tests : add FA tests for MLA shapes

ggml-ci
2025-04-24 20:39:16 +03:00
4e936e2afa ggml: Re-enable CUDA graphs in presence of CONT and DUP nodes (llama/12970) 2025-04-24 20:39:16 +03:00
314ce5981e CANN: Add support for async operator submission (llama/12864)
Submit operators using asynchronous threads to improve performance.

Use the environment variable GGML_CANN_ASYNC_MODE to control whether
asynchronous submission is enabled. It is disabled by default.

Testing shows a 10%–20% performance improvement in scenarios with
small parameter sizes, especially in quantized models.
2025-04-24 20:39:16 +03:00
cb7642b0f5 opencl: fix incorrect local_size index in profiling log (llama/12868) 2025-04-24 20:39:16 +03:00
7db8f278f0 vulkan: enable coopmat2 FA gqa and split_k optimizations more often (llama/12931)
The grouped query attention optmization doesn't require a power of two ratio,
the only thing relying on it was the modulo operation written as bitwise &.

split_k need not depend on gqa_ratio - enable it any time there's only one
workgroup in the X dimension. The shader gets the split index from the x coord,
and multiple workgroups in the X dimension (pre-split) indicates a larger
FA operation that wouldn't need splitting.
2025-04-24 20:39:16 +03:00
be42a19eab CANN: Add 310P operator support check (llama/12962) 2025-04-24 20:39:16 +03:00
b8755670ca metal : add FA-vec kernels for head size 96 (llama/12952)
ggml-ci
2025-04-24 20:39:16 +03:00
483eecae62 CANN: Add x86 build ci (llama/12950)
* CANN: Add x86 build ci

* CANN: fix code format
2025-04-24 20:39:16 +03:00
43e3d25d93 CUDA/HIP: Share the same unified memory allocation logic. (llama/12934)
Replace compile-time `GGML_HIP_UMA` with environment variable `GGML_CUDA_ENABLE_UNIFIED_MEMORY`. This unifies the usage on NVIDIA and AMD GPUs, and allows a single binary to be shared between integrated and dedicated GPUs.
2025-04-24 20:39:16 +03:00
e1dbf9a42e SYCL: Add ROPE vision kernel (llama/12887)
* SYCL: Add ROPE vision kernel

* Add comment about rope mode
2025-04-24 20:39:16 +03:00
ee0013865d ggml : Add AVX512 implementation of GEMM - Q4_Kx8 (llama/12829)
* Add AVX512 implementation of GEMM - q4kx8

* Update changes to remove unnecessary whitespaces
2025-04-24 20:39:16 +03:00
32a407166b CANN: Opt ROPE optimization (llama/12865)
* [CANN]Opt ROPE optimization

* [CANN]Codestyle adjustment

* [CANN]Fix the ROPE precision issue

* [CANN]codestyle fix

* [CANN]add rope unsupport case

Signed-off-by: noemotiovon <noemotiovon@gmail.com>
2025-04-24 20:39:16 +03:00
622f981853 CANN: Optimize CANN buffer pool memory management (llama/12875)
Multiple optional memory pools are provided for CANN, including VMM,
priority queue-based, and traditional memory pools.
1.When the memory pool is available and GGML_CANN_DISABLE_VMM_POOL
   is not defined, the VMM pool is selected by default.
2.Otherwise, if GGML_CANN_ENABLE_BUF_PRIO_POOL is defined,
   the priority queue-based memory pool is used.
3.If neither condition is met, the default memory pool is used.
2025-04-24 20:39:16 +03:00
d049d67065 SYCL: Fix im2col (llama/12910)
* SYCL: Fix im2col

* restore local workgroup size adjustments for large inputs

* restore format
2025-04-24 20:39:16 +03:00
877308838e rpc : use ggml_context_ptr (llama/12938) 2025-04-24 20:39:16 +03:00
d87dfcf7c0 ggml : Depthwise 2D convolution (ggml/1152)
* ggml-cpu : kernels for faster depthwise 2D convolution

* fix compile: remove static after moving to ops.cpp

* add dilation for depthwise_conv_2d

* review: rename to ggml_conv_2d_dw_direct, remove redundant struct keywords, pass by ref, whitespace

* review: rename depthwise_conv_2d -> conv_2d_dw everywhere
2025-04-24 20:39:16 +03:00
SXX
915c14ef10 ggml: use _mm[512/256]_dpbusd[_avx]_epi32 to directly accumulate into the result register (llama/12773)
* ggml: use _mm[512/256]_dpbusd[_avx]_epi32 to directly accumulate into the result register

* simplifies the codebase by removing redundant functions
2025-04-24 20:39:16 +03:00
5d33d3c929 ggml: disable CUDA graphs for unsupported DUP and CONT node types (llama/12891)
Fixes #12798
2025-04-24 20:39:16 +03:00
751e42b21e vulkan: use aligned loads for flash attention mask (llama/12853)
Rewrite the stride logic for the mask tensor in the FA shader to force the
stride to be aligned, to allow using more efficient loads.
2025-04-24 20:39:16 +03:00
e8ee32d12d sycl: Support sycl_ext_oneapi_limited_graph (llama/12873)
The current usage of the SYCL-Graph extension checks for
the `sycl_ext_oneapi_graph` device aspect. However, it is also
possible to support `sycl_ext_oneapi_limied_graph` devices that
don't support update
2025-04-24 20:39:16 +03:00
e9ce285135 SYCL: Add fp16 type support to unary op kernels (llama/12788)
* SYCL: Add fp16 support to some elementwise OP kernels

* remove comment

ggml-ci

* Use static_cast directly

* remove not needed cast from tanh

* Use static cast and remove unneeded castings

* Adjust device_support_op for unary OPs

* Use cast_data and typed_data struct to deduplicate casting code
2025-04-24 20:39:16 +03:00
b942f451b6 ggml: fix compilation error s390x (llama/12848)
* ggml: fixes #12846 compilation error

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

Co-authored-by: Aleksei Nikiforov <aleksei.nikiforov@ibm.com>

* ggml: add documentation for code change

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

Co-authored-by: Aleksei Nikiforov <aleksei.nikiforov@ibm.com>

* ggml: refactor to type-cast and update documentation

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

Co-authored-by: Aleksei Nikiforov <aleksei.nikiforov@ibm.com>

* ggml: update documentation to provide full issue link

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

Co-authored-by: Aleksei Nikiforov <aleksei.nikiforov@ibm.com>

---------

Co-authored-by: Aleksei Nikiforov <aleksei.nikiforov@ibm.com>
2025-04-24 20:39:16 +03:00
e6410faf99 cpu: fix cpu backend's supports-op for GET_ROWS_BACK. fixes a fatal when running test-backend-ops with only the CPU backend (ggml/1190) 2025-04-24 20:39:16 +03:00
182df69384 CANN: Support more ops (llama/12841)
* [CANN]Support Opt LOG && MEAN && PAD_REFLECT_1D

* [CANN]Support COUNT_EQUAL && STEP && SGN

* [CANN]codestyle adjustment

* [CANN]codestyle adjustment

---------

Signed-off-by: noemotiovon <noemotiovon@gmail.com>
2025-04-24 20:39:16 +03:00
3bf9691dfd Fixes #12823 (llama/12830)
* Including limits file on AIX

* Fixes #12823
2025-04-24 20:39:16 +03:00
ba444e9c23 ggml-cpu-impl.h: do not redefine bool on POWER9 (llama/12856)
error: unknown type name '_Bool'
2025-04-24 20:39:16 +03:00
c6caf8eef2 ggml-impl.h: fix build on POWER9 (llama/12855)
error: ISO C++17 does not allow 'register' storage class specifier
2025-04-24 20:39:16 +03:00
6cae79a1d7 CANN: Support Opt CONV_TRANSPOSE_1D and ELU (llama/12786)
* [CANN] Support ELU and CONV_TRANSPOSE_1D

* [CANN]Modification review comments

* [CANN]Modification review comments

* [CANN]name adjustment

* [CANN]remove lambda used in template

* [CANN]Use std::func instead of template

* [CANN]Modify the code according to the review comments

---------

Signed-off-by: noemotiovon <noemotiovon@gmail.com>
2025-04-24 20:39:16 +03:00
b9bfe0c693 vulkan: In coopmat2 mmq, load q4_k/q5_k scales through shared memory (llama/12833)
q4_k and q5_k had a lot of redundant global loads where the same 16B of
scale information is repeatedly loaded and decoded during each loop iteration.
This change restructures the loops to more explicitly iterate over whole
blocks in the outer loop (with unrolled inner loop) and to copy/decode the
scale data into shared memory once at the start of each outer loop. The copy
is pipelined so the scale load from global memory is relatively cheap.

This improves q4_k/q5_k model prompt processing performance by around 5-7%.
I briefly tried applying this to q6_k and q4_0, and it didn't help for q6_k
and hurt for q4_0.

The big "else" path in mul_mm_cm2.comp that had all the clamped/unclamped
variants isn't used as often as it originally was (e.g. due to the padded_N
change), so I trimmed it down to offset some of the new complexity of the
semi-manual loop unrolling.
2025-04-24 20:39:16 +03:00
1d50c6ac22 vulkan: Use fp16 for the flash attention P*V multiplication (llama/12783)
This is consistent with the ggml-cuda behavior and the mul_mat fallback.
2025-04-24 20:39:16 +03:00
79f23d9132 cuda : add f32 to bf16 copy op (llama/12806)
This allows BF16 KV-cache on CUDA.
2025-04-24 20:39:16 +03:00
ee2cbeeb74 llama : fix FA when KV cache is not used (i.e. embeddings) (llama/12825)
* ggml : FA supports F32 V

* graph : cast KV to F16 when the KV cache is not used

ggml-ci

* server : add test that exercises embeddings with FA enabled

ggml-ci
2025-04-24 20:39:16 +03:00
868a5ce310 ggml: don't include arm_neon.h when using CUDA 12 with ARM Neon (ggml/1187)
fix #1186
2025-04-24 20:39:16 +03:00
b9c71fae5a ggml : add bilinear upscale support (ggml/1185) 2025-04-24 20:39:16 +03:00
6d67c6d93d ggml : add more generic custom op, remove deprecated custom ops (ggml/1183)
* ggml : add more generic ggml_custom op

* ggml : remove deprecated custom ops
2025-04-24 20:39:16 +03:00
12cade118e Revert "sycl:remove redundant memcopy in function ggml_backend_sycl_buffer_set_tensor" (llama/12812)
* Revert "sycl: remove redundant memcopy in function ggml_backend_sycl_buffer_s…"

This reverts commit 518a01480eb3a7c80a4951b430db9dee55428310.

* Update ggml/src/ggml-sycl/ggml-sycl.cpp

* Update ggml/src/ggml-sycl/ggml-sycl.cpp

* rm tail space
2025-04-24 20:39:16 +03:00
fd1c725e65 opencl: better identify Adreno GPU (llama/12760) 2025-04-24 20:39:16 +03:00
d33fd00cfe cuda : fix HIP and MUSA BF16 (llama/0)
ggml-ci
2025-04-24 20:39:16 +03:00
3e0d89782a sycl: remove redundant memcopy in function ggml_backend_sycl_buffer_set_tensor (llama/12734) 2025-04-24 20:39:16 +03:00
7074b622eb CANN: fix typo in ggml-cann (llama/12733) 2025-04-24 20:39:16 +03:00
b8d3e45342 CANN: Refactor to reduce duplicate code (llama/12731)
* CANN: Refactor to reduce duplicate code

* CANN: fix review comment
2025-04-24 20:39:16 +03:00
1901505138 musa: fix compilation warnings in mp_22/31 (llama/12780)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-04-24 20:39:16 +03:00
3c26dd3353 vulkan: fix NaN issue in flash attention shader (llama/12776)
Use -FLT_MAX/2 rather than -inf as the initial value for computing the maximum.
2025-04-24 20:39:16 +03:00
d792d2a2dc vulkan: Use unclamped loads for flash attention mask (llama/12720)
nem1 must be a multiple of GGML_KQ_MASK_PAD, and GGML_KQ_MASK_PAD is a multiple
of the number of rows in the matrix. The KV dim is a multiple of the number of
columns for the aligned shader.
2025-04-24 20:39:16 +03:00
8add58aa5e Vulkan: Tune Vulkan mmq int dot shader for performance (llama/12767) 2025-04-24 20:39:16 +03:00
8f8ede1b12 sycl: allow ggml-sycl configuration and compilation using Visual Studio project/solution (llama/12625) 2025-04-24 20:39:16 +03:00
3a6fe8d767 cmake: fix ggml-shaders-gen compiler paths containing spaces (llama/12747)
fixes error for compiler paths with spaces
2025-04-24 20:39:16 +03:00
76231bda56 vulkan: Hybrid waitForFences/getFenceStatus to reduce fence latency (llama/12630)
There seems to be a bubble waking up from waitForFences, which costs a few
percent performance and also increased variance in performance. This change
inserts an "almost_ready" fence when the graph is about 80% complete and we
waitForFences for the almost_ready fence and then spin (with _mm_pauses) waiting
for the final fence to be signaled.
2025-04-24 20:39:16 +03:00
785437c253 vulkan: set cmake minimum and project name in vulkan-shaders (llama/12744) 2025-04-24 20:39:16 +03:00
2f0612cb1c CUDA: Prefer vector flash decoding kernel for Gemma models (llama/12738)
* Prefer vector flash decoding kernel for Gemma models

Vector flash decoding kernel was not being picked for models with head dimension 256. Gemma models are in this category.
Removing this limit improves e2e performance by upto 12% in gen phase throughput for Gemm models.

* Update ggml/src/ggml-cuda/fattn.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-04-24 20:39:16 +03:00
e944065d5b vulkan: Fix missing cmake logic for dot product extension (llama/12721) 2025-04-24 20:39:16 +03:00
ccc7b5df0b fix MUSA compiler warning (llama/12704)
* fix MUSA compiler warning

* replace (void) with GGML_UNUSED
2025-04-24 20:39:16 +03:00
fbed36851e CANN: Support operator SIN COS ARGMAX (llama/12709)
* [CANN]support sin cos argmax

Signed-off-by: noemotiovon <noemotiovon@gmail.com>

* [CANN]codestyle adjustment

Signed-off-by: noemotiovon <noemotiovon@gmail.com>

* [CANN]Remove redundant code

Signed-off-by: noemotiovon <noemotiovon@gmail.com>

---------

Signed-off-by: noemotiovon <noemotiovon@gmail.com>
Co-authored-by: noemotiovon <noemotiovon@gmail.com>
2025-04-24 20:39:16 +03:00
d1d847f184 Simplify and improve CUDA graphs through use of indirect copy pointers (llama/9017)
* CUDA: Simplify and improve CUDA graphs through use of indirect copy pointers

Previously there was complexity in the CUDA graphs implementation due
frequently changing parameters to copy kernels associated with K and V
cache pointers. This patch simplifies by using indirection to avoid
such parameters frequently changing, avoiding the need for frequent
graph updates.

Fixes #12152

* Addressed comments

* fix HIP builds

* properly sync to stream

* removed ggml_cuda_cpy_fn_ptrs

* move stream sync before free

* guard to only use indirection with graphs

* style fixes

* check for errors

---------

Co-authored-by: slaren <slarengh@gmail.com>
2025-04-24 20:39:16 +03:00
337f91d4a6 CANN: Fix failed test cases (llama/12708)
* CANN: Fix memory waste in aclnn_tensor

* CANN: fix backend ops fail

* CANN: fix acl_tensor memory alloc.

* CANN: format

* CANN: remove trailing whitespace
2025-04-24 20:39:16 +03:00
317a0031f9 opencl: use max_alloc_size in backend ctx instead of querying again (llama/12705) 2025-04-24 20:39:16 +03:00
b243416918 vulkan: Implement split_k for coopmat2 flash attention. (llama/12627)
When using group query attention, we have one workgroup per KV batch and this
can be very few workgroups (e.g. just 8 in some models). Enable split_k to
spread the work across SMs. This helps a lot when the KV cache is large.
2025-04-24 20:39:16 +03:00
6e532c7187 cmake: remove caching from vulkan coopmat checks (llama/12719) 2025-04-24 20:39:16 +03:00
2105b110d3 vulkan: Implement grouped query attention in the coopmat2 FA shader (llama/12559)
When adjacent batches of Q share the same batches of K/V, batch them into
the same workgroup. For example, when:

dst(128,32,1,1) = FA(q(128,1,32,1), k(128,16640,8,1), v(128,16640,8,1))

previously we would run 32 workgroups computing 1 result each, now we will
run 8 workgroups computing 4 results each.

This doesn't directly translate to better performance (at least when you have
>=32 SMs), but in a subsequent change I'll enable split_k which will scale much
better with 4x fewer workgroups.
2025-04-24 20:39:16 +03:00
f82622180f Vulkan: Fix mmq int dot float cache size (llama/12722) 2025-04-24 20:39:16 +03:00
a71c64512a llama : add option to override model tensor buffers (llama/11397)
* llama : add option to override tensor buffers

* ggml : fix possible underflow in ggml_nbytes
2025-04-24 20:39:16 +03:00
1e9c2f87f1 ggml : simplify Arm fp16 CPU logic (ggml/1177)
* ggml : simlpify Arm fp16 CPU logic

ggml-ci

* cont : bring back CUDA/MUSA checks

ggml-ci
2025-04-24 20:39:16 +03:00
06ce8f83e6 CUDA: don't convert BF16 weights to FP32 (ggml/1174)
* add bf16 support

* use convert_from_bf16_cuda instead of convert_unary_cuda for f32

* revert 7ec5085

* move functionality into convert_unary with constexpr
2025-04-24 20:39:16 +03:00
8b92060a10 coreml : set convert_to="mlprogram" in convert
* coreml : skip model load in convert-whisper-to-coreml.py

This commit updates the conversion process for Whisper models to use the
"mlprogram" format instead of "neuralnetwork".

The motivation for this change is that when using the "neuralnetwork"
format the underlying model produced is based on protobuf and my
understanding is that there are limitations to this format, such as
sizes of strings and the complexity of the model.

Currently when trying to convert larger models such as large-v3 the
conversion fails but succeeds for smaller models.

The "mlprogram" format is a more recent addition to CoreML and is
designed to be more flexible and powerful, allowing for more complex
models and larger data types. This seems to work for larger and smaller
models alike and unless I'm there are considerations that I'm not aware
of I think this is what we should be using moving forward.
The error that is generated for large models is the following:
```console
Running MIL backend_neuralnetwork pipeline: 100%|█████████| 9/9 [00:00<00:00, 35.44 passes/s]
Translating MIL ==> NeuralNetwork Ops: 100%|███████████| 5641/5641 [03:31<00:00, 26.65 ops/s]
Traceback (most recent call last):
  File "/Users/danbev/work/ai/whisper-work/models/convert-whisper-to-coreml.py", line 322, in <module>
    encoder = convert_encoder(hparams, encoder, quantize=args.quantize)
              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/Users/danbev/work/ai/whisper-work/models/convert-whisper-to-coreml.py", line 255, in convert_encoder
    model = ct.convert(
            ^^^^^^^^^^^
  File "/Users/danbev/work/ai/whisper-work/venv/lib/python3.11/site-packages/coremltools/converters/_converters_entry.py", line 635, in convert
    mlmodel = mil_convert(
              ^^^^^^^^^^^^
  File "/Users/danbev/work/ai/whisper-work/venv/lib/python3.11/site-packages/coremltools/converters/mil/converter.py", line 186, in mil_convert
    return _mil_convert(
           ^^^^^^^^^^^^^
  File "/Users/danbev/work/ai/whisper-work/venv/lib/python3.11/site-packages/coremltools/converters/mil/converter.py", line 245, in _mil_convert
    return modelClass(
           ^^^^^^^^^^^
  File "/Users/danbev/work/ai/whisper-work/venv/lib/python3.11/site-packages/coremltools/models/model.py", line 489, in __init__
    self.__proxy__, self._spec, self._framework_error = self._get_proxy_and_spec(
                                                        ^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/Users/danbev/work/ai/whisper-work/venv/lib/python3.11/site-packages/coremltools/models/model.py", line 550, in _get_proxy_and_spec
    _MLModelProxy(
ValueError: basic_string
```

Refs: https://github.com/ggml-org/whisper.cpp/issues/3012
2025-04-23 08:24:38 +02:00
7858eddd10 ci : disable freeBSD job in build.yml (#3064)
This commit disables the FreeBSD job in build.yml of the GitHub Actions
workflow.

The motivation for this is that this job seems to stall and timeout from
time to time, taking up to 6 hours to complete/cancel.
2025-04-22 11:07:54 +02:00
3a88f1e504 examples : add HEAPU8 to exported runtime methods (#3062)
This commit adds `HEAPU8` to the list of exported methods.

The motivation for this commit is that currently this is causing an
error on Window systems where HEAPU8 in undefined, which results in the
following error message in the web console:
```console
main.js:1 Uncaught TypeError:
Cannot read properties of undefined (reading 'buffer') at __emval_get_property
(main.js:1:1363125) at 003a453a:0xc4a47 at 003a453a:0xc51cd at
Object.full_default (eval at craftInvokerFunction (main.js:1:1347011),
<anonymous>:9:10) at whisper.cpp/:647:42
```

Resolves: https://github.com/ggml-org/whisper.cpp/issues/3059
2025-04-20 19:40:25 +02:00
f0d2bfbfb7 ruby : make Ruby bindings installed with build options (#3056)
* Fix signature of URI.new7s return value

* Use path instead of string | _ToPath

* Add document comment to RBS

* Remove unnecessary build flags

* Remove unnecessary line

* Remove files have become unnecessary

* Make gem install accept build options for whisper.cpp

* Add instraction for build options in README

* Add methods for check to Options

* Test build options

* Rename: configs -> options

* Add assert_installed assertion

* Use assert_installed

* Remove unused attribute

* Extract dependency check logic as Dependencies class

* Update README

* Add WHISPER_FFMPEG option

* Test extra build options only on local test

* Bump version to 1.3.2 [skip ci]
2025-04-17 18:49:58 +09:00
170b2faf75 whisper : add no_context parameter to whisper_params (#3045) 2025-04-16 06:24:38 +02:00
f8a3509b6d examples : add FFmpeg v7.0 support to ffmpeg-transcode.cpp (#3038)
FFmpeg introduced a new channel layout API that uses `AVChannelLayout`
interface in v6.0. It subsequently dropped the old bitmask-based API
in v7.0.

This updates decode_audio() to support the new channel layout API,
so that we can compile `whisper-cli` and `whisper-server` with FFmpeg
v7.0 or later.

Tested on on Ubuntu 24.10 with FFmpeg v7.0.2.

Signed-off-by: Fujimoto Seiji <fujimoto@ceptord.net>
2025-04-15 06:09:00 +02:00
2a2d21c75d ruby: use CMake in build process (#3043)
* Use CMake to build shared object

* Make Rakefile follow change of build process

* Add test for packaging

* Run CI for Ruby bindings almost always

because each CMakeLists.txt might affect Ruby bindings

* Enable PIC

* Bump Ruby version to 3.2 on CI

* Check libgomp

* Check dependency of whisper.cpp accurately
2025-04-14 18:18:27 +09:00
9cfcd6cc45 docs : update README.md to note newer nvidia gpus (#3031)
Resolves: https://github.com/ggml-org/whisper.cpp/issues/3030
2025-04-11 08:54:51 +02:00
e853620270 addon.node : support max_context api for addon.node (#3025)
* feat: support max content

* feat: show api in test file

---------

Co-authored-by: linxiaodong <calm.lin@wukongsch.com>
2025-04-11 06:36:38 +02:00
549db9376f whisper : reduce delta_min from 1000ms to 100ms (#3028)
ggml-ci
2025-04-11 06:23:02 +02:00
33a25e4dda docs : document how to use 'WHISPER_FFMPEG' build option (#3029)
FFmpeg integration was introduced in 1b51fdf by William Tambellini,
but not mentioned in the main documentation.

Add a short guide on how to enable the feature. Confirmed to work
on both Ubuntu 24.04 and Fedora 39.

Signed-off-by: Fujimoto Seiji <fujimoto@ceptord.net>
2025-04-10 18:21:38 +02:00
43f5030aeb docs : fix README.md (#3024) 2025-04-09 19:49:37 +02:00
cf794133de xcf : use check for visionos build version (#3021)
This commit adds a check for the visionos build version used with vtool
in build-xcframework.sh. The script now checks the Xcode version and
determines whether to use "xros" or "visionos" for the build version.

This commit also uses xcrun for the vtool so that the version of vtool
in xcode command line tools is used instead of the one in the system
path.

Refs: https://github.com/ggml-org/whisper.cpp/pull/2994#issuecomment-2773292223
2025-04-09 16:34:58 +02:00
ef6cf357e7 ruby : fix types of arguments for rb_get_kwargs in ruby_whisper_params.c (#3022)
Change param_names and values not to be references for rb_get_kwargs - so it can be compiled on ruby 3.3.6 and 3.4.1
2025-04-09 20:49:25 +09:00
b1f5c11b32 ruby : Update uri.rb (#3016)
Bugfix ... without this Pathname the "/" operator wouldn't work and will throw an error
2025-04-08 22:27:40 +09:00
ada745f4a5 models : fix dead link to models in readme (#3006) 2025-04-06 08:29:41 +03:00
01985c22c0 ruby : change homepage URI in Ruby gemspec (#3007) 2025-04-05 07:55:09 +03:00
448f3d3b93 tests : add script to benchmark whisper.cpp on LibriSpeech corpus (#2999)
* tests : add script to benchmark whisper.cpp on LibriSpeech corpus

LibriSpeech is a widely-used benchmark dataset for training and
testing speech recognition models.

This adds a set of scripts to measure the recognition accuracy of
whisper.cpp models, following the common benchmark standards.

Signed-off-by: Fujimoto Seiji <fujimoto@ceptord.net>

* Document how to prepare `whisper-cli` and model files

Feedback from Daniel Bevenius.

This adds a short code example how to prepare the `whisper-cli`
command, to make the initial setup step a little bit clearer.

Signed-off-by: Fujimoto Seiji <fujimoto@ceptord.net>

* tests : Simplify how to set up Python environment

Based on a feedback from Georgi Gerganov.

Instead of setting up a virtual environment in Makefile, let users
set up the Python environment. This is better since users may have
their own preferred workflow/toolkit.

Signed-off-by: Fujimoto Seiji <fujimoto@ceptord.net>

---------

Signed-off-by: Fujimoto Seiji <fujimoto@ceptord.net>
2025-04-04 19:51:26 +03:00
e6234cd435 whisper : fix "bench-all outputs an invalid result on larger models" (#3002)
The benchmark script 'scripts/bench-all.sh' assumes that the 11th
field of the output line is a timestamp. This assumption does not
hold when the target model takes a bit longer to process.

Fix this issue by introducing an explicit whitespace to the output
lines of `whisper_print_timings()`.

Signed-off-by: Fujimoto Seiji <fujimoto@ceptord.net>
2025-04-04 18:36:19 +03:00
2b6d0d2200 rename : ggerganov -> ggml-org (#3005) 2025-04-04 16:11:52 +03:00
0b17d4507e examples : update server.py to match github pages app [no ci] (#3004)
This commit updates examples/server.py which is used to serve the wasm
examples locally. The changes include:

- Added a redirect from the root URL to /whisper.cpp.
  So now accessing http://localhost:8000/ will redirect to
  http://localhost:8000/whisper.cpp/ which matches the url for the app
  deployed to github pages.

- Custom handling for coi-serviceworker.js to serve it to avoid
  and error in the console. This file is not strictly necessary
  for the local server to work as the headers are provided already but
  it is nice to not have an error in the console.

- Fixed the shutdown of the server to ensure it exits cleanly
  on Ctrl+C. Previously it would continue to hang onto the port even
  after the processed had exited.
2025-04-04 10:23:53 +02:00
77e0c86ab6 whisper.wasm : fix unknown language issue (#3000)
* whisper.wasm : fix unknown language issue

This commit addresses an issue with whisper.wasm where the following
error was being displayed when running the application in github pages:
```
whisper_lang_id: unknown language 'д=␙c'
```

This turned out to be a memory corruption issue and further details
can be found in the reference issue below.

Refs: https://github.com/ggerganov/whisper.cpp/issues/2998
2025-04-03 19:50:47 +02:00
eac1bc9c47 examples : add new sources
ggml-ci
2025-04-03 10:30:16 +03:00
cbde66d913 sync : ggml 2025-04-03 10:30:16 +03:00
513ecf8dc0 cpu: move all the operators into a separate c++ file (except mul_mat) (ggml/1167)
* cpu: refactor SIMD mappings and vectorized op functions into separate files

* Fix warning for ggml_float to float

* Fix warnings

* cpu: move all the operations (except mul_mat) to a separate c++ file

* fix whitespace

* Update ggml/src/ggml-cpu/vec.h

Co-authored-by: Diego Devesa <slarengh@gmail.com>

* Fix PR comments - use GGML_UNUSED, use cassert in ops.cpp

* Reverse the order of import for ops.h and vec.h, to match what was present in ggml-cpu.c previously

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-04-03 10:30:16 +03:00
cce5daf17b docs : add xcframework section to README.md [no ci] (#2997)
This adds a section to the README.md file that describes how to use the
XCFramework.

The modification for this is that is not obvious how to use the
XCFramework and and example will help.
One thing to note is that the example is using the latest release
including the checksum. We are thinking about how we might automate
this in the future but for now this is a good start.
2025-04-03 09:06:53 +02:00
2c502b3c00 readme : update roadmap link 2025-04-02 17:38:35 +03:00
51c6961c7b release : v1.7.5 2025-04-02 16:39:48 +03:00
503a786c9a bench : update numbers [no ci] (#2993) 2025-04-02 16:27:36 +03:00
ad4e350933 sync : ggml
ggml-ci
2025-04-02 15:51:57 +03:00
d7a9346ab1 get_rows and dup optimization (llama/12671)
* [CANN]get_rows and dup optimization.

Co-authored-by: hipudding <huafengchun@gmail.com>
Signed-off-by: noemotiovon <noemotiovon@gmail.com>

* [CANN]GET_ROWS and CPY/DUP optimization

Co-authored-by: hipudding <huafengchun@gmail.com>
Signed-off-by: noemotiovon <noemotiovon@gmail.com>

* [CANN]code style adjustment

Signed-off-by: noemotiovon <noemotiovon@gmail.com>

* [CANN]code style adjustment

Signed-off-by: noemotiovon <noemotiovon@gmail.com>

* [CANN]code style adjustment

Signed-off-by: noemotiovon <noemotiovon@gmail.com>

* [CANN]code style adjustment

Signed-off-by: noemotiovon <noemotiovon@gmail.com>

---------

Signed-off-by: noemotiovon <noemotiovon@gmail.com>
Co-authored-by: noemotiovon <noemotiovon@gmail.com>
Co-authored-by: hipudding <huafengchun@gmail.com>
2025-04-02 15:51:57 +03:00
b63d23f728 opencl : fix memory allocation size (llama/12649)
issue:
https://github.com/CodeLinaro/llama.cpp/pull/17#issuecomment-2760611283

This patch fixes the memory allocation size
not exceeding the maximum size of the OpenCL device.
2025-04-02 15:51:57 +03:00
f6ce10e4a1 metal : use F32 prec in FA kernels (llama/12688)
* metal : use F32 prec in FA kernels

ggml-ci

* cont : fix FA vec kernel

ggml-ci
2025-04-02 15:51:57 +03:00
6cb2b86581 Fix clang warning in gguf_check_reserved_keys (llama/12686)
* Fix clang warning in gguf_check_reserved_keys

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* Fix typo

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

---------

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-04-02 15:51:57 +03:00
801d6bd809 vulkan: fix build when glslc doesn't support coopmat (llama/12683) 2025-04-02 15:51:57 +03:00
ddf7e6a15d SYCL: Rename oneMKL to oneMath (llama/12192)
* Rename oneMKL Interface to oneMath

* Use oneMath for Intel vendor

* Rename occurences to mkl

* clang-format

* Silence verbose warnings

* Set oneMath HIP_TARGETS

* Fix silence warnings

* Remove step to build oneMath from build instructions

* Use fixed oneMath version

* Remove INTEL_CPU

* Fold CMake oneDNN conditions

* Use Intel oneMKL for Intel devices

* Improve CMake message

* Link against MKL::MKL_SYCL::BLAS only

* Move oneMath documentation to Nvidia and AMD sections
2025-04-02 15:51:57 +03:00
0d42097fd3 SYCL: switch to SYCL namespace (llama/12674) 2025-04-02 15:51:57 +03:00
842b9c984c ggml : faster ssm scan (llama/10558)
* faster ssm_scan

* delete unused commnet

* clang format

* add space

* modify unnecessary calculations

* faster ssm conv implementatioin

* modify file name with dash
2025-04-02 15:51:57 +03:00
0810f02547 Vulkan: Add DP4A MMQ and Q8_1 quantization shader (llama/12135)
* Vulkan: Add DP4A MMQ and Q8_1 quantization shader

* Add q4_0 x q8_1 matrix matrix multiplication support

* Vulkan: Add int8 coopmat MMQ support

* Vulkan: Add q4_1, q5_0 and q5_1 quants, improve integer dot code

* Add GL_EXT_integer_dot_product check

* Remove ggml changes, fix mmq pipeline picker

* Remove ggml changes, restore Intel coopmat behaviour

* Fix glsl compile attempt when integer vec dot is not supported

* Remove redundant code, use non-saturating integer dot, enable all matmul sizes for mmq

* Remove redundant comment

* Fix integer dot check

* Fix compile issue with unsupported int dot glslc

* Update Windows build Vulkan SDK version
2025-04-02 15:51:57 +03:00
8c13c78f9d cmake : fix whitespace (llama/0) 2025-04-02 15:51:57 +03:00
f31b404fcb tests : remove gh label test-whisper-cli-tiny-en (#2988)
This commit removes test-whisper-cli-tiny-en from the gh label.

The motivation for this change is that until recently the tests were
disabled. But now that they are enabled some of the tests, specifically
the ci jobs that use sanatizers (e.g. thread-sanitizer) take a long time
to run as they are instrumented.
Some of these jobs also have matricies which means that there are
multiple jobs are created that all run these tests.
The suggestion here is to limit the number of tests that are run in the
ci jobs so cut down the CI build time.
2025-04-02 10:50:31 +02:00
854c0518bc examples : clarify Core ML encoder model usage [no ci] (#2987)
This commit clarifies the usage of the Core ML encoder model in the
whisper.obj and whisper.swiftui examples.

Refs: https://github.com/ggerganov/whisper.cpp/issues/2783
2025-04-02 08:32:14 +02:00
c8e3968edd ci : remove intermediate build on push to master (#2986)
This commit removes the builds that happen on each push to master.

Refs: https://github.com/ggerganov/whisper.cpp/discussions/2983#discussioncomment-12691424
2025-04-02 08:29:28 +02:00
b358de2458 whisper.objc : fix typo in README.md [no ci] (#2985)
This commit fixes a typo in the README.md file of the whisper.objc
example.

Resolves: https://github.com/ggerganov/whisper.cpp/issues/2984
2025-04-02 08:26:57 +02:00
11688b262f coreml: fix Whisper to CoreML conversion by disabling SDPA [no ci] (#2979)
* coreml: fix Whisper to CoreML conversion by disabling SDPA

This commit disables the use of PyTorch's
`scaled_dot_product_attention` in the Whisper model to avoid
compatibility issues during CoreML conversion.
The issue occurs because coremltools requires PyTorch 2.5.0, but the
Whisper implementation may expect behavior from newer PyTorch versions.

By setting `MultiHeadAttention.use_sdpa = False`, we force Whisper to
use its fallback manual attention implementation, which works correctly
with PyTorch 2.5.0 during the tracing process.

Refs: https://github.com/ggerganov/whisper.cpp/issues/2783

* coreml: fix audio shape in whisper decoder conversion

This commit fixes the audio shape in the whisper decoder conversion
script.

The motivation for this is that the  audio shape was incorrect and
was causing the conversion to fail.

* coreml : set -e in generate-coreml-interface.sh

The commit sets the -e flag in the generate-coreml-interface.sh script
to make sure the script fails if any command fails.

* coreml : update generated encoder/decoder interfaces

This commit updates the generated encoder/decoder interfaces for the
whisper model which is the result of running the
generate-coreml-interface.sh script.
2025-04-01 18:01:23 +02:00
04b9508fb3 ci : add coreml job that converts base.en to coreml [no ci] (#2981)
* ci : add coreml job that converts base.en to coreml [no ci]

This commit adds a new job to the CI pipeline that downloads the base.en
model and converts it to CoreML format. The CoreML model is then packed
into a zip file and uploaded as an artifact.

This will only be done for pushes to master, releases, or pre-releases.

Refs: https://github.com/ggerganov/whisper.cpp/issues/2783

* coreml : remove publishing of coreml model

* ci : add GGML_OPENMP=OFF to ubuntu-22-gcc-sanitized
2025-04-01 17:04:32 +02:00
4200430e75 tests : re-enable tests [no ci] (#2977)
This commit re-enables the tests in the build process which are
currently commented out.

It is possible to build the tests using `-DWHISPER_BUILD_TESTS=ON` and
then run a single test using:
```console
$ ctest -R test-whisper-cli-tiny.en --test-dir build
Internal ctest changing into directory: /home/danbev/work/ai/whisper-work/build
Test project /home/danbev/work/ai/whisper-work/build
    Start 2: test-whisper-cli-tiny.en
1/1 Test #2: test-whisper-cli-tiny.en .........   Passed    4.44 sec

100% tests passed, 0 tests failed out of 1

Label Time Summary:
en      =   4.44 sec*proc (1 test)
gh      =   4.44 sec*proc (1 test)
tiny    =   4.44 sec*proc (1 test)

Total Test time (real) =   4.44 sec
```

Some of the tests take a long time to run so it might not be a good idea
to enable them in CI, or perhaps we could only run a subset of the tests
in CI.
2025-03-31 17:04:37 +02:00
e153b8eaa2 android.java : re-add ggml source updates (#2975)
This commit updates the ggml source to include the new unary and binary
operations. I merged https://github.com/ggerganov/whisper.cpp/pull/2958
which seems to have overwritten the changes to the ggml source which
were added in https://github.com/ggerganov/whisper.cpp/pull/2972.

Sorry about this.
2025-03-31 16:14:33 +02:00
83af237f0b ci : re-enable freeBDS-latest job (#2973)
This commit re-enables the freeBSD-latest job which has been commented
out.

Refs: https://github.com/ggerganov/whisper.cpp/issues/2781
2025-03-31 15:24:08 +02:00
7a2e39750a ci : re-enable android_java job (#2958)
This commit re-enables the android_java job in the CI workflow. The job
was disabled because of a failing build.

The motivation for this is that Commit
226d344f56 ("whisper.android.java : update
build with ggml source changes") addressed build issues and it should
now be possible to re-enable this job.
2025-03-31 15:14:24 +02:00
0a40ae9728 android : add new ggml source files
ggml-ci
2025-03-31 14:56:53 +03:00
32cfdcbf42 ruby : add new ggml sources
ggml-ci
2025-03-31 14:56:53 +03:00
cfa42aca09 sync : ggml
ggml-ci
2025-03-31 14:56:53 +03:00
2e2f0f954b SYCL: Remove misleading ggml_sycl_op_flatten function (llama/12387)
* SYCL: Remove misleading ggml_sycl_op_flatten function

* remove trailing whitespace

* Fix L2 norm from rebase

* remove try catch block from element_wise.cpp

* remove comment from common.hp

* ggml-sycl.cpp: Add try catch sycl::exception block in compute_forward

* norm.cpp: remove try catch exception block
2025-03-31 14:56:53 +03:00
93631b2be6 metal : use constexpr in FA kernels + fix typedef (llama/12659)
* metal : use constexpr in FA kernels

ggml-ci

* cont

ggml-ci

* cont : fix typedef

ggml-ci
2025-03-31 14:56:53 +03:00
f9015b585b musa: fix all warnings, re-enable -DLLAMA_FATAL_WARNINGS=ON in ci and update doc (llama/12611)
* musa: fix all warnings

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* musa: enable -DLLAMA_FATAL_WARNINGS=ON in run.sh

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* musa: update ci doc (install ccache)

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* fix Windows build issue

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* Address review comments

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* Address review comments

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

---------

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-03-31 14:56:53 +03:00
Jay
1880ffd7ff cmake : fix ccache conflict (llama/12522)
If users already set CMAKE_C_COMPILER_LAUNCHER globally, setting it in
cmake again will lead to conflict and compile fail.

Signed-off-by: Jay <BusyJay@users.noreply.github.com>
2025-03-31 14:56:53 +03:00
9173932c78 cpu : rm unused variable (ggml/1166) 2025-03-31 14:56:53 +03:00
94c3f3877f cpu: de-duplicate some of the operators and refactor (ggml/1144)
* cpu: de-duplicate some of the operators and refactor

* Fix PR comments

* Fix PR comments
2025-03-31 14:56:53 +03:00
00086469fb cmake: improve Vulkan cooperative matrix support checks (#2966)
Co-authored-by: Sandro Hanea <me@sandro.rocks>
2025-03-31 13:44:36 +03:00
2d8e40e2a0 examples : update README links to point to pages deployment (#2971)
This commit updates the README links to point to the pages deployment
instead of whisper.ggerganov.com.
2025-03-31 12:32:27 +02:00
e17af6524f ci : add github pages workflow for wasm examples (#2969)
* ci : add github pages workflow for wasm examples

This commit adds a github workflow to build and deploy the wasm examples
to github pages. The whisper.wasm example is deployed as the main page.

This workflow is trigged by a push to master and will deploy the
examples to: https://ggerganov.github.io/whisper.cpp/.

This requires that the repository has enabled github actions in
`Settings` -> `Pages` -> `Build and deployment` -> `Source` be set to
`GitHub Actions`.

One thing to note is that this commit removes the `talk` example as I'm
not sure how this example is built yet.

Refs: https://github.com/ggerganov/whisper.cpp/issues/2784
2025-03-31 11:34:40 +02:00
88d13a17a7 feat: add health check endpoint to server (#2968) 2025-03-31 11:03:41 +03:00
f92bd59951 whisper : remove unnecessary GGML_UNUSED macro (#2960) 2025-03-30 05:56:10 +02:00
6e7629b146 sync : ggml
ggml-ci
2025-03-28 21:47:42 +02:00
27533e7f63 metal : improve FA + improve MoE (llama/12612)
* ggml : FA with different K, V head sizes (CPU)

ggml-ci

* metal : add FA with HS=192

* metal : extend FA to support different K and V head sizes

ggml-ci

* metal : add FA vector kernels for heads K 192 and V 128

ggml-ci

* ggml : restrict op on other backends to equal head sizes

ggml-ci

* metal : optimize FA-vec kernel

ggml-ci

* metal : FA remove mq registers

* metal : improve MoE mul_mat_id condition

ggml-ci

* metal : fix comments + remove unnecessary addition

ggml-ci

* metal : avoid too much shared memory usage with mul_mat_id

ggml-ci
2025-03-28 21:47:42 +02:00
1b81415963 vulkan: fix coopmat shader generation when cross-compiling (llama/12272)
* vulkan: fix coopmat shader generation when cross-compiling

Previously the status of coopmat{,2} support isn't passed to the
vulkan-shaders-gen project building on the host, which leads to build
failure because of the cross-compiling code expecting coopmat{,2}
shaders that didn't get generated.

Fix this by passing the coopmat{,2} support status to vulkan-shaders
subproject.

Signed-off-by: Icenowy Zheng <uwu@icenowy.me>

* Only call coop-mat shaders once

* Fix whitespace

---------

Signed-off-by: Icenowy Zheng <uwu@icenowy.me>
Co-authored-by: bandoti <141645996+bandoti@users.noreply.github.com>
2025-03-28 21:47:42 +02:00
0001ec075f llamafile : ppc64le GEMV forwarding for FP32. (llama/12594)
This patch enables usage of MMA when one of the
dimensions of the matrix(ie either M or N) is 1. This
is useful in case of token generation where N < 2.

The concept of 'GEMV Forwarding' is used where when one
of the matrix has a single row/column, the elements are
broadcasted, instead of using packing routine to prepack
the matrix elements.

This change results in 5% - 15% improvement in total
speed(ie all tokens/total time), across various batch
sizes. This is in comparision with the corresponding
dot product implementation.

The patch is tested with FP32 models of Meta-Lllama-3-8B,
Mistral-7B, Llama-2-7B-chat-hf on a IBM POWER10 machine.

Signed-off-by: Amrita H S <amritahs@linux.vnet.ibm.com>
2025-03-28 21:47:42 +02:00
5bad2e5099 rpc : send hash when tensor data is above some fixed threshold (llama/12496)
* rpc : send hash when tensor data is above some fixed threshold

ref #10095

* rpc : put cache under $HOME/.cache/llama.cpp

* try to fix win32 build

* another try to fix win32 build

* remove llama as dependency
2025-03-28 21:47:42 +02:00
6fc0ae2f5a opencl: add multi and vision rope, gelu_quick and im2col (llama/12600)
* opencl: add `im2col`

* opencl: add `gelu_quick`

* opencl: add mrope

* opencl: add vision rope
2025-03-28 21:47:42 +02:00
de6b38c6d9 bindings.go : add DetectedLanguage to go bindings (#2947)
Adding in DetectedLanguage(), a function to retrieve the detected
language that's populated by processing audio. Also adding in a unit
test to test the success.

Co-authored-by: Amanda Der Bedrosian <aderbedrosian@sdl.com>
2025-03-28 12:26:22 +01:00
46d6e0abc1 ruby : fix test failures in test_whisper (#2955)
* bindings.ruby : fix test failures in test_whisper

This commit updates the parallel tests to use 2 processors instead of
the number of processors on the system. It also comments out the setting
of the log callback to an empty lambda as this causes a segfault when
enabled.

The motivation for the change to the number of processors is that if one
has a large number of processors, for example I have 16 on the machine I
used to test this, this would cause the following warning to be printed:
```console
whisper_full_with_state: input is too short - 680 ms < 1000 ms. consider padding the input audio with silence
```

This is logged from:
```c++
int whisper_full_with_state(
        struct whisper_context * ctx,
          struct whisper_state * state,
    struct whisper_full_params   params,
                   const float * samples,
                           int   n_samples) {
   ...
    if (seek_end < seek_start + 100) {
        WHISPER_LOG_WARN("%s: input is too short - %d ms < 1000 ms. consider padding the input audio with silence\n", __func__, (seek_end - seek_start)*10);
        return 0;
    }
```
This will return early and there will be segment callbacks to be invoked
which in turn will cause the tests to fail.

* bindings.ruby : fix warnings in tests

This commit fixes the following warnings in the Ruby tests:
```console
/whisper/bindings/ruby/tests/test_segment.rb:52:
warning: ambiguity between regexp and two divisions:
wrap regexp in parentheses or add a space after `/' operator
```
And also adds a '_' prefix to some unused variables to avoid warnings.

* bindings.ruby : enable Wisper.log_set in tests

The commit reverts the commenting out of the Whisper.log_set call in
the test_whisper.rb tests.

I'm no longer getting segfaults when running the tests with this
which was the case earlier. One theory could be that I rebased this to
include the latest ggml sync to master to make sure things still worked.
With the latest changes in ggml, I can't reproduce the segfaults.
2025-03-28 17:29:56 +09:00
1279f0d0bc examples : support progress_callback API for addon.node (#2941)
* feat: progress supported

* fix: missing params

* style: Format the code to improve readability

Unified code indentation ensures consistent coding style, enhancing code readability and maintainability.

* feat: support prompt api

---------

Co-authored-by: linxiaodong <calm.lin@wukongsch.com>
2025-03-28 06:34:26 +01:00
f28bf5d186 xcf : fix visionOS build
ref: https://github.com/ggml-org/llama.cpp/pull/12415

ggml-ci
2025-03-27 11:06:03 +02:00
1fbdfb1d36 files : remove old wkv6 (#0)
ggml-ci
2025-03-27 11:06:03 +02:00
ee5581633b sync : ggml
ggml-ci
2025-03-27 11:06:03 +02:00
8ca67df291 ggml : sync/merge cmake,riscv,powerpc, add common.cmake (ggml/0) 2025-03-27 11:06:03 +02:00
fc6d343e76 llamafile : ppc64le MMA implementation for Q4_0. (llama/12489)
This change upstreams llamafile's cpu matrix
multiplication kernels for ppc64le ISA using MMA
builtins. This patch handles matrix multiplication
between quantised datatypes, block_q4_0 and
block_q8_0.

This change results in 5% - 50% improvement
in total speed(ie all tokens/total time), across
various batch sizes.

The patch is tested with Meta-Lllama-3-8B,
Mistral-7B, Llama-2-7B-chat-hf models on a
IBM POWER10 machine.

Signed-off-by: Amrita H S <amritahs@linux.vnet.ibm.com>
2025-03-27 11:06:03 +02:00
3199356d3a SYCL: implement memset ggml backend buffer interface (llama/12580)
* SYCL: implement memset ggml backend buffer interface

* use GGML_ABORT macro

* Do not wait for all queues to finish for memset operation
2025-03-27 11:06:03 +02:00
e0c43b0bbf HIP: Add support for RDNA4 targets (llama/12372) 2025-03-27 11:06:03 +02:00
f4f619ea8e metal : refactor mat-vec code (llama/12569)
* metal : refactor mat-vec code

ggml-ci

* metal : rename all_sum -> sum_all

ggml-ci

* metal : fix comments [no ci]

* metal : fix nr constant [no ci]

* metal : mv q6_K support nr0 > 1

ggml-ci

* metal : reduce register pressure

ggml-ci

* metal : fix typo [no ci]

* metal : reduce register pressure

ggml-ci
2025-03-27 11:06:03 +02:00
3c4d363872 ggml : fix MUL_MAT_ID repack with Q8_K (llama/12544)
* ggml : fix MUL_MAT_ID repack with Q8_K

ggml-ci

* ggml : improve repack templates

ggml-ci
2025-03-27 11:06:03 +02:00
15aa189329 ggml-cpu : update KleidiAI to v1.5.0 (llama/12568)
ggml-cpu : bug fix related to KleidiAI LHS packing

Signed-off-by: Dan Johansson <dan.johansson@arm.com>
2025-03-27 11:06:03 +02:00
c53d5c9e85 SYCL: disable Q4_0 reorder optimization (llama/12560)
ggml-ci
2025-03-27 11:06:03 +02:00
ba6f584f30 opencl: simplify kernel embedding logic in cmakefile (llama/12503)
Co-authored-by: Max Krasnyansky <quic_maxk@quicinc.com>
2025-03-27 11:06:03 +02:00
a219941812 CUDA: Fix clang warnings (llama/12540)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-03-27 11:06:03 +02:00
a2cc8c2666 vulkan: fix mul_mat_vec failure in backend tests (llama/12529)
The OOB calculation could be wrong if the last iteration was during one of
the unrolled loops. Adjust the unrolling counts to avoid this. Add a couple
new backend tests that hit this failure on NVIDIA GPUs.
2025-03-27 11:06:03 +02:00
388ed98220 ggml : fix quantized cpy op (llama/12310)
* ggml : fix quantized cpy op

ggml-ci

* tests : add cpy tests for all types

ggml-ci

* tests : add BF16 copy tests

ggml-ci

* tests : fix loop for same-type copy

ggml-ci

* tests : add option to permute the dst tensor

ggml-ci
2025-03-27 11:06:03 +02:00
d487a28ae1 musa: refine compute capability (llama/12493)
* musa: refine compute capability

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* Address review comments

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

---------

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-03-27 11:06:03 +02:00
cbb88c4050 vulkan: Optimize mul_mat_vec p021 and nc shaders (llama/12505)
* tests: add mul_mat perf/functional tests for p021/nc vulkan shaders

* vulkan: Optimize mul_mat_vec p021 and nc shaders.

These shaders are used in attention calculations, and when the KV cache grows
large they start to dominate the run time. For the nc shader (which is called
with large 'k' dimension), use unrolling and vector loads. For the p021 shader
(which is called with large 'm' and small 'k' dimensions), take advantage of
grouped query attention to reuse loads from the A matrix for the whole group,
and reduce the number of workgroups (too much overhead from tiny dispatches).

Using subgroupAdd in the p021 shader also helps, use that conditionally.
2025-03-27 11:06:03 +02:00
13455c0b5f Vulkan: RTE rounding for cpy to quant (llama/12480)
* Vulkan: RTE rounding for cpy to quant

Co-Authored-By: Jeff Bolz <jbolz@nvidia.com>

* remove trailing whitespace

* avoid duplicating pipeline_cpy_f32_quant

* fix copypasting issue

* remove duplicated code

---------

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
2025-03-27 11:06:03 +02:00
Eve
2f77a9e9bd vulkan: workaround for AMD Windows driver 16 bit unpack8 bug (llama/12472) 2025-03-27 11:06:03 +02:00
fa2b5249ff Fix build on Windows when ccache enabled (ggml/9954) (llama/9976)
* [SYCL] Fix build on Windows when ccache enabled (llama/9954)

* take effect only on windows and force it to icl

---------

Co-authored-by: Romain Biessy <romain.biessy@codeplay.com>
2025-03-27 11:06:03 +02:00
5b854ebba5 sycl: cleanup oneDNN related code (llama/12097) 2025-03-27 11:06:03 +02:00
8058f19d0b ggml : block interleaving support for Q4_K quantization for x86 AVX2 architecture (llama/12332)
* Add block interleaving support for Q4_K quantization

* Remove whitespaces and fix CI/CD issues

* Update pointer of bsums from int16_t to const int16_t

* Add vector version of quantize_q8_K_4x8 function

* Update code formatting based on review comments
2025-03-27 11:06:03 +02:00
ae6a9bb9a5 CUDA: Improve flash decoding kernel GPU occupancy for BS=1 case (llama/12183)
- Find out active blocks per SM using cudaOccupancyMaxActiveBlocksPerMultiprocessor API. Use this value to determine the optimal parallel_blocks value.
- Prefer vector flash attention kernels over MMA kernel for BS=1

Fixes Issue: #12182
---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-03-27 11:06:03 +02:00
24faba9e9b vulkan: optimize iq1 coopmat2 dequant functions (llama/12427) 2025-03-27 11:06:03 +02:00
c722ff84d3 Fix visionOS build and add CI (llama/12415)
* ci: add visionOS build workflow

Add a new GitHub Actions workflow for building on visionOS with CMake and Xcode.

* ggml: Define _DARWIN_C_SOURCE for visionOS to fix missing u_xxx typedefs

* ci: remove define hacks for u_xxx system types

---------

Co-authored-by: Giovanni Petrantoni <7008900+sinkingsugar@users.noreply.github.com>
2025-03-27 11:06:03 +02:00
102af79f63 vulkan: Submit once enough matmul work has been recorded (llama/12406)
I've been seeing significantly worse performance for tg with flash attention
enabled vs disabled, and it seems to be related to the submit heuristic.
Change the heuristic to check how many bytes worth of weight matrix are
used and flush every 100MB, and ramp up after the first few submits.
This seems to resolve the issue, and also increases perf for non-FA a bit.
2025-03-27 11:06:03 +02:00
03c364557d opencl: improve profiling (llama/12442)
* opencl: more profiling timing

* opencl: generate trace for profiling

* opencl: reduce profiling overhead

* Populate profiling timing info at the end rather than after each
  kernel run

* opencl: fix for chrome tracing
2025-03-27 11:06:03 +02:00
31b62276cf musa: override warp_size of musa device to 32 (llama/12445)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-03-27 11:06:03 +02:00
97b5a3055d SYCL: using graphs is configurable by environment variable and compile option (llama/12371)
* alberto changes

* enable sycl graphs by env variable

* fixed compilation warnings in ggml-sycl.cpp

* renamed graph variables

* fix markdown in docs/backend/SYCL.md

Co-authored-by: Romain Biessy <romain.biessy@codeplay.com>

* fix markdown in docs/backend/SYCL.md again

* compiling graphs by default, renamed graph_enable to graph_disable

---------

Co-authored-by: Romain Biessy <romain.biessy@codeplay.com>
2025-03-27 11:06:03 +02:00
9993c3f703 ggml : add SVE support for q6_K_q8_K (llama/12361) 2025-03-27 11:06:03 +02:00
fa72479cfb Vulkan: Default to 1GB allocations instead of 4GB to avoid fragmentation and driver issues (llama/12434) 2025-03-27 11:06:03 +02:00
6c15539c54 fixed compilation warnings in ggml-sycl (llama/12424) 2025-03-27 11:06:03 +02:00
52c4c03b0a llama: Add support for RWKV v7 architecture (llama/12412)
* ggml: Add op l2_norm

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* ggml: Add op rwkv_wkv7

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: Add support for RWKV7 and ARWKV7 models

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: fix inference with RWKV6Qwen2

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: add more (a)rwkv7 variants in size

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Apply code-format changes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* fix MUSA build

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: fix shape error with rwkv using llama-parallel

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

---------

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
2025-03-27 11:06:03 +02:00
cfc2560e41 cuda : enable CUDA Graph on CUDA Toolkit < 12.x (llama/12394)
* Enable CUDA Graph on CTK < 12.x

`cudaGraphExecUpdate` API was changed on 12.x. For this reason CUDA graph support was disabled on older CUDA toolkit. This change enables CUDA support in CTK version < 12.x by using older API if CTK < 12.x.

* Fix compilation errors with MUSA

* Disable CUDA Graph for MUSA
2025-03-27 11:06:03 +02:00
db6e8056b5 ggml-vulkan: remove unused find_program(glslc) (llama/12416)
It's already found by FindVulkan.cmake in the parent CMakeLists
2025-03-27 11:06:03 +02:00
b3f3779c1b vulkan: Add N/2 and N/4 optimized paths in coopmat2 shader (llama/12312) 2025-03-27 11:06:03 +02:00
13eeebb1b2 vulkan: subgroup size tuning (llama/12087)
* vulkan: subgroup size test

* Vulkan: Add device architecture enum and logic to recognize AMD generations

* vulkan: use new architecture logic to specify subgroup size

* Initial vulkan subgroup size tuning for RDNA3

* vulkan: commonize RDNA subgroup tuning

* vulkan: override subgroup size if required_subgroup_size = 0

* vulkan: disable warp 32 for RDNA3

* vulkan: fine tuned RDNA1 subgroup sizes

* vulkan: adjusted subgroup size map

* vulkan: fixed RDNA2 subgroup map

---------

Co-authored-by: 0cc4m <picard12@live.de>
2025-03-27 11:06:03 +02:00
905b834af1 vulkan: use fp32 in coopmat2 q4_k dequant function (llama/12309) 2025-03-27 11:06:03 +02:00
2cd3061a23 vulkan: Pad N dimension of B matrix for coopmat2 perf, to avoid bounds checking (llama/12273)
* vulkan: Pad N dimension of B matrix for coopmat2 perf, to avoid bounds checking
2025-03-27 11:06:03 +02:00
88d59e21b2 vulkan: Adjust coopmat2 tile sizes and selection heuristic (llama/12258) 2025-03-27 11:06:03 +02:00
4917f122d4 cmake : enable building llama.cpp using system libggml (llama/12321)
* cmake: Factor out compiler flag function from ggml

llama.cpps's build requires it, too, and we may want to make use of it
without add_subdirectory(ggml).

* cmake: Enable building against system ggml

This facilitates package maintenance for Linux distributions, where the
libggml library most likely will be shipped as an individual package
upon which a llama.cpp package depends.
2025-03-27 11:06:03 +02:00
16a1b77249 SYCL: set extras only on GGML_TYPE_Q4_0 (llama/12366)
* SYCL: set extras only on GGML_TYPE_Q4_0

* release tensor_extras in reset buffer interface
2025-03-27 11:06:03 +02:00
51d1398a0a SYCL: Delete redundant plus sign and space (llama/12391) 2025-03-27 11:06:03 +02:00
3499dd83c0 SYCL : support non-contiguous tensors in binary ops (add, sub, etc) (llama/12399)
* sycl : support non-contiguous tensors in binary ops

* sycl : silence unused variable warning

---------

Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
2025-03-27 11:06:03 +02:00
7b7d9ae35e MUL_MAT optimization (llama/12382) 2025-03-27 11:06:03 +02:00
2dcb7181ff sycl : variable sg_size support for mmvq kernels (llama/12336) 2025-03-27 11:06:03 +02:00
96ab3b2465 CUDA/HIP: Fix fattn-vec-* when device warp size is not 32 (llama/12315)
When fattn-wmma was ported over to warp64 various bits that also touch fattn-vec where converted to
selectable warp size, however the fattn-vec kernels dont work with 64 wide warps for now, so we need
to avoid launching them with parameters for warp64
2025-03-27 11:06:03 +02:00
08f32992d0 vulkan: fix bug in coopmat1 mul_mat_id (llama/12316)
* tests: run mul_mat_id with a larger N

* vulkan: fix bug in coopmat1 mul_mat_id
2025-03-27 11:06:03 +02:00
394fae57c3 CUDA/HIP: refractor mmqv to unify the calculation of nwarps and rows per block between host and device code. (llama/12177)
refactor mmqv to unify the calculation of nwarps and rows per block between host and device code.

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-03-27 11:06:03 +02:00
0708835301 ggml-backend : fix backend search path (llama/12330)
* Fix backend search path

* replace .native() with '/'

* reverted .native()
2025-03-27 11:06:03 +02:00
774c519433 metal : Cache the Metal library at the device context level (llama/12265) 2025-03-27 11:06:03 +02:00
Eve
776cdceb9e mat vec double buffer (llama/12188) 2025-03-27 11:06:03 +02:00
03d050481e musa: support new arch mp_31 and update doc (llama/12296)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-03-27 11:06:03 +02:00
3d60219622 opencl: use OpenCL C standard supported by the device (llama/12221)
This patch nudges the llama.cpp a bit to be supported on PoCL which
doesn't support OpenCL C CL2.0. The issue is solved by querying the
device for the supported OpenCL C versions and using the highest one
available.
2025-03-27 11:06:03 +02:00
521d72d76e ggml-backend : make path_str compatible with C++20 (llama/12269) 2025-03-27 11:06:03 +02:00
9fb9025a40 ggml : skip intermediate .air file when compiling .metallib (llama/12247)
This commit updates the compilation of default.metallib to skip the
intermediate .air (Apple Intermediate Representation) file.

The motivation for this change is to simplify the custom command a
little and avoid generating and then removing the .air file.
2025-03-27 11:06:03 +02:00
3c2abb01e8 cmake: Enable specifying exact PowerPC CPU architecture (ggml/1138)
In the process, guard automatic CPU detection with GGML_NATIVE.

https://gcc.gnu.org/onlinedocs/gcc/RS_002f6000-and-PowerPC-Options.html#index-mcpu-10
2025-03-27 11:06:03 +02:00
efd9407e22 cmake: Comment out GGML_BIN_DIR for now (ggml/1139)
Nothing installs to it yet, so when attempting to use the cmake package,
set_and_check() triggers an error if the directory doesn't already exist
for other reasons.
2025-03-27 11:06:03 +02:00
3684af2594 scripts : update sync 2025-03-27 11:06:03 +02:00
206459a804 bindings-go : update Makefile to use cmake (#2952)
This commit updates the Makefile to use cmake instead of make to build
whisper.cpp.

The motivation for this change is that currently the make recipe test
will fail with the following error:
```console
$ make test
Mkdir build
Mkdir models
Build whisper
make[1]: Entering directory '/home/danbev/work/ai/whisper-work'
make[1]: *** No rule to make target 'libwhisper.a'.  Stop.
make[1]: Leaving directory '/home/danbev/work/ai/whisper-work'
make: *** [Makefile:33: whisper] Error 2
```
2025-03-26 16:21:07 +01:00
21d890d534 whisper : add support for backends with multiple ggml_backend_buffer_type (#2863)
* whisper : add support for ggml_backend_buffer_type

Signed-off-by: Dan Johansson <dan.johansson@arm.com>

* fix compile error when building on Ubuntu

Signed-off-by: Dan Johansson <dan.johansson@arm.com>

* remove copyright header from include file

Signed-off-by: Dan Johansson <dan.johansson@arm.com>

---------

Signed-off-by: Dan Johansson <dan.johansson@arm.com>
2025-03-26 16:54:02 +02:00
0b43a02be8 bindings.java : enable copyLibs task [no ci] (#2949)
* bindings.java : enable copyLibs task [no ci]

This commit adds a dependency on the copyLibs task to the sourcesJar and
jar tasks. This ensures that the libwhisper.so file is copied to the
correct location before the jar is built.

It also sets the executable bit on the gradlew file.

* bindings.java : add copyLibs dep for processResources [no ci]

This will otherwise cause builds to fail after doing an initial build.

* bindings.java : pass structs by value to native code

This commit refactors the code to pass the structs by value to the
native code. This is done by creating a ByValue class for each struct
and using it in the Java code.

The motivation for this change is that without this application crashes
due to what I believe was memory mis-alignement. When the structs were
passed to the native code they would be att different memory locations.
Passing by value overcomes this issue and considering that the structs
hold parementers (context and full params) it might be alright do to
this. These changes allow all the tests to pass.

* bindings.java : fix javadoc warnings [no ci]

* bindings.java : fix libwhisper.dylib path in build.gradle [no ci]

This commit fixes the copyLibwhisperDynlib task in the build.gradle file
to copy the correct libwhisper.dylib file from build/src.
2025-03-26 15:01:28 +01:00
2699e1485a bindings.javascript : update test instructions [no ci] (#2951)
This commit updates the instructions for running the test in the
JavaScript bindings README file.

The motivation for this is for Node.js versions after v16.4.0 the
`--experimental-wasm-threads` and `--experimental-wasm-simd` flags are
no longer required and they generate the following errors:
```console
$ node --experimental-wasm-threads --experimental-wasm-simd ../tests/test-whisper.js
node: bad option: --experimental-wasm-threads
node: bad option: --experimental-wasm-simd
```
2025-03-26 14:49:12 +01:00
594a121f3e readme : add note about SDL2 (#2946)
Precise the README section about real time audio processing, stating that sdl2 is needed.
2025-03-26 09:30:59 +02:00
996581c5e2 whisper.android : add GGML_USE_CPU compile definition (#2945)
This commit add GGML_USE_CPU to built target library to enable CPU
backend.

The motivation for this that without the compile definition the CPU
backend is not enabled and the app will crash when trying to use it.
2025-03-25 18:01:18 +01:00
226d344f56 whisper.android.java : update build with ggml source changes (#2942)
* whisper.android.java : update build with ggml source changes

This commit updates the whisper.android.java build to include the
new ggml source files and directories. The gradle build configuration is
also updated to include the aliyun maven repository.
2025-03-25 16:01:59 +01:00
bb9f68129f ci: fix SYCL build (#2943) 2025-03-25 11:20:37 +02:00
30cf30ca82 examples : reduce initial memory to 512MB (#2939)
* examples : reduce initial memory to 512MB

This commit reduces the initial memory size to 512MB. This is done to
to avoid WebAssembly memory allocation issues on some platforms. It also
adds a flag to allow the memory to grow dynamically (up to the maximum).

The motivation for this change is that currently the initial memory is
set to 2GB which might be to large for some platforms. This will lead to
an error being thrown from the JavaScript code generated by Emscripten
when trying to allocate memory. More details can be found in the
referenced issue below.


* examples : set MAXIMUM_MEMORY instead of TOTAL_MEMORY

This commit sets MAXIMUM_MEMORY instead of TOTAL_MEMORY in the
whisper.wasm example.

The motivation for this is that TOTAL_MEMORY and INITIAL_MEMORY are
actually the same thing. Instead we want to set MAXIMUM_MEMORY to
2GB. 

Refs: https://github.com/ggerganov/whisper.cpp/issues/2920
Refs: https://emscripten.org/docs/tools_reference/settings_reference.html#initial-memory
2025-03-24 14:42:12 +01:00
ee6286c35d examples : fix nthread parsing in whisper.wasm (#2938)
This commit fixes the nthread parsing in the whisper.wasm example when
using the `Threads` slider to change the number of threads to be used.

Currently this results in the following error:
```console
main.js:5597 Uncaught TypeError: Cannot convert "5" to int
    at checkAssertions (main.js:5597:21)
    at Object.toWireType (main.js:5611:15)
    at Object.full_default (eval at new_ (main.js:5292:27), <anonymous>:10:26)
    at whisper.wasm/:649:42
```
2025-03-24 14:40:00 +01:00
c7941d5ccc examples : fix request path for local worker files (#2937)
This commit adds a fix to the server.py file to handle requests for
web worker files when running the local python server to test the wasm
examples.

The motivation for this is that currently the server is serving files
from the build-em/bin directory which is where the .worker.js files
exist. But when examples access these resources they do so with the
application context path, for example /whisper.wasm/libmain.worker.js
but this will not be found as it currently works.
2025-03-24 14:33:45 +01:00
b82ac32a6c ggml : add logging for native build options/vars (#2935)
This commit adds debug level logging for the native build options and
variables to ggml/CMakeLists.txt.

The motivation for this is that it can be useful to see the effective
result of `GGML_NATIVE`, `GGML_NATIVE_DEFAULT`, and `INS_ENB` for a
cmake build. I've found myself adding similar logging a few times now,
so I thought it might be a good idea to add this.

Example output, specifying `-DCMAKE_MESSAGE_LOG_LEVEL=DEBUG` when
running cmake produces the following output:
```console
-- GGML_NATIVE         : OFF
-- GGML_NATIVE_DEFAULT : OFF
-- INS_ENB             : OFF
```
2025-03-24 09:53:38 +01:00
edf1ee1ef8 whisper : enhance model download scripts functionality and resolve compiler warning (#2925)
* whisper : improve whisper-cli executable path detection in model download shell scripts

If whisper-cli is found on the path, do not suggest invoking from build directory. This improves flexibility and usability for distribution and packaging scenarios.

* whisper : enhance Windows model download batch script to have comparable functionality and behaviour as shell scripts

* Download models to the current directory if the script is executed from the \bin\ directory (for future distribution scenarios where the script is in the \bin\ subdirectory of a Windows build)
* Add model_path command line argument
* If whisper-cli is found on the path, do not suggest invoking from build directory

* whisper : resolve compiler warning by removing duplicate definition of NOMINMAX in whisper-cli code
2025-03-24 10:39:50 +02:00
cf5ddb8c21 whisper : initialize decoder's rng with unique seed (#2932)
This change initializes each decoder's random number generator with a
unique seed.

The motivation for this is that currently all decoders are initialized
with the same seed value, 0. The result of this is that for the same
state (logits, probs, and logprobs) they will produce the same output.
2025-03-24 09:36:07 +01:00
7fe4979f25 ci : remove CMAKE_CUDA_ARCHITECTURES in windows-cublas (#2923)
This commit removes the -DCMAKE_CUDA_ARCHITECTURES=all flag from the
windows-cublas job in the build.yml file.

The motivation for this is that building for all architectures is
unnecessary and takes a long time. Without this flag the architectures
will instead be set by ggml-cuda.

Refs: https://github.com/ggerganov/whisper.cpp/pull/2915#issuecomment-2743160743
2025-03-22 15:40:28 +01:00
9bc0dc7235 whisper : update default model download directory behavior to use current working directory when script is in /bin/ directory (#2924)
This change ensures that when the script is packaged and distributed, models are downloaded to the current directory instead of the script's location, preventing conflicts with system directories. This improves flexibility and usability for distribution and packaging scenarios.
2025-03-22 16:27:57 +02:00
3fc6ad97a3 whisper.swiftui : Add Core ML support to README [no ci] (#2921)
This commit updates the README to include instructions on how to use
a Core ML model with the example.
2025-03-21 11:38:32 +01:00
663cafc1e8 readme : update Python version to 3.11 for Core ML support [no -ci] (#2919)
This commit updates the recommended version of Python to 3.11 for Core
ML conversion support. It also adds the `-e` flag to the
`generate-coreml-model.sh` script to ensure that the script exits on the
first error.

The motivation for this that when following the installation instructions
using Python 3.10 I get the following error:
```console
(venv) $ ./models/generate-coreml-model.sh base.en

A module that was compiled using NumPy 1.x cannot be run in
NumPy 2.1.3 as it may crash. To support both 1.x and 2.x
versions of NumPy, modules must be compiled with NumPy 2.0.
Some module may need to rebuild instead e.g. with 'pybind11>=2.12'.

If you are a user of the module, the easiest solution will be to
downgrade to 'numpy<2' or try to upgrade the affected module.
We expect that some modules will need time to support NumPy 2.

Traceback (most recent call last):  File "/whisper-work/models/convert-whisper-to-coreml.py", line 2, in <module>
    import torch
  File "/whisper-work/venv/lib/python3.10/site-packages/torch/__init__.py", line 870, in <module>
    from . import _masked
  File "/whisper-work/venv/lib/python3.10/site-packages/torch/_masked/__init__.py", line 420, in <module>
    def sum(input: Tensor,
  File "/whisper-work/venv/lib/python3.10/site-packages/torch/_masked/__init__.py", line 223, in _apply_docstring_templates
    example_input = torch.tensor([[-3, -2, -1], [0, 1, 2]])
/whisper-work/venv/lib/python3.10/site-packages/torch/_masked/__init__.py:223: UserWarning: Failed to initialize NumPy: _ARRAY_API not found (Triggered internally at  /Users/distiller/project/pytorch/torch/csrc/utils/tensor_numpy.cpp:68.)
  example_input = torch.tensor([[-3, -2, -1], [0, 1, 2]])
Minimum required torch version for importing coremltools.optimize.torch is 2.1.0. Got torch version 1.11.0.
Traceback (most recent call last):
  File "/whisper-work/models/convert-whisper-to-coreml.py", line 4, in <module>
    import coremltools as ct
  File "/whisper-work/venv/lib/python3.10/site-packages/coremltools/__init__.py", line 120, in <module>
    from . import converters, models, optimize, proto
  File "/whisper-work/venv/lib/python3.10/site-packages/coremltools/converters/__init__.py", line 7, in <module>
    from . import libsvm, sklearn, xgboost
  File "/Users/danbev/work/ai/whisper-work/venv/lib/python3.10/site-packages/coremltools/converters/xgboost/__init__.py", line 6, in <module>
    from ._tree import convert
  File "/Users/danbev/work/ai/whisper-work/venv/lib/python3.10/site-packages/coremltools/converters/xgboost/_tree.py", line 9, in <module>
    from ._tree_ensemble import convert_tree_ensemble as _convert_tree_ensemble
  File "/Users/danbev/work/ai/whisper-work/venv/lib/python3.10/site-packages/coremltools/converters/xgboost/_tree_ensemble.py", line 11, in <module>
    from ...models.tree_ensemble import TreeEnsembleClassifier
  File "/Users/danbev/work/ai/whisper-work/venv/lib/python3.10/site-packages/coremltools/models/__init__.py", line 6, in <module>
    from . import (
  File "/Users/danbev/work/ai/whisper-work/venv/lib/python3.10/site-packages/coremltools/models/ml_program/__init__.py", line 6, in <module>
    from . import compression_utils
  File "/Users/danbev/work/ai/whisper-work/venv/lib/python3.10/site-packages/coremltools/models/ml_program/compression_utils.py", line 8, in <module>
    from coremltools.converters.mil.mil import Operation as _Operation
  File "/Users/danbev/work/ai/whisper-work/venv/lib/python3.10/site-packages/coremltools/converters/mil/__init__.py", line 7, in <module>
    from .frontend.tensorflow.tf_op_registry import register_tf_op
  File "/Users/danbev/work/ai/whisper-work/venv/lib/python3.10/site-packages/coremltools/converters/mil/frontend/__init__.py", line 6, in <module>
    from . import tensorflow, tensorflow2, torch
  File "/Users/danbev/work/ai/whisper-work/venv/lib/python3.10/site-packages/coremltools/converters/mil/frontend/torch/__init__.py", line 11, in <module>
    from . import ops, quantization_ops
  File "/Users/danbev/work/ai/whisper-work/venv/lib/python3.10/site-packages/coremltools/converters/mil/frontend/torch/ops.py", line 36, in <module>
    from .internal_graph import InternalTorchIRGraph, InternalTorchIRNode
  File "/Users/danbev/work/ai/whisper-work/venv/lib/python3.10/site-packages/coremltools/converters/mil/frontend/torch/internal_graph.py", line 15, in <module>
    from .exir_utils import extract_io_from_exir_program
  File "/Users/danbev/work/ai/whisper-work/venv/lib/python3.10/site-packages/coremltools/converters/mil/frontend/torch/exir_utils.py", line 99, in <module>
    ) -> Dict[str, torch.fx.Node]:
AttributeError: module 'torch' has no attribute 'fx'
```
Using Python3.11 the conversion script runs without any errors.
2025-03-21 10:31:55 +01:00
be9de81171 whisper : add check for CPU backend initialization (#2918)
This commit adds a check for the CPU backend initialization in the
whisper library. If the initialization fails, an exception is thrown.

The motivation for this change is to make the library more robust and
handle the case when the CPU backend initialization fails.

Resolves: https://github.com/ggerganov/whisper.cpp/issues/2917
2025-03-21 09:53:26 +01:00
21fb513ef1 examples : update whisper.objc README.md (#2916)
This commit updates the hisper.objc README.md to reflect the changes of
using the xcframework and the new build process.

Since whisper.cpp is no longer compiled by the example project, instead
the library from the xframework will be used, the build instructions
have been removed.
2025-03-21 09:52:53 +01:00
4e56747944 ci : increase windows-cublas evict-old-files to 5d (#2915)
This commit updates the evict-old-files parameter for the windows-cublas
build job to 5 days.

The motivation for this change is to avoid the full rebuild which takes
around 1.5 hours for the windows-cublas build job. Considering that
there are periods of low traffic on whisper.cpp (like weekends etc.) it
might be better to have a longer eviction policy to avoid the full
rebuild.
2025-03-21 08:19:24 +01:00
ca75449a92 xcframework : add support for CoreML to ios/macOS (#2912)
* xcframework : add support for CoreML to ios/macOS

This commit add support for compiling whisper with CoreML support for
iOS and macOS.

The motivation for this change is it will allow users to use a Core ML
model or fall back to a ggml model if Core ML is not available.

With the updated xcframework, I was able to run the whisper.objc example
and successfully load a Core ML model:
```console
whisper_init_state: loading Core ML model from '/Users/danbev/Library/Developer/CoreSimulator/Devices/25E8C27D-0253-4281-AF17-C3F2A4D1D8F4/data/Containers/Bundle/Application/B81F6FF0-BF1A-40DF-AC2A-3908EC4BCC9A/whisper.objc.app/ggml-base.en-encoder.mlmodelc'
whisper_init_state: first run on a device may take a while ...
whisper_init_state: Core ML model loaded
```

* squash! xcframework : add support for CoreML to ios/macOS

Fix grammar in output message.
2025-03-20 18:39:08 +01:00
80dad86b2c examples : add WHISPER_SDL2 check to deprecation executables (#2911)
This commit adds a check for `WHISPER_SDL2` to the deprecation warning
examples. This is to prevent the examples from being built when
WHISPER_SDL2 is not enabled.

The motivation for this is that currently these deprecation executables
are generate and when run they refer the user to examples with other
names, for example `whisper-command` but unless they have built with
`WHISPER_SDL2` those executable will not be present:
```console
$ ls build/bin/
bench  command  main  quantize  stream  whisper-bench  whisper-cli
whisper-server

$ ./build/bin/command

WARNING: The binary 'command' is deprecated.
 Please use 'whisper-command' instead.
 See https://github.com/ggerganov/whisper.cpp/tree/master/examples/deprecation-warning/README.md for more information.
```
2025-03-20 18:36:02 +01:00
485ece6725 ci : use ninja and fix caching for windows-cublas (#2910)
This commit updates the windows-cublas job to use Ninja as the build
system instead of msbuild/msvc.

The motivation for this is that msbuild/mscv does not seem to handle
ccache/sccache well, for example it ignores the
`CMAKE_C_COMPILER_LAUNCHER` etc. variables. But using Ninja as the build
caching works and the build is initially the same speed as it is
currently (without caching) subsequently builds are much faster.

Refs: https://github.com/ggerganov/whisper.cpp/issues/2781
2025-03-20 17:01:48 +01:00
e7d9d8687a examples : update wasm examples to include server.py [no ci] (#2908)
This commit updates the README files for the wasm examples to include
instructions on how to run the examples using the provided server.py
which was included in Commit 6e8242f7fe
("examples : command.wasm updates (#2904)").

The motivation for this is consistency with the command.wasm example.
2025-03-20 09:07:43 +01:00
6e8242f7fe examples : command.wasm updates (#2904)
This commit updates the command.wasm example by adding a server.py script to make it easy to start a local http server to try out the example, updates the build instructions, and also addresses some of the compiler warnings that were being generated.

* emscripten : fix TOTAL_STACK for wasm

This commit moves the TOTAL_STACK setting from the compile flags to the
linker flags. This is because the TOTAL_STACK setting is a linker
setting.

The motivation for this change is that currently the following warnings
are generated when building:
```console
em++: warning: linker setting ignored during compilation: 'TOTAL_STACK' [-Wunused-command-line-argument]
em++: warning: linker setting ignored during compilation: 'TOTAL_STACK' [-Wunused-command-line-argument]
em++: warning: linker setting ignored during compilation: 'TOTAL_STACK' [-Wunused-command-line-argument]
em++: warning: linker setting ignored during compilation: 'TOTAL_STACK' [-Wunused-command-line-argument]
em++: warning: linker setting ignored during compilation: 'TOTAL_STACK' [-Wunused-command-line-argument]
em++: warning: linker setting ignored during compilation: 'TOTAL_STACK' [-Wunused-command-line-argument]
```

* examples : suppress C++17 deprecation warning for std::codecvt_utf8

This commit suppresses the C++17 deprecation warning for
std::codecvt_utf8 similar to what is done in
examples/talk-llama/unicode.cpp.

The motivation for this change is to suppress these warnings:
```console
/Users/danbev/work/ai/whisper-work/examples/common.cpp:251:31: warning: 'codecvt_utf8<wchar_t>' is deprecated [-Wdeprecated-declarations]
  251 |     std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
      |                               ^
/Users/danbev/work/wasm/emsdk/upstream/emscripten/cache/sysroot/include/c++/v1/codecvt:193:28: note: 'codecvt_utf8<wchar_t>' has been explicitly marked deprecated here
  193 | class _LIBCPP_TEMPLATE_VIS _LIBCPP_DEPRECATED_IN_CXX17 codecvt_utf8 : public __codecvt_utf8<_Elem> {
      |                            ^
/Users/danbev/work/wasm/emsdk/upstream/emscripten/cache/sysroot/include/c++/v1/__config:723:41: note: expanded from macro '_LIBCPP_DEPRECATED_IN_CXX17'
  723 | #    define _LIBCPP_DEPRECATED_IN_CXX17 _LIBCPP_DEPRECATED
      |                                         ^
/Users/danbev/work/wasm/emsdk/upstream/emscripten/cache/sysroot/include/c++/v1/__config:688:49: note: expanded from macro '_LIBCPP_DEPRECATED'
  688 | #      define _LIBCPP_DEPRECATED __attribute__((__deprecated__))
      |                                                 ^
/Users/danbev/work/ai/whisper-work/examples/common.cpp:251:10: warning: 'wstring_convert<std::codecvt_utf8<wchar_t>>' is deprecated [-Wdeprecated-declarations]
  251 |     std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
      |          ^
/Users/danbev/work/wasm/emsdk/upstream/emscripten/cache/sysroot/include/c++/v1/locale:3145:28: note: 'wstring_convert<std::codecvt_utf8<wchar_t>>' has been explicitly marked deprecated here
 3145 | class _LIBCPP_TEMPLATE_VIS _LIBCPP_DEPRECATED_IN_CXX17 wstring_convert {
      |                            ^
/Users/danbev/work/wasm/emsdk/upstream/emscripten/cache/sysroot/include/c++/v1/__config:723:41: note: expanded from macro '_LIBCPP_DEPRECATED_IN_CXX17'
  723 | #    define _LIBCPP_DEPRECATED_IN_CXX17 _LIBCPP_DEPRECATED
      |                                         ^
/Users/danbev/work/wasm/emsdk/upstream/emscripten/cache/sysroot/include/c++/v1/__config:688:49: note: expanded from macro '_LIBCPP_DEPRECATED'
  688 | #      define _LIBCPP_DEPRECATED __attribute__((__deprecated__))
      |                                                 ^
/Users/danbev/work/ai/whisper-work/examples/common.cpp:257:31: warning: 'codecvt_utf8<wchar_t>' is deprecated [-Wdeprecated-declarations]
  257 |     std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
      |                               ^
/Users/danbev/work/wasm/emsdk/upstream/emscripten/cache/sysroot/include/c++/v1/codecvt:193:28: note: 'codecvt_utf8<wchar_t>' has been explicitly marked deprecated here
  193 | class _LIBCPP_TEMPLATE_VIS _LIBCPP_DEPRECATED_IN_CXX17 codecvt_utf8 : public __codecvt_utf8<_Elem> {
      |                            ^
/Users/danbev/work/wasm/emsdk/upstream/emscripten/cache/sysroot/include/c++/v1/__config:723:41: note: expanded from macro '_LIBCPP_DEPRECATED_IN_CXX17'
  723 | #    define _LIBCPP_DEPRECATED_IN_CXX17 _LIBCPP_DEPRECATED
      |                                         ^
/Users/danbev/work/wasm/emsdk/upstream/emscripten/cache/sysroot/include/c++/v1/__config:688:49: note: expanded from macro '_LIBCPP_DEPRECATED'
  688 | #      define _LIBCPP_DEPRECATED __attribute__((__deprecated__))
      |                                                 ^
/Users/danbev/work/ai/whisper-work/examples/common.cpp:257:10: warning: 'wstring_convert<std::codecvt_utf8<wchar_t>>' is deprecated [-Wdeprecated-declarations]
  257 |     std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
      |          ^
/Users/danbev/work/wasm/emsdk/upstream/emscripten/cache/sysroot/include/c++/v1/locale:3145:28: note: 'wstring_convert<std::codecvt_utf8<wchar_t>>' has been explicitly marked deprecated here
 3145 | class _LIBCPP_TEMPLATE_VIS _LIBCPP_DEPRECATED_IN_CXX17 wstring_convert {
      |                            ^
/Users/danbev/work/wasm/emsdk/upstream/emscripten/cache/sysroot/include/c++/v1/__config:723:41: note: expanded from macro '_LIBCPP_DEPRECATED_IN_CXX17'
  723 | #    define _LIBCPP_DEPRECATED_IN_CXX17 _LIBCPP_DEPRECATED
      |                                         ^
/Users/danbev/work/wasm/emsdk/upstream/emscripten/cache/sysroot/include/c++/v1/__config:688:49: note: expanded from macro '_LIBCPP_DEPRECATED'
  688 | #      define _LIBCPP_DEPRECATED __attribute__((__deprecated__))
      |                                                 ^
4 warnings generated.
```

* ggml : suppress double-promotion warning in GGML_F16x4_REDUCE

This commit adds a cast to `ggml_float` in the `GGML_F16x4_REDUCE` macro
to suppress a double-promotion warning.

Currently the following warning is generated when compiling the
command.wasm example:
```console
/whisper-work/ggml/src/ggml-cpu/ggml-cpu.c:1592:5: warning: implicit conversion increases floating-point precision: 'float' to 'ggml_float' (aka 'double') [-Wdouble-promotion]
 1592 |     GGML_F16_VEC_REDUCE(sumf, sum);
      |     ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/Users/danbev/work/ai/whisper-work/ggml/src/ggml-cpu/ggml-cpu.c:932:37: note: expanded from macro 'GGML_F16_VEC_REDUCE'
  932 | #define GGML_F16_VEC_REDUCE         GGML_F16x4_REDUCE
      |                                     ^
/Users/danbev/work/ai/whisper-work/ggml/src/ggml-cpu/ggml-cpu.c:920:44: note: expanded from macro 'GGML_F16x4_REDUCE'
  918 |     res = wasm_f32x4_extract_lane(x[0], 0) +       \
      |         ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  919 |           wasm_f32x4_extract_lane(x[0], 1) +       \
      |           ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  920 |           wasm_f32x4_extract_lane(x[0], 2) +       \
      |           ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~
  921 |           wasm_f32x4_extract_lane(x[0], 3);        \
      |           ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/whisper-work/ggml/src/ggml-cpu/ggml-cpu.c:1640:9: warning: implicit conversion increases floating-point precision: 'float' to 'ggml_float' (aka 'double') [-Wdouble-promotion]
 1640 |         GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
      |         ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/Users/danbev/work/ai/whisper-work/ggml/src/ggml-cpu/ggml-cpu.c:932:37: note: expanded from macro 'GGML_F16_VEC_REDUCE'
  932 | #define GGML_F16_VEC_REDUCE         GGML_F16x4_REDUCE
      |                                     ^
/Users/danbev/work/ai/whisper-work/ggml/src/ggml-cpu/ggml-cpu.c:920:44: note: expanded from macro 'GGML_F16x4_REDUCE'
  918 |     res = wasm_f32x4_extract_lane(x[0], 0) +       \
      |         ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  919 |           wasm_f32x4_extract_lane(x[0], 1) +       \
      |           ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  920 |           wasm_f32x4_extract_lane(x[0], 2) +       \
      |           ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~
  921 |           wasm_f32x4_extract_lane(x[0], 3);        \
      |           ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2 warnings generated.
```
wasm_f32x4_extract_lane returns a 32-bit float and this is what the
addition is performed on. But there is an implicit conversion from
32-bit float to 64-bit double when the result is assigned to `res`,
which is of type `ggml_float`. My understanding here is that this is
intentional and adding a cast to `ggml_float` should suppress the
warning.

* emscripten : add -Wno-deprecated to for emscripten

This commit adds -Wno-deprecated to the CMAKE_CXX_FLAGS for emscripten
builds.

The motivation for this is that currently there a number of warnings
generated like the following:
```console
warning: JS library symbol '$print' is deprecated. Please open a bug if you have a continuing need for this symbol [-Wdeprecated]
warning: JS library symbol '$printErr' is deprecated. Please open a bug if you have a continuing need for this symbol [-Wdeprecated]
em++: warning: warnings in JS library compilation [-Wjs-compiler]
em++: warning: linker setting ignored during compilation: 'ENVIRONMENT' [-Wunused-command-line-argument]
warning: JS library symbol '$print' is deprecated. Please open a bug if you have a continuing need for this symbol [-Wdeprecated]
warning: JS library symbol '$printErr' is deprecated. Please open a bug if you have a continuing need for this symbol [-Wdeprecated]
em++: warning: warnings in JS library compilation [-Wjs-compiler]
warning: JS library symbol '$print' is deprecated. Please open a bug if you have a continuing need for this symbol [-Wdeprecated]
warning: JS library symbol '$printErr' is deprecated. Please open a bug if you have a continuing need for this symbol [-Wdeprecated]
em++: warning: warnings in JS library compilation [-Wjs-compiler]
em++: warning: linker setting ignored during compilation: 'ENVIRONMENT' [-Wunused-command-line-argument]
em++: warning: linker setting ignored during compilation: 'ENVIRONMENT' [-Wunused-command-line-argument]
```

The downside of this is that we might miss other deprecation warnings
in the future so I'm not sure if this is acceptable. But it make the
wasm examples cleaner without the warnings.

* examples : fix tautological-compare warning in stb_vorbis.c [no ci]

This commit applies a fix to address a tautological-compare warning
in stb_vorbis.c.

The motivation for this is that currently the following warning is
generated when compiling the commmand-wasm example:
```console
/Users/danbev/work/ai/whisper-work/examples/stb_vorbis.c:1404:75: warning: pointer comparison always evaluates to false [-Wtautological-compare]
 1404 |       if (f->stream_start + loc >= f->stream_end || f->stream_start + loc < f->stream_start) {
      |                                                                           ^
1 warning generated.
```

This fix was taken from an open pull request on the stb repository
that addreses this issue:
https://github.com/nothings/stb/pull/1746

* squash! examples : update command.wasm instructions [no ci]

This commit adds a Python script to serve the the wasm examples build
in the `build-em` directory. Initially I thought that it would be enough
to start a simple python server but I did not notice that there was an
error in the browser console when I did that:
```console
command.js:1 Uncaught (in promise) DataCloneError: Failed to execute 'postMessage' on 'Worker': SharedArrayBuffer transfer requires self.crossOriginIsolated.
    at command.js:1:1206224
    at new Promise (<anonymous>)
    at loadWasmModuleToWorker (command.js:1:1204981)
    at Array.map (<anonymous>)
    at Object.loadWasmModuleToAllWorkers (command.js:1:1206428)
    at command.js:1:1204318
    at callRuntimeCallbacks (command.js:1:1202062)
    at preRun (command.js:1:6136)
    at run (command.js:1:1294094)
    at removeRunDependency (command.js:1:7046)
```
We need a few CORS headers to be set and in order hopefully make this
easy for users a Python script is added to the examples directory.
This should be able to server all the wasm examples provided they have
been built. command.wasm's README.md is updated to reflect this change.

* examples : remove unused functions

This commit removed the unused functions convert_to_utf8 and
convert_to_wstring from examples/common.cpp.

* Revert "examples : fix tautological-compare warning in stb_vorbis.c [no ci]"

This reverts commit 8e3c47d961.

We should not make this change here and instead when the upstream PR is
merged we can sync with it.

Refs: https://github.com/ggerganov/whisper.cpp/issues/2784
2025-03-20 07:02:18 +01:00
e27fd6f0c0 ci : refactor cuda toolkit installation steps (#2902)
The commit updates the CUDA tookkit installation steps to use variables
for the CUDA version and the components versions.

The motivation for this change is that the currently the versions for
the components are used in multiple places and it is hard to update
and maintain.
2025-03-19 09:41:14 +01:00
96db0c5a9c go : add Encoder Begin Callback (#2900)
Adding in EncoderBeginCallback to the Context's Process callback.
This optional callback function returns false if computation should
be aborted.

Co-authored-by: Amanda Der Bedrosian <aderbedr@gmail.com>
2025-03-19 09:05:04 +02:00
d2aaffd5d9 ci : add ccache action to windows-cublas job (#2893)
* ci : add ccache action to windows-cublas job

This commit adds the ccache action to the windows-cublas job. This will
allow us to cache the build artifacts and hopefully speed up the build
process.

Refs: https://github.com/ggerganov/whisper.cpp/issues/2781
2025-03-19 04:53:08 +01:00
215990abde whisper : fix compiler warnings in whisper.cpp (#2895)
This commit fixes compiler warnings in whisper.cpp by changing the type
of the loop index variable from int64_t to size_t.

Currently the following warnings are generated by the compiler:
```console
/whisper.cpp/src/whisper.cpp:209:27: warning: comparison of integers of different signs: 'int64_t' (aka 'long long') and 'size_t' (aka 'unsigned long') [-Wsign-compare]
  209 |     for (int64_t i = 0; i < nels; ++i) {
      |                         ~ ^ ~~~~
/whisper.cpp/src/whisper.cpp:219:27: warning: comparison of integers of different signs: 'int64_t' (aka 'long long') and 'size_t' (aka 'unsigned long') [-Wsign-compare]
  219 |     for (int64_t i = 0; i < nels; ++i) {
      |                         ~ ^ ~~~~
```
2025-03-18 13:38:41 +01:00
7e23d8c64a ci : add missing env.branch_name to build.yml (#2896)
This commit adds the missing env.branch_name to the build.yml file.

The motivation for this is that the currently the build is failing
during the release job because the branch_name is not set in the
an invalid tag is being used.
2025-03-18 13:38:21 +01:00
740bf7f6a1 whisper : enable compiler warnings for src (#2891)
* whisper : enable compiler warnings for src

This commit enables compiler warnings for the src directory. Currently
when the WHISPER_ALL_WARNINGS flag is set to ON is only enables warnings
in ggml, by setting GGML_ALL_WARNINGS to ON. This commit adds the same
compiler flags for whisper's src directory.

The motivation for this is to catch potential bugs and issues early on
in the development process.

* squash! whisper : enable compiler warnings for src

Remove GF_C_FLAGS and GF_CXX_FLAGS from add_compile_options.
2025-03-18 05:19:18 +01:00
c8e12f59dd ci : add release job and include xcframework (#2889)
* ci : add release job and include xcframework

This commit adds a release job that uploads the xcframework as an
artifact and creates a release with the xcframework as an asset.

This job can be triggered manually and enables a pre-release tag name to
be specified to that these releases can be distinguished from the
regular releases more easily.

Resolves: https://github.com/ggerganov/whisper.cpp/issues/2886
2025-03-18 05:18:20 +01:00
83b14c357c examples : use xcframework in whisper.objc example (#2882)
* examples : use xcframework in whisper.objc example

This commit updates the whisper.objc example to use the xcframework.

The motivation for this to be consistent with the swift example and to
also act as a reference for how to use the xcframework in an objc
project.

Resolves: https://github.com/ggerganov/whisper.cpp/issues/2881

* examples : setup audio session viewDidload

This commit adds the setup of the audio session in the viewDidload
method of the ViewController.m file. This is necessary to allow the app
to record audio.

The motivation for this is that without this it was not possible to
caputue audio from the microphone. It was possible to click on the
Capture button but nothing happened after that, and the button was not
marked red indicating that the button could be clicked again to stop
capturing. With this change it is possible to capture audio from the
microphone and get it transcribed.
2025-03-17 13:01:24 +01:00
60b481d881 whisper : add option to use system-installed GGML (#2887) 2025-03-17 09:54:48 +02:00
4854789751 convert : update convert-h5-to-ggml.py (#2840)
improved handling of missing max_length
2025-03-17 09:41:05 +02:00
e0f3c9d4dd examples : add GGML_USE_CPU=ON flag to whisper.objc (#2880)
This commit adds the GGML_USE_CPU=ON flag to the whisper.objc project in
order to enable the CPU backend for the whisper.objc project.

The motivation for this change is that currently the following error
is generated when running the example:
```console
ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend) {
    return ggml_backend_dev_buffer_type(backend->device); <- Thread 1: EXC_BAD_ACCESS (code=1, address=0x70)
}
```
If we inspect the `backend` variable we can see that it is a `nullptr`.
```console
(lldb) p backend
(ggml_backend_t) nullptr
```
When running in a simulator and that automatically means that there will
be no gpu as there is a check for this in the code. But the CPU backend
should still be present.

The objective-c code will compile the whisper sources including the ggml
sources. And if `-DGGMLL_USE_CPU` is not defined then there will be no
CPU backend, and in this particular case of backend at all.

Resolves: https://github.com/ggerganov/whisper.cpp/issues/2870
2025-03-14 15:40:20 +01:00
1f4886b40d ggml-ci: update input env variables to GG_BUILD_ (#2879) 2025-03-14 10:53:29 +02:00
543 changed files with 117316 additions and 63208 deletions

View File

@ -13,11 +13,10 @@ WORKDIR /app
ARG CUDA_DOCKER_ARCH=all
# Set nvcc architecture
ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
# Enable cuBLAS
ENV GGML_CUDA=1
RUN apt-get update && \
apt-get install -y build-essential libsdl2-dev wget cmake git \
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/* /var/cache/apt/archives/*
# Ref: https://stackoverflow.com/a/53464012
@ -25,7 +24,14 @@ ENV CUDA_MAIN_VERSION=12.3
ENV LD_LIBRARY_PATH /usr/local/cuda-${CUDA_MAIN_VERSION}/compat:$LD_LIBRARY_PATH
COPY .. .
RUN make base.en
# Enable cuBLAS
RUN make base.en CMAKE_ARGS="-DGGML_CUDA=1"
RUN find /app/build -name "*.o" -delete && \
find /app/build -name "*.a" -delete && \
rm -rf /app/build/CMakeFiles && \
rm -rf /app/build/cmake_install.cmake && \
rm -rf /app/build/_deps
FROM ${BASE_CUDA_RUN_CONTAINER} AS runtime
ENV CUDA_MAIN_VERSION=12.3
@ -34,7 +40,11 @@ WORKDIR /app
RUN apt-get update && \
apt-get install -y curl ffmpeg wget cmake git \
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/* /var/cache/apt/archives/*
COPY --from=build /app /app
RUN du -sh /app/*
RUN find /app -type f -size +100M
ENV PATH=/app/build/bin:$PATH
ENTRYPOINT [ "bash", "-c" ]

View File

@ -0,0 +1,28 @@
ARG ONEAPI_VERSION=2025.1.1-0-devel-ubuntu24.04
FROM intel/oneapi-basekit:$ONEAPI_VERSION AS build
WORKDIR /app
RUN apt-get update && \
apt-get install -y build-essential libsdl2-dev wget cmake git \
&& rm -rf /var/lib/apt/lists/* /var/cache/apt/archives/*
COPY .. .
# Enable SYCL
ARG GGML_SYCL_F16=OFF
RUN if [ "${GGML_SYCL_F16}" = "ON" ]; then \
echo "GGML_SYCL_F16 is set" \
&& export OPT_SYCL_F16="-DGGML_SYCL_F16=ON"; \
fi && \
make base.en CMAKE_ARGS="-DGGML_SYCL=1 -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx ${OPT_SYCL_F16}"
FROM intel/oneapi-basekit:$ONEAPI_VERSION AS runtime
WORKDIR /app
RUN apt-get update && \
apt-get install -y curl ffmpeg libsdl2-dev wget cmake git \
&& rm -rf /var/lib/apt/lists/* /var/cache/apt/archives/*
COPY --from=build /app /app
ENV PATH=/app/build/bin:$PATH
ENTRYPOINT [ "bash", "-c" ]

View File

@ -0,0 +1,40 @@
ARG UBUNTU_VERSION=22.04
# This needs to generally match the container host's environment.
ARG MUSA_VERSION=rc4.0.1
# Target the MUSA build image
ARG BASE_MUSA_DEV_CONTAINER=mthreads/musa:${MUSA_VERSION}-mudnn-devel-ubuntu${UBUNTU_VERSION}
# Target the MUSA runtime image
ARG BASE_MUSA_RUN_CONTAINER=mthreads/musa:${MUSA_VERSION}-mudnn-runtime-ubuntu${UBUNTU_VERSION}
FROM ${BASE_MUSA_DEV_CONTAINER} AS build
WORKDIR /app
RUN apt-get update && \
apt-get install -y build-essential libsdl2-dev wget cmake git && \
apt-get clean && \
rm -rf /var/lib/apt/lists/* /var/cache/apt/archives/* /tmp/* /var/tmp/*
COPY .. .
# Enable muBLAS
RUN make base.en CMAKE_ARGS="-DGGML_MUSA=1"
RUN find /app/build -name "*.o" -delete && \
find /app/build -name "*.a" -delete && \
rm -rf /app/build/CMakeFiles && \
rm -rf /app/build/cmake_install.cmake && \
rm -rf /app/build/_deps
FROM ${BASE_MUSA_RUN_CONTAINER} AS runtime
WORKDIR /app
RUN apt-get update && \
apt-get install -y curl ffmpeg wget cmake git && \
apt-get clean && \
rm -rf /var/lib/apt/lists/* /var/cache/apt/archives/* /tmp/* /var/tmp/*
COPY --from=build /app/build/bin /app/build/bin
COPY --from=build /app/samples /app/samples
COPY --from=build /app/models /app/models
ENV PATH=/app/build/bin:$PATH
ENTRYPOINT [ "bash", "-c" ]

View File

@ -16,4 +16,5 @@ RUN apt-get update && \
&& rm -rf /var/lib/apt/lists/* /var/cache/apt/archives/*
COPY --from=build /app /app
ENV PATH=/app/build/bin:$PATH
ENTRYPOINT [ "bash", "-c" ]

3
.dockerignore Normal file
View File

@ -0,0 +1,3 @@
build*/
.github/
.devops/

View File

@ -1,55 +1,11 @@
name: Bindings Tests (Ruby)
on:
push:
paths:
- bindings/ruby/**
- src/**/*.c
- src/**/*.cpp
- src/**/*.h
- src/**/*.m
- src/**/*.metal
- include/**/*.c
- include/**/*.cpp
- include/**/*.h
- include/**/*.m
- include/**/*.metal
- ggml/**/*.c
- ggml/**/*.cpp
- ggml/**/*.h
- ggml/**/*.m
- ggml/**/*.metal
- scripts/get-flags.mk
- examples/common.h
- examples/common.cpp
- examples/common-whisper.h
- examples/common-whisper.cpp
- examples/stb_vorbis.c
- examples/miniaudio.h
branches:
- master
pull_request:
paths:
- bindings/ruby/**
- src/**/*.c
- src/**/*.cpp
- src/**/*.h
- src/**/*.m
- src/**/*.metal
- include/**/*.c
- include/**/*.cpp
- include/**/*.h
- include/**/*.m
- include/**/*.metal
- ggml/**/*.c
- ggml/**/*.cpp
- ggml/**/*.h
- ggml/**/*.m
- ggml/**/*.metal
- scripts/get-flags.mk
- examples/common.h
- examples/common.cpp
- examples/common-whisper.h
- examples/common-whisper.cpp
- examples/stb_vorbis.c
- examples/miniaudio.h
types: [opened, synchronize, reopened]
jobs:
ubuntu-22:
@ -60,6 +16,6 @@ jobs:
steps:
- uses: ruby/setup-ruby@v1
with:
ruby-version: '3.1'
ruby-version: '3.2'
- uses: actions/checkout@v4
- run: rake test

File diff suppressed because it is too large Load Diff

View File

@ -15,12 +15,13 @@ jobs:
env:
COMMIT_SHA: ${{ github.sha }}
strategy:
fail-fast: false
matrix:
config:
- { tag: "main", dockerfile: ".devops/main.Dockerfile", platform: "linux/amd64" }
#TODO: the cuda image keeps failing - disable for now
# https://github.com/ggerganov/whisper.cpp/actions/runs/11019444428/job/30602020339
#- { tag: "main-cuda", dockerfile: ".devops/main-cuda.Dockerfile", platform: "linux/amd64" }
- { tag: "main-musa", dockerfile: ".devops/main-musa.Dockerfile", platform: "linux/amd64" }
- { tag: "main-intel", dockerfile: ".devops/main-intel.Dockerfile", platform: "linux/amd64" }
- { tag: "main-cuda", dockerfile: ".devops/main-cuda.Dockerfile", platform: "linux/amd64" }
steps:
- name: Check out the repo
@ -41,21 +42,35 @@ jobs:
username: ${{ github.repository_owner }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Build and push Docker image (versioned)
if: github.event_name == 'push'
uses: docker/build-push-action@v5
with:
context: .
push: true
platforms: ${{ matrix.config.platform }}
tags: "ghcr.io/${{ github.repository }}:${{ matrix.config.tag }}-${{ env.COMMIT_SHA }}"
file: ${{ matrix.config.dockerfile }}
- name: Free up disk space
run: |
sudo apt-get remove -y '^dotnet-.*' '^llvm-.*' '^mysql-.*' '^postgresql-.*'
sudo apt-get autoremove -y
sudo apt-get autoclean
sudo rm -rf /usr/share/dotnet
sudo rm -rf /usr/local/lib/android
sudo rm -rf /opt/ghc
sudo rm -rf /opt/hostedtoolcache/CodeQL
docker system prune -af
df -h
- name: Generate tags
id: tags
run: |
TAGS="ghcr.io/${{ github.repository }}:${{ matrix.config.tag }}"
if [ "${{ github.event_name }}" == "push" ]; then
TAGS="$TAGS,ghcr.io/${{ github.repository }}:${{ matrix.config.tag }}-${{ env.COMMIT_SHA }}"
fi
echo "tags=$TAGS" >> $GITHUB_OUTPUT
- name: Build and push Docker image (tagged)
uses: docker/build-push-action@v4
uses: docker/build-push-action@v5
with:
context: .
push: ${{ github.event_name == 'push' }}
platforms: ${{ matrix.config.platform }}
tags: "ghcr.io/${{ github.repository }}:${{ matrix.config.tag }}"
tags: ${{ steps.tags.outputs.tags }}
file: ${{ matrix.config.dockerfile }}

91
.github/workflows/examples-wasm.yml vendored Normal file
View File

@ -0,0 +1,91 @@
name: Examples WASM
on:
push:
branches: ["master"]
workflow_dispatch:
permissions:
contents: read
pages: write
id-token: write
concurrency:
group: "pages"
cancel-in-progress: false
jobs:
deploy-wasm-github-pages:
environment:
name: github-pages
url: ${{ steps.deployment.outputs.page_url }}
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Setup Pages
uses: actions/configure-pages@v4
- name: Setup emsdk
uses: mymindstorm/setup-emsdk@v14
- name: Build WASM Examples
# Enable for real build later in whisper.cpp
run: |
mkdir -p build-em && cd build-em
emcmake cmake .. -DCMAKE_BUILD_TYPE=Release
make -j
- name: Create staging directory
run: mkdir -p staging
- name: Create .nojekyll file in staging directory
run: touch staging/.nojekyll
- name: Copy application files
run: |
build_dir=build-em/bin
ls ${build_dir}
# command.wasm
target_dir=staging/command.wasm
mkdir -p ${target_dir}
cp ${build_dir}/command.wasm/{index.html,command.js,helpers.js} ${target_dir}
cp ${build_dir}/libcommand.js ${target_dir}
# bench.wasm
target_dir=staging/bench.wasm
mkdir -p ${target_dir}
cp ${build_dir}/bench.wasm/{index.html,bench.js,helpers.js} ${target_dir}
cp ${build_dir}/libbench.js ${target_dir}
# stream.wasm
target_dir=staging/stream.wasm
mkdir -p ${target_dir}
cp ${build_dir}/stream.wasm/{index.html,stream.js,helpers.js} ${target_dir}
cp ${build_dir}/libstream.js ${target_dir}
# whisper.wasm (this will be the main example page)
target_dir=staging
mkdir -p ${target_dir}
cp ${build_dir}/whisper.wasm/{index.html,main.js,helpers.js} ${target_dir}
cp ${build_dir}/libmain.js ${target_dir}
# Copy Cross-Origin Isolation service worker
cp -v examples/coi-serviceworker.js staging/
- name: List files in staging directory (for debugging)
run: |
echo "Files in staging directory:"
find staging -type f | sort
- name: Upload artifact
uses: actions/upload-pages-artifact@v3
with:
path: ./staging
- name: Deploy to GitHub Pages
id: deployment
uses: actions/deploy-pages@v4

3
.gitignore vendored
View File

@ -14,6 +14,7 @@
build/
build-*/
build_*/
# SPM
.build/
@ -49,6 +50,8 @@ extra/bench-gg.txt
models/*.mlmodel
models/*.mlmodelc
models/*.mlpackage
models/*-encoder-openvino.xml
models/*-encoder-openvino-cache/
bindings/java/.gradle/
bindings/java/.idea/
.idea/

0
.gitmodules vendored
View File

View File

@ -1,6 +1,6 @@
cmake_minimum_required(VERSION 3.5) # for add_link_options and implicit target directories.
project("whisper.cpp" C CXX)
project("whisper.cpp" VERSION 1.7.4)
project("whisper.cpp" VERSION 1.7.6)
include(CheckIncludeFileCXX)
set(SOVERSION 1)
@ -38,8 +38,13 @@ if (EMSCRIPTEN)
# TODO: without these, we get the following error:
# wasm-ld: error: --shared-memory is disallowed by whisper.cpp.o because it was not compiled with 'atomics' or 'bulk-memory' features.
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -pthread -s TOTAL_STACK=5242880")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pthread -s TOTAL_STACK=5242880")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -pthread")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pthread")
set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} -s TOTAL_STACK=5242880")
set(CMAKE_SHARED_LINKER_FLAGS "${CMAKE_SHARED_LINKER_FLAGS} -s TOTAL_STACK=5242880")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-deprecated")
else()
if (MINGW)
set(BUILD_SHARED_LIBS_DEFAULT OFF)
@ -54,15 +59,13 @@ option(BUILD_SHARED_LIBS "build shared libraries" ${BUILD_SHARED_LIBS_DEFAULT})
# option list
#
# general
option(WHISPER_CCACHE "whisper: use ccache if available" ON)
# debug
option(WHISPER_ALL_WARNINGS "whisper: enable all compiler warnings" ON)
option(WHISPER_ALL_WARNINGS_3RD_PARTY "whisper: enable all compiler warnings in 3rd party libs" OFF)
# build
option(WHISPER_FATAL_WARNINGS "whisper: enable -Werror flag" OFF)
option(WHISPER_FATAL_WARNINGS "whisper: enable -Werror flag" OFF)
option(WHISPER_USE_SYSTEM_GGML "whisper: use system-installed GGML library" OFF)
# sanitizers
option(WHISPER_SANITIZE_THREAD "whisper: enable thread sanitizer" OFF)
@ -90,7 +93,6 @@ option(WHISPER_OPENVINO "whisper: support for OpenVINO" OFF)
include(${CMAKE_CURRENT_SOURCE_DIR}/cmake/build-info.cmake)
# override ggml options
set(GGML_CCACHE ${WHISPER_CCACHE})
set(GGML_SANITIZE_THREAD ${WHISPER_SANITIZE_THREAD})
set(GGML_SANITIZE_ADDRESS ${WHISPER_SANITIZE_ADDRESS})
set(GGML_SANITIZE_UNDEFINED ${WHISPER_SANITIZE_UNDEFINED})
@ -115,13 +117,43 @@ whisper_option_depr(WARNING WHISPER_OPENMP GGML_OPENMP)
whisper_option_depr(WARNING WHISPER_RPC GGML_RPC)
whisper_option_depr(WARNING WHISPER_SYCL GGML_SYCL)
whisper_option_depr(WARNING WHISPER_SYCL_F16 GGML_SYCL_F16)
whisper_option_depr(WARNING WHISPER_CCACHE GGML_CCACHE)
if (GGML_CUDA AND NOT MSVC)
#GGML_CUDA enabled, add the necessary compile options -Wno-deprecated-gpu-targets
add_compile_options(-Wno-deprecated-gpu-targets)
endif()
#
# build the library
#
if (NOT TARGET ggml)
add_subdirectory(ggml)
if (WHISPER_USE_SYSTEM_GGML)
find_package(ggml REQUIRED)
if (NOT ggml_FOUND)
message(FATAL_ERROR "System-installed GGML library not found.")
endif()
add_library(ggml ALIAS ggml::ggml)
else()
add_subdirectory(ggml)
if(WIN32)
# The following adds a _DISABLE_CONSTEXPR_MUTEX_CONSTRUCTOR macro and is a workaround for
# the Windows C++ standard library which does not support constexpr mutexes.
# From the release notes://github.com/microsoft/STL/wiki/Changelog
# Disable constexpr mutex constructor on Windows
# Fixed mutex's constructor to be constexpr. #3824 #4000 #4339
# Note: Programs that aren't following the documented restrictions on binary compatibility may encounter
# null dereferences in mutex machinery. You must follow this rule:
# When you mix binaries built by different supported versions of the toolset, the Redistributable version
# must be at least as new as the latest toolset used by any app component.
# You can define _DISABLE_CONSTEXPR_MUTEX_CONSTRUCTOR as an escape hatch.
#
# Specifically to whisper.cpp this would cause a crash when using the Java bindings.
# resulting in a Invalid memory access error.
target_compile_definitions(ggml-base PRIVATE _DISABLE_CONSTEXPR_MUTEX_CONSTRUCTOR)
endif()
endif()
# ... otherwise assume ggml is added by a parent CMakeLists.txt
endif()
add_subdirectory(src)
@ -146,6 +178,10 @@ get_directory_property(WHISPER_TRANSIENT_DEFINES COMPILE_DEFINITIONS)
set_target_properties(whisper PROPERTIES PUBLIC_HEADER ${CMAKE_CURRENT_SOURCE_DIR}/include/whisper.h)
install(TARGETS whisper LIBRARY PUBLIC_HEADER)
target_compile_definitions(whisper PRIVATE
WHISPER_VERSION="${PROJECT_VERSION}"
)
configure_package_config_file(
${CMAKE_CURRENT_SOURCE_DIR}/cmake/whisper-config.cmake.in
${CMAKE_CURRENT_BINARY_DIR}/whisper-config.cmake
@ -176,10 +212,44 @@ install(FILES "${CMAKE_CURRENT_BINARY_DIR}/whisper.pc"
#
if (WHISPER_BUILD_TESTS AND NOT CMAKE_JS_VERSION)
#include(CTest)
#add_subdirectory(tests)
include(CTest)
add_subdirectory(tests)
endif ()
if (WHISPER_BUILD_EXAMPLES)
add_subdirectory(examples)
endif()
if (MSVC)
set(MSVC_WARNING_FLAGS
/wd4101 # Unreferenced local variable
/wd4005 # Macro redefinition
/wd4065 # switch statement contains 'default' but no 'case' labels
/wd4267 # Conversion from 'size_t' to a smaller type, possible loss of data
/wd4244 # Conversion from one type to another type, possible loss of ata
/wd4805 # Unsafe mix of type
/wd4305 # Truncation from 'type1' to 'type2' (often double to float)
/wd4996 # Function or variable may be unsafe/deprecated
)
function(disable_msvc_warnings target_name)
if(TARGET ${target_name})
target_compile_options(${target_name} PRIVATE ${MSVC_WARNING_FLAGS})
endif()
endfunction()
if (WHISPER_BUILD_EXAMPLES)
disable_msvc_warnings(whisper)
disable_msvc_warnings(common)
disable_msvc_warnings(common-sdl)
disable_msvc_warnings(lsp)
disable_msvc_warnings(wchess-core)
disable_msvc_warnings(whisper-command)
disable_msvc_warnings(whisper-cli)
disable_msvc_warnings(whisper-server)
disable_msvc_warnings(whisper-stream)
disable_msvc_warnings(whisper-talk-llama)
disable_msvc_warnings(whisper-bench)
disable_msvc_warnings(quantize)
disable_msvc_warnings(vad-speech-segments)
endif()
endif()

View File

@ -4,7 +4,7 @@
.PHONY: build
build:
cmake -B build
cmake -B build $(CMAKE_ARGS)
cmake --build build --config Release
# download a few audio samples into folder "./samples":
@ -41,17 +41,17 @@ samples:
tiny.en tiny base.en base small.en small medium.en medium large-v1 large-v2 large-v3 large-v3-turbo:
bash ./models/download-ggml-model.sh $@
cmake -B build
cmake -B build $(CMAKE_ARGS)
cmake --build build --config Release
@echo ""
@echo "==============================================="
@echo "Running $@ on all samples in ./samples ..."
@echo "==============================================="
@echo ""
@for f in samples/*$(.flac .mp3 .ogg .wav); do \
@for f in samples/*.{flac,mp3,ogg,wav}; do \
echo "----------------------------------------------" ; \
echo "[+] Running $@ on $$f ... (run 'ffplay $$f' to listen)" ; \
echo "----------------------------------------------" ; \
echo "----------------------------------------------" ; \
echo "" ; \
./build/bin/whisper-cli -m models/ggml-$@.bin -f $$f ; \
echo "" ; \

259
README.md
View File

@ -2,15 +2,12 @@
![whisper.cpp](https://user-images.githubusercontent.com/1991296/235238348-05d0f6a4-da44-4900-a1de-d0707e75b763.jpeg)
[![Actions Status](https://github.com/ggerganov/whisper.cpp/workflows/CI/badge.svg)](https://github.com/ggerganov/whisper.cpp/actions)
[![Actions Status](https://github.com/ggml-org/whisper.cpp/workflows/CI/badge.svg)](https://github.com/ggml-org/whisper.cpp/actions)
[![License: MIT](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT)
[![Conan Center](https://shields.io/conan/v/whisper-cpp)](https://conan.io/center/whisper-cpp)
[![npm](https://img.shields.io/npm/v/whisper.cpp.svg)](https://www.npmjs.com/package/whisper.cpp/)
> [!NOTE]
> New maintenance roadmap: https://github.com/ggerganov/whisper.cpp/discussions/2788
Stable: [v1.7.4](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.7.4) / [Roadmap | F.A.Q.](https://github.com/ggerganov/whisper.cpp/discussions/126)
Stable: [v1.7.6](https://github.com/ggml-org/whisper.cpp/releases/tag/v1.7.6) / [Roadmap](https://github.com/orgs/ggml-org/projects/4/)
High-performance inference of [OpenAI's Whisper](https://github.com/openai/whisper) automatic speech recognition (ASR) model:
@ -26,7 +23,9 @@ High-performance inference of [OpenAI's Whisper](https://github.com/openai/whisp
- [Efficient GPU support for NVIDIA](#nvidia-gpu-support)
- [OpenVINO Support](#openvino-support)
- [Ascend NPU Support](#ascend-npu-support)
- [C-style API](https://github.com/ggerganov/whisper.cpp/blob/master/include/whisper.h)
- [Moore Threads GPU Support](#moore-threads-gpu-support)
- [C-style API](https://github.com/ggml-org/whisper.cpp/blob/master/include/whisper.h)
- [Voice Activity Detection (VAD)](#voice-activity-detection-vad)
Supported platforms:
@ -34,14 +33,14 @@ Supported platforms:
- [x] [iOS](examples/whisper.objc)
- [x] [Android](examples/whisper.android)
- [x] [Java](bindings/java/README.md)
- [x] Linux / [FreeBSD](https://github.com/ggerganov/whisper.cpp/issues/56#issuecomment-1350920264)
- [x] Linux / [FreeBSD](https://github.com/ggml-org/whisper.cpp/issues/56#issuecomment-1350920264)
- [x] [WebAssembly](examples/whisper.wasm)
- [x] Windows ([MSVC](https://github.com/ggerganov/whisper.cpp/blob/master/.github/workflows/build.yml#L117-L144) and [MinGW](https://github.com/ggerganov/whisper.cpp/issues/168)]
- [x] [Raspberry Pi](https://github.com/ggerganov/whisper.cpp/discussions/166)
- [x] [Docker](https://github.com/ggerganov/whisper.cpp/pkgs/container/whisper.cpp)
- [x] Windows ([MSVC](https://github.com/ggml-org/whisper.cpp/blob/master/.github/workflows/build.yml#L117-L144) and [MinGW](https://github.com/ggml-org/whisper.cpp/issues/168))
- [x] [Raspberry Pi](https://github.com/ggml-org/whisper.cpp/discussions/166)
- [x] [Docker](https://github.com/ggml-org/whisper.cpp/pkgs/container/whisper.cpp)
The entire high-level implementation of the model is contained in [whisper.h](include/whisper.h) and [whisper.cpp](src/whisper.cpp).
The rest of the code is part of the [`ggml`](https://github.com/ggerganov/ggml) machine learning library.
The rest of the code is part of the [`ggml`](https://github.com/ggml-org/ggml) machine learning library.
Having such a lightweight implementation of the model allows to easily integrate it in different platforms and applications.
As an example, here is a video of running the model on an iPhone 13 device - fully offline, on-device: [whisper.objc](examples/whisper.objc)
@ -54,14 +53,14 @@ https://user-images.githubusercontent.com/1991296/204038393-2f846eae-c255-4099-a
On Apple Silicon, the inference runs fully on the GPU via Metal:
https://github.com/ggerganov/whisper.cpp/assets/1991296/c82e8f86-60dc-49f2-b048-d2fdbd6b5225
https://github.com/ggml-org/whisper.cpp/assets/1991296/c82e8f86-60dc-49f2-b048-d2fdbd6b5225
## Quick start
First clone the repository:
```bash
git clone https://github.com/ggerganov/whisper.cpp.git
git clone https://github.com/ggml-org/whisper.cpp.git
```
Navigate into the directory:
@ -81,7 +80,7 @@ Now build the [whisper-cli](examples/cli) example and transcribe an audio file l
```bash
# build the project
cmake -B build
cmake --build build --config Release
cmake --build build -j --config Release
# transcribe an audio file
./build/bin/whisper-cli -f samples/jfk.wav
@ -150,8 +149,9 @@ standard cmake setup with:
```bash
# build with GGML_BLAS defined
cmake -B build -DGGML_BLAS=1
cmake --build build --config Release
cmake --build build -j --config Release
./build/bin/whisper-cli [ .. etc .. ]
```
## Quantization
@ -163,7 +163,7 @@ Here are the steps for creating and using a quantized model:
```bash
# quantize a model with Q5_0 method
cmake -B build
cmake --build build --config Release
cmake --build build -j --config Release
./build/bin/quantize models/ggml-base.en.bin models/ggml-base.en-q5_0.bin q5_0
# run the examples as usual, specifying the quantized model file
@ -184,11 +184,11 @@ speed-up - more than x3 faster compared with CPU-only execution. Here are the in
```
- To ensure `coremltools` operates correctly, please confirm that [Xcode](https://developer.apple.com/xcode/) is installed and execute `xcode-select --install` to install the command-line tools.
- Python 3.10 is recommended.
- Python 3.11 is recommended.
- MacOS Sonoma (version 14) or newer is recommended, as older versions of MacOS might experience issues with transcription hallucination.
- [OPTIONAL] It is recommended to utilize a Python version management system, such as [Miniconda](https://docs.conda.io/en/latest/miniconda.html) for this step:
- To create an environment, use: `conda create -n py310-whisper python=3.10 -y`
- To activate the environment, use: `conda activate py310-whisper`
- To create an environment, use: `conda create -n py311-whisper python=3.11 -y`
- To activate the environment, use: `conda activate py311-whisper`
- Generate a Core ML model. For example, to generate a `base.en` model, use:
@ -225,7 +225,7 @@ speed-up - more than x3 faster compared with CPU-only execution. Here are the in
The first run on a device is slow, since the ANE service compiles the Core ML model to some device-specific format.
Next runs are faster.
For more information about the Core ML implementation please refer to PR [#566](https://github.com/ggerganov/whisper.cpp/pull/566).
For more information about the Core ML implementation please refer to PR [#566](https://github.com/ggml-org/whisper.cpp/pull/566).
## OpenVINO support
@ -267,7 +267,7 @@ This can result in significant speedup in encoder performance. Here are the inst
- Build `whisper.cpp` with OpenVINO support:
Download OpenVINO package from [release page](https://github.com/openvinotoolkit/openvino/releases). The recommended version to use is [2023.0.0](https://github.com/openvinotoolkit/openvino/releases/tag/2023.0.0).
Download OpenVINO package from [release page](https://github.com/openvinotoolkit/openvino/releases). The recommended version to use is [2024.6.0](https://github.com/openvinotoolkit/openvino/releases/tag/2024.6.0). Ready to use Binaries of the required libraries can be found in the [OpenVino Archives](https://storage.openvinotoolkit.org/repositories/openvino/packages/2024.6/)
After downloading & extracting package onto your development system, set up required environment by sourcing setupvars script. For example:
@ -310,7 +310,7 @@ This can result in significant speedup in encoder performance. Here are the inst
The first time run on an OpenVINO device is slow, since the OpenVINO framework will compile the IR (Intermediate Representation) model to a device-specific 'blob'. This device-specific blob will get
cached for the next run.
For more information about the OpenVINO implementation please refer to PR [#1037](https://github.com/ggerganov/whisper.cpp/pull/1037).
For more information about the OpenVINO implementation please refer to PR [#1037](https://github.com/ggml-org/whisper.cpp/pull/1037).
## NVIDIA GPU support
@ -324,6 +324,12 @@ cmake -B build -DGGML_CUDA=1
cmake --build build -j --config Release
```
or for newer NVIDIA GPU's (RTX 5000 series):
```
cmake -B build -DGGML_CUDA=1 -DCMAKE_CUDA_ARCHITECTURES="86"
cmake --build build -j --config Release
```
## Vulkan GPU support
Cross-vendor solution which allows you to accelerate workload on your GPU.
First, make sure your graphics card driver provides support for Vulkan API.
@ -377,6 +383,56 @@ Run the inference examples as usual, for example:
- If you have trouble with Ascend NPU device, please create a issue with **[CANN]** prefix/tag.
- If you run successfully with your Ascend NPU device, please help update the table `Verified devices`.
## Moore Threads GPU support
With Moore Threads cards the processing of the models is done efficiently on the GPU via muBLAS and custom MUSA kernels.
First, make sure you have installed `MUSA SDK rc4.0.1`: https://developer.mthreads.com/sdk/download/musa?equipment=&os=&driverVersion=&version=4.0.1
Now build `whisper.cpp` with MUSA support:
```
cmake -B build -DGGML_MUSA=1
cmake --build build -j --config Release
```
or specify the architecture for your Moore Threads GPU. For example, if you have a MTT S80 GPU, you can specify the architecture as follows:
```
cmake -B build -DGGML_MUSA=1 -DMUSA_ARCHITECTURES="21"
cmake --build build -j --config Release
```
## FFmpeg support (Linux only)
If you want to support more audio formats (such as Opus and AAC), you can turn on the `WHISPER_FFMPEG` build flag to enable FFmpeg integration.
First, you need to install required libraries:
```bash
# Debian/Ubuntu
sudo apt install libavcodec-dev libavformat-dev libavutil-dev
# RHEL/Fedora
sudo dnf install libavcodec-free-devel libavformat-free-devel libavutil-free-devel
```
Then you can build the project as follows:
```bash
cmake -B build -D WHISPER_FFMPEG=yes
cmake --build build
```
Run the following example to confirm it's working:
```bash
# Convert an audio file to Opus format
ffmpeg -i samples/jfk.wav jfk.opus
# Transcribe the audio file
./build/bin/whisper-cli --model models/ggml-base.en.bin --file jfk.opus
```
## Docker
### Prerequisites
@ -388,8 +444,9 @@ Run the inference examples as usual, for example:
We have two Docker images available for this project:
1. `ghcr.io/ggerganov/whisper.cpp:main`: This image includes the main executable file as well as `curl` and `ffmpeg`. (platforms: `linux/amd64`, `linux/arm64`)
2. `ghcr.io/ggerganov/whisper.cpp:main-cuda`: Same as `main` but compiled with CUDA support. (platforms: `linux/amd64`)
1. `ghcr.io/ggml-org/whisper.cpp:main`: This image includes the main executable file as well as `curl` and `ffmpeg`. (platforms: `linux/amd64`, `linux/arm64`)
2. `ghcr.io/ggml-org/whisper.cpp:main-cuda`: Same as `main` but compiled with CUDA support. (platforms: `linux/amd64`)
3. `ghcr.io/ggml-org/whisper.cpp:main-musa`: Same as `main` but compiled with MUSA support. (platforms: `linux/amd64`)
### Usage
@ -402,11 +459,11 @@ docker run -it --rm \
docker run -it --rm \
-v path/to/models:/models \
-v path/to/audios:/audios \
whisper.cpp:main "./main -m /models/ggml-base.bin -f /audios/jfk.wav"
whisper.cpp:main "whisper-cli -m /models/ggml-base.bin -f /audios/jfk.wav"
# transcribe an audio file in samples folder
docker run -it --rm \
-v path/to/models:/models \
whisper.cpp:main "./main -m /models/ggml-base.bin -f ./samples/jfk.wav"
whisper.cpp:main "whisper-cli -m /models/ggml-base.bin -f ./samples/jfk.wav"
```
## Installing with Conan
@ -427,11 +484,12 @@ For detailed instructions on how to use Conan, please refer to the [Conan docume
This is a naive example of performing real-time inference on audio from your microphone.
The [stream](examples/stream) tool samples the audio every half a second and runs the transcription continuously.
More info is available in [issue #10](https://github.com/ggerganov/whisper.cpp/issues/10).
More info is available in [issue #10](https://github.com/ggml-org/whisper.cpp/issues/10).
You will need to have [sdl2](https://wiki.libsdl.org/SDL2/Installation) installed for it to work properly.
```bash
cmake -B build -DWHISPER_SDL2=ON
cmake --build build --config Release
cmake --build build -j --config Release
./build/bin/whisper-stream -m ./models/ggml-base.en.bin -t 8 --step 500 --length 5000
```
@ -515,7 +573,7 @@ main: processing './samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 pr
## Speaker segmentation via tinydiarize (experimental)
More information about this approach is available here: https://github.com/ggerganov/whisper.cpp/pull/1058
More information about this approach is available here: https://github.com/ggml-org/whisper.cpp/pull/1058
Sample usage:
@ -542,7 +600,7 @@ main: processing './samples/a13.wav' (480000 samples, 30.0 sec), 4 threads, 1 pr
## Karaoke-style movie generation (experimental)
The [whisper-cli](examples/cli) example provides support for output of karaoke-style movies, where the
currently pronounced word is highlighted. Use the `-wts` argument and run the generated bash script.
currently pronounced word is highlighted. Use the `-owts` argument and run the generated bash script.
This requires to have `ffmpeg` installed.
Here are a few _"typical"_ examples:
@ -579,7 +637,7 @@ https://user-images.githubusercontent.com/1991296/199337538-b7b0c7a3-2753-4a88-a
## Video comparison of different models
Use the [scripts/bench-wts.sh](https://github.com/ggerganov/whisper.cpp/blob/master/scripts/bench-wts.sh) script to generate a video in the following format:
Use the [scripts/bench-wts.sh](https://github.com/ggml-org/whisper.cpp/blob/master/scripts/bench-wts.sh) script to generate a video in the following format:
```bash
./scripts/bench-wts.sh samples/jfk.wav
@ -596,7 +654,7 @@ In order to have an objective comparison of the performance of the inference acr
use the [whisper-bench](examples/bench) tool. The tool simply runs the Encoder part of the model and prints how much time it
took to execute it. The results are summarized in the following Github issue:
[Benchmark results](https://github.com/ggerganov/whisper.cpp/issues/89)
[Benchmark results](https://github.com/ggml-org/whisper.cpp/issues/89)
Additionally a script to run whisper.cpp with different models and audio files is provided [bench.py](scripts/bench.py).
@ -623,25 +681,24 @@ You can download the converted models using the [models/download-ggml-model.sh](
or manually from here:
- https://huggingface.co/ggerganov/whisper.cpp
- https://ggml.ggerganov.com
For more details, see the conversion script [models/convert-pt-to-ggml.py](models/convert-pt-to-ggml.py) or [models/README.md](models/README.md).
## [Bindings](https://github.com/ggerganov/whisper.cpp/discussions/categories/bindings)
## [Bindings](https://github.com/ggml-org/whisper.cpp/discussions/categories/bindings)
- [x] Rust: [tazz4843/whisper-rs](https://github.com/tazz4843/whisper-rs) | [#310](https://github.com/ggerganov/whisper.cpp/discussions/310)
- [x] JavaScript: [bindings/javascript](bindings/javascript) | [#309](https://github.com/ggerganov/whisper.cpp/discussions/309)
- [x] Rust: [tazz4843/whisper-rs](https://github.com/tazz4843/whisper-rs) | [#310](https://github.com/ggml-org/whisper.cpp/discussions/310)
- [x] JavaScript: [bindings/javascript](bindings/javascript) | [#309](https://github.com/ggml-org/whisper.cpp/discussions/309)
- React Native (iOS / Android): [whisper.rn](https://github.com/mybigday/whisper.rn)
- [x] Go: [bindings/go](bindings/go) | [#312](https://github.com/ggerganov/whisper.cpp/discussions/312)
- [x] Go: [bindings/go](bindings/go) | [#312](https://github.com/ggml-org/whisper.cpp/discussions/312)
- [x] Java:
- [GiviMAD/whisper-jni](https://github.com/GiviMAD/whisper-jni)
- [x] Ruby: [bindings/ruby](bindings/ruby) | [#507](https://github.com/ggerganov/whisper.cpp/discussions/507)
- [x] Objective-C / Swift: [ggerganov/whisper.spm](https://github.com/ggerganov/whisper.spm) | [#313](https://github.com/ggerganov/whisper.cpp/discussions/313)
- [x] Ruby: [bindings/ruby](bindings/ruby) | [#507](https://github.com/ggml-org/whisper.cpp/discussions/507)
- [x] Objective-C / Swift: [ggml-org/whisper.spm](https://github.com/ggml-org/whisper.spm) | [#313](https://github.com/ggml-org/whisper.cpp/discussions/313)
- [exPHAT/SwiftWhisper](https://github.com/exPHAT/SwiftWhisper)
- [x] .NET: | [#422](https://github.com/ggerganov/whisper.cpp/discussions/422)
- [x] .NET: | [#422](https://github.com/ggml-org/whisper.cpp/discussions/422)
- [sandrohanea/whisper.net](https://github.com/sandrohanea/whisper.net)
- [NickDarvey/whisper](https://github.com/NickDarvey/whisper)
- [x] Python: | [#9](https://github.com/ggerganov/whisper.cpp/issues/9)
- [x] Python: | [#9](https://github.com/ggml-org/whisper.cpp/issues/9)
- [stlukey/whispercpp.py](https://github.com/stlukey/whispercpp.py) (Cython)
- [AIWintermuteAI/whispercpp](https://github.com/AIWintermuteAI/whispercpp) (Updated fork of aarnphm/whispercpp)
- [aarnphm/whispercpp](https://github.com/aarnphm/whispercpp) (Pybind11)
@ -649,6 +706,118 @@ For more details, see the conversion script [models/convert-pt-to-ggml.py](model
- [x] R: [bnosac/audio.whisper](https://github.com/bnosac/audio.whisper)
- [x] Unity: [macoron/whisper.unity](https://github.com/Macoron/whisper.unity)
## XCFramework
The XCFramework is a precompiled version of the library for iOS, visionOS, tvOS,
and macOS. It can be used in Swift projects without the need to compile the
library from source. For example, the v1.7.5 version of the XCFramework can be
used as follows:
```swift
// swift-tools-version: 5.10
// The swift-tools-version declares the minimum version of Swift required to build this package.
import PackageDescription
let package = Package(
name: "Whisper",
targets: [
.executableTarget(
name: "Whisper",
dependencies: [
"WhisperFramework"
]),
.binaryTarget(
name: "WhisperFramework",
url: "https://github.com/ggml-org/whisper.cpp/releases/download/v1.7.5/whisper-v1.7.5-xcframework.zip",
checksum: "c7faeb328620d6012e130f3d705c51a6ea6c995605f2df50f6e1ad68c59c6c4a"
)
]
)
```
## Voice Activity Detection (VAD)
Support for Voice Activity Detection (VAD) can be enabled using the `--vad`
argument to `whisper-cli`. In addition to this option a VAD model is also
required.
The way this works is that first the audio samples are passed through
the VAD model which will detect speech segments. Using this information the
only the speech segments that are detected are extracted from the original audio
input and passed to whisper for processing. This reduces the amount of audio
data that needs to be processed by whisper and can significantly speed up the
transcription process.
The following VAD models are currently supported:
### Silero-VAD
[Silero-vad](https://github.com/snakers4/silero-vad) is a lightweight VAD model
written in Python that is fast and accurate.
Models can be downloaded by running the following command on Linux or MacOS:
```console
$ ./models/download-vad-model.sh silero-v5.1.2
Downloading ggml model silero-v5.1.2 from 'https://huggingface.co/ggml-org/whisper-vad' ...
ggml-silero-v5.1.2.bin 100%[==============================================>] 864.35K --.-KB/s in 0.04s
Done! Model 'silero-v5.1.2' saved in '/path/models/ggml-silero-v5.1.2.bin'
You can now use it like this:
$ ./build/bin/whisper-cli -vm /path/models/ggml-silero-v5.1.2.bin --vad -f samples/jfk.wav -m models/ggml-base.en.bin
```
And the following command on Windows:
```console
> .\models\download-vad-model.cmd silero-v5.1.2
Downloading vad model silero-v5.1.2...
Done! Model silero-v5.1.2 saved in C:\Users\danie\work\ai\whisper.cpp\ggml-silero-v5.1.2.bin
You can now use it like this:
C:\path\build\bin\Release\whisper-cli.exe -vm C:\path\ggml-silero-v5.1.2.bin --vad -m models/ggml-base.en.bin -f samples\jfk.wav
```
To see a list of all available models, run the above commands without any
arguments.
This model can be also be converted manually to ggml using the following command:
```console
$ python3 -m venv venv && source venv/bin/activate
$ (venv) pip install silero-vad
$ (venv) $ python models/convert-silero-vad-to-ggml.py --output models/silero.bin
Saving GGML Silero-VAD model to models/silero-v5.1.2-ggml.bin
```
And it can then be used with whisper as follows:
```console
$ ./build/bin/whisper-cli \
--file ./samples/jfk.wav \
--model ./models/ggml-base.en.bin \
--vad \
--vad-model ./models/silero-v5.1.2-ggml.bin
```
### VAD Options
* --vad-threshold: Threshold probability for speech detection. A probability
for a speech segment/frame above this threshold will be considered as speech.
* --vad-min-speech-duration-ms: Minimum speech duration in milliseconds. Speech
segments shorter than this value will be discarded to filter out brief noise or
false positives.
* --vad-min-silence-duration-ms: Minimum silence duration in milliseconds. Silence
periods must be at least this long to end a speech segment. Shorter silence
periods will be ignored and included as part of the speech.
* --vad-max-speech-duration-s: Maximum speech duration in seconds. Speech segments
longer than this will be automatically split into multiple segments at silence
points exceeding 98ms to prevent excessively long segments.
* --vad-speech-pad-ms: Speech padding in milliseconds. Adds this amount of padding
before and after each detected speech segment to avoid cutting off speech edges.
* --vad-samples-overlap: Amount of audio to extend from each speech segment into
the next one, in seconds (e.g., 0.10 = 100ms overlap). This ensures speech isn't
cut off abruptly between segments when they're concatenated together.
## Examples
There are various examples of using the library for different projects in the [examples](examples) folder.
@ -667,13 +836,13 @@ Some of the examples are even ported to run in the browser using WebAssembly. Ch
| [whisper.android](examples/whisper.android) | | Android mobile application using whisper.cpp |
| [whisper.nvim](examples/whisper.nvim) | | Speech-to-text plugin for Neovim |
| [generate-karaoke.sh](examples/generate-karaoke.sh) | | Helper script to easily [generate a karaoke video](https://youtu.be/uj7hVta4blM) of raw audio capture |
| [livestream.sh](examples/livestream.sh) | | [Livestream audio transcription](https://github.com/ggerganov/whisper.cpp/issues/185) |
| [livestream.sh](examples/livestream.sh) | | [Livestream audio transcription](https://github.com/ggml-org/whisper.cpp/issues/185) |
| [yt-wsp.sh](examples/yt-wsp.sh) | | Download + transcribe and/or translate any VOD [(original)](https://gist.github.com/DaniruKun/96f763ec1a037cc92fe1a059b643b818) |
| [wchess](examples/wchess) | [wchess.wasm](examples/wchess) | Voice-controlled chess |
## [Discussions](https://github.com/ggerganov/whisper.cpp/discussions)
## [Discussions](https://github.com/ggml-org/whisper.cpp/discussions)
If you have any kind of feedback about this project feel free to use the Discussions section and open a new topic.
You can use the [Show and tell](https://github.com/ggerganov/whisper.cpp/discussions/categories/show-and-tell) category
You can use the [Show and tell](https://github.com/ggml-org/whisper.cpp/discussions/categories/show-and-tell) category
to share your own projects that use `whisper.cpp`. If you have a question, make sure to check the
[Frequently asked questions (#126)](https://github.com/ggerganov/whisper.cpp/discussions/126) discussion.
[Frequently asked questions (#126)](https://github.com/ggml-org/whisper.cpp/discussions/126) discussion.

View File

@ -1,249 +1,249 @@
# whisper.cpp for SYCL
[Background](#background)
[OS](#os)
[Intel GPU](#intel-gpu)
[Linux](#linux)
[Environment Variable](#environment-variable)
[Known Issue](#known-issue)
[Todo](#todo)
## Background
SYCL is a higher-level programming model to improve programming productivity on various hardware accelerators<EFBFBD>such as CPUs, GPUs, and FPGAs. It is a single-source embedded domain-specific language based on pure C++17.
oneAPI is a specification that is open and standards-based, supporting multiple architecture types including but not limited to GPU, CPU, and FPGA. The spec has both direct programming and API-based programming paradigms.
Intel uses the SYCL as direct programming language to support CPU, GPUs and FPGAs.
To avoid re-inventing the wheel, this code refers other code paths in llama.cpp (like OpenBLAS, cuBLAS, CLBlast). We use a open-source tool [SYCLomatic](https://github.com/oneapi-src/SYCLomatic) (Commercial release [Intel<EFBFBD> DPC++ Compatibility Tool](https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html)) migrate to SYCL.
The whisper.cpp for SYCL is used to support Intel GPUs.
For Intel CPU, recommend to use whisper.cpp for X86 (Intel MKL build).
## OS
|OS|Status|Verified|
|-|-|-|
|Linux|Support|Ubuntu 22.04|
|Windows|Ongoing| |
## Intel GPU
|Intel GPU| Status | Verified Model|
|-|-|-|
|Intel Data Center Max Series| Support| Max 1550|
|Intel Data Center Flex Series| Support| Flex 170|
|Intel Arc Series| Support| Arc 770|
|Intel built-in Arc GPU| Support| built-in Arc GPU in Meteor Lake|
|Intel iGPU| Support| iGPU in i5-1250P, i7-1165G7|
## Linux
### Setup Environment
1. Install Intel GPU driver.
a. Please install Intel GPU driver by official guide: [Install GPU Drivers](https://dgpu-docs.intel.com/driver/installation.html).
Note: for iGPU, please install the client GPU driver.
b. Add user to group: video, render.
```
sudo usermod -aG render username
sudo usermod -aG video username
```
Note: re-login to enable it.
c. Check
```
sudo apt install clinfo
sudo clinfo -l
```
Output (example):
```
Platform #0: Intel(R) OpenCL Graphics
`-- Device #0: Intel(R) Arc(TM) A770 Graphics
Platform #0: Intel(R) OpenCL HD Graphics
`-- Device #0: Intel(R) Iris(R) Xe Graphics [0x9a49]
```
2. Install Intel<EFBFBD> oneAPI Base toolkit.
a. Please follow the procedure in [Get the Intel<EFBFBD> oneAPI Base Toolkit ](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html).
Recommend to install to default folder: **/opt/intel/oneapi**.
Following guide use the default folder as example. If you use other folder, please modify the following guide info with your folder.
b. Check
```
source /opt/intel/oneapi/setvars.sh
sycl-ls
```
There should be one or more level-zero devices. Like **[ext_oneapi_level_zero:gpu:0]**.
Output (example):
```
[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.10.0.17_160000]
[opencl:cpu:1] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i7-13700K OpenCL 3.0 (Build 0) [2023.16.10.0.17_160000]
[opencl:gpu:2] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics OpenCL 3.0 NEO [23.30.26918.50]
[ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) Arc(TM) A770 Graphics 1.3 [1.3.26918]
```
2. Build locally:
```
mkdir -p build
cd build
source /opt/intel/oneapi/setvars.sh
#for FP16
#cmake .. -DWHISPER_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DWHISPER_SYCL_F16=ON
#for FP32
cmake .. -DWHISPER_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
#build example/main only
#cmake --build . --config Release --target main
#build all binary
cmake --build . --config Release -v
```
or
```
./examples/sycl/build.sh
```
Note:
- By default, it will build for all binary files. It will take more time. To reduce the time, we recommend to build for **example/main** only.
### Run
1. Put model file to folder **models**
2. Enable oneAPI running environment
```
source /opt/intel/oneapi/setvars.sh
```
3. List device ID
Run without parameter:
```
./build/bin/ls-sycl-device
or
./build/bin/main
```
Check the ID in startup log, like:
```
found 4 SYCL devices:
Device 0: Intel(R) Arc(TM) A770 Graphics, compute capability 1.3,
max compute_units 512, max work group size 1024, max sub group size 32, global mem size 16225243136
Device 1: Intel(R) FPGA Emulation Device, compute capability 1.2,
max compute_units 24, max work group size 67108864, max sub group size 64, global mem size 67065057280
Device 2: 13th Gen Intel(R) Core(TM) i7-13700K, compute capability 3.0,
max compute_units 24, max work group size 8192, max sub group size 64, global mem size 67065057280
Device 3: Intel(R) Arc(TM) A770 Graphics, compute capability 3.0,
max compute_units 512, max work group size 1024, max sub group size 32, global mem size 16225243136
```
|Attribute|Note|
|-|-|
|compute capability 1.3|Level-zero running time, recommended |
|compute capability 3.0|OpenCL running time, slower than level-zero in most cases|
4. Set device ID and execute whisper.cpp
Set device ID = 0 by **GGML_SYCL_DEVICE=0**
```
GGML_SYCL_DEVICE=0 ./build/bin/main -m models/ggml-base.en.bin -f samples/jfk.wav
```
or run by script:
```
./examples/sycl/run_whisper.sh
```
5. Check the device ID in output
Like:
```
Using device **0** (Intel(R) Arc(TM) A770 Graphics) as main device
```
## Environment Variable
#### Build
|Name|Value|Function|
|-|-|-|
|WHISPER_SYCL|ON (mandatory)|Enable build with SYCL code path. <br>For FP32/FP16, WHISPER_SYCL=ON is mandatory.|
|WHISPER_SYCL_F16|ON (optional)|Enable FP16 build with SYCL code path.For FP32, do not set it.|
|CMAKE_C_COMPILER|icx|Use icx compiler for SYCL code path|
|CMAKE_CXX_COMPILER|icpx|use icpx for SYCL code path|
#### Running
|Name|Value|Function|
|-|-|-|
|GGML_SYCL_DEVICE|0 (default) or 1|Set the device id used. Check the device ids by default running output|
|GGML_SYCL_DEBUG|0 (default) or 1|Enable log function by macro: GGML_SYCL_DEBUG|
## Known Issue
- Error: `error while loading shared libraries: libsycl.so.7: cannot open shared object file: No such file or directory`.
Miss to enable oneAPI running environment.
Install oneAPI base toolkit and enable it by: `source /opt/intel/oneapi/setvars.sh`.
- Hang during startup
llama.cpp use mmap as default way to read model file and copy to GPU. In some system, memcpy will be abnormal and block.
Solution: add **--no-mmap**.
## Todo
- Support to build in Windows.
- Support multiple cards.
# whisper.cpp for SYCL
[Background](#background)
[OS](#os)
[Intel GPU](#intel-gpu)
[Linux](#linux)
[Environment Variable](#environment-variable)
[Known Issue](#known-issue)
[Todo](#todo)
## Background
SYCL is a higher-level programming model to improve programming productivity on various hardware acceleratorssuch as CPUs, GPUs, and FPGAs. It is a single-source embedded domain-specific language based on pure C++17.
oneAPI is a specification that is open and standards-based, supporting multiple architecture types including but not limited to GPU, CPU, and FPGA. The spec has both direct programming and API-based programming paradigms.
Intel uses the SYCL as direct programming language to support CPU, GPUs and FPGAs.
To avoid re-inventing the wheel, this code refers other code paths in llama.cpp (like OpenBLAS, cuBLAS, CLBlast). We use a open-source tool [SYCLomatic](https://github.com/oneapi-src/SYCLomatic) (Commercial release [Intel® DPC++ Compatibility Tool](https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html)) migrate to SYCL.
The whisper.cpp for SYCL is used to support Intel GPUs.
For Intel CPU, recommend to use whisper.cpp for X86 (Intel MKL build).
## OS
|OS|Status|Verified|
|-|-|-|
|Linux|Support|Ubuntu 22.04|
|Windows|Ongoing| |
## Intel GPU
|Intel GPU| Status | Verified Model|
|-|-|-|
|Intel Data Center Max Series| Support| Max 1550|
|Intel Data Center Flex Series| Support| Flex 170|
|Intel Arc Series| Support| Arc 770|
|Intel built-in Arc GPU| Support| built-in Arc GPU in Meteor Lake|
|Intel iGPU| Support| iGPU in i5-1250P, i7-1165G7|
## Linux
### Setup Environment
1. Install Intel GPU driver.
a. Please install Intel GPU driver by official guide: [Install GPU Drivers](https://dgpu-docs.intel.com/driver/installation.html).
Note: for iGPU, please install the client GPU driver.
b. Add user to group: video, render.
```
sudo usermod -aG render username
sudo usermod -aG video username
```
Note: re-login to enable it.
c. Check
```
sudo apt install clinfo
sudo clinfo -l
```
Output (example):
```
Platform #0: Intel(R) OpenCL Graphics
`-- Device #0: Intel(R) Arc(TM) A770 Graphics
Platform #0: Intel(R) OpenCL HD Graphics
`-- Device #0: Intel(R) Iris(R) Xe Graphics [0x9a49]
```
2. Install Intel® oneAPI Base toolkit.
a. Please follow the procedure in [Get the Intel® oneAPI Base Toolkit ](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html).
Recommend to install to default folder: **/opt/intel/oneapi**.
Following guide use the default folder as example. If you use other folder, please modify the following guide info with your folder.
b. Check
```
source /opt/intel/oneapi/setvars.sh
sycl-ls
```
There should be one or more level-zero devices. Like **[ext_oneapi_level_zero:gpu:0]**.
Output (example):
```
[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.10.0.17_160000]
[opencl:cpu:1] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i7-13700K OpenCL 3.0 (Build 0) [2023.16.10.0.17_160000]
[opencl:gpu:2] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics OpenCL 3.0 NEO [23.30.26918.50]
[ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) Arc(TM) A770 Graphics 1.3 [1.3.26918]
```
2. Build locally:
```
mkdir -p build
cd build
source /opt/intel/oneapi/setvars.sh
#for FP16
#cmake .. -DWHISPER_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DWHISPER_SYCL_F16=ON
#for FP32
cmake .. -DWHISPER_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
#build example/main only
#cmake --build . --config Release --target main
#build all binary
cmake --build . --config Release -v
```
or
```
./examples/sycl/build.sh
```
Note:
- By default, it will build for all binary files. It will take more time. To reduce the time, we recommend to build for **example/main** only.
### Run
1. Put model file to folder **models**
2. Enable oneAPI running environment
```
source /opt/intel/oneapi/setvars.sh
```
3. List device ID
Run without parameter:
```
./build/bin/ls-sycl-device
or
./build/bin/main
```
Check the ID in startup log, like:
```
found 4 SYCL devices:
Device 0: Intel(R) Arc(TM) A770 Graphics, compute capability 1.3,
max compute_units 512, max work group size 1024, max sub group size 32, global mem size 16225243136
Device 1: Intel(R) FPGA Emulation Device, compute capability 1.2,
max compute_units 24, max work group size 67108864, max sub group size 64, global mem size 67065057280
Device 2: 13th Gen Intel(R) Core(TM) i7-13700K, compute capability 3.0,
max compute_units 24, max work group size 8192, max sub group size 64, global mem size 67065057280
Device 3: Intel(R) Arc(TM) A770 Graphics, compute capability 3.0,
max compute_units 512, max work group size 1024, max sub group size 32, global mem size 16225243136
```
|Attribute|Note|
|-|-|
|compute capability 1.3|Level-zero running time, recommended |
|compute capability 3.0|OpenCL running time, slower than level-zero in most cases|
4. Set device ID and execute whisper.cpp
Set device ID = 0 by **GGML_SYCL_DEVICE=0**
```
GGML_SYCL_DEVICE=0 ./build/bin/main -m models/ggml-base.en.bin -f samples/jfk.wav
```
or run by script:
```
./examples/sycl/run_whisper.sh
```
5. Check the device ID in output
Like:
```
Using device **0** (Intel(R) Arc(TM) A770 Graphics) as main device
```
## Environment Variable
#### Build
|Name|Value|Function|
|-|-|-|
|WHISPER_SYCL|ON (mandatory)|Enable build with SYCL code path. <br>For FP32/FP16, WHISPER_SYCL=ON is mandatory.|
|WHISPER_SYCL_F16|ON (optional)|Enable FP16 build with SYCL code path.For FP32, do not set it.|
|CMAKE_C_COMPILER|icx|Use icx compiler for SYCL code path|
|CMAKE_CXX_COMPILER|icpx|use icpx for SYCL code path|
#### Running
|Name|Value|Function|
|-|-|-|
|GGML_SYCL_DEVICE|0 (default) or 1|Set the device id used. Check the device ids by default running output|
|GGML_SYCL_DEBUG|0 (default) or 1|Enable log function by macro: GGML_SYCL_DEBUG|
## Known Issue
- Error: `error while loading shared libraries: libsycl.so.7: cannot open shared object file: No such file or directory`.
Miss to enable oneAPI running environment.
Install oneAPI base toolkit and enable it by: `source /opt/intel/oneapi/setvars.sh`.
- Hang during startup
llama.cpp use mmap as default way to read model file and copy to GPU. In some system, memcpy will be abnormal and block.
Solution: add **--no-mmap**.
## Todo
- Support to build in Windows.
- Support multiple cards.

View File

@ -11,11 +11,11 @@ UNAME_M := $(shell uname -m)
endif
GGML_METAL_PATH_RESOURCES := $(abspath ../..)
BUILD_DIR := build
BUILD_DIR := build_go
MODELS_DIR := models
EXAMPLES_DIR := $(wildcard examples/*)
INCLUDE_PATH := $(abspath ../../include):$(abspath ../../ggml/include)
LIBRARY_PATH := $(abspath ../..)
LIBRARY_PATH := $(abspath ../../${BUILD_DIR}/src:$(abspath ../../${BUILD_DIR}/ggml/src))
ifeq ($(GGML_CUDA),1)
LIBRARY_PATH := $(LIBRARY_PATH):$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib/
@ -29,8 +29,10 @@ endif
all: clean whisper examples
whisper: mkdir
@echo Build whisper
@${MAKE} -C ../.. libwhisper.a
cmake -S ../.. -B ../../${BUILD_DIR} \
-DCMAKE_BUILD_TYPE=Release \
-DBUILD_SHARED_LIBS=OFF
cmake --build ../../${BUILD_DIR} --target whisper
test: model-small whisper modtidy
ifeq ($(UNAME_S),Darwin)

View File

@ -31,7 +31,7 @@ func main() {
if err != nil {
panic(err)
}
if err := context.Process(samples, nil, nil); err != nil {
if err := context.Process(samples, nil, nil, nil); err != nil {
return err
}
@ -51,7 +51,7 @@ func main() {
In order to build, you need to have the Go compiler installed. You can get it from [here](https://golang.org/dl/). Run the tests with:
```bash
git clone https://github.com/ggerganov/whisper.cpp.git
git clone https://github.com/ggml-org/whisper.cpp.git
cd whisper.cpp/bindings/go
make test
```
@ -98,7 +98,7 @@ The API Documentation:
Getting help:
* Follow the discussion for the go bindings [here](https://github.com/ggerganov/whisper.cpp/discussions/312)
* Follow the discussion for the go bindings [here](https://github.com/ggml-org/whisper.cpp/discussions/312)
## License

View File

@ -1,5 +1,5 @@
/*
github.com/ggerganov/whisper.cpp/bindings/go
github.com/ggml-org/whisper.cpp/bindings/go
provides a speech-to-text service bindings for the Go programming language.
*/
package whisper

View File

@ -67,7 +67,7 @@ func Process(model whisper.Model, path string, flags *Flags) error {
// Process the data
fmt.Fprintf(flags.Output(), " ...processing %q\n", path)
context.ResetTimings()
if err := context.Process(data, cb, nil); err != nil {
if err := context.Process(data, nil, cb, nil); err != nil {
return err
}

View File

@ -71,6 +71,10 @@ func (context *context) Language() string {
return whisper.Whisper_lang_str(context.params.Language())
}
func (context *context) DetectedLanguage() string {
return whisper.Whisper_lang_str(context.model.ctx.Whisper_full_lang_id())
}
// Set translate flag
func (context *context) SetTranslate(v bool) {
context.params.SetTranslate(v)
@ -189,6 +193,7 @@ func (context *context) WhisperLangAutoDetect(offset_ms int, n_threads int) ([]f
// Process new sample data and return any errors
func (context *context) Process(
data []float32,
callEncoderBegin EncoderBeginCallback,
callNewSegment SegmentCallback,
callProgress ProgressCallback,
) error {
@ -203,7 +208,20 @@ func (context *context) Process(
// We don't do parallel processing at the moment
processors := 0
if processors > 1 {
if err := context.model.ctx.Whisper_full_parallel(context.params, data, processors, nil, func(new int) {
if err := context.model.ctx.Whisper_full_parallel(context.params, data, processors, callEncoderBegin,
func(new int) {
if callNewSegment != nil {
num_segments := context.model.ctx.Whisper_full_n_segments()
s0 := num_segments - new
for i := s0; i < num_segments; i++ {
callNewSegment(toSegment(context.model.ctx, i))
}
}
}); err != nil {
return err
}
} else if err := context.model.ctx.Whisper_full(context.params, data, callEncoderBegin,
func(new int) {
if callNewSegment != nil {
num_segments := context.model.ctx.Whisper_full_n_segments()
s0 := num_segments - new
@ -211,22 +229,11 @@ func (context *context) Process(
callNewSegment(toSegment(context.model.ctx, i))
}
}
}); err != nil {
return err
}
} else if err := context.model.ctx.Whisper_full(context.params, data, nil, func(new int) {
if callNewSegment != nil {
num_segments := context.model.ctx.Whisper_full_n_segments()
s0 := num_segments - new
for i := s0; i < num_segments; i++ {
callNewSegment(toSegment(context.model.ctx, i))
}, func(progress int) {
if callProgress != nil {
callProgress(progress)
}
}
}, func(progress int) {
if callProgress != nil {
callProgress(progress)
}
}); err != nil {
}); err != nil {
return err
}

View File

@ -88,6 +88,37 @@ func TestProcess(t *testing.T) {
context, err := model.NewContext()
assert.NoError(err)
err = context.Process(data, nil, nil)
err = context.Process(data, nil, nil, nil)
assert.NoError(err)
}
func TestDetectedLanguage(t *testing.T) {
assert := assert.New(t)
fh, err := os.Open(SamplePath)
assert.NoError(err)
defer fh.Close()
// Decode the WAV file - load the full buffer
dec := wav.NewDecoder(fh)
buf, err := dec.FullPCMBuffer()
assert.NoError(err)
assert.Equal(uint16(1), dec.NumChans)
data := buf.AsFloat32Buffer().Data
model, err := whisper.New(ModelPath)
assert.NoError(err)
assert.NotNil(model)
defer model.Close()
context, err := model.NewContext()
assert.NoError(err)
err = context.Process(data, nil, nil, nil)
assert.NoError(err)
expectedLanguage := "en"
actualLanguage := context.DetectedLanguage()
assert.Equal(expectedLanguage, actualLanguage)
}

View File

@ -16,6 +16,10 @@ type SegmentCallback func(Segment)
// processing. It is called during the Process function
type ProgressCallback func(int)
// EncoderBeginCallback is the callback function for checking if we want to
// continue processing. It is called during the Process function
type EncoderBeginCallback func() bool
// Model is the interface to a whisper model. Create a new model with the
// function whisper.New(string)
type Model interface {
@ -31,12 +35,13 @@ type Model interface {
Languages() []string
}
// Context is the speach recognition context.
// Context is the speech recognition context.
type Context interface {
SetLanguage(string) error // Set the language to use for speech recognition, use "auto" for auto detect language.
SetTranslate(bool) // Set translate flag
IsMultilingual() bool // Return true if the model is multilingual.
Language() string // Get language
DetectedLanguage() string // Get detected language
SetOffset(time.Duration) // Set offset
SetDuration(time.Duration) // Set duration
@ -58,7 +63,7 @@ type Context interface {
// Process mono audio data and return any errors.
// If defined, newly generated segments are passed to the
// callback function during processing.
Process([]float32, SegmentCallback, ProgressCallback) error
Process([]float32, EncoderBeginCallback, SegmentCallback, ProgressCallback) error
// After process is called, return segments until the end of the stream
// is reached, when io.EOF is returned.

View File

@ -9,7 +9,7 @@ import (
// CGO
/*
#cgo LDFLAGS: -lwhisper -lm -lstdc++ -fopenmp
#cgo LDFLAGS: -lwhisper -lggml -lggml-base -lggml-cpu -lm -lstdc++ -fopenmp
#cgo darwin LDFLAGS: -framework Accelerate -framework Metal -framework Foundation -framework CoreGraphics
#include <whisper.h>
#include <stdlib.h>

View File

@ -23,26 +23,42 @@ import io.github.ggerganov.whispercpp.WhisperCpp;
public class Example {
public static void main(String[] args) {
WhisperCpp whisper = new WhisperCpp();
// By default, models are loaded from ~/.cache/whisper/ and are usually named "ggml-${name}.bin"
// or you can provide the absolute path to the model file.
long context = whisper.initContext("base.en");
try {
var whisperParams = whisper.getFullDefaultParams(WhisperSamplingStrategy.WHISPER_SAMPLING_GREEDY);
// custom configuration if required
whisperParams.temperature_inc = 0f;
// By default, models are loaded from ~/.cache/whisper/ and are usually named "ggml-${name}.bin"
// or you can provide the absolute path to the model file.
whisper.initContext("../ggml-base.en.bin");
WhisperFullParams.ByValue whisperParams = whisper.getFullDefaultParams(WhisperSamplingStrategy.WHISPER_SAMPLING_BEAM_SEARCH);
var samples = readAudio(); // divide each value by 32767.0f
whisper.fullTranscribe(whisperParams, samples);
// custom configuration if required
//whisperParams.n_threads = 8;
whisperParams.temperature = 0.0f;
whisperParams.temperature_inc = 0.2f;
//whisperParams.language = "en";
float[] samples = readAudio(); // divide each value by 32767.0f
List<WhisperSegment> whisperSegmentList = whisper.fullTranscribeWithTime(whisperParams, samples);
int segmentCount = whisper.getTextSegmentCount(context);
for (int i = 0; i < segmentCount; i++) {
String text = whisper.getTextSegment(context, i);
System.out.println(segment.getText());
for (WhisperSegment whisperSegment : whisperSegmentList) {
long start = whisperSegment.getStart();
long end = whisperSegment.getEnd();
String text = whisperSegment.getSentence();
System.out.println("start: "+start);
System.out.println("end: "+end);
System.out.println("text: "+text);
}
} catch (IOException e) {
e.printStackTrace();
} finally {
whisper.freeContext(context);
whisper.close();
}
}
}
```
@ -52,7 +68,7 @@ public class Example {
In order to build, you need to have the JDK 8 or higher installed. Run the tests with:
```bash
git clone https://github.com/ggerganov/whisper.cpp.git
git clone https://github.com/ggml-org/whisper.cpp.git
cd whisper.cpp/bindings/java
./gradlew build

View File

@ -25,25 +25,43 @@ sourceSets {
}
tasks.register('copyLibwhisperDynlib', Copy) {
from '../../build'
include 'libwhisper.dynlib'
into 'build/generated/resources/main/darwin'
from '../../build/src'
include 'libwhisper.dylib'
into 'build/generated/resources/main'
}
tasks.register('copyLibwhisperSo', Copy) {
from '../../build'
from '../../build/src'
include 'libwhisper.so'
into 'build/generated/resources/main/linux-x86-64'
into 'build/generated/resources/main'
}
tasks.register('copyWhisperDll', Copy) {
from '../../build/Release'
tasks.register('copyWhisperDLL', Copy) {
from '../../build/bin/Release'
include 'whisper.dll'
into 'build/generated/resources/main/windows-x86-64'
into 'build/generated/resources/main'
}
tasks.register('copyGGML_BASE_DLL', Copy) {
from '../../build/bin/Release'
include 'ggml-base.dll'
into 'build/generated/resources/main'
}
tasks.register('copyGGML_DLL', Copy) {
from '../../build/bin/Release'
include 'ggml.dll'
into 'build/generated/resources/main'
}
tasks.register('copyGGML_CPU_DLL', Copy) {
from '../../build/bin/Release'
include 'ggml-cpu.dll'
into 'build/generated/resources/main'
}
tasks.register('copyLibs') {
dependsOn copyLibwhisperDynlib, copyLibwhisperSo, copyWhisperDll
dependsOn copyLibwhisperDynlib, copyLibwhisperSo, copyWhisperDLL, copyGGML_BASE_DLL, copyGGML_DLL, copyGGML_CPU_DLL
}
test {
@ -55,7 +73,12 @@ java {
withJavadocJar()
}
sourcesJar() {
dependsOn copyLibs
}
jar {
dependsOn copyLibs
exclude '**/whisper_java.exp', '**/whisper_java.lib'
}
@ -67,6 +90,9 @@ tasks.withType(Test) {
useJUnitPlatform()
}
test.dependsOn copyLibs
processResources.dependsOn copyLibs
dependencies {
implementation "net.java.dev.jna:jna:5.13.0"
testImplementation "org.junit.jupiter:junit-jupiter:5.9.2"

0
bindings/java/gradlew vendored Normal file → Executable file
View File

View File

@ -0,0 +1,24 @@
package io.github.ggerganov.whispercpp;
/**
* Presets for alignment heads in DTW token timestamps
*/
public class WhisperConstants {
// Alignment heads presets
public static final int WHISPER_AHEADS_NONE = 0;
public static final int WHISPER_AHEADS_TINY_EN = 1;
public static final int WHISPER_AHEADS_TINY = 2;
public static final int WHISPER_AHEADS_BASE_EN = 3;
public static final int WHISPER_AHEADS_BASE = 4;
public static final int WHISPER_AHEADS_SMALL_EN = 5;
public static final int WHISPER_AHEADS_SMALL = 6;
public static final int WHISPER_AHEADS_MEDIUM_EN = 7;
public static final int WHISPER_AHEADS_MEDIUM = 8;
public static final int WHISPER_AHEADS_LARGE_V1 = 9;
public static final int WHISPER_AHEADS_LARGE_V2 = 10;
public static final int WHISPER_AHEADS_LARGE_V3 = 11;
public static final int WHISPER_AHEADS_LARGE_V3_TURBO = 12;
public static final int WHISPER_AHEADS_CUSTOM = 13;
public static final int WHISPER_AHEADS_N_TOP_MOST = 14;
public static final int WHISPER_AHEADS_COUNT = 15;
}

View File

@ -1,7 +1,9 @@
package io.github.ggerganov.whispercpp;
import com.sun.jna.NativeLong;
import com.sun.jna.Structure;
import com.sun.jna.ptr.PointerByReference;
import com.sun.jna.Pointer;
import io.github.ggerganov.whispercpp.ggml.GgmlType;
import io.github.ggerganov.whispercpp.WhisperModel;
import io.github.ggerganov.whispercpp.params.WhisperContextParams;
@ -9,33 +11,26 @@ import io.github.ggerganov.whispercpp.params.WhisperContextParams;
import java.util.List;
public class WhisperContext extends Structure {
int t_load_us = 0;
int t_start_us = 0;
public NativeLong t_load_us;
public NativeLong t_start_us;
/** weight type (FP32 / FP16 / QX) */
GgmlType wtype = GgmlType.GGML_TYPE_F16;
public GgmlType wtype = GgmlType.GGML_TYPE_F16;
/** intermediate type (FP32 or FP16) */
GgmlType itype = GgmlType.GGML_TYPE_F16;
public GgmlType itype = GgmlType.GGML_TYPE_F16;
// WhisperModel model;
public PointerByReference model;
// whisper_vocab vocab;
// whisper_state * state = nullptr;
public PointerByReference vocab;
public PointerByReference state;
public WhisperContextParams.ByValue params;
public Pointer model;
public Pointer vocab;
public Pointer state;
/** populated by whisper_init_from_file_with_params() */
String path_model;
WhisperContextParams params;
public Pointer path_model;
// public static class ByReference extends WhisperContext implements Structure.ByReference {
// }
//
// public static class ByValue extends WhisperContext implements Structure.ByValue {
// }
//
// @Override
// protected List<String> getFieldOrder() {
// return List.of("t_load_us", "t_start_us", "wtype", "itype", "model", "vocab", "state", "path_model");
// }
@Override
protected List<String> getFieldOrder() {
return List.of("t_load_us", "t_start_us", "wtype", "itype",
"params", "model", "vocab", "state", "path_model");
}
}

View File

@ -43,11 +43,11 @@ public class WhisperCpp implements AutoCloseable {
* @param modelPath - absolute path, or just the name (eg: "base", "base-en" or "base.en")
* @param params - params to use when initialising the context
*/
public void initContext(String modelPath, WhisperContextParams params) throws FileNotFoundException {
public void initContext(String modelPath, WhisperContextParams.ByValue params) throws FileNotFoundException {
initContextImpl(modelPath, params);
}
private void initContextImpl(String modelPath, WhisperContextParams params) throws FileNotFoundException {
private void initContextImpl(String modelPath, WhisperContextParams.ByValue params) throws FileNotFoundException {
if (ctx != null) {
lib.whisper_free(ctx);
}
@ -69,15 +69,13 @@ public class WhisperCpp implements AutoCloseable {
/**
* Provides default params which can be used with `whisper_init_from_file_with_params()` etc.
* Because this function allocates memory for the params, the caller must call either:
* - call `whisper_free_context_params()`
* - `Native.free(Pointer.nativeValue(pointer));`
* Returns a ByValue instance to ensure proper parameter passing to native code.
*/
public WhisperContextParams getContextDefaultParams() {
paramsPointer = lib.whisper_context_default_params_by_ref();
WhisperContextParams params = new WhisperContextParams(paramsPointer);
params.read();
return params;
public WhisperContextParams.ByValue getContextDefaultParams() {
WhisperContextParams.ByValue valueParams = new WhisperContextParams.ByValue(
lib.whisper_context_default_params_by_ref());
valueParams.read();
return valueParams;
}
/**
@ -88,7 +86,7 @@ public class WhisperCpp implements AutoCloseable {
*
* @param strategy - GREEDY
*/
public WhisperFullParams getFullDefaultParams(WhisperSamplingStrategy strategy) {
public WhisperFullParams.ByValue getFullDefaultParams(WhisperSamplingStrategy strategy) {
Pointer pointer;
// whisper_full_default_params_by_ref allocates memory which we need to delete, so only create max 1 pointer for each strategy.
@ -104,7 +102,7 @@ public class WhisperCpp implements AutoCloseable {
pointer = beamParamsPointer;
}
WhisperFullParams params = new WhisperFullParams(pointer);
WhisperFullParams.ByValue params = new WhisperFullParams.ByValue(pointer);
params.read();
return params;
}
@ -138,15 +136,21 @@ public class WhisperCpp implements AutoCloseable {
}
/**
* Run the entire model: PCM -> log mel spectrogram -> encoder -> decoder -> text.
* Run the entire model: PCM -&gt; log mel spectrogram -&gt; encoder -&gt; decoder -&gt; text.
* Not thread safe for same context
* Uses the specified decoding strategy to obtain the text.
*/
public String fullTranscribe(WhisperFullParams whisperParams, float[] audioData) throws IOException {
public String fullTranscribe(WhisperFullParams.ByValue whisperParams, float[] audioData) throws IOException {
if (ctx == null) {
throw new IllegalStateException("Model not initialised");
}
/*
WhisperFullParams.ByValue valueParams = new WhisperFullParams.ByValue(
lib.whisper_full_default_params_by_ref(WhisperSamplingStrategy.WHISPER_SAMPLING_BEAM_SEARCH.ordinal()));
valueParams.read();
*/
if (lib.whisper_full(ctx, whisperParams, audioData, audioData.length) != 0) {
throw new IOException("Failed to process audio");
}
@ -163,7 +167,16 @@ public class WhisperCpp implements AutoCloseable {
return str.toString().trim();
}
public List<WhisperSegment> fullTranscribeWithTime(WhisperFullParams whisperParams, float[] audioData) throws IOException {
/**
* Full transcribe with time list.
*
* @param whisperParams the whisper params
* @param audioData the audio data
* @return the list
* @throws IOException the io exception
*/
public List<WhisperSegment> fullTranscribeWithTime(WhisperFullParams.ByValue whisperParams, float[] audioData) throws IOException {
if (ctx == null) {
throw new IllegalStateException("Model not initialised");
}
@ -175,7 +188,6 @@ public class WhisperCpp implements AutoCloseable {
int nSegments = lib.whisper_full_n_segments(ctx);
List<WhisperSegment> segments= new ArrayList<>(nSegments);
for (int i = 0; i < nSegments; i++) {
long t0 = lib.whisper_full_get_segment_t0(ctx, i);
String text = lib.whisper_full_get_segment_text(ctx, i);

View File

@ -9,6 +9,7 @@ import io.github.ggerganov.whispercpp.params.WhisperContextParams;
import io.github.ggerganov.whispercpp.params.WhisperFullParams;
public interface WhisperCppJnaLibrary extends Library {
WhisperCppJnaLibrary instance = Native.load("whisper", WhisperCppJnaLibrary.class);
String whisper_print_system_info();
@ -38,7 +39,7 @@ public interface WhisperCppJnaLibrary extends Library {
* @param params Pointer to whisper_context_params
* @return Whisper context on success, null on failure
*/
Pointer whisper_init_from_file_with_params(String path_model, WhisperContextParams params);
Pointer whisper_init_from_file_with_params(String path_model, WhisperContextParams.ByValue params);
/**
* Allocate (almost) all memory needed for the model by loading from a buffer.
@ -180,12 +181,12 @@ public interface WhisperCppJnaLibrary extends Library {
/**
* @return the id of the specified language, returns -1 if not found.
* Examples:
* "de" -> 2
* "german" -> 2
* "de" -&gt; 2
* "german" -&gt; 2
*/
int whisper_lang_id(String lang);
/** @return the short string of the specified language id (e.g. 2 -> "de"), returns nullptr if not found */
/** @return the short string of the specified language id (e.g. 2 -&gt; "de"), returns nullptr if not found */
String whisper_lang_str(int id);
/**
@ -268,20 +269,21 @@ public interface WhisperCppJnaLibrary extends Library {
void whisper_free_params(Pointer params);
/**
* Run the entire model: PCM -> log mel spectrogram -> encoder -> decoder -> text
* Run the entire model: PCM -&gt; log mel spectrogram -&gt; encoder -&gt; decoder -&gt; text
* Not thread safe for same context
* Uses the specified decoding strategy to obtain the text.
*/
int whisper_full(Pointer ctx, WhisperFullParams params, final float[] samples, int n_samples);
int whisper_full(Pointer ctx, WhisperFullParams.ByValue params, final float[] samples, int n_samples);
int whisper_full_with_state(Pointer ctx, Pointer state, WhisperFullParams params, final float[] samples, int n_samples);
public int whisper_full_with_state(Pointer ctx, Pointer state, WhisperFullParams.ByValue params, float[] samples, int n_samples);
//int whisper_full_with_state(Pointer ctx, Pointer state, WhisperFullParams params, final float[] samples, int n_samples);
// Split the input audio in chunks and process each chunk separately using whisper_full_with_state()
// Result is stored in the default state of the context
// Not thread safe if executed in parallel on the same context.
// It seems this approach can offer some speedup in some cases.
// However, the transcription accuracy can be worse at the beginning and end of each chunk.
int whisper_full_parallel(Pointer ctx, WhisperFullParams params, final float[] samples, int n_samples, int n_processors);
int whisper_full_parallel(Pointer ctx, WhisperFullParams.ByValue params, final float[] samples, int n_samples, int n_processors);
/**
* Number of generated text segments.

View File

@ -0,0 +1,17 @@
package io.github.ggerganov.whispercpp.callbacks;
import com.sun.jna.Callback;
/**
* Callback for aborting GGML computation
* Maps to the C typedef: bool (*ggml_abort_callback)(void * data)
*/
public interface GgmlAbortCallback extends Callback {
/**
* Return true to abort the computation, false to continue
*
* @param data User data passed to the callback
* @return true to abort, false to continue
*/
boolean invoke(com.sun.jna.Pointer data);
}

View File

@ -0,0 +1,30 @@
package io.github.ggerganov.whispercpp.params;
import com.sun.jna.*;
import java.util.Arrays;
import java.util.List;
public class WhisperAhead extends Structure {
public int n_text_layer;
public int n_head;
public WhisperAhead() {
super();
}
public WhisperAhead(int textLayer, int head) {
super();
this.n_text_layer = textLayer;
this.n_head = head;
}
@Override
protected List<String> getFieldOrder() {
return Arrays.asList("n_text_layer", "n_head");
}
public static class ByReference extends WhisperAhead implements Structure.ByReference {}
public static class ByValue extends WhisperAhead implements Structure.ByValue {}
}

View File

@ -0,0 +1,41 @@
package io.github.ggerganov.whispercpp.params;
import com.sun.jna.*;
import java.util.Arrays;
import java.util.List;
public class WhisperAheads extends Structure {
public NativeLong n_heads;
public Pointer heads;
public WhisperAheads() {
super();
}
/**
* Create alignment heads from an array of WhisperAhead objects
*/
public void setHeads(WhisperAhead[] aheadsArray) {
this.n_heads = new NativeLong(aheadsArray.length);
int structSize = aheadsArray[0].size();
Memory mem = new Memory(structSize * aheadsArray.length);
for (int i = 0; i < aheadsArray.length; i++) {
aheadsArray[i].write();
byte[] buffer = aheadsArray[i].getPointer().getByteArray(0, structSize);
mem.write(i * structSize, buffer, 0, buffer.length);
}
this.heads = mem;
}
@Override
protected List<String> getFieldOrder() {
return Arrays.asList("n_heads", "heads");
}
public static class ByReference extends WhisperAheads implements Structure.ByReference {}
public static class ByValue extends WhisperAheads implements Structure.ByValue {}
}

View File

@ -1,7 +1,5 @@
package io.github.ggerganov.whispercpp.params;
import com.sun.jna.*;
import java.util.Arrays;
import java.util.List;
@ -11,21 +9,73 @@ import java.util.List;
* whisper_context_default_params()
*/
public class WhisperContextParams extends Structure {
public WhisperContextParams(Pointer p) {
super(p);
}
/** Use GPU for inference Number (default = true) */
public WhisperContextParams() {
super();
}
/** Use GPU for inference (default = true) */
public CBool use_gpu;
/** Use GPU for inference Number (default = true) */
/** Use flash attention (default = false) */
public CBool flash_attn;
/** CUDA device to use (default = 0) */
public int gpu_device;
/** [EXPERIMENTAL] Enable token-level timestamps with DTW (default = false) */
public CBool dtw_token_timestamps;
/** [EXPERIMENTAL] Alignment heads preset for DTW */
public int dtw_aheads_preset;
/** Number of top layers to use for DTW when using WHISPER_AHEADS_N_TOP_MOST preset */
public int dtw_n_top;
public WhisperAheads.ByValue dtw_aheads;
/** DTW memory size (internal use) */
public NativeLong dtw_mem_size;
/** Use GPU for inference */
public void useGpu(boolean enable) {
use_gpu = enable ? CBool.TRUE : CBool.FALSE;
}
/** Use flash attention */
public void useFlashAttn(boolean enable) {
flash_attn = enable ? CBool.TRUE : CBool.FALSE;
}
/** Enable DTW token-level timestamps */
public void enableDtwTokenTimestamps(boolean enable) {
dtw_token_timestamps = enable ? CBool.TRUE : CBool.FALSE;
}
/** Set DTW alignment heads preset */
public void setDtwAheadsPreset(int preset) {
dtw_aheads_preset = preset;
}
@Override
protected List<String> getFieldOrder() {
return Arrays.asList("use_gpu");
return Arrays.asList(
"use_gpu",
"flash_attn",
"gpu_device",
"dtw_token_timestamps",
"dtw_aheads_preset",
"dtw_n_top",
"dtw_aheads",
"dtw_mem_size"
);
}
public static class ByValue extends WhisperContextParams implements Structure.ByValue {
public ByValue() { super(); }
public ByValue(Pointer p) { super(p); }
}
}

View File

@ -5,6 +5,7 @@ import io.github.ggerganov.whispercpp.callbacks.WhisperEncoderBeginCallback;
import io.github.ggerganov.whispercpp.callbacks.WhisperLogitsFilterCallback;
import io.github.ggerganov.whispercpp.callbacks.WhisperNewSegmentCallback;
import io.github.ggerganov.whispercpp.callbacks.WhisperProgressCallback;
import io.github.ggerganov.whispercpp.callbacks.GgmlAbortCallback;
import java.util.Arrays;
import java.util.List;
@ -16,10 +17,12 @@ import java.util.List;
*/
public class WhisperFullParams extends Structure {
public WhisperFullParams() {
super();
}
public WhisperFullParams(Pointer p) {
super(p);
// super(p, ALIGN_MSVC);
// super(p, ALIGN_GNUC);
}
/** Sampling strategy for whisper_full() function. */
@ -69,10 +72,10 @@ public class WhisperFullParams extends Structure {
single_segment = single ? CBool.TRUE : CBool.FALSE;
}
/** Flag to print special tokens (e.g., &lt;SOT>, &lt;EOT>, &lt;BEG>, etc.). (default = false) */
/** Flag to print special tokens (e.g., &lt;SOT&gt;, &lt;EOT&gt;, &lt;BEG&gt;, etc.). (default = false) */
public CBool print_special;
/** Flag to print special tokens (e.g., &lt;SOT>, &lt;EOT>, &lt;BEG>, etc.). (default = false) */
/** Flag to print special tokens (e.g., &lt;SOT&gt;, &lt;EOT&gt;, &lt;BEG&gt;, etc.). (default = false) */
public void printSpecial(boolean enable) {
print_special = enable ? CBool.TRUE : CBool.FALSE;
}
@ -129,6 +132,14 @@ public class WhisperFullParams extends Structure {
/** Maximum tokens per segment (0, default = no limit) */
public int max_tokens;
/** [EXPERIMENTAL] Enable debug mode for extra info */
public CBool debug_mode;
/** Enable debug mode */
public void enableDebugMode(boolean enable) {
debug_mode = enable ? CBool.TRUE : CBool.FALSE;
}
/** Overwrite the audio context size (0 = use default). */
public int audio_ctx;
@ -274,6 +285,16 @@ public class WhisperFullParams extends Structure {
*/
public Pointer encoder_begin_callback_user_data;
/** Callback used to abort GGML computation */
public Pointer abort_callback;
/** User data for the abort_callback */
public Pointer abort_callback_user_data;
public void setAbortCallback(GgmlAbortCallback callback) {
abort_callback = CallbackReference.getFunctionPointer(callback);
}
/**
* Callback by each decoder to filter obtained logits.
* WhisperLogitsFilterCallback
@ -310,17 +331,28 @@ public class WhisperFullParams extends Structure {
@Override
protected List<String> getFieldOrder() {
return Arrays.asList("strategy", "n_threads", "n_max_text_ctx", "offset_ms", "duration_ms", "translate",
"no_context", "single_segment", "no_timestamps",
"print_special", "print_progress", "print_realtime", "print_timestamps", "token_timestamps",
"thold_pt", "thold_ptsum", "max_len", "split_on_word", "max_tokens", "audio_ctx",
"tdrz_enable", "suppress_regex", "initial_prompt", "prompt_tokens", "prompt_n_tokens", "language", "detect_language",
"suppress_blank", "suppress_nst", "temperature", "max_initial_ts", "length_penalty",
"temperature_inc", "entropy_thold", "logprob_thold", "no_speech_thold", "greedy", "beam_search",
"new_segment_callback", "new_segment_callback_user_data",
return Arrays.asList("strategy", "n_threads", "n_max_text_ctx",
"offset_ms", "duration_ms", "translate", "no_context",
"no_timestamps", "single_segment", "print_special",
"print_progress", "print_realtime", "print_timestamps",
"token_timestamps", "thold_pt", "thold_ptsum", "max_len",
"split_on_word", "max_tokens", "debug_mode", "audio_ctx",
"tdrz_enable", "suppress_regex", "initial_prompt",
"prompt_tokens", "prompt_n_tokens", "language", "detect_language",
"suppress_blank", "suppress_nst", "temperature",
"max_initial_ts", "length_penalty", "temperature_inc",
"entropy_thold", "logprob_thold", "no_speech_thold", "greedy",
"beam_search", "new_segment_callback", "new_segment_callback_user_data",
"progress_callback", "progress_callback_user_data",
"encoder_begin_callback", "encoder_begin_callback_user_data",
"abort_callback", "abort_callback_user_data",
"logits_filter_callback", "logits_filter_callback_user_data",
"grammar_rules", "n_grammar_rules", "i_start_rule", "grammar_penalty");
}
public static class ByValue extends WhisperFullParams implements Structure.ByValue {
public ByValue() { super(); }
public ByValue(Pointer p) { super(p); }
}
}

View File

@ -76,7 +76,7 @@ class WhisperCppTest {
float[] floats = new float[b.length / 2];
//WhisperFullParams params = whisper.getFullDefaultParams(WhisperSamplingStrategy.WHISPER_SAMPLING_GREEDY);
WhisperFullParams params = whisper.getFullDefaultParams(WhisperSamplingStrategy.WHISPER_SAMPLING_BEAM_SEARCH);
WhisperFullParams.ByValue params = whisper.getFullDefaultParams(WhisperSamplingStrategy.WHISPER_SAMPLING_BEAM_SEARCH);
params.setProgressCallback((ctx, state, progress, user_data) -> System.out.println("progress: " + progress));
params.print_progress = CBool.FALSE;
//params.initial_prompt = "and so my fellow Americans um, like";
@ -118,7 +118,7 @@ class WhisperCppTest {
float[] floats = new float[b.length / 2];
//WhisperFullParams params = whisper.getFullDefaultParams(WhisperSamplingStrategy.WHISPER_SAMPLING_GREEDY);
WhisperFullParams params = whisper.getFullDefaultParams(WhisperSamplingStrategy.WHISPER_SAMPLING_BEAM_SEARCH);
WhisperFullParams.ByValue params = whisper.getFullDefaultParams(WhisperSamplingStrategy.WHISPER_SAMPLING_BEAM_SEARCH);
params.setProgressCallback((ctx, state, progress, user_data) -> System.out.println("progress: " + progress));
params.print_progress = CBool.FALSE;
//params.initial_prompt = "and so my fellow Americans um, like";

View File

@ -33,6 +33,9 @@ mkdir build-em && cd build-em
emcmake cmake .. && make -j
# run test
node ../tests/test-whisper.js
# For Node.js versions prior to v16.4.0, experimental features need to be enabled:
node --experimental-wasm-threads --experimental-wasm-simd ../tests/test-whisper.js
# publish npm package

View File

@ -1,6 +1,6 @@
{
"name": "whisper.cpp",
"version": "1.7.4",
"version": "1.7.6",
"description": "Whisper speech recognition",
"main": "whisper.js",
"scripts": {

View File

@ -1,3 +1,9 @@
LICENSE
pkg/
lib/whisper.*
ext/examples/
ext/ggml/
ext/include/
ext/scripts/
ext/src/
test/fixtures/

View File

@ -16,6 +16,32 @@ If bundler is not being used to manage dependencies, install the gem by executin
$ gem install whispercpp
You can pass build options for whisper.cpp, for instance:
$ bundle config build.whispercpp --enable-ggml-cuda
or,
$ gem install whispercpp -- --enable-ggml-cuda
See whisper.cpp's [README](https://github.com/ggml-org/whisper.cpp/blob/master/README.md) for available options. You need convert options present the README to Ruby-style options, for example:
Boolean options:
* `-DGGML_BLAS=1` -> `--enable-ggml-blas`
* `-DWHISER_COREML=OFF` -> `--disable-whisper-coreml`
Argument options:
* `-DGGML_CUDA_COMPRESSION_MODE=size` -> `--ggml-cuda-compression-mode=size`
Combination:
* `-DGGML_CUDA=1 -DCMAKE_CUDA_ARCHITECTURES="86"` -> `--enable-ggml-cuda --cmake_cuda-architectures="86"`
For boolean options like `GGML_CUDA`, the README says `-DGGML_CUDA=1`. You need strip `-D`, prepend `--enable-` for `1` or `ON` (`--disable-` for `0` or `OFF`) and make it kebab-case: `--enable-ggml-cuda`.
For options which require arguments like `CMAKE_CUDA_ARCHITECTURES`, the README says `-DCMAKE_CUDA_ARCHITECTURES="86"`. You need strip `-D`, prepend `--`, make it kebab-case, append `=` and append argument: `--cmake-cuda-architectures="86"`.
Usage
-----
@ -44,17 +70,6 @@ end
Some models are prepared up-front:
```ruby
base_en = Whisper::Model.pre_converted_models["base.en"]
whisper = Whisper::Context.new(base_en)
```
At first time you use a model, it is downloaded automatically. After that, downloaded cached file is used. To clear cache, call `#clear_cache`:
```ruby
Whisper::Model.pre_converted_models["base"].clear_cache
```
You also can use shorthand for pre-converted models:
```ruby
@ -79,6 +94,19 @@ puts Whisper::Model.pre_converted_models.keys
# :
```
You can also retrieve each model:
```ruby
base_en = Whisper::Model.pre_converted_models["base.en"]
whisper = Whisper::Context.new(base_en)
```
At first time you use a model, it is downloaded automatically. After that, downloaded cached file is used. To clear cache, call `#clear_cache`:
```ruby
Whisper::Model.pre_converted_models["base"].clear_cache
```
You can also use local model files you prepared:
```ruby
@ -99,9 +127,80 @@ See [models][] page for details.
Currently, whisper.cpp accepts only 16-bit WAV files.
### Voice Activity Detection (VAD) ###
Support for Voice Activity Detection (VAD) can be enabled by setting `Whisper::Params`'s `vad` argument to `true` and specifying VAD model:
```ruby
Whisper::Params.new(
vad: true,
vad_model_path: "silero-v5.1.2",
# other arguments...
)
```
When you pass the model name (`"silero-v5.1.2"`) or URI (`https://huggingface.co/ggml-org/whisper-vad/resolve/main/ggml-silero-v5.1.2.bin`), it will be downloaded automatically.
Currently, "silero-v5.1.2" is registered as pre-converted model like ASR models. You also specify file path or URI of model.
If you need configure VAD behavior, pass params for that:
```ruby
Whisper::Params.new(
vad: true,
vad_model_path: "silero-v5.1.2",
vad_params: Whisper::VAD::Params.new(
threshold: 1.0, # defaults to 0.5
min_speech_duration_ms: 500, # defaults to 250
min_silence_duration_ms: 200, # defaults to 100
max_speech_duration_s: 30000, # default is FLT_MAX,
speech_pad_ms: 50, # defaults to 30
samples_overlap: 0.5 # defaults to 0.1
),
# other arguments...
)
```
For details on VAD, see [whisper.cpp's README](https://github.com/ggml-org/whisper.cpp?tab=readme-ov-file#voice-activity-detection-vad).
### Output ###
whispercpp supports SRT and WebVTT output:
```ruby
puts whisper.transcribe("path/to/audio.wav", Whisper::Params.new).to_webvtt
# =>
WEBVTT
1
00:00:00.000 --> 00:00:03.860
My thought I have nobody by a beauty and will as you poured.
2
00:00:03.860 --> 00:00:09.840
Mr. Rochester is sub in that so-don't find simplest, and devoted about, to let might in
3
00:00:09.840 --> 00:00:09.940
a
```
You may call `#to_srt`, too
API
---
### Transcription ###
By default, `Whisper::Context#transcribe` works in a single thread. You can make it work in parallel by passing `n_processors` option:
```ruby
whisper.transcribe("path/to/audio.wav", params, n_processors: Etc.nprocessors)
```
Note that transcription occasionally might be low accuracy when it works in parallel.
### Segments ###
Once `Whisper::Context#transcribe` called, you can retrieve segments by `#each_segment`:
@ -123,7 +222,7 @@ whisper
ed: format_time(segment.end_time),
text: segment.text
}
line << " (speaker turned)" if segment.speaker_next_turn?
line << " (speaker turned)" if segment.speaker_turn_next?
puts line
end
@ -139,7 +238,7 @@ params.on_new_segment do |segment|
ed: format_time(segment.end_time),
text: segment.text
}
line << " (speaker turned)" if segment.speaker_next_turn?
line << " (speaker turned)" if segment.speaker_turn_next?
puts line
end
@ -228,7 +327,7 @@ The second argument `samples` may be an array, an object with `length` and `each
Development
-----------
% git clone https://github.com/ggerganov/whisper.cpp.git
% git clone https://github.com/ggml-org/whisper.cpp.git
% cd whisper.cpp/bindings/ruby
% rake test
@ -236,10 +335,15 @@ First call of `rake test` builds an extension and downloads a model for testing.
If something seems wrong on build, running `rake clean` solves some cases.
### Need help ###
* Windows support
* Refinement of C/C++ code, especially memory management
License
-------
The same to [whisper.cpp][].
[whisper.cpp]: https://github.com/ggerganov/whisper.cpp
[models]: https://github.com/ggerganov/whisper.cpp/tree/master/models
[whisper.cpp]: https://github.com/ggml-org/whisper.cpp
[models]: https://github.com/ggml-org/whisper.cpp/tree/master/models

View File

@ -3,11 +3,15 @@ require "bundler/gem_tasks"
require "rake/testtask"
require_relative "extsources"
SOURCES_DIR = "ext/sources"
SOURCES = FileList[]
EXTSOURCES.each do |src|
basename = src.pathmap("%f")
dest = basename == "LICENSE" ? basename : src.pathmap("%{../..,ext}p")
dest = basename == "LICENSE" ? basename
: src.pathmap("%{\\.\\./\\.\\.,#{SOURCES_DIR}}p")
.pathmap("%{\\.\\./javascript,#{SOURCES_DIR}/bindings/javascript}p")
dir = dest.pathmap("%d")
file src
directory dir
@ -18,7 +22,6 @@ EXTSOURCES.each do |src|
end
CLEAN.include SOURCES
CLEAN.include FileList["ext/**/*.o", "ext/**/*.metal", "ext/**/*.tmp", "ext/whisper.{so,bundle,dll}"]
SRC = FileList["ext/*.{c,cpp,h}"]
@ -36,6 +39,20 @@ file "ext/Makefile" => SRC + ["ext/extconf.rb"] + SOURCES do |t|
ruby "extconf.rb"
end
end
if File.exist? "ext/Makefile"
task :make_clean do
cd "ext" do
sh "make", "clean"
end
end
task clean: :make_clean
task :make_distclean do
cd "ext" do
sh "make", "distclean"
end
end
task clobber: :make_distclean
end
file SO_FILE => "ext/Makefile" do |t|
chdir "ext" do
@ -50,17 +67,30 @@ file LIB_FILE => [SO_FILE, "lib"] do |t|
end
CLEAN.include LIB_FILE
Rake::TestTask.new do |t|
t.test_files = FileList["tests/test_*.rb"]
Rake::TestTask.new
TEST_FIXTURE_AUDIO = "test/fixtures/jfk.wav"
TEST_FIXTURE_AUDIO_SRC = File.expand_path(File.join(__dir__, "..", "..", "samples", "jfk.wav"))
TEST_FIXTURE_AUDIO_DIR = TEST_FIXTURE_AUDIO.pathmap("%d")
directory TEST_FIXTURE_AUDIO_DIR
if File.exist? TEST_FIXTURE_AUDIO_SRC
file TEST_FIXTURE_AUDIO => [TEST_FIXTURE_AUDIO_SRC, TEST_FIXTURE_AUDIO_DIR] do |t|
symlink t.source, t.name
end
else
require "open-uri"
file TEST_FIXTURE_AUDIO => TEST_FIXTURE_AUDIO_DIR do |t|
File.write t.name, URI("https://github.com/ggml-org/whisper.cpp/raw/refs/heads/master/samples/jfk.wav").read
end
end
TEST_MEMORY_VIEW = "tests/jfk_reader/jfk_reader.#{RbConfig::CONFIG['DLEXT']}"
file TEST_MEMORY_VIEW => "tests/jfk_reader/jfk_reader.c" do |t|
chdir "tests/jfk_reader" do
TEST_MEMORY_VIEW = "test/jfk_reader/jfk_reader.#{RbConfig::CONFIG['DLEXT']}"
file TEST_MEMORY_VIEW => "test/jfk_reader/jfk_reader.c" do |t|
chdir "test/jfk_reader" do
ruby "extconf.rb"
sh "make"
end
end
CLEAN.include "tests/jfk_reader/jfk_reader.{o,#{RbConfig::CONFIG['DLEXT']}}"
CLEAN.include TEST_MEMORY_VIEW
task test: [LIB_FILE, TEST_MEMORY_VIEW]
task test: [LIB_FILE, TEST_MEMORY_VIEW, TEST_FIXTURE_AUDIO]

View File

@ -2,10 +2,8 @@ Makefile
whisper.so
whisper.bundle
whisper.dll
scripts/get-flags.mk
*.o
/*/**/*.c
/*/**/*.cpp
/*/**/*.h
/*/**/*.m
/*/**/*.metal
*.a
sources/*
!sources/CMakeGraphVizOptions.cmake
mkmf.log

View File

@ -1,9 +0,0 @@
ggml/src/ggml-cpu/ggml-cpu-cpp.o: \
ggml/src/ggml-cpu/ggml-cpu.cpp \
ggml/include/ggml-backend.h \
ggml/include/ggml.h \
ggml/include/ggml-alloc.h \
ggml/src/ggml-backend-impl.h \
ggml/include/ggml-cpu.h \
ggml/src/ggml-impl.h
$(CXX) $(CXXFLAGS) -c $< -o $@

View File

@ -0,0 +1,73 @@
require "tsort"
class Dependencies
include TSort
def initialize(cmake, options)
@cmake = cmake
@options = options
@static_lib_shape = nil
@nodes = {}
@graph = Hash.new {|h, k| h[k] = []}
generate_dot
parse_dot
end
def libs
tsort.filter_map {|node|
label, shape = @nodes[node]
if shape == @static_lib_shape
label.gsub(/\\n\([^)]+\)/, '')
else
nil
end
}.reverse.collect {|lib| "lib#{lib}.a"}
end
def to_s
libs.join(" ")
end
private
def dot_path
File.join(__dir__, "build", "whisper.cpp.dot")
end
def generate_dot
args = ["-S", "sources", "-B", "build", "--graphviz", dot_path, "-D", "BUILD_SHARED_LIBS=OFF"]
args << @options.to_s unless @options.to_s.empty?
system @cmake, *args, exception: true
end
def parse_dot
File.open(dot_path).each_line do |line|
case line
when /\[\s*label\s*=\s*"Static Library"\s*,\s*shape\s*=\s*(?<shape>\w+)\s*\]/
@static_lib_shape = $~[:shape]
when /\A\s*"(?<node>\w+)"\s*\[\s*label\s*=\s*"(?<label>\S+)"\s*,\s*shape\s*=\s*(?<shape>\w+)\s*\]\s*;\s*\z/
node = $~[:node]
label = $~[:label]
shape = $~[:shape]
@nodes[node] = [label, shape]
when /\A\s*"(?<depender>\w+)"\s*->\s*"(?<dependee>\w+)"/
depender = $~[:depender]
dependee = $~[:dependee]
@graph[depender] << dependee
end
end
end
def tsort_each_node
@nodes.each_key do |node|
yield node
end
end
def tsort_each_child(node)
@graph[node].each do |child|
yield child
end
end
end

View File

@ -1,208 +1,22 @@
require 'mkmf'
require "mkmf"
require_relative "options"
require_relative "dependencies"
# need to use c++ compiler flags
$CXXFLAGS << ' -std=c++17'
cmake = find_executable("cmake") || abort
options = Options.new(cmake)
have_library("gomp") rescue nil
libs = Dependencies.new(cmake, options)
$LDFLAGS << ' -lstdc++'
$INCFLAGS << " -Isources/include -Isources/ggml/include -Isources/examples"
$LOCAL_LIBS << " #{libs}"
$cleanfiles << " build #{libs}"
# Set to true when building binary gems
if enable_config('static-stdlib', false)
$LDFLAGS << ' -static-libgcc -static-libstdc++'
end
if enable_config('march-tune-native', false)
$CFLAGS << ' -march=native -mtune=native'
$CXXFLAGS << ' -march=native -mtune=native'
end
if ENV['WHISPER_METAL']
$GGML_METAL ||= true
$DEPRECATE_WARNING ||= true
end
$UNAME_S = `uname -s`.chomp
$UNAME_P = `uname -p`.chomp
$UNAME_M = `uname -m`.chomp
if $UNAME_S == 'Darwin'
unless ENV['GGML_NO_METAL']
$GGML_METAL ||= true
end
$GGML_NO_OPENMP ||= true
end
if $GGML_METAL
$GGML_METAL_EMBED_LIBRARY = true
end
$MK_CPPFLAGS = '-Iggml/include -Iggml/src -Iggml/src/ggml-cpu -Iinclude -Isrc -Iexamples -DGGML_USE_CPU'
$MK_CFLAGS = '-std=c11 -fPIC'
$MK_CXXFLAGS = '-std=c++17 -fPIC'
$MK_NVCCFLAGS = '-std=c++17'
$MK_LDFLAGS = ''
$OBJ_GGML = []
$OBJ_WHISPER = []
$OBJ_COMMON = []
$OBJ_SDL = []
$MK_CPPFLAGS << ' -D_XOPEN_SOURCE=600'
if $UNAME_S == 'Linux'
$MK_CPPFLAGS << ' -D_GNU_SOURCE'
end
if $UNAME_S == 'Darwin'
$MK_CPPFLAGS << ' -D_DARWIN_C_SOURCE'
end
if ENV['WHISPER_DEBUG']
$MK_CFLAGS << ' -O0 -g'
$MK_CXXFLAGS << ' -O0 -g'
$MK_LDFLAGS << ' -g'
$MK_NVCCFLAGS << ' -O0 -g'
else
$MK_CPPFLAGS << ' -DNDEBUG'
$MK_CFLAGS << ' -O3'
$MK_CXXFLAGS << ' -O3'
$MK_NVCCFLAGS << ' -O3'
end
$WARN_FLAGS =
' -Wall' <<
' -Wextra' <<
' -Wpedantic' <<
' -Wcast-qual' <<
' -Wno-unused-function'
$MK_CFLAGS <<
$WARN_FLAGS <<
' -Wshadow' <<
' -Wstrict-prototypes' <<
' -Wpointer-arith' <<
' -Wmissing-prototypes' <<
' -Werror=implicit-int' <<
' -Werror=implicit-function-declaration'
$MK_CXXFLAGS <<
$WARN_FLAGS <<
' -Wmissing-declarations' <<
' -Wmissing-noreturn'
unless `#{cc_command} #{$LDFLAGS} -Wl,-v 2>&1`.chomp.include? 'dyld-1015.7'
$MK_CPPFLAGS << ' -DHAVE_BUGGY_APPLE_LINKER'
end
if %w[Linux Darwin FreeBSD NetBSD OpenBSD Haiku].include? $UNAME_S
$MK_CFLAGS << ' -pthread'
$MK_CXXFLAGS << ' -pthread'
end
unless $_WIN32
$DSO_EXT = '.so'
else
$DSO_EXT = '.dll'
end
unless ENV['RISCV']
if %w[x86_64 i686 amd64].include? $UNAME_M
$HOST_CXXFLAGS ||= ''
$MK_CFLAGS << ' -march=native -mtune=native'
$HOST_CXXFLAGS << ' -march=native -mtune=native'
end
else
$MK_CFLAGS << ' -march=rv64gcv -mabi=lp64d'
$MK_CXXFLAGS << ' -march=rv64gcv -mabi=lp64d'
end
unless ENV['GGML_NO_ACCELERATE']
if $UNAME_S == 'Darwin'
$MK_CPPFLAGS << ' -DGGML_USE_ACCELERATE -DGGML_USE_BLAS -DGGML_BLAS_USE_ACCELERATE'
$MK_CPPFLAGS << ' -DACCELERATE_NEW_LAPACK'
$MK_CPPFLAGS << ' -DACCELERATE_LAPACK_ILP64'
$MK_LDFLAGS << ' -framework Accelerate'
$OBJ_GGML << 'ggml/src/ggml-blas/ggml-blas.o'
end
end
if ENV['GGML_OPENBLAS']
$MK_CPPFLAGS << " -DGGML_USE_BLAS #{`pkg-config --cflags-only-I openblas`.chomp}"
$MK_CFLAGS << " #{`pkg-config --cflags-only-other openblas)`.chomp}"
$MK_LDFLAGS << " #{`pkg-config --libs openblas`}"
$OBJ_GGML << 'ggml/src/ggml-blas/ggml-blas.o'
end
if ENV['GGML_OPENBLAS64']
$MK_CPPFLAGS << " -DGGML_USE_BLAS #{`pkg-config --cflags-only-I openblas64`.chomp}"
$MK_CFLAGS << " #{`pkg-config --cflags-only-other openblas64)`.chomp}"
$MK_LDFLAGS << " #{`pkg-config --libs openblas64`}"
$OBJ_GGML << 'ggml/src/ggml-blas/ggml-blas.o'
end
if $GGML_METAL
$MK_CPPFLAGS << ' -DGGML_USE_METAL'
$MK_LDFLAGS << ' -framework Foundation -framework Metal -framework MetalKit'
$OBJ_GGML << 'ggml/src/ggml-metal/ggml-metal.o'
if ENV['GGML_METAL_NDEBUG']
$MK_CPPFLAGS << ' -DGGML_METAL_NDEBUG'
end
if $GGML_METAL_EMBED_LIBRARY
$MK_CPPFLAGS << ' -DGGML_METAL_EMBED_LIBRARY'
$OBJ_GGML << 'ggml/src/ggml-metal/ggml-metal-embed.o'
end
end
$OBJ_GGML <<
'ggml/src/ggml.o' <<
'ggml/src/ggml-alloc.o' <<
'ggml/src/ggml-backend.o' <<
'ggml/src/ggml-backend-reg.o' <<
'ggml/src/ggml-opt.o' <<
'ggml/src/ggml-quants.o' <<
'ggml/src/ggml-threading.o' <<
'ggml/src/ggml-cpu/ggml-cpu.o' <<
'ggml/src/ggml-cpu/ggml-cpu-cpp.o' <<
'ggml/src/ggml-cpu/ggml-cpu-aarch64.o' <<
'ggml/src/ggml-cpu/ggml-cpu-hbm.o' <<
'ggml/src/ggml-cpu/ggml-cpu-quants.o' <<
'ggml/src/ggml-cpu/ggml-cpu-traits.o'
$OBJ_WHISPER <<
'src/whisper.o' <<
'examples/common.o' <<
'examples/common-whisper.o'
$objs = $OBJ_GGML + $OBJ_WHISPER + $OBJ_COMMON + $OBJ_SDL
$objs <<
"ruby_whisper.o" <<
"ruby_whisper_context.o" <<
"ruby_whisper_transcribe.o" <<
"ruby_whisper_params.o" <<
"ruby_whisper_error.o" <<
"ruby_whisper_segment.o" <<
"ruby_whisper_model.o"
$CPPFLAGS = "#{$MK_CPPFLAGS} #{$CPPFLAGS}"
$CFLAGS = "#{$CPPFLAGS} #{$MK_CFLAGS} #{$GF_CFLAGS} #{$CFLAGS}"
$BASE_CXXFLAGS = "#{$MK_CXXFLAGS} #{$CXXFLAGS}"
$CXXFLAGS = "#{$BASE_CXXFLAGS} #{$HOST_CXXFLAGS} #{$GF_CXXFLAGS} #{$CPPFLAGS}"
$NVCCFLAGS = "#{$MK_NVCCFLAGS} #{$NVCCFLAGS}"
$LDFLAGS = "#{$MK_LDFLAGS} #{$LDFLAGS}"
create_makefile('whisper')
File.open 'Makefile', 'a' do |file|
file.puts 'include scripts/get-flags.mk'
file.puts 'include cpu.mk'
if $GGML_METAL
file.puts 'include metal.mk'
if $GGML_METAL_EMBED_LIBRARY
file.puts 'include metal-embed.mk'
end
end
create_makefile "whisper" do |conf|
conf << <<~EOF
$(TARGET_SO): #{libs}
#{libs}: cmake-targets
cmake-targets:
#{"\t"}#{cmake} -S sources -B build -D BUILD_SHARED_LIBS=OFF -D CMAKE_ARCHIVE_OUTPUT_DIRECTORY=#{__dir__} -D CMAKE_POSITION_INDEPENDENT_CODE=ON #{options}
#{"\t"}#{cmake} --build build --config Release --target common whisper
EOF
end

View File

@ -1,17 +0,0 @@
ggml/src/ggml-metal/ggml-metal-embed.o: \
ggml/src/ggml-metal/ggml-metal.metal \
ggml/src/ggml-metal/ggml-metal-impl.h \
ggml/src/ggml-common.h
@echo "Embedding Metal library"
@sed -e '/__embed_ggml-common.h__/r ggml/src/ggml-common.h' -e '/__embed_ggml-common.h__/d' < ggml/src/ggml-metal/ggml-metal.metal > ggml/src/ggml-metal/ggml-metal-embed.metal.tmp
@sed -e '/#include "ggml-metal-impl.h"/r ggml/src/ggml-metal/ggml-metal-impl.h' -e '/#include "ggml-metal-impl.h"/d' < ggml/src/ggml-metal/ggml-metal-embed.metal.tmp > ggml/src/ggml-metal/ggml-metal-embed.metal
$(eval TEMP_ASSEMBLY=$(shell mktemp -d))
@echo ".section __DATA, __ggml_metallib" > $(TEMP_ASSEMBLY)/ggml-metal-embed.s
@echo ".globl _ggml_metallib_start" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s
@echo "_ggml_metallib_start:" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s
@echo ".incbin \"ggml/src/ggml-metal/ggml-metal-embed.metal\"" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s
@echo ".globl _ggml_metallib_end" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s
@echo "_ggml_metallib_end:" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s
$(CC) $(CFLAGS) -c $(TEMP_ASSEMBLY)/ggml-metal-embed.s -o $@
@rm -f ${TEMP_ASSEMBLY}/ggml-metal-embed.s
@rmdir ${TEMP_ASSEMBLY}

View File

@ -1,6 +0,0 @@
ggml/src/ggml-metal/ggml-metal.o: \
ggml/src/ggml-metal/ggml-metal.m \
ggml/src/ggml-metal/ggml-metal-impl.h \
ggml/include/ggml-metal.h \
ggml/include/ggml.h
$(CC) $(CFLAGS) -c $< -o $@

View File

@ -0,0 +1,85 @@
class Options
def initialize(cmake="cmake")
@cmake = cmake
@options = {}
configure
end
def to_s
@options
.reject {|name, (type, value)| value.nil?}
.collect {|name, (type, value)| "-D #{name}=#{value == true ? "ON" : value == false ? "OFF" : value.shellescape}"}
.join(" ")
end
def cmake_options
return @cmake_options if @cmake_options
output = nil
Dir.chdir __dir__ do
output = `#{@cmake.shellescape} -S sources -B build -L`
end
@cmake_options = output.lines.drop_while {|line| line.chomp != "-- Cache values"}.drop(1)
.filter_map {|line|
option, value = line.chomp.split("=", 2)
name, type = option.split(":", 2)
[
name,
[
type,
type == "BOOL" ? value == "ON" : value
]
]
}.to_h
end
private
def configure
cmake_options.each_pair do |name, (type, default_value)|
option = option_name(name)
value = type == "BOOL" ? enable_config(option) : arg_config("--#{option}")
@options[name] = [type, value]
end
configure_accelerate
configure_metal
configure_coreml
end
# See ggml/src/ggml-cpu/CMakeLists.txt
def configure_accelerate
if RUBY_PLATFORM.match?(/darwin/) && enabled?("GGML_ACCELERATE")
$LDFLAGS << " -framework Accelerate"
end
end
# See ggml/src/ggml-metal/CMakeLists.txt
def configure_metal
$LDFLAGS << " -framework Foundation -framework Metal -framework MetalKit" if enabled?("GGML_METAL")
end
# See src/CmakeLists.txt
def configure_coreml
if enabled?("WHISPER_COREML")
$LDFLAGS << " -framework Foundation -framework CoreML"
$defs << "-DRUBY_WHISPER_USE_COREML"
end
end
def option_name(name)
name.downcase.gsub("_", "-")
end
def enabled?(option)
op = @options[option]
raise "Option not exist: #{option}" unless op
raise "Option not boolean: #{option}(#{op[0]})" unless op[0] == "BOOL"
if op[1].nil?
cmake_options[option][1]
else
op[1]
end
end
end

View File

@ -3,8 +3,10 @@
#include "ruby_whisper.h"
VALUE mWhisper;
VALUE mVAD;
VALUE cContext;
VALUE cParams;
VALUE cVADParams;
VALUE eError;
VALUE cSegment;
@ -20,6 +22,9 @@ ID id_new;
ID id_to_path;
ID id_URI;
ID id_pre_converted_models;
ID id_coreml_compiled_models;
ID id_cache;
ID id_n_processors;
static bool is_log_callback_finalized = false;
@ -31,6 +36,7 @@ extern void init_ruby_whisper_params(VALUE *mWhisper);
extern void init_ruby_whisper_error(VALUE *mWhisper);
extern void init_ruby_whisper_segment(VALUE *mWhisper, VALUE *cSegment);
extern void init_ruby_whisper_model(VALUE *mWhisper);
extern void init_ruby_whisper_vad_params(VALUE *mVAD);
extern void register_callbacks(ruby_whisper_params *rwp, VALUE *context);
/*
@ -80,6 +86,14 @@ static VALUE ruby_whisper_s_lang_str_full(VALUE self, VALUE id) {
return rb_str_new2(str_full);
}
/*
* call-seq:
* system_info_str -> String
*/
static VALUE ruby_whisper_s_system_info_str(VALUE self) {
return rb_str_new2(whisper_print_system_info());
}
static VALUE ruby_whisper_s_finalize_log_callback(VALUE self, VALUE id) {
is_log_callback_finalized = true;
return Qnil;
@ -116,16 +130,6 @@ static VALUE ruby_whisper_s_log_set(VALUE self, VALUE log_callback, VALUE user_d
return Qnil;
}
static void rb_whisper_model_mark(ruby_whisper_model *rwm) {
rb_gc_mark(rwm->context);
}
static VALUE ruby_whisper_model_allocate(VALUE klass) {
ruby_whisper_model *rwm;
rwm = ALLOC(ruby_whisper_model);
return Data_Wrap_Struct(klass, rb_whisper_model_mark, RUBY_DEFAULT_FREE, rwm);
}
void Init_whisper() {
id_to_s = rb_intern("to_s");
id_call = rb_intern("call");
@ -137,9 +141,14 @@ void Init_whisper() {
id_to_path = rb_intern("to_path");
id_URI = rb_intern("URI");
id_pre_converted_models = rb_intern("pre_converted_models");
id_coreml_compiled_models = rb_intern("coreml_compiled_models");
id_cache = rb_intern("cache");
id_n_processors = rb_intern("n_processors");
mWhisper = rb_define_module("Whisper");
mVAD = rb_define_module_under(mWhisper, "VAD");
rb_define_const(mWhisper, "VERSION", rb_str_new2(whisper_version()));
rb_define_const(mWhisper, "LOG_LEVEL_NONE", INT2NUM(GGML_LOG_LEVEL_NONE));
rb_define_const(mWhisper, "LOG_LEVEL_INFO", INT2NUM(GGML_LOG_LEVEL_INFO));
rb_define_const(mWhisper, "LOG_LEVEL_WARN", INT2NUM(GGML_LOG_LEVEL_WARN));
@ -151,6 +160,7 @@ void Init_whisper() {
rb_define_singleton_method(mWhisper, "lang_id", ruby_whisper_s_lang_id, 1);
rb_define_singleton_method(mWhisper, "lang_str", ruby_whisper_s_lang_str, 1);
rb_define_singleton_method(mWhisper, "lang_str_full", ruby_whisper_s_lang_str_full, 1);
rb_define_singleton_method(mWhisper, "system_info_str", ruby_whisper_s_system_info_str, 0);
rb_define_singleton_method(mWhisper, "log_set", ruby_whisper_s_log_set, 2);
rb_define_private_method(rb_singleton_class(mWhisper), "finalize_log_callback", ruby_whisper_s_finalize_log_callback, 1);
@ -159,6 +169,9 @@ void Init_whisper() {
init_ruby_whisper_error(&mWhisper);
init_ruby_whisper_segment(&mWhisper, &cContext);
init_ruby_whisper_model(&mWhisper);
init_ruby_whisper_vad_params(&mVAD);
rb_require("whisper/context");
rb_require("whisper/segment");
rb_require("whisper/model/uri");
}

View File

@ -19,9 +19,15 @@ typedef struct {
bool diarize;
ruby_whisper_callback_container *new_segment_callback_container;
ruby_whisper_callback_container *progress_callback_container;
ruby_whisper_callback_container *encoder_begin_callback_container;
ruby_whisper_callback_container *abort_callback_container;
VALUE vad_params;
} ruby_whisper_params;
typedef struct {
struct whisper_vad_params params;
} ruby_whisper_vad_params;
typedef struct {
VALUE context;
int index;

View File

@ -11,15 +11,21 @@ extern ID id_new;
extern ID id_to_path;
extern ID id_URI;
extern ID id_pre_converted_models;
extern ID id_coreml_compiled_models;
extern ID id_cache;
extern ID id_n_processors;
extern VALUE cContext;
extern VALUE eError;
extern VALUE cModel;
extern const rb_data_type_t ruby_whisper_params_type;
extern VALUE ruby_whisper_transcribe(int argc, VALUE *argv, VALUE self);
extern VALUE rb_whisper_model_initialize(VALUE context);
extern VALUE rb_whisper_segment_initialize(VALUE context, int index);
extern void register_callbacks(ruby_whisper_params *rwp, VALUE *context);
extern VALUE rb_whisper_model_s_new(VALUE context);
extern VALUE rb_whisper_segment_s_new(VALUE context, int index);
extern void prepare_transcription(ruby_whisper_params *rwp, VALUE *context);
ID transcribe_option_names[1];
static void
ruby_whisper_free(ruby_whisper *rw)
@ -37,19 +43,74 @@ rb_whisper_mark(ruby_whisper *rw)
}
void
rb_whisper_free(ruby_whisper *rw)
rb_whisper_free(void *p)
{
ruby_whisper *rw = (ruby_whisper *)p;
ruby_whisper_free(rw);
free(rw);
}
static size_t
ruby_whisper_memsize(const void *p)
{
const ruby_whisper *rw = (const ruby_whisper *)p;
size_t size = sizeof(rw);
if (!rw) {
return 0;
}
if (rw->context) {
size += sizeof(rw->context);
}
return size;
}
const rb_data_type_t ruby_whisper_type = {
"ruby_whisper",
{0, rb_whisper_free, ruby_whisper_memsize,},
0, 0,
0
};
static VALUE
ruby_whisper_allocate(VALUE klass)
{
ruby_whisper *rw;
rw = ALLOC(ruby_whisper);
VALUE obj = TypedData_Make_Struct(klass, ruby_whisper, &ruby_whisper_type, rw);
rw->context = NULL;
return Data_Wrap_Struct(klass, rb_whisper_mark, rb_whisper_free, rw);
return obj;
}
VALUE
ruby_whisper_normalize_model_path(VALUE model_path)
{
VALUE pre_converted_models = rb_funcall(cModel, id_pre_converted_models, 0);
VALUE pre_converted_model = rb_hash_aref(pre_converted_models, model_path);
if (!NIL_P(pre_converted_model)) {
model_path = pre_converted_model;
#ifdef RUBY_WHISPER_USE_COREML
VALUE coreml_converted_models = rb_funcall(cModel, id_coreml_compiled_models, 0);
VALUE coreml_converted_model = rb_hash_aref(coreml_converted_models, pre_converted_model);
if (!NIL_P(coreml_converted_model)) {
rb_funcall(coreml_converted_model, id_cache, 0);
}
#endif
}
else if (TYPE(model_path) == T_STRING) {
const char * model_path_str = StringValueCStr(model_path);
if (strncmp("http://", model_path_str, 7) == 0 || strncmp("https://", model_path_str, 8) == 0) {
VALUE uri_class = rb_const_get(cModel, id_URI);
model_path = rb_class_new_instance(1, &model_path, uri_class);
}
}
else if (rb_obj_is_kind_of(model_path, rb_path2class("URI::HTTP"))) {
VALUE uri_class = rb_const_get(cModel, id_URI);
model_path = rb_class_new_instance(1, &model_path, uri_class);
}
if (rb_respond_to(model_path, id_to_path)) {
model_path = rb_funcall(model_path, id_to_path, 0);
}
return model_path;
}
/*
@ -66,27 +127,9 @@ ruby_whisper_initialize(int argc, VALUE *argv, VALUE self)
// TODO: we can support init from buffer here too maybe another ruby object to expose
rb_scan_args(argc, argv, "01", &whisper_model_file_path);
Data_Get_Struct(self, ruby_whisper, rw);
TypedData_Get_Struct(self, ruby_whisper, &ruby_whisper_type, rw);
VALUE pre_converted_models = rb_funcall(cModel, id_pre_converted_models, 0);
VALUE pre_converted_model = rb_hash_aref(pre_converted_models, whisper_model_file_path);
if (!NIL_P(pre_converted_model)) {
whisper_model_file_path = pre_converted_model;
}
if (TYPE(whisper_model_file_path) == T_STRING) {
const char * whisper_model_file_path_str = StringValueCStr(whisper_model_file_path);
if (strncmp("http://", whisper_model_file_path_str, 7) == 0 || strncmp("https://", whisper_model_file_path_str, 8) == 0) {
VALUE uri_class = rb_const_get(cModel, id_URI);
whisper_model_file_path = rb_class_new_instance(1, &whisper_model_file_path, uri_class);
}
}
if (rb_obj_is_kind_of(whisper_model_file_path, rb_path2class("URI::HTTP"))) {
VALUE uri_class = rb_const_get(cModel, id_URI);
whisper_model_file_path = rb_class_new_instance(1, &whisper_model_file_path, uri_class);
}
if (rb_respond_to(whisper_model_file_path, id_to_path)) {
whisper_model_file_path = rb_funcall(whisper_model_file_path, id_to_path, 0);
}
whisper_model_file_path = ruby_whisper_normalize_model_path(whisper_model_file_path);
if (!rb_respond_to(whisper_model_file_path, id_to_s)) {
rb_raise(rb_eRuntimeError, "Expected file path to model to initialize Whisper::Context");
}
@ -104,7 +147,7 @@ ruby_whisper_initialize(int argc, VALUE *argv, VALUE self)
VALUE ruby_whisper_model_n_vocab(VALUE self)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
TypedData_Get_Struct(self, ruby_whisper, &ruby_whisper_type, rw);
return INT2NUM(whisper_model_n_vocab(rw->context));
}
@ -115,7 +158,7 @@ VALUE ruby_whisper_model_n_vocab(VALUE self)
VALUE ruby_whisper_model_n_audio_ctx(VALUE self)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
TypedData_Get_Struct(self, ruby_whisper, &ruby_whisper_type, rw);
return INT2NUM(whisper_model_n_audio_ctx(rw->context));
}
@ -126,7 +169,7 @@ VALUE ruby_whisper_model_n_audio_ctx(VALUE self)
VALUE ruby_whisper_model_n_audio_state(VALUE self)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
TypedData_Get_Struct(self, ruby_whisper, &ruby_whisper_type, rw);
return INT2NUM(whisper_model_n_audio_state(rw->context));
}
@ -137,7 +180,7 @@ VALUE ruby_whisper_model_n_audio_state(VALUE self)
VALUE ruby_whisper_model_n_audio_head(VALUE self)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
TypedData_Get_Struct(self, ruby_whisper, &ruby_whisper_type, rw);
return INT2NUM(whisper_model_n_audio_head(rw->context));
}
@ -148,7 +191,7 @@ VALUE ruby_whisper_model_n_audio_head(VALUE self)
VALUE ruby_whisper_model_n_audio_layer(VALUE self)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
TypedData_Get_Struct(self, ruby_whisper, &ruby_whisper_type, rw);
return INT2NUM(whisper_model_n_audio_layer(rw->context));
}
@ -159,7 +202,7 @@ VALUE ruby_whisper_model_n_audio_layer(VALUE self)
VALUE ruby_whisper_model_n_text_ctx(VALUE self)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
TypedData_Get_Struct(self, ruby_whisper, &ruby_whisper_type, rw);
return INT2NUM(whisper_model_n_text_ctx(rw->context));
}
@ -170,7 +213,7 @@ VALUE ruby_whisper_model_n_text_ctx(VALUE self)
VALUE ruby_whisper_model_n_text_state(VALUE self)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
TypedData_Get_Struct(self, ruby_whisper, &ruby_whisper_type, rw);
return INT2NUM(whisper_model_n_text_state(rw->context));
}
@ -181,7 +224,7 @@ VALUE ruby_whisper_model_n_text_state(VALUE self)
VALUE ruby_whisper_model_n_text_head(VALUE self)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
TypedData_Get_Struct(self, ruby_whisper, &ruby_whisper_type, rw);
return INT2NUM(whisper_model_n_text_head(rw->context));
}
@ -192,7 +235,7 @@ VALUE ruby_whisper_model_n_text_head(VALUE self)
VALUE ruby_whisper_model_n_text_layer(VALUE self)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
TypedData_Get_Struct(self, ruby_whisper, &ruby_whisper_type, rw);
return INT2NUM(whisper_model_n_text_layer(rw->context));
}
@ -203,7 +246,7 @@ VALUE ruby_whisper_model_n_text_layer(VALUE self)
VALUE ruby_whisper_model_n_mels(VALUE self)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
TypedData_Get_Struct(self, ruby_whisper, &ruby_whisper_type, rw);
return INT2NUM(whisper_model_n_mels(rw->context));
}
@ -214,7 +257,7 @@ VALUE ruby_whisper_model_n_mels(VALUE self)
VALUE ruby_whisper_model_ftype(VALUE self)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
TypedData_Get_Struct(self, ruby_whisper, &ruby_whisper_type, rw);
return INT2NUM(whisper_model_ftype(rw->context));
}
@ -225,7 +268,7 @@ VALUE ruby_whisper_model_ftype(VALUE self)
VALUE ruby_whisper_model_type(VALUE self)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
TypedData_Get_Struct(self, ruby_whisper, &ruby_whisper_type, rw);
return rb_str_new2(whisper_model_type_readable(rw->context));
}
@ -248,9 +291,9 @@ VALUE ruby_whisper_full(int argc, VALUE *argv, VALUE self)
ruby_whisper *rw;
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper, rw);
TypedData_Get_Struct(self, ruby_whisper, &ruby_whisper_type, rw);
VALUE params = argv[0];
Data_Get_Struct(params, ruby_whisper_params, rwp);
TypedData_Get_Struct(params, ruby_whisper_params, &ruby_whisper_params_type, rwp);
VALUE samples = argv[1];
int n_samples;
rb_memory_view_t view;
@ -265,13 +308,20 @@ VALUE ruby_whisper_full(int argc, VALUE *argv, VALUE self)
// Should check when samples.respond_to?(:length)?
} else {
if (TYPE(samples) == T_ARRAY) {
n_samples = RARRAY_LEN(samples);
if (RARRAY_LEN(samples) > INT_MAX) {
rb_raise(rb_eArgError, "samples are too long");
}
n_samples = (int)RARRAY_LEN(samples);
} else if (memory_view_available_p) {
if (!rb_memory_view_get(samples, &view, RUBY_MEMORY_VIEW_SIMPLE)) {
view.obj = Qnil;
rb_raise(rb_eArgError, "unable to get a memory view");
}
n_samples = view.byte_size / view.item_size;
ssize_t n_samples_size = view.byte_size / view.item_size;
if (n_samples_size > INT_MAX) {
rb_raise(rb_eArgError, "samples are too long");
}
n_samples = (int)n_samples_size;
} else if (rb_respond_to(samples, id_length)) {
n_samples = NUM2INT(rb_funcall(samples, id_length, 0));
} else {
@ -296,7 +346,7 @@ VALUE ruby_whisper_full(int argc, VALUE *argv, VALUE self)
}
}
}
register_callbacks(rwp, &self);
prepare_transcription(rwp, &self);
const int result = whisper_full(rw->context, rwp->params, c_samples, n_samples);
if (0 == result) {
return self;
@ -327,9 +377,9 @@ ruby_whisper_full_parallel(int argc, VALUE *argv,VALUE self)
ruby_whisper *rw;
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper, rw);
TypedData_Get_Struct(self, ruby_whisper, &ruby_whisper_type, rw);
VALUE params = argv[0];
Data_Get_Struct(params, ruby_whisper_params, rwp);
TypedData_Get_Struct(params, ruby_whisper_params, &ruby_whisper_params_type, rwp);
VALUE samples = argv[1];
int n_samples;
int n_processors;
@ -359,10 +409,17 @@ ruby_whisper_full_parallel(int argc, VALUE *argv,VALUE self)
view.obj = Qnil;
rb_raise(rb_eArgError, "unable to get a memory view");
}
n_samples = view.byte_size / view.item_size;
ssize_t n_samples_size = view.byte_size / view.item_size;
if (n_samples_size > INT_MAX) {
rb_raise(rb_eArgError, "samples are too long");
}
n_samples = (int)n_samples_size;
} else {
if (TYPE(samples) == T_ARRAY) {
n_samples = RARRAY_LEN(samples);
if (RARRAY_LEN(samples) > INT_MAX) {
rb_raise(rb_eArgError, "samples are too long");
}
n_samples = (int)RARRAY_LEN(samples);
} else if (rb_respond_to(samples, id_length)) {
n_samples = NUM2INT(rb_funcall(samples, id_length, 0));
} else {
@ -387,7 +444,7 @@ ruby_whisper_full_parallel(int argc, VALUE *argv,VALUE self)
}
}
}
register_callbacks(rwp, &self);
prepare_transcription(rwp, &self);
const int result = whisper_full_parallel(rw->context, rwp->params, c_samples, n_samples, n_processors);
if (0 == result) {
return self;
@ -406,7 +463,7 @@ static VALUE
ruby_whisper_full_n_segments(VALUE self)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
TypedData_Get_Struct(self, ruby_whisper, &ruby_whisper_type, rw);
return INT2NUM(whisper_full_n_segments(rw->context));
}
@ -420,7 +477,7 @@ static VALUE
ruby_whisper_full_lang_id(VALUE self)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
TypedData_Get_Struct(self, ruby_whisper, &ruby_whisper_type, rw);
return INT2NUM(whisper_full_lang_id(rw->context));
}
@ -445,10 +502,10 @@ static VALUE
ruby_whisper_full_get_segment_t0(VALUE self, VALUE i_segment)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
TypedData_Get_Struct(self, ruby_whisper, &ruby_whisper_type, rw);
const int c_i_segment = ruby_whisper_full_check_segment_index(rw, i_segment);
const int64_t t0 = whisper_full_get_segment_t0(rw->context, c_i_segment);
return INT2NUM(t0);
return LONG2NUM(t0);
}
/*
@ -463,10 +520,10 @@ static VALUE
ruby_whisper_full_get_segment_t1(VALUE self, VALUE i_segment)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
TypedData_Get_Struct(self, ruby_whisper, &ruby_whisper_type, rw);
const int c_i_segment = ruby_whisper_full_check_segment_index(rw, i_segment);
const int64_t t1 = whisper_full_get_segment_t1(rw->context, c_i_segment);
return INT2NUM(t1);
return LONG2NUM(t1);
}
/*
@ -481,7 +538,7 @@ static VALUE
ruby_whisper_full_get_segment_speaker_turn_next(VALUE self, VALUE i_segment)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
TypedData_Get_Struct(self, ruby_whisper, &ruby_whisper_type, rw);
const int c_i_segment = ruby_whisper_full_check_segment_index(rw, i_segment);
const bool speaker_turn_next = whisper_full_get_segment_speaker_turn_next(rw->context, c_i_segment);
return speaker_turn_next ? Qtrue : Qfalse;
@ -499,7 +556,7 @@ static VALUE
ruby_whisper_full_get_segment_text(VALUE self, VALUE i_segment)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
TypedData_Get_Struct(self, ruby_whisper, &ruby_whisper_type, rw);
const int c_i_segment = ruby_whisper_full_check_segment_index(rw, i_segment);
const char * text = whisper_full_get_segment_text(rw->context, c_i_segment);
return rb_str_new2(text);
@ -513,7 +570,7 @@ static VALUE
ruby_whisper_full_get_segment_no_speech_prob(VALUE self, VALUE i_segment)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
TypedData_Get_Struct(self, ruby_whisper, &ruby_whisper_type, rw);
const int c_i_segment = ruby_whisper_full_check_segment_index(rw, i_segment);
const float no_speech_prob = whisper_full_get_segment_no_speech_prob(rw->context, c_i_segment);
return DBL2NUM(no_speech_prob);
@ -524,7 +581,7 @@ ruby_whisper_full_get_segment_no_speech_prob(VALUE self, VALUE i_segment)
static VALUE
ruby_whisper_full_get_segment(VALUE self, VALUE i_segment)
{
return rb_whisper_segment_initialize(self, NUM2INT(i_segment));
return rb_whisper_segment_s_new(self, NUM2INT(i_segment));
}
/*
@ -554,11 +611,11 @@ ruby_whisper_each_segment(VALUE self)
}
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
TypedData_Get_Struct(self, ruby_whisper, &ruby_whisper_type, rw);
const int n_segments = whisper_full_n_segments(rw->context);
for (int i = 0; i < n_segments; ++i) {
rb_yield(rb_whisper_segment_initialize(self, i));
rb_yield(rb_whisper_segment_s_new(self, i));
}
return self;
@ -571,7 +628,7 @@ ruby_whisper_each_segment(VALUE self)
static VALUE
ruby_whisper_get_model(VALUE self)
{
return rb_whisper_model_initialize(self);
return rb_whisper_model_s_new(self);
}
void
@ -579,6 +636,8 @@ init_ruby_whisper_context(VALUE *mWhisper)
{
cContext = rb_define_class_under(*mWhisper, "Context", rb_cObject);
transcribe_option_names[0] = id_n_processors;
rb_define_alloc_func(cContext, ruby_whisper_allocate);
rb_define_method(cContext, "initialize", ruby_whisper_initialize, -1);
@ -605,7 +664,7 @@ init_ruby_whisper_context(VALUE *mWhisper)
rb_define_method(cContext, "full", ruby_whisper_full, -1);
rb_define_method(cContext, "full_parallel", ruby_whisper_full_parallel, -1);
// High leve
// High level
rb_define_method(cContext, "full_get_segment", ruby_whisper_full_get_segment, 1);
rb_define_method(cContext, "each_segment", ruby_whisper_each_segment, 0);

View File

@ -1,22 +1,44 @@
#include <ruby.h>
#include "ruby_whisper.h"
extern const rb_data_type_t ruby_whisper_type;
extern VALUE cModel;
static void rb_whisper_model_mark(ruby_whisper_model *rwm) {
rb_gc_mark(rwm->context);
static void rb_whisper_model_mark(void *p) {
ruby_whisper_model *rwm = (ruby_whisper_model *)p;
if (rwm->context) {
rb_gc_mark(rwm->context);
}
}
static size_t
ruby_whisper_model_memsize(const void *p)
{
const ruby_whisper_model *rwm = (const ruby_whisper_model *)p;
size_t size = sizeof(rwm);
if (!rwm) {
return 0;
}
return size;
}
static const rb_data_type_t rb_whisper_model_type = {
"ruby_whisper_model",
{rb_whisper_model_mark, RUBY_DEFAULT_FREE, ruby_whisper_model_memsize,},
0, 0,
0
};
static VALUE ruby_whisper_model_allocate(VALUE klass) {
ruby_whisper_model *rwm;
rwm = ALLOC(ruby_whisper_model);
return Data_Wrap_Struct(klass, rb_whisper_model_mark, RUBY_DEFAULT_FREE, rwm);
return TypedData_Make_Struct(klass, ruby_whisper_model, &rb_whisper_model_type, rwm);
}
VALUE rb_whisper_model_initialize(VALUE context) {
VALUE rb_whisper_model_s_new(VALUE context) {
ruby_whisper_model *rwm;
const VALUE model = ruby_whisper_model_allocate(cModel);
Data_Get_Struct(model, ruby_whisper_model, rwm);
TypedData_Get_Struct(model, ruby_whisper_model, &rb_whisper_model_type, rwm);
rwm->context = context;
return model;
};
@ -29,9 +51,9 @@ static VALUE
ruby_whisper_model_n_vocab(VALUE self)
{
ruby_whisper_model *rwm;
Data_Get_Struct(self, ruby_whisper_model, rwm);
TypedData_Get_Struct(self, ruby_whisper_model, &rb_whisper_model_type, rwm);
ruby_whisper *rw;
Data_Get_Struct(rwm->context, ruby_whisper, rw);
TypedData_Get_Struct(rwm->context, ruby_whisper, &ruby_whisper_type, rw);
return INT2NUM(whisper_model_n_vocab(rw->context));
}
@ -43,9 +65,9 @@ static VALUE
ruby_whisper_model_n_audio_ctx(VALUE self)
{
ruby_whisper_model *rwm;
Data_Get_Struct(self, ruby_whisper_model, rwm);
TypedData_Get_Struct(self, ruby_whisper_model, &rb_whisper_model_type, rwm);
ruby_whisper *rw;
Data_Get_Struct(rwm->context, ruby_whisper, rw);
TypedData_Get_Struct(rwm->context, ruby_whisper, &ruby_whisper_type, rw);
return INT2NUM(whisper_model_n_audio_ctx(rw->context));
}
@ -57,9 +79,9 @@ static VALUE
ruby_whisper_model_n_audio_state(VALUE self)
{
ruby_whisper_model *rwm;
Data_Get_Struct(self, ruby_whisper_model, rwm);
TypedData_Get_Struct(self, ruby_whisper_model, &rb_whisper_model_type, rwm);
ruby_whisper *rw;
Data_Get_Struct(rwm->context, ruby_whisper, rw);
TypedData_Get_Struct(rwm->context, ruby_whisper, &ruby_whisper_type, rw);
return INT2NUM(whisper_model_n_audio_state(rw->context));
}
@ -71,9 +93,9 @@ static VALUE
ruby_whisper_model_n_audio_head(VALUE self)
{
ruby_whisper_model *rwm;
Data_Get_Struct(self, ruby_whisper_model, rwm);
TypedData_Get_Struct(self, ruby_whisper_model, &rb_whisper_model_type, rwm);
ruby_whisper *rw;
Data_Get_Struct(rwm->context, ruby_whisper, rw);
TypedData_Get_Struct(rwm->context, ruby_whisper, &ruby_whisper_type, rw);
return INT2NUM(whisper_model_n_audio_head(rw->context));
}
@ -85,9 +107,9 @@ static VALUE
ruby_whisper_model_n_audio_layer(VALUE self)
{
ruby_whisper_model *rwm;
Data_Get_Struct(self, ruby_whisper_model, rwm);
TypedData_Get_Struct(self, ruby_whisper_model, &rb_whisper_model_type, rwm);
ruby_whisper *rw;
Data_Get_Struct(rwm->context, ruby_whisper, rw);
TypedData_Get_Struct(rwm->context, ruby_whisper, &ruby_whisper_type, rw);
return INT2NUM(whisper_model_n_audio_layer(rw->context));
}
@ -99,9 +121,9 @@ static VALUE
ruby_whisper_model_n_text_ctx(VALUE self)
{
ruby_whisper_model *rwm;
Data_Get_Struct(self, ruby_whisper_model, rwm);
TypedData_Get_Struct(self, ruby_whisper_model, &rb_whisper_model_type, rwm);
ruby_whisper *rw;
Data_Get_Struct(rwm->context, ruby_whisper, rw);
TypedData_Get_Struct(rwm->context, ruby_whisper, &ruby_whisper_type, rw);
return INT2NUM(whisper_model_n_text_ctx(rw->context));
}
@ -113,9 +135,9 @@ static VALUE
ruby_whisper_model_n_text_state(VALUE self)
{
ruby_whisper_model *rwm;
Data_Get_Struct(self, ruby_whisper_model, rwm);
TypedData_Get_Struct(self, ruby_whisper_model, &rb_whisper_model_type, rwm);
ruby_whisper *rw;
Data_Get_Struct(rwm->context, ruby_whisper, rw);
TypedData_Get_Struct(rwm->context, ruby_whisper, &ruby_whisper_type, rw);
return INT2NUM(whisper_model_n_text_state(rw->context));
}
@ -127,9 +149,9 @@ static VALUE
ruby_whisper_model_n_text_head(VALUE self)
{
ruby_whisper_model *rwm;
Data_Get_Struct(self, ruby_whisper_model, rwm);
TypedData_Get_Struct(self, ruby_whisper_model, &rb_whisper_model_type, rwm);
ruby_whisper *rw;
Data_Get_Struct(rwm->context, ruby_whisper, rw);
TypedData_Get_Struct(rwm->context, ruby_whisper, &ruby_whisper_type, rw);
return INT2NUM(whisper_model_n_text_head(rw->context));
}
@ -141,9 +163,9 @@ static VALUE
ruby_whisper_model_n_text_layer(VALUE self)
{
ruby_whisper_model *rwm;
Data_Get_Struct(self, ruby_whisper_model, rwm);
TypedData_Get_Struct(self, ruby_whisper_model, &rb_whisper_model_type, rwm);
ruby_whisper *rw;
Data_Get_Struct(rwm->context, ruby_whisper, rw);
TypedData_Get_Struct(rwm->context, ruby_whisper, &ruby_whisper_type, rw);
return INT2NUM(whisper_model_n_text_layer(rw->context));
}
@ -155,9 +177,9 @@ static VALUE
ruby_whisper_model_n_mels(VALUE self)
{
ruby_whisper_model *rwm;
Data_Get_Struct(self, ruby_whisper_model, rwm);
TypedData_Get_Struct(self, ruby_whisper_model, &rb_whisper_model_type, rwm);
ruby_whisper *rw;
Data_Get_Struct(rwm->context, ruby_whisper, rw);
TypedData_Get_Struct(rwm->context, ruby_whisper, &ruby_whisper_type, rw);
return INT2NUM(whisper_model_n_mels(rw->context));
}
@ -169,9 +191,9 @@ static VALUE
ruby_whisper_model_ftype(VALUE self)
{
ruby_whisper_model *rwm;
Data_Get_Struct(self, ruby_whisper_model, rwm);
TypedData_Get_Struct(self, ruby_whisper_model, &rb_whisper_model_type, rwm);
ruby_whisper *rw;
Data_Get_Struct(rwm->context, ruby_whisper, rw);
TypedData_Get_Struct(rwm->context, ruby_whisper, &ruby_whisper_type, rw);
return INT2NUM(whisper_model_ftype(rw->context));
}
@ -183,9 +205,9 @@ static VALUE
ruby_whisper_model_type(VALUE self)
{
ruby_whisper_model *rwm;
Data_Get_Struct(self, ruby_whisper_model, rwm);
TypedData_Get_Struct(self, ruby_whisper_model, &rb_whisper_model_type, rwm);
ruby_whisper *rw;
Data_Get_Struct(rwm->context, ruby_whisper, rw);
TypedData_Get_Struct(rwm->context, ruby_whisper, &ruby_whisper_type, rw);
return rb_str_new2(whisper_model_type_readable(rw->context));
}

View File

@ -3,7 +3,7 @@
#define BOOL_PARAMS_SETTER(self, prop, value) \
ruby_whisper_params *rwp; \
Data_Get_Struct(self, ruby_whisper_params, rwp); \
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp); \
if (value == Qfalse || value == Qnil) { \
rwp->params.prop = false; \
} else { \
@ -13,7 +13,7 @@
#define BOOL_PARAMS_GETTER(self, prop) \
ruby_whisper_params *rwp; \
Data_Get_Struct(self, ruby_whisper_params, rwp); \
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp); \
if (rwp->params.prop) { \
return Qtrue; \
} else { \
@ -26,13 +26,16 @@
rb_define_method(cParams, #param_name, ruby_whisper_params_get_ ## param_name, 0); \
rb_define_method(cParams, #param_name "=", ruby_whisper_params_set_ ## param_name, 1);
#define RUBY_WHISPER_PARAMS_PARAM_NAMES_COUNT 30
#define RUBY_WHISPER_PARAMS_PARAM_NAMES_COUNT 35
extern VALUE cParams;
extern VALUE cVADParams;
extern ID id_call;
extern VALUE rb_whisper_segment_initialize(VALUE context, int index);
extern VALUE ruby_whisper_normalize_model_path(VALUE model_path);
extern VALUE rb_whisper_segment_s_new(VALUE context, int index);
extern const rb_data_type_t ruby_whisper_vad_params_type;
static ID param_names[RUBY_WHISPER_PARAMS_PARAM_NAMES_COUNT];
static ID id_language;
@ -63,12 +66,19 @@ static ID id_new_segment_callback;
static ID id_new_segment_callback_user_data;
static ID id_progress_callback;
static ID id_progress_callback_user_data;
static ID id_encoder_begin_callback;
static ID id_encoder_begin_callback_user_data;
static ID id_abort_callback;
static ID id_abort_callback_user_data;
static ID id_vad;
static ID id_vad_model_path;
static ID id_vad_params;
static void
rb_whisper_callbcack_container_mark(ruby_whisper_callback_container *rwc)
{
if (rwc == NULL) return;
rb_gc_mark(rwc->user_data);
rb_gc_mark(rwc->callback);
rb_gc_mark(rwc->callbacks);
@ -100,7 +110,7 @@ static void new_segment_callback(struct whisper_context *ctx, struct whisper_sta
const int n_segments = whisper_full_n_segments_from_state(state);
for (int i = n_new; i > 0; i--) {
int i_segment = n_segments - i;
VALUE segment = rb_whisper_segment_initialize(*container->context, i_segment);
VALUE segment = rb_whisper_segment_s_new(*container->context, i_segment);
for (int j = 0; j < callbacks_len; j++) {
VALUE cb = rb_ary_entry(container->callbacks, j);
rb_funcall(cb, id_call, 1, segment);
@ -126,6 +136,33 @@ static void progress_callback(struct whisper_context *ctx, struct whisper_state
}
}
static bool encoder_begin_callback(struct whisper_context *ctx, struct whisper_state *state, void *user_data) {
const ruby_whisper_callback_container *container = (ruby_whisper_callback_container *)user_data;
bool is_aborted = false;
VALUE result;
// Currently, doesn't support state because
// those require to resolve GC-related problems.
if (!NIL_P(container->callback)) {
result = rb_funcall(container->callback, id_call, 3, *container->context, Qnil, container->user_data);
if (result == Qfalse) {
is_aborted = true;
}
}
const long callbacks_len = RARRAY_LEN(container->callbacks);
if (0 == callbacks_len) {
return !is_aborted;
}
for (int j = 0; j < callbacks_len; j++) {
VALUE cb = rb_ary_entry(container->callbacks, j);
result = rb_funcall(cb, id_call, 0);
if (result == Qfalse) {
is_aborted = true;
}
}
return !is_aborted;
}
static bool abort_callback(void * user_data) {
const ruby_whisper_callback_container *container = (ruby_whisper_callback_container *)user_data;
if (!NIL_P(container->callback)) {
@ -148,7 +185,7 @@ static bool abort_callback(void * user_data) {
return false;
}
void register_callbacks(ruby_whisper_params * rwp, VALUE * context) {
static void register_callbacks(ruby_whisper_params * rwp, VALUE * context) {
if (!NIL_P(rwp->new_segment_callback_container->callback) || 0 != RARRAY_LEN(rwp->new_segment_callback_container->callbacks)) {
rwp->new_segment_callback_container->context = context;
rwp->params.new_segment_callback = new_segment_callback;
@ -161,6 +198,12 @@ void register_callbacks(ruby_whisper_params * rwp, VALUE * context) {
rwp->params.progress_callback_user_data = rwp->progress_callback_container;
}
if (!NIL_P(rwp->encoder_begin_callback_container->callback) || 0 != RARRAY_LEN(rwp->encoder_begin_callback_container->callbacks)) {
rwp->encoder_begin_callback_container->context = context;
rwp->params.encoder_begin_callback = encoder_begin_callback;
rwp->params.encoder_begin_callback_user_data = rwp->encoder_begin_callback_container;
}
if (!NIL_P(rwp->abort_callback_container->callback) || 0 != RARRAY_LEN(rwp->abort_callback_container->callbacks)) {
rwp->abort_callback_container->context = context;
rwp->params.abort_callback = abort_callback;
@ -168,12 +211,29 @@ void register_callbacks(ruby_whisper_params * rwp, VALUE * context) {
}
}
void
rb_whisper_params_mark(ruby_whisper_params *rwp)
static void set_vad_params(ruby_whisper_params *rwp)
{
ruby_whisper_vad_params * rwvp;
TypedData_Get_Struct(rwp->vad_params, ruby_whisper_vad_params, &ruby_whisper_vad_params_type, rwvp);
rwp->params.vad_params = rwvp->params;
}
void
prepare_transcription(ruby_whisper_params *rwp, VALUE *context)
{
register_callbacks(rwp, context);
set_vad_params(rwp);
}
void
rb_whisper_params_mark(void *p)
{
ruby_whisper_params *rwp = (ruby_whisper_params *)p;
rb_whisper_callbcack_container_mark(rwp->new_segment_callback_container);
rb_whisper_callbcack_container_mark(rwp->progress_callback_container);
rb_whisper_callbcack_container_mark(rwp->encoder_begin_callback_container);
rb_whisper_callbcack_container_mark(rwp->abort_callback_container);
rb_gc_mark(rwp->vad_params);
}
void
@ -182,24 +242,46 @@ ruby_whisper_params_free(ruby_whisper_params *rwp)
}
void
rb_whisper_params_free(ruby_whisper_params *rwp)
rb_whisper_params_free(void *p)
{
ruby_whisper_params *rwp = (ruby_whisper_params *)p;
// How to free user_data and callback only when not referred to by others?
ruby_whisper_params_free(rwp);
free(rwp);
}
static size_t
ruby_whisper_params_memsize(const void *p)
{
const ruby_whisper_params *rwp = (const ruby_whisper_params *)p;
return sizeof(ruby_whisper_params) + sizeof(rwp->params) + sizeof(rwp->vad_params);
}
const rb_data_type_t ruby_whisper_params_type = {
"ruby_whisper_params",
{
rb_whisper_params_mark,
rb_whisper_params_free,
ruby_whisper_params_memsize,
},
0, 0,
0
};
static VALUE
ruby_whisper_params_allocate(VALUE klass)
{
ruby_whisper_params *rwp;
rwp = ALLOC(ruby_whisper_params);
VALUE obj = TypedData_Make_Struct(klass, ruby_whisper_params, &ruby_whisper_params_type, rwp);
rwp->params = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
rwp->diarize = false;
rwp->vad_params = TypedData_Wrap_Struct(cVADParams, &ruby_whisper_vad_params_type, (void *)&rwp->params.vad_params);
rwp->new_segment_callback_container = rb_whisper_callback_container_allocate();
rwp->progress_callback_container = rb_whisper_callback_container_allocate();
rwp->encoder_begin_callback_container = rb_whisper_callback_container_allocate();
rwp->abort_callback_container = rb_whisper_callback_container_allocate();
return Data_Wrap_Struct(klass, rb_whisper_params_mark, rb_whisper_params_free, rwp);
return obj;
}
/*
@ -212,7 +294,7 @@ static VALUE
ruby_whisper_params_set_language(VALUE self, VALUE value)
{
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
if (value == Qfalse || value == Qnil) {
rwp->params.language = "auto";
} else {
@ -228,7 +310,7 @@ static VALUE
ruby_whisper_params_get_language(VALUE self)
{
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
if (rwp->params.language) {
return rb_str_new2(rwp->params.language);
} else {
@ -465,7 +547,7 @@ static VALUE
ruby_whisper_params_get_initial_prompt(VALUE self)
{
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
return rwp->params.initial_prompt == NULL ? Qnil : rb_str_new2(rwp->params.initial_prompt);
}
/*
@ -476,7 +558,7 @@ static VALUE
ruby_whisper_params_set_initial_prompt(VALUE self, VALUE value)
{
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
rwp->params.initial_prompt = StringValueCStr(value);
return value;
}
@ -490,7 +572,7 @@ static VALUE
ruby_whisper_params_get_diarize(VALUE self)
{
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
if (rwp->diarize) {
return Qtrue;
} else {
@ -505,7 +587,7 @@ static VALUE
ruby_whisper_params_set_diarize(VALUE self, VALUE value)
{
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
if (value == Qfalse || value == Qnil) {
rwp->diarize = false;
} else {
@ -524,7 +606,7 @@ static VALUE
ruby_whisper_params_get_offset(VALUE self)
{
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
return INT2NUM(rwp->params.offset_ms);
}
/*
@ -535,7 +617,7 @@ static VALUE
ruby_whisper_params_set_offset(VALUE self, VALUE value)
{
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
rwp->params.offset_ms = NUM2INT(value);
return value;
}
@ -549,7 +631,7 @@ static VALUE
ruby_whisper_params_get_duration(VALUE self)
{
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
return INT2NUM(rwp->params.duration_ms);
}
/*
@ -560,7 +642,7 @@ static VALUE
ruby_whisper_params_set_duration(VALUE self, VALUE value)
{
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
rwp->params.duration_ms = NUM2INT(value);
return value;
}
@ -575,7 +657,7 @@ static VALUE
ruby_whisper_params_get_max_text_tokens(VALUE self)
{
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
return INT2NUM(rwp->params.n_max_text_ctx);
}
/*
@ -586,7 +668,7 @@ static VALUE
ruby_whisper_params_set_max_text_tokens(VALUE self, VALUE value)
{
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
rwp->params.n_max_text_ctx = NUM2INT(value);
return value;
}
@ -598,7 +680,7 @@ static VALUE
ruby_whisper_params_get_temperature(VALUE self)
{
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
return DBL2NUM(rwp->params.temperature);
}
/*
@ -609,7 +691,7 @@ static VALUE
ruby_whisper_params_set_temperature(VALUE self, VALUE value)
{
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
rwp->params.temperature = RFLOAT_VALUE(value);
return value;
}
@ -623,7 +705,7 @@ static VALUE
ruby_whisper_params_get_max_initial_ts(VALUE self)
{
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
return DBL2NUM(rwp->params.max_initial_ts);
}
/*
@ -634,7 +716,7 @@ static VALUE
ruby_whisper_params_set_max_initial_ts(VALUE self, VALUE value)
{
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
rwp->params.max_initial_ts = RFLOAT_VALUE(value);
return value;
}
@ -646,7 +728,7 @@ static VALUE
ruby_whisper_params_get_length_penalty(VALUE self)
{
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
return DBL2NUM(rwp->params.length_penalty);
}
/*
@ -657,7 +739,7 @@ static VALUE
ruby_whisper_params_set_length_penalty(VALUE self, VALUE value)
{
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
rwp->params.length_penalty = RFLOAT_VALUE(value);
return value;
}
@ -669,7 +751,7 @@ static VALUE
ruby_whisper_params_get_temperature_inc(VALUE self)
{
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
return DBL2NUM(rwp->params.temperature_inc);
}
/*
@ -680,7 +762,7 @@ static VALUE
ruby_whisper_params_set_temperature_inc(VALUE self, VALUE value)
{
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
rwp->params.temperature_inc = RFLOAT_VALUE(value);
return value;
}
@ -694,7 +776,7 @@ static VALUE
ruby_whisper_params_get_entropy_thold(VALUE self)
{
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
return DBL2NUM(rwp->params.entropy_thold);
}
/*
@ -705,7 +787,7 @@ static VALUE
ruby_whisper_params_set_entropy_thold(VALUE self, VALUE value)
{
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
rwp->params.entropy_thold = RFLOAT_VALUE(value);
return value;
}
@ -717,7 +799,7 @@ static VALUE
ruby_whisper_params_get_logprob_thold(VALUE self)
{
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
return DBL2NUM(rwp->params.logprob_thold);
}
/*
@ -728,7 +810,7 @@ static VALUE
ruby_whisper_params_set_logprob_thold(VALUE self, VALUE value)
{
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
rwp->params.logprob_thold = RFLOAT_VALUE(value);
return value;
}
@ -740,7 +822,7 @@ static VALUE
ruby_whisper_params_get_no_speech_thold(VALUE self)
{
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
return DBL2NUM(rwp->params.no_speech_thold);
}
/*
@ -751,7 +833,7 @@ static VALUE
ruby_whisper_params_set_no_speech_thold(VALUE self, VALUE value)
{
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
rwp->params.no_speech_thold = RFLOAT_VALUE(value);
return value;
}
@ -759,7 +841,7 @@ static VALUE
ruby_whisper_params_get_new_segment_callback(VALUE self)
{
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
return rwp->new_segment_callback_container->callback;
}
/*
@ -776,7 +858,7 @@ static VALUE
ruby_whisper_params_set_new_segment_callback(VALUE self, VALUE value)
{
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
rwp->new_segment_callback_container->callback = value;
return value;
}
@ -784,7 +866,7 @@ static VALUE
ruby_whisper_params_get_new_segment_callback_user_data(VALUE self)
{
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
return rwp->new_segment_callback_container->user_data;
}
/*
@ -797,7 +879,7 @@ static VALUE
ruby_whisper_params_set_new_segment_callback_user_data(VALUE self, VALUE value)
{
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
rwp->new_segment_callback_container->user_data = value;
return value;
}
@ -805,7 +887,7 @@ static VALUE
ruby_whisper_params_get_progress_callback(VALUE self)
{
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
return rwp->progress_callback_container->callback;
}
/*
@ -824,7 +906,7 @@ static VALUE
ruby_whisper_params_set_progress_callback(VALUE self, VALUE value)
{
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
rwp->progress_callback_container->callback = value;
return value;
}
@ -832,7 +914,7 @@ static VALUE
ruby_whisper_params_get_progress_callback_user_data(VALUE self)
{
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
return rwp->progress_callback_container->user_data;
}
/*
@ -845,15 +927,66 @@ static VALUE
ruby_whisper_params_set_progress_callback_user_data(VALUE self, VALUE value)
{
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
rwp->progress_callback_container->user_data = value;
return value;
}
static VALUE
ruby_whisper_params_get_encoder_begin_callback(VALUE self)
{
ruby_whisper_params *rwp;
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
return rwp->encoder_begin_callback_container->callback;
}
/*
* Sets encoder begin callback, called when the encoder starts.
*
* params.encoder_begin_callback = ->(context, _, user_data) {
* # ...
* }
*
* call-seq:
* encoder_begin_callback = callback -> callback
*/
static VALUE
ruby_whisper_params_set_encoder_begin_callback(VALUE self, VALUE value)
{
ruby_whisper_params *rwp;
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
rwp->encoder_begin_callback_container->callback = value;
return value;
}
static VALUE
ruby_whisper_params_get_encoder_begin_callback_user_data(VALUE self)
{
ruby_whisper_params *rwp;
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
return rwp->encoder_begin_callback_container->user_data;
}
/*
* Sets user data passed to the last argument of encoder begin callback.
*
* call-seq:
* encoder_begin_callback_user_data = user_data -> use_data
*/
static VALUE
ruby_whisper_params_set_encoder_begin_callback_user_data(VALUE self, VALUE value)
{
ruby_whisper_params *rwp;
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
rwp->encoder_begin_callback_container->user_data = value;
return value;
}
static VALUE
ruby_whisper_params_get_abort_callback(VALUE self)
{
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
return rwp->abort_callback_container->callback;
}
/*
@ -870,7 +1003,7 @@ static VALUE
ruby_whisper_params_set_abort_callback(VALUE self, VALUE value)
{
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
rwp->abort_callback_container->callback = value;
return value;
}
@ -878,7 +1011,7 @@ static VALUE
ruby_whisper_params_get_abort_callback_user_data(VALUE self)
{
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
return rwp->abort_callback_container->user_data;
}
/*
@ -891,11 +1024,74 @@ static VALUE
ruby_whisper_params_set_abort_callback_user_data(VALUE self, VALUE value)
{
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
rwp->abort_callback_container->user_data = value;
return value;
}
/*
* call-seq:
* vad = use_vad -> use_vad
*/
static VALUE
ruby_whisper_params_get_vad(VALUE self)
{
BOOL_PARAMS_GETTER(self, vad)
}
static VALUE
ruby_whisper_params_set_vad(VALUE self, VALUE value)
{
BOOL_PARAMS_SETTER(self, vad, value)
}
/*
* call-seq:
* vad_model_path = model_path -> model_path
*/
static VALUE
ruby_whisper_params_set_vad_model_path(VALUE self, VALUE value)
{
ruby_whisper_params *rwp;
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
if (NIL_P(value)) {
rwp->params.vad_model_path = NULL;
return value;
}
VALUE path = ruby_whisper_normalize_model_path(value);
rwp->params.vad_model_path = StringValueCStr(path);
return value;
}
static VALUE
ruby_whisper_params_get_vad_model_path(VALUE self)
{
ruby_whisper_params *rwp;
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
return rwp->params.vad_model_path == NULL ? Qnil : rb_str_new2(rwp->params.vad_model_path);
}
/*
* call-seq:
* vad_params = params -> params
*/
static VALUE
ruby_whisper_params_set_vad_params(VALUE self, VALUE value)
{
ruby_whisper_params *rwp;
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
rwp->vad_params = value;
return value;
}
static VALUE
ruby_whisper_params_get_vad_params(VALUE self)
{
ruby_whisper_params *rwp;
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
return rwp->vad_params;
}
#define SET_PARAM_IF_SAME(param_name) \
if (id == id_ ## param_name) { \
ruby_whisper_params_set_ ## param_name(self, value); \
@ -905,7 +1101,6 @@ ruby_whisper_params_set_abort_callback_user_data(VALUE self, VALUE value)
static VALUE
ruby_whisper_params_initialize(int argc, VALUE *argv, VALUE self)
{
VALUE kw_hash;
VALUE values[RUBY_WHISPER_PARAMS_PARAM_NAMES_COUNT] = {Qundef};
VALUE value;
@ -918,8 +1113,8 @@ ruby_whisper_params_initialize(int argc, VALUE *argv, VALUE self)
return self;
}
rb_get_kwargs(kw_hash, &param_names, 0, RUBY_WHISPER_PARAMS_PARAM_NAMES_COUNT, &values);
Data_Get_Struct(self, ruby_whisper_params, rwp);
rb_get_kwargs(kw_hash, param_names, 0, RUBY_WHISPER_PARAMS_PARAM_NAMES_COUNT, values);
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
for (i = 0; i < RUBY_WHISPER_PARAMS_PARAM_NAMES_COUNT; i++) {
id = param_names[i];
@ -958,8 +1153,13 @@ ruby_whisper_params_initialize(int argc, VALUE *argv, VALUE self)
SET_PARAM_IF_SAME(new_segment_callback_user_data)
SET_PARAM_IF_SAME(progress_callback)
SET_PARAM_IF_SAME(progress_callback_user_data)
SET_PARAM_IF_SAME(encoder_begin_callback)
SET_PARAM_IF_SAME(encoder_begin_callback_user_data)
SET_PARAM_IF_SAME(abort_callback)
SET_PARAM_IF_SAME(abort_callback_user_data)
SET_PARAM_IF_SAME(vad)
SET_PARAM_IF_SAME(vad_model_path)
SET_PARAM_IF_SAME(vad_params)
}
}
@ -981,10 +1181,10 @@ ruby_whisper_params_initialize(int argc, VALUE *argv, VALUE self)
static VALUE
ruby_whisper_params_on_new_segment(VALUE self)
{
ruby_whisper_params *rws;
Data_Get_Struct(self, ruby_whisper_params, rws);
ruby_whisper_params *rwp;
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
const VALUE blk = rb_block_proc();
rb_ary_push(rws->new_segment_callback_container->callbacks, blk);
rb_ary_push(rwp->new_segment_callback_container->callbacks, blk);
return Qnil;
}
@ -1001,10 +1201,30 @@ ruby_whisper_params_on_new_segment(VALUE self)
static VALUE
ruby_whisper_params_on_progress(VALUE self)
{
ruby_whisper_params *rws;
Data_Get_Struct(self, ruby_whisper_params, rws);
ruby_whisper_params *rwp;
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
const VALUE blk = rb_block_proc();
rb_ary_push(rws->progress_callback_container->callbacks, blk);
rb_ary_push(rwp->progress_callback_container->callbacks, blk);
return Qnil;
}
/*
* Hook called when the encoder starts.
*
* whisper.on_encoder_begin do
* # ...
* end
*
* call-seq:
* on_encoder_begin { ... }
*/
static VALUE
ruby_whisper_params_on_encoder_begin(VALUE self)
{
ruby_whisper_params *rwp;
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
const VALUE blk = rb_block_proc();
rb_ary_push(rwp->encoder_begin_callback_container->callbacks, blk);
return Qnil;
}
@ -1025,10 +1245,10 @@ ruby_whisper_params_on_progress(VALUE self)
static VALUE
ruby_whisper_params_abort_on(VALUE self)
{
ruby_whisper_params *rws;
Data_Get_Struct(self, ruby_whisper_params, rws);
ruby_whisper_params *rwp;
TypedData_Get_Struct(self, ruby_whisper_params, &ruby_whisper_params_type, rwp);
const VALUE blk = rb_block_proc();
rb_ary_push(rws->abort_callback_container->callbacks, blk);
rb_ary_push(rwp->abort_callback_container->callbacks, blk);
return Qnil;
}
@ -1068,10 +1288,16 @@ init_ruby_whisper_params(VALUE *mWhisper)
DEFINE_PARAM(new_segment_callback_user_data, 25)
DEFINE_PARAM(progress_callback, 26)
DEFINE_PARAM(progress_callback_user_data, 27)
DEFINE_PARAM(abort_callback, 28)
DEFINE_PARAM(abort_callback_user_data, 29)
DEFINE_PARAM(encoder_begin_callback, 28)
DEFINE_PARAM(encoder_begin_callback_user_data, 29)
DEFINE_PARAM(abort_callback, 30)
DEFINE_PARAM(abort_callback_user_data, 31)
DEFINE_PARAM(vad, 32)
DEFINE_PARAM(vad_model_path, 33)
DEFINE_PARAM(vad_params, 34)
rb_define_method(cParams, "on_new_segment", ruby_whisper_params_on_new_segment, 0);
rb_define_method(cParams, "on_progress", ruby_whisper_params_on_progress, 0);
rb_define_method(cParams, "on_encoder_begin", ruby_whisper_params_on_encoder_begin, 0);
rb_define_method(cParams, "abort_on", ruby_whisper_params_abort_on, 0);
}

View File

@ -1,28 +1,57 @@
#include <ruby.h>
#include "ruby_whisper.h"
#define N_KEY_NAMES 5
static VALUE sym_start_time;
static VALUE sym_end_time;
static VALUE sym_text;
static VALUE sym_no_speech_prob;
static VALUE sym_speaker_turn_next;
static VALUE key_names;
extern const rb_data_type_t ruby_whisper_type;
extern VALUE cSegment;
static void
rb_whisper_segment_mark(ruby_whisper_segment *rws)
rb_whisper_segment_mark(void *p)
{
ruby_whisper_segment *rws = (ruby_whisper_segment *)p;
rb_gc_mark(rws->context);
}
static size_t
ruby_whisper_segment_memsize(const void *p)
{
const ruby_whisper_segment *rws = (const ruby_whisper_segment *)p;
size_t size = sizeof(rws);
if (!rws) {
return 0;
}
return size;
}
static const rb_data_type_t ruby_whisper_segment_type = {
"ruby_whisper_segment",
{rb_whisper_segment_mark, RUBY_DEFAULT_FREE, ruby_whisper_segment_memsize,},
0, 0,
0
};
VALUE
ruby_whisper_segment_allocate(VALUE klass)
{
ruby_whisper_segment *rws;
rws = ALLOC(ruby_whisper_segment);
return Data_Wrap_Struct(klass, rb_whisper_segment_mark, RUBY_DEFAULT_FREE, rws);
return TypedData_Make_Struct(klass, ruby_whisper_segment, &ruby_whisper_segment_type, rws);
}
VALUE
rb_whisper_segment_initialize(VALUE context, int index)
rb_whisper_segment_s_new(VALUE context, int index)
{
ruby_whisper_segment *rws;
const VALUE segment = ruby_whisper_segment_allocate(cSegment);
Data_Get_Struct(segment, ruby_whisper_segment, rws);
TypedData_Get_Struct(segment, ruby_whisper_segment, &ruby_whisper_segment_type, rws);
rws->context = context;
rws->index = index;
return segment;
@ -38,12 +67,12 @@ static VALUE
ruby_whisper_segment_get_start_time(VALUE self)
{
ruby_whisper_segment *rws;
Data_Get_Struct(self, ruby_whisper_segment, rws);
TypedData_Get_Struct(self, ruby_whisper_segment, &ruby_whisper_segment_type, rws);
ruby_whisper *rw;
Data_Get_Struct(rws->context, ruby_whisper, rw);
TypedData_Get_Struct(rws->context, ruby_whisper, &ruby_whisper_type, rw);
const int64_t t0 = whisper_full_get_segment_t0(rw->context, rws->index);
// able to multiply 10 without overflow because to_timestamp() in whisper.cpp does it
return INT2NUM(t0 * 10);
return LONG2NUM(t0 * 10);
}
/*
@ -56,12 +85,12 @@ static VALUE
ruby_whisper_segment_get_end_time(VALUE self)
{
ruby_whisper_segment *rws;
Data_Get_Struct(self, ruby_whisper_segment, rws);
TypedData_Get_Struct(self, ruby_whisper_segment, &ruby_whisper_segment_type, rws);
ruby_whisper *rw;
Data_Get_Struct(rws->context, ruby_whisper, rw);
TypedData_Get_Struct(rws->context, ruby_whisper, &ruby_whisper_type, rw);
const int64_t t1 = whisper_full_get_segment_t1(rw->context, rws->index);
// able to multiply 10 without overflow because to_timestamp() in whisper.cpp does it
return INT2NUM(t1 * 10);
return LONG2NUM(t1 * 10);
}
/*
@ -74,9 +103,9 @@ static VALUE
ruby_whisper_segment_get_speaker_turn_next(VALUE self)
{
ruby_whisper_segment *rws;
Data_Get_Struct(self, ruby_whisper_segment, rws);
TypedData_Get_Struct(self, ruby_whisper_segment, &ruby_whisper_segment_type, rws);
ruby_whisper *rw;
Data_Get_Struct(rws->context, ruby_whisper, rw);
TypedData_Get_Struct(rws->context, ruby_whisper, &ruby_whisper_type, rw);
return whisper_full_get_segment_speaker_turn_next(rw->context, rws->index) ? Qtrue : Qfalse;
}
@ -88,9 +117,9 @@ static VALUE
ruby_whisper_segment_get_text(VALUE self)
{
ruby_whisper_segment *rws;
Data_Get_Struct(self, ruby_whisper_segment, rws);
TypedData_Get_Struct(self, ruby_whisper_segment, &ruby_whisper_segment_type, rws);
ruby_whisper *rw;
Data_Get_Struct(rws->context, ruby_whisper, rw);
TypedData_Get_Struct(rws->context, ruby_whisper, &ruby_whisper_type, rw);
const char * text = whisper_full_get_segment_text(rw->context, rws->index);
return rb_str_new2(text);
}
@ -103,21 +132,89 @@ static VALUE
ruby_whisper_segment_get_no_speech_prob(VALUE self)
{
ruby_whisper_segment *rws;
Data_Get_Struct(self, ruby_whisper_segment, rws);
TypedData_Get_Struct(self, ruby_whisper_segment, &ruby_whisper_segment_type, rws);
ruby_whisper *rw;
Data_Get_Struct(rws->context, ruby_whisper, rw);
TypedData_Get_Struct(rws->context, ruby_whisper, &ruby_whisper_type, rw);
return DBL2NUM(whisper_full_get_segment_no_speech_prob(rw->context, rws->index));
}
/*
* call-seq:
* deconstruct_keys(keys) -> hash
*
* Possible keys: :start_time, :end_time, :text, :no_speech_prob, :speaker_turn_next
*
* whisper.each_segment do |segment|
* segment => {start_time:, end_time:, text:, no_speech_prob:, speaker_turn_next:}
*
* puts "[#{start_time} --> #{end_time}] #{text} (no speech prob: #{no_speech_prob}#{speaker_turn_next ? ', speaker turns next' : ''})"
* end
*/
static VALUE
ruby_whisper_segment_deconstruct_keys(VALUE self, VALUE keys)
{
ruby_whisper_segment *rws;
TypedData_Get_Struct(self, ruby_whisper_segment, &ruby_whisper_segment_type, rws);
ruby_whisper *rw;
TypedData_Get_Struct(rws->context, ruby_whisper, &ruby_whisper_type, rw);
VALUE hash = rb_hash_new();
long n_keys;
if (NIL_P(keys)) {
keys = key_names;
n_keys = N_KEY_NAMES;
} else {
n_keys = RARRAY_LEN(keys);
if (n_keys > N_KEY_NAMES) {
return hash;
}
}
for (int i = 0; i < n_keys; i++) {
VALUE key = rb_ary_entry(keys, i);
if (key == sym_start_time) {
rb_hash_aset(hash, key, ruby_whisper_segment_get_start_time(self));
}
if (key == sym_end_time) {
rb_hash_aset(hash, key, ruby_whisper_segment_get_end_time(self));
}
if (key == sym_text) {
rb_hash_aset(hash, key, ruby_whisper_segment_get_text(self));
}
if (key == sym_no_speech_prob) {
rb_hash_aset(hash, key, ruby_whisper_segment_get_no_speech_prob(self));
}
if (key == sym_speaker_turn_next) {
rb_hash_aset(hash, key, ruby_whisper_segment_get_speaker_turn_next(self));
}
}
return hash;
}
void
init_ruby_whisper_segment(VALUE *mWhisper, VALUE *cContext)
{
cSegment = rb_define_class_under(*mWhisper, "Segment", rb_cObject);
sym_start_time = ID2SYM(rb_intern("start_time"));
sym_end_time = ID2SYM(rb_intern("end_time"));
sym_text = ID2SYM(rb_intern("text"));
sym_no_speech_prob = ID2SYM(rb_intern("no_speech_prob"));
sym_speaker_turn_next = ID2SYM(rb_intern("speaker_turn_next"));
key_names = rb_ary_new3(
N_KEY_NAMES,
sym_start_time,
sym_end_time,
sym_text,
sym_no_speech_prob,
sym_speaker_turn_next
);
rb_define_alloc_func(cSegment, ruby_whisper_segment_allocate);
rb_define_method(cSegment, "start_time", ruby_whisper_segment_get_start_time, 0);
rb_define_method(cSegment, "end_time", ruby_whisper_segment_get_end_time, 0);
rb_define_method(cSegment, "speaker_next_turn?", ruby_whisper_segment_get_speaker_turn_next, 0);
rb_define_method(cSegment, "speaker_turn_next?", ruby_whisper_segment_get_speaker_turn_next, 0);
rb_define_method(cSegment, "text", ruby_whisper_segment_get_text, 0);
rb_define_method(cSegment, "no_speech_prob", ruby_whisper_segment_get_no_speech_prob, 0);
rb_define_method(cSegment, "deconstruct_keys", ruby_whisper_segment_deconstruct_keys, 1);
}

View File

@ -8,11 +8,15 @@
extern "C" {
#endif
extern const rb_data_type_t ruby_whisper_type;
extern const rb_data_type_t ruby_whisper_params_type;
extern ID id_to_s;
extern ID id_call;
extern ID transcribe_option_names[1];
extern void
register_callbacks(ruby_whisper_params * rwp, VALUE * self);
prepare_transcription(ruby_whisper_params * rwp, VALUE * self);
/*
* transcribe a single file
@ -31,11 +35,16 @@ VALUE
ruby_whisper_transcribe(int argc, VALUE *argv, VALUE self) {
ruby_whisper *rw;
ruby_whisper_params *rwp;
VALUE wave_file_path, blk, params;
VALUE wave_file_path, blk, params, kws;
VALUE opts[1];
rb_scan_args(argc, argv, "02&", &wave_file_path, &params, &blk);
Data_Get_Struct(self, ruby_whisper, rw);
Data_Get_Struct(params, ruby_whisper_params, rwp);
rb_scan_args_kw(RB_SCAN_ARGS_LAST_HASH_KEYWORDS, argc, argv, "2:&", &wave_file_path, &params, &kws, &blk);
rb_get_kwargs(kws, transcribe_option_names, 0, 1, opts);
int n_processors = opts[0] == Qundef ? 1 : NUM2INT(opts[0]);
TypedData_Get_Struct(self, ruby_whisper, &ruby_whisper_type, rw);
TypedData_Get_Struct(params, ruby_whisper_params, &ruby_whisper_params_type, rwp);
if (!rb_respond_to(wave_file_path, id_to_s)) {
rb_raise(rb_eRuntimeError, "Expected file path to wave file");
@ -50,32 +59,33 @@ ruby_whisper_transcribe(int argc, VALUE *argv, VALUE self) {
fprintf(stderr, "error: failed to open '%s' as WAV file\n", fname_inp.c_str());
return self;
}
{
static bool is_aborted = false; // NOTE: this should be atomic to avoid data race
// Commented out because it is work in progress
// {
// static bool is_aborted = false; // NOTE: this should be atomic to avoid data race
rwp->params.encoder_begin_callback = [](struct whisper_context * /*ctx*/, struct whisper_state * /*state*/, void * user_data) {
bool is_aborted = *(bool*)user_data;
return !is_aborted;
};
rwp->params.encoder_begin_callback_user_data = &is_aborted;
}
// rwp->params.encoder_begin_callback = [](struct whisper_context * /*ctx*/, struct whisper_state * /*state*/, void * user_data) {
// bool is_aborted = *(bool*)user_data;
// return !is_aborted;
// };
// rwp->params.encoder_begin_callback_user_data = &is_aborted;
// }
register_callbacks(rwp, &self);
prepare_transcription(rwp, &self);
if (whisper_full_parallel(rw->context, rwp->params, pcmf32.data(), pcmf32.size(), 1) != 0) {
if (whisper_full_parallel(rw->context, rwp->params, pcmf32.data(), pcmf32.size(), n_processors) != 0) {
fprintf(stderr, "failed to process audio\n");
return self;
}
if (NIL_P(blk)) {
return self;
}
const int n_segments = whisper_full_n_segments(rw->context);
VALUE output = rb_str_new2("");
for (int i = 0; i < n_segments; ++i) {
const char * text = whisper_full_get_segment_text(rw->context, i);
output = rb_str_concat(output, rb_str_new2(text));
}
VALUE idCall = id_call;
if (blk != Qnil) {
rb_funcall(blk, idCall, 1, output);
}
rb_funcall(blk, id_call, 1, output);
return self;
}
#ifdef __cplusplus

View File

@ -0,0 +1,288 @@
#include <ruby.h>
#include "ruby_whisper.h"
#define DEFINE_PARAM(param_name, nth) \
id_ ## param_name = rb_intern(#param_name); \
param_names[nth] = id_ ## param_name; \
rb_define_method(cVADParams, #param_name, ruby_whisper_vad_params_get_ ## param_name, 0); \
rb_define_method(cVADParams, #param_name "=", ruby_whisper_vad_params_set_ ## param_name, 1);
#define NUM_PARAMS 6
extern VALUE cVADParams;
static size_t
ruby_whisper_vad_params_memsize(const void *p)
{
const struct ruby_whisper_vad_params *params = p;
size_t size = sizeof(params);
if (!params) {
return 0;
}
return size;
}
static ID param_names[NUM_PARAMS];
static ID id_threshold;
static ID id_min_speech_duration_ms;
static ID id_min_silence_duration_ms;
static ID id_max_speech_duration_s;
static ID id_speech_pad_ms;
static ID id_samples_overlap;
const rb_data_type_t ruby_whisper_vad_params_type = {
"ruby_whisper_vad_params",
{0, 0, ruby_whisper_vad_params_memsize,},
0, 0,
0
};
static VALUE
ruby_whisper_vad_params_s_allocate(VALUE klass)
{
ruby_whisper_vad_params *rwvp;
VALUE obj = TypedData_Make_Struct(klass, ruby_whisper_vad_params, &ruby_whisper_vad_params_type, rwvp);
rwvp->params = whisper_vad_default_params();
return obj;
}
/*
* Probability threshold to consider as speech.
*
* call-seq:
* threshold = th -> th
*/
static VALUE
ruby_whisper_vad_params_set_threshold(VALUE self, VALUE value)
{
ruby_whisper_vad_params *rwvp;
TypedData_Get_Struct(self, ruby_whisper_vad_params, &ruby_whisper_vad_params_type, rwvp);
rwvp->params.threshold = RFLOAT_VALUE(value);
return value;
}
static VALUE
ruby_whisper_vad_params_get_threshold(VALUE self)
{
ruby_whisper_vad_params *rwvp;
TypedData_Get_Struct(self, ruby_whisper_vad_params, &ruby_whisper_vad_params_type, rwvp);
return DBL2NUM(rwvp->params.threshold);
}
/*
* Min duration for a valid speech segment.
*
* call-seq:
* min_speech_duration_ms = duration_ms -> duration_ms
*/
static VALUE
ruby_whisper_vad_params_set_min_speech_duration_ms(VALUE self, VALUE value)
{
ruby_whisper_vad_params *rwvp;
TypedData_Get_Struct(self, ruby_whisper_vad_params, &ruby_whisper_vad_params_type, rwvp);
rwvp->params.min_speech_duration_ms = NUM2INT(value);
return value;
}
static VALUE
ruby_whisper_vad_params_get_min_speech_duration_ms(VALUE self)
{
ruby_whisper_vad_params *rwvp;
TypedData_Get_Struct(self, ruby_whisper_vad_params, &ruby_whisper_vad_params_type, rwvp);
return INT2NUM(rwvp->params.min_speech_duration_ms);
}
/*
* Min silence duration to consider speech as ended.
*
* call-seq:
* min_silence_duration_ms = duration_ms -> duration_ms
*/
static VALUE
ruby_whisper_vad_params_set_min_silence_duration_ms(VALUE self, VALUE value)
{
ruby_whisper_vad_params *rwvp;
TypedData_Get_Struct(self, ruby_whisper_vad_params, &ruby_whisper_vad_params_type, rwvp);
rwvp->params.min_silence_duration_ms = NUM2INT(value);
return value;
}
static VALUE
ruby_whisper_vad_params_get_min_silence_duration_ms(VALUE self)
{
ruby_whisper_vad_params *rwvp;
TypedData_Get_Struct(self, ruby_whisper_vad_params, &ruby_whisper_vad_params_type, rwvp);
return INT2NUM(rwvp->params.min_silence_duration_ms);
}
/*
* Max duration of a speech segment before forcing a new segment.
*
* call-seq:
* max_speech_duration_s = duration_s -> duration_s
*/
static VALUE
ruby_whisper_vad_params_set_max_speech_duration_s(VALUE self, VALUE value)
{
ruby_whisper_vad_params *rwvp;
TypedData_Get_Struct(self, ruby_whisper_vad_params, &ruby_whisper_vad_params_type, rwvp);
rwvp->params.max_speech_duration_s = RFLOAT_VALUE(value);
return value;
}
static VALUE
ruby_whisper_vad_params_get_max_speech_duration_s(VALUE self)
{
ruby_whisper_vad_params *rwvp;
TypedData_Get_Struct(self, ruby_whisper_vad_params, &ruby_whisper_vad_params_type, rwvp);
return DBL2NUM(rwvp->params.max_speech_duration_s);
}
/*
* Padding added before and after speech segments.
*
* call-seq:
* speech_pad_ms = pad_ms -> pad_ms
*/
static VALUE
ruby_whisper_vad_params_set_speech_pad_ms(VALUE self, VALUE value)
{
ruby_whisper_vad_params *rwvp;
TypedData_Get_Struct(self, ruby_whisper_vad_params, &ruby_whisper_vad_params_type, rwvp);
rwvp->params.speech_pad_ms = NUM2INT(value);
return value;
}
static VALUE
ruby_whisper_vad_params_get_speech_pad_ms(VALUE self)
{
ruby_whisper_vad_params *rwvp;
TypedData_Get_Struct(self, ruby_whisper_vad_params, &ruby_whisper_vad_params_type, rwvp);
return INT2NUM(rwvp->params.speech_pad_ms);
}
/*
* Overlap in seconds when copying audio samples from speech segment.
*
* call-seq:
* samples_overlap = overlap -> overlap
*/
static VALUE
ruby_whisper_vad_params_set_samples_overlap(VALUE self, VALUE value)
{
ruby_whisper_vad_params *rwvp;
TypedData_Get_Struct(self, ruby_whisper_vad_params, &ruby_whisper_vad_params_type, rwvp);
rwvp->params.samples_overlap = RFLOAT_VALUE(value);
return value;
}
static VALUE
ruby_whisper_vad_params_get_samples_overlap(VALUE self)
{
ruby_whisper_vad_params *rwvp;
TypedData_Get_Struct(self, ruby_whisper_vad_params, &ruby_whisper_vad_params_type, rwvp);
return DBL2NUM(rwvp->params.samples_overlap);
}
static VALUE
ruby_whisper_vad_params_equal(VALUE self, VALUE other)
{
ruby_whisper_vad_params *rwvp1;
ruby_whisper_vad_params *rwvp2;
if (self == other) {
return Qtrue;
}
if (!rb_obj_is_kind_of(other, cVADParams)) {
return Qfalse;
}
TypedData_Get_Struct(self, ruby_whisper_vad_params, &ruby_whisper_vad_params_type, rwvp1);
TypedData_Get_Struct(other, ruby_whisper_vad_params, &ruby_whisper_vad_params_type, rwvp2);
if (rwvp1->params.threshold != rwvp2->params.threshold) {
return Qfalse;
}
if (rwvp1->params.min_speech_duration_ms != rwvp2->params.min_speech_duration_ms) {
return Qfalse;
}
if (rwvp1->params.min_silence_duration_ms != rwvp2->params.min_silence_duration_ms) {
return Qfalse;
}
if (rwvp1->params.max_speech_duration_s != rwvp2->params.max_speech_duration_s) {
return Qfalse;
}
if (rwvp1->params.speech_pad_ms != rwvp2->params.speech_pad_ms) {
return Qfalse;
}
if (rwvp1->params.samples_overlap != rwvp2->params.samples_overlap) {
return Qfalse;
}
return Qtrue;
}
#define SET_PARAM_IF_SAME(param_name) \
if (id == id_ ## param_name) { \
ruby_whisper_vad_params_set_ ## param_name(self, value); \
continue; \
}
VALUE
ruby_whisper_vad_params_initialize(int argc, VALUE *argv, VALUE self)
{
VALUE kw_hash;
VALUE values[NUM_PARAMS] = {Qundef};
VALUE value;
ruby_whisper_vad_params *rwvp;
ID id;
int i;
TypedData_Get_Struct(self, ruby_whisper_vad_params, &ruby_whisper_vad_params_type, rwvp);
rb_scan_args_kw(RB_SCAN_ARGS_KEYWORDS, argc, argv, ":", &kw_hash);
if (NIL_P(kw_hash)) {
return self;
}
rb_get_kwargs(kw_hash, param_names, 0, NUM_PARAMS, values);
for (i = 0; i < NUM_PARAMS; i++) {
id = param_names[i];
value = values[i];
if (value == Qundef) {
continue;
}
SET_PARAM_IF_SAME(threshold)
SET_PARAM_IF_SAME(min_speech_duration_ms)
SET_PARAM_IF_SAME(min_silence_duration_ms)
SET_PARAM_IF_SAME(max_speech_duration_s)
SET_PARAM_IF_SAME(speech_pad_ms)
SET_PARAM_IF_SAME(samples_overlap)
}
return self;
}
#undef SET_PARAM_IF_SAME
void
init_ruby_whisper_vad_params(VALUE *mVAD)
{
cVADParams = rb_define_class_under(*mVAD, "Params", rb_cObject);
rb_define_alloc_func(cVADParams, ruby_whisper_vad_params_s_allocate);
rb_define_method(cVADParams, "initialize", ruby_whisper_vad_params_initialize, -1);
DEFINE_PARAM(threshold, 0)
DEFINE_PARAM(min_speech_duration_ms, 1)
DEFINE_PARAM(min_silence_duration_ms, 2)
DEFINE_PARAM(max_speech_duration_s, 3)
DEFINE_PARAM(speech_pad_ms, 4)
DEFINE_PARAM(samples_overlap, 5)
rb_define_method(cVADParams, "==", ruby_whisper_vad_params_equal, 1);
}
#undef DEFINE_PARAM
#undef NUM_PARAMS

View File

@ -0,0 +1,8 @@
set(GRAPHVIZ_EXECUTABLES FALSE)
set(GRAPHVIZ_STATIC_LIBS TRUE)
set(GRAPHVIZ_SHARED_LIBS FALSE)
set(GRAPHVIZ_MODULE_LIBS FALSE)
set(GRAPHVIZ_INTERFACE_LIBS FALSE)
set(GRAPHVIZ_OBJECT_LIBS FALSE)
set(GRAPHVIZ_UNKNOWN_LIBS FALSE)
set(GRAPHVIZ_GENERATE_DEPENDERS FALSE)

View File

@ -1,6 +1,40 @@
require "yaml"
require "pathname"
sources = `git ls-files -z ../..`.split("\x0")
paths = YAML.load_file("../../.github/workflows/bindings-ruby.yml")[true]["push"]["paths"]
paths.delete "bindings/ruby/**"
EXTSOURCES = (Dir.glob(paths, base: "../..").collect {|path| "../../#{path}"} << "../../LICENSE") & sources
root = Pathname("..")/".."
ignored_dirs = %w[
.devops
.github
ci
examples/wchess/wchess.wasm
examples/whisper.android
examples/whisper.android.java
examples/whisper.objc
examples/whisper.swiftui
grammars
models
samples
scripts
].collect {|dir| root/dir}
ignored_files = %w[
AUTHORS
Makefile
README.md
README_sycl.md
.gitignore
.gitmodules
.dockerignore
whisper.nvim
twitch.sh
yt-wsp.sh
close-issue.yml
]
EXTSOURCES =
`git ls-files -z #{root}`.split("\x0")
.collect {|file| Pathname(file)}
.reject {|file|
ignored_dirs.any? {|dir| file.descend.any? {|desc| desc == dir}} ||
ignored_files.include?(file.basename.to_path) ||
(file.descend.to_a[1] != root && file.descend.to_a[1] != Pathname("..")/"javascript")
}
.collect(&:to_path)

View File

@ -0,0 +1,15 @@
module Whisper
class Context
def to_srt
each_segment.with_index.reduce("") {|srt, (segment, index)|
srt << "#{index + 1}\n#{segment.to_srt_cue}\n"
}
end
def to_webvtt
each_segment.with_index.reduce("WEBVTT\n\n") {|webvtt, (segment, index)|
webvtt << "#{index + 1}\n#{segment.to_webvtt_cue}\n"
}
end
end
end

View File

@ -34,7 +34,7 @@ module Whisper
when /darwin/
Pathname(Dir.home)/"Library/Caches"
else
ENV.key?("XDG_CACHE_HOME") ? ENV["XDG_CACHE_HOME"] : Pathname(Dir.home)/".cache"
ENV.key?("XDG_CACHE_HOME") ? Pathname(ENV["XDG_CACHE_HOME"]) : Pathname(Dir.home)/".cache"
end
base/"whisper.cpp"
end
@ -53,8 +53,10 @@ module Whisper
http.request request do |response|
case response
when Net::HTTPNotModified
# noop
# noop
when Net::HTTPOK
return if !response.key?("last-modified") && cache_path.exist?
download response
when Net::HTTPRedirection
request URI(response["location"]), headers
@ -68,7 +70,7 @@ module Whisper
rescue => err
if cache_path.exist?
warn err
# Use cache file
# Use cache file
else
raise
end
@ -128,6 +130,44 @@ module Whisper
end
end
class ZipURI < URI
def cache
zip_path = super
dest = unzipped_path
return if dest.exist? && dest.mtime >= zip_path.mtime
escaping dest do
system "unzip", "-q", "-d", zip_path.dirname.to_path, zip_path.to_path, exception: true
end
zip_path
end
def clear_cache
super
unzipped_path.rmtree if unzipped_path.exist?
end
private
def unzipped_path
cache_path.sub_ext("")
end
def escaping(path)
escaped = Pathname("#{path}.removing")
if path.exist?
escaped.rmtree if escaped.exist?
path.rename escaped
end
yield
ensure
if path.exist?
escaped.rmtree if escaped.exist?
else
escaped.rename path if escaped.exist?
end
end
end
@pre_converted_models = %w[
tiny
tiny.en
@ -163,8 +203,31 @@ module Whisper
models[name] = URI.new("https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-#{name}.bin")
}
%w[
silero-v5.1.2
].each do |name|
@pre_converted_models[name] = URI.new("https://huggingface.co/ggml-org/whisper-vad/resolve/main/ggml-#{name}.bin")
end
@coreml_compiled_models = %w[
tiny
tiny.en
base
base.en
small
small.en
medium
medium.en
large-v1
large-v2
large-v3
large-v3-turbo
].each_with_object({}) do |name, models|
models[@pre_converted_models[name]] = ZipURI.new("https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-#{name}-encoder.mlmodelc.zip")
end
class << self
attr_reader :pre_converted_models
attr_reader :pre_converted_models, :coreml_compiled_models
end
end
end

View File

@ -0,0 +1,58 @@
module Whisper
class Segment
SRT_ESCAPES = {
"&" => "&amp;",
"<" => "&lt;",
">" => "&gt;",
}
SRT_ESCAPES_RE = Regexp.union(SRT_ESCAPES.keys)
private_constant :SRT_ESCAPES, :SRT_ESCAPES_RE
def to_srt_cue
"#{srt_start_time} --> #{srt_end_time}\n#{srt_text}\n"
end
def to_webvtt_cue
"#{webvtt_start_time} --> #{webvtt_end_time}\n#{webvtt_text}\n"
end
private
def time_to_a(time)
sec, decimal_part = time.divmod(1000)
min, sec = sec.divmod(60)
hour, min = min.divmod(60)
[hour, min, sec, decimal_part]
end
def srt_time(time)
"%02d:%02d:%02d,%03d" % time_to_a(time)
end
def srt_start_time
srt_time(start_time)
end
def srt_end_time
srt_time(end_time)
end
def srt_text
text.gsub(SRT_ESCAPES_RE, SRT_ESCAPES)
end
def webvtt_time(time)
"%02d:%02d:%02d.%03d" % time_to_a(time)
end
def webvtt_start_time
webvtt_time(start_time)
end
def webvtt_end_time
webvtt_time(end_time)
end
alias webvtt_text srt_text
end
end

View File

@ -7,8 +7,10 @@ module Whisper
type log_callback = ^(Integer level, String message, Object user_data) -> void
type new_segment_callback = ^(Whisper::Context, void, Integer n_new, Object user_data) -> void
type progress_callback = ^(Whisper::Context, void, Integer progress, Object user_data) -> void
type encoder_begin_callback = ^(Whisper::Context, void, Object user_data) -> void
type abort_callback = ^(Whisper::Context, void, Object user_data) -> boolish
VERSION: String
LOG_LEVEL_NONE: Integer
LOG_LEVEL_INFO: Integer
LOG_LEVEL_WARN: Integer
@ -21,11 +23,23 @@ module Whisper
def self.lang_str: (Integer id) -> String
def self.lang_str_full: (Integer id) -> String
def self.log_set: (log_callback, Object? user_data) -> log_callback
def self.system_info_str: () -> String
class Context
def self.new: (string | _ToPath | ::URI::HTTP) -> instance
def transcribe: (string, Params) -> self
| (string, Params) { (String) -> void } -> self
def self.new: (String | path | ::URI::HTTP) -> instance
# transcribe a single file
# can emit to a block results
#
# params = Whisper::Params.new
# params.duration = 60_000
# whisper.transcribe "path/to/audio.wav", params do |text|
# puts text
# end
#
def transcribe: (string, Params, ?n_processors: Integer) -> self
| (string, Params, ?n_processors: Integer) { (String) -> void } -> self
def model_n_vocab: () -> Integer
def model_n_audio_ctx: () -> Integer
def model_n_audio_state: () -> Integer
@ -34,22 +48,78 @@ module Whisper
def model_n_mels: () -> Integer
def model_ftype: () -> Integer
def model_type: () -> String
# Yields each Whisper::Segment:
#
# whisper.transcribe("path/to/audio.wav", params)
# whisper.each_segment do |segment|
# puts segment.text
# end
#
# Returns an Enumerator if no block given:
#
# whisper.transcribe("path/to/audio.wav", params)
# enum = whisper.each_segment
# enum.to_a # => [#<Whisper::Segment>, ...]
#
def each_segment: { (Segment) -> void } -> void
| () -> Enumerator[Segment]
def model: () -> Model
def full_get_segment: (Integer nth) -> Segment
def full_n_segments: () -> Integer
# Language ID, which can be converted to string by Whisper.lang_str and Whisper.lang_str_full.
#
def full_lang_id: () -> Integer
# Start time of a segment indexed by +segment_index+ in centiseconds (10 times milliseconds).
#
# full_get_segment_t0(3) # => 1668 (16680 ms)
#
def full_get_segment_t0: (Integer) -> Integer
# End time of a segment indexed by +segment_index+ in centiseconds (10 times milliseconds).
#
# full_get_segment_t1(3) # => 1668 (16680 ms)
#
def full_get_segment_t1: (Integer) -> Integer
# Whether the next segment indexed by +segment_index+ is predicated as a speaker turn.
#
# full_get_segment_speacker_turn_next(3) # => true
#
def full_get_segment_speaker_turn_next: (Integer) -> (true | false)
# Text of a segment indexed by +segment_index+.
#
# full_get_segment_text(3) # => "ask not what your country can do for you, ..."
#
def full_get_segment_text: (Integer) -> String
def full_get_segment_no_speech_prob: (Integer) -> Float
# Run the entire model: PCM -> log mel spectrogram -> encoder -> decoder -> text
# Not thread safe for same context
# Uses the specified decoding strategy to obtain the text.
#
# The second argument +samples+ must be an array of samples, respond to :length, or be a MemoryView of an array of float. It must be 32 bit float PCM audio data.
#
def full: (Params, Array[Float] samples, ?Integer n_samples) -> self
| (Params, _Samples, ?Integer n_samples) -> self
# Split the input audio in chunks and process each chunk separately using whisper_full_with_state()
# Result is stored in the default state of the context
# Not thread safe if executed in parallel on the same context.
# It seems this approach can offer some speedup in some cases.
# However, the transcription accuracy can be worse at the beginning and end of each chunk.
#
def full_parallel: (Params, Array[Float], ?Integer n_samples) -> self
| (Params, _Samples, ?Integer n_samples) -> self
| (Params, _Samples, ?Integer? n_samples, Integer n_processors) -> self
def to_srt: () -> String
def to_webvtt: () -> String
end
class Params
@ -82,76 +152,246 @@ module Whisper
?new_segment_callback_user_data: Object,
?progress_callback: progress_callback,
?progress_callback_user_data: Object,
?encoder_begin_callback: encoder_begin_callback,
?encoder_begin_callback_user_data: Object,
?abort_callback: abort_callback,
?abort_callback_user_data: Object
?abort_callback_user_data: Object,
?vad: boolish,
?vad_model_path: path | URI,
?vad_params: Whisper::VAD::Params
) -> instance
# params.language = "auto" | "en", etc...
#
def language=: (String) -> String # TODO: Enumerate lang names
def language: () -> String
def translate=: (boolish) -> boolish
def translate: () -> (true | false)
def no_context=: (boolish) -> boolish
# If true, does not use past transcription (if any) as initial prompt for the decoder.
#
def no_context: () -> (true | false)
def single_segment=: (boolish) -> boolish
# If true, forces single segment output (useful for streaming).
#
def single_segment: () -> (true | false)
def print_special=: (boolish) -> boolish
# If true, prints special tokens (e.g. <SOT>, <EOT>, <BEG>, etc.).
#
def print_special: () -> (true | false)
def print_progress=: (boolish) -> boolish
# If true, prints progress information.
#
def print_progress: () -> (true | false)
def print_realtime=: (boolish) -> boolish
# If true, prints results from within whisper.cpp. (avoid it, use callback instead)
#
def print_realtime: () -> (true | false)
# If true, prints timestamps for each text segment when printing realtime.
#
def print_timestamps=: (boolish) -> boolish
def print_timestamps: () -> (true | false)
def suppress_blank=: (boolish) -> boolish
# If true, suppresses blank outputs.
#
def suppress_blank: () -> (true | false)
def suppress_nst=: (boolish) -> boolish
# If true, suppresses non-speech-tokens.
#
def suppress_nst: () -> (true | false)
def token_timestamps=: (boolish) -> boolish
# If true, enables token-level timestamps.
#
def token_timestamps: () -> (true | false)
def split_on_word=: (boolish) -> boolish
# If true, split on word rather than on token (when used with max_len).
#
def split_on_word: () -> (true | false)
def initial_prompt=: (_ToS) -> _ToS
# Tokens to provide to the whisper decoder as initial prompt
# these are prepended to any existing text context from a previous call
# use whisper_tokenize() to convert text to tokens.
# Maximum of whisper_n_text_ctx()/2 tokens are used (typically 224).
#
def initial_prompt: () -> (String | nil)
def diarize=: (boolish) -> boolish
# If true, enables diarization.
#
def diarize: () -> (true | false)
def offset=: (Integer) -> Integer
# Start offset in ms.
#
def offset: () -> Integer
def duration=: (Integer) -> Integer
# Audio duration to process in ms.
#
def duration: () -> Integer
def max_text_tokens=: (Integer) -> Integer
# Max tokens to use from past text as prompt for the decoder.
#
def max_text_tokens: () -> Integer
def temperature=: (Float) -> Float
def temperature: () -> Float
def max_initial_ts=: (Float) -> Float
# See https://github.com/openai/whisper/blob/f82bc59f5ea234d4b97fb2860842ed38519f7e65/whisper/decoding.py#L97
#
def max_initial_ts: () -> Float
def length_penalty=: (Float) -> Float
def length_penalty: () -> Float
def temperature_inc=: (Float) -> Float
def temperature_inc: () -> Float
def entropy_thold=: (Float) -> Float
# Similar to OpenAI's "compression_ratio_threshold"
#
def entropy_thold: () -> Float
def logprob_thold=: (Float) -> Float
def logprob_thold: () -> Float
def no_speech_thold=: (Float) -> Float
def no_speech_thold: () -> Float
# Sets new segment callback, called for every newly generated text segment.
#
# params.new_segment_callback = ->(context, _, n_new, user_data) {
# # ...
# }
#
def new_segment_callback=: (new_segment_callback) -> new_segment_callback
def new_segment_callback: () -> (new_segment_callback | nil)
# Sets user data passed to the last argument of new segment callback.
#
def new_segment_callback_user_data=: (Object) -> Object
def new_segment_callback_user_data: () -> Object
# Sets progress callback, called on each progress update.
#
# params.new_segment_callback = ->(context, _, progress, user_data) {
# # ...
# }
#
# +progress+ is an Integer between 0 and 100.
#
def progress_callback=: (progress_callback) -> progress_callback
def progress_callback: () -> (progress_callback | nil)
# Sets user data passed to the last argument of progress callback.
#
def progress_callback_user_data=: (Object) -> Object
def progress_callback_user_data: () -> Object
# Sets encoder begin callback, called when the encoder starts.
#
def encoder_begin_callback=: (encoder_begin_callback) -> encoder_begin_callback
def encoder_begin_callback: () -> (encoder_begin_callback | nil)
# Sets user data passed to the last argument of encoder begin callback.
#
def encoder_begin_callback_user_data=: (Object) -> Object
def encoder_begin_callback_user_data: () -> Object
# Sets abort callback, called to check if the process should be aborted.
#
# params.abort_callback = ->(user_data) {
# # ...
# }
#
#
def abort_callback=: (abort_callback) -> abort_callback
def abort_callback: () -> (abort_callback | nil)
# Sets user data passed to the last argument of abort callback.
#
def abort_callback_user_data=: (Object) -> Object
def abort_callback_user_data: () -> Object
# Enable VAD
#
def vad=: (boolish) -> boolish
def vad: () -> (true | false)
# Path to the VAD model
def vad_model_path=: (path | URI | nil) -> (path | URI | nil)
def vad_model_path: () -> (String | nil)
def vad_params=: (Whisper::VAD::Params) -> Whisper::VAD::Params
def vad_params: () -> (Whisper::VAD::Params)
# Hook called on new segment. Yields each Whisper::Segment.
#
# whisper.on_new_segment do |segment|
# # ...
# end
#
def on_new_segment: { (Segment) -> void } -> void
# Hook called on progress update. Yields each progress Integer between 0 and 100.
#
def on_progress: { (Integer progress) -> void } -> void
# Hook called on encoder starts.
#
def on_encoder_begin: { () -> void } -> void
# Call block to determine whether abort or not. Return +true+ when you want to abort.
#
# params.abort_on do
# if some_condition
# true # abort
# else
# false # continue
# end
# end
#
def abort_on: { (Object user_data) -> boolish } -> void
end
class Model
def self.pre_converted_models: () -> Hash[String, Model::URI]
def self.coreml_compiled_models: () -> Hash[Model::URI, Model::ZipURI]
def self.new: () -> instance
def n_vocab: () -> Integer
def n_audio_ctx: () -> Integer
@ -167,18 +407,99 @@ module Whisper
def type: () -> String
class URI
def self.new: (string | ::URI::HTTP) -> self
def self.new: (string | ::URI::HTTP) -> instance
def to_path: -> String
def clear_cache: -> void
end
class ZipURI < URI
def cache: () -> Pathname
def clear_cache: () -> void
end
end
class Segment
type deconstructed_keys = {
start_time: (Integer | nil),
end_time: (Integer | nil),
text: (String | nil),
no_speech_prob: (Float | nil),
speaker_turn_next: (true | false | nil)
}
# Start time in milliseconds.
#
def start_time: () -> Integer
# End time in milliseconds.
#
def end_time: () -> Integer
def speaker_next_turn?: () -> (true | false)
# Whether the next segment is predicted as a speaker turn.
def speaker_turn_next?: () -> (true | false)
def text: () -> String
def no_speech_prob: () -> Float
def to_srt_cue: () -> String
def to_webvtt_cue: () -> String
# Possible keys: :start_time, :end_time, :text, :no_speech_prob, :speaker_turn_next
#
# whisper.each_segment do |segment|
# segment => {start_time:, end_time:, text:, no_speech_prob:, speaker_turn_next:}
#
# puts "[#{start_time} --> #{end_time}] #{text} (no speech prob: #{no_speech_prob}#{speaker_turn_next ? ', speaker turns next' : ''})"
# end
def deconstruct_keys: (Array[:start_time | :end_time | :text | :no_speech_prob | :speaker_turn_next] | nil) -> deconstructed_keys
end
module VAD
class Params
def self.new: (
?threshold: Float,
?min_speech_duration_ms: Integer,
?min_silence_duration_ms: Integer,
?max_speech_duration_s: Float,
?speech_pad_ms: Integer,
?samples_overlap: Float
) -> instance
# Probability threshold to consider as speech.
#
def threshold=: (Float) -> Float
def threshold: () -> Float
# Min duration for a valid speech segment.
#
def min_speech_duration_ms=: (Integer) -> Integer
def min_speech_duration_ms: () -> Integer
# Min silence duration to consider speech as ended.
#
def min_silence_duration_ms=: (Integer) -> Integer
def min_silence_duration_ms: () -> Integer
# Max duration of a speech segment before forcing a new segment.
def max_speech_duration_s=: (Float) -> Float
def max_speech_duration_s: () -> Float
# Padding added before and after speech segments.
#
def speech_pad_ms=: (Integer) -> Integer
def speech_pad_ms: () -> Integer
# Overlap in seconds when copying audio samples from speech segment.
#
def samples_overlap=: (Float) -> Float
def samples_overlap: () -> Float
def ==: (Params) -> (true | false)
end
end
class Error < StandardError

View File

@ -3,12 +3,12 @@ require "whisper"
require_relative "jfk_reader/jfk_reader"
class TestBase < Test::Unit::TestCase
AUDIO = File.join(__dir__, "..", "..", "..", "samples", "jfk.wav")
AUDIO = File.join(__dir__, "fixtures", "jfk.wav")
class << self
attr_reader :whisper
def whisper
return @whisper if @whisper
def startup
@whisper = Whisper::Context.new("base.en")
params = Whisper::Params.new
params.print_timestamps = false

View File

@ -25,7 +25,7 @@ class TestCallback < TestBase
assert start_time >= 0
assert_kind_of Integer, end_time
assert end_time > 0
assert_match /ask not what your country can do for you, ask what you can do for your country/, text if i_segment == 0
assert_match(/ask not what your country can do for you, ask what you can do for your country/, text) if i_segment == 0
end
}
@ -111,6 +111,48 @@ class TestCallback < TestBase
assert_equal 100, last
end
def test_encoder_begin_callback
i = 0
@params.encoder_begin_callback = ->(context, state, user_data) {
i += 1
}
@whisper.transcribe(@audio, @params)
assert i > 0
end
def test_encoder_begin_callback_abort
logs = []
Whisper.log_set -> (level, buffer, user_data) {
logs << buffer if level == Whisper::LOG_LEVEL_ERROR
}, logs
@params.encoder_begin_callback = ->(context, state, user_data) {
return false
}
@whisper.transcribe(@audio, @params)
assert_match(/encoder_begin_callback returned false - aborting/, logs.join)
Whisper.log_set ->(level, buffer, user_data) {}, nil
end
def test_encoder_begin_callback_user_data
udata = Object.new
@params.encoder_begin_callback_user_data = udata
yielded = nil
@params.encoder_begin_callback = ->(context, state, user_data) {
yielded = user_data
}
@whisper.transcribe(@audio, @params)
assert_same udata, yielded
end
def test_on_encoder_begin
i = 0
@params.on_encoder_begin do
i += 1
end
@whisper.transcribe(@audio, @params)
assert i > 0
end
def test_abort_callback
i = 0
@params.abort_callback = ->(user_data) {
@ -145,9 +187,9 @@ class TestCallback < TestBase
def test_abort_on
do_abort = false
aborted_from_callback = false
_aborted_from_callback = false
@params.on_new_segment do |segment|
do_abort = true if segment.text.match? /ask/
do_abort = true if segment.text.match?(/ask/)
end
i = 0
@params.abort_on do

View File

@ -4,7 +4,7 @@ class TestError < TestBase
def test_error
error = Whisper::Error.new(-2)
assert_equal "failed to compute log mel spectrogram", error.message
assert_equal -2, error.code
assert_equal(-2, error.code)
end
def test_unknown_error
@ -14,7 +14,7 @@ class TestError < TestBase
def test_non_int_code
assert_raise TypeError do
error = Whisper::Error.new("non int")
_error = Whisper::Error.new("non int")
end
end
end

View File

@ -106,4 +106,13 @@ class TestModel < TestBase
assert_equal 1, model.ftype
assert_equal "base", model.type
end
def test_coreml_model_auto_download
uri = Whisper::Model.coreml_compiled_models[Whisper::Model.pre_converted_models["tiny"]]
model_path = Pathname(uri.to_path).sub_ext("")
model_path.rmtree if model_path.exist?
uri.cache
assert_path_exist model_path
end
end

View File

@ -0,0 +1,51 @@
require_relative "helper"
require 'tempfile'
require 'tmpdir'
require 'shellwords'
class TestPackage < TestBase
def test_build
Tempfile.create do |file|
assert system("gem", "build", "whispercpp.gemspec", "--output", file.to_path.shellescape, exception: true)
assert file.size > 0
assert_path_exist file.to_path
end
end
sub_test_case "Building binary on installation" do
def setup
system "rake", "build", exception: true
end
def test_install
gemspec = Gem::Specification.load("whispercpp.gemspec")
Dir.mktmpdir do |dir|
system "gem", "install", "--install-dir", dir.shellescape, "--no-document", "pkg/#{gemspec.file_name.shellescape}", exception: true
assert_installed dir, gemspec.version
end
end
def test_install_with_coreml
omit_unless RUBY_PLATFORM.match?(/darwin/) do
gemspec = Gem::Specification.load("whispercpp.gemspec")
Dir.mktmpdir do |dir|
system "gem", "install", "--install-dir", dir.shellescape, "--no-document", "pkg/#{gemspec.file_name.shellescape}", "--", "--enable-whisper-coreml", exception: true
assert_installed dir, gemspec.version
libdir = File.join(dir, "gems", "#{gemspec.name}-#{gemspec.version}", "lib")
assert_nothing_raised do
system "ruby", "-I", libdir, "-r", "whisper", "-e", "Whisper::Context.new('tiny')", exception: true
end
assert_match(/COREML = 1/, `ruby -I #{libdir.shellescape} -r whisper -e 'puts Whisper.system_info_str'`)
end
end
end
private
def assert_installed(dir, version)
assert_path_exist File.join(dir, "gems/whispercpp-#{version}/lib", "whisper.#{RbConfig::CONFIG["DLEXT"]}")
assert_path_exist File.join(dir, "gems/whispercpp-#{version}/LICENSE")
assert_path_not_exist File.join(dir, "gems/whispercpp-#{version}/ext/build")
end
end
end

View File

@ -32,6 +32,9 @@ class TestParams < TestBase
:progress_callback_user_data,
:abort_callback,
:abort_callback_user_data,
:vad,
:vad_model_path,
:vad_params,
]
def setup
@ -162,7 +165,7 @@ class TestParams < TestBase
end
def test_length_penalty
assert_equal -1.0, @params.length_penalty
assert_equal(-1.0, @params.length_penalty)
@params.length_penalty = 0.5
assert_equal 0.5, @params.length_penalty
end
@ -180,9 +183,9 @@ class TestParams < TestBase
end
def test_logprob_thold
assert_in_delta -1.0, @params.logprob_thold
assert_in_delta(-1.0, @params.logprob_thold)
@params.logprob_thold = -0.5
assert_in_delta -0.5, @params.logprob_thold
assert_in_delta(-0.5, @params.logprob_thold)
end
def test_no_speech_thold
@ -191,6 +194,50 @@ class TestParams < TestBase
assert_in_delta 0.2, @params.no_speech_thold
end
def test_vad
assert_false @params.vad
@params.vad = true
assert_true @params.vad
end
def test_vad_model_path
assert_nil @params.vad_model_path
@params.vad_model_path = "silero-v5.1.2"
assert_equal Whisper::Model.pre_converted_models["silero-v5.1.2"].to_path, @params.vad_model_path
end
def test_vad_model_path_with_nil
@params.vad_model_path = "silero-v5.1.2"
@params.vad_model_path = nil
assert_nil @params.vad_model_path
end
def test_vad_model_path_with_invalid
assert_raise TypeError do
@params.vad_model_path = Object.new
end
end
def test_vad_model_path_with_URI_string
@params.vad_model_path = "https://huggingface.co/ggml-org/whisper-vad/resolve/main/ggml-silero-v5.1.2.bin"
assert_equal @params.vad_model_path, Whisper::Model.pre_converted_models["silero-v5.1.2"].to_path
end
def test_vad_model_path_with_URI
@params.vad_model_path = URI("https://huggingface.co/ggml-org/whisper-vad/resolve/main/ggml-silero-v5.1.2.bin")
assert_equal @params.vad_model_path, Whisper::Model.pre_converted_models["silero-v5.1.2"].to_path
end
def test_vad_params
assert_kind_of Whisper::VAD::Params, @params.vad_params
default_params = @params.vad_params
assert_same default_params, @params.vad_params
assert_equal 0.5, default_params.threshold
new_params = Whisper::VAD::Params.new
@params.vad_params = new_params
assert_same new_params, @params.vad_params
end
def test_new_with_kw_args
params = Whisper::Params.new(language: "es")
assert_equal "es", params.language
@ -225,6 +272,10 @@ class TestParams < TestBase
proc {}
in [/_user_data\Z/, *]
Object.new
in [:vad_model_path, *]
Whisper::Model.pre_converted_models["silero-v5.1.2"].to_path
in [:vad_params, *]
Whisper::VAD::Params.new
end
params = Whisper::Params.new(param => value)
if Float === value

View File

@ -0,0 +1,146 @@
require_relative "helper"
class TestSegment < TestBase
def test_iteration
whisper.each_segment do |segment|
assert_instance_of Whisper::Segment, segment
end
end
def test_enumerator
enum = whisper.each_segment
assert_instance_of Enumerator, enum
enum.to_a.each_with_index do |segment, index|
assert_instance_of Whisper::Segment, segment
assert_kind_of Integer, index
end
end
def test_start_time
i = 0
whisper.each_segment do |segment|
assert_equal 0, segment.start_time if i == 0
i += 1
end
end
def test_end_time
i = 0
whisper.each_segment do |segment|
assert_equal whisper.full_get_segment_t1(i) * 10, segment.end_time
i += 1
end
end
def test_no_speech_prob
no_speech_prob = nil
whisper.each_segment do |segment|
no_speech_prob = segment.no_speech_prob
end
assert no_speech_prob > 0.0
end
def test_on_new_segment
params = Whisper::Params.new
seg = nil
index = 0
params.on_new_segment do |segment|
assert_instance_of Whisper::Segment, segment
if index == 0
seg = segment
assert_equal 0, segment.start_time
assert_match(/ask not what your country can do for you, ask what you can do for your country/, segment.text)
end
index += 1
end
whisper.transcribe(AUDIO, params)
assert_equal 0, seg.start_time
assert_match(/ask not what your country can do for you, ask what you can do for your country/, seg.text)
end
def test_on_new_segment_twice
params = Whisper::Params.new
seg = nil
params.on_new_segment do |segment|
seg = segment
return
end
params.on_new_segment do |segment|
assert_same seg, segment
return
end
whisper.transcribe(AUDIO, params)
end
def test_transcription_after_segment_retrieved
params = Whisper::Params.new
segment = whisper.each_segment.first
assert_match(/ask not what your country can do for you, ask what you can do for your country/, segment.text)
whisper.transcribe(AUDIO, Whisper::Params.new(offset: 5000))
assert_not_match(/ask not what your country can do for you, ask what you can do for your country/, segment.text)
assert_match(/what you can do for your country/i, segment.text)
end
def test_pattern_matching
segment = whisper.each_segment.first
segment => {start_time:, end_time:, text:, no_speech_prob:, speaker_turn_next:}
assert_equal segment.start_time, start_time
assert_equal segment.end_time, end_time
assert_equal segment.text, text
assert_equal segment.no_speech_prob, no_speech_prob
assert_equal segment.speaker_turn_next?, speaker_turn_next
end
def test_pattern_matching_partial
segment = whisper.each_segment.first
segment => {start_time:, end_time:, text:}
assert_equal segment.start_time, start_time
assert_equal segment.end_time, end_time
assert_equal segment.text, text
end
def test_deconstruct_keys
segment = whisper.each_segment.first
expected = {
start_time: segment.start_time,
end_time: segment.end_time,
text: segment.text,
no_speech_prob: segment.no_speech_prob,
speaker_turn_next: segment.speaker_turn_next?
}
assert_equal expected, segment.deconstruct_keys([:start_time, :end_time, :text, :no_speech_prob, :speaker_turn_next])
end
def test_deconstruct_keys_non_existent
omit "Undefined behavior"
segment = whisper.each_segment.first
assert_equal({}, segment.deconstruct_keys([:non_existent]))
end
def test_deconstruct_keys_too_many_keys
omit "Undefined behavior"
segment = whisper.each_segment.first
assert_equal({}, segment.deconstruct_keys([:start_time, :end_time, :text, :no_speech_prob, :speaker_turn_next, :extra_key]))
end
def test_deconstruct_keys_includes_non_existent_keys_not_too_many
omit "Undefined behavior"
segment = whisper.each_segment.first
expected = {
start_time: segment.start_time,
end_time: segment.end_time,
text: segment.text,
no_speech_prob: segment.no_speech_prob
}
assert_equal(expected, segment.deconstruct_keys([:start_time, :end_time, :text, :no_speech_prob, :non_existent]))
end
end

View File

@ -0,0 +1,19 @@
require_relative "helper"
class TestVAD < TestBase
def setup
@whisper = Whisper::Context.new("base.en")
vad_params = Whisper::VAD::Params.new
@params = Whisper::Params.new(
vad: true,
vad_model_path: "silero-v5.1.2",
vad_params:
)
end
def test_transcribe
@whisper.transcribe(TestBase::AUDIO, @params) do |text|
assert_match(/ask not what your country can do for you[,.] ask what you can do for your country/i, text)
end
end
end

View File

@ -0,0 +1,103 @@
require_relative "helper"
class TestVADParams < TestBase
PARAM_NAMES = [
:threshold,
:min_speech_duration_ms,
:min_silence_duration_ms,
:max_speech_duration_s,
:speech_pad_ms,
:samples_overlap
]
def setup
@params = Whisper::VAD::Params.new
end
def test_new
params = Whisper::VAD::Params.new
assert_kind_of Whisper::VAD::Params, params
end
def test_threshold
assert_in_delta @params.threshold, 0.5
@params.threshold = 0.7
assert_in_delta @params.threshold, 0.7
end
def test_min_speech_duration
pend
end
def test_min_speech_duration_ms
assert_equal 250, @params.min_speech_duration_ms
@params.min_speech_duration_ms = 500
assert_equal 500, @params.min_speech_duration_ms
end
def test_min_silence_duration_ms
assert_equal 100, @params.min_silence_duration_ms
@params.min_silence_duration_ms = 200
assert_equal 200, @params.min_silence_duration_ms
end
def test_max_speech_duration
pend
end
def test_max_speech_duration_s
assert @params.max_speech_duration_s >= 10e37 # Defaults to FLT_MAX
@params.max_speech_duration_s = 60.0
assert_equal 60.0, @params.max_speech_duration_s
end
def test_speech_pad_ms
assert_equal 30, @params.speech_pad_ms
@params.speech_pad_ms = 50
assert_equal 50, @params.speech_pad_ms
end
def test_samples_overlap
assert_in_delta @params.samples_overlap, 0.1
@params.samples_overlap = 0.5
assert_in_delta @params.samples_overlap, 0.5
end
def test_equal
assert_equal @params, Whisper::VAD::Params.new
end
def test_new_with_kw_args
params = Whisper::VAD::Params.new(threshold: 0.7)
assert_in_delta params.threshold, 0.7
assert_equal 250, params.min_speech_duration_ms
end
def test_new_with_kw_args_non_existent
assert_raise ArgumentError do
Whisper::VAD::Params.new(non_existent: "value")
end
end
data(PARAM_NAMES.collect {|param| [param, param]}.to_h)
def test_new_with_kw_args_default_values(param)
default_value = @params.send(param)
value = default_value + 1
params = Whisper::VAD::Params.new(param => value)
if Float === value
assert_in_delta value, params.send(param)
else
assert_equal value, params.send(param)
end
PARAM_NAMES.reject {|name| name == param}.each do |name|
expected = @params.send(name)
actual = params.send(name)
if Float === expected
assert_in_delta expected, actual
else
assert_equal expected, actual
end
end
end
end

View File

@ -16,7 +16,25 @@ class TestWhisper < TestBase
params.print_timestamps = false
@whisper.transcribe(AUDIO, params) {|text|
assert_match /ask not what your country can do for you, ask what you can do for your country/, text
assert_match(/ask not what your country can do for you, ask what you can do for your country/, text)
}
end
def test_transcribe_non_parallel
@whisper = Whisper::Context.new("base.en")
params = Whisper::Params.new
@whisper.transcribe(AUDIO, params, n_processors: 1) {|text|
assert_match(/ask not what your country can do for you, ask what you can do for your country/, text)
}
end
def test_transcribe_n_processors
@whisper = Whisper::Context.new("base.en")
params = Whisper::Params.new
@whisper.transcribe(AUDIO, params, n_processors: 4) {|text|
assert_match(/ask not what your country can do for you[,.] ask what you can do for your country/i, text)
}
end
@ -32,7 +50,7 @@ class TestWhisper < TestBase
def test_full_get_segment
segment = whisper.full_get_segment(0)
assert_equal 0, segment.start_time
assert_match /ask not what your country can do for you, ask what you can do for your country/, segment.text
assert_match(/ask not what your country can do for you, ask what you can do for your country/, segment.text)
end
def test_full_get_segment_t0
@ -59,7 +77,7 @@ class TestWhisper < TestBase
end
def test_full_get_segment_text
assert_match /ask not what your country can do for you, ask what you can do for your country/, whisper.full_get_segment_text(0)
assert_match(/ask not what your country can do for you, ask what you can do for your country/, whisper.full_get_segment_text(0))
end
def test_full_get_segment_no_speech_prob
@ -94,6 +112,14 @@ class TestWhisper < TestBase
end
end
def test_system_info_str
assert_match(/\AWHISPER : COREML = \d | OPENVINO = \d |/, Whisper.system_info_str)
end
def test_version
assert_kind_of String, Whisper::VERSION
end
def test_log_set
user_data = Object.new
logs = []
@ -134,14 +160,14 @@ class TestWhisper < TestBase
@whisper.full(@params, @samples, @samples.length)
assert_equal 1, @whisper.full_n_segments
assert_match /ask not what your country can do for you, ask what you can do for your country/, @whisper.each_segment.first.text
assert_match(/ask not what your country can do for you, ask what you can do for your country/, @whisper.each_segment.first.text)
end
def test_full_without_length
@whisper.full(@params, @samples)
assert_equal 1, @whisper.full_n_segments
assert_match /ask not what your country can do for you, ask what you can do for your country/, @whisper.each_segment.first.text
assert_match(/ask not what your country can do for you, ask what you can do for your country/, @whisper.each_segment.first.text)
end
def test_full_enumerator
@ -149,7 +175,7 @@ class TestWhisper < TestBase
@whisper.full(@params, samples, @samples.length)
assert_equal 1, @whisper.full_n_segments
assert_match /ask not what your country can do for you, ask what you can do for your country/, @whisper.each_segment.first.text
assert_match(/ask not what your country can do for you, ask what you can do for your country/, @whisper.each_segment.first.text)
end
def test_full_enumerator_without_length
@ -171,26 +197,28 @@ class TestWhisper < TestBase
@whisper.full(@params, samples)
assert_equal 1, @whisper.full_n_segments
assert_match /ask not what your country can do for you, ask what you can do for your country/, @whisper.each_segment.first.text
assert_match(/ask not what your country can do for you, ask what you can do for your country/, @whisper.each_segment.first.text)
end
def test_full_parallel
@whisper.full_parallel(@params, @samples, @samples.length, Etc.nprocessors)
nprocessors = 2
@whisper.full_parallel(@params, @samples, @samples.length, nprocessors)
assert_equal Etc.nprocessors, @whisper.full_n_segments
assert_equal nprocessors, @whisper.full_n_segments
text = @whisper.each_segment.collect(&:text).join
assert_match /ask what you can do/i, text
assert_match /for your country/i, text
assert_match(/ask what you can do/i, text)
assert_match(/for your country/i, text)
end
def test_full_parallel_with_memory_view
nprocessors = 2
samples = JFKReader.new(AUDIO)
@whisper.full_parallel(@params, samples, nil, Etc.nprocessors)
@whisper.full_parallel(@params, samples, nil, nprocessors)
assert_equal Etc.nprocessors, @whisper.full_n_segments
assert_equal nprocessors, @whisper.full_n_segments
text = @whisper.each_segment.collect(&:text).join
assert_match /ask what you can do/i, text
assert_match /for your country/i, text
assert_match(/ask what you can do/i, text)
assert_match(/for your country/i, text)
end
def test_full_parallel_without_length_and_n_processors
@ -198,17 +226,18 @@ class TestWhisper < TestBase
assert_equal 1, @whisper.full_n_segments
text = @whisper.each_segment.collect(&:text).join
assert_match /ask what you can do/i, text
assert_match /for your country/i, text
assert_match(/ask what you can do/i, text)
assert_match(/for your country/i, text)
end
def test_full_parallel_without_length
@whisper.full_parallel(@params, @samples, nil, Etc.nprocessors)
nprocessors = 2
@whisper.full_parallel(@params, @samples, nil, nprocessors)
assert_equal Etc.nprocessors, @whisper.full_n_segments
assert_equal nprocessors, @whisper.full_n_segments
text = @whisper.each_segment.collect(&:text).join
assert_match /ask what you can do/i, text
assert_match /for your country/i, text
assert_match(/ask what you can do/i, text)
assert_match(/for your country/i, text)
end
def test_full_parallel_without_n_processors
@ -216,8 +245,52 @@ class TestWhisper < TestBase
assert_equal 1, @whisper.full_n_segments
text = @whisper.each_segment.collect(&:text).join
assert_match /ask what you can do/i, text
assert_match /for your country/i, text
assert_match(/ask what you can do/i, text)
assert_match(/for your country/i, text)
end
end
def test_to_srt
whisper = Whisper::Context.new("base.en")
whisper.transcribe AUDIO, @params
lines = whisper.to_srt.lines
assert_match(/\A\d+\n/, lines[0])
assert_match(/\d{2}:\d{2}:\d{2},\d{3} --> \d{2}:\d{2}:\d{2},\d{3}\n/, lines[1])
assert_match(/ask not what your country can do for you, ask what you can do for your country/, lines[2])
end
def test_to_webvtt
whisper = Whisper::Context.new("base.en")
whisper.transcribe AUDIO, @params
lines = whisper.to_webvtt.lines
assert_equal "WEBVTT\n", lines[0]
assert_equal "\n", lines[1]
assert_match(/\A\d+\n/, lines[2])
assert_match(/\d{2}:\d{2}:\d{2}\.\d{3} --> \d{2}:\d{2}:\d{2}\.\d{3}\n/, lines[3])
assert_match(/ask not what your country can do for you, ask what you can do for your country/, lines[4])
end
sub_test_case "Format needs escape" do
def setup
@whisper = Whisper::Context.new("base.en")
@whisper.transcribe AUDIO, Whisper::Params.new
segment = @whisper.each_segment.first
segment.define_singleton_method :text do
"& so my fellow Americans --> ask not what your country can do for you <-- ask what you can do for your country."
end
@whisper.define_singleton_method :each_segment do
Enumerator.new(3) {|yielder| 3.times {yielder << segment}}
end
end
def test_to_srt_escape
assert_equal "&amp; so my fellow Americans --&gt; ask not what your country can do for you &lt;-- ask what you can do for your country.\n", @whisper.to_srt.lines[2]
end
def test_to_webvtt_escape
assert_equal "&amp; so my fellow Americans --&gt; ask not what your country can do for you &lt;-- ask what you can do for your country.\n", @whisper.to_webvtt.lines[4]
end
end
end

View File

@ -1,31 +0,0 @@
require_relative "helper"
require 'tempfile'
require 'tmpdir'
require 'shellwords'
class TestPackage < TestBase
def test_build
Tempfile.create do |file|
assert system("gem", "build", "whispercpp.gemspec", "--output", file.to_path.shellescape, exception: true)
assert file.size > 0
assert_path_exist file.to_path
end
end
sub_test_case "Building binary on installation" do
def setup
system "rake", "build", exception: true
end
def test_install
match_data = `rake -Tbuild`.match(/(whispercpp-(.+)\.gem)/)
filename = match_data[1]
version = match_data[2]
basename = "whisper.#{RbConfig::CONFIG["DLEXT"]}"
Dir.mktmpdir do |dir|
system "gem", "install", "--install-dir", dir.shellescape, "--no-document", "pkg/#{filename.shellescape}", exception: true
assert_path_exist File.join(dir, "gems/whispercpp-#{version}/lib", basename)
end
end
end
end

View File

@ -1,74 +0,0 @@
require_relative "helper"
class TestSegment < TestBase
def test_iteration
whisper.each_segment do |segment|
assert_instance_of Whisper::Segment, segment
end
end
def test_enumerator
enum = whisper.each_segment
assert_instance_of Enumerator, enum
enum.to_a.each_with_index do |segment, index|
assert_instance_of Whisper::Segment, segment
assert_kind_of Integer, index
end
end
def test_start_time
i = 0
whisper.each_segment do |segment|
assert_equal 0, segment.start_time if i == 0
i += 1
end
end
def test_end_time
i = 0
whisper.each_segment do |segment|
assert_equal whisper.full_get_segment_t1(i) * 10, segment.end_time
i += 1
end
end
def test_no_speech_prob
no_speech_prob = nil
whisper.each_segment do |segment|
no_speech_prob = segment.no_speech_prob
end
assert no_speech_prob > 0.0
end
def test_on_new_segment
params = Whisper::Params.new
seg = nil
index = 0
params.on_new_segment do |segment|
assert_instance_of Whisper::Segment, segment
if index == 0
seg = segment
assert_equal 0, segment.start_time
assert_match /ask not what your country can do for you, ask what you can do for your country/, segment.text
end
index += 1
end
whisper.transcribe(AUDIO, params)
assert_equal 0, seg.start_time
assert_match /ask not what your country can do for you, ask what you can do for your country/, seg.text
end
def test_on_new_segment_twice
params = Whisper::Params.new
seg = nil
params.on_new_segment do |segment|
seg = segment
return
end
params.on_new_segment do |segment|
assert_same seg, segment
return
end
whisper.transcribe(AUDIO, params)
end
end

View File

@ -3,8 +3,7 @@ require_relative "extsources"
Gem::Specification.new do |s|
s.name = "whispercpp"
s.authors = ["Georgi Gerganov", "Todd A. Fisher"]
s.version = '1.3.1'
s.date = '2024-12-19'
s.version = '1.3.3'
s.description = %q{High-performance inference of OpenAI's Whisper automatic speech recognition (ASR) model via Ruby}
s.email = 'todd.fisher@gmail.com'
s.extra_rdoc_files = ['LICENSE', 'README.md']
@ -15,18 +14,19 @@ Gem::Specification.new do |s|
if s.extra_rdoc_files.include?(basename)
basename
else
file.sub("../..", "ext")
file.sub("../..", "ext/sources")
.sub("../javascript", "ext/sources/bindings/javascript")
end
}
s.summary = %q{Ruby whisper.cpp bindings}
s.test_files = s.files.select {|file| file.start_with? "tests/"}
s.test_files = s.files.select {|file| file.start_with? "test/"}
s.extensions << 'ext/extconf.rb'
s.required_ruby_version = '>= 3.1.0'
#### Documentation and testing.
s.homepage = 'https://github.com/ggerganov/whisper.cpp'
s.homepage = 'https://github.com/ggml-org/whisper.cpp'
s.rdoc_options = ['--main', 'README.md']

View File

@ -41,6 +41,11 @@ COMMON_CMAKE_ARGS=(
-DGGML_OPENMP=${GGML_OPENMP}
)
XCODE_VERSION=$(xcodebuild -version 2>/dev/null | head -n1 | awk '{ print $2 }')
MAJOR_VERSION=$(echo $XCODE_VERSION | cut -d. -f1)
MINOR_VERSION=$(echo $XCODE_VERSION | cut -d. -f2)
echo "Detected Xcode version: $XCODE_VERSION"
check_required_tool() {
local tool=$1
local install_message=$2
@ -108,7 +113,7 @@ setup_framework_structure() {
fi
# Copy all required headers (common for all platforms)
cp include/whisper.h ${header_path}
cp include/whisper.h ${header_path}
cp ggml/include/ggml.h ${header_path}
cp ggml/include/ggml-alloc.h ${header_path}
cp ggml/include/ggml-backend.h ${header_path}
@ -245,9 +250,16 @@ combine_static_libraries() {
"${base_dir}/${build_dir}/ggml/src/ggml-metal/${release_dir}/libggml-metal.a"
"${base_dir}/${build_dir}/ggml/src/ggml-blas/${release_dir}/libggml-blas.a"
)
if [[ "$platform" == "macos" || "$platform" == "ios" ]]; then
echo "Adding libwhisper.coreml library to the build."
libs+=(
"${base_dir}/${build_dir}/src/${release_dir}/libwhisper.coreml.a"
)
fi
# Create temporary directory for processing
local temp_dir="${base_dir}/${build_dir}/temp"
echo "Creating temporary directory: ${temp_dir}"
mkdir -p "${temp_dir}"
# Since we have multiple architectures libtool will find object files that do not
@ -259,6 +271,7 @@ combine_static_libraries() {
local archs=""
local min_version_flag=""
local install_name=""
local frameworks="-framework Foundation -framework Metal -framework Accelerate"
case "$platform" in
"ios")
@ -272,12 +285,14 @@ combine_static_libraries() {
min_version_flag="-mios-version-min=${IOS_MIN_OS_VERSION}"
fi
install_name="@rpath/whisper.framework/whisper"
frameworks+=" -framework CoreML"
;;
"macos")
sdk="macosx"
archs="arm64 x86_64"
min_version_flag="-mmacosx-version-min=${MACOS_MIN_OS_VERSION}"
install_name="@rpath/whisper.framework/Versions/Current/whisper"
frameworks+=" -framework CoreML"
;;
"visionos")
if [[ "$is_simulator" == "true" ]]; then
@ -319,27 +334,34 @@ combine_static_libraries() {
$arch_flags \
$min_version_flag \
-Wl,-force_load,"${temp_dir}/combined.a" \
-framework Foundation -framework Metal -framework Accelerate \
$frameworks \
-install_name "$install_name" \
-o "${base_dir}/${output_lib}"
# Platform-specific post-processing for device builds
if [[ "$is_simulator" == "false" ]]; then
if command -v vtool &>/dev/null; then
if command -v xcrun vtool &>/dev/null; then
case "$platform" in
"ios")
echo "Marking binary as a framework binary for iOS..."
vtool -set-build-version ios ${IOS_MIN_OS_VERSION} ${IOS_MIN_OS_VERSION} -replace \
xcrun vtool -set-build-version ios ${IOS_MIN_OS_VERSION} ${IOS_MIN_OS_VERSION} -replace \
-output "${base_dir}/${output_lib}" "${base_dir}/${output_lib}"
;;
"visionos")
echo "Marking binary as a framework binary for visionOS..."
vtool -set-build-version xros ${VISIONOS_MIN_OS_VERSION} ${VISIONOS_MIN_OS_VERSION} -replace \
if [[ "$MAJOR_VERSION" -gt 16 ]] || [[ "$MAJOR_VERSION" -eq 16 && "$MINOR_VERSION" -gt 2 ]]; then
echo "Xcode version greater than 16.2, using visionOS."
VISION_OS_BUILD_VERSION="visionos"
else
echo "Xcode version less than or equal to 16.2, using xros."
VISION_OS_BUILD_VERSION="xros"
fi
xcrun vtool -set-build-version ${VISION_OS_BUILD_VERSION} ${VISIONOS_MIN_OS_VERSION} ${VISIONOS_MIN_OS_VERSION} -replace \
-output "${base_dir}/${output_lib}" "${base_dir}/${output_lib}"
;;
"tvos")
echo "Marking binary as a framework binary for tvOS..."
vtool -set-build-version tvos ${TVOS_MIN_OS_VERSION} ${TVOS_MIN_OS_VERSION} -replace \
xcrun vtool -set-build-version tvos ${TVOS_MIN_OS_VERSION} ${TVOS_MIN_OS_VERSION} -replace \
-output "${base_dir}/${output_lib}" "${base_dir}/${output_lib}"
;;
esac
@ -399,6 +421,8 @@ cmake -B build-ios-sim -G Xcode \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=iphonesimulator \
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
-DWHISPER_COREML="ON" \
-DWHISPER_COREML_ALLOW_FALLBACK="ON" \
-S .
cmake --build build-ios-sim --config Release -- -quiet
@ -411,6 +435,8 @@ cmake -B build-ios-device -G Xcode \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=iphoneos \
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
-DWHISPER_COREML="ON" \
-DWHISPER_COREML_ALLOW_FALLBACK="ON" \
-S .
cmake --build build-ios-device --config Release -- -quiet
@ -421,6 +447,8 @@ cmake -B build-macos -G Xcode \
-DCMAKE_OSX_ARCHITECTURES="arm64;x86_64" \
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
-DWHISPER_COREML="ON" \
-DWHISPER_COREML_ALLOW_FALLBACK="ON" \
-S .
cmake --build build-macos --config Release -- -quiet
@ -432,8 +460,8 @@ cmake -B build-visionos -G Xcode \
-DCMAKE_SYSTEM_NAME=visionOS \
-DCMAKE_OSX_SYSROOT=xros \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=xros \
-DCMAKE_C_FLAGS="-D_XOPEN_SOURCE=700 -Du_int=unsigned\ int -Du_char=unsigned\ char -Du_short=unsigned\ short ${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="-D_XOPEN_SOURCE=700 -Du_int=unsigned\ int -Du_char=unsigned\ char -Du_short=unsigned\ short ${COMMON_CXX_FLAGS}" \
-DCMAKE_C_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_CXX_FLAGS}" \
-S .
cmake --build build-visionos --config Release -- -quiet
@ -445,8 +473,8 @@ cmake -B build-visionos-sim -G Xcode \
-DCMAKE_SYSTEM_NAME=visionOS \
-DCMAKE_OSX_SYSROOT=xrsimulator \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=xrsimulator \
-DCMAKE_C_FLAGS="-D_XOPEN_SOURCE=700 -Du_int=unsigned\ int -Du_char=unsigned\ char -Du_short=unsigned\ short ${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="-D_XOPEN_SOURCE=700 -Du_int=unsigned\ int -Du_char=unsigned\ char -Du_short=unsigned\ short ${COMMON_CXX_FLAGS}" \
-DCMAKE_C_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_CXX_FLAGS}" \
-S .
cmake --build build-visionos-sim --config Release -- -quiet

View File

@ -10,6 +10,8 @@
# # with CUDA support
# GG_BUILD_CUDA=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
#
# # with SYCL support
# GG_BUILD_SYCL=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
if [ -z "$2" ]; then
echo "usage: $0 <output-dir> <mnt-dir>"
@ -324,8 +326,9 @@ ret=0
for model in "${MODELS[@]}"; do
test $ret -eq 0 && gg_download_model ${model}
done
test $ret -eq 0 && gg_run ctest debug
if [ -z ${GG_BUILD_SYCL}]; then
test $ret -eq 0 && gg_run ctest debug
fi
test $ret -eq 0 && gg_run ctest release
test $ret -eq 0 && gg_run bench

View File

@ -105,6 +105,7 @@ else()
add_subdirectory(bench)
add_subdirectory(server)
add_subdirectory(quantize)
add_subdirectory(vad-speech-segments)
if (WHISPER_SDL2)
add_subdirectory(stream)
add_subdirectory(command)

View File

@ -17,14 +17,23 @@ const whisperParamsMock = {
comma_in_time: false,
translate: true,
no_timestamps: false,
detect_language: false,
audio_ctx: 0,
max_len: 0,
prompt: "",
print_progress: false,
progress_callback: (progress) => {
console.log(`Progress: ${progress}`);
},
max_context: -1
};
describe("Run whisper.node", () => {
test("it should receive a non-empty value", async () => {
let result = await whisperAsync(whisperParamsMock);
console.log(result);
expect(result.length).toBeGreaterThan(0);
expect(result['transcription'].length).toBeGreaterThan(0);
}, 10000);
});

View File

@ -38,6 +38,7 @@ struct whisper_params {
bool print_progress = false;
bool no_timestamps = false;
bool no_prints = false;
bool detect_language= false;
bool use_gpu = true;
bool flash_attn = false;
bool comma_in_time = true;
@ -82,7 +83,7 @@ void whisper_print_segment_callback(struct whisper_context * ctx, struct whisper
t1 = whisper_full_get_segment_t1(ctx, i);
}
if (!params.no_timestamps) {
if (!params.no_timestamps && !params.no_prints) {
printf("[%s --> %s] ", to_timestamp(t0).c_str(), to_timestamp(t1).c_str());
}
@ -113,12 +114,14 @@ void whisper_print_segment_callback(struct whisper_context * ctx, struct whisper
// colorful print bug
//
const char * text = whisper_full_get_segment_text(ctx, i);
printf("%s%s", speaker.c_str(), text);
if (!params.no_prints) {
const char * text = whisper_full_get_segment_text(ctx, i);
printf("%s%s", speaker.c_str(), text);
}
// with timestamps or speakers: each segment on new line
if (!params.no_timestamps || params.diarize) {
if ((!params.no_timestamps || params.diarize) && !params.no_prints) {
printf("\n");
}
@ -128,191 +131,248 @@ void whisper_print_segment_callback(struct whisper_context * ctx, struct whisper
void cb_log_disable(enum ggml_log_level, const char *, void *) {}
int run(whisper_params &params, std::vector<std::vector<std::string>> &result) {
if (params.no_prints) {
whisper_log_set(cb_log_disable, NULL);
}
if (params.fname_inp.empty() && params.pcmf32.empty()) {
fprintf(stderr, "error: no input files or audio buffer specified\n");
return 2;
}
if (params.language != "auto" && whisper_lang_id(params.language.c_str()) == -1) {
fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str());
exit(0);
}
// whisper init
struct whisper_context_params cparams = whisper_context_default_params();
cparams.use_gpu = params.use_gpu;
cparams.flash_attn = params.flash_attn;
struct whisper_context * ctx = whisper_init_from_file_with_params(params.model.c_str(), cparams);
if (ctx == nullptr) {
fprintf(stderr, "error: failed to initialize whisper context\n");
return 3;
}
// if params.pcmf32 is provided, set params.fname_inp to "buffer"
// this is simpler than further modifications in the code
if (!params.pcmf32.empty()) {
fprintf(stderr, "info: using audio buffer as input\n");
params.fname_inp.clear();
params.fname_inp.emplace_back("buffer");
}
for (int f = 0; f < (int) params.fname_inp.size(); ++f) {
const auto fname_inp = params.fname_inp[f];
const auto fname_out = f < (int)params.fname_out.size() && !params.fname_out[f].empty() ? params.fname_out[f] : params.fname_inp[f];
std::vector<float> pcmf32; // mono-channel F32 PCM
std::vector<std::vector<float>> pcmf32s; // stereo-channel F32 PCM
// read the input audio file if params.pcmf32 is not provided
if (params.pcmf32.empty()) {
if (!::read_audio_data(fname_inp, pcmf32, pcmf32s, params.diarize)) {
fprintf(stderr, "error: failed to read audio file '%s'\n", fname_inp.c_str());
continue;
}
} else {
pcmf32 = params.pcmf32;
}
// print system information
if (!params.no_prints) {
fprintf(stderr, "\n");
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
params.n_threads*params.n_processors, std::thread::hardware_concurrency(), whisper_print_system_info());
}
// print some info about the processing
if (!params.no_prints) {
fprintf(stderr, "\n");
if (!whisper_is_multilingual(ctx)) {
if (params.language != "en" || params.translate) {
params.language = "en";
params.translate = false;
fprintf(stderr, "%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__);
}
}
fprintf(stderr, "%s: processing '%s' (%d samples, %.1f sec), %d threads, %d processors, lang = %s, task = %s, timestamps = %d, audio_ctx = %d ...\n",
__func__, fname_inp.c_str(), int(pcmf32.size()), float(pcmf32.size())/WHISPER_SAMPLE_RATE,
params.n_threads, params.n_processors,
params.language.c_str(),
params.translate ? "translate" : "transcribe",
params.no_timestamps ? 0 : 1,
params.audio_ctx);
fprintf(stderr, "\n");
}
// run the inference
{
whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
wparams.strategy = params.beam_size > 1 ? WHISPER_SAMPLING_BEAM_SEARCH : WHISPER_SAMPLING_GREEDY;
wparams.print_realtime = false;
wparams.print_progress = params.print_progress;
wparams.print_timestamps = !params.no_timestamps;
wparams.print_special = params.print_special;
wparams.translate = params.translate;
wparams.language = params.language.c_str();
wparams.n_threads = params.n_threads;
wparams.n_max_text_ctx = params.max_context >= 0 ? params.max_context : wparams.n_max_text_ctx;
wparams.offset_ms = params.offset_t_ms;
wparams.duration_ms = params.duration_ms;
wparams.token_timestamps = params.output_wts || params.max_len > 0;
wparams.thold_pt = params.word_thold;
wparams.entropy_thold = params.entropy_thold;
wparams.logprob_thold = params.logprob_thold;
wparams.max_len = params.output_wts && params.max_len == 0 ? 60 : params.max_len;
wparams.audio_ctx = params.audio_ctx;
wparams.greedy.best_of = params.best_of;
wparams.beam_search.beam_size = params.beam_size;
wparams.initial_prompt = params.prompt.c_str();
wparams.no_timestamps = params.no_timestamps;
whisper_print_user_data user_data = { &params, &pcmf32s };
// this callback is called on each new segment
if (!wparams.print_realtime) {
wparams.new_segment_callback = whisper_print_segment_callback;
wparams.new_segment_callback_user_data = &user_data;
}
// example for abort mechanism
// in this example, we do not abort the processing, but we could if the flag is set to true
// the callback is called before every encoder run - if it returns false, the processing is aborted
{
static bool is_aborted = false; // NOTE: this should be atomic to avoid data race
wparams.encoder_begin_callback = [](struct whisper_context * /*ctx*/, struct whisper_state * /*state*/, void * user_data) {
bool is_aborted = *(bool*)user_data;
return !is_aborted;
};
wparams.encoder_begin_callback_user_data = &is_aborted;
}
if (whisper_full_parallel(ctx, wparams, pcmf32.data(), pcmf32.size(), params.n_processors) != 0) {
fprintf(stderr, "failed to process audio\n");
return 10;
}
}
}
const int n_segments = whisper_full_n_segments(ctx);
result.resize(n_segments);
for (int i = 0; i < n_segments; ++i) {
const char * text = whisper_full_get_segment_text(ctx, i);
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
result[i].emplace_back(to_timestamp(t0, params.comma_in_time));
result[i].emplace_back(to_timestamp(t1, params.comma_in_time));
result[i].emplace_back(text);
}
whisper_print_timings(ctx);
whisper_free(ctx);
return 0;
}
class Worker : public Napi::AsyncWorker {
public:
Worker(Napi::Function& callback, whisper_params params)
: Napi::AsyncWorker(callback), params(params) {}
void Execute() override {
run(params, result);
}
void OnOK() override {
Napi::HandleScope scope(Env());
Napi::Object res = Napi::Array::New(Env(), result.size());
for (uint64_t i = 0; i < result.size(); ++i) {
Napi::Object tmp = Napi::Array::New(Env(), 3);
for (uint64_t j = 0; j < 3; ++j) {
tmp[j] = Napi::String::New(Env(), result[i][j]);
}
res[i] = tmp;
}
Callback().Call({Env().Null(), res});
}
private:
whisper_params params;
std::vector<std::vector<std::string>> result;
struct whisper_result {
std::vector<std::vector<std::string>> segments;
std::string language;
};
class ProgressWorker : public Napi::AsyncWorker {
public:
ProgressWorker(Napi::Function& callback, whisper_params params, Napi::Function progress_callback, Napi::Env env)
: Napi::AsyncWorker(callback), params(params), env(env) {
// Create thread-safe function
if (!progress_callback.IsEmpty()) {
tsfn = Napi::ThreadSafeFunction::New(
env,
progress_callback,
"Progress Callback",
0,
1
);
}
}
~ProgressWorker() {
if (tsfn) {
// Make sure to release the thread-safe function on destruction
tsfn.Release();
}
}
void Execute() override {
// Use custom run function with progress callback support
run_with_progress(params, result);
}
void OnOK() override {
Napi::HandleScope scope(Env());
if (params.detect_language) {
Napi::Object resultObj = Napi::Object::New(Env());
resultObj.Set("language", Napi::String::New(Env(), result.language));
Callback().Call({Env().Null(), resultObj});
}
Napi::Object returnObj = Napi::Object::New(Env());
if (!result.language.empty()) {
returnObj.Set("language", Napi::String::New(Env(), result.language));
}
Napi::Array transcriptionArray = Napi::Array::New(Env(), result.segments.size());
for (uint64_t i = 0; i < result.segments.size(); ++i) {
Napi::Object tmp = Napi::Array::New(Env(), 3);
for (uint64_t j = 0; j < 3; ++j) {
tmp[j] = Napi::String::New(Env(), result.segments[i][j]);
}
transcriptionArray[i] = tmp;
}
returnObj.Set("transcription", transcriptionArray);
Callback().Call({Env().Null(), returnObj});
}
// Progress callback function - using thread-safe function
void OnProgress(int progress) {
if (tsfn) {
// Use thread-safe function to call JavaScript callback
auto callback = [progress](Napi::Env env, Napi::Function jsCallback) {
jsCallback.Call({Napi::Number::New(env, progress)});
};
tsfn.BlockingCall(callback);
}
}
private:
whisper_params params;
whisper_result result;
Napi::Env env;
Napi::ThreadSafeFunction tsfn;
// Custom run function with progress callback support
int run_with_progress(whisper_params &params, whisper_result & result) {
if (params.no_prints) {
whisper_log_set(cb_log_disable, NULL);
}
if (params.fname_inp.empty() && params.pcmf32.empty()) {
fprintf(stderr, "error: no input files or audio buffer specified\n");
return 2;
}
if (params.language != "auto" && whisper_lang_id(params.language.c_str()) == -1) {
fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str());
exit(0);
}
// whisper init
struct whisper_context_params cparams = whisper_context_default_params();
cparams.use_gpu = params.use_gpu;
cparams.flash_attn = params.flash_attn;
struct whisper_context * ctx = whisper_init_from_file_with_params(params.model.c_str(), cparams);
if (ctx == nullptr) {
fprintf(stderr, "error: failed to initialize whisper context\n");
return 3;
}
// If params.pcmf32 provides, set params.fname_inp as "buffer"
if (!params.pcmf32.empty()) {
fprintf(stderr, "info: using audio buffer as input\n");
params.fname_inp.clear();
params.fname_inp.emplace_back("buffer");
}
for (int f = 0; f < (int) params.fname_inp.size(); ++f) {
const auto fname_inp = params.fname_inp[f];
const auto fname_out = f < (int)params.fname_out.size() && !params.fname_out[f].empty() ? params.fname_out[f] : params.fname_inp[f];
std::vector<float> pcmf32; // mono-channel F32 PCM
std::vector<std::vector<float>> pcmf32s; // stereo-channel F32 PCM
// If params.pcmf32 is empty, read input audio file
if (params.pcmf32.empty()) {
if (!::read_audio_data(fname_inp, pcmf32, pcmf32s, params.diarize)) {
fprintf(stderr, "error: failed to read audio file '%s'\n", fname_inp.c_str());
continue;
}
} else {
pcmf32 = params.pcmf32;
}
// Print system info
if (!params.no_prints) {
fprintf(stderr, "\n");
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
params.n_threads*params.n_processors, std::thread::hardware_concurrency(), whisper_print_system_info());
}
// Print processing info
if (!params.no_prints) {
fprintf(stderr, "\n");
if (!whisper_is_multilingual(ctx)) {
if (params.language != "en" || params.translate) {
params.language = "en";
params.translate = false;
fprintf(stderr, "%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__);
}
}
fprintf(stderr, "%s: processing '%s' (%d samples, %.1f sec), %d threads, %d processors, lang = %s, task = %s, timestamps = %d, audio_ctx = %d ...\n",
__func__, fname_inp.c_str(), int(pcmf32.size()), float(pcmf32.size())/WHISPER_SAMPLE_RATE,
params.n_threads, params.n_processors,
params.language.c_str(),
params.translate ? "translate" : "transcribe",
params.no_timestamps ? 0 : 1,
params.audio_ctx);
fprintf(stderr, "\n");
}
// Run inference
{
whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
wparams.strategy = params.beam_size > 1 ? WHISPER_SAMPLING_BEAM_SEARCH : WHISPER_SAMPLING_GREEDY;
wparams.print_realtime = false;
wparams.print_progress = params.print_progress;
wparams.print_timestamps = !params.no_timestamps;
wparams.print_special = params.print_special;
wparams.translate = params.translate;
wparams.language = params.detect_language ? "auto" : params.language.c_str();
wparams.detect_language = params.detect_language;
wparams.n_threads = params.n_threads;
wparams.n_max_text_ctx = params.max_context >= 0 ? params.max_context : wparams.n_max_text_ctx;
wparams.offset_ms = params.offset_t_ms;
wparams.duration_ms = params.duration_ms;
wparams.token_timestamps = params.output_wts || params.max_len > 0;
wparams.thold_pt = params.word_thold;
wparams.entropy_thold = params.entropy_thold;
wparams.logprob_thold = params.logprob_thold;
wparams.max_len = params.output_wts && params.max_len == 0 ? 60 : params.max_len;
wparams.audio_ctx = params.audio_ctx;
wparams.greedy.best_of = params.best_of;
wparams.beam_search.beam_size = params.beam_size;
wparams.initial_prompt = params.prompt.c_str();
wparams.no_timestamps = params.no_timestamps;
whisper_print_user_data user_data = { &params, &pcmf32s };
// This callback is called for each new segment
if (!wparams.print_realtime) {
wparams.new_segment_callback = whisper_print_segment_callback;
wparams.new_segment_callback_user_data = &user_data;
}
// Set progress callback
wparams.progress_callback = [](struct whisper_context * /*ctx*/, struct whisper_state * /*state*/, int progress, void * user_data) {
ProgressWorker* worker = static_cast<ProgressWorker*>(user_data);
worker->OnProgress(progress);
};
wparams.progress_callback_user_data = this;
// Abort mechanism example
{
static bool is_aborted = false; // Note: this should be atomic to avoid data races
wparams.encoder_begin_callback = [](struct whisper_context * /*ctx*/, struct whisper_state * /*state*/, void * user_data) {
bool is_aborted = *(bool*)user_data;
return !is_aborted;
};
wparams.encoder_begin_callback_user_data = &is_aborted;
}
if (whisper_full_parallel(ctx, wparams, pcmf32.data(), pcmf32.size(), params.n_processors) != 0) {
fprintf(stderr, "failed to process audio\n");
return 10;
}
}
}
if (params.detect_language || params.language == "auto") {
result.language = whisper_lang_str(whisper_full_lang_id(ctx));
}
const int n_segments = whisper_full_n_segments(ctx);
result.segments.resize(n_segments);
for (int i = 0; i < n_segments; ++i) {
const char * text = whisper_full_get_segment_text(ctx, i);
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
result.segments[i].emplace_back(to_timestamp(t0, params.comma_in_time));
result.segments[i].emplace_back(to_timestamp(t1, params.comma_in_time));
result.segments[i].emplace_back(text);
}
whisper_print_timings(ctx);
whisper_free(ctx);
return 0;
}
};
Napi::Value whisper(const Napi::CallbackInfo& info) {
Napi::Env env = info.Env();
@ -329,9 +389,33 @@ Napi::Value whisper(const Napi::CallbackInfo& info) {
bool flash_attn = whisper_params.Get("flash_attn").As<Napi::Boolean>();
bool no_prints = whisper_params.Get("no_prints").As<Napi::Boolean>();
bool no_timestamps = whisper_params.Get("no_timestamps").As<Napi::Boolean>();
bool detect_language = whisper_params.Get("detect_language").As<Napi::Boolean>();
int32_t audio_ctx = whisper_params.Get("audio_ctx").As<Napi::Number>();
bool comma_in_time = whisper_params.Get("comma_in_time").As<Napi::Boolean>();
int32_t max_len = whisper_params.Get("max_len").As<Napi::Number>();
// Add support for max_context
int32_t max_context = -1;
if (whisper_params.Has("max_context") && whisper_params.Get("max_context").IsNumber()) {
max_context = whisper_params.Get("max_context").As<Napi::Number>();
}
// support prompt
std::string prompt = "";
if (whisper_params.Has("prompt") && whisper_params.Get("prompt").IsString()) {
prompt = whisper_params.Get("prompt").As<Napi::String>();
}
// Add support for print_progress
bool print_progress = false;
if (whisper_params.Has("print_progress")) {
print_progress = whisper_params.Get("print_progress").As<Napi::Boolean>();
}
// Add support for progress_callback
Napi::Function progress_callback;
if (whisper_params.Has("progress_callback") && whisper_params.Get("progress_callback").IsFunction()) {
progress_callback = whisper_params.Get("progress_callback").As<Napi::Function>();
}
Napi::Value pcmf32Value = whisper_params.Get("pcmf32");
std::vector<float> pcmf32_vec;
@ -355,9 +439,14 @@ Napi::Value whisper(const Napi::CallbackInfo& info) {
params.pcmf32 = pcmf32_vec;
params.comma_in_time = comma_in_time;
params.max_len = max_len;
params.max_context = max_context;
params.print_progress = print_progress;
params.prompt = prompt;
params.detect_language = detect_language;
Napi::Function callback = info[1].As<Napi::Function>();
Worker* worker = new Worker(callback, params);
// Create a new Worker class with progress callback support
ProgressWorker* worker = new ProgressWorker(callback, params, progress_callback, env);
worker->Queue();
return env.Undefined();
}

View File

@ -17,8 +17,12 @@ const whisperParams = {
comma_in_time: false,
translate: true,
no_timestamps: false,
detect_language: false,
audio_ctx: 0,
max_len: 0,
progress_callback: (progress) => {
console.log(`progress: ${progress}%`);
}
};
const arguments = process.argv.slice(2);
@ -28,6 +32,8 @@ const params = Object.fromEntries(
const [key, value] = item.slice(2).split("=");
if (key === "audio_ctx") {
whisperParams[key] = parseInt(value);
} else if (key === "detect_language") {
whisperParams[key] = value === "true";
} else {
whisperParams[key] = value;
}

View File

@ -35,7 +35,7 @@ set_target_properties(${TARGET} PROPERTIES LINK_FLAGS " \
-s INITIAL_MEMORY=2000MB \
-s TOTAL_MEMORY=2000MB \
-s FORCE_FILESYSTEM=1 \
-s EXPORTED_RUNTIME_METHODS=\"['print', 'printErr', 'ccall', 'cwrap']\" \
-s EXPORTED_RUNTIME_METHODS=\"['print', 'printErr', 'ccall', 'cwrap', 'HEAPU8']\" \
${EXTRA_FLAGS} \
")

View File

@ -2,7 +2,7 @@
Benchmark the performance of whisper.cpp in the browser using WebAssembly
Link: https://whisper.ggerganov.com/bench/
Link: https://ggerganov.github.io/whisper.cpp/bench.wasm
Terminal version: [examples/bench](/examples/bench)
@ -15,8 +15,23 @@ cd whisper.cpp
mkdir build-em && cd build-em
emcmake cmake ..
make -j
```
The example can then be started by running a local HTTP server:
```console
python3 examples/server.py
```
And then opening a browser to the following URL:
http://localhost:8000/bench.wasm
To run the example in a different server, you need to copy the following files
to the server's HTTP path:
```
# copy the produced page to your HTTP path
cp bin/bench.wasm/* /path/to/html/
cp bin/libbench.js /path/to/html/
cp bin/libbench.worker.js /path/to/html/
```
> 📝 **Note:** As of Emscripten 3.1.58 (April 2024), separate worker.js files are no
> longer generated and the worker is embedded in the main JS file. So the worker
> file will not be geneated for versions later than `3.1.58`.

View File

@ -24,6 +24,8 @@
overflow-x: scroll;
}
</style>
<script src="../coi-serviceworker.js"></script>
<link rel="icon" href="data:,">
</head>
<body>
<div id="main-container">
@ -36,11 +38,10 @@
<br><br>
<b>More examples:</b>
<a href="https://whisper.ggerganov.com/">main</a> |
<a href="https://whisper.ggerganov.com/bench">bench</a> |
<a href="https://whisper.ggerganov.com/stream">stream</a> |
<a href="https://whisper.ggerganov.com/command">command</a> |
<a href="https://whisper.ggerganov.com/talk">talk</a> |
<a href="../">main</a> |
<a href="../bench.wasm/">bench</a> |
<a href="../stream.wasm">stream</a> |
<a href="../command.wasm/">command</a> |
<br><br>

View File

@ -4,7 +4,7 @@ A very basic tool for benchmarking the inference performance on your device. The
the transformer on some random audio data and records the execution time. This way we can have an objective comparison
of the performance of the model for various setups.
Benchmark results are tracked in the following Github issue: https://github.com/ggerganov/whisper.cpp/issues/89
Benchmark results are tracked in the following Github issue: https://github.com/ggml-org/whisper.cpp/issues/89
```bash
# run the bench too on the small.en model using 4 threads
@ -40,7 +40,7 @@ system_info: n_threads = 4 | AVX2 = 0 | AVX512 = 0 | NEON = 1 | FP16_VA = 1 | WA
If you wish, you can submit these results here:
https://github.com/ggerganov/whisper.cpp/issues/89
https://github.com/ggml-org/whisper.cpp/issues/89
Please include the following information:

View File

@ -66,13 +66,12 @@ static int whisper_bench_full(const whisper_params & params) {
cparams.use_gpu = params.use_gpu;
cparams.flash_attn = params.flash_attn;
struct whisper_context * ctx = whisper_init_from_file_with_params(params.model.c_str(), cparams);
{
fprintf(stderr, "\n");
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n", params.n_threads, std::thread::hardware_concurrency(), whisper_print_system_info());
}
struct whisper_context * ctx = whisper_init_from_file_with_params(params.model.c_str(), cparams);
if (ctx == nullptr) {
fprintf(stderr, "error: failed to initialize whisper context\n");
return 2;
@ -156,6 +155,8 @@ static int whisper_bench_full(const whisper_params & params) {
}
int main(int argc, char ** argv) {
ggml_backend_load_all();
whisper_params params;
if (whisper_params_parse(argc, argv, params) == false) {

View File

@ -6,7 +6,8 @@ It can be used as a reference for using the `whisper.cpp` library in other proje
```
./build/bin/whisper-cli -h
usage: ./build-pkg/bin/whisper-cli [options] file0.wav file1.wav ...
usage: ./build/bin/whisper-cli [options] file0 file1 ...
supported audio formats: flac, mp3, ogg, wav
options:
-h, --help [default] show this help message and exit
@ -24,6 +25,7 @@ options:
-wt N, --word-thold N [0.01 ] word timestamp probability threshold
-et N, --entropy-thold N [2.40 ] entropy threshold for decoder fail
-lpt N, --logprob-thold N [-1.00 ] log probability threshold for decoder fail
-nth N, --no-speech-thold N [0.60 ] no speech threshold
-tp, --temperature N [0.00 ] The sampling temperature, between 0 and 1
-tpi, --temperature-inc N [0.20 ] The increment of temperature, between 0 and 1
-debug, --debug-mode [false ] enable debug mode (eg. dump log_mel)
@ -50,12 +52,13 @@ options:
-dl, --detect-language [false ] exit after automatically detecting language
--prompt PROMPT [ ] initial prompt (max n_text_ctx/2 tokens)
-m FNAME, --model FNAME [models/ggml-base.en.bin] model path
-f FNAME, --file FNAME [ ] input WAV file path
-f FNAME, --file FNAME [ ] input audio file path
-oved D, --ov-e-device DNAME [CPU ] the OpenVINO device used for encode inference
-dtw MODEL --dtw MODEL [ ] compute token-level timestamps
-ls, --log-score [false ] log best decoder scores of tokens
-ng, --no-gpu [false ] disable GPU
-fa, --flash-attn [false ] flash attention
-sns, --suppress-nst [false ] suppress non-speech tokens
--suppress-regex REGEX [ ] regular expression matching tokens to suppress
--grammar GRAMMAR [ ] GBNF grammar to guide decoding
--grammar-rule RULE [ ] top-level GBNF grammar rule name

View File

@ -11,14 +11,13 @@
#include <thread>
#include <vector>
#include <cstring>
#include <cfloat>
#if defined(_WIN32)
#ifndef NOMINMAX
#define NOMINMAX
#include <windows.h>
#endif
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#include <windows.h>
#endif
// helper function to replace substrings
@ -71,6 +70,7 @@ struct whisper_params {
bool no_prints = false;
bool print_special = false;
bool print_colors = false;
bool print_confidence= false;
bool print_progress = false;
bool no_timestamps = false;
bool log_score = false;
@ -99,6 +99,16 @@ struct whisper_params {
std::vector<std::string> fname_out = {};
grammar_parser::parse_state grammar_parsed;
// Voice Activity Detection (VAD) parameters
bool vad = false;
std::string vad_model = "";
float vad_threshold = 0.5f;
int vad_min_speech_duration_ms = 250;
int vad_min_silence_duration_ms = 100;
float vad_max_speech_duration_s = FLT_MAX;
int vad_speech_pad_ms = 30;
float vad_samples_overlap = 0.1f;
};
static void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
@ -170,6 +180,7 @@ static bool whisper_params_parse(int argc, char ** argv, whisper_params & params
else if (arg == "-np" || arg == "--no-prints") { params.no_prints = true; }
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
else if (arg == "-pc" || arg == "--print-colors") { params.print_colors = true; }
else if ( arg == "--print-confidence"){ params.print_confidence= true; }
else if (arg == "-pp" || arg == "--print-progress") { params.print_progress = true; }
else if (arg == "-nt" || arg == "--no-timestamps") { params.no_timestamps = true; }
else if (arg == "-l" || arg == "--language") { params.language = whisper_param_turn_lowercase(ARGV_NEXT); }
@ -187,6 +198,15 @@ static bool whisper_params_parse(int argc, char ** argv, whisper_params & params
else if ( arg == "--grammar") { params.grammar = ARGV_NEXT; }
else if ( arg == "--grammar-rule") { params.grammar_rule = ARGV_NEXT; }
else if ( arg == "--grammar-penalty") { params.grammar_penalty = std::stof(ARGV_NEXT); }
// Voice Activity Detection (VAD)
else if ( arg == "--vad") { params.vad = true; }
else if (arg == "-vm" || arg == "--vad-model") { params.vad_model = ARGV_NEXT; }
else if (arg == "-vt" || arg == "--vad-threshold") { params.vad_threshold = std::stof(ARGV_NEXT); }
else if (arg == "-vspd" || arg == "--vad-min-speech-duration-ms") { params.vad_min_speech_duration_ms = std::stoi(ARGV_NEXT); }
else if (arg == "-vsd" || arg == "--vad-min-silence-duration-ms") { params.vad_min_speech_duration_ms = std::stoi(ARGV_NEXT); }
else if (arg == "-vmsd" || arg == "--vad-max-speech-duration-s") { params.vad_max_speech_duration_s = std::stof(ARGV_NEXT); }
else if (arg == "-vp" || arg == "--vad-speech-pad-ms") { params.vad_speech_pad_ms = std::stoi(ARGV_NEXT); }
else if (arg == "-vo" || arg == "--vad-samples-overlap") { params.vad_samples_overlap = std::stof(ARGV_NEXT); }
else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
whisper_print_usage(argc, argv, params);
@ -239,6 +259,7 @@ static void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params
fprintf(stderr, " -np, --no-prints [%-7s] do not print anything other than the results\n", params.no_prints ? "true" : "false");
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
fprintf(stderr, " -pc, --print-colors [%-7s] print colors\n", params.print_colors ? "true" : "false");
fprintf(stderr, " --print-confidence [%-7s] print confidence\n", params.print_confidence ? "true" : "false");
fprintf(stderr, " -pp, --print-progress [%-7s] print progress\n", params.print_progress ? "true" : "false");
fprintf(stderr, " -nt, --no-timestamps [%-7s] do not print timestamps\n", params.no_timestamps ? "true" : "false");
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language ('auto' for auto-detect)\n", params.language.c_str());
@ -256,6 +277,18 @@ static void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params
fprintf(stderr, " --grammar GRAMMAR [%-7s] GBNF grammar to guide decoding\n", params.grammar.c_str());
fprintf(stderr, " --grammar-rule RULE [%-7s] top-level GBNF grammar rule name\n", params.grammar_rule.c_str());
fprintf(stderr, " --grammar-penalty N [%-7.1f] scales down logits of nongrammar tokens\n", params.grammar_penalty);
// Voice Activity Detection (VAD) parameters
fprintf(stderr, "\nVoice Activity Detection (VAD) options:\n");
fprintf(stderr, " --vad [%-7s] enable Voice Activity Detection (VAD)\n", params.vad ? "true" : "false");
fprintf(stderr, " -vm FNAME, --vad-model FNAME [%-7s] VAD model path\n", params.vad_model.c_str());
fprintf(stderr, " -vt N, --vad-threshold N [%-7.2f] VAD threshold for speech recognition\n", params.vad_threshold);
fprintf(stderr, " -vspd N, --vad-min-speech-duration-ms N [%-7d] VAD min speech duration (0.0-1.0)\n", params.vad_min_speech_duration_ms);
fprintf(stderr, " -vsd N, --vad-min-silence-duration-ms N [%-7d] VAD min silence duration (to split segments)\n", params.vad_min_silence_duration_ms);
fprintf(stderr, " -vmsd N, --vad-max-speech-duration-s N [%-7s] VAD max speech duration (auto-split longer)\n", params.vad_max_speech_duration_s == FLT_MAX ?
std::string("FLT_MAX").c_str() :
std::to_string(params.vad_max_speech_duration_s).c_str());
fprintf(stderr, " -vp N, --vad-speech-pad-ms N [%-7d] VAD speech padding (extend segments)\n", params.vad_speech_pad_ms);
fprintf(stderr, " -vo N, --vad-samples-overlap N [%-7.2f] VAD samples overlap (seconds between segments)\n", params.vad_samples_overlap);
fprintf(stderr, "\n");
}
@ -356,6 +389,26 @@ static void whisper_print_segment_callback(struct whisper_context * ctx, struct
printf("%s%s%s%s", speaker.c_str(), k_colors[col].c_str(), text, "\033[0m");
}
} else if (params.print_confidence) {
for (int j = 0; j < whisper_full_n_tokens(ctx, i); ++j) {
if (params.print_special == false) {
const whisper_token id = whisper_full_get_token_id(ctx, i, j);
if (id >= whisper_token_eot(ctx)) {
continue;
}
}
const char * text = whisper_full_get_token_text(ctx, i, j);
const float p = whisper_full_get_token_p (ctx, i, j);
int style_idx = 2; // High confidence - dim
if (p < 0.33) {
style_idx = 0; // Low confidence - inverse (highlighted)
} else if (p < 0.66) {
style_idx = 1; // Medium confidence - underlined
}
printf("%s%s%s%s", speaker.c_str(), k_styles[style_idx].c_str(), text, "\033[0m");
}
} else {
const char * text = whisper_full_get_segment_text(ctx, i);
@ -377,15 +430,7 @@ static void whisper_print_segment_callback(struct whisper_context * ctx, struct
}
}
static bool output_txt(struct whisper_context * ctx, const char * fname, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
std::ofstream fout(fname);
if (!fout.is_open()) {
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname);
return false;
}
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
static void output_txt(struct whisper_context * ctx, std::ofstream & fout, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
const int n_segments = whisper_full_n_segments(ctx);
for (int i = 0; i < n_segments; ++i) {
const char * text = whisper_full_get_segment_text(ctx, i);
@ -400,19 +445,9 @@ static bool output_txt(struct whisper_context * ctx, const char * fname, const w
fout << speaker << text << "\n";
}
return true;
}
static bool output_vtt(struct whisper_context * ctx, const char * fname, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
std::ofstream fout(fname);
if (!fout.is_open()) {
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname);
return false;
}
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
static void output_vtt(struct whisper_context * ctx, std::ofstream & fout, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
fout << "WEBVTT\n\n";
const int n_segments = whisper_full_n_segments(ctx);
@ -432,19 +467,9 @@ static bool output_vtt(struct whisper_context * ctx, const char * fname, const w
fout << to_timestamp(t0) << " --> " << to_timestamp(t1) << "\n";
fout << speaker << text << "\n\n";
}
return true;
}
static bool output_srt(struct whisper_context * ctx, const char * fname, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
std::ofstream fout(fname);
if (!fout.is_open()) {
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname);
return false;
}
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
static void output_srt(struct whisper_context * ctx, std::ofstream & fout, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
const int n_segments = whisper_full_n_segments(ctx);
for (int i = 0; i < n_segments; ++i) {
const char * text = whisper_full_get_segment_text(ctx, i);
@ -461,8 +486,6 @@ static bool output_srt(struct whisper_context * ctx, const char * fname, const w
fout << to_timestamp(t0, true) << " --> " << to_timestamp(t1, true) << "\n";
fout << speaker << text << "\n\n";
}
return true;
}
static char * escape_double_quotes_and_backslashes(const char * str) {
@ -528,15 +551,7 @@ static char * escape_double_quotes_in_csv(const char * str) {
return escaped;
}
static bool output_csv(struct whisper_context * ctx, const char * fname, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
std::ofstream fout(fname);
if (!fout.is_open()) {
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname);
return false;
}
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
static void output_csv(struct whisper_context * ctx, std::ofstream & fout, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
const int n_segments = whisper_full_n_segments(ctx);
fout << "start,end,";
if (params.diarize && pcmf32s.size() == 2)
@ -559,14 +574,9 @@ static bool output_csv(struct whisper_context * ctx, const char * fname, const w
}
fout << "\"" << text_escaped << "\"\n";
}
return true;
}
static bool output_score(struct whisper_context * ctx, const char * fname, const whisper_params & /*params*/, std::vector<std::vector<float>> /*pcmf32s*/) {
std::ofstream fout(fname);
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
static void output_score(struct whisper_context * ctx, std::ofstream & fout, const whisper_params & /*params*/, std::vector<std::vector<float>> /*pcmf32s*/) {
const int n_segments = whisper_full_n_segments(ctx);
// fprintf(stderr,"segments: %d\n",n_segments);
for (int i = 0; i < n_segments; ++i) {
@ -579,16 +589,14 @@ static bool output_score(struct whisper_context * ctx, const char * fname, const
// fprintf(stderr,"token: %s %f\n",token,probability);
}
}
return true;
}
static bool output_json(
static void output_json(
struct whisper_context * ctx,
const char * fname,
std::ofstream & fout,
const whisper_params & params,
std::vector<std::vector<float>> pcmf32s,
bool full) {
std::ofstream fout(fname);
std::vector<std::vector<float>> pcmf32s) {
const bool full = params.output_jsn_full;
int indent = 0;
auto doindent = [&]() {
@ -668,12 +676,6 @@ static bool output_json(
end_obj(end);
};
if (!fout.is_open()) {
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname);
return false;
}
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
start_obj(nullptr);
value_s("systeminfo", whisper_print_system_info(), false);
start_obj("model");
@ -747,17 +749,12 @@ static bool output_json(
end_arr(true);
end_obj(true);
return true;
}
// karaoke video generation
// outputs a bash script that uses ffmpeg to generate a video with the subtitles
// TODO: font parameter adjustments
static bool output_wts(struct whisper_context * ctx, const char * fname, const char * fname_inp, const whisper_params & params, float t_sec, std::vector<std::vector<float>> pcmf32s) {
std::ofstream fout(fname);
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
static bool output_wts(struct whisper_context * ctx, std::ofstream & fout, const whisper_params & params, std::vector<std::vector<float>> pcmf32s, const char * fname_inp, float t_sec, const char * fname_out) {
static const char * font = params.font_path.c_str();
std::ifstream fin(font);
@ -873,20 +870,12 @@ static bool output_wts(struct whisper_context * ctx, const char * fname, const c
fout.close();
fprintf(stderr, "%s: run 'source %s' to generate karaoke video\n", __func__, fname);
fprintf(stderr, "# %s: run 'source %s' to generate karaoke video\n", __func__, fname_out);
return true;
}
static bool output_lrc(struct whisper_context * ctx, const char * fname, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
std::ofstream fout(fname);
if (!fout.is_open()) {
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname);
return false;
}
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
static void output_lrc(struct whisper_context * ctx, std::ofstream & fout, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
fout << "[by:whisper.cpp]\n";
const int n_segments = whisper_full_n_segments(ctx);
@ -914,14 +903,14 @@ static bool output_lrc(struct whisper_context * ctx, const char * fname, const w
fout << '[' << timestamp_lrc << ']' << speaker << text << "\n";
}
return true;
}
static void cb_log_disable(enum ggml_log_level , const char * , void * ) { }
int main(int argc, char ** argv) {
ggml_backend_load_all();
#if defined(_WIN32)
// Set the console output code page to UTF-8, while command line arguments
// are still encoded in the system's code page. In this way, we can print
@ -1001,7 +990,6 @@ int main(int argc, char ** argv) {
}
// whisper init
struct whisper_context_params cparams = whisper_context_default_params();
cparams.use_gpu = params.use_gpu;
@ -1064,8 +1052,55 @@ int main(int argc, char ** argv) {
}
for (int f = 0; f < (int) params.fname_inp.size(); ++f) {
const auto fname_inp = params.fname_inp[f];
const auto fname_out = f < (int) params.fname_out.size() && !params.fname_out[f].empty() ? params.fname_out[f] : params.fname_inp[f];
const auto & fname_inp = params.fname_inp[f];
struct fout_factory {
std::string fname_out;
const size_t basename_length;
const bool is_stdout;
bool used_stdout;
decltype(whisper_print_segment_callback) * const print_segment_callback;
std::ofstream fout;
fout_factory (const std::string & fname_out_, const std::string & fname_inp, whisper_params & params) :
fname_out{!fname_out_.empty() ? fname_out_ : fname_inp},
basename_length{fname_out.size()},
is_stdout{fname_out == "-"},
used_stdout{},
print_segment_callback{is_stdout ? nullptr : whisper_print_segment_callback} {
if (!print_segment_callback) {
params.print_progress = false;
}
}
bool open(const char * ext, const char * function) {
if (is_stdout) {
if (used_stdout) {
fprintf(stderr, "warning: Not appending multiple file formats to stdout\n");
return false;
}
used_stdout = true;
#ifdef _WIN32
fout = std::ofstream{"CON"};
#else
fout = std::ofstream{"/dev/stdout"};
#endif
// Not using fprintf stderr here because it might equal stdout
// Also assuming /dev is mounted
return true;
}
fname_out.resize(basename_length);
fname_out += ext;
fout = std::ofstream{fname_out};
if (!fout.is_open()) {
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname_out.c_str());
return false;
}
fprintf(stderr, "%s: saving output to '%s'\n", function, fname_out.c_str());
return true;
}
} fout_factory{f < (int) params.fname_out.size() ? params.fname_out[f] : "", fname_inp, params};
std::vector<float> pcmf32; // mono-channel F32 PCM
std::vector<std::vector<float>> pcmf32s; // stereo-channel F32 PCM
@ -1102,6 +1137,11 @@ int main(int argc, char ** argv) {
params.tinydiarize ? "tdrz = 1, " : "",
params.no_timestamps ? 0 : 1);
if (params.print_colors) {
fprintf(stderr, "%s: color scheme: red (low confidence), yellow (medium), green (high confidence)\n", __func__);
} else if (params.print_confidence) {
fprintf(stderr, "%s: confidence: highlighted (low confidence), underlined (medium), dim (high confidence)\n", __func__);
}
fprintf(stderr, "\n");
}
@ -1152,6 +1192,16 @@ int main(int argc, char ** argv) {
wparams.suppress_nst = params.suppress_nst;
wparams.vad = params.vad;
wparams.vad_model_path = params.vad_model.c_str();
wparams.vad_params.threshold = params.vad_threshold;
wparams.vad_params.min_speech_duration_ms = params.vad_min_speech_duration_ms;
wparams.vad_params.min_silence_duration_ms = params.vad_min_silence_duration_ms;
wparams.vad_params.max_speech_duration_s = params.vad_max_speech_duration_s;
wparams.vad_params.speech_pad_ms = params.vad_speech_pad_ms;
wparams.vad_params.samples_overlap = params.vad_samples_overlap;
whisper_print_user_data user_data = { &params, &pcmf32s, 0 };
const auto & grammar_parsed = params.grammar_parsed;
@ -1170,7 +1220,7 @@ int main(int argc, char ** argv) {
// this callback is called on each new segment
if (!wparams.print_realtime) {
wparams.new_segment_callback = whisper_print_segment_callback;
wparams.new_segment_callback = fout_factory.print_segment_callback;
wparams.new_segment_callback_user_data = &user_data;
}
@ -1212,54 +1262,26 @@ int main(int argc, char ** argv) {
// output stuff
{
printf("\n");
// macros to stringify function name
#define output_func(func, ext, param, ...) if (param && fout_factory.open(ext, #func)) {\
func(ctx, fout_factory.fout, params, __VA_ARGS__); \
}
#define output_ext(ext, ...) output_func(output_##ext, "." #ext, params.output_##ext, __VA_ARGS__)
// output to text file
if (params.output_txt) {
const auto fname_txt = fname_out + ".txt";
output_txt(ctx, fname_txt.c_str(), params, pcmf32s);
}
output_ext(txt, pcmf32s);
output_ext(vtt, pcmf32s);
output_ext(srt, pcmf32s);
output_ext(wts, pcmf32s, fname_inp.c_str(), float(pcmf32.size() + 1000)/WHISPER_SAMPLE_RATE, fout_factory.fname_out.c_str());
output_ext(csv, pcmf32s);
output_func(output_json, ".json", params.output_jsn, pcmf32s);
output_ext(lrc, pcmf32s);
output_func(output_score, ".score.txt", params.log_score, pcmf32s);
// output to VTT file
if (params.output_vtt) {
const auto fname_vtt = fname_out + ".vtt";
output_vtt(ctx, fname_vtt.c_str(), params, pcmf32s);
}
#undef output_ext
#undef output_func
// output to SRT file
if (params.output_srt) {
const auto fname_srt = fname_out + ".srt";
output_srt(ctx, fname_srt.c_str(), params, pcmf32s);
}
// output to WTS file
if (params.output_wts) {
const auto fname_wts = fname_out + ".wts";
output_wts(ctx, fname_wts.c_str(), fname_inp.c_str(), params, float(pcmf32.size() + 1000)/WHISPER_SAMPLE_RATE, pcmf32s);
}
// output to CSV file
if (params.output_csv) {
const auto fname_csv = fname_out + ".csv";
output_csv(ctx, fname_csv.c_str(), params, pcmf32s);
}
// output to JSON file
if (params.output_jsn) {
const auto fname_jsn = fname_out + ".json";
output_json(ctx, fname_jsn.c_str(), params, pcmf32s, params.output_jsn_full);
}
// output to LRC file
if (params.output_lrc) {
const auto fname_lrc = fname_out + ".lrc";
output_lrc(ctx, fname_lrc.c_str(), params, pcmf32s);
}
// output to score file
if (params.log_score) {
const auto fname_score = fname_out + ".score.txt";
output_score(ctx, fname_score.c_str(), params, pcmf32s);
if (fout_factory.is_stdout && !fout_factory.used_stdout) {
fprintf(stderr, "warning: '--output-file -' used without any other '--output-*'");
}
}
}

View File

@ -0,0 +1,146 @@
/*! coi-serviceworker v0.1.7 - Guido Zuidhof and contributors, licensed under MIT */
let coepCredentialless = false;
if (typeof window === 'undefined') {
self.addEventListener("install", () => self.skipWaiting());
self.addEventListener("activate", (event) => event.waitUntil(self.clients.claim()));
self.addEventListener("message", (ev) => {
if (!ev.data) {
return;
} else if (ev.data.type === "deregister") {
self.registration
.unregister()
.then(() => {
return self.clients.matchAll();
})
.then(clients => {
clients.forEach((client) => client.navigate(client.url));
});
} else if (ev.data.type === "coepCredentialless") {
coepCredentialless = ev.data.value;
}
});
self.addEventListener("fetch", function (event) {
const r = event.request;
if (r.cache === "only-if-cached" && r.mode !== "same-origin") {
return;
}
const request = (coepCredentialless && r.mode === "no-cors")
? new Request(r, {
credentials: "omit",
})
: r;
event.respondWith(
fetch(request)
.then((response) => {
if (response.status === 0) {
return response;
}
const newHeaders = new Headers(response.headers);
newHeaders.set("Cross-Origin-Embedder-Policy",
coepCredentialless ? "credentialless" : "require-corp"
);
if (!coepCredentialless) {
newHeaders.set("Cross-Origin-Resource-Policy", "cross-origin");
}
newHeaders.set("Cross-Origin-Opener-Policy", "same-origin");
return new Response(response.body, {
status: response.status,
statusText: response.statusText,
headers: newHeaders,
});
})
.catch((e) => console.error(e))
);
});
} else {
(() => {
const reloadedBySelf = window.sessionStorage.getItem("coiReloadedBySelf");
window.sessionStorage.removeItem("coiReloadedBySelf");
const coepDegrading = (reloadedBySelf == "coepdegrade");
// You can customize the behavior of this script through a global `coi` variable.
const coi = {
shouldRegister: () => !reloadedBySelf,
shouldDeregister: () => false,
coepCredentialless: () => true,
coepDegrade: () => true,
doReload: () => window.location.reload(),
quiet: false,
...window.coi
};
const n = navigator;
const controlling = n.serviceWorker && n.serviceWorker.controller;
// Record the failure if the page is served by serviceWorker.
if (controlling && !window.crossOriginIsolated) {
window.sessionStorage.setItem("coiCoepHasFailed", "true");
}
const coepHasFailed = window.sessionStorage.getItem("coiCoepHasFailed");
if (controlling) {
// Reload only on the first failure.
const reloadToDegrade = coi.coepDegrade() && !(
coepDegrading || window.crossOriginIsolated
);
n.serviceWorker.controller.postMessage({
type: "coepCredentialless",
value: (reloadToDegrade || coepHasFailed && coi.coepDegrade())
? false
: coi.coepCredentialless(),
});
if (reloadToDegrade) {
!coi.quiet && console.log("Reloading page to degrade COEP.");
window.sessionStorage.setItem("coiReloadedBySelf", "coepdegrade");
coi.doReload("coepdegrade");
}
if (coi.shouldDeregister()) {
n.serviceWorker.controller.postMessage({ type: "deregister" });
}
}
// If we're already coi: do nothing. Perhaps it's due to this script doing its job, or COOP/COEP are
// already set from the origin server. Also if the browser has no notion of crossOriginIsolated, just give up here.
if (window.crossOriginIsolated !== false || !coi.shouldRegister()) return;
if (!window.isSecureContext) {
!coi.quiet && console.log("COOP/COEP Service Worker not registered, a secure context is required.");
return;
}
// In some environments (e.g. Firefox private mode) this won't be available
if (!n.serviceWorker) {
!coi.quiet && console.error("COOP/COEP Service Worker not registered, perhaps due to private mode.");
return;
}
n.serviceWorker.register(window.document.currentScript.src).then(
(registration) => {
!coi.quiet && console.log("COOP/COEP Service Worker registered", registration.scope);
registration.addEventListener("updatefound", () => {
!coi.quiet && console.log("Reloading page to make use of updated COOP/COEP Service Worker.");
window.sessionStorage.setItem("coiReloadedBySelf", "updatefound");
coi.doReload();
});
// If the registration is active, but it's not controlling the page
if (registration.active && !n.serviceWorker.controller) {
!coi.quiet && console.log("Reloading page to make use of COOP/COEP Service Worker.");
window.sessionStorage.setItem("coiReloadedBySelf", "notcontrolling");
coi.doReload();
}
},
(err) => {
!coi.quiet && console.error("COOP/COEP Service Worker failed to register:", err);
}
);
})();
}

View File

@ -36,7 +36,7 @@ set_target_properties(${TARGET} PROPERTIES LINK_FLAGS " \
-s INITIAL_MEMORY=1024MB \
-s TOTAL_MEMORY=1024MB \
-s FORCE_FILESYSTEM=1 \
-s EXPORTED_RUNTIME_METHODS=\"['print', 'printErr', 'ccall', 'cwrap']\" \
-s EXPORTED_RUNTIME_METHODS=\"['print', 'printErr', 'ccall', 'cwrap', 'HEAPU8']\" \
${EXTRA_FLAGS} \
")

View File

@ -3,7 +3,7 @@
This is a basic Voice Assistant example that accepts voice commands from the microphone.
It runs in fully in the browser via WebAseembly.
Online demo: https://whisper.ggerganov.com/command/
Online demo: https://ggerganov.github.io/whisper.cpp/command.wasm
Terminal version: [examples/command](/examples/command)
@ -15,9 +15,23 @@ git clone https://github.com/ggerganov/whisper.cpp
cd whisper.cpp
mkdir build-em && cd build-em
emcmake cmake ..
make -j
make -j libcommand
```
The example can then be started by running a local HTTP server:
```console
python3 examples/server.py
```
And then opening a browser to the following URL:
http://localhost:8000/command.wasm/
# copy the produced page to your HTTP path
To run the example in a different server, you need to copy the following files
to the server's HTTP path:
```
cp bin/command.wasm/* /path/to/html/
cp bin/libcommand.js /path/to/html/
cp bin/libcommand.worker.js /path/to/html/
```
> 📝 **Note:** As of Emscripten 3.1.58 (April 2024), separate worker.js files are no
> longer generated and the worker is embedded in the main JS file. So the worker
> file will not be geneated for versions later than `3.1.58`.

View File

@ -24,6 +24,8 @@
overflow-x: scroll;
}
</style>
<script src="../coi-serviceworker.js"></script>
<link rel="icon" href="data:,">
</head>
<body>
<div id="main-container">
@ -36,11 +38,10 @@
<br><br>
<b>More examples:</b>
<a href="https://whisper.ggerganov.com/">main</a> |
<a href="https://whisper.ggerganov.com/bench">bench</a> |
<a href="https://whisper.ggerganov.com/stream">stream</a> |
<a href="https://whisper.ggerganov.com/command">command</a> |
<a href="https://whisper.ggerganov.com/talk">talk</a> |
<a href="../">main</a> |
<a href="../bench.wasm/">bench</a> |
<a href="../stream.wasm">stream</a> |
<a href="../command.wasm/">command</a> |
<br><br>

View File

@ -3,7 +3,7 @@
// Speak short text commands to the microphone.
// This program will detect your voice command and convert them to text.
//
// ref: https://github.com/ggerganov/whisper.cpp/issues/171
// ref: https://github.com/ggml-org/whisper.cpp/issues/171
//
#include "common-sdl.h"
@ -251,7 +251,7 @@ static std::vector<std::string> get_words(const std::string &txt) {
// command-list mode
// guide the transcription to match the most likely command from a provided list
static int process_command_list(struct whisper_context * ctx, audio_async &audio, const whisper_params &params) {
static int process_command_list(struct whisper_context * ctx, audio_async &audio, const whisper_params &params, std::ofstream &fout) {
fprintf(stderr, "\n");
fprintf(stderr, "%s: guided mode\n", __func__);
@ -444,12 +444,16 @@ static int process_command_list(struct whisper_context * ctx, audio_async &audio
const float prob = probs_id[0].first;
const int index = probs_id[0].second;
const char * best_command = allowed_commands[index].c_str();
fprintf(stdout, "\n");
fprintf(stdout, "%s: detected command: %s%s%s | p = %f | t = %d ms\n", __func__,
"\033[1m", allowed_commands[index].c_str(), "\033[0m", prob,
"\033[1m", best_command, "\033[0m", prob,
(int) std::chrono::duration_cast<std::chrono::milliseconds>(t_end - t_start).count());
fprintf(stdout, "\n");
if (fout.is_open()) {
fout << best_command << std::endl;
}
}
}
@ -462,7 +466,7 @@ static int process_command_list(struct whisper_context * ctx, audio_async &audio
// always-prompt mode
// transcribe the voice into text after valid prompt
static int always_prompt_transcription(struct whisper_context * ctx, audio_async & audio, const whisper_params & params) {
static int always_prompt_transcription(struct whisper_context * ctx, audio_async & audio, const whisper_params & params, std::ofstream & fout) {
bool is_running = true;
bool ask_prompt = true;
@ -528,6 +532,9 @@ static int always_prompt_transcription(struct whisper_context * ctx, audio_async
if ((sim > 0.7f) && (command.size() > 0)) {
fprintf(stdout, "%s: Command '%s%s%s', (t = %d ms)\n", __func__, "\033[1m", command.c_str(), "\033[0m", (int) t_ms);
if (fout.is_open()) {
fout << command << std::endl;
}
}
fprintf(stdout, "\n");
@ -542,7 +549,7 @@ static int always_prompt_transcription(struct whisper_context * ctx, audio_async
// general-purpose mode
// freely transcribe the voice into text
static int process_general_transcription(struct whisper_context * ctx, audio_async & audio, const whisper_params & params) {
static int process_general_transcription(struct whisper_context * ctx, audio_async & audio, const whisper_params & params, std::ofstream & fout) {
bool is_running = true;
bool have_prompt = false;
bool ask_prompt = true;
@ -662,8 +669,10 @@ static int process_general_transcription(struct whisper_context * ctx, audio_asy
} else {
// cut the prompt from the decoded text
const std::string command = ::trim(txt.substr(best_len));
fprintf(stdout, "%s: Command '%s%s%s', (t = %d ms)\n", __func__, "\033[1m", command.c_str(), "\033[0m", (int) t_ms);
if (fout.is_open()) {
fout << command << std::endl;
}
}
fprintf(stdout, "\n");
@ -678,6 +687,8 @@ static int process_general_transcription(struct whisper_context * ctx, audio_asy
}
int main(int argc, char ** argv) {
ggml_backend_load_all();
whisper_params params;
if (whisper_params_parse(argc, argv, params) == false) {
@ -698,6 +709,10 @@ int main(int argc, char ** argv) {
cparams.flash_attn = params.flash_attn;
struct whisper_context * ctx = whisper_init_from_file_with_params(params.model.c_str(), cparams);
if (ctx == nullptr) {
fprintf(stderr, "error: failed to initialize whisper context\n");
return 2;
}
// print some info about the processing
{
@ -757,13 +772,22 @@ int main(int argc, char ** argv) {
}
}
std::ofstream fout;
if (params.fname_out.length() > 0) {
fout.open(params.fname_out);
if (!fout.is_open()) {
fprintf(stderr, "%s: failed to open output file '%s'!\n", __func__, params.fname_out.c_str());
return 1;
}
}
if (ret_val == 0) {
if (!params.commands.empty()) {
ret_val = process_command_list(ctx, audio, params);
ret_val = process_command_list(ctx, audio, params, fout);
} else if (!params.prompt.empty() && params.grammar_parsed.rules.empty()) {
ret_val = always_prompt_transcription(ctx, audio, params);
ret_val = always_prompt_transcription(ctx, audio, params, fout);
} else {
ret_val = process_general_transcription(ctx, audio, params);
ret_val = process_general_transcription(ctx, audio, params, fout);
}
}

View File

@ -26,10 +26,6 @@
#define MINIAUDIO_IMPLEMENTATION
#include "miniaudio.h"
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
#ifdef _WIN32
#include <fcntl.h>
#include <io.h>
@ -116,13 +112,20 @@ bool read_audio_data(const std::string & fname, std::vector<float>& pcmf32, std:
}
if (stereo) {
pcmf32s.resize(2);
pcmf32s[0].resize(frame_count);
pcmf32s[1].resize(frame_count);
for (uint64_t i = 0; i < frame_count; i++) {
pcmf32s[0][i] = pcmf32[2*i];
pcmf32s[1][i] = pcmf32[2*i + 1];
}
std::vector<float> stereo_data = pcmf32;
pcmf32.resize(frame_count);
for (uint64_t i = 0; i < frame_count; i++) {
pcmf32[i] = (stereo_data[2*i] + stereo_data[2*i + 1]);
}
pcmf32s.resize(2);
pcmf32s[0].resize(frame_count);
pcmf32s[1].resize(frame_count);
for (uint64_t i = 0; i < frame_count; i++) {
pcmf32s[0][i] = stereo_data[2*i];
pcmf32s[1][i] = stereo_data[2*i + 1];
}
}
ma_decoder_uninit(&decoder);

View File

@ -10,10 +10,6 @@
#include <regex>
#include <sstream>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
// Function to check if the next argument exists
static std::string get_next_arg(int& i, int argc, char** argv, const std::string& flag, gpt_params& params) {
if (i + 1 < argc && argv[i + 1][0] != '-') {
@ -247,17 +243,6 @@ std::map<std::string, int32_t> json_parse(const std::string & fname) {
return result;
}
std::string convert_to_utf8(const std::wstring & input) {
std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
return converter.to_bytes(input);
}
std::wstring convert_to_wstring(const std::string & input) {
std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
return converter.from_bytes(input);
}
void gpt_split_words(std::string str, std::vector<std::string>& words) {
const std::string pattern = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)";
const std::regex re(pattern);

View File

@ -283,7 +283,7 @@ static std::string set_xterm256_foreground(int r, int g, int b) {
}
// Lowest is red, middle is yellow, highest is green. Color scheme from
// Paul Tol; it is colorblind friendly https://personal.sron.nl/~pault/
// Paul Tol; it is colorblind friendly https://sronpersonalpages.nl/~pault
const std::vector<std::string> k_colors = {
set_xterm256_foreground(220, 5, 12),
set_xterm256_foreground(232, 96, 28),
@ -294,6 +294,26 @@ const std::vector<std::string> k_colors = {
set_xterm256_foreground( 78, 178, 101),
};
// ANSI formatting codes
static std::string set_inverse() {
return "\033[7m";
}
static std::string set_underline() {
return "\033[4m";
}
static std::string set_dim() {
return "\033[2m";
}
// Style scheme for different confidence levels
const std::vector<std::string> k_styles = {
set_inverse(), // Low confidence - inverse (highlighted)
set_underline(), // Medium confidence - underlined
set_dim(), // High confidence - dim
};
//
// Other utils
//

View File

@ -1,4 +1,6 @@
add_executable(main ./deprecation-warning.cpp)
add_executable(bench ./deprecation-warning.cpp)
add_executable(stream ./deprecation-warning.cpp)
add_executable(command ./deprecation-warning.cpp)
if (WHISPER_SDL2)
add_executable(stream ./deprecation-warning.cpp)
add_executable(command ./deprecation-warning.cpp)
endif()

Some files were not shown because too many files have changed in this diff Show More